NG

Oracle VM
VirtualBox®

Programming Guide and
Reference

Version 4.0.34
(©) 2004-2015 Oracle Corporation

http://www.virtualbox.org

Contents

1 Introduction
1.1 Modularity: the building blocks of VirtualBox
1.2 Two guises of the same “Main API”: the web service or COM/XPCOM
1.3 About webservicesin general
1.4 Runningthewebservice
1.4.1 Command line options of vboxwebsrv
1.4.2 Authenticating at web servicelogon
1.4.3 Solaris host: starting the web serviceviaSMF
2 Environment-specific notes
2.1 Using the object-oriented web service (OOWS)
2.1.1 The object-oriented web service for JAXWS.
2.1.2 The object-oriented web service for Python
2.1.3 The object-oriented web service for PHP
2.2 Using the raw web service with any language
2.2.1 Raw web service example for Java with Axis
2.2.2 Raw web service example forPerl
2.2.3 Programming considerations for the raw web service
2.3 Using COM/XPCOMdirectly o v it ittt
2.3.1 Python COMAPIL ettt i
2.3.2 Common Python bindings layer
233 CH++COMAPI e
2.3.4 Event queue proCessing v v v v v v it e i e
2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts
2.3.6 Cbindingto XPCOMAPI i ittt
3 Basic VirtualBox concepts; some examples
3.1 Obtaining basic machine information. Reading attributes
3.2 Changing machine settings. Sessions
3.3 Launching virtual machines
3.4 VirtualBoX eVents e e e e e e e e e e
4 The VirtualBox shell
5 Classes (interfaces)
5.1 IAdditionsStateChangedEvent (IEvent)
5.2 IAppliance e e e e
5.2.1 Attributes
5.2.2 createVFSExplorer e
523 getWarningso e e e e e e e e
5.2.4 importMachines
5.2.5 nterpret e e e e e
526 read
5.2.7 WIItE . . .« o o e e e e e e e e e e e
5.3 TAudioAdapter e e e e e e e e

5.3.1 Attributes e

15
15
16
17
18
18
19
19

21
21
21
23
24
24
24
25
26
30
30
30
32
32
33
33

38
38
38
39
39

1

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11

5.12

5.13

Contents

IBIOSSEttings . . . v v v it e e e e e e e e e e e e e e e e e e e 47
5.4.1 Attributes e 47
IBandwidthControl e 48
5.5.1 Attributes 48
5.5.2 CreateBandwidthGroup, 48
5.5.3 DeleteBandwidthGroup 48
5.5.4 GetAllBandwidthGroups 49
5.5.5 GetBandwidthGroup 49
BandwidthGroup e e e e 49
5.6.1 Attributes 49
IBandwidthGroupChangedEvent (IEvent) 49
5.7.1 Attributes e 50
ICPUChangedEvent (IEvent) v v v v v v i ittt i 50
5.8.1 Attributes 50
ICPUExecutionCapChangedEvent (IEvent) 50
5.9.1 Attributes e 50
ICanShowWindowEvent (IVetoEvent) v v v v v i v oot 50
IConsole e e 51
5.11.1 Attributes e 51
5.11.2 adoptSavedState. i e e e e e 53
5.11.3 attachUSBDevice i i i i it e e e et 53
5.11.4 createSharedFolder 54
5.11.5 deleteSnapshot 54
5.11.6 detachUSBDevice i, 55
5.11.7 discardSavedState e 55
5.11.8 findUSBDeviceByAddress i 56
5.11.9 findUSBDeviceByld 56
5.11.10 getDeviceACtiVILY« v v v i it e e e e e e e e e e e 56
5.11.11 getGuestEnteredACPIMode 56
5.11.12 getPowerButtonHandled 56
SALI3 pause L e e e e e e e e e e e e 57
5.11.14 powerButton Lo e 57
5.11.15 powerDown L e e 57
5.11.16 powerUp o v v e e e e e e e e e 57
5.11.17 powerUpPaused ittt e 58
5.11.18 removeSharedFolder 58
SAT.I9 reset . . L oL e e e e e e 58
5.11.20 restoreSnapshot e 59
5.11.21 TeSUME v v v e i e b e e e e e e e e e e e e e e e e e 59
5.11.22 saveState i e e e e e e e e e e e e e 59
5.11.23 sleepButton o v i e e e e e e e e e e e e e 60
5.11.24 takeSnapshot 60
5.11.25 teleport v v v o e e e e e e 60
IDHCPSEIVET . . . o i v e i i e e e e e e e e e e e e e e e e e 61
5.12.1 Attributes e 61
5.12.2 setConfiguration ittt e e 62
5.12.3 Start . ..o e e e e e e e e e e e 62
5124 StOD .« v v i e e e e e e e e e e e e e e 62
IDisplay o e e e e e e e e 63
5.13.1 completeVHWACommand, 63
5.13.2 drawToSCreen v v v v i it e e e e e e e 63
5.13.3 getFramebuffer 64
5.13.4 getScreenResolution. e 64

5.14

5.15
5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

Contents

5.13.5 invalidateAndUpdate 64
5.13.6 resizeCompleted 64
5.13.7 setFramebuffer e 65
5.13.8 setSeamlessMode e 65
5.13.9 setVideoModeHint. i i i i e e 65
5.13.10 takeScreenShot e e e 66
5.13.11 takeScreenShotPNGTOAITay v v v v v v v e e e e e e e n 66
5.13.12 takeScreenShotToArray o ot it i 67
IEVENt . . . o . e e e e e e e e e e e e e e e e e 67
5.14.1 Attributes e e e e e e e e 68
5.14.2 setProcessed e e e e 68
5.14.3 waitProcessed e e e e 69
IEVENtCONEXE . . . v v v v o e 69
IEventListener o e e e e e e e e e e e e e e e e 69
5.16.1 handleEvent e 69
IEVENESOUICE . . . v v ot ot e 69
5.17.1 createAggregatoro i i e e e e e e e e 69
5.17.2 createLiStener i i e e e e e e e e 70
5.17.3 eventProcessed i it e e e e e 70
5.17.4 fireEvent e e e e e e e 70
5.17.5 getEvent L e 70
5.17.6 registerListener e 70
5.17.7 unregisterlistener e 71
[EventSourceChangedEvent (IEvent) 71
5.18.1 Attributes e e e e e e e e e 71
IExtPack (IExtPackBase) i i i i it ittt e e e 72
5.19.1 queryObject e e 72
IEXtPackBase v v i e e e e e e e e e e e 72
5.20.1 Attributes e e e e e e e e e e 72
5.20.2 querylicense e 74
IExtPackFile (IExtPackBase) v v i i i it it et e e 74
5.21.1 Attributes e e e e e 74
521.2 install. e e e 74
[ExtPackManager oo i i it it i e e e e e 74
5.22.1 Attributes e e e e e e e e e e 75
5.22.2 IsExtPackUsable 75
5.22.3 QueryAllPlugInsForFrontend 75
5.22.4 cleanupo e e e e 75
5225 find e e e e 75
5.22.6 openExtPackFile 76
5.22.7 wuninstall e e e 76
[ExtPackPlugin e e e e 76
5.23.1 Attributes e e e e e e 76
[ExtraDataCanChangeEvent (IVetoEvent) 77
5.24.1 Attributes e e e e e e e e e 77
[ExtraDataChangedEvent (IEvent) v i v v v v v v .. 77
5.25.1 Attributes e e e e e e e e e 77
IFramebuffer. e e 78
5.26.1 Attributes e e e e e e e e e 78
5.26.2 getVisibleRegion 79
5263 lock e e e e e e 80
5.26.4 notifyUpdate e e e e e 80
5.26.5 processVHWACommand o.... 80

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

Contents

5.26.6 requestResize e 81
5.26.7 setVisibleRegion e 82
5.26.8 wunlock 83
5.26.9 videoModeSupported 83
[FramebufferOverlay (IFramebuffer) 83
5.27.1 Attributes e e 83
5.27.2 MOVE e e e e e e e e e e 84
IGuest e e 84
5.28.1 Attributes 84
5.28.2 copyToGuest L e e e e e e e e e 85
5.28.3 createDirectoryo 86
5.28.4 executeProcess.o e e e e e e e e 86
5.28.5 getAdditionsStatuso 87
5.28.6 getProcessOutput i e 87
5.28.7 getProcessStatus oL e e e e e e e e e 87
5.28.8 internalGetStatiStiCs v v i i e e e e e e e e e e e 88
5.28.9 setCredentials i e 88
5.28.10 setProcessInputo e e 89
5.28.11 updateGuestAdditionso oo 89
IGuestKeyboardEvent (IEvent) o v i i it i it e et 89
5.29.1 Attributes 89
IGuestMonitorChangedEvent (IEvent) v ... 90
5.30.1 Attributes e 90
IGuestMouseEvent (IReusableEvent) o v v v v v v v ... 90
5.31.1 Attributes e 91
IGuestOSType o o e e e e e e e e e e 91
5.32.1 Attributes e 91
IGuestPropertyChangedEvent (IMachineEvent) 94
5.33.1 Attributes e 94
THOSE . . o o e e e e e 94
5.34.1 Attributes e 95
5.34.2 createHostOnlyNetworkInterface 96
5.34.3 createUSBDeviceFilter 97
5.34.4 findHosStDVDDIIVE v v v i it e e e e e e e e 97
5.34.5 findHostFloppyDrive 97
5.34.6 findHostNetworkInterfaceByld 97
5.34.7 findHostNetworkInterfaceByName 97
5.34.8 findHostNetworkInterfacesOfType 98
5.34.9 findUSBDeviceByAddress 98
5.34.10 findUSBDeviceByld e 98
5.34.11 getProcessorCPUIDLeaf 98
5.34.12 getProcessorDescription it i it e 99
5.34.13 getProcessorFeature Lo Lo 99
5.34.14 getProcessorSpeedo e 99
5.34.15 insertUSBDeviceFilter e 99
5.34.16 removeHostOnlyNetworkInterface 100
5.34.17 removeUSBDeviceFilter 100
[HostNetworkInterface o i v v i it e et ettt 100
5.35.1 Attributes 100
5.35.2 dhcpRediscover 102
5.35.3 enableDynamiclpConfig. 102
5.35.4 enableStaticIpConfig 102
5.35.5 enableStaticIpConfigV6 102

5.36

5.37

5.38

5.39

5.40

Contents

[HostPciDevicePlugEvent (IMachineEvent) 102
5.36.1 Attributes e 103
IHostUSBDevice (IUSBDEVICE) . . v v v v v v e e e e e e e e e e e e e e e e e e 103
5.37.1 Attributes e 103
IHostUSBDeviceFilter (IUSBDeviceFilter) 104
5.38.1 Attributes e e 104
IInternalMachineControl it 104
5.39.1 adoptSavedState. e 104
5.39.2 autoCaptureUSBDevices v i vt 104
5.39.3 beginPowerUp e 105
5.39.4 beginPoweringDown 105
5.39.5 beginSavingState e 105
5.39.6 beginTakingSnapshot 105
5.39.7 captureUSBDevice 106
5.39.8 deleteSnapshot 106
5.39.9 detachAllUSBDeVICES v i i i it e e e e e e e e e 106
5.39.10 detachUSBDEVICE v v v i ittt e e e e e e e e e 107
5.39.11 endPowerUp o i i it e e e e e 107
5.39.12 endPoweringDowno e 107
5.39.13 endSavingState e e e e e 107
5.39.14 endTakingSnapshot 108
5.39.15 finishOnlineMergeMedium 108
5.30.16 getIPCId v i it e e e e e 108
5.39.17 lockMedia e e 108
5.39.18 onSessionEnd e 109
5.39.19 pullGuestProperties i e 109
5.39.20 pushGUEStPIOPEItY« v v v v v ittt e e e e e e 109
5.39.21 restoreSnapshoto 109
5.39.22 runUSBDeviceFilters e 110
5.39.23 setRemoveSavedStateFileo oL, 110
5.39.24 unlockMedia e 110
5.39.25 updateState e e e e 110
IInternalSessionControl o v v i e e . 110
5.40.1 accessGUESTPIOPerty v v v v it e 111
5.40.2 assignMachine o 111
5.40.3 assignRemoteMachine 111
5.40.4 enumerateGuestPropertieso 112
5.40.5 getPID L e e e e 112
5.40.6 getRemoteConsole.t 112
5.40.7 onBandwidthGroupChange 112
5.40.8 onCPUChange ittt 113
5.40.9 onCPUExecutionCapChange 113
5.40.10 onMediumChangeo 113
5.40.11 onNetworkAdapterChange 113
5.40.12 onParallelPortChange 114
5.40.13 onSerialPortChange 114
5.40.14 onSharedFolderChange 114
5.40.15 onShowWindow e 114
5.40.16 onStorageControllerChange 115
5.40.17 onUSBControllerChange 115
5.40.18 onUSBDeviceAttach 115
5.40.19 onUSBDeviceDetach 116
5.40.20 onVRDEServerChange v vt 116

541

5.42

5.43

Contents

5.40.21 onlineMergeMedium 116
5.40.22 uninitialize e e 117
5.40.23 updateMachineState oo 117
IKeyboard e e e e e 117
5.41.1 Attributes e e e e 117
5.41.2 PUtCAD . . . o\t i e e e 117
5.41.3 putScancodeo e e e e e 118
5.41.4 putScancodes e e e 118
IKeyboardLedsChangedEvent (IEvent) 118
5.42.1 Attributes e 118
IMachine e e e e 119
5.43.1 Attributes e 119
5.43.2 addStorageController 128
5.43.3 attachDevice e 129
5.43.4 attachHostPciDevice 130
5.43.5 canShowConsoleWindow 130
5.43.6 createSharedFolder 131
5.43.7 delete. e 131
5.43.8 detachDevice. e 132
5.43.9 detachHostPciDevice, 132
5.43.10 discardSettings i e e e e e 133
5.43.11 enumerateGuestProperties ool 133
5.43.12 €XPOTt . . . v i e e e e e e 134
5.43.13 findSnapshot L 134
5.43.14 getBootOrder e 134
5.43.15 getCPUIDLeaf it 134
5.43.16 getCPUPIOperty v v v v v i ittt et i e e e e e e 135
5.43.17 getCPUStatus o v v vt i et e e e e 135
5.43.18 getExtraData 135
5.43.19 getExtraDataKeys 135
5.43.20 getGuestProperty i e e e e e 136
5.43.21 getGuestPropertyTimestampo 136
5.43.22 getGuestPropertyValue, 136
5.43.23 getHWVirtExProperty i 136
5.43.24 getMedium e e 137
5.43.25 getMediumAttachment 137
5.43.26 getMediumAttachmentsOfController. 137
5.43.27 getNetworkAdapter e 138
5.43.28 getParallelPort 138
5.43.29 getSerialPort 138
5.43.30 getStorageControllerBylnstance 138
5.43.31 getStorageControllerByName 139
5.43.32 hotPIugCPU i ittt e e e e e e 139
5.43.33 hotUnplugCPU ettt e 139
5.43.34 [aunchVMPIocess v v v v v i ittt e e e e e e e 139
5.43.35 lockMachine 140
5.43.36 mountMedium e 141
5.43.37 passthroughDevice 142
5.43.38 queryLogFilename 143
5.43.39 querySavedGuestSizeo 143
5.43.40 querySavedScreenshotPNGSize 143
5.43.41 querySavedThumbnailSize 143
5.43.42 readlogo e e e e e e e 144

5.44
5.45

5.46

5.47

5.48

5.49

5.50

Contents

5.43.43 readSavedScreenshotPNGTOArray 144
5.43.44 readSavedThumbnailPNGToArrayo ... 144
5.43.45 readSavedThumbnailToArray 144
5.43.46 removeAllCPUIDLeaves v v v v vt e e e e e e 145
5.43.47 removeCPUIDLeaf i 145
5.43.48 removeSharedFolder, 145
5.43.49 removeStorageController L. 145
5.43.50 saveSettings 145
5.43.51 setBandwidthGroupForDevice 146
5.43.52 setBootOrder. 146
5.43.53 setCPUIDLeaf i i i i ittt e e 147
5.43.54 setCPUPIOPEeIty v v v v vttt et e et e e e 147
5.43.55 setExtraData e 147
5.43.56 setGUeStPTOPerty i e 148
5.43.57 setGuestPropertyValue 148
5.43.58 setHWVirtExProperty i i i 149
5.43.59 setStorageControllerBootable 149
5.43.60 showConsoleWindow, 149
5.43.61 unregister L. e e e e 150
IMachineDataChangedEvent (IMachineEvent) 151
IMachineDebugger i i e e e e 151
5.45.1 Attributes e e 151
5.45.2 detectOS e e 153
5.45.3 dumpGuestCore e e e 153
5.45.4 dumpGuestStack e 153
5.45.5 dumpHostProcessCore i it 154
5.45.6 dumpStatso e e e e 154
5.45.7 getRegister e 154
5.45.8 getRegisters e 154
5.45.9 getStats e e 155
54510 infoo e 155
5.45.11 injectNMI L e e e e e e e 155
5.45.12 modifyLogDestinations e 155
5.45.13 modifyLogFlags 155
5.45.14 modifyLogGroups« . i e e e 156
5.45.15 readPhysicalMemory i it e e 156
5.45.16 readVirtualMemory it it e e e e 156
5.45.17 resetStats L e e e e e e e e e e 156
5.45.18 setRegister e 156
5.45.19 setRegisters e e 157
5.45.20 writePhysicalMemory e 157
5.45.21 writeVirtualMemory e e e e e e 157
IMachineEvent (IEVENt) v i v i i e e e e e e e e e e e e e 158
5.46.1 Attributes 158
IMachineRegisteredEvent (IMachineEvent) 158
5.47.1 Attributes 158
IMachineStateChangedEvent (IMachineEvent) 158
5.48.1 Attributes e 158
IManagedObjectRef e 159
5.49.1 getlnterfaceName e 159
5.49.2 release e 159
IMedium e e e e e e e 159
5.50.1 Attributes e 161

5.51

5.52

5.53

5.54

5.55

5.56

5.57

5.58

5.59

5.60

Contents

550.2 cloneTo v i e e e e e e e 166
5.50.3 close e e e e e e e e e 166
5.50.4 compacto e e e 167
5.50.5 createBaseStorage L L e 167
5.50.6 createDiffStorage e 168
5.50.7 deleteStorage e 168
5.50.8 getProperties. e e 169
5.50.9 getProperty 169
5.50.10 getSnapshotlds e 169
5.50.11 lockRead e e 170
5.50.12 lockWrite o e e e e e e e 170
5.50.13 mergeTo 171
5.50.14 refreshState e e e 172
5.50.15 reset e e e e e e e e e e e e e e 172
5.50.16 T€SIZE i e 172
5.50.17 setIDs o e 173
5.50.18 setProperties e 173
5.50.19 setProperty e 173
5.50.20 unlockRead e 174
5.50.21 unlockWrite e e e e e e e 174
IMediumAttachment e 174
5.51.1 Attributes e e e e e e e e 177
IMediumChangedEvent (IEvent) i i it i 178
5.52.1 Attributes e e e e e e e e e 178
IMediumFormat o e e e e e e e e e e e e e e e e 178
5.53.1 Attributes e e e e e e e 178
5.53.2 describeFileEXtensions v i it i e e e e e e e e 179
5.53.3 describeProperties e e e e e e 179
IMediumRegisteredEvent (IEvent) v v v vttt i 179
5.54.1 Attributes e e e e e e e e e e 179
IMoOUSE o o e e e e e e e e e e e e e e e e 180
5.55.1 Attributes e e e e e 180
5.55.2 putMouseEvent e 181
5.55.3 putMouseEventAbsolute 181
IMouseCapabilityChangedEvent (IEvent) 182
5.56.1 Attributes e e e e e e e e 182
IMousePointerShapeChangedEvent (IEvent) 182
5.57.1 Attributes e e e e e e 183
INATEngine o i e e e 184
5.58.1 Attributes e e e e e e e e 184
5.58.2 addRedirect e e 185
5.58.3 getNetworkSettings e 186
5.58.4 removeRedirect e e 186
5.58.5 setNetworkSettings 186
INATRedirectEvent (IMachineEvent) v v v v v v ... 186
5.59.1 Attributes e e e e e e e e e 187
INetworkAdapter i i it e e e e e 187
5.60.1 Attributes e e e e e 188
5.60.2 attachToBridgedInterface 189
5.60.3 attachToHostOnlyInterface 189
5.60.4 attachTolnternalNetwork 190
5.60.5 attachToNAT 0 i e e e e e e e e e e e 190
5.60.6 attachToVDE e e e e e e e 190

5.61

5.62

5.63

5.64

5.65

5.66

5.67

5.68

5.69

5.70

5.71

5.72

5.73

5.74

5.75

5.76

5.77

5.78

5.79
5.80

Contents

5.60.7 detach e e e 190
INetworkAdapterChangedEvent (IEvent) 190
5.61.1 Attributes e e e e e e e e e 190
TParallelPort e e e e e e 190
5.62.1 Attributes e e e e e e 191
IParallelPortChangedEvent (IEvent) v v i i v v v v v .. 191
5.63.1 Attributes e e e e e e e e e 191
IPciAddress o i e e e e e e e e e 192
5.64.1 Attributes e e e e e e e e e e 192
5.64.2 asLong e e e e 192
5.64.3 fromLong. e e e 192
IPciDeviceAttachment v i i i i e e e e e e 192
5.65.1 Attributes e e e e e e e e e 193
IPerformanceCollector e e 193
5.66.1 Attributes e e e e e e e e e 194
5.66.2 disableMetrics e e e e e e e 194
5.66.3 enableMetrics e e e e e e e 195
5.66.4 getMetrics e 195
5.66.5 queryMetricsData 195
5.66.6 setupMetriCs v i e e e e e e e e e e e e e e 196
IPerformanceMetriC v v i e e e e e e e e 197
5.67.1 Attributes e e e e e e e 197
IPIOGress . . o v v o v i e e e e e e e e e e e e e e e e e e e 198
5.68.1 Attributes e e e e e e e e e e 198
5.68.2 cancel e e e 200
5.68.3 setCurrentOperationProgress oo v v v v v v v 200
5.68.4 setNextOperation it 201
5.68.5 waitForCompletion 201
5.68.6 waitForOperationCompletion 201
IReusableEvent (IEVENt) v v v v e e e e e e e e e e e e e e 201
5.69.1 Attributes e e e e e e e e 202
5.60.2 TEUSE i i e e e e e e e e e e e e 202
IRuntimeErrorEvent (IEvent) v i i i e e e e 202
5.70.1 Attributes e e e e e e e e e e e 203
ISerialPort e e e e e e e 203
5.71.1 Attributes e e e e e e e e e 203
ISerialPortChangedEvent (IEvent) v v v .. 204
5.72.1 Attributes e e e e e e e 204
ISESSION o e e e e e e e e e e e 205
5.73.1 Attributes e e e e e e e e e 205
5.73.2 unlockMachine 206
ISessionStateChangedEvent (IMachineEvent) 206
5.74.1 Attributes e e e e e e e 206
ISharedFolder @ e e 206
5.75.1 Attributes e e e e e e e e e e 207
ISharedFolderChangedEvent (IEvent), 208
5.76.1 Attributes e e e e e e e e e 208
IShowWindowEvent (IEvent) o v i v i i it i e e 208
5.77.1 Attributes e e e e e e 209
ISnapshot e e e e 209
5.78.1 Attributes e e e e e e e e e e 210
ISnapshotChangedEvent (ISnapshotEvent) 211
ISnapshotDeletedEvent (ISnapshotEvent) 211

10

5.81

5.82
5.83

5.84

5.85
5.86

5.87

5.88
5.89

5.90

5.91

5.92

5.93

5.94

5.95
5.96

5.97
5.98

5.99

Contents

ISnapshotEvent (IMachineEvent) 211
5.81.1 Attributes e e e e e e e e 211
ISnapshotTakenEvent (ISnapshotEvent) 212
IStateChangedEvent (IEvent) v v i i v v v i e 212
5.83.1 Attributes e e e e e e e 212
IStorageController e e e 212
5.84.1 Attributes e e e e e e e e 212
5.84.2 getIDEEmulationPort 214
5.84.3 setIDEEmulationPort 214
IStorageControllerChangedEvent (IEvent) 214
ISystemProperties L. e e e e e 214
5.86.1 Attributes e e e e e e e e 215
5.86.2 getDefaultloCacheSettingForStorageController 219
5.86.3 getDeviceTypesForStorageBus 219
5.86.4 getMaxDevicesPerPortForStorageBus 219
5.86.5 getMaxInstancesOfStorageBus 219
5.86.6 getMaxPortCountForStorageBus 219
5.86.7 getMinPortCountForStorageBus 220
IUSBController e e e e e e e 220
5.87.1 Attributes e e e e e e e e e 220
5.87.2 createDeviceFilter e 221
5.87.3 insertDeviceFilter e 221
5.87.4 removeDeviceFilter e 221
IUSBControllerChangedEvent (IEvent) 222
TUSBDEVICE o o i e 222
5.89.1 Attributes e e e e e e e e 222
IUSBDeviceFilter e e e e e 223
5.90.1 Attributes e e e e e e e e e 224
IUSBDeviceStateChangedEvent (IEvent) 226
5.91.1 Attributes e e e e e e e e e e 226
IVBoxSVCAvailabilityChangedEvent (IEvent) 226
5.92.1 Attributes e e e e e 226
IVFSEXplOTer e e e e e e 227
5.93.1 Attributes e e e e e e e e e 227
5.93.2 cd e e e e e 227
5.93.3 cdUp . . . i i e e e e e e e e 227
5.93.4 entrylist 227
5.93.5 EXiStS e e e e e e e e e e e e e e e e e e 228
5.93.6 TEMOVE o v i it e e e e e e e e e e e e e e e e e e e 228
5.93.7 update e e e 228
IVRDEServer o i i e e e e e e e e e e e e e e e e e 228
5.94.1 Attributes e e e e e e e e e 228
5.94.2 getVRDEProperty o v v v v i vttt e e e 229
5.94.3 setVRDEProperty i i i it 229
IVRDEServerChangedEvent (IEvent) 229
IVRDEServerInfo e e e 230
5.96.1 Attributes e e e e e e e e 230
IVRDEServerInfoChangedEvent (IEvent) 231
IVetoEvent (IEvent) o o i i e e e e e e e e e e e e 232
598.1 addVeto e e e e 232
5.98.2 getVetos e e 232
5.98.3 isVetoed e e e 232
IVirtualBoX o e e e e e e e e e e e e e 232

11

Contents

5.99.1 Attributes e 232
5.99.2 checkFirmwarePresent 235
5.99.3 composeMachineFilename 235
5.99.4 createAppliance e 235
5.99.5 createDHCPServer o 0 i i i ittt ettt 236
5.99.6 createHardDisk 236
5.99.7 createMachine e e 236
5.99.8 createSharedFolder 238
5.99.9 findDHCPServerByNetworkName 238
5.99.10 findMachine 238
5.99.11 findMedium e e e 239
5.99.12 getExtraData e e e e e e e e 239
5.99.13 getExtraDataKeys e 239
5.99.14 getGuestOSType e 239
5.99.15 openMachine e 240
5.99.16 openMedium v vt e e e e e e e e e e 240
5.99.17 registerMachine e 241
5.99.18 removeDHCPServer e 241
5.99.19 removeSharedFolder 242
5.99.20 setExtraData Lo e 242
5.100 IVirtualBoxClient i i it e e e e e e e e 242
5.100.1 Attributes e e 243
5.101 IVirtualBoxErrorInfo 243
5.101.1 Attributes e 243
5.102 IVirtualSystemDescription i it e e e e e e e e 244
5.102.1 Attributes 244
5.102.2 addDescription e e e e e e e e e e e 245
5.102.3 getDescription e e e e e 245
5.102.4 getDescriptionByType 247
5.102.5 getValuesByType o i i it e e e e e 247
5.102.6 setFinalValues 248
5.103 TWebsessionManager v v v v v vttt e e e e e e 248
5.103.1 getSessionObject 248
5.103.2 logoff e e 248
5.103.3 080N e e e 249
Enumerations (enums) 250
6.1 AccessMode e e e e e 250
6.2 AdditionsRunLevelType 250
6.3 AdditionsUpdateFlag e e 250
6.4 AudioControllerType o v i i i it e e e e e e 250
6.5 AudioDriverTyPe o v v v e e e e e e e e e e e e e 250
6.6 AuthType. o e e e e e e 251
6.7 BIOSBootMenuMode e e e 251
6.8 BandwidthGroupType o o v i i e e e e e e 251
6.9 CPUPropertyIype o o v i i it ittt e e e 251
6.10 ChipsSetTyPe v v v e e e e e e e e e e e e e e e e e 252
6.11 CleanupMode o it e e e e e e e 252
6.12 ClipboardMode e e e e 252
6.13 CopyFileFlag. e e e e e 252
6.14 CreateDirectoryFlag e 252
6.15 DataFlags o i i e e e 253
6.16 DataType v o i i e e e e e e e e e e e 253
6.17 DevVICeACHIVILY o it e e e e e e e e 253

12

Contents

6.18 DeviceType o o o e e e 253
6.19 ExecuteProcessFlag e 254
6.20 FaultToleranceState i i i it e e e e e e e 254
6.21 FirmwareType o e e e e e e e e e e e e 254
6.22 FramebufferPixelFormat ittt 254
6.23 GuestMonitorChangedEventType 254
6.24 HWVIrtExPropertyType o 0 o it e e 255
6.25 HostNetworkInterfaceMediumTypeo it i i 255
6.26 HostNetworkInterfaceStatus v v v v v vt e 255
6.27 HostNetworkInterfaceType o v v i i i e e e e e 255
6.28 KeyboardHidType e 256
6.29 LockType o o it e e e e e 256
6.30 MachineState e e e e e 256
6.31 MediumFormatCapabilities 259
6.32 MediumsState e e e e e e e 259
6.33 MediumType o it e e e 260
6.34 MediumVariant i e e e e e e e e e e e e 260
6.35 MouseButtonState e e e 261
6.36 NATAliasMode e e e e 261
6.37 NATProtocol e e e e 261
6.38 NetworkAdapterType« o v v v it et e e e e e e e e e 261
6.39 NetworkAttachmentType o i i i 262
6.40 PointingHidType e 262
6.41 PortMode e e e e e 262
6.42 ProcessInputFlag e 262
6.43 DProcessorFeature e 263
6.44 SCOPE. . . . i e e e 263
6.45 SessionStateo e e e e e 263
6.46 SessionType e e 263
6.47 SettingsVersion i it e e e e e e e e 264
6.48 StorageBus. e e 264
6.49 StorageControllerType o it i e 265
6.50 USBDeviceFilterACtion o i i v i i e e e e e e e 265
6.51 USBDeviceState o v v v it e e e e e e e e e e e e 265
6.52 VBoxEventType e e 266
6.53 VFSFileType o o o e e e e e e 268
6.54 VFSTYPe o e e e e e 268
6.55 VirtualSystemDescriptionType oo e e 268
6.56 VirtualSystemDescriptionValueType o ittt 269
Host-Guest Communication Manager 270
7.1 Virtual hardware implementation 270
7.2 Protocol specification e e 270

7.2.1 Requestheader 270

7.2.2 CONNECt v it e e e e 271

7.2.3 DIiSCONNECE v v it e e e e e e e e e e e e e e 272

7.24 Call32and Call64 272

7.25 Cancel e 273
7.3 Guestsoftware interface 273

7.3.1 The guestdriverinterface. 273

7.3.2 Guest application interface 275
7.4 HGCM Service Implementation, 276

13

Contents

8 RDP Web Control

8.1
8.2

8.3

RDPWeb features v i i i e et e e e e e e e e e
RDPWeb reference i i i i i e e e e e
8.2.1 RDPWebfunctions. e
8.2.2 Embedding RDPWeb in an HTML page
RDPWeb changelog e
8.3.1 Version 1.2.28 e e e
8.3.2 Version 1.1.26 e e e e e
8.3.3 Version 1.0.24 e e e e e

9 VirtualBox external authentication modules

10 Using Java API

10.1
10.2
10.3

Introduction e e e e e
Requirements L e e
Example e e

11 License information

12 Main API change log

12.1
12.2
12.3
12.4
12.5
12.6

Incompatible API changes with version4.0
Incompatible API changes with version3.2
Incompatible API changes with version3.1
Incompatible API changes with version3.0
Incompatible API changes with version2.2
Incompatible API changes with version 2.1

14

277
277
277
277
278
278
278
278
278

279

281
281
281
282

1 Introduction

VirtualBox comes with comprehensive support for third-party developers. This Software Devel-
opment Kit (SDK) contains all the documentation and interface files that are needed to write
code that interacts with VirtualBox.

1.1 Modularity: the building blocks of VirtualBox

VirtualBox is cleanly separated into several layers, which can be visualized like in the picture
below:

VirtualBox GUI VBoxManage

VirtualBox Main API

VirtualBox
RDP
Server Virtual
Devices

binary
Portability compatible

Laver VirtualBox hypervisor Hhani

cross platform 39 part
abstraction layer Windows, Linux, OS X, Solaris, FreeBSD plug—iny

Resource
Monitor
Windows

Kernel mode

The orange area represents code that runs in kernel mode, the blue area represents userspace
code.

At the bottom of the stack resides the hypervisor — the core of the virtualization engine, con-
trolling execution of the virtual machines and making sure they do not conflict with each other
or whatever the host computer is doing otherwise.

On top of the hypervisor, additional internal modules provide extra functionality. For example,
the RDP server, which can deliver the graphical output of a VM remotely to an RDP client, is a
separate module that is only loosely tacked into the virtual graphics device. Live Migration and
Resource Monitor are additional modules currently in the process of being added to VirtualBox.

What is primarily of interest for purposes of the SDK is the API layer block that sits on top of
all the previously mentioned blocks. This API, which we call the “Main API”, exposes the entire
feature set of the virtualization engine below. It is completely documented in this SDK Reference
— see chapter 5, Classes (interfaces), page 43 and chapter 6, Enumerations (enums), page 250
- and available to anyone who wishes to control VirtualBox programmatically. We chose the
name “Main API” to differentiate it from other programming interfaces of VirtualBox that may
be publicly accessible.

With the Main API, you can create, configure, start, stop and delete virtual machines, retrieve
performance statistics about running VMs, configure the VirtualBox installation in general, and

15

1 Introduction

more. In fact, internally, the front-end programs VirtualBox and VBoxManage use nothing but
this API as well — there are no hidden backdoors into the virtualization engine for our own front-
ends. This ensures the entire Main API is both well-documented and well-tested. (The same
applies to VBoxHeadless, which is not shown in the image.)

1.2 Two guises of the same “Main API”: the web service or
COM/XPCOM

There are several ways in which the Main API can be called by other code:

1. VirtualBox comes with a web service that maps nearly the entire Main API. The web ser-
vice ships in a stand-alone executable (vboxwebsrv) that, when running, acts as an HTTP
server, accepts SOAP connections and processes them.

Since the entire web service API is publicly described in a web service description file (in
WSDL format), you can write client programs that call the web service in any language with
a toolkit that understands WSDL. These days, that includes most programming languages
that are available: Java, C++, .NET, PHP, Python, Perl and probably many more.

All of this is explained in detail in subsequent chapters of this book.

There are two ways in which you can write client code that uses the web service:

a) For Java as well as Python, the SDK contains easy-to-use classes that allow you to use
the web service in an object-oriented, straightforward manner. We shall refer to this
as the “object-oriented web service (OOWS)“.

The OO bindings for Java are described in chapter 10, Using Java API, page 281, those
for Python in chapter 2.1.2, The object-oriented web service for Python, page 23.

b) Alternatively, you can use the web service directly, without the object-oriented client
layer. We shall refer to this as the “raw web service”.

You will then have neither native object orientation nor full type safety, since web
services are neither object-oriented nor stateful. However, in this way, you can write
client code even in languages for which we do not ship object-oriented client code; all
you need is a programming language with a toolkit that can parse WSDL and generate
client wrapper code from it.

We describe this further in chapter 2.2, Using the raw web service with any language,
page 24, with samples for Java and Perl.

2. Internally, for portability and easier maintenance, the Main API is implemented using the
Component Object Model (COM), an interprocess mechanism for software components
originally introduced by Microsoft for Microsoft Windows. On a Windows host, VirtualBox
will use Microsoft COM; on other hosts where COM is not present, it ships with XPCOM,
a free software implementation of COM originally created by the Mozilla project for their
browsers.

So, if you are familiar with COM and the C++ programming language (or with any other
programming language that can handle COM/XPCOM objects, such as Java, Visual Basic or
C#), then you can use the COM/XPCOM API directly. VirtualBox comes with all necessary
files and documentation to build fully functional COM applications. For an introduction,
please see chapter 2.3, Using COM/XPCOM directly, page 30 below.

The VirtualBox front-ends (the graphical user interfaces as well as the command line),
which are all written in C++, use COM/XPCOM to call the Main API. Technically, the web
service is another front-end to this COM API, mapping almost all of it to SOAP clients.

If you wonder which way to choose, here are a few comparisons:

16

1 Introduction

Web service COM/XPCOM

Pro: Easy to use with Java and Python with the Con: Usable from languages where

object-oriented web service; extensive support COM bridge available (most languages

even with other languages (C+ +, .NET, PHP, on Windows platform, Python and C+ +

Perl and others) on other hosts)

Pro: Client can be on remote machine Con: Client must be on the same host
where virtual machine is executed

Con: Significant overhead due to XML Pro: Relatively low invocation overhead

marshalling over the wire for each method call

In the following chapters, we will describe the different ways in which to program VirtualBox,
starting with the method that is easiest to use and then increase complexity as we go along.

1.3 About web services in general

Web services are a particular type of programming interface. Whereas, with “normal” program-
ming, a program calls an application programming interface (API) defined by another program
or the operating system and both sides of the interface have to agree on the calling convention
and, in most cases, use the same programming language, web services use Internet standards
such as HTTP and XML to communicate.!

In order to successfully use a web service, a number of things are required — primarily, a web
service accepting connections; service descriptions; and then a client that connects to that web
service. The connections are governed by the SOAP standard, which describes how messages
are to be exchanged between a service and its clients; the service descriptions are governed by
WSDL.

In the case of VirtualBox, this translates into the following three components:

1. The VirtualBox web service (the “server”): this is the vboxwebsrv executable shipped with
VirtualBox. Once you start this executable (which acts as a HTTP server on a specific
TCP/IP port), clients can connect to the web service and thus control a VirtualBox installa-
tion.

2. VirtualBox also comes with WSDL files that describe the services provided by the web ser-
vice. You can find these files in the sdk/bindings/webservice/ directory. These files are
understood by the web service toolkits that are shipped with most programming languages
and enable you to easily access a web service even if you don’t use our object-oriented
client layers. VirtualBox is shipped with pregenerated web service glue code for several
languages (Python, Perl, Java).

3. A client that connects to the web service in order to control the VirtualBox installation.

Unless you play with some of the samples shipped with VirtualBox, this needs to be written
by you.

'In some ways, web services promise to deliver the same thing as CORBA and DCOM did years ago. However, while
these previous technologies relied on specific binary protocols and thus proved to be difficult to use between diverging
platforms, web services circumvent these incompatibilities by using text-only standards like HTTP and XML. On the
downside (and, one could say, typical of things related to XML), a lot of standards are involved before a web service
can be implemented. Many of the standards invented around XML are used one way or another. As a result, web
services are slow and verbose, and the details can be incredibly messy. The relevant standards here are called SOAP
and WSDL, where SOAP describes the format of the messages that are exchanged (an XML document wrapped in
an HTTP header), and WSDL is an XML format that describes a complete API provided by a web service. WSDL in
turn uses XML Schema to describe types, which is not exactly terse either. However, as you will see from the samples
provided in this chapter, the VirtualBox web service shields you from these details and is easy to use.

17

1.4

1 Introduction

Running the web service

The web service ships in an stand-alone executable, vboxwebsrv, that, when running, acts as
a HTTP server, accepts SOAP connections and processes them — remotely or from the same
machine.

Note: The web service executable is not contained with the VirtualBox SDK, but instead
ships with the standard VirtualBox binary package for your specific platform. Since the
SDK contains only platform-independent text files and documentation, the binaries are
instead shipped with the platform-specific packages.

The vboxwebsrv program, which implements the web service, is a text-mode (console) pro-
gram which, after being started, simply runs until it is interrupted with Ctrl-C or a kill command.

Once the web service is started, it acts as a front-end to the VirtualBox installation of the user
account that it is running under. In other words, if the web service is run under the user account
of userl, it will see and manipulate the virtual machines and other data represented by the
VirtualBox data of that user (e.g., on a Linux machine, under /home/userl/.VirtualBox; see
the VirtualBox User Manual for details on where this data is stored).

1.4.

1 Command line options of vboxwebsrv

The web service supports the following command line options:

--help (or -h): print a brief summary of command line options.

--background (or -b): run the web service as a background daemon. This option is not
supported on Windows hosts.

--host (or -H): This specifies the host to bind to and defaults to “localhost”.
--port (or -p): This specifies which port to bind to on the host and defaults to 18083.

--timeout (or -t): This specifies the session timeout, in seconds, and defaults to 300 (five
minutes). A web service client that has logged on but makes no calls to the web service
will automatically be disconnected after the number of seconds specified here, as if it had
called the IWebSessionManager::logoff () method provided by the web service itself.

It is normally vital that each web service client call this method, as the web service can
accumulate large amounts of memory when running, especially if a web service client does
not properly release managed object references. As a result, this timeout value should not
be set too high, especially on machines with a high load on the web service, or the web
service may eventually deny service.

--check-interval (or -i): This specifies the interval in which the web service checks
for timed-out clients, in seconds, and defaults to 5. This normally does not need to be
changed.

--verbose (or -v): Normally, the webservice outputs only brief messages to the console
each time a request is served. With this option, the webservice prints much more detailed
data about every request and the COM methods that those requests are mapped to inter-
nally, which can be useful for debugging client programs.

--logfile (or -F) <file>: If this is specified, the webservice not only prints its output to
the console, but also writes it to the specified file. The file is created if it does not exist;
if it does exist, new output is appended to it. This is useful if you run the webservice
unattended and need to debug problems after they have occurred.

18

1 Introduction

1.4.2 Authenticating at web service logon

As opposed to the COM/XPCOM variant of the Main API, a client that wants to use the web ser-
vice must first log on by calling the IWebsessionManager::logon() API (see chapter 5.103.3,
logon, page 249) that is specific to the web service. Logon is necessary for the web service to be
stateful; internally, it maintains a session for each client that connects to it.

The IWebsessionManager::logon() API takes a user name and a password as arguments,
which the web service then passes to a customizable authentication plugin that performs the
actual authentication.

For testing purposes, it is recommended that you first disable authentication with this com-
mand:

VBoxManage setproperty websrvauthlibrary null

Warning: This will cause all logons to succeed, regardless of user name or password.
This should of course not be used in a production environment.

Generally, the mechanism by which clients are authenticated is configurable by way of the
VBoxManage command:

VBoxManage setproperty websrvauthlibrary default|null|<library>

This way you can specify any shared object/dynamic link module that conforms with the
specifications for VirtualBox external authentication modules as laid out in section VRDE au-
thentication of the VirtualBox User Manual; the web service uses the same kind of modules as
the VirtualBox VRDE server. For technical details on VirtualBox external authentication modules
see chapter 9, VirtualBox external authentication modules, page 279

By default, after installation, the web service uses the VBoxAuth module that ships with
VirtualBox. This module uses PAM on Linux hosts to authenticate users. Any valid user-
name/password combination is accepted, it does not have to be the username and password
of the user running the webservice daemon. Unless vboxwebsrv runs as root, PAM authenti-
cation can fail, because sometimes the file /etc/shadow, which is used by PAM, is not read-
able. On most Linux distribution PAM uses a suid root helper internally, so make sure you test
this before deploying it. One can override this behavior by setting the environment variable
VBOX_PAM_ALLOW_INACTIVE which will suppress failures when unable to read the shadow pass-
word file. Please use this variable carefully, and only if you fully understand what you’re doing.

1.4.3 Solaris host: starting the web service via SMF

On Solaris hosts, the VirtualBox web service daemon is integrated into the SMF framework. You
can change the parameters, but don’t have to if the defaults below already match your needs:

svccfg -s svc:/application/virtualbox/webservice:default setprop config/host=localhost

svccfg -s svc:/application/virtualbox/webservice:default setprop config/port=18083
svccfg -s svc:/application/virtualbox/webservice:default setprop config/user=root

If you made any change, don’t forget to run the following command to put the changes into
effect immediately:

svcadm refresh svc:/application/virtualbox/webservice:default

If you forget the above command then the previous settings will be used when enabling the
service. Check the current property settings with:

svcprop -p config svc:/application/virtualbox/webservice:default

19

1 Introduction

When everything is configured correctly you can start the VirtualBox webservice with the
following command:

svcadm enable svc:/application/virtualbox/webservice:default

For more information about SMF, please refer to the Solaris documentation.

20

2 Environment-specific notes

The Main API described in chapter 5, Classes (interfaces), page 43 and chapter 6, Enumerations
(enums), page 250 is mostly identical in all the supported programming environments which
have been briefly mentioned in the introduction of this book. As a result, the Main API's general
concepts described in chapter 3, Basic VirtualBox concepts; some examples, page 38 are the same
whether you use the object-oriented web service (OOWS) for JAX-WS or a raw web service
connection via, say, Perl, or whether you use C++ COM bindings.

Some things are different depending on your environment, however. These differences are
explained in this chapter.

2.1 Using the object-oriented web service (OOWS)

As explained in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 16, VirtualBox ships with client-side libraries for Java, Python and PHP that allow you to use
the VirtualBox web service in an intuitive, object-oriented way. These libraries shield you from
the client-side complications of managed object references and other implementation details that
come with the VirtualBox web service. (If you are interested in these complications, have a look
at chapter 2.2, Using the raw web service with any language, page 24).

We recommend that you start your experiments with the VirtualBox web service by using our
object-oriented client libraries for JAX-WS, a web service toolkit for Java, which enables you to
write code to interact with VirtualBox in the simplest manner possible.

As “interfaces”, “attributes” and “methods” are COM concepts, please read the documentation
in chapter 5, Classes (interfaces), page 43 and chapter 6, Enumerations (enums), page 250 with
the following notes in mind.

The OOWS bindings attempt to map the Main API as closely as possible to the Java, Python
and PHP languages. In other words, objects are objects, interfaces become classes, and you can
call methods on objects as you would on local objects.

The main difference remains with attributes: to read an attribute, call a “getXXX” method,
with “XXX” being the attribute name with a capitalized first letter. So when the Main API Ref-
erence says that IMachine has a “name” attribute (see IMachine::name), call getName() on an
IMachine object to obtain a machine’s name. Unless the attribute is marked as read-only in the
documentation, there will also be a corresponding “set” method.

2.1.1 The object-oriented web service for JAX-WS

JAX-WS is a powerful toolkit by Sun Microsystems to build both server and client code with Java.
It is part of Java 6 (JDK 1.6), but can also be obtained separately for Java 5 (JDK 1.5). The
VirtualBox SDK comes with precompiled OOWS bindings working with both Java 5 and 6.

The following sections explain how to get the JAX-WS sample code running and explain a few
common practices when using the JAX-WS object-oriented web service.

2.1.1.1 Preparations

Since JAX-WS is already integrated into Java 6, no additional preparations are needed for Java
6.

If you are using Java 5 (JDK 1.5.x), you will first need to download and install an external
JAX-WS implementation, as Java 5 does not support JAX-WS out of the box; for example, you can

21

2 Environment-specific notes

download one from here: https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.
jar. Then perform the installation (java -jar JAXWS2.1.4-20080502.jar).

2.1.1.2 Getting started: running the sample code
To run the OOWS for JAX-WS samples that we ship with the SDK, perform the following steps:

1. Open a terminal and change to the directory where the JAX-WS samples reside.! Examine
the header of Makefile to see if the supplied variables (Java compiler, Java executable)
and a few other details match your system settings.

2. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v
The web service now waits for connections and will run until you press Ctrl+C in this

second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 18 for details on how to run the web service.)

3. Back in the first terminal and still in the samples directory, to start a simple client example
just type:
make runl6é
if you're on a Java 6 system; on a Java 5 system, run make runl5 instead.

This should work on all Unix-like systems such as Linux and Solaris. For Windows systems,
use commands similar to what is used in the Makefile.

This will compile the clienttest. java code on the first call and then execute the resulting
clienttest class to show the locally installed VMs (see below).

The clienttest sample imitates a few typical command line tasks that VBoxManage,
VirtualBox’s regular command-line front-end, would provide (see the VirtualBox User Manual
for details). In particular, you can run:

e java clienttest show vms: show the virtual machines that are registered locally.

e java clienttest list hostinfo: show various information about the host this
VirtualBox installation runs on.

e java clienttest startvm <vmname|uuid>: start the given virtual machine.

The clienttest.java sample code illustrates common basic practices how to use the
VirtualBox OOWS for JAX-WS, which we will explain in more detail in the following chapters.

2.1.1.3 Logging on to the web service

Before a web service client can do anything useful, two objects need to be created, as can be
seen in the clienttest constructor:

1. An instance of IWebsessionManager, which is an interface provided by the web service to
manage “web sessions” — that is, stateful connections to the web service with persistent
objects upon which methods can be invoked.

In the OOWS for JAX-WS, the [WebsessionManager class must be constructed explicitly, and
a URL must be provided in the constructor that specifies where the web service (the server)
awaits connections. The code in clienttest. java connects to “http://localhost:18083/“,
which is the default.

The port number, by default 18083, must match the port number given to the vboxwebsrv
command line; see chapter 1.4.1, Command line options of vboxwebsrv, page 18.

1In sdk/bindings/webservice/java/jax-ws/samples/.

22

https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar
https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar

2 Environment-specific notes

2. After that, the code calls IWebsessionManager::logon(), which is the first call that actually
communicates with the server. This authenticates the client with the web service and
returns an instance of IVirtualBox, the most fundamental interface of the VirtualBox web
service, from which all other functionality can be derived.

If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating at web
service logon, page 19.

2.1.1.4 Object management

The current OOWS for JAX-WS has certain memory management related limitations. When
you no longer need an object, call its IManagedObjectRef::release() method explicitly, which
frees appropriate managed reference, as is required by the raw webservice; see chapter 2.2.3.3,
Managed object references, page 28 for details. This limitation may be reconsidered in a future
version of the VirtualBox SDK.

2.1.2 The object-oriented web service for Python

VirtualBox comes with two flavors of a Python API: one for web service, discussed here, and
one for the COM/XPCOM API discussed in chapter 2.3.1, Python COM API, page 30. The client
code is mostly similar, except for the initialization part, so it is up to the application developer
to choose the appropriate technology. Moreover, a common Python glue layer exists, abstracting
out concrete platform access details, see chapter 2.3.2, Common Python bindings layer, page 30.

As indicated in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 16, the COM/XPCOM API gives better performance without the SOAP overhead, and does
not require a web server to be running. On the other hand, the COM/XPCOM Python API requires
a suitable Python bridge for your Python installation (VirtualBox ships the most important ones
for each platform?), and you cannot connect to VirtualBox remotely. On Windows, you can use
the Main API from Python if the Win32 extensions package for Python? is installed.

The VirtualBox OOWS for Python relies on the Python ZSI SOAP implementation (see http:
//pywebsvcs.sourceforge.net/zsi.html), which you will need to install locally before trying
the examples. Most Linux distributions come with package for ZSI, such as python-zsi in
Ubuntu.

To get started, open a terminal and change to the bindings/glue/python/sample direc-
tory, which contains an example of a simple interactive shell able to control a VirtualBox in-
stance. The shell is written using the API layer, thereby hiding different implementation de-
tails, so it is actually an example of code share among XPCOM, MSCOM and web services.
If you are interested in how to interact with the webservices layer directly, have a look at
install/vboxapi/__init__.py which contains the glue layer for all target platforms (i.e. XP-
COM, MSCOM and web services).

To start the shell, perform the following commands:

/opt/VirtualBox/vboxwebsrv -t 0
start webservice with object autocollection disabled
export VBOX_PROGRAM_PATH=/opt/VirtualBox
your VirtualBox installation directory
export VBOX_SDK_PATH=/home/youruser/vbox-sdk
where you've extracted the SDK
./vboxshell.py -w

See chapter 4, The VirtualBox shell, page 41 for more details on the shell’s functionality. For you,
as a VirtualBox application developer, the vboxshell sample could be interesting as an example of
how to write code targeting both local and remote cases (COM/XPCOM and SOAP). The common

20n On Mac OS X only the Python versions bundled with the OS are officially supported. This means Python 2.3 for
10.4, Python 2.5 for 10.5 and Python 2.5 and 2.6 for 10.6.
3See http://sourceforge.net/project/showfiles.php?group_id=78018

23

http://pywebsvcs.sourceforge.net/zsi.html
http://pywebsvcs.sourceforge.net/zsi.html
http://sourceforge.net/project/showfiles.php?group_id=78018

2 Environment-specific notes

part of the shell is the same - the only difference is how it interacts with the invocation layer.
You can use the connect shell command to connect to remote VirtualBox servers; in this case
you can skip starting the local webserver.

2.1.3 The object-oriented web service for PHP

VirtualBox also comes with object-oriented web service (OOWS) wrappers for PHP5. These
wrappers rely on the PHP SOAP Extension*, which can be installed by configuring PHP with
--enable-soap.

2.2 Using the raw web service with any language

The following examples show you how to use the raw web service, without the object-oriented
client-side code that was described in the previous chapter.

Generally, when reading the documentation in chapter 5, Classes (interfaces), page 43 and
chapter 6, Enumerations (enums), page 250, due to the limitations of SOAP and WSDL lined out
in chapter 2.2.3.1, Fundamental conventions, page 26, please have the following notes in mind:

1. Any COM method call becomes a plain function call in the raw web service, with the
object as an additional first parameter (before the “real” parameters listed in the docu-
mentation). So when the documentation says that the IVirtualBox interface supports
the createMachine() method (see IVirtualBox::createMachine()), the web service op-
eration is IVirtualBox_createMachine(...), and a managed object reference to an
IVirtualBox object must be passed as the first argument.

2. For attributes in interfaces, there will be at least one “get” function; there will also be a
“set” function, unless the attribute is “readonly”. The attribute name will be appended to
the “get” or “set” prefix, with a capitalized first letter. So, the “version” readonly attribute of
the IVirtualBox interface can be retrieved by calling IVirtualBox_getVersion(vbox),
with vbox being the VirtualBox object.

3. Whenever the API documentation says that a method (or an attribute getter) returns an
object, it will returned a managed object reference in the web service instead. As said
above, managed object references should be released if the web service client does not log
off again immediately!

2.2.1 Raw web service example for Java with Axis

Axis is an older web service toolkit created by the Apache foundation. If your distribution does
not have it installed, you can get a binary from http://www.apache.org. The following exam-
ples assume that you have Axis 1.4 installed.

The VirtualBox SDK ships with an example for Axis that, again, is called clienttest. java
and that imitates a few of the commands of VBoxManage over the wire.

Then perform the following steps:

1. Create a working directory somewhere. Under your VirtualBox installation directory, find
the sdk/webservice/samples/java/axis/ directory and copy the file clienttest.java
to your working directory.

2. Open a terminal in your working directory. Execute the following command:

java org.apache.axis.wsdl.WSDL2Java /path/to/vboxwebService.wsdl

4See http://www.php.net/soap.

24

http://www.apache.org
http://www.php.net/soap

2 Environment-specific notes

The vboxwebService.wsdl file should be located in the sdk/webservice/ directory.

If this fails, your Apache Axis may not be located on your system classpath, and you may
have to adjust the CLASSPATH environment variable. Something like this:

export CLASSPATH="/path-to-axis-1_4/lib/x*":$CLASSPATH

Use the directory where the Axis JAR files are located. Mind the quotes so that your shell
passes the “*“ character to the java executable without expanding. Alternatively, add a
corresponding -classpath argument to the “java” call above.

If the command executes successfully, you should see an “org” directory with subdirecto-
ries containing Java source files in your working directory. These classes represent the
interfaces that the VirtualBox web service offers, as described by the WSDL file.

This is the bit that makes using web services so attractive to client developers: if a lan-
guage’s toolkit understands WSDL, it can generate large amounts of support code auto-
matically. Clients can then easily use this support code and can be done with just a few
lines of code.

3. Next, compile the clienttest. java source:

javac clienttest.java

This should yield a “clienttest.class” file.

4. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 18 for details on how to run the web service.)

5. Back in the original terminal where you compiled the Java source, run the resulting binary,
which will then connect to the web service:

java clienttest

The client sample will connect to the web service (on localhost, but the code could be
changed to connect remotely if the web service was running on a different machine) and
make a number of method calls. It will output the version number of your VirtualBox
installation and a list of all virtual machines that are currently registered (with a bit of
seemingly random data, which will be explained later).

2.2.2 Raw web service example for Perl

We also ship a small sample for Perl. It uses the SOAP::Lite perl module to communicate with
the VirtualBox web service.

The sdk/bindings/webservice/perl/lib/ directory contains a pre-generated Perl module
that allows for communicating with the web service from Perl. You can generate such a module
yourself using the “stubmaker” tool that comes with SOAP::Lite, but since that tool is slow as well
as sometimes unreliable, we are shipping a working module with the SDK for your convenience.

Perform the following steps:

1. If SOAP::Lite is not yet installed on your system, you will need to install the package
first. On Debian-based systems, the package is called libsoap-lite-perl; on Gentoo, it’s
dev-perl/SOAP-Lite.

2. Open a terminal in the sdk/bindings/webservice/perl/samples/ directory.

25

2 Environment-specific notes

3. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 18 for details on how to run the web service.)

4. In the first terminal with the Perl sample, run the clienttest.pl script:
perl -I ../lib clienttest.pl

2.2.3 Programming considerations for the raw web service

If you use the raw web service, you need to keep a number of things in mind, or you will sooner
or later run into issues that are not immediately obvious. By contrast, the object-oriented client-
side libraries described in chapter 2.1, Using the object-oriented web service (OOWS), page 21 take
care of these things automatically and thus greatly simplify using the web service.

2.2.3.1 Fundamental conventions

If you are familiar with other web services, you may find the VirtualBox web service to behave
a bit differently to accommodate for the fact that VirtualBox web service more or less maps the
VirtualBox Main COM API. The following main differences had to be taken care of:

e Web services, as expressed by WSDL, are not object-oriented. Even worse, they are nor-
mally stateless (or, in web services terminology, “loosely coupled”). Web service operations
are entirely procedural, and one cannot normally make assumptions about the state of a
web service between function calls.

In particular, this normally means that you cannot work on objects in one method call that
were created by another call.

e By contrast, the VirtualBox Main API, being expressed in COM, is object-oriented and works
entirely on objects, which are grouped into public interfaces, which in turn have attributes
and methods associated with them.

For the VirtualBox web service, this results in three fundamental conventions:

1. All function names in the VirtualBox web service consist of an interface name and a
method name, joined together by an underscore. This is because there are only functions
(“operations”) in WSDL, but no classes, interfaces, or methods.

In addition, all calls to the VirtualBox web service (except for logon, see below) take a
managed object reference as the first argument, representing the object upon which the
underlying method is invoked. (Managed object references are explained in detail below;
see chapter 2.2.3.3, Managed object references, page 28.)

So, when one would normally code, in the pseudo-code of an object-oriented language, to
invoke a method upon an object:

IMachine machine;
result = machine.getName();

In the VirtualBox web service, this looks something like this (again, pseudo-code):

IMachineRef machine;
result = IMachine_getName(machine);

26

2 Environment-specific notes

2. To make the web service stateful, and objects persistent between method calls, the
VirtualBox web service introduces a session manager (by way of the IWebsessionManager
interface), which manages object references. Any client wishing to interact with the web
service must first log on to the session manager and in turn receives a managed object ref-
erence to an object that supports the IVirtualBox interface (the basic interface in the Main
API).

In other words, as opposed to other web services, the VirtualBox web service is both object-
oriented and stateful.

2.2.3.2 Example: A typical web service client session

A typical short web service session to retrieve the version number of the VirtualBox web service
(to be precise, the underlying Main API version number) looks like this:

1. A client logs on to the web service by calling IWebsessionManager::logon() with a valid
user name and password. See chapter 1.4.2, Authenticating at web service logon, page 19
for details about how authentication works.

2. On the server side, vboxwebsrv creates a session, which persists until the client calls
IWebsessionManager::logoff() or the session times out after a configurable period of in-
activity (see chapter 1.4.1, Command line options of vboxwebsrv, page 18).

For the new session, the web service creates an instance of IVirtualBox. This interface is the
most central one in the Main API and allows access to all other interfaces, either through
attributes or method calls. For example, [VirtualBox contains a list of all virtual machines
that are currently registered (as they would be listed on the left side of the VirtualBox main
program).

The web service then creates a managed object reference for this instance of IVirtualBox
and returns it to the calling client, which receives it as the return value of the logon call.
Something like this:

string oVirtualBox;
oVirtualBox = webservice.IWebsessionManager_logon("user", "pass");

(The managed object reference “oVirtualBox” is just a string consisting of digits and dashes.
However, it is a string with a meaning and will be checked by the web service. For details,
see below. As hinted above, IWebsessionManager::logon() is the only operation provided
by the web service which does not take a managed object reference as the first argument!)

3. The VirtualBox Main API documentation says that the IVirtualBox interface has a version
attribute, which is a string. For each attribute, there is a “get” and a “set” method in
COM, which maps to according operations in the web service. So, to retrieve the “version”
attribute of this IVirtualBox object, the web service client does this:

string version;
version = webservice.IVirtualBox_getVersion(oVirtualBox);

print version;

And it will print “4.0.34”.

4. The web service client calls IWebsessionManager::logoff() with the VirtualBox managed
object reference. This will clean up all allocated resources.

27

2 Environment-specific notes

2.2.3.3 Managed object references

To a web service client, a managed object reference looks like a string: two 64-bit hex numbers
separated by a dash. This string, however, represents a COM object that “lives” in the web service
process. The two 64-bit numbers encoded in the managed object reference represent a session
ID (which is the same for all objects in the same web service session, i.e. for all objects after one
logon) and a unique object ID within that session.

Managed object references are created in two situations:

1. When a client logs on, by calling IWebsessionManager::logon().

Upon logon, the websession manager creates one instance of IVirtualBox and another
object of ISession representing the web service session. This can be retrieved using
IWebsessionManager::getSessionObject().

(Technically, there is always only one IVirtualBox object, which is shared between all ses-
sions and clients, as it is a COM singleton. However, each session receives its own managed
object reference to it. The ISession object, however, is created and destroyed for each ses-
sion.)

2. Whenever a web service clients invokes an operation whose COM implementation creates
COM objects.

For example, IVirtualBox::createMachine() creates a new instance of IMachine; the COM
object returned by the COM method call is then wrapped into a managed object reference
by the web server, and this reference is returned to the web service client.

Internally, in the web service process, each managed object reference is simply a small data
structure, containing a COM pointer to the “real” COM object, the web session ID and the object
ID. This structure is allocated on creation and stored efficiently in hashes, so that the web service
can look up the COM object quickly whenever a web service client wishes to make a method call.
The random session ID also ensures that one web service client cannot intercept the objects of
another.

Managed object references are not destroyed automatically and must be released by explicitly
calling IManagedObjectRef::release(). This is important, as otherwise hundreds or thousands of
managed object references (and corresponding COM objects, which can consume much more
memory!) can pile up in the web service process and eventually cause it to deny service.

To reiterate: The underlying COM object, which the reference points to, is only freed if the
managed object reference is released. It is therefore vital that web service clients properly clean
up after the managed object references that are returned to them.

When a web service client calls IWebsessionManager::logoff(), all managed object references
created during the session are automatically freed. For short-lived sessions that do not create a
lot of objects, logging off may therefore be sufficient, although it is certainly not “best practice”.

2.2.3.4 Some more detail about web service operation

SOAP messages Whenever a client makes a call to a web service, this involves a complicated
procedure internally. These calls are remote procedure calls. Each such procedure call typically
consists of two “message” being passed, where each message is a plain-text HTTP request with a
standard HTTP header and a special XML document following. This XML document encodes the
name of the procedure to call and the argument names and values passed to it.

To give you an idea of what such a message looks like, assuming that a web service provides
a procedure called “SayHello”, which takes a string “name” as an argument and returns “Hello”
with a space and that name appended, the request message could look like this:

<?xml version="1.0" encoding="UTF-8"7>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

28

2 Environment-specific notes

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:test="http://test/">
<SOAP-ENV:Body>
<test:SayHello>
<name>Peter</name>
</test:SayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A similar message — the “response” message — would be sent back from the web service to the
client, containing the return value “Hello Peter”.

Most programming languages provide automatic support to generate such messages whenever
code in that programming language makes such a request. In other words, these programming
languages allow for writing something like this (in pseudo-C++ code):

webServiceClass service("localhost", 18083); // server and port
string result = service.SayHello("Peter"); // invoke remote procedure

and would, for these two pseudo-lines, automatically perform these steps:
1. prepare a connection to a web service running on port 18083 of “localhost”;

2. for the SayHello() function of the web service, generate a SOAP message like in the above
example by encoding all arguments of the remote procedure call (which could involve all
kinds of type conversions and complex marshalling for arrays and structures);

3. connect to the web service via HTTP and send that message;
4. wait for the web service to send a response message;

5. decode that response message and put the return value of the remote procedure into the
“result” variable.

Service descriptions in WSDL In the above explanations about SOAP, it was left open how
the programming language learns about how to translate function calls in its own syntax into
proper SOAP messages. In other words, the programming language needs to know what opera-
tions the web service supports and what types of arguments are required for the operation’s data
in order to be able to properly serialize and deserialize the data to and from the web service.
For example, if a web service operation expects a number in “double” floating point format for a
particular parameter, the programming language cannot send to it a string instead.

For this, the Web Service Definition Language (WSDL) was invented, another XML substandard
that describes exactly what operations the web service supports and, for each operation, which
parameters and types are needed with each request and response message. WSDL descriptions
can be incredibly verbose, and one of the few good things that can be said about this standard is
that it is indeed supported by most programming languages.

So, if it is said that a programming language “supports” web services, this typically means
that a programming language has support for parsing WSDL files and somehow integrating the
remote procedure calls into the native language syntax — for example, like in the Java sample
shown in chapter 2.2.1, Raw web service example for Java with Axis, page 24.

For details about how programming languages support web services, please refer to the docu-
mentation that comes with the individual languages. Here are a few pointers:

1. For C++, among many others, the gSOAP toolkit is a good option. Parts of gSOAP are also
used in VirtualBox to implement the VirtualBox web service.

2. For Java, there are several implementations already described in this document (see chap-
ter 2.1.1, The object-oriented web service for JAX-WS, page 21 and chapter 2.2.1, Raw web
service example for Java with Axis, page 24).

29

2 Environment-specific notes

3. Perl supports WSDL via the SOAP::Lite package. This in turn comes with a tool called
stubmaker.pl that allows you to turn any WSDL file into a Perl package that you can
import. (You can also import any WSDL file “live” by having it parsed every time the script
runs, but that can take a while.) You can then code (again, assuming the above example):

my $result = servicename->sayHello("Peter");

A sample that uses SOAP::Lite was described in chapter 2.2.2, Raw web service example for
Perl, page 25.

2.3 Using COM/XPCOM directly

If you do not require remote procedure calls such as those offered by the VirtualBox web ser-
vice, and if you know Python or C++ as well as COM, you might find it preferable to program
VirtualBox’s Main API directly via COM.

COM stands for “Component Object Model” and is a standard originally introduced by Mi-
crosoft in the 1990s for Microsoft Windows. It allows for organizing software in an object-
oriented way and across processes; code in one process may access objects that live in another
process.

COM has several advantages: it is language-neutral, meaning that even though all of
VirtualBox is internally written in C+ +, programs written in other languages could communicate
with it. COM also cleanly separates interface from implementation, so that external programs
need not know anything about the messy and complicated details of VirtualBox internals.

On a Windows host, all parts of VirtualBox will use the COM functionality that is native to
Windows. On other hosts (including Linux), VirtualBox comes with a built-in implementation
of XPCOM, as originally created by the Mozilla project, which we have enhanced to support
interprocess communication on a level comparable to Microsoft COM. Internally, VirtualBox has
an abstraction layer that allows the same VirtualBox code to work both with native COM as well
as our XPCOM implementation.

2.3.1 Python COM API

On Windows, Python scripts can use COM and VirtualBox interfaces to control almost all aspects
of virtual machine execution. As an example, use the following commands to instantiate the
VirtualBox object and start a VM:

vbox = win32com.client.Dispatch("VirtualBox.VirtualBox")
session = win32com.client.Dispatch("VirtualBox.Session")
mach = vbox.findMachine("uuid or name of machine to start")
progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)

Also, see /bindings/glue/python/samples/vboxshell.py for more advanced usage scenari-
ous. However, unless you have specific requirements, we strongly recommend to use the generic
glue layer described in the next section to access MS COM objects.

2.3.2 Common Python bindings layer

As different wrappers ultimately provide access to the same underlying API, and to simplify
porting and development of Python application using the VirtualBox Main API, we developed
a common glue layer that abstracts out most platform-specific details from the application and
allows the developer to focus on application logic. The VirtualBox installer automatically sets up
this glue layer for the system default Python install. See below for details on how to set up the
glue layer if you want to use a different Python installation.

30

2 Environment-specific notes

In this layer, the class VirtualBoxManager hides most platform-specific details. It can be used
to access both the local (COM) and the webservice-based API. The following code can be used
by an application to use the glue layer.

This code assumes vboxapi.py from VirtualBox distribution
being in PYTHONPATH, or installed system-wide
from vboxapi import VirtualBoxManager

This code initializes VirtualBox manager with default style
and parameters
virtualBoxManager = VirtualBoxManager(None, None)

Alternatively, one can be more verbose, and initialize

glue with webservice backend, and provide authentication

information

virtualBoxManager = VirtualBoxManager ("WEBSERVICE",
{’url’:'http://myhost.com::18083/",
"user’:'me’,
"password’:’secret’})

We supply the VirtualBoxManager constructor with 2 arguments: style and parameters. Style
defines which bindings style to use (could be “MSCOM”, “XPCOM” or “WEBSERVICE”), and if set
to None defaults to usable platform bindings (MS COM on Windows, XPCOM on other platforms).
The second argument defines parameters, passed to the platform-specific module, as we do in
the second example, where we pass username and password to be used to authenticate against
the web service.

After obtaining the VirtualBoxManager instance, one can perform operations on the IVirtu-
alBox class. For example, the following code will a start virtual machine by name or ID:

vbox = virtualBoxManager.vbox
mgr = virtualBoxManager.mgr
print "Version is",vbox.version

def machById(id):
mach = None
for m in virtualBoxManager.getArray(vbox, ’'machines’):
if m.name == id or mach.id == id:
mach = m
break
return mach

name = "Linux"

mach = machById(name)

if mach is None:
print "cannot find machine",name

else:
session = mgr.getSessionObject(vbox)
one can also start headless session with "headless" instead of "gui"
progress = mach.launchVMProcess(session, mach.id, "gui", "")
progress.waitForCompletion(-1)
session.close()

This code also shows cross-platform access to array properties (certain limitations prevent one
from using vbox.machines to access a list of available virtual machines in case of XPCOM), and
a mechanism of uniform session creation (virtualBoxManager.mgr.getSessionObject()).

In case you want to use the glue layer with a different Python installation, use these steps in a
shell to add the necessary files:

cd VBOX_INSTALL_PATH/sdk/installer
PYTHON vboxapisetup.py install

31

2 Environment-specific notes

2.3.3 C++ COM API

C++ is the language that VirtualBox itself is written in, so C++ is the most direct way to use
the Main API - but it is not necessarily the easiest, as using COM and XPCOM has its own set of
complications.

VirtualBox ships with sample programs that demonstrate how to use the Main API to im-
plement a number of tasks on your host platform. These samples can be found in the
/bindings/xpcom/samples directory for Linux, Mac OS X and Solaris and /bindings/mscom/samples
for Windows. The two samples are actually different, because the one for Windows uses native
COM, whereas the other uses our XPCOM implementation, as described above.

Since COM and XPCOM are conceptually very similar but vary in the implementation details,
we have created a “glue” layer that shields COM client code from these differences. All VirtualBox
uses is this glue layer, so the same code written once works on both Windows hosts (with native
COM) as well as on other hosts (with our XPCOM implementation). It is recommended to always
use this glue code instead of using the COM and XPCOM APIs directly, as it is very easy to make
your code completely independent from the platform it is running on.

In order to encapsulate platform differences between Microsoft COM and XPCOM, the follow-
ing items should be kept in mind when using the glue layer:

1. Attribute getters and setters. COM has the notion of “attributes” in interfaces, which
roughly compare to C++ member variables in classes. The difference is that for each
attribute declared in an interface, COM automatically provides a “get” method to return
the attribute’s value. Unless the attribute has been marked as “readonly”, a “set” attribute
is also provided.

To illustrate, the IVirtualBox interface has a “version” attribute, which is read-only and of
the “wstring” type (the standard string type in COM). As a result, you can call the “get”
method for this attribute to retrieve the version number of VirtualBox.

Unfortunately, the implementation differs between COM and XPCOM. Microsoft COM
names the “get” method like this: get_Attribute(), whereas XPCOM uses this syn-
tax: GetAttribute() (and accordingly for “set” methods). To hide these differences, the
VirtualBox glue code provides the COMGETTER (attrib) and COMSETTER(attrib) macros.
So, COMGETTER(version) () (note, two pairs of brackets) expands to get_Version() on
Windows and GetVersion() on other platforms.

2. Unicode conversions. While the rest of the modern world has pretty much settled on
encoding strings in UTF-8, COM, unfortunately, uses UCS-16 encoding. This requires a lot
of conversions, in particular between the VirtualBox Main API and the Qt GUI, which, like
the rest of Qt, likes to use UTF-8.

To facilitate these conversions, VirtualBox provides the com::Bstr and com::Utf8Str
classes, which support all kinds of conversions back and forth.

3. COM autopointers. Possibly the greatest pain of using COM - reference counting — is
alleviated by the ComPtr<> template provided by the ptr.h file in the glue layer.

2.3.4 Event queue processing

Both VirtualBox client programs and frontends should periodically perform processing of the
main event queue, and do that on the application’s main thread. In case of a typical GUI
Windows/Mac OS application this happens automatically in the GUI’s dispatch loop. However,
for CLI only application, the appropriate actions have to be taken. For C++ applications, the
VirtualBox SDK provided glue method

int EventQueue::processEventQueue(uint32_t cMsTimeout)

32

2 Environment-specific notes

can be used for both blocking and non-blocking operations. For the Python bindings, a common
layer provides the method

VirtualBoxManager.waitForEvents(ms)

with similar semantics.

Things get somewhat more complicated for situations where an application using VirtualBox
cannot directly control the main event loop and the main event queue is separated from the event
queue of the programming librarly (for example in case of Qt on Unix platforms). In such a case,
the application developer is advised to use a platform/toolkit specific event injection mechanism
to force event queue checks either based on periodical timer events delivered to the main thread,
or by using custom platform messages to notify the main thread when events are available. See
the VBoxSDL and Qt (VirtualBox) frontends as examples.

2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts

On Windows hosts, one can control some of the VirtualBox Main API functionality from VBS
scripts, and pretty much everything from Visual Basic programs.®

VBS is scripting language available in any recent Windows environment. As an example, the
following VBS code will print VirtualBox version:

set vb = CreateObject("VirtualBox.VirtualBox")
Wscript.Echo "VirtualBox version " & vb.version

See bindings/mscom/vbs/sample/vboxinfo.vbs for the complete sample.
Visual Basic is a popular high level language capable of accessing COM objects. The following
VB code will iterate over all available virtual machines:

Dim vb As VirtualBox.IVirtualBox

vb = CreateObject("VirtualBox.VirtualBox")

machines = ""

For Each m In vb.Machines
m=m&" " & m.Name

Next

See bindings/mscom/vb/sample/vboxinfo.vb for the complete sample.

2.3.6 C binding to XPCOM API

’ Note: This section currently applies to Linux hosts only.

Starting with version 2.2, VirtualBox offers a C binding for the XPCOM API.
The C binding provides a layer enabling object creation, method invocation and attribute
access from C.

5The difference results from the way VBS treats COM safearrays, which are used to keep lists in the Main API. VBS
expects every array element to be a VARIANT, which is too strict a limitation for any high performance API. We may
lift this restriction for interface APIs in a future version, or alternatively provide conversion APIs.

33

2 Environment-specific notes

2.3.6.1 Getting started

The following sections describe how to use the C binding in a C program.

For Linux, a sample program is provided which demonstrates use of the C binding to initialize
XPCOM, get handles for VirtualBox and Session objects, make calls to list and start virtual ma-
chines, and uninitialize resources when done. The program uses the VBoxGlue library to open
the C binding layer during runtime.

The sample program tstXPCOMCGlue is located in the bin directory and can be run with-
out arguments. It lists registered machines on the host along with some additional in-
formation and ask for a machine to start. The source for this program is available in
sdk/bindings/xpcom/cbinding/samples/ directory. The source for the VBoxGlue library is
available in the sdk/bindings/xpcom/cbinding/ directory.

2.3.6.2 XPCOM initialization

Just like in C++, XPCOM needs to be initialized before it can be used. The VBoxCAPI_v2_5.h
header provides the interface to the C binding. Here’s how to initialize XPCOM:

#include "VBoxCAPI_v2_5.h"

PCVBOXXPCOM g_pVBoxFuncs = NULL;

IVirtualBox *vbox = NULL;

ISession *session = NULL;
/%

* VBoxGetXPCOMCFunctions() is the only function exported by

* VBoxXPCOMC.so and the only one needed to make virtualbox

* work with C. This functions gives you the pointer to the

* function table (g_pVBoxFuncs).

*

* Once you get the function table, then how and which functions

* to use is explained below.

*

* g_pVBoxFuncs->pfnComInitialize does all the necessary startup

* action and provides us with pointers to vbox and session handles.
* It should be matched by a call to g_pVBoxFuncs->pfnComUninitialize()
* when done.

*/

g_pVBoxFuncs = VBoxGetXPCOMCFunctions (VBOX_XPCOMC_VERSION) ;
g_pVBoxFuncs->pfnComInitialize(&vbox, &session);

If either vbox or session is still NULL, initialization failed and the XPCOM API cannot be used.

2.3.6.3 XPCOM method invocation

Method invocation is straightforward. It looks pretty much like the C+ + way, augmented with
an extra indirection due to accessing the vtable and passing a pointer to the object as the first
argument to serve as the this pointer.

Using the C binding, all method invocations return a numeric result code.

If an interface is specified as returning an object, a pointer to a pointer to the appropriate
object must be passed as the last argument. The method will then store an object pointer in that
location.

In other words, to call an object’s method what you need is

IObject *object;

nsresult rc;

/%

* Calling void IObject::method(arg, ...)
*/

34

2 Environment-specific notes

rc = object->vtbl->Method(object, arg, ...);
IFoo *foo;
/%
* Calling IFoo IObject::method(arg, ...)
*/
rc = object->vtbl->Method(object, args, ..., &foo);

As a real-world example of a method invocation, let’s call IMachine::launchVMProcess which
returns an IProgress object. Note again that the method name is capitalized.

IProgress x*progress;

rc = vbox->vtbl->LaunchVMProcess(

machine, /* this x/
session, /* arg 1 x/
sessionType, /* arg 2 */
env, /* arg 3 */
&progress /* Out */

2.3.6.4 XPCOM attribute access

A construct similar to calling non-void methods is used to access object attributes. For each
attribute there exists a getter method, the name of which is composed of Get followed by the
capitalized attribute name. Unless the attribute is read-only, an analogous Set method exists.
Let’s apply these rules to read the IVirtualBox::revision attribute.

Using the IVirtualBox handle vbox obtained above, calling its GetRevision method looks
like this:

PRUint32 rev;

rc = vbox->vtbl->GetRevision(vbox, &rev);
if (NS_SUCCEEDED(rc))
{

printf("Revision: %u\n", (unsigned)rev);

}

All objects with their methods and attributes are documented in chapter 5, Classes (interfaces),
page 43.

2.3.6.5 String handling

When dealing with strings you have to be aware of a string’s encoding and ownership.

Internally, XPCOM uses UTF-16 encoded strings. A set of conversion functions is pro-
vided to convert other encodings to and from UTF-16. The type of a UTF-16 character is
PRUnichar. Strings of UTF-16 characters are arrays of that type. Most string handling func-
tions take pointers to that type. Prototypes for the following conversion functions are declared
in VBoxCAPI_v2_5.h.

Conversion of UTF-16 to and from UTF-8

int (*pfnUtfl6ToUtf8) (const PRUnichar xpwszString, char xxppszString);
int (*pfnUtf8ToUtf1l6) (const char *pszString, PRUnichar **ppwszString);

35

2 Environment-specific notes

Ownership The ownership of a string determines who is responsible for releasing resources
associated with the string. Whenever XPCOM creates a string, ownership is transferred to the
caller. To avoid resource leaks, the caller should release resources once the string is no longer
needed.

2.3.6.6 XPCOM uninitialization

Uninitialization is performed by g_pVBoxFuncs->pfnComUninitialize() . If your program can
exit from more than one place, it is a good idea to install this function as an exit handler with
Standard C’s atexit () just after calling g_pVBoxFuncs->pfnComInitialize() , e.g.

#include <stdlib.h>
#include <stdio.h>

/%

Make sure g_pVBoxFuncs->pfnComUninitialize() is called at exit, no
matter if we return from the initial call to main or call exit()
somewhere else. Note that atexit registered functions are not
called upon abnormal termination, i.e. when calling abort() or
signal(). Separate provisions must be taken for these cases.

* X X ¥ ¥

*/

if (atexit(g_pVBoxFuncs->pfnComUninitialize()) != 0) {
fprintf(stderr, "failed to register g_pVBoxFuncs->pfnComUninitialize()\n");
exit (EXIT_FAILURE);

Another idea would be to write your own void myexit(int status) function, calling
g_pVBoxFuncs->pfnComUninitialize() followed by the real exit(), and use it instead of
exit () throughout your program and at the end of main.

If you expect the program to be terminated by a signal (e.g. user types CTRL-C sending
SIGINT) you might want to install a signal handler setting a flag noting that a signal was sent and
then calling g_pVBoxFuncs->pfnComUninitialize() later on (usually not from the handler
itself .)

That said, if a client program forgets to call g_pVBoxFuncs->pfnComUninitialize() before
it terminates, there is a mechanism in place which will eventually release references held by the
client. You should not rely on this, however.

2.3.6.7 Compiling and linking

A program using the C binding has to open the library during runtime using the help of glue
code provided and as shown in the example tstXPCOMCGlue. c. Compilation and linking can be
achieved, e.g., with a makefile fragment similar to

Where is the XPCOM include directory?

INCS_XPCOM = -I../../include

Where is the glue code directory?
GLUE_DIR = ..

GLUE_INC = -I..

#Compile Glue Library
VBoxXPCOMCGlue.o: $(GLUE_DIR)/VBoxXPCOMCGlue.c
$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -0 $@ -c $<

Compile.

program.o: program.c VBoxCAPI_v2_5.h
$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -0 $@ -c $<

36

2 Environment-specific notes

Link.
program: program.o VBoxXPCOMCGlue.o
$(CC) -0 3@ $~ -ldl

37

3 Basic VirtualBox concepts; some
examples

The following explains some basic VirtualBox concepts such as the VirtualBox object, sessions and
how virtual machines are manipulated and launched using the Main API. The coding examples
use a pseudo-code style closely related to the object-oriented web service (OOWS) for JAX-WS.
Depending on which environment you are using, you will need to adjust the examples.

3.1 Obtaining basic machine information. Reading attributes

Any program using the Main API will first need access to the global VirtualBox object (see
IVirtualBox), from which all other functionality of the API is derived. With the OOWS for JAX-
WS, this is returned from the IWebsessionManager::logon() call.

To enumerate virtual machines, one would look at the “machines” array attribute in the
VirtualBox object (see IVirtualBox::machines). This array contains all virtual machines currently
registered with the host, each of them being an instance of IMachine. From each such instance,
one can query additional information, such as the UUID, the name, memory, operating system
and more by looking at the attributes; see the attributes list in IMachine documentation.

As mentioned in the preceding chapters, depending on your programming environment, at-
tributes are mapped to corresponding “get” and (if the attribute is not read-only) “set” methods.
So when the documentation says that IMachine has a “name* attribute, this means you need to
code something like the following to get the machine’s name:

IMachine machine = ...;
String name = machine.getName();

Boolean attribute getters can sometimes be called isAttribute() due to JAX-WS naming con-
ventions.

3.2 Changing machine settings. Sessions

As said in the previous section, to read a machine’s attribute, one invokes the corresponding
“get” method. One would think that to change settings of a machine, it would suffice to call the
corresponding “set” method — for example, to set a VM’s memory to 1024 MB, one would call
setMemorySize(1024). Try that, and you will get an error: “The machine is not mutable.“

So unfortunately, things are not that easy. VirtualBox is a complicated environment in which
multiple processes compete for possibly the same resources, especially machine settings. As a
result, machines must be “locked” before they can either be modified or started. This is to prevent
multiple processes from making conflicting changes to a machine: it should, for example, not be
allowed to change the memory size of a virtual machine while it is running. (You can’t add more
memory to a real computer while it is running either, at least not to an ordinary PC.) Also, two
processes must not change settings at the same time, or start a machine at the same time.

These requirements are implemented in the Main API by way of “sessions”, in particular, the
ISession interface. Each process which talks to VirtualBox needs its own instance of ISession. In
the web service, you cannot create such an object, but vboxwebsrv creates one for you when
you log on, which you can obtain by calling IWebsessionManager::getSessionObject().

38

3 Basic VirtualBox concepts; some examples

This session object must then be used like a mutex semaphore in common programming envi-
ronments. Before you can change machine settings, you must write-lock the machine by calling
IMachine::lockMachine() with your process’s session object.

After the machine has been locked, the ISession::machine attribute contains a copy of the
original IMachine object upon which the session was opened, but this copy is “mutable”: you can
invoke “set” methods on it.

When done making the changes to the machine, you must call IMachine::saveSettings(), which
will copy the changes you have made from your “mutable” machine back to the real machine and
write them out to the machine settings XML file. This will make your changes permanent.

Finally, it is important to always unlock the machine again, by calling ISession::unlockMachine().
Otherwise, when the calling process end, the machine will receive the “aborted” state, which can
lead to loss of data.

So, as an example, the sequence to change a machine’s memory to 1024 MB is something like
this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine ..; // read-only machine
ISession session = mgr.getSessionObject();
machine.lockMachine(session, LockType.Write); // machine is now locked for writing

IMachine mutable = session.getMachine(); // obtain the mutable machine copy
mutable.setMemorySize(1024);
mutable.saveSettings(); // write settings to XML

session.unlockMachine();

3.3 Launching virtual machines

To launch a virtual machine, you call IMachine::launchVMProcess(). In doing so, the caller
instructs the VirtualBox engine to start a new process with the virtual machine in it, since to the
host, each virtual machine looks like a single process, even if it has hundreds of its own processes
inside. (This new VM process in turn obtains a write lock on the machine, as described above,
to prevent conflicting changes from other processes; this is why opening another session will fail
while the VM is running.)

Starting a machine looks something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine = ...; // read-only machine
ISession session = mgr.getSessionObject();
IProgress prog = machine.launchVMProcess(session,
"gui", // session type
") // possibly environment setting
prog.waitForCompletion(10000); // give the process 10 secs
if (prog.getResultCode() != 0) // check success
System.out.println("Cannot launch VM!")

The caller’s session object can then be used as a sort of remote control to the VM process that
was launched. It contains a “console” object (see ISession::console) with which the VM can be
paused, stopped, snapshotted or other things.

3.4 VirtualBox events

In VirtualBox, “events” provide a uniform mechanism to register for and consume specific events.
A VirtualBox client can register an “event listener” (represented by the IEventListener interface),

39

3 Basic VirtualBox concepts; some examples

which will then get notified by the server when an event (represented by the IEvent interface)
happens.

The IEvent interface is an abstract parent interface for all events that can occur in VirtualBox.
The actual events that the server sends out are then of one of the specific subclasses, for example
IMachineStateChangedEvent or IMediumChangedEvent.

As an example, the VirtualBox GUI waits for machine events and can thus update its display
when the machine state changes or machine settings are modified, even if this happens in another
client. This is how the GUI can automatically refresh its display even if you manipulate a machine
from another client, for example, from VBoxManage.

To register an event listener to listen to events, use code like this:

EventSource es = console.getEventSource();
IEventListener listener = es.createlListener();
VBoxEventType aTypes[] = (VBoxEventType.OnMachineStateChanged);
// list of event types to listen for
es.registerListener(listener, aTypes, false /* active */);
// register passive listener
IEvent ev = es.getEvent(listener, 1000);
// wait up to one second for event to happen
if (ev !'= null)

{
// downcast to specific event interface (in this case we have only registered
// for one type, otherwise IEvent::type would tell us)
IMachineStateChangedEvent mcse = IMachineStateChangedEvent.queryInterface(ev);
. // inspect and do something
es.eventProcessed(listener, ev);
}

es.unregisterListener(listener);

A graphical user interface would probably best start its own thread to wait for events and then
process these in a loop.

The events mechanism was introduced with VirtualBox 3.3 and replaces various callback in-
terfaces which were called for each event in the interface. The callback mechanism was not
compatible with scripting languages, local Java bindings and remote web services as they do not
support callbacks. The new mechanism with events and event listeners works with all of these.

To simplify developement of application using events, concept of event aggregator was intro-
duced. Essentially it’'s mechanism to aggregate multiple event sources into single one, and then
work with this single aggregated event source instead of original sources. As an example, one
can evaluate demo recorder in VirtualBox Python shell, shipped with SDK - it records mouse and
keyboard events, represented as separate event sources. Code is essentially like this:

listener = console.eventSource.createlListener()
agg = console.eventSource.createAggregator([console.keyboard.eventSource, console.mouse.eventSource])
agg.registerListener(listener, [ctx[’'global’].constants.VBoxEventType_Any], False)
registered = True
end = time.time() + dur
while time.time() < end:
ev = agg.getEvent(listener, 1000)
processEent(ev)
agg.unregisterListener(listener)

Without using aggregators consumer have to poll on both sources, or start multiple threads to
block on those sources.

40

4 The VirtualBox shell

VirtualBox comes with an extensible shell, which allows you to control your virtual machines
from the command line. It is also a nontrivial example of how to use the VirtualBox APIs from
Python, for all three COM/XPCOM/WS styles of the APIL.

You can easily extend this shell with your own commands. Create a subdirectory named
.VirtualBox/shexts below your home directory and put a Python file implementing your shell
extension commands in this directory. This file must contain an array named commands contain-
ing your command definitions:

commands = {

"cmdl’: [’'Command cmdl help’, cmdl],
"cmd2’: [’Command cmd2 help’, cmd2]
}

For example, to create a command for creating hard drive images, the following code can be
used:

def createHdd(ctx,args):
Show some meaningful error message on wrong input
if (len(args) < 3):
print "usage: createHdd sizeM location type"
return 0

Get arguments

size = int(args([1])

loc = args[2]

if len(args) > 3:
format = args[3]

else:
And provide some meaningful defaults
format = "vdi"

Call VirtualBox API, using context’s fields

hdd = ctx[’vb’].createHardDisk(format, loc)

Access constants using ctx[’global’].constants

progress = hdd.createBaseStorage(size, ctx[’global’].constants.HardDiskVariant_Standard)
use standard progress bar mechanism

ctx[’'progressBar’] (progress)

Report errors

if not hdd.id:
print "cannot create disk (file %s exist?)" %(loc)
return 0

Give user some feedback on success too
print "created HDD with id: %s" %(hdd.id)

0 means continue execution, other values mean exit from the interpreter
return 0

commands = {

"myCreateHDD’': [’'Create virtual HDD, createHdd size location type’, createHdd]
}

41

4 The VirtualBox shell

Just store the above text in the file createHdd (or any other meaningful name) in
.VirtualBox/shexts/. Start the VirtualBox shell, or just issue the reloadExts command,
if the shell is already running. Your new command will now be available.

42

5

Classes (interfaces)

5.1 IAdditionsStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a Guest Additions property changes. Interested callees should query IGuest
attributes to find out what has changed.

5.2 lAppliance

Represents a platform-independent appliance in OVF format. An instance of this is returned by
IVirtualBox::createAppliance(), which can then be used to import and export virtual machines
within an appliance with VirtualBox.

The OVF standard suggests two different physical file formats:

1.

If the appliance is distributed as a set of files, there must be at least one XML descriptor file
that conforms to the OVF standard and carries an . ovf file extension. If this descriptor file
references other files such as disk images, as OVF appliances typically do, those additional
files must be in the same directory as the descriptor file.

. If the appliance is distributed as a single file, it must be in TAR format and have the . ova file

extension. This TAR file must then contain at least the OVF descriptor files and optionally
other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; support will be
added with a later version.

Importing an OVF appliance into VirtualBox as instances of IMachine involves the following
sequence of API calls:

1.
2.

Call IVirtualBox::createAppliance(). This will create an empty IAppliance object.

On the new object, call read() with the full path of the OVF file you would like to import.
So long as this file is syntactically valid, this will succeed and fill the appliance object with
the parsed data from the OVF file.

. Next, call interpret(), which analyzes the OVF data and sets up the contents of the

IAppliance attributes accordingly. These can be inspected by a VirtualBox front-end
such as the GUI, and the suggestions can be displayed to the user. In particular, the
virtualSystemDescriptions[] array contains instances of IVirtualSystemDescription which
represent the virtual systems (machines) in the OVF, which in turn describe the virtual
hardware prescribed by the OVF (network and hardware adapters, virtual disk images,
memory size and so on). The GUI can then give the user the option to confirm and/or
change these suggestions.

If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the interpret() routine.

43

5 Classes (interfaces)

5. Finally, call importMachines() to create virtual machines in VirtualBox as instances of
IMachine that match the information in the virtual system descriptions. After this call
succeeded, the UUIDs of the machines created can be found in the machines[] array at-
tribute.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

1. As with importing, first call IVirtualBox::createAppliance() to create an empty [Appliance
object.

2. For each machine you would like to export, call IMachine::export() with the IAppliance
object you just created. Each such call creates one instance of IVirtualSystemDescription
inside the appliance.

3. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the export() routine.

4. Finally, call write() with a path specification to have the OVF file written.

5.2.1 Attributes
5.2.1.1 path (read-only)
wstring IAppliance::path

Path to the main file of the OVF appliance, which is either the .ovf or the .ova file passed to
read() (for import) or write() (for export). This attribute is empty until one of these methods
has been called.

5.2.1.2 disks (read-only)

wstring IAppliance::disks[]

Array of virtual disk definitions. One such description exists for each disk definition in the
OVF; each string array item represents one such piece of disk information, with the information
fields separated by tab (\t) characters.

The caller should be prepared for additional fields being appended to this string in future
versions of VirtualBox and therefore check for the number of tabs in the strings returned.

In the current version, the following eight fields are returned per string in the array:

[y

. Disk ID (unique string identifier given to disk)
2. Capacity (unsigned integer indicating the maximum capacity of the disk)

3. Populated size (optional unsigned integer indicating the current size of the disk; can be
approximate; -1 if unspecified)

4. Format (string identifying the disk format, typically “http://www.vmware.com/specifications/vmdk.html#spars

5. Reference (where to find the disk image, typically a file name; if empty, then the disk
should be created on import)

6. Image size (optional unsigned integer indicating the size of the image, which need not
necessarily be the same as the values specified above, since the image may be compressed
or sparse; -1 if not specified)

7. Chunk size (optional unsigned integer if the image is split into chunks; presently unsup-
ported and always -1)

8. Compression (optional string equalling “gzip” if the image is gzip-compressed)

44

5 Classes (interfaces)

5.2.1.3 virtualSystemDescriptions (read-only)

IVirtualSystemDescription IAppliance::virtualSystemDescriptions|[]

Array of virtual system descriptions. One such description is created for each virtual sys-
tem (machine) found in the OVF. This array is empty until either interpret() (for import) or
IMachine::export() (for export) has been called.

5.2.1.4 machines (read-only)

wstring IAppliance::machines[]

Contains the UUIDs of the machines created from the information in this appliances. This is
only relevant for the import case, and will only contain data after a call to importMachines()
succeeded.

5.2.2 createVFSExplorer

IVFSExplorer IAppliance::createVFSExplorer(
[in] wstring aUri)

aUri The URI describing the file system to use.

Returns a IVFSExplorer object for the given URI.

5.2.3 getWarnings

wstring[] IAppliance::getWarnings()

Returns textual warnings which occurred during execution of interpret().

5.2.4 importMachines

IProgress IAppliance::importMachines()

Imports the appliance into VirtualBox by creating instances of IMachine and other interfaces
that match the information contained in the appliance as closely as possible, as represented by
the import instructions in the virtualSystemDescriptions[] array.

Calling this method is the final step of importing an appliance into VirtualBox; see IAppliance
for an overview.

Since importing the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

After the import succeeded, the UUIDs of the IMachine instances created can be retrieved from
the machines[] array attribute.

5.2.5 interpret

void IAppliance::interpret()

Interprets the OVF data that was read when the appliance was constructed. After calling this
method, one can inspect the virtualSystemDescriptions[] array attribute, which will then contain
one IVirtualSystemDescription for each virtual machine found in the appliance.

Calling this method is the second step of importing an appliance into VirtualBox; see
IAppliance for an overview.

After calling this method, one should call getWarnings() to find out if problems were encoun-
tered during the processing which might later lead to errors.

45

5 Classes (interfaces)

5.2.6 read

IProgress IAppliance::read(
[in] wstring file)

file Name of appliance file to open (either with an .ovf or .ova extension, depending on
whether the appliance is distributed as a set of files or as a single file, respectively).

Reads an OVF file into the appliance object.

This method succeeds if the OVF is syntactically valid and, by itself, without errors. The mere
fact that this method returns successfully does not mean that VirtualBox supports all features
requested by the appliance; this can only be examined after a call to interpret().

5.2.7 write

IProgress IAppliance::write(
[in] wstring format,
[in] boolean manifest,
[in] wstring path)

format Output format, as a string. Currently supported formats are “ovf-0.9” and “ovf-1.0”;
future versions of VirtualBox may support additional formats.

manifest Indicate if the optional manifest file (.mf) should be written. The manifest file is used
for integrity checks prior import.

path Name of appliance file to open (either with an .ovf or .ova extension, depending on
whether the appliance is distributed as a set of files or as a single file, respectively).

Writes the contents of the appliance exports into a new OVF file.

Calling this method is the final step of exporting an appliance from VirtualBox; see IAppliance
for an overview.

Since exporting the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

5.3 |AudioAdapter

The TAudioAdapter interface represents the virtual audio adapter of the virtual machine. Used
in IMachine::audioAdapter.

5.3.1 Attributes
5.3.1.1 enabled (read/write)

boolean IAudioAdapter::enabled

Flag whether the audio adapter is present in the guest system. If disabled, the virtual guest
hardware will not contain any audio adapter. Can only be changed when the VM is not running.

5.3.1.2 audioController (read/write)

AudioControllerType IAudioAdapter::audioController

The audio hardware we emulate.

46

5 Classes (interfaces)

5.3.1.3 audioDriver (read/write)

AudioDriverType IAudioAdapter::audioDriver

Audio driver the adapter is connected to. This setting can only be changed when the VM is not
running.

5.4 IBIOSSettings

The IBIOSSettings interface represents BIOS settings of the virtual machine. This is used only in
the IMachine::BIOSSettings attribute.

5.4.1 Attributes
5.4.1.1 logoFadeln (read/write)

boolean IBIOSSettings::logoFadeIn

Fade in flag for BIOS logo animation.

5.4.1.2 logoFadeOut (read/write)

boolean IBIOSSettings::logoFadeOut

Fade out flag for BIOS logo animation.

5.4.1.3 logoDisplayTime (read/write)

unsigned long IBIOSSettings::logoDisplayTime

BIOS logo display time in milliseconds (0 = default).

5.4.1.4 logolmagePath (read/write)

wstring IBIOSSettings::logoImagePath

Local file system path for external BIOS splash image. Empty string means the default image
is shown on boot.

5.4.1.5 bootMenuMode (read/write)

BIOSBootMenuMode IBIOSSettings::bootMenuMode
Mode of the BIOS boot device menu.

5.4.1.6 ACPIEnabled (read/write)

boolean IBIOSSettings::ACPIEnabled
ACPI support flag.

5.4.1.7 I0APICEnabled (read/write)

boolean IBIOSSettings::IO0APICEnabled

IO APIC support flag. If set, VirtualBox will provide an IO APIC and support IRQs above 15.

47

5 Classes (interfaces)

5.4.1.8 timeOffset (read/write)

long long IBIOSSettings::timeOffset

Offset in milliseconds from the host system time. This allows for guests running with a dif-
ferent system date/time than the host. It is equivalent to setting the system date/time in the
BIOS except it is not an absolute value but a relative one. Guest Additions time synchronization
honors this offset.

5.4.1.9 PXEDebugEnabled (read/write)

boolean IBIOSSettings::PXEDebugEnabled

PXE debug logging flag. If set, VirtualBox will write extensive PXE trace information to the
release log.

5.5 IBandwidthControl

Controls the bandwidth groups of one machine used to cap I/O done by a VM. This includes
network and disk I/0.

5.5.1 Attributes
5.5.1.1 numGroups (read-only)

unsigned long IBandwidthControl::numGroups

The current number of existing bandwidth groups managed.

5.5.2 CreateBandwidthGroup

void IBandwidthControl::CreateBandwidthGroup(
[in] wstring name,
[in] BandwidthGroupType type,
[in] unsigned long maxMbPerSec)
name Name of the bandwidth group.
type The type of the bandwidth group (network or disk).

maxMbPerSec The maximum number of MBytes which can be transfered by all entities at-
tached to this group during one second.

Creates a new bandwidth group.

5.5.3 DeleteBandwidthGroup

void IBandwidthControl::DeleteBandwidthGroup(
[in] wstring name)

name Name of the bandwidth group to delete.

Deletes a new bandwidth group.

48

5 Classes (interfaces)

5.5.4 GetAliIBandwidthGroups

IBandwidthGroup[] IBandwidthControl::GetAllBandwidthGroups()

Get all managed bandwidth groups.

5.5.5 GetBandwidthGroup

IBandwidthGroup IBandwidthControl::GetBandwidthGroup(
[in] wstring name)

name Name of the bandwidth group to get.

Get a bandwidth group by name.

5.6 IBandwidthGroup

Represents one bandwidth group.

5.6.1 Attributes
5.6.1.1 name (read-only)

wstring IBandwidthGroup::name

Name of the group.

5.6.1.2 type (read-only)

BandwidthGroupType IBandwidthGroup::type
Type of the group.

5.6.1.3 reference (read-only)

unsigned long IBandwidthGroup::reference

How many devices/medium attachements use this group.

5.6.1.4 maxMbPerSec (read/write)

unsigned long IBandwidthGroup: :maxMbPerSec

The maximum number of MBytes which can be transfered by all entities attached to this group
during one second.

5.7 IBandwidthGroupChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when one of the bandwidth groups changed

49

5 Classes (interfaces)

5.7.1 Attributes
5.7.1.1 bandwidthGroup (read-only)
IBandwidthGroup IBandwidthGroupChangedEvent: :bandwidthGroup

The changed bandwidth group.

5.8 ICPUChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a CPU changes.

5.8.1 Attributes

5.8.1.1 cpu (read-only)

unsigned long ICPUChangedEvent::cpu
The CPU which changed.

5.8.1.2 add (read-only)
boolean ICPUChangedEvent: :add

Flag whether the CPU was added or removed.

5.9 ICPUExecutionCapChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the CPU execution cap changes.

5.9.1 Attributes
5.9.1.1 executionCap (read-only)
unsigned long ICPUExecutionCapChangedEvent::executionCap

The new CPU execution cap value. (1-100)

5.10 ICanShowWindowEvent (IVetoEvent)

Note: This interface extends IVetoEvent and therefore supports all its methods and
attributes as well.

Notification when a call to IMachine::canShowConsoleWindow() is made by a front-end to
check if a subsequent call to IMachine::showConsoleWindow() can succeed.

The callee should give an answer appropriate to the current machine state using event veto.
This answer must remain valid at least until the next machine state change.

50

5 Classes (interfaces)

5.11 IConsole

The IConsole interface represents an interface to control virtual machine execution.

A console object gets created when a machine has been locked for a particular session (client
process) using IMachine::lockMachine() or IMachine::launchVMProcess(). The console object
can then be found in the session’s ISession::console attribute.

Methods of the IConsole interface allow the caller to query the current virtual machine exe-
cution state, pause the machine or power it down, save the machine state or take a snapshot,
attach and detach removable media and so on.

See also: ISession

5.11.1 Attributes
5.11.1.1 machine (read-only)

IMachine IConsole::machine

Machine object for this console session.

Note: This is a convenience property, it has the same value as ISession::machine of the
corresponding session object.

5.11.1.2 state (read-only)

MachineState IConsole::state

Current execution state of the machine.

Note: This property always returns the same value as the corresponding property of
the IMachine object for this console session. For the process that owns (executes) the
VM, this is the preferable way of querying the VM state, because no IPC calls are made.

5.11.1.3 guest (read-only)

IGuest IConsole::guest

Guest object.

5.11.1.4 keyboard (read-only)

IKeyboard IConsole::keyboard

Virtual keyboard object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

51

5 Classes (interfaces)

5.11.1.5 mouse (read-only)
IMouse IConsole::mouse

Virtual mouse object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

5.11.1.6 display (read-only)
IDisplay IConsole::display

Virtual display object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

5.11.1.7 debugger (read-only)

IMachineDebugger IConsole::debugger

Note: This attribute is not supported in the web service.

Debugging interface.

5.11.1.8 USBDevices (read-only)
IUSBDevice IConsole::USBDevices]|]

Collection of USB devices currently attached to the virtual USB controller.

Note: The collection is empty if the machine is not running.

5.11.1.9 remoteUSBDevices (read-only)
IHostUSBDevice IConsole::remoteUSBDevices]]

List of USB devices currently attached to the remote VRDE client. Once a new device is phys-
ically attached to the remote host computer, it appears in this list and remains there until de-
tached.

5.11.1.10 sharedFolders (read-only)
ISharedFolder IConsole::sharedFolders[]

Collection of shared folders for the current session. These folders are called transient shared
folders because they are available to the guest OS running inside the associated virtual machine
only for the duration of the session (as opposed to IMachine::sharedFolders[] which represent
permanent shared folders). When the session is closed (e.g. the machine is powered down),
these folders are automatically discarded.

New shared folders are added to the collection using createSharedFolder(). Existing shared
folders can be removed using removeSharedFolder().

52

5 Classes (interfaces)

5.11.1.11 VRDEServerInfo (read-only)
IVRDEServerInfo IConsole: :VRDEServerInfo

Interface that provides information on Remote Desktop Extension (VRDE) connection.

5.11.1.12 eventSource (read-only)
IEventSource IConsole::eventSource

Event source for console events.

5.11.1.13 attachedPciDevices (read-only)
IPciDeviceAttachment IConsole::attachedPciDevices][]

Array of PCI devices attached to this machine.

5.11.2 adoptSavedState

void IConsole::adoptSavedState(
[in] wstring savedStateFile)

savedStateFile Path to the saved state file to adopt.

Associates the given saved state file to the virtual machine.

On success, the machine will go to the Saved state. Next time it is powered up, it will be
restored from the adopted saved state and continue execution from the place where the saved
state file was created.

The specified saved state file path may be absolute or relative to the folder the VM normally
saves the state to (usually, IMachine::snapshotFolder).

Note: It’s a caller’s responsibility to make sure the given saved state file is compatible
with the settings of this virtual machine that represent its virtual hardware (memory
size, storage disk configuration etc.). If there is a mismatch, the behavior of the virtual
machine is undefined.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither PoweredOff nor Aborted.

5.11.3 attachUSBDevice

void IConsole::attachUSBDevice(
[in] uuid id)

id UUID of the host USB device to attach.

Attaches a host USB device with the given UUID to the USB controller of the virtual machine.

The device needs to be in one of the following states: Busy, Available or Held, otherwise an
error is immediately returned.

When the device state is Busy, an error may also be returned if the host computer refuses to
release it for some reason.

See also: IUSBController::deviceFilters, USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_ VM_STATE: Virtual machine state neither Running nor Paused.
e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

53

5 Classes (interfaces)

5.11.4 createSharedFolder

void IConsole::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable,
[in] boolean automount)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly

automount Whether the share gets automatically mounted by the guest or not.

Creates a transient new shared folder by associating the given logical name with the given host
path, adds it to the collection of shared folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine in Saved state or currently changing state.

e VBOX_E_FILE ERROR: Shared folder already exists or not accessible.

5.11.5 deleteSnapshot

IProgress IConsole::deleteSnapshot(
[in] uuid id)

id UUID of the snapshot to delete.

Starts deleting the specified snapshot asynchronously. See ISnapshot for an introduction to
snapshots.

The execution state and settings of the associated machine stored in the snapshot will be
deleted. The contents of all differencing media of this snapshot will be merged with the contents
of their dependent child media to keep the medium chain valid (in other words, all changes
represented by media being deleted will be propagated to their child medium). After that, this
snapshot’s differencing medium will be deleted. The parent of this snapshot will become a new
parent for all its child snapshots.

If the deleted snapshot is the current one, its parent snapshot will become a new current
snapshot. The current machine state is not directly affected in this case, except that currently
attached differencing media based on media of the deleted snapshot will be also merged as
described above.

If the deleted snapshot is the first or current snapshot, then the respective IMachine attributes
will be adjusted. Deleting the current snapshot will also implicitly call IMachine::saveSettings()
to make all current machine settings permanent.

Deleting a snapshot has the following preconditions:

e Child media of all normal media of the deleted snapshot must be accessible (see
IMedium::state) for this operation to succeed. In particular, this means that all virtual
machines whose media are directly or indirectly based on the media of deleted snapshot
must be powered off.

e You cannot delete the snapshot if a medium attached to it has more than once child medium
(differencing images) because otherwise merging would be impossible. This might be the
case if there is more than one child snapshot or differencing images were created for other
reason (e.g. implicitly because of multiple machine attachments).

54

5 Classes (interfaces)

The virtual machine’s state is changed to “DeletingSnapshot”, “DeletingSnapshotOnline” or
“DeletingSnapshotPaused” while this operation is in progress.

Note: Merging medium contents can be very time and disk space consuming, if these
media are big in size and have many children. However, if the snapshot being deleted
is the last (head) snapshot on the branch, the operation will be rather quick.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: The running virtual machine prevents deleting this snap-
shot. This happens only in very specific situations, usually snapshots can be deleted with-
out trouble while a VM is running. The error message text explains the reason for the
failure.

5.11.6 detachUSBDevice

IUSBDevice IConsole::detachUSBDevice(
[in] uuid id)

id UUID of the USB device to detach.

Detaches an USB device with the given UUID from the USB controller of the virtual machine.

After this method succeeds, the VirtualBox server re-initiates all USB filters as if the device
were just physically attached to the host, but filters of this machine are ignored to avoid a
possible automatic re-attachment.

See also: IUSBController::deviceFilters, USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

e E_INVALIDARG: USB device not attached to this virtual machine.

5.11.7 discardSavedState

void IConsole::discardSavedState(
[in] boolean fRemoveFile)

fRemoveFile Whether to also remove the saved state file.

Forcibly resets the machine to “Powered Off” state if it is currently in the “Saved” state (previ-
ously created by saveState()). Next time the machine is powered up, a clean boot will occur.

Note: This operation is equivalent to resetting or powering off the machine without
doing a proper shutdown of the guest operating system; as with resetting a running
phyiscal computer, it can can lead to data loss.

If fRemoveFile is true, the file in the machine directory into which the machine state
was saved is also deleted. If this is false, then the state can be recovered and later re-
inserted into a machine using adoptSavedState(). The location of the file can be found in the
IMachine::stateFilePath attribute.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in state Saved.

55

5 Classes (interfaces)

5.11.8 findUSBDeviceByAddress

IUSBDevice IConsole::findUSBDeviceByAddress (
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: IUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB device.

5.11.9 findUSBDeviceByld

IUSBDevice IConsole::findUSBDeviceById(
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

5.11.10 getDeviceActivity

DeviceActivity IConsole::getDeviceActivity(
[in] DeviceType type)

type

Gets the current activity type of a given device or device group.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid device type.

5.11.11 getGuestEnteredACPIMode

boolean IConsole::getGuestEnteredACPIMode ()

Checks if the guest entered the ACPI mode GO (working) or G1 (sleeping). If this method
returns false, the guest will most likely not respond to external ACPI events.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

5.11.12 getPowerButtonHandled

boolean IConsole::getPowerButtonHandled()

Checks if the last power button event was handled by guest.
If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Checking if the event was handled by the guest OS failed.

56

5 Classes (interfaces)

5.11.13 pause

void IConsole::pause()

Pauses the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_VM_ERROR: Virtual machine error in suspend operation.

5.11.14 powerButton

void IConsole::powerButton()

Sends the ACPI power button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

e VBOX_E_PDM_ERROR: Controlled power off failed.

5.11.15 powerDown

IProgress IConsole: :powerDown()

Initiates the power down procedure to stop the virtual machine execution.

The completion of the power down procedure is tracked using the returned IProgress object.
After the operation is complete, the machine will go to the PoweredOff state.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine must be Running, Paused or Stuck to be

powered down.

5.11.16 powerUp

IProgress IConsole: :powerUp()

Starts the virtual machine execution using the current machine state (that is, its current exe-
cution state, current settings and current storage devices).

Note: This method is only useful for front-ends that want to actually execute virtual
machines in their own process (like the VirtualBox or VBoxSDL front-ends). Unless you
are intending to write such a front-end, do not call this method. If you simply want to
start virtual machine execution using one of the existing front-ends (for example the
VirtualBox GUI or headless server), use IMachine::launchVMProcess() instead; these
front-ends will power up the machine automatically for you.

If the machine is powered off or aborted, the execution will start from the beginning (as if the
real hardware were just powered on).

If the machine is in the Saved state, it will continue its execution the point where the state has
been saved.

If the machine IMachine::teleporterEnabled property is enabled on the machine being pow-
ered up, the machine will wait for an incoming teleportation in the TeleportingIn state. The
returned progress object will have at least three operations where the last three are defined as:

57

5 Classes (interfaces)

(1) powering up and starting TCP server, (2) waiting for incoming teleportations, and (3) per-
form teleportation. These operations will be reflected as the last three operations of the progress
objected returned by IMachine::launchVMProcess() as well.

See also: #saveState

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

5.11.17 powerUpPaused

IProgress IConsole::powerUpPaused()

Identical to powerUp except that the VM will enter the Paused state, instead of Running.
See also: #powerUp
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_ VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

5.11.18 removeSharedFolder

void IConsole::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes a transient shared folder with the given name previously created by createSharedFolder()
from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine in Saved state or currently changing state.
e VBOX_E_FILE_ERROR: Shared folder does not exists.

5.11.19 reset

void IConsole::reset()

Resets the virtual machine.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_VM_ERROR: Virtual machine error in reset operation.

58

5 Classes (interfaces)

5.11.20 restoreSnapshot

IProgress IConsole::restoreSnapshot(
[in] ISnapshot snapshot)

snapshot The snapshot to restore the VM state from.

Starts resetting the machine’s current state to the state contained in the given snapshot, asyn-
chronously. All current settings of the machine will be reset and changes stored in differencing
media will be lost. See ISnapshot for an introduction to snapshots.

After this operation is successfully completed, new empty differencing media are created for
all normal media of the machine.

If the given snapshot is an online snapshot, the machine will go to the Saved, so that the next
time it is powered on, the execution state will be restored from the state of the snapshot.

Note: The machine must not be running, otherwise the operation will fail.

Note: If the machine state is Saved prior to this operation, the saved state file will be
implicitly deleted (as if discardSavedState() were called).

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine is running.

5.11.21 resume

void IConsole::resume()

Resumes the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Paused state.

e VBOX_E_VM_ERROR: Virtual machine error in resume operation.

5.11.22 saveState

IProgress IConsole::saveState()

Saves the current execution state of a running virtual machine and stops its execution.

After this operation completes, the machine will go to the Saved state. Next time it is powered
up, this state will be restored and the machine will continue its execution from the place where
it was saved.

This operation differs from taking a snapshot to the effect that it doesn’t create new differenc-
ing media. Also, once the machine is powered up from the state saved using this method, the
saved state is deleted, so it will be impossible to return to this state later.

Note: On success, this method implicitly calls IMachine::saveSettings() to save all cur-
rent machine settings (including runtime changes to the DVD medium, etc.). Together
with the impossibility to change any VM settings when it is in the Saved state, this
guarantees adequate hardware configuration of the machine when it is restored from
the saved state file.

59

5 Classes (interfaces)

Note: The machine must be in the Running or Paused state, otherwise the operation
will fail.

See also: takeSnapshot()
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor Paused.

e VBOX_E_FILE_ERROR: Failed to create directory for saved state file.

5.11.23 sleepButton

void IConsole::sleepButton()

Sends the ACPI sleep button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

e VBOX_E_PDM_ERROR: Sending sleep button event failed.

5.11.24 takeSnapshot

IProgress IConsole::takeSnapshot(
[in] wstring name,
[in] wstring description)

name Short name for the snapshot.

description Optional description of the snapshot.

Saves the current execution state and all settings of the machine and creates differencing
images for all normal (non-independent) media. See ISnapshot for an introduction to snapshots.

This method can be called for a PoweredOff, Saved (see saveState()), Running or Paused
virtual machine. When the machine is PoweredOff, an offline snapshot is created. When the
machine is Running a live snapshot is created, and an online snapshot is is created when Paused.

The taken snapshot is always based on the current snapshot of the associated virtual machine
and becomes a new current snapshot.

Note: This method implicitly calls IMachine::saveSettings() to save all current machine
settings before taking an offline snapshot.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine currently changing state.

5.11.25 teleport

IProgress IConsole::teleport(
[in] wstring hostname,
[in] unsigned long tcpport,
[in] wstring password,
[in] unsigned long maxDowntime)

hostname The name or IP of the host to teleport to.

60

5 Classes (interfaces)

tcpport The TCP port to connect to (1..65535).
password The password.

maxDowntime The maximum allowed downtime given as milliseconds. 0 is not a valid value.
Recommended value: 250 ms.

The higher the value is, the greater the chance for a successful teleportation. A small value
may easily result in the teleportation process taking hours and eventually fail.

Note: The current implementation treats this a guideline, not as an absolute rule.

Teleport the VM to a different host machine or process.
TODO explain the details.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not running or paused.

5.12 IDHCPServer

The IDHCPServer interface represents the vbox dhcp server configuration.
To enumerate all the dhep servers on the host, use the IVirtualBox::DHCPServers[] attribute.

5.12.1 Attributes
5.12.1.1 enabled (read/write)

boolean IDHCPServer::enabled

specifies if the dhcp server is enabled

5.12.1.2 IPAddress (read-only)

wstring IDHCPServer::IPAddress

specifies server IP

5.12.1.3 networkMask (read-only)

wstring IDHCPServer::networkMask

specifies server network mask

5.12.1.4 networkName (read-only)

wstring IDHCPServer::networkName

specifies internal network name the server is used for

5.12.1.5 lowerlP (read-only)

wstring IDHCPServer::lowerIP

specifies from IP address in server address range

61

5 Classes (interfaces)

5.12.1.6 upperlP (read-only)

wstring IDHCPServer: :upperIP

specifies to IP address in server address range

5.12.2 setConfiguration

void IDHCPServer::setConfiguration(
[in] wstring IPAddress,
[in] wstring networkMask,
[in] wstring FromIPAddress,
[in] wstring ToIPAddress)

IPAddress server IP address
networkMask server network mask
FromlIPAddress server From IP address for address range

TolPAddress server To IP address for address range

configures the server
If this method fails, the following error codes may be reported:

e E_INVALIDARG: invalid configuration supplied

5.12.3 start

void IDHCPServer::start(
[in] wstring networkName,
[in] wstring trunkName,
[in] wstring trunkType)
networkName Name of internal network DHCP server should attach to.
trunkName Name of internal network trunk.
trunkType Type of internal network trunk.

Starts DHCP server process.
If this method fails, the following error codes may be reported:

e E_FAIL: Failed to start the process.

5.12.4 stop

void IDHCPServer::stop()

Stops DHCP server process.
If this method fails, the following error codes may be reported:

e E_FAIL: Failed to stop the process.

62

5 Classes (interfaces)

5.13 IDisplay

The IDisplay interface represents the virtual machine’s display.

The object implementing this interface is contained in each IConsole::display attribute and
represents the visual output of the virtual machine.

The virtual display supports pluggable output targets represented by the IFramebuffer inter-
face. Examples of the output target are a window on the host computer or an RDP session’s
display on a remote computer.

5.13.1 completeVHWACommand

’ Note: This method is not supported in the web service.

void IDisplay::completeVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the completed command.

Signals that the Video HW Acceleration command has completed.

5.13.2 drawToScreen

Note: This method is not supported in the web service.

void IDisplay::drawToScreen(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)
screenld Monitor to take the screenshot from.
address Address to store the screenshot to
X Relative to the screen top left corner.
y Relative to the screen top left corner.
width Desired image width.

height Desired image height.

Draws a 32-bpp image of the specified size from the given buffer to the given point on the VM
display.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not draw to screen.

63

5 Classes (interfaces)

5.13.3 getFramebuffer

’ Note: This method is not supported in the web service.

void IDisplay::getFramebuffer(
[in] unsigned long screenld,
[out] IFramebuffer framebuffer,
[out] long xOrigin,
[out] long yOrigin)

screenld

framebuffer

xOrigin

yOrigin

Queries the framebuffer for given screen.

5.13.4 getScreenResolution

void IDisplay::getScreenResolution(
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height,
[out] unsigned long bitsPerPixel)

screenid
width
height
bitsPerPixel

Queries display width, height and color depth for given screen.

5.13.5 invalidateAndUpdate

void IDisplay::invalidateAndUpdate()

Does a full invalidation of the VM display and instructs the VM to update it.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not invalidate and update screen.

5.13.6 resizeCompleted

void IDisplay::resizeCompleted(
[in] unsigned long screenId)

screenld

Signals that a framebuffer has completed the resize operation.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Operation only valid for external frame buffers.

64

5 Classes (interfaces)

5.13.7 setFramebuffer

Note: This method is not supported in the web service.

void IDisplay::setFramebuffer(
[in] unsigned long screenld,
[in] IFramebuffer framebuffer)
screenld
framebuffer

Sets the framebuffer for given screen.

5.13.8 setSeamlessMode

void IDisplay::setSeamlessMode (
[in] boolean enabled)

enabled

Enables or disables seamless guest display rendering (seamless desktop integration) mode.

Note: Calling this method has no effect if IGuest::supportsSeamless returns false.

5.13.9 setVideoModeHint

void IDisplay::setVideoModeHint(
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bitsPerPixel,
[in] unsigned long display)

width
height
bitsPerPixel
display

Asks VirtualBox to request the given video mode from the guest. This is just a hint and it
cannot be guaranteed that the requested resolution will be used. Guest Additions are required
for the request to be seen by guests. The caller should issue the request and wait for a resolution
change and after a timeout retry.

Specifying 0 for either width, height or bitsPerPixel parameters means that the corre-
sponding values should be taken from the current video mode (i.e. left unchanged).

If the guest OS supports multi-monitor configuration then the display parameter specifies the
number of the guest display to send the hint to: 0 is the primary display, 1 is the first secondary
and so on. If the multi-monitor configuration is not supported, display must be 0.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: The display is not associated with any monitor.

65

5 Classes (interfaces)

5.13.10 takeScreenShot

Note: This method is not supported in the web service.

void IDisplay::takeScreenShot(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long width,
[in] unsigned long height)

screenld
address
width
height

Takes a screen shot of the requested size and copies it to the 32-bpp buffer allocated by the
caller and pointed to by address. A pixel consists of 4 bytes in order: B, G, R, 0.

Note: This API can be used only by the COM/XPCOM C+ + API as it requires pointer
support. Use takeScreenShotToArray() with other language bindings.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

5.13.11 takeScreenShotPNGToArray

octet[] IDisplay::takeScreenShotPNGToArray(

[in] unsigned long screenId,

[in] unsigned long width,

[in] unsigned long height)
screenld Monitor to take the screenshot from.
width Desired image width.
height Desired image height.

Takes a guest screen shot of the requested size and returns it as PNG image in array.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

66

5 Classes (interfaces)

5.13.12 takeScreenShotToArray

octet[] IDisplay::takeScreenShotToArray(
[in] unsigned long screenId,
[in] unsigned long width,
[in] unsigned long height)

screenld Monitor to take screenshot from.
width Desired image width.

height Desired image height.

Takes a guest screen shot of the requested size and returns it as an array of bytes in uncom-
pressed 32-bit RGBA format. A pixel consists of 4 bytes in order: R, G, B, OxFF.

This API is slow, but could be the only option to get guest screenshot for scriptable languages
not allowed to manipulate with addresses directly.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

5.14 |IEvent

Abstract parent interface for VirtualBox events. Actual events will typically implement a more
specific interface which derives from this (see below).

Introduction to VirtualBox events

Generally speaking, an event (represented by this interface) signals that something happened,
while an event listener (see IEventListener) represents an entity that is interested in certain
events. In order for this to work with unidirectional protocols (i.e. web services), the concepts
of passive and active listener are used.

Event consumers can register themselves as listeners, providing an array of events they are in-
terested in (see IEventSource::registerListener()). When an event triggers, the listener is notified
about the event. The exact mechanism of the notification depends on whether the listener was
registered as an active or passive listener:

e An active listener is very similar to a callback: it is a function invoked by the API. As
opposed to the callbacks that were used in the API before VirtualBox 4.0 however, events
are now objects with an interface hierarchy.

e Passive listeners are somewhat trickier to implement, but do not require a client func-
tion to be callable, which is not an option with scripting languages or web service
clients. Internally the IEventSource implementation maintains an event queue for each
passive listener, and newly arrived events are put in this queue. When the listener calls
IEventSource::getEvent(), first element from its internal event queue is returned. When
the client completes processing of an event, the IEventSource::eventProcessed() function
must be called, acknowledging that the event was processed. It supports implementing
waitable events. On passive listener unregistration, all events from its queue are auto-
acknowledged.

Waitable events are useful in situations where the event generator wants to track delivery or
a party wants to wait until all listeners have completed the event. A typical example would be a
vetoable event (see [VetoEvent) where a listeners might veto a certain action, and thus the event
producer has to make sure that all listeners have processed the event and not vetoed before
taking the action.

67

5 Classes (interfaces)

A given event may have both passive and active listeners at the same time.

Using events

Any VirtualBox object capable of producing externally visible events provides an eventSource
read-only attribute, which is of the type IEventSource. This event source object is notified by
VirtualBox once something has happened, so consumers may register event listeners with this
event source. To register a listener, an object implementing the IEventListener interface must
be provided. For active listeners, such an object is typically created by the consumer, while
for passive listeners IEventSource::createListener() should be used. Please note that a listener
created with createListener() must not be used as an active listener.

Once created, the listener must be registered to listen for the desired events (see
IEventSource::registerListener()), providing an array of VBoxEventType enums. Those elements
can either be the individual event IDs or wildcards matching multiple event IDs.

After registration, the callback’s IEventListener::handleEvent() method is called automatically
when the event is triggered, while passive listeners have to call IEventSource::getEvent() and
[EventSource::eventProcessed() in an event processing loop.

The IEvent interface is an abstract parent interface for all such VirtualBox events coming in. As
a result, the standard use pattern inside IEventListener::handleEvent() or the event processing
loop is to check the type attribute of the event and then cast to the appropriate specific interface
using QueryInterface().

5.14.1 Attributes
5.14.1.1 type (read-only)

VBoxEventType IEvent::type

Event type.

5.14.1.2 source (read-only)

IEventSource IEvent::source

Source of this event.

5.14.1.3 waitable (read-only)

boolean IEvent::waitable

If we can wait for this event being processed. If false, waitProcessed() returns immediately,
and setProcessed() doesn’t make sense. Non-waitable events are generally better performing, as
no additional overhead associated with waitability imposed. Waitable events are needed when
one need to be able to wait for particular event processed, for example for vetoable changes, or
if event refers to some resource which need to be kept immutable until all consumers confirmed
events.

5.14.2 setProcessed

void IEvent::setProcessed()

Internal method called by the system when all listeners of a particular event have called
[EventSource::eventProcessed(). This should not be called by client code.

68

5 Classes (interfaces)

5.14.3 waitProcessed

boolean IEvent::waitProcessed(
[in] long timeout)

timeout Maximum time to wait for event processeing, in ms; 0 = no wait, -1 = indefinite wait.

Wait until time outs, or this event is processed. Event must be waitable for this operation to
have described semantics, for non-waitable returns true immediately.

5.15 IEventContext

Placeholder class for event contexts.

5.16 IEventListener

Event listener. An event listener can work in either active or passive mode, depending on the
way it was registered. See IEvent for an introduction to VirtualBox event handling.

5.16.1 handleEvent

void IEventListener::handleEvent (
[in] IEvent event)

event Event available.

Handle event callback for active listeners. It is not called for passive listeners. After
calling handleEvent() on all active listeners and having received acknowledgement from all
passive listeners via IEventSource::eventProcessed(), the event is marked as processed and
[Event::waitProcessed () will return immediately.

5.17 IEventSource

Event source. Generally, any object which could generate events can be an event source, or aggre-
gate one. To simplify using one-way protocols such as webservices running on top of HTTP(S),
an event source can work with listeners in either active or passive mode. In active mode it is
up to the [EventSource implementation to call IEventListener::handleEvent(), in passive mode
the event source keeps track of pending events for each listener and returns available events on
demand.

See IEvent for an introduction to VirtualBox event handling.

5.17.1 createAggregator

IEventSource IEventSource::createAggregator(
[in] IEventSource subordinates[])

subordinates Subordinate event source this one aggregatres.

Creates an aggregator event source, collecting events from multiple sources. This way a single
listener can listen for events coming from multiple sources, using a single blocking getEvent()
on the returned aggregator.

69

5 Classes (interfaces)

5.17.2 createlListener

IEventListener IEventSource::createlListener()

Creates a new listener object, useful for passive mode.

5.17.3 eventProcessed

void IEventSource::eventProcessed(
[in] IEventListener listener,
[in] IEvent event)

listener Which listener processed event.

event Which event.

Must be called for waitable events after a particular listener finished its event processing.
When all listeners of a particular event have called this method, the system will then call
IEvent::setProcessed().

5.17.4 fireEvent

boolean IEventSource::fireEvent(
[in] IEvent event,
[in] long timeout)

event Event to deliver.

timeout Maximum time to wait for event processing (if event is waitable), in ms; 0 = no wait,
-1 = indefinite wait.

Fire an event for this source.

5.17.5 getEvent

IEvent IEventSource::getEvent(
[in] IEventListener listener,
[in] long timeout)

listener Which listener to get data for.

timeout Maximum time to wait for events, in ms; 0 = no wait, -1 = indefinite wait.

Get events from this peer’s event queue (for passive mode). Calling this method regularly is
required for passive event listeners to avoid system overload; see registerListener() for details.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Listener is not registered, or autounregistered.

5.17.6 registerListener

void IEventSource::registerListener(
[in] IEventListener listener,
[in] VBoxEventType interestingl[],
[in] boolean active)

listener Listener to register.

70

5 Classes (interfaces)

interesting Event types listener is interested in. One can use wildcards like - Any to specify
wildcards, matching more than one event.

active Which mode this listener is operating in. In active mode, IEventListener::handleEvent()
is called directly. In passive mode, an internal event queue is created for this this
IEventListener. For each event coming in, it is added to queues for all interested
registered passive listeners. It is then up to the external code to call the listener’s
IEventListener::handleEvent() method. When done with an event, the external code must
call eventProcessed().

Register an event listener.

Note: To avoid system overload, the VirtualBox server process checks if pas-
sive event listeners call getEvent() frequently enough. In the current implemen-
tation, if more than 500 pending events are detected for a passive event listener,
it is forcefully unregistered by the system, and further getEvent() calls will return
VBOX_E_OBJECT_NOT_FOUND.

5.17.7 unregisterListener

void IEventSource::unregisterListener(
[in] IEventListener listener)

listener Listener to unregister.

Unregister an event listener. If listener is passive, and some waitable events are still in queue
they are marked as processed automatically.

5.18 IEventSourceChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when an event source state changes (listener added or removed).

5.18.1 Attributes
5.18.1.1 listener (read-only)

IEventListener IEventSourceChangedEvent::listener

Event listener which has changed.

5.18.1.2 add (read-only)

boolean IEventSourceChangedEvent::add

Flag whether listener was added or removed.

71

5 Classes (interfaces)

5.19 IExtPack (IExtPackBase)

’ Note: This interface is not supported in the web service.

Note: This interface extends [ExtPackBase and therefore supports all its methods and
attributes as well.

Interface for querying information about an extension pack as well as accessing COM objects
within it.

5.19.1 queryObject

$unknown IExtPack::queryObject(
[in] wstring objUuid)

objUuid The object ID. What exactly this is

Queries the ITUnknown interface to an object in the extension pack main module. This allows
plug-ins and others to talk directly to an extension pack.

5.20 IExtPackBase

’ Note: This interface is not supported in the web service.

Interface for querying information about an extension pack as well as accessing COM objects
within it.

5.20.1 Attributes
5.20.1.1 name (read-only)

wstring IExtPackBase::name

The extension pack name. This is unique.

5.20.1.2 description (read-only)

wstring IExtPackBase::description

The extension pack description.

5.20.1.3 version (read-only)

wstring IExtPackBase::version

The extension pack version string. This is on the same form as other VirtualBox version strings,
ie.: “1.2.37, “1.2.3 BETA1”, “1.2.3-OSE”, “1.2.3r45678”, “1.2.3r45678-OSE”, “1.2.3 BETA1-
r45678” or “1.2.3 BETA1-r45678-OSE”

72

5 Classes (interfaces)
5.20.1.4 revision (read-only)
unsigned long IExtPackBase::revision
The extension pack internal revision number.
5.20.1.5 VRDEModule (read-only)
wstring IExtPackBase::VRDEModule
The name of the VRDE module if the extension pack sports one.

5.20.1.6 plugins (read-only)

IExtPackPlugIn IExtPackBase::plugIns|[]

Note: This attribute is not supported in the web service.

Plug-ins provided by this extension pack.

5.20.1.7 usable (read-only)

boolean IExtPackBase::usable

Indicates whether the extension pack is usable or not.
There are a number of reasons why an extension pack might be unusable, typical examples
would be broken installation/file or that it is incompatible with the current VirtualBox version.

5.20.1.8 whyUnusable (read-only)

wstring IExtPackBase::whyUnusable

String indicating why the extension pack is not usable. This is an empty string if usable and
always a non-empty string if not usable.

5.20.1.9 showLicense (read-only)

boolean IExtPackBase::showlLicense

Whether to show the license before installation

5.20.1.10 license (read-only)

wstring IExtPackBase::license

The default HTML license text for the extension pack. Same as calling queryLicense with
preferredLocale and preferredLanguage as empty strings and format set to html.

73

5 Classes (interfaces)

5.20.2 queryLicense

wstring IExtPackBase::querylLicense(
[in] wstring preferredLocale,
[in] wstring preferredLanguage,
[in] wstring format)

preferredLocale The preferred license locale. Pass an empty string to get the default license.

preferredLanguage The preferred license language. Pass an empty string to get the default
language for the locale.

format The license format: html, rtf or txt. If a license is present there will always be an HTML
of it, the rich text format (RTF) and plain text (txt) versions are optional. If

Full feature version of the license attribute.

5.21 IExtPackFile (IExtPackBase)

’ Note: This interface is not supported in the web service.

Note: This interface extends IExtPackBase and therefore supports all its methods and
attributes as well.

Extension pack file (aka tarball, .vbox-extpack) representation returned by IExtPackMan-
ager::openExtPackFile. This provides the base extension pack information with the addition
of the file name. It also provides an alternative to IExtPackManager::install.

5.21.1 Attributes
5.21.1.1 filePath (read-only)
wstring IExtPackFile::filePath

The path to the extension pack file.

5.21.2 install

IProgress IExtPackFile::install(
[in] boolean replace,
[in] wstring displayInfo)

replace Set this to automatically uninstall any existing extension pack with the same name as
the one being installed.

displayInfo Platform specific display information. Reserved for future hacks.

Install the extension pack.

5.22 IExtPackManager

’ Note: This interface is not supported in the web service.

Interface for managing VirtualBox Extension Packs.
TODO: Describe extension packs, how they are managed and how to create one.

74

5 Classes (interfaces)

5.22.1 Attributes
5.22.1.1 installedExtPacks (read-only)

IExtPack IExtPackManager::installedExtPacks[]

Note: This attribute is not supported in the web service.

List of the installed extension packs.

5.22.2 IsExtPackUsable

boolean IExtPackManager::IsExtPackUsable(
[in] wstring name)

name The name of the extension pack to check for.

Check if the given extension pack is loaded and usable.

5.22.3 QueryAllPluginsForFrontend

wstring[] IExtPackManager::QueryAllPlugInsForFrontend(
[in] wstring frontendName)

frontendName The name of the frontend or component.

Gets the path to all the plug-in modules for a given frontend.
This is a convenience method that is intended to simplify the plug-in loading process for a
frontend.

5.22.4 cleanup

void IExtPackManager::cleanup()

Cleans up failed installs and uninstalls

5.22.5 find

Note: This method is not supported in the web service.

IExtPack IExtPackManager::find(
[in] wstring name)

name The name of the extension pack to locate.

Returns the extension pack with the specified name if found.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No extension pack matching name was found.

75

5 Classes (interfaces)

5.22.6 openExtPackFile

’ Note: This method is not supported in the web service.

IExtPackFile IExtPackManager: :openExtPackFile(
[in] wstring path)

path The path of the extension pack tarball.

Attempts to open an extension pack file in preparation for installation.

5.22.7 uninstall

IProgress IExtPackManager::uninstall(
[in] wstring name,
[in] boolean forcedRemoval,
[in] wstring displayInfo)
name The name of the extension pack to uninstall.

forcedRemoval Forced removal of the extension pack. This means that the uninstall hook will
not be called.

displaylnfo Platform specific display information. Reserved for future hacks.

Uninstalls an extension pack, removing all related files.

5.23 IExtPackPlugin

’ Note: This interface is not supported in the web service.

Interface for keeping information about a plug-in that ships with an extension pack.

5.23.1 Attributes
5.23.1.1 name (read-only)

wstring IExtPackPlugIn::name
The plug-in name.
5.23.1.2 description (read-only)
wstring IExtPackPlugIn::description
The plug-in description.
5.23.1.3 frontend (read-only)
wstring IExtPackPlugIn::frontend

The name of the frontend or component name this plug-in plugs into.

76

5 Classes (interfaces)

5.23.1.4 modulePath (read-only)

wstring IExtPackPlugIn::modulePath

The module path.

5.24 |IExtraDataCanChangeEvent (IVetoEvent)

Note: This interface extends IVetoEvent and therefore supports all its methods and
attributes as well.

Notification when someone tries to change extra data for either the given machine or (if null)
global extra data. This gives the chance to veto against changes.

5.24.1 Attributes
5.24.1.1 machineld (read-only)

uuid IExtraDataCanChangeEvent::machineId

ID of the machine this event relates to. Null for global extra data changes.

5.24.1.2 key (read-only)

wstring IExtraDataCanChangeEvent: :key

Extra data key that has changed.

5.24.1.3 value (read-only)

wstring IExtraDataCanChangeEvent::value

Extra data value for the given key.

5.25 IExtraDataChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when machine specific or global extra data has changed.

5.25.1 Attributes
5.25.1.1 machineld (read-only)

uuid IExtraDataChangedEvent::machineld

ID of the machine this event relates to. Null for global extra data changes.

5.25.1.2 key (read-only)

wstring IExtraDataChangedEvent::key

Extra data key that has changed.

77

5 Classes (interfaces)

5.25.1.3 value (read-only)

wstring IExtraDataChangedEvent::value

Extra data value for the given key.

5.26 IFramebuffer

’ Note: This interface is not supported in the web service.

5.26.1 Attributes
5.26.1.1 address (read-only)

octet IFramebuffer::address

Address of the start byte of the frame buffer.

5.26.1.2 width (read-only)

unsigned long IFramebuffer::width

Frame buffer width, in pixels.

5.26.1.3 height (read-only)

unsigned long IFramebuffer::height

Frame buffer height, in pixels.

5.26.1.4 bitsPerPixel (read-only)
unsigned long IFramebuffer::bitsPerPixel

Color depth, in bits per pixel. When pixelFormat is FOURCC_RGB, valid values are: 8, 15, 16,
24 and 32.

5.26.1.5 bytesPerLine (read-only)

unsigned long IFramebuffer::bytesPerLine

Scan line size, in bytes. When pixelFormat is FOURCC_RGB, the size of the scan line must be
aligned to 32 bits.

5.26.1.6 pixelFormat (read-only)

unsigned long IFramebuffer::pixelFormat

Frame buffer pixel format. It’s either one of the values defined by FramebufferPixelFormat or
a raw FOURCC code.

Note: This attribute must never return Opaque — the format of the buffer address points
to must be always known.

78

5 Classes (interfaces)

5.26.1.7 usesGuestVRAM (read-only)

boolean IFramebuffer::usesGuestVRAM

Defines whether this frame buffer uses the virtual video card’s memory buffer (guest VRAM)
directly or not. See requestResize() for more information.

5.26.1.8 heightReduction (read-only)

unsigned long IFramebuffer::heightReduction

Hint from the frame buffer about how much of the standard screen height it wants to use for
itself. This information is exposed to the guest through the VESA BIOS and VMMDev interface
so that it can use it for determining its video mode table. It is not guaranteed that the guest
respects the value.

5.26.1.9 overlay (read-only)

IFramebufferOverlay IFramebuffer::overlay

Note: This attribute is not supported in the web service.

An alpha-blended overlay which is superposed over the frame buffer. The initial purpose is to
allow the display of icons providing information about the VM state, including disk activity, in
front ends which do not have other means of doing that. The overlay is designed to controlled
exclusively by IDisplay. It has no locking of its own, and any changes made to it are not guar-
anteed to be visible until the affected portion of IFramebuffer is updated. The overlay can be
created lazily the first time it is requested. This attribute can also return null to signal that the
overlay is not implemented.

5.26.1.10 winld (read-only)

long long IFramebuffer::winId

Platform-dependent identifier of the window where context of this frame buffer is drawn, or
zero if there’s no such window.

5.26.2 getVisibleRegion

’ Note: This method is not supported in the web service.

unsigned long IFramebuffer::getVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array to receive region data.

count Number of RTRECT elements in the rectangles array.

79

5 Classes (interfaces)

Returns the visible region of this frame buffer.

If the rectangles parameter is null then the value of the count parameter is ignored and the
number of elements necessary to describe the current visible region is returned in countCopied.

If rectangles is not null but count is less than the required number of elements to store
region data, the method will report a failure. If count is equal or greater than the required
number of elements, then the actual number of elements copied to the provided array will be
returned in countCopied.

Note: The address of the provided array must be in the process space of this IFrame-
buffer object.

’ Note: Method not yet implemented.

5.26.3 lock
void IFramebuffer::lock()

Locks the frame buffer. Gets called by the IDisplay object where this frame buffer is bound to.

5.26.4 notifyUpdate

void IFramebuffer::notifyUpdate(
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)

X
y
width
height

Informs about an update. Gets called by the display object where this buffer is registered.

5.26.5 processVHWACommand

’ Note: This method is not supported in the web service.

void IFramebuffer::processVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the command to execute.

Posts a Video HW Acceleration Command to the frame buffer for processing. The commands
used for 2D video acceleration (DDraw surface creation/destroying, blitting, scaling, color con-
version, overlaying, etc.) are posted from quest to the host to be processed by the host hardware.

Note: The address of the provided command must be in the process space of this
IFramebuffer object.

80

5 Classes (interfaces)

5.26.6 requestResize

’ Note: This method is not supported in the web service.

boolean IFramebuffer::requestResize(
[in] unsigned long screenId,
[in] unsigned long pixelFormat,
[in] [ptr] octet VRAM,
[in] unsigned long bitsPerPixel,
[in] unsigned long bytesPerLine,
[in] unsigned long width,
[in] unsigned long height)

screenld Logical screen number. Must be used in the corresponding call to IDisplay::resizeCompleted ()
if this call is made.

pixelFormat Pixel format of the memory buffer pointed to by VRAM. See also FramebufferPixelFormat.
VRAM Pointer to the virtual video card’s VRAM (may be null).

bitsPerPixel Color depth, bits per pixel.

bytesPerLine Size of one scan line, in bytes.

width Width of the guest display, in pixels.

height Height of the guest display, in pixels.

Requests a size and pixel format change.

There are two modes of working with the video buffer of the virtual machine. The indirect
mode implies that the IFramebuffer implementation allocates a memory buffer for the requested
display mode and provides it to the virtual machine. In direct mode, the [Framebuffer imple-
mentation uses the memory buffer allocated and owned by the virtual machine. This buffer
represents the video memory of the emulated video adapter (so called guest VRAM). The direct
mode is usually faster because the implementation gets a raw pointer to the guest VRAM buffer
which it can directly use for visualizing the contents of the virtual display, as opposed to the
indirect mode where the contents of guest VRAM are copied to the memory buffer provided by
the implementation every time a display update occurs.

It is important to note that the direct mode is really fast only when the implementation uses
the given guest VRAM buffer directly, for example, by blitting it to the window representing
the virtual machine’s display, which saves at least one copy operation comparing to the indirect
mode. However, using the guest VRAM buffer directly is not always possible: the format and
the color depth of this buffer may be not supported by the target window, or it may be unknown
(opaque) as in case of text or non-linear multi-plane VGA video modes. In this case, the indirect
mode (that is always available) should be used as a fallback: when the guest VRAM contents
are copied to the implementation-provided memory buffer, color and format conversion is done
automatically by the underlying code.

The pixelFormat parameter defines whether the direct mode is available or not. If
pixelFormat is Opaque then direct access to the guest VRAM buffer is not available — the VRAM,
bitsPerPixel and bytesPerLine parameters must be ignored and the implementation must
use the indirect mode (where it provides its own buffer in one of the supported formats). In all
other cases, pixelFormat together with bitsPerPixel and bytesPerLine define the format of
the video memory buffer pointed to by the VRAM parameter and the implementation is free to
choose which mode to use. To indicate that this frame buffer uses the direct mode, the imple-
mentation of the usesGuestVRAM attribute must return true and address must return exactly

81

5 Classes (interfaces)

the same address that is passed in the VRAM parameter of this method; otherwise it is assumed
that the indirect strategy is chosen.

The width and height parameters represent the size of the requested display mode in both
modes. In case of indirect mode, the provided memory buffer should be big enough to store
data of the given display mode. In case of direct mode, it is guaranteed that the given VRAM
buffer contains enough space to represent the display mode of the given size. Note that this
frame buffer’s width and height attributes must return exactly the same values as passed to this
method after the resize is completed (see below).

The finished output parameter determines if the implementation has finished resiz-
ing the frame buffer or not. If, for some reason, the resize cannot be finished imme-
diately during this call, finished must be set to false, and the implementation must
call IDisplay::resizeCompleted() after it has returned from this method as soon as pos-
sible. If finished is false, the machine will not call any frame buffer methods until
IDisplay::resizeCompleted() is called.

Note that if the direct mode is chosen, the bitsPerPixel, bytesPerLine and pixelFormat attributes
of this frame buffer must return exactly the same values as specified in the parameters of this
method, after the resize is completed. If the indirect mode is chosen, these attributes must
return values describing the format of the implementation’s own memory buffer address points
to. Note also that the bitsPerPixel value must always correlate with pixelFormat. Note that the
pixelFormat attribute must never return Opaque regardless of the selected mode.

Note: This method is called by the IDisplay object under the lock() provided by this
IFramebuffer implementation. If this method returns false in finished, then this
lock is not released until IDisplay::resizeCompleted() is called.

5.26.7 setVisibleRegion

’ Note: This method is not supported in the web service.

void IFramebuffer::setVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array.
count Number of RTRECT elements in the rectangles array.

Suggests a new visible region to this frame buffer. This region represents the area of the VM
display which is a union of regions of all top-level windows of the guest operating system running
inside the VM (if the Guest Additions for this system support this functionality). This information
may be used by the frontends to implement the seamless desktop integration feature.

Note: The address of the provided array must be in the process space of this IFrame-
buffer object.

Note: The IFramebuffer implementation must make a copy of the provided array of
rectangles.

Note: Method not yet implemented.

82

5 Classes (interfaces)

5.26.8 unlock

void IFramebuffer::unlock()

Unlocks the frame buffer. Gets called by the IDisplay object where this frame buffer is bound
to.

5.26.9 videoModeSupported

boolean IFramebuffer::videoModeSupported(
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bpp)

width
height
bpp

Returns whether the frame buffer implementation is willing to support a given video mode.
In case it is not able to render the video mode (or for some reason not willing), it should return
false. Usually this method is called when the guest asks the VMM device whether a given video
mode is supported so the information returned is directly exposed to the guest. It is important
that this method returns very quickly.

5.27 IFramebufferOverlay (IFramebuffer)

’ Note: This interface is not supported in the web service.

Note: This interface extends I[Framebuffer and therefore supports all its methods and
attributes as well.

The IFramebufferOverlay interface represents an alpha blended overlay for displaying status
icons above an IFramebuffer. It is always created not visible, so that it must be explicitly shown.
It only covers a portion of the IFramebuffer, determined by its width, height and co-ordinates. It
is always in packed pixel little-endian 32bit ARGB (in that order) format, and may be written to
directly. Do re-read the width though, after setting it, as it may be adjusted (increased) to make
it more suitable for the front end.

5.27.1 Attributes
5.27.1.1 x (read-only)

unsigned long IFramebufferQverlay::x

X position of the overlay, relative to the frame buffer.

5.27.1.2 y (read-only)

unsigned long IFramebufferOverlay::y

Y position of the overlay, relative to the frame buffer.

83

5 Classes (interfaces)

5.27.1.3 visible (read/write)

boolean IFramebufferOverlay::visible

Whether the overlay is currently visible.

5.27.1.4 alpha (read/write)

unsigned long IFramebufferOverlay::alpha

The global alpha value for the overlay. This may or may not be supported by a given front end.

5.27.2 move

void IFramebufferOverlay: :move(
[in] unsigned long x,
[in] unsigned long y)

Changes the overlay’s position relative to the IFramebuffer.

5.28 IGuest

The IGuest interface represents information about the operating system running inside the virtual
machine. Used in IConsole::guest.

IGuest provides information about the guest operating system, whether Guest Additions are
installed and other OS-specific virtual machine properties.

5.28.1 Attributes

5.28.1.1 OSTypeld (read-only)

wstring IGuest::0STypeld

Identifier of the Guest OS type as reported by the Guest Additions. You may use
IVirtualBox::getGuestOSType() to obtain an IGuestOSType object representing details about
the given Guest OS type.

Note: If Guest Additions are not installed, this value will be the same as
IMachine::OSTypeld.

5.28.1.2 additionsRunLevel (read-only)

AdditionsRunLevelType IGuest::additionsRunLevel

Current run level of the Guest Additions.

5.28.1.3 additionsVersion (read-only)

wstring IGuest::additionsVersion

Version of the Guest Additions including the revision (3 decimal numbers separated by dots +
revision number) installed on the guest or empty when the Additions are not installed.

84

5 Classes (interfaces)

5.28.1.4 supportsSeamless (read-only)

boolean IGuest::supportsSeamless

Flag whether seamless guest display rendering (seamless desktop integration) is supported.

5.28.1.5 supportsGraphics (read-only)

boolean IGuest::supportsGraphics

Flag whether the guest is in graphics mode. If it is not, then seamless rendering will not work,
resize hints are not immediately acted on and guest display resizes are probably not initiated by
the guest additions.

5.28.1.6 memoryBalloonSize (read/write)

unsigned long IGuest::memoryBalloonSize

Guest system memory balloon size in megabytes (transient property).

5.28.1.7 statisticsUpdatelnterval (read/write)

unsigned long IGuest::statisticsUpdateInterval

Interval to update guest statistics in seconds.

5.28.2 copyToGuest

IProgress IGuest::copyToGuest(
[in] wstring source,
[in] wstring dest,
[in] wstring userName,
[in] wstring password,
[in] unsigned long flags)

source Source file on the host to copy.
dest Destination path on the guest.

userName User name under which the copy command will be executed; the user has to exist
and have the appropriate rights to write to the destination path.

password Password of the user account specified.

flags CopyFileFlag flags. Not used at the moment and should be set to O.

Copies files/directories from host to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while copying.

85

5 Classes (interfaces)

5.28.3 createDirectory

IProgress IGuest::createDirectory(
[in] wstring directory,
[in] wstring userName,
[in] wstring password,
[in] unsigned long mode,
[in] unsigned long flags)

directory Directory to create.

userName User name under which the directory creation will be executed; the user has to exist
and have the appropriate rights to create the desired directory.

password Password of the user account specified.
mode File mode.
flags CreateDirectoryFlag flags.

Creates a directory on the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while creating directory.

5.28.4 executeProcess

IProgress IGuest::executeProcess(
[in] wstring execName,
[in] unsigned long flags,
[in] wstring arguments[],
[in] wstring environment[],
[in] wstring userName,
[in] wstring password,
[in] unsigned long timeoutMS,
[out] unsigned long pid)

execName Full path name of the command to execute on the guest; the commands has to exists
in the guest VM in order to be executed.

flags ExecuteProcessFlag flags.
arguments Array of arguments passed to the execution command.

environment Environment variables that can be set while the command is being executed, in
form of “NAME=VALUE”; one pair per entry. To unset a variable just set its name (“NAME”)
without a value.

userName User name under which the command will be executed; has to exist and have the
appropriate rights to execute programs in the VM.

password Password of the user account specified.

timeoutMS The maximum timeout value (in msec) to wait for finished program execution. Pass
0 for an infinite timeout.

pid The PID (process ID) of the started command for later reference.

Executes an existing program inside the guest VM.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not execute process.

86

5 Classes (interfaces)

5.28.5 getAdditionsStatus

boolean IGuest::getAdditionsStatus(
[in] AdditionsRunLevelType level)

level Status level to check

Retrieve the current status of a certain Guest Additions run level.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Wrong status level specified.

5.28.6 getProcessOutput

octet[] IGuest::getProcessOutput(

[in] unsigned long pid,

[in] unsigned long flags,

[in] unsigned long timeoutMS,

[in] long long size)
pid Process id returned by earlier executeProcess() call.
flags Flags describing which output to retrieve.

timeoutMS The maximum timeout value (in msec) to wait for output data. Pass O for an infinite
timeout.

size Size in bytes to read in the buffer.

Retrieves output of a formerly started process.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not retrieve output.

5.28.7 getProcessStatus

unsigned long IGuest::getProcessStatus(
[in] unsigned long pid,
[out] unsigned long exitcode,
[out] unsigned long flags)

pid Process id returned by earlier executeProcess() call.
exitcode The exit code (if available).

flags Additional flags of process status. Not used at the moment and must be set to 0.

Retrieves status, exit code and the exit reason of a formerly started process.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Process with specified PID was not found.

87

5 Classes (interfaces)

5.28.8 internalGetStatistics

void IGuest::internalGetStatistics(
[out] unsigned long cpuUser,
[out] unsigned long cpuKernel,
[out] unsigned long cpuldle,
[out] unsigned long memTotal,
[out] unsigned long memFree,
[out] unsigned long memBalloon,
[out] unsigned long memShared,
[out] unsigned long memCache,
[out] unsigned long pagedTotal,
[out] unsigned long memAllocTotal,
[out] unsigned long memFreeTotal,
[out] unsigned long memBalloonTotal,
[out] unsigned long memSharedTotal)

cpuUser Percentage of processor time spent in user mode as seen by the guest
cpuKernel Percentage of processor time spent in kernel mode as seen by the guest
cpuldle Percentage of processor time spent idling as seen by the guest
memTotal Total amount of physical guest RAM

memFree Free amount of physical guest RAM

memBalloon Amount of ballooned physical guest RAM

memShared Amount of shared physical guest RAM

memCache Total amount of guest (disk) cache memory

pagedTotal Total amount of space in the page file

memAllocTotal Total amount of memory allocated by the hypervisor
memFreeTotal Total amount of free memory available in the hypervisor
memBalloonTotal Total amount of memory ballooned by the hypervisor

memSharedTotal Total amount of shared memory in the hypervisor

Internal method; do not use as it might change at any time

5.28.9 setCredentials

void IGuest::setCredentials(
[in] wstring userName,
[in] wstring password,
[in] wstring domain,
[in] boolean allowInteractivelLogon)

userName User name string, can be empty
password Password string, can be empty
domain Domain name (guest logon scheme specific), can be empty

allowinteractiveLogon Flag whether the guest should alternatively allow the user to interac-
tively specify different credentials. This flag might not be supported by all versions of the
Additions.

88

5 Classes (interfaces)

Store login credentials that can be queried by guest operating systems with Additions installed.
The credentials are transient to the session and the guest may also choose to erase them. Note
that the caller cannot determine whether the guest operating system has queried or made use of
the credentials.

If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

5.28.10 setProcessinput

unsigned long IGuest::setProcessInput(
[in] unsigned long pid,
[in] unsigned long flags,
[in] unsigned long timeoutMS,
[in] octet datall)

pid Process id returned by earlier executeProcess() call.
flags ProcessIinputFlag flags.

timeoutMS The maximum timeout value (in msec) to wait for getting the data transfered to the
guest. Pass 0 for an infinite timeout.

data Buffer of input data to send to the started process to.

Sends input into a formerly started process.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send input.

5.28.11 updateGuestAdditions

IProgress IGuest::updateGuestAdditions(
[in] wstring source,
[in] unsigned long flags)

source Path to the Guest Additions .ISO file to use for the upate.
flags AdditionsUpdateFlag flags.

Updates already installed Guest Additions in a VM (Windows guests only).
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while updating.

5.29 IGuestKeyboardEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when guest keyboard event happens.

5.29.1 Attributes
5.29.1.1 scancodes (read-only)
long IGuestKeyboardEvent::scancodes[]

Array of scancodes.

89

5 Classes (interfaces)

5.30 IGuestMonitorChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the guest enables one of its monitors.

5.30.1 Attributes
5.30.1.1 changeType (read-only)

GuestMonitorChangedEventType IGuestMonitorChangedEvent::changeType

What was changed for this guest monitor.

5.30.1.2 screenld (read-only)

unsigned long IGuestMonitorChangedEvent::screenld

The monitor which was changed.

5.30.1.3 originX (read-only)

unsigned long IGuestMonitorChangedEvent::originX

Physical X origin relative to the primary screen. Valid for Enabled and NewOrigin.

5.30.1.4 originY (read-only)

unsigned long IGuestMonitorChangedEvent::originY

Physical Y origin relative to the primary screen. Valid for Enabled and NewOrigin.

5.30.1.5 width (read-only)

unsigned long IGuestMonitorChangedEvent::width

Width of the screen. Valid for Enabled.

5.30.1.6 height (read-only)

unsigned long IGuestMonitorChangedEvent::height

Height of the screen. Valid for Enabled.

5.31 IGuestMouseEvent (IReusableEvent)

Note: This interface extends [ReusableEvent and therefore supports all its methods and
attributes as well.

Notification when guest mouse event happens.

90

5 Classes (interfaces)

5.31.1 Attributes
5.31.1.1 absolute (read-only)

boolean IGuestMouseEvent::absolute

If this event is relative or absolute.

5.31.1.2 x (read-only)

long IGuestMouseEvent::x

New X position, or X delta.

5.31.1.3 y (read-only)

long IGuestMouseEvent::y

New Y position, or Y delta.

5.31.1.4 z (read-only)

long IGuestMouseEvent::z

Z delta.

5.31.1.5 w (read-only)

long IGuestMouseEvent::w

W delta.

5.31.1.6 buttons (read-only)

long IGuestMouseEvent::buttons

Button state bitmask.

5.32 IGuestOSType

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

5.32.1 Attributes
5.32.1.1 familyld (read-only)

wstring IGuestOSType::familyId

Guest OS family identifier string.

91

5 Classes (interfaces)

5.32.1.2 familyDescription (read-only)

wstring IGuestOSType::familyDescription

Human readable description of the guest OS family.

5.32.1.3 id (read-only)

wstring IGuestOSType::id

Guest OS identifier string.

5.32.1.4 description (read-only)

wstring IGuestOSType::description

Human readable description of the guest OS.

5.32.1.5 is64Bit (read-only)

boolean IGuest0SType::is64Bit

Returns true if the given OS is 64-bit

5.32.1.6 recommendedIOAPIC (read-only)

boolean IGuest0SType::recommendedIOAPIC

Returns true if IO APIC recommended for this OS type.

5.32.1.7 recommendedVirtEx (read-only)

boolean IGuest0SType::recommendedVirtEx

Returns true if VI-x or AMD-V recommended for this OS type.

5.32.1.8 recommendedRAM (read-only)

unsigned long IGuestOSType: :recommendedRAM

Recommended RAM size in Megabytes.

5.32.1.9 recommendedVRAM (read-only)

unsigned long IGuestOSType: :recommendedVRAM

Recommended video RAM size in Megabytes.

5.32.1.10 recommendedHDD (read-only)

long long IGuestOSType::recommendedHDD

Recommended hard disk size in bytes.

5.32.1.11 adapterType (read-only)

NetworkAdapterType IGuestOSType::adapterType

Returns recommended network adapter for this OS type.

92

5 Classes (interfaces)

5.32.1.12 recommendedPae (read-only)

boolean IGuest0SType::recommendedPae

Returns true if using PAE is recommended for this OS type.

5.32.1.13 recommendedDvdStorageController (read-only)

StorageControllerType IGuest0SType::recommendedDvdStorageController

Recommended storage controller type for DVD/CD drives.

5.32.1.14 recommendedDvdStorageBus (read-only)

StorageBus IGuestOSType::recommendedDvdStorageBus

Recommended storage bus type for DVD/CD drives.

5.32.1.15 recommendedHdStorageController (read-only)

StorageControllerType IGuest0SType::recommendedHdStorageController

Recommended storage controller type for HD drives.

5.32.1.16 recommendedHdStorageBus (read-only)

StorageBus IGuest0SType::recommendedHdStorageBus

Recommended storage bus type for HD drives.

5.32.1.17 recommendedFirmware (read-only)

FirmwareType IGuest0SType::recommendedFirmware

Recommended firmware type.

5.32.1.18 recommendedUsbHid (read-only)

boolean IGuest0SType::recommendedUsbHid

Returns true if using USB Human Interface Devices, such as keyboard and mouse recom-
mended.

5.32.1.19 recommendedHpet (read-only)

boolean IGuest0SType::recommendedHpet

Returns true if using HPET is recommended for this OS type.

5.32.1.20 recommendedUsbTablet (read-only)

boolean IGuest0SType::recommendedUsbTablet

Returns true if using a USB Tablet is recommended.

93

5 Classes (interfaces)

5.32.1.21 recommendedRtcUseUtc (read-only)

boolean IGuest0SType::recommendedRtcUseUtc

Returns true if the RTC of this VM should be set to UTC
5.32.1.22 recommendedChipset (read-only)
ChipsetType IGuestO0SType::recommendedChipset

Recommended chipset type.
5.32.1.23 recommendedAudioController (read-only)
AudioControllerType IGuestOSType::recommendedAudioController

Recommended audio type.

5.33 IGuestPropertyChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when a guest property has changed.

5.33.1 Attributes
5.33.1.1 name (read-only)

wstring IGuestPropertyChangedEvent: :name

The name of the property that has changed.

5.33.1.2 value (read-only)

wstring IGuestPropertyChangedEvent::value

The new property value.

5.33.1.3 flags (read-only)

wstring IGuestPropertyChangedEvent::flags

The new property flags.

5.34 IHost

The IHost interface represents the physical machine that this VirtualBox installation runs on.

An object implementing this interface is returned by the IVirtualBox::host attribute. This inter-
face contains read-only information about the host’s physical hardware (such as what processors
and disks are available, what the host operating system is, and so on) and also allows for ma-
nipulating some of the host’s hardware, such as global USB device filters and host interface
networking.

94

5 Classes (interfaces)

5.34.1 Attributes
5.34.1.1 DVDDrives (read-only)

IMedium IHost::DVDDrives[]

List of DVD drives available on the host.

5.34.1.2 floppyDrives (read-only)

IMedium IHost::floppyDrives|]

List of floppy drives available on the host.

5.34.1.3 USBDevices (read-only)

IHostUSBDevice IHost::USBDevices|[]

List of USB devices currently attached to the host. Once a new device is physically attached to
the host computer, it appears in this list and remains there until detached.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

5.34.1.4 USBDeviceFilters (read-only)

IHostUSBDeviceFilter IHost::USBDeviceFilters|[]

List of USB device filters in action. When a new device is physically attached to the host
computer, filters from this list are applied to it (in order they are stored in the list). The first
matched filter will determine the action performed on the device.

Unless the device is ignored by these filters, filters of all currently running virtual machines
(IUSBController::deviceFilters[]) are applied to it.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: IHostUSBDeviceFilter, USBDeviceState

5.34.1.5 networkinterfaces (read-only)

IHostNetworkInterface IHost::networkInterfaces|[]

List of host network interfaces currently defined on the host.

5.34.1.6 processorCount (read-only)

unsigned long IHost::processorCount

Number of (logical) CPUs installed in the host system.

5.34.1.7 processorOnlineCount (read-only)

unsigned long IHost::processorOnlineCount

Number of (logical) CPUs online in the host system.

95

5 Classes (interfaces)

5.34.1.8 processorCoreCount (read-only)

unsigned long IHost::processorCoreCount

Number of physical processor cores installed in the host system.

5.34.1.9 memorySize (read-only)

unsigned long IHost::memorySize

Amount of system memory in megabytes installed in the host system.

5.34.1.10 memoryAvailable (read-only)

unsigned long IHost::memoryAvailable

Available system memory in the host system.

5.34.1.11 operatingSystem (read-only)

wstring IHost::operatingSystem

Name of the host system’s operating system.
5.34.1.12 OSVersion (read-only)
wstring IHost::0SVersion

Host operating system’s version string.
5.34.1.13 UTCTime (read-only)
long long IHost::UTCTime

Returns the current host time in milliseconds since 1970-01-01 UTC.

5.34.1.14 Acceleration3DAvailable (read-only)

boolean IHost::Acceleration3DAvailable

Returns true when the host supports 3D hardware acceleration.

5.34.2 createHostOnlyNetworkinterface

IProgress IHost::createHostOnlyNetworkInterface(
[out] IHostNetworkInterface hostInterface)

hostinterface Created host interface object.

Creates a new adapter for Host Only Networking.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

96

5 Classes (interfaces)

5.34.3 createUSBDeviceFilter

IHostUSBDeviceFilter IHost::createUSBDeviceFilter(
[in] wstring name)

name Filter name. See IUSBDeviceFilter::name for more information.

Creates a new USB device filter. All attributes except the filter name are set to empty (any
match), active is false (the filter is not active).

The created filter can be added to the list of filters using insertUSBDeviceFilter().

See also: #USBDeviceFilters

5.34.4 findHostDVDDrive

IMedium IHost::findHostDVDDrive(
[in] wstring name)

name Name of the host drive to search for

Searches for a host DVD drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host drive.

5.34.5 findHostFloppyDrive

IMedium IHost::findHostFloppyDrive(
[in] wstring name)

name Name of the host floppy drive to search for

Searches for a host floppy drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host floppy drive.

5.34.6 findHostNetworkinterfaceByld

IHostNetworkInterface IHost::findHostNetworkInterfaceById(
[in] uuid id)

id GUID of the host network interface to search for.

Searches through all host network interfaces for an interface with the given GUID.

Note: The method returns an error if the given GUID does not correspond to any host
network interface.

5.34.7 findHostNetworkinterfaceByName

IHostNetworkInterface IHost::findHostNetworkInterfaceByName(
[in] wstring name)

name Name of the host network interface to search for.

Searches through all host network interfaces for an interface with the given name.

Note: The method returns an error if the given name does not correspond to any host
network interface.

97

5 Classes (interfaces)

5.34.8 findHostNetworkiInterfacesOfType

IHostNetworkInterface[] IHost::findHostNetworkInterfacesOfType(
[in] HostNetworkInterfaceType type)

type type of the host network interfaces to search for.

Searches through all host network interfaces and returns a list of interfaces of the specified

type

5.34.9 findUSBDeviceByAddress

IHostUSBDevice IHost::findUSBDeviceByAddress(
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: THostUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB device.

5.34.10 findUSBDeviceByld

IHostUSBDevice IHost::findUSBDeviceById (
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: THostUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

5.34.11 getProcessorCPUIDLeaf

void IHost::getProcessorCPUIDLeaf (
[in] unsigned long cpuld,
[in] unsigned long leaf,
[in] unsigned long sublLeaf,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

cpuld Identifier of the CPU. The CPU most be online.

Note: The current implementation might not necessarily return the description for this
exact CPU.

leaf CPUID leaf index (eax).

subLeaf CPUID leaf sub index (ecx). This currently only applies to cache information on Intel
CPUs. Use 0 if retrieving values for IMachine::setCPUIDLeaf().

98

5 Classes (interfaces)

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.
valEdx CPUID leaf value for register edx.

Returns the CPU cpuid information for the specified leaf.

5.34.12 getProcessorDescription

wstring IHost::getProcessorDescription(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Note: The current implementation might not necessarily return the description for this
exact CPU.

Query the model string of a specified host CPU.

5.34.13 getProcessorFeature

boolean IHost::getProcessorFeature(
[in] ProcessorFeature feature)

feature CPU Feature identifier.

Query whether a CPU feature is supported or not.

5.34.14 getProcessorSpeed

unsigned long IHost::getProcessorSpeed(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Query the (approximate) maximum speed of a specified host CPU in Megahertz.

5.34.15 insertUSBDeviceFilter

void IHost::insertUSBDeviceFilter(
[in] unsigned long position,
[in] IHostUSBDeviceFilter filter)

position Position to insert the filter to.
filter USB device filter to insert.

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater than the
number of elements in the list, the filter is added at the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter already in the list is
an error.

99

5 Classes (interfaces)

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: #USBDeviceFilters
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: USB device filter is not created within this VirtualBox
instance.

e E_INVALIDARG: USB device filter already in list.

5.34.16 removeHostOnlyNetworkinterface

IProgress IHost::removeHostOnlyNetworkInterface(
[in] uuid id)

id Adapter GUID.

Removes the given Host Only Networking interface.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No host network interface matching id found.

5.34.17 removeUSBDeviceFilter

void IHost::removeUSBDeviceFilter(
[in] unsigned long position)

position Position to remove the filter from.

Removes a USB device filter from the specified position in the list of filters.
Positions are numbered starting from 0. Specifying a position equal to or greater than the
number of elements in the list will produce an error.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: #USBDeviceFilters
If this method fails, the following error codes may be reported:

e E_INVALIDARG: USB device filter list empty or invalid position.

5.35 IHostNetworkinterface

Represents one of host’s network interfaces. IP V6 address and network mask are strings
of 32 hexdecimal digits grouped by four. Groups are separated by colons. For example,
fe80:0000:0000:0000:021e:c2ff:fed2:b030.

5.35.1 Attributes
5.35.1.1 name (read-only)

wstring IHostNetworkInterface::name

Returns the host network interface name.

100

5 Classes (interfaces)

5.35.1.2 id (read-only)

uuid IHostNetworkInterface::id

Returns the interface UUID.

5.35.1.3 networkName (read-only)

wstring IHostNetworkInterface: :networkName

Returns the name of a virtual network the interface gets attached to.

5.35.1.4 dhcpEnabled (read-only)

boolean IHostNetworkInterface::dhcpEnabled

Specifies whether the DHCP is enabled for the interface.

5.35.1.5 IPAddress (read-only)

wstring IHostNetworkInterface::IPAddress

Returns the IP V4 address of the interface.

5.35.1.6 networkMask (read-only)

wstring IHostNetworkInterface::networkMask

Returns the network mask of the interface.

5.35.1.7 IPV6Supported (read-only)

boolean IHostNetworkInterface::IPV6Supported

Specifies whether the IP V6 is supported/enabled for the interface.

5.35.1.8 IPV6Address (read-only)

wstring IHostNetworkInterface::IPV6Address

Returns the IP V6 address of the interface.

5.35.1.9 IPV6NetworkMaskPrefixLength (read-only)

unsigned long IHostNetworkInterface::IPV6NetworkMaskPrefixLength

Returns the length IP V6 network mask prefix of the interface.

5.35.1.10 hardwareAddress (read-only)

wstring IHostNetworkInterface::hardwareAddress

Returns the hardware address. For Ethernet it is MAC address.

5.35.1.11 mediumType (read-only)

HostNetworkInterfaceMediumType IHostNetworkInterface::mediumType

Type of protocol encapsulation used.

101

5 Classes (interfaces)

5.35.1.12 status (read-only)

HostNetworkInterfaceStatus IHostNetworkInterface::status

Status of the interface.

5.35.1.13 interfaceType (read-only)

HostNetworkInterfaceType IHostNetworkInterface::interfaceType

specifies the host interface type.

5.35.2 dhcpRediscover

void IHostNetworkInterface::dhcpRediscover()

refreshes the IP configuration for dhcp-enabled interface.

5.35.3 enableDynamiclpConfig

void IHostNetworkInterface::enableDynamicIpConfig()

enables the dynamic IP configuration.

5.35.4 enableStaticlpConfig

void IHostNetworkInterface::enableStaticIpConfig(
[in] wstring IPAddress,
[in] wstring networkMask)

IPAddress IP address.

networkMask network mask.

sets and enables the static IP V4 configuration for the given interface.

5.35.5 enableStaticlpConfigV6

void IHostNetworkInterface::enableStaticIpConfigV6(

[in] wstring IPV6Address,

[in] unsigned long IPV6NetworkMaskPrefixLength)
IPV6Address IP address.
IPV6NetworkMaskPrefixLength network mask.

sets and enables the static IP V6 configuration for the given interface.

5.36 IHostPciDevicePlugEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when host PCI device is plugged/unplugged.

102

5 Classes (interfaces)

5.36.1 Attributes
5.36.1.1 plugged (read-only)

boolean IHostPciDevicePlugEvent: :plugged

If device successfully plugged or unplugged.

5.36.1.2 success (read-only)

boolean IHostPciDevicePlugEvent::success

If operation was successful, if false - 'message’ attribute may be of interest.

5.36.1.3 attachment (read-only)

IPciDeviceAttachment IHostPciDevicePlugEvent::attachment

Attachment info for this device.

5.36.1.4 eventContext (read-only)

IEventContext IHostPciDevicePlugEvent::eventContext

Context object, passed into attachHostPciDevice() and attachHostPciDevice().

5.36.1.5 message (read-only)

wstring IHostPciDevicePlugEvent::message

Optional error message.

5.37 IHostUSBDevice (IUSBDevice)

Note: This interface extends IUSBDevice and therefore supports all its methods and
attributes as well.

The IHostUSBDevice interface represents a physical USB device attached to the host computer.
Besides properties inherited from IUSBDevice, this interface adds the state property that holds
the current state of the USB device.
See also: IHost::USBDevices, IHost::USBDeviceFilters
5.37.1 Attributes
5.37.1.1 state (read-only)
USBDeviceState IHostUSBDevice::state

Current state of the device.

103

5 Classes (interfaces)

5.38 IHostUSBDeviceFilter (IUSBDeviceFilter)

Note: This interface extends IUSBDeviceFilter and therefore supports all its methods
and attributes as well.

The IHostUSBDeviceFilter interface represents a global filter for a physical USB device used by
the host computer. Used indirectly in IHost::USBDeviceFilters[].

Using filters of this type, the host computer determines the initial state of the USB device after
it is physically attached to the host’s USB controller.

Note: The IUSBDeviceFilter::remote attribute is ignored by this type of filters, because
it makes sense only for machine USB filters.

See also: IHost::USBDeviceFilters

5.38.1 Attributes
5.38.1.1 action (read/write)

USBDeviceFilterAction IHostUSBDeviceFilter::action

Action performed by the host when an attached USB device matches this filter.

5.39 linternalMachineControl

’ Note: This interface is not supported in the web service.

5.39.1 adoptSavedState

void IInternalMachineControl::adoptSavedState(
[in] wstring savedStateFile)

savedStateFile Path to the saved state file to adopt.

Gets called by IConsole::adoptSavedState.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid saved state file path.

5.39.2 autoCaptureUSBDevices

void IInternalMachineControl::autoCaptureUSBDevices()

Requests a capture all matching USB devices attached to the host. When the request is com-
pleted, the VM process will get a IInternalSessionControl::onUSBDeviceAttach() notification per
every captured device.

104

5 Classes (interfaces)

5.39.3 beginPowerUp

void IInternalMachineControl::beginPowerUp(
[in] IProgress aProgress)

aProgress

Tells VBoxSVC that IConsole::powerUp() is under ways and gives it the progress object that
should be part of any pending IMachine::launchVMProcess() operations. The progress object
may be called back to reflect an early cancelation, so some care have to be taken with respect to
any cancelation callbacks. The console object will call endPowerUp() to signal the completion of
the progress object.

5.39.4 beginPoweringDown

void IInternalMachineControl::beginPoweringDown (
[out] IProgress progress)

progress Progress object created by VBoxSVC to wait until the VM is powered down.

Called by the VM process to inform the server it wants to stop the VM execution and power
down.

5.39.5 beginSavingState

void IInternalMachineControl::beginSavingState(
[out] IProgress progress,
[out] wstring stateFilePath)

progress Progress object created by VBoxSVC to wait until the state is saved.

stateFilePath File path the VM process must save the execution state to.

Called by the VM process to inform the server it wants to save the current state and stop the
VM execution.

5.39.6 beginTakingSnapshot

void IInternalMachineControl::beginTakingSnapshot(
[in] IConsole initiator,
[in] wstring name,
[in] wstring description,
[in] IProgress consoleProgress,
[in] boolean fTakingSnapshotOnline,
[out] wstring stateFilePath)

initiator The console object that initiated this call.
name Snapshot name.
description Snapshot description.

consoleProgress Progress object created by the VM process tracking the snapshot’s progress.
This has the following sub-operations:

e setting up (weight 1);

e one for each medium attachment that needs a differencing image (weight 1 each);

105

5 Classes (interfaces)

e another one to copy the VM state (if offline with saved state, weight is VM memory
size in MB);

e another one to save the VM state (if online, weight is VM memory size in MB);
e finishing up (weight 1)
fTakingSnapshotOnline Whether this is an online snapshot (i.e. the machine is running).

stateFilePath File path the VM process must save the execution state to.

Called from the VM process to request from the server to perform the server-side actions of
creating a snapshot (creating differencing images and the snapshot object).
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.39.7 captureUSBDevice

void IInternalMachineControl::captureUSBDevice(
[in] uuid id)

id
Requests a capture of the given host USB device. When the request is completed, the VM
process will get a IInternalSessionControl::onUSBDeviceAttach() notification.

5.39.8 deleteSnapshot

IProgress IInternalMachineControl::deleteSnapshot(
[in] IConsole initiator,
[in] uuid id,
[out] MachineState machineState)

initiator The console object that initiated this call.
id UUID of the snapshot to delete.
machineState New machine state after this operation is started.

Gets called by IConsole::deleteSnapshot.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Snapshot has more than one child snapshot.

5.39.9 detachAllUSBDevices

void IInternalMachineControl::detachAllUSBDevices (
[in] boolean done)

done

Notification that a VM that is being powered down. The done parameter indicates whether
which stage of the power down we’re at. When done = false the VM is announcing its inten-
tions, while when done = true the VM is reporting what it has done.

Note: In the done = true case, the server must run its own filters and filters of all VMs
but this one on all detach devices as if they were just attached to the host computer.

106

5 Classes (interfaces)

5.39.10 detachUSBDevice

void IInternalMachineControl::detachUSBDevice(
[in] uuid id,
[in] boolean done)

id

done

Notification that a VM is going to detach (done = false) or has already detached (done =
true) the given USB device. When the done = true request is completed, the VM process will
get a IInternalSessionControl::onUSBDeviceDetach() notification.

Note: In the done = true case, the server must run its own filters and filters of all VMs
but this one on the detached device as if it were just attached to the host computer.

5.39.11 endPowerUp

void IInternalMachineControl::endPowerUp(
[in] long result)

result

Tells VBoxSVC that IConsole::powerUp() has completed. This method may query status infor-
mation from the progress object it received in beginPowerUp() and copy it over to any in-progress
IMachine::launchVMProcess() call in order to complete that progress object.

5.39.12 endPoweringDown

void IInternalMachineControl::endPoweringDown (
[in] long result,
[in] wstring errMsg)

result S_OK to indicate success.

errMsg human readable error message in case of failure.

Called by the VM process to inform the server that powering down previously requested by
#beginPoweringDown is either successfully finished or there was a failure.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.39.13 endSavingState

void IInternalMachineControl::endSavingState(
[in] long result,
[in] wstring errMsg)

result S_OK to indicate success.

errMsg human readable error message in case of failure.

107

5 Classes (interfaces)

Called by the VM process to inform the server that saving the state previously requested by
#beginSavingState is either successfully finished or there was a failure.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

5.39.14 endTakingSnapshot

void IInternalMachineControl::endTakingSnapshot(
[in] boolean success)

success true to indicate success and false otherwise

Called by the VM process to inform the server that the snapshot previously requested by #be-
ginTakingSnapshot is either successfully taken or there was a failure.

5.39.15 finishOnlineMergeMedium

void IInternalMachineControl::finishOnlineMergeMedium(
[in] IMediumAttachment mediumAttachment,
[in] IMedium source,
[in] IMedium target,
[in] boolean mergeForward,
[in] IMedium parentForTarget,
[in] IMedium childrenToReparent[])

mediumAttachment The medium attachment which needs to be cleaned up.
source Merge source medium.

target Merge target medium.

mergeForward Merge direction.

parentForTarget For forward merges: new parent for target medium.

childrenToReparent For backward merges: list of media which need their parent UUID up-
dated.

Gets called by IConsole::onlineMergeMedium.

5.39.16 getIPCld

wstring IInternalMachineControl::getIPCId()

5.39.17 lockMedia

void IInternalMachineControl::lockMedia()

Locks all media attached to the machine for writing and parents of attached differencing media
(if any) for reading. This operation is atomic so that if it fails no media is actually locked.

This method is intended to be called when the machine is in Starting or Restoring state. The
locked media will be automatically unlocked when the machine is powered off or crashed.

108

5 Classes (interfaces)

5.39.18 onSessionEnd

IProgress IInternalMachineControl::onSessionEnd(
[in] ISession session)

session Session that is being closed

Triggered by the given session object when the session is about to close normally.

5.39.19 pullGuestProperties

void IInternalMachineControl::pullGuestProperties(
[out] wstring name[],
[out] wstring value[],
[out] long long timestamp[],
[out] wstring flags[])

name The names of the properties returned.

value The values of the properties returned. The array entries match the corresponding entries
in the name array.

timestamp The time stamps of the properties returned. The array entries match the correspond-
ing entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the name array.

Get the list of the guest properties matching a set of patterns along with their values, time
stamps and flags and give responsibility for managing properties to the console.

5.39.20 pushGuestProperty

void IInternalMachineControl: :pushGuestProperty(
[in] wstring name,
[in] wstring value,
[in] long long timestamp,
[in] wstring flags)

name The name of the property to be updated.
value The value of the property.

timestamp The timestamp of the property.
flags The flags of the property.

Update a single guest property in IMachine.

5.39.21 restoreSnapshot

IProgress IInternalMachineControl::restoreSnapshot(
[in] IConsole initiator,
[in] ISnapshot snapshot,
[out] MachineState machineState)

initiator The console object that initiated this call.
snapshot The snapshot to restore the VM state from.
machineState New machine state after this operation is started.

Gets called by IConsole::RestoreSnapshot.

109

5 Classes (interfaces)

5.39.22 runUSBDeviceFilters

void IInternalMachineControl::runUSBDeviceFilters(
[in] IUSBDevice device,
[out] boolean matched,
[out] unsigned long maskedInterfaces)

device
matched
maskedInterfaces

Asks the server to run USB devices filters of the associated machine against the given USB
device and tell if there is a match.

Note: Intended to be used only for remote USB devices. Local ones don’t require to
call this method (this is done implicitly by the Host and USBProxyService).

5.39.23 setRemoveSavedStateFile

void IInternalMachineControl::setRemoveSavedStateFile(
[in] boolean aRemove)

aRemove
Updates the flag whether the saved state file is removed on a machine state change from Saved

to PoweredOff.

5.39.24 unlockMedia

void IInternalMachineControl::unlockMedia()

Unlocks all media previously locked using lockMedia().
This method is intended to be used with teleportation so that it is possible to teleport between
processes on the same machine.

5.39.25 updateState

void IInternalMachineControl::updateState(
[in] MachineState state)

state

Updates the VM state.

Note: This operation will also update the settings file with the correct information
about the saved state file and delete this file from disk when appropriate.

5.40 linternalSessionControl

’ Note: This interface is not supported in the web service.

110

5 Classes (interfaces)

5.40.1 accessGuestProperty

void IInternalSessionControl::accessGuestProperty(
[in] wstring name,
[in] wstring value,
[in] wstring flags,
[in] boolean isSetter,
[out] wstring retValue,
[out] long long retTimestamp,
[out] wstring retFlags)

name
value

flags

isSetter
retValue
retTimestamp
retFlags

Called by IMachine::getGuestProperty() and by IMachine::setGuestProperty() in order to read
and modify guest properties.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.
e VBOX_E_INVALID OBJECT_STATE: Session type is not direct.

5.40.2 assignMachine

void IInternalSessionControl::assignMachine(
[in] IMachine machine)

machine

Assigns the machine object associated with this direct-type session or informs the session that
it will be a remote one (if machine == null).
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.3 assignRemoteMachine

void IInternalSessionControl::assignRemoteMachine(
[in] IMachine machine,
[in] IConsole console)

machine
console

Assigns the machine and the (remote) console object associated with this remote-type session.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

111

5 Classes (interfaces)

5.40.4 enumerateGuestProperties

void IInternalSessionControl::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring key[],
[out] wstring value[],
[out] long long timestamp[],
[out] wstring flags[])

patterns The patterns to match the properties against as a comma-separated string. If this is
empty, all properties currently set will be returned.

key The key names of the properties returned.

value The values of the properties returned. The array entries match the corresponding entries
in the key array.

timestamp The time stamps of the properties returned. The array entries match the correspond-
ing entries in the key array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the key array.

Return a list of the guest properties matching a set of patterns along with their values, time
stamps and flags.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.
e VBOX_E_INVALID OBJECT_STATE: Session type is not direct.

5.40.5 getPID

unsigned long IInternalSessionControl::getPID()

PID of the process that has created this Session object.

5.40.6 getRemoteConsole

IConsole IInternalSessionControl::getRemoteConsole()

Returns the console object suitable for remote control.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.7 onBandwidthGroupChange

void IInternalSessionControl::onBandwidthGroupChange(
[in] IBandwidthGroup bandwidthGroup)

bandwidthGroup The bandwidth group which changed.

Notification when one of the bandwidth groups change.

112

5 Classes (interfaces)

5.40.8 onCPUChange

void IInternalSessionControl::onCPUChange(
[in] unsigned long cpu,
[in] boolean add)

cpu The CPU which changed

add Flag whether the CPU was added or removed

Notification when a CPU changes.

5.40.9 onCPUExecutionCapChange

void IInternalSessionControl::onCPUExecutionCapChange(
[in] unsigned long executionCap)

executionCap The new CPU execution cap value. (1-100)

Notification when the CPU execution cap changes.

5.40.10 onMediumChange

void IInternalSessionControl::onMediumChange(
[in] IMediumAttachment mediumAttachment,
[in] boolean force)

mediumAttachment
force

Triggered when attached media of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.11 onNetworkAdapterChange

void IInternalSessionControl::onNetworkAdapterChange(
[in] INetworkAdapter networkAdapter,
[in] boolean changeAdapter)

networkAdapter
changeAdapter

Triggered when settings of a network adapter of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

113

5 Classes (interfaces)

5.40.12 onParallelPortChange

void IInternalSessionControl::onParallelPortChange(
[in] IParallelPort parallelPort)

parallelPort

Triggered when settings of a parallel port of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.13 onSerialPortChange

void IInternalSessionControl::onSerialPortChange(
[in] ISerialPort serialPort)

serialPort

Triggered when settings of a serial port of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.40.14 onSharedFolderChange

void IInternalSessionControl::onSharedFolderChange(
[in] boolean global)

global

Triggered when a permanent (global or machine) shared folder has been created or removed.

Note: We don’t pass shared folder parameters in this notification because the order in
which parallel notifications are delivered is not defined, therefore it could happen that
these parameters were outdated by the time of processing this notification.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.15 onShowWindow

void IInternalSessionControl::onShowWindow (
[in] boolean check,
[out] boolean canShow,
[out] long long winId)

check

canShow

114

5 Classes (interfaces)

winld

Called by IMachine::canShowConsoleWindow() and by IMachine::showConsoleWindow() in
order to notify console listeners ICanShowWindowEvent and IShowWindowEvent.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.16 onStorageControllerChange

void IInternalSessionControl::onStorageControllerChange()

Triggered when settings of a storage controller of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.17 onUSBControllerChange

void IInternalSessionControl::onUSBControllerChange()

Triggered when settings of the USB controller object of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.18 onUSBDeviceAttach

void IInternalSessionControl::onUSBDeviceAttach(
[in] IUSBDevice device,
[in] IVirtualBoxErrorInfo error,
[in] unsigned long maskedInterfaces)

device
error

maskedinterfaces

Triggered when a request to capture a USB device (as a result of matched USB filters or di-
rect call to IConsole::attachUSBDevice()) has completed. A nullerror object means success,
otherwise it describes a failure.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

115

5 Classes (interfaces)

5.40.19 onUSBDeviceDetach

void IInternalSessionControl::onUSBDeviceDetach(
[in] uuid id,
[in] IVirtualBoxErrorInfo error)

id
error

Triggered when a request to release the USB device (as a result of machine termination or
direct call to IConsole::detachUSBDevice()) has completed. A nullerror object means success,
otherwise it describes a failure.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.40.20 onVRDEServerChange

void IInternalSessionControl::onVRDEServerChange(
[in] boolean restart)

restart Flag whether the server must be restarted

Triggered when settings of the VRDE server object of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.40.21 onlineMergeMedium

void IInternalSessionControl::onlineMergeMedium(
[in] IMediumAttachment mediumAttachment,
[in] unsigned long sourceldx,
[in] unsigned long targetIdx,
[in] IMedium source,
[in] IMedium target,
[in] boolean mergeForward,
[in] IMedium parentForTarget,
[in] IMedium childrenToReparent[],
[in] IProgress progress)

mediumAttachment The medium attachment to identify the medium chain.

sourceldx The index of the source image in the chain. Redundant, but drastically reduces IPC.
targetldx The index of the target image in the chain. Redundant, but drastically reduces IPC.
source Merge source medium.

target Merge target medium.

mergeForward Merge direction.

parentForTarget For forward merges: new parent for target medium.

116

5 Classes (interfaces)

childrenToReparent For backward merges: list of media which need their parent UUID up-
dated.

progress Progress object for this operation.

Triggers online merging of a hard disk. Used internally when deleting a snapshot while a VM
referring to the same hard disk chain is running.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.
e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

5.40.22 uninitialize
void IInternalSessionControl::uninitialize()

Uninitializes (closes) this session. Used by VirtualBox to close the corresponding remote ses-
sion when the direct session dies or gets closed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

5.40.23 updateMachineState

void IInternalSessionControl::updateMachineState(
[in] MachineState aMachineState)

aMachineState

Updates the machine state in the VM process. Must be called only in certain cases (see the
method implementation).
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41 IKeyboard

The IKeyboard interface represents the virtual machine’s keyboard. Used in IConsole::keyboard.
Use this interface to send keystrokes or the Ctrl-Alt-Del sequence to the virtual machine.

5.41.1 Attributes
5.41.1.1 eventSource (read-only)
IEventSource IKeyboard::eventSource

Event source for keyboard events.

5.41.2 putCAD
void IKeyboard::putCAD()

Sends the Ctrl-Alt-Del sequence to the keyboard. This function is nothing special, it is just a
convenience function calling putScancodes() with the proper scancodes.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

117

5 Classes (interfaces)

5.41.3 putScancode

void IKeyboard::putScancode(
[in] long scancode)

scancode

Sends a scancode to the keyboard.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send scan code to virtual keyboard.

5.41.4 putScancodes

unsigned long IKeyboard::putScancodes(
[in] long scancodes[])

scancodes

Sends an array of scancodes to the keyboard.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

5.42 IKeyboardLedsChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the guest OS executes the KBD_ CMD_SET LEDS command to alter the state
of the keyboard LEDs.

5.42.1 Attributes
5.42.1.1 numLock (read-only)

boolean IKeyboardLedsChangedEvent::numLock

NumLock status.

5.42.1.2 capsLock (read-only)

boolean IKeyboardLedsChangedEvent::capsLock

CapsLock status.

5.42.1.3 scrollLock (read-only)

boolean IKeyboardLedsChangedEvent::scrollLock

ScrollLock status.

118

5 Classes (interfaces)

5.43 IMachine

The IMachine interface represents a virtual machine, or guest, created in VirtualBox.

This interface is used in two contexts. First of all, a collection of objects implementing this
interface is stored in the IVirtualBox::machines[] attribute which lists all the virtual machines
that are currently registered with this VirtualBox installation. Also, once a session has been
opened for the given virtual machine (e.g. the virtual machine is running), the machine object
associated with the open session can be queried from the session object; see ISession for details.

The main role of this interface is to expose the settings of the virtual machine and provide
methods to change various aspects of the virtual machine’s configuration. For machine objects
stored in the IVirtualBox::machines[] collection, all attributes are read-only unless explicitly
stated otherwise in individual attribute and method descriptions.

In order to change a machine setting, a session for this machine must be opened using one
of the lockMachine() or launchVMProcess() methods. After the machine has been successfully
locked for a session, a mutable machine object needs to be queried from the session object and
then the desired settings changes can be applied to the returned object using IMachine attributes
and methods. See the ISession interface description for more information about sessions.

Note that IMachine does not provide methods to control virtual machine execution (such as
start the machine, or power it down) — these methods are grouped in a separate interface called
IConsole.

See also: ISession, IConsole

5.43.1 Attributes
5.43.1.1 parent (read-only)

IVirtualBox IMachine::parent

Associated parent object.

5.43.1.2 accessible (read-only)

boolean IMachine::accessible

Whether this virtual machine is currently accessible or not.

A machine is always deemed accessible unless it is registered and its settings file cannot be
read or parsed (either because the file itself is unavailable or has invalid XML contents).

Every time this property is read, the accessibility state of this machine is re-evaluated. If
the returned value is false, the accessError property may be used to get the detailed error
information describing the reason of inaccessibility, including XML error messages.

When the machine is inaccessible, only the following properties can be used on it:

e parent

e id

settingsFilePath

accessible

accessError

An attempt to access any other property or method will return an error.
The only possible action you can perform on an inaccessible machine is to unregister it using
the unregister() call (or, to check for the accessibility state once more by querying this property).

119

5 Classes (interfaces)

Note: In the current implementation, once this property returns true, the machine
will never become inaccessible later, even if its settings file cannot be successfully
read/written any more (at least, until the VirtualBox server is restarted). This limi-
tation may be removed in future releases.

5.43.1.3 accessError (read-only)

IVirtualBoxErrorInfo IMachine::accessError

Error information describing the reason of machine inaccessibility.
Reading this property is only valid after the last call to accessible returned false (i.e. the ma-
chine is currently inaccessible). Otherwise, a null IVirtualBoxErrorInfo object will be returned.

5.43.1.4 name (read/write)
wstring IMachine: :name

Name of the virtual machine.

Besides being used for human-readable identification purposes everywhere in VirtualBox, the
virtual machine name is also used as a name of the machine’s settings file and as a name of
the subdirectory this settings file resides in. Thus, every time you change the value of this
property, the settings file will be renamed once you call saveSettings() to confirm the change.
The containing subdirectory will be also renamed, but only if it has exactly the same name as the
settings file itself prior to changing this property (for backward compatibility with previous API
releases). The above implies the following limitations:

e The machine name cannot be empty.

e The machine name can contain only characters that are valid file name characters accord-
ing to the rules of the file system used to store VirtualBox configuration.

e You cannot have two or more machines with the same name if they use the same subdirec-
tory for storing the machine settings files.

e You cannot change the name of the machine if it is running, or if any file in the directory
containing the settings file is being used by another running machine or by any other
process in the host operating system at a time when saveSettings() is called.

If any of the above limitations are hit, saveSettings() will return an appropriate error message
explaining the exact reason and the changes you made to this machine will not be saved.

Starting with VirtualBox 4.0, a “.vbox” extension of the settings file is recommended, but not
enforced. (Previous versions always used a generic “.xml” extension.)

5.43.1.5 description (read/write)
wstring IMachine::description

Description of the virtual machine.

The description attribute can contain any text and is typically used to describe the hardware
and software configuration of the virtual machine in detail (i.e. network settings, versions of the
installed software and so on).
5.43.1.6 id (read-only)

uuid IMachine::id

UUID of the virtual machine.

120

5 Classes (interfaces)

5.43.1.7 OSTypeld (read/write)

wstring IMachine::0STypeld

User-defined identifier of the Guest OS type. You may use IVirtualBox::getGuestOSType() to
obtain an IGuestOSType object representing details about the given Guest OS type.

Note: This value may differ from the value returned by IGuest::OSTypeld if Guest
Additions are installed to the guest OS.

5.43.1.8 HardwareVersion (read/write)

wstring IMachine::HardwareVersion

Hardware version identifier. Internal use only for now.

5.43.1.9 hardwareUUID (read/write)

uuid IMachine: :hardwareUUID

The UUID presented to the guest via memory tables, hardware and guest properties. For most
VMs this is the same as the id, but for VMs which have been cloned or teleported it may be the
same as the source VM. This latter is because the guest shouldn’t notice that it was cloned or
teleported.

5.43.1.10 CPUCount (read/write)

unsigned long IMachine::CPUCount

Number of virtual CPUs in the VM.

5.43.1.11 CPUHotPlugEnabled (read/write)

boolean IMachine::CPUHotPlugEnabled

This setting determines whether VirtualBox allows CPU hotplugging for this machine.

5.43.1.12 CPUExecutionCap (read/write)

unsigned long IMachine::CPUExecutionCap

Means to limit the number of CPU cycles a guest can use. The unit is percentage of host CPU
cycles per second. The valid range is 1 - 100. 100 (the default) implies no limit.

5.43.1.13 memorySize (read/write)

unsigned long IMachine::memorySize

System memory size in megabytes.

5.43.1.14 memoryBalloonSize (read/write)

unsigned long IMachine::memoryBalloonSize

Memory balloon size in megabytes.

121

5 Classes (interfaces)

5.43.1.15 PageFusionEnabled (read/write)

boolean IMachine::PageFusionEnabled

This setting determines whether VirtualBox allows page fusion for this machine (64 bits host
only).

5.43.1.16 VRAMSize (read/write)
unsigned long IMachine::VRAMSize

Video memory size in megabytes.

5.43.1.17 accelerate3DEnabled (read/write)

boolean IMachine::accelerate3DEnabled

This setting determines whether VirtualBox allows this machine to make use of the 3D graphics
support available on the host.

5.43.1.18 accelerate2DVideoEnabled (read/write)

boolean IMachine::accelerate2DVideoEnabled

This setting determines whether VirtualBox allows this machine to make use of the 2D video
acceleration support available on the host.

5.43.1.19 monitorCount (read/write)

unsigned long IMachine::monitorCount

Number of virtual monitors.

Note: Only effective on Windows XP and later guests with Guest Additions installed.

5.43.1.20 BIOSSettings (read-only)

IBIOSSettings IMachine::BIOSSettings
Object containing all BIOS settings.
5.43.1.21 firmwareType (read/write)
FirmwareType IMachine::firmwareType
Type of firmware (such as legacy BIOS or EFI), used for initial bootstrap in this VM.
5.43.1.22 pointingHidType (read/write)
PointingHidType IMachine::pointingHidType

Type of pointing HID (such as mouse or tablet) used in this VM. The default is typically
“PS2Mouse” but can vary depending on the requirements of the guest operating system.

122

5 Classes (interfaces)

5.43.1.23 keyboardHidType (read/write)

KeyboardHidType IMachine::keyboardHidType

Type of keyboard HID used in this VM. The default is typically “PS2Keyboard” but can vary
depending on the requirements of the guest operating system.

5.43.1.24 hpetEnabled (read/write)

boolean IMachine::hpetEnabled

This attribute controls if High Precision Event Timer (HPET) is enabled in this VM. Use this
property if you want to provide guests with additional time source, or if guest requires HPET to
function correctly. Default is false.

5.43.1.25 chipsetType (read/write)

ChipsetType IMachine::chipsetType

Chipset type used in this VM.

5.43.1.26 snapshotFolder (read/write)

wstring IMachine::snapshotFolder

Full path to the directory used to store snapshot data (differencing media and saved state files)
of this machine.

The initial value of this property is < path_to_settings_file>/<machine uuid>.

Currently, it is an error to try to change this property on a machine that has snapshots (because
this would require to move possibly large files to a different location). A separate method will
be available for this purpose later.

Note: Setting this property to null or to an empty string will restore the initial value.

Note: When setting this property, the specified path can be absolute (full path) or
relative to the directory where the machine settings file is located. When reading this
property, a full path is always returned.

Note: The specified path may not exist, it will be created when necessary.

5.43.1.27 VRDEServer (read-only)

IVRDEServer IMachine::VRDEServer

VirtualBox Remote Desktop Extension (VRDE) server object.

5.43.1.28 mediumAttachments (read-only)

IMediumAttachment IMachine::mediumAttachments|[]

Array of media attached to this machine.

123

5 Classes (interfaces)

5.43.1.29 USBController (read-only)

IUSBController IMachine::USBController

Associated USB controller object.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

5.43.1.30 audioAdapter (read-only)

TAudioAdapter IMachine::audioAdapter

Associated audio adapter, always present.

5.43.1.31 storageControllers (read-only)

IStorageController IMachine::storageControllers|[]
Array of storage controllers attached to this machine.
5.43.1.32 settingsFilePath (read-only)
wstring IMachine::settingsFilePath
Full name of the file containing machine settings data.
5.43.1.33 settingsModified (read-only)
boolean IMachine::settingsModified

Whether the settings of this machine have been modified (but neither yet saved nor discarded).

Note: Reading this property is only valid on instances returned by ISession::machine
and on new machines created by IVirtualBox::createMachine() or opened by
IVirtualBox::openMachine() but not yet registered, or on unregistered machines after
calling unregister(). For all other cases, the settings can never be modified.

Note: For newly created unregistered machines, the value of this property is al-
ways true until saveSettings() is called (no matter if any machine settings have been
changed after the creation or not). For opened machines the value is set to false (and
then follows to normal rules).

5.43.1.34 sessionState (read-only)

SessionState IMachine::sessionState

Current session state for this machine.

124

5 Classes (interfaces)

5.43.1.35 sessionType (read-only)

wstring IMachine::sessionType

Type of the session. If sessionState is Spawning or Locked, this attribute contains the same
value as passed to the launchVMProcess() method in the type parameter. If the session was
used with lockMachine(), or if sessionState is SessionClosed, the value of this attribute is an
empty string.

5.43.1.36 sessionPid (read-only)
unsigned long IMachine::sessionPid

Identifier of the session process. This attribute contains the platform-dependent identifier of
the process whose session was used with lockMachine() call. The returned value is only valid if
sessionState is Locked or Unlocking by the time this property is read.

5.43.1.37 state (read-only)

MachineState IMachine::state
Current execution state of this machine.
5.43.1.38 lastStateChange (read-only)
long long IMachine::lastStateChange
Time stamp of the last execution state change, in milliseconds since 1970-01-01 UTC.
5.43.1.39 stateFilePath (read-only)
wstring IMachine::stateFilePath

Full path to the file that stores the execution state of the machine when it is in the Saved state.

Note: When the machine is not in the Saved state, this attribute is an empty string.

5.43.1.40 logFolder (read-only)

wstring IMachine::logFolder

Full path to the folder that stores a set of rotated log files recorded during machine execution.
The most recent log file is named VBox. log, the previous log file is named VBox.log.1 and so
on (up to VBox. log. 3 in the current version).

5.43.1.41 currentSnapshot (read-only)
ISnapshot IMachine::currentSnapshot

Current snapshot of this machine. This is null if the machine currently has no snapshots. If
it is not null, then it was set by one of IConsole::takeSnapshot(), IConsole::deleteSnapshot() or
IConsole::restoreSnapshot(), depending on which was called last. See ISnapshot for details.

125

5 Classes (interfaces)

5.43.1.42 snapshotCount (read-only)

unsigned long IMachine::snapshotCount

Number of snapshots taken on this machine. Zero means the machine doesn’t have any snap-
shots.

5.43.1.43 currentStateModified (read-only)

boolean IMachine::currentStateModified

Returns true if the current state of the machine is not identical to the state stored in the
current snapshot.

The current state is identical to the current snapshot only directly after one of the following
calls are made:

e IConsole::restoreSnapshot()

e IConsole::takeSnapshot() (issued on a “powered off” or “saved” machine, for which
settingsModified returns false)

The current state remains identical until one of the following happens:
e settings of the machine are changed
e the saved state is deleted
e the current snapshot is deleted

e an attempt to execute the machine is made

Note: For machines that don’t have snapshots, this property is always false.

5.43.1.44 sharedFolders (read-only)

ISharedFolder IMachine::sharedFolders[]

Collection of shared folders for this machine (permanent shared folders). These folders are
shared automatically at machine startup and available only to the guest OS installed within this
machine.

New shared folders are added to the collection using createSharedFolder(). Existing shared
folders can be removed using removeSharedFolder().

5.43.1.45 clipboardMode (read/write)
ClipboardMode IMachine::clipboardMode
Synchronization mode between the host OS clipboard and the guest OS clipboard.
5.43.1.46 guestPropertyNotificationPatterns (read/write)
wstring IMachine::guestPropertyNotificationPatterns

A comma-separated list of simple glob patterns. Changes to guest properties whose name
matches one of the patterns will generate an IGuestPropertyChangedEvent signal.

126

5 Classes (interfaces)

5.43.1.47 teleporterEnabled (read/write)

boolean IMachine::teleporterEnabled

When set to true, the virtual machine becomes a target teleporter the next time it is powered
on. This can only set to true when the VM is in the Powered0ff or Aborted state.

5.43.1.48 teleporterPort (read/write)

unsigned long IMachine::teleporterPort

The TCP port the target teleporter will listen for incoming teleportations on.
0 means the port is automatically selected upon power on. The actual value can be read from
this property while the machine is waiting for incoming teleportations.

5.43.1.49 teleporterAddress (read/write)

wstring IMachine::teleporterAddress

The address the target teleporter will listen on. If set to an empty string, it will listen on all
addresses.

5.43.1.50 teleporterPassword (read/write)

wstring IMachine::teleporterPassword

The password to check for on the target teleporter. This is just a very basic measure to prevent
simple hacks and operators accidentally beaming a virtual machine to the wrong place.

5.43.1.51 faultToleranceState (read/write)

FaultToleranceState IMachine::faultToleranceState

Fault tolerance state; disabled, source or target. This property can be changed at any time. If
you change it for a running VM, then the fault tolerance address and port must be set beforehand.

5.43.1.52 faultTolerancePort (read/write)

unsigned long IMachine::faultTolerancePort
The TCP port the fault tolerance source or target will use for communication.
5.43.1.53 faultToleranceAddress (read/write)
wstring IMachine::faultToleranceAddress
The address the fault tolerance source or target.
5.43.1.54 faultTolerancePassword (read/write)
wstring IMachine::faultTolerancePassword

The password to check for on the standby VM. This is just a very basic measure to prevent
simple hacks and operators accidentally choosing the wrong standby VM.

127

5 Classes (interfaces)

5.43.1.55 faultToleranceSyncinterval (read/write)
unsigned long IMachine::faultToleranceSyncInterval

The interval in ms used for syncing the state between source and target.

5.43.1.56 RTCUseUTC (read/write)
boolean IMachine::RTCUseUTC
When set to true, the RTC device of the virtual machine will run in UTC time, otherwise in
local time. Especially Unix guests prefer the time in UTC.
5.43.1.57 ioCacheEnabled (read/write)
boolean IMachine::ioCacheEnabled

When set to true, the builtin I/0 cache of the virtual machine will be enabled.

5.43.1.58 ioCacheSize (read/write)
unsigned long IMachine::ioCacheSize

Maximum size of the I/O cache in MB.

5.43.1.59 bandwidthControl (read-only)
IBandwidthControl IMachine::bandwidthControl

Bandwidth control manager.

5.43.1.60 pciDeviceAssignments (read-only)
IPciDeviceAttachment IMachine::pciDeviceAssignments]]

Array of PCI devices assigned to this machine, to get list of all PCI devices attached to the ma-
chine use IConsole::attachedPciDevices attribute, as this attribute is intended to list only devices
additional to what described in virtual hardware config. Usually, this list keeps host’s physical
devices assigned to the particular machine.

5.43.2 addStorageController

IStorageController IMachine::addStorageController(
[in] wstring name,
[in] StorageBus connectionType)

name
connectionType

Adds a new storage controller (SCSI, SAS or SATA controller) to the machine and returns it as
an instance of IStorageController.
name identifies the controller for subsequent calls such as getStorageControllerByName(),
getStorageControllerByInstance(), removeStorageController(), attachDevice() or mountMedium().
After the controller has been added, you can set its exact type by setting the IStorageController::controllerType.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: A storage controller with given name exists already.
e E_INVALIDARG: Invalid controllerType.

128

5 Classes (interfaces)

5.43.3 attachDevice

void IMachine::attachDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] DeviceType type,
[in] IMedium medium)

name Name of the storage controller to attach the device to.

controllerPort Port to attach the device to. For an IDE controller, O specifies the primary con-
troller and 1 specifies the secondary controller. For a SCSI controller, this must range from
0 to 15; for a SATA controller, from 0 to 29; for an SAS controller, from O to 7.

device Device slot in the given port to attach the device to. This is only relevant for IDE con-
trollers, for which 0 specifies the master device and 1 specifies the slave device. For all
other controller types, this must be 0.

type Device type of the attached device. For media opened by IVirtualBox::openMedium(), this
must match the device type specified there.

medium Medium to mount or NULL for an empty drive.

Attaches a device and optionally mounts a medium to the given storage controller
(IStorageController, identified by name), at the indicated port and device.

This method is intended for managing storage devices in general while a machine is powered
off. It can be used to attach and detach fixed and removable media. The following kind of media
can be attached to a machine:

e For fixed and removable media, you can pass in a medium that was previously opened
using IVirtualBox::openMedium().

e Only for storage devices supporting removable media (such as DVDs and floppies), you
can also specify a null pointer to indicate an empty drive or one of the medium objects
listed in the THost::DVDDrives[] and IHost::floppyDrives[] arrays to indicate a host drive.
For removable devices, you can also use mountMedium() to change the media while the
machine is running.

In a VM’s default configuration of virtual machines, the secondary master of the IDE controller
is used for a CD/DVD drive.

After calling this returns successfully, a new instance of IMediumAttachment will appear in the
machine’s list of medium attachments (see mediumAttachments[]).

See IMedium and IMediumAttachment for more information about attaching media.

The specified device slot must not have a device attached to it, or this method will fail.

Note: You cannot attach a device to a newly created machine until this machine’s
settings are saved to disk using saveSettings().

Note: If the medium is being attached indirectly, a new differencing medium will
implicitly be created for it and attached instead. If the changes made to the machine
settings (including this indirect attachment) are later cancelled using discardSettings(),
this implicitly created differencing medium will implicitly be deleted.

If this method fails, the following error codes may be reported:

129

5 Classes (interfaces)

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range, or file or UUID
not found.

e VBOX_E_INVALID_OBJECT_STATE: Machine must be registered before media can be at-
tached.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.

e VBOX_E_OBJECT_IN_USE: A medium is already attached to this or another virtual ma-
chine.

5.43.4 attachHostPciDevice

void IMachine::attachHostPciDevice(
[in] long hostAddress,
[in] long desiredGuestAddress,
[in] IEventContext eventContext,
[in] boolean tryToUnbind)

hostAddress Address of the host PCI device.
desiredGuestAddress Desired position of this device on guest PCI bus.
eventContext Context passed into IHostPciDevicePlugEvent event.

tryToUnbind If VMM shall try to unbind existing drivers from the device before attaching it to
the guest.

Attaches host PCI device with the given (host) PCI address to the PCI bus of the virtual ma-
chine. Please note, that this operation is two phase, as real attachment will happen when VM will
start, and most information will be delivered as IHostPciDevicePlugEvent on IVirtualBox event
source.

Note: Not yet implemented.

See also: THostPciDevicePlugEvent
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine state is not stopped (PCI hotplug not yet
implemented).

e VBOX_E_PDM_ERROR: Virtual machine does not have a PCI controller allowing attachment
of physical devices.

e VBOX_E_NOT_SUPPORTED: Hardware or host OS doesn’t allow PCI device passthrought.

5.43.5 canShowConsoleWindow
boolean IMachine::canShowConsoleWindow()

Returns true if the VM console process can activate the console window and bring it to fore-
ground on the desktop of the host PC.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

130

5 Classes (interfaces)

5.43.6 createSharedFolder

void IMachine::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable,
[in] boolean automount)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly.

automount Whether the share gets automatically mounted by the guest or not.

Creates a new permanent shared folder by associating the given logical name with the given
host path, adds it to the collection of shared folders and starts sharing it. Refer to the description
of ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: Shared folder already exists.
e VBOX_E_FILE_ERROR: Shared folder hostPath not accessible.

5.43.7 delete

IProgress IMachine::delete(
[in] IMedium aMedia[])

aMedia List of media to be closed and whose storage files will be deleted.

Deletes the files associated with this machine from disk. If medium objects are passed in
with the aMedia argument, they are closed and, if closing was successful, their storage files are
deleted as well. For convenience, this array of media files can be the same as the one returned
from a previous unregister() call.

This method must only be called on machines which are either write-locked (i.e. on instances
returned by ISession::machine) or on unregistered machines (i.e. not yet registered machines
created by IVirtualBox::createMachine() or opened by IVirtualBox::openMachine(), or after hav-
ing called unregister()).

The following files will be deleted by this method:

e If unregister() had been previously called with a cleanupMode argument other than “Un-
registerOnly”, this will delete all saved state files that the machine had in use; possibly one
if the machine was in “Saved” state and one for each online snapshot that the machine had.

e On each medium object passed in the aMedia array, this will call IMedium::close(). If that
succeeds, this will attempt to delete the medium’s storage on disk. Since the close() call
will fail if the medium is still in use, e.g. because it is still attached to a second machine;
in that case the storage will not be deleted.

e Finally, the machine’s own XML file will be deleted.

Since deleting large disk image files can be a time-consuming I/0O operation, this method oper-
ates asynchronously and returns an IProgress object to allow the caller to monitor the progress.
There will be one sub-operation for each file that is being deleted (saved state or medium storage
file).

131

5 Classes (interfaces)

Note: settingsModified will return true after this method successfully returns.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine is registered but not write-locked.

e VBOX_E_IPRT_ERROR: Could not delete the settings file.

5.43.8 detachDevice

void IMachine::detachDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device)

name Name of the storage controller to detach the medium from.
controllerPort Port number to detach the medium from.

device Device slot number to detach the medium from.

Detaches the device attached to a device slot of the specified bus.

Detaching the device from the virtual machine is deferred. This means that the medium re-
mains associated with the machine when this method returns and gets actually de-associated
only after a successful saveSettings() call. See IMedium for more detailed information about
attaching media.

Note: You cannot detach a device from a running machine.

Note: Detaching differencing media implicitly created by attachDevice() for the
indirect attachment using this method will not implicitly delete them. The
IMedium::deleteStorage() operation should be explicitly performed by the caller af-
ter the medium is successfully detached and the settings are saved with saveSettings(),
if it is the desired action.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Attempt to detach medium from a running virtual machine.
e VBOX_E_OBJECT_NOT_FOUND: No medium attached to given slot/bus.

e VBOX_E_NOT_SUPPORTED: Medium format does not support storage deletion.

5.43.9 detachHostPciDevice

void IMachine::detachHostPciDevice(
[in] long hostAddress)

hostAddress Address of the host PCI device.

Detach host PCI device from the virtual machine. Also HostPciDevicePlugEvent on IVirtualBox
event source will be delivered.

Note: Not yet implemented.

132

5 Classes (interfaces)

See also: THostPciDevicePlugEvent
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state is not stopped (PCI hotplug not yet
implemented).

e VBOX_E_OBJECT_NOT_FOUND: This host device is not attached to this machine.

e VBOX_E_PDM_ERROR: Virtual machine does not have a PCI controller allowing attachment
of physical devices.

e VBOX_E_NOT_SUPPORTED: Hardware or host OS doesn’t allow PCI device passthrought.

5.43.10 discardSettings

void IMachine::discardSettings()

Discards any changes to the machine settings made since the session has been opened or since
the last call to saveSettings() or discardSettings().

Note: Calling this method is only valid on instances returned by ISession::machine
and on new machines created by IVirtualBox::createMachine() or opened by
IVirtualBox::openMachine() but not yet registered, or on unregistered machines after
calling unregister().

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

5.43.11 enumerateGuestProperties

void IMachine::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring namel[],
[out] wstring value[],
[out] long long timestampl[],
[out] wstring flags[])

patterns The patterns to match the properties against, separated by ’|’ characters. If this is
empty or null, all properties will match.

name The names of the properties returned.

value The values of the properties returned. The array entries match the corresponding entries
in the name array.

timestamp The time stamps of the properties returned. The array entries match the correspond-
ing entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the name array.

Return a list of the guest properties matching a set of patterns along with their values, time
stamps and flags.

133

5 Classes (interfaces)

5.43.12 export

IVirtualSystemDescription IMachine::export(
[in] IAppliance aAppliance,
[in] wstring location)

aAppliance Appliance to export this machine to.

location The target location.

Exports the machine to an OVF appliance. See [Appliance for the steps required to export
VirtualBox machines to OVF.

5.43.13 findSnapshot

ISnapshot IMachine::findSnapshot(
[in] wstring nameOrlId)

nameOrld What to search for. Name or UUID of the snapshot to find

Returns a snapshot of this machine with the given name or UUID.

Returns a snapshot of this machine with the given UUID. A null argument can be used to
obtain the first snapshot taken on this machine. To traverse the whole tree of snapshots starting
from the root, inspect the root snapshot’s ISnapshot::children[] attribute and recurse over those
children.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Virtual machine has no snapshots or snapshot not found.

5.43.14 getBootOrder

DeviceType IMachine::getBootOrder(
[in] unsigned long position)

position Position in the boot order (1 to the total number of devices the machine can boot from,
as returned by ISystemProperties::maxBootPosition).

Returns the device type that occupies the specified position in the boot order.

@todo [remove?] If the machine can have more than one device of the returned type (such
as hard disks), then a separate method should be used to retrieve the individual device that
occupies the given position.

If here are no devices at the given position, then Null is returned.

@todo getHardDiskBootOrder(), getNetworkBootOrder()

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Boot position out of range.

5.43.15 getCPUIDLeaf

void IMachine::getCPUIDLeaf (
[in] unsigned long id,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

id CPUID leaf index.

134

5 Classes (interfaces)

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.
valEdx CPUID leaf value for register edx.

Returns the virtual CPU cpuid information for the specified leaf.

Currently supported index values for cpuid: Standard CPUID leafs: O - 0xA Extended CPUID
leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information about the cpuid in-
struction and its leafs.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

5.43.16 getCPUProperty

boolean IMachine::getCPUProperty(
[in] CPUPropertyType property)

property Property type to query.

Returns the virtual CPU boolean value of the specified property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

5.43.17 getCPUStatus

boolean IMachine::getCPUStatus(
[in] unsigned long cpu)

cpu The CPU id to check for.

Returns the current status of the given CPU.

5.43.18 getExtraData

wstring IMachine::getExtraData(
[in] wstring key)

key Name of the data key to get.

Returns associated machine-specific extra data.

If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.43.19 getExtraDataKeys

wstring[] IMachine::getExtraDataKeys()

Returns an array representing the machine-specific extra data keys which currently have values
defined.

135

5 Classes (interfaces)

5.43.20 getGuestProperty

void IMachine::getGuestProperty(
[in] wstring name,
[out] wstring value,
[out] long long timestamp,
[out] wstring flags)

name The name of the property to read.
value The value of the property. If the property does not exist then this will be empty.
timestamp The time at which the property was last modified, as seen by the server process.

flags Additional property parameters, passed as a comma-separated list of “name=value” type
entries.

Reads an entry from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

5.43.21 getGuestPropertyTimestamp

long long IMachine::getGuestPropertyTimestamp (
[in] wstring property)

property The name of the property to read.

Reads a property timestamp from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

5.43.22 getGuestPropertyValue

wstring IMachine::getGuestPropertyValue(
[in] wstring property)

property The name of the property to read.

Reads a value from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

5.43.23 getHWVirtExProperty

boolean IMachine::getHWVirtExProperty(
[in] HWVirtExPropertyType property)

property Property type to query.

Returns the value of the specified hardware virtualization boolean property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

136

5 Classes (interfaces)

5.43.24 getMedium

IMedium IMachine::getMedium(

[in] wstring name,

[in] long controllerPort,

[in] long device)
name Name of the storage controller the medium is attached to.
controllerPort Port to query.

device Device slot in the given port to query.

Returns the virtual medium attached to a device slot of the specified bus.

Note that if the medium was indirectly attached by mountMedium() to the given device slot
then this method will return not the same object as passed to the mountMedium() call. See
IMedium for more detailed information about mounting a medium.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No medium attached to given slot/bus.

5.43.25 getMediumAttachment

IMediumAttachment IMachine::getMediumAttachment(
[in] wstring name,
[in] long controllerPort,
[in] long device)

name

controllerPort

device

Returns a medium attachment which corresponds to the controller with the given name, on
the given port and device slot.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No attachment exists for the given controller/port/device
combination.

5.43.26 getMediumAttachmentsOfController

IMediumAttachment[] IMachine::getMediumAttachmentsOfController(
[in] wstring name)

name

Returns an array of medium attachments which are attached to the the controller with the
given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

137

5 Classes (interfaces)

5.43.27 getNetworkAdapter

INetworkAdapter IMachine::getNetworkAdapter(
[in] unsigned long slot)

slot

Returns the network adapter associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of adapters per machine is defined by the
ISystemProperties::networkAdapterCount property, so the maximum slot number is one less than
that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

5.43.28 getParallelPort

IParallelPort IMachine::getParallelPort(
[in] unsigned long slot)

slot

Returns the parallel port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of parallel ports per machine is defined by the
ISystemProperties::parallelPortCount property, so the maximum slot number is one less than
that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

5.43.29 getSerialPort

ISerialPort IMachine::getSerialPort(
[in] unsigned long slot)

slot

Returns the serial port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of serial ports per machine is defined by the
ISystemProperties::serialPortCount property, so the maximum slot number is one less than
that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

5.43.30 getStorageControllerBylnstance

IStorageController IMachine::getStorageControllerByInstance(
[in] unsigned long instance)

instance

Returns a storage controller with the given instance number.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given instance number doesn’t
exist.

138

5 Classes (interfaces)

5.43.31 getStorageControllerByName

IStorageController IMachine::getStorageControllerByName (
[in] wstring name)

name

Returns a storage controller with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

5.43.32 hotPlugCPU

void IMachine::hotPlugCPU(
[in] unsigned long cpu)

cpu The CPU id to insert.

Plugs a CPU into the machine.

5.43.33 hotUnplugCPU

void IMachine::hotUnplugCPU(
[in] unsigned long cpu)

cpu The CPU id to remove.

Removes a CPU from the machine.

5.43.34 launchVMProcess

IProgress IMachine::launchVMProcess(
[in] ISession session,
[in] wstring type,
[in] wstring environment)

session Client session object to which the VM process will be connected (this must be in “Un-
locked” state).

type Front-end to use for the new VM process. The following are currently supported:

e "gui": VirtualBox Qt GUI front-end
e "headless": VBoxHeadless (VRDE Server) front-end
e "sdl": VirtualBox SDL front-end

e "emergencystop": reserved value, used for aborting the currently running VM or
session owner. In this case the session parameter may be NULL (if it is non-null
it isn’t used in any way), and the progress return value will be always NULL. The
operation completes immediately.

environment Environment to pass to the VM process.

Spawns a new process that will execute the virtual machine and obtains a shared lock on the
machine for the calling session.

If launching the VM succeeds, the new VM process will create its own session and write-lock
the machine for it, preventing conflicting changes from other processes. If the machine is already
locked (because it is already running or because another session has a write lock), launching the

139

5 Classes (interfaces)

VM process will therefore fail. Reversely, future attempts to obtain a write lock will also fail
while the machine is running.

The caller’s session object remains separate from the session opened by the new VM process.
It receives its own IConsole object which can be used to control machine execution, but it cannot
be used to change all VM settings which would be available after a lockMachine() call.

The caller must eventually release the session’s shared lock by calling ISession::unlockMachine()
on the local session object once this call has returned. However, the session’s state (see
ISession::state) will not return to “Unlocked” until the remote session has also unlocked the
machine (i.e. the machine has stopped running).

Launching a VM process can take some time (a new VM is started in a new process, for which
memory and other resources need to be set up). Because of this, an IProgress object is returned to
allow the caller to wait for this asynchronous operation to be completed. Until then, the caller’s
session object remains in the “Unlocked” state, and its ISession::machine and ISession::console
attributes cannot be accessed. It is recommended to use [Progress::waitForCompletion() or simi-
lar calls to wait for completion. Completion is signalled when the VM is powered on. If launching
the VM fails, error messages can be queried via the progress object, if available.

The progress object will have at least 2 sub-operations. The first operation covers the
period up to the new VM process calls powerUp. The subsequent operations mirror the
IConsole::powerUp() progress object. Because IConsole::powerUp() may require some extra
sub-operations, the IProgress::operationCount may change at the completion of operation.

For details on the teleportation progress operation, see IConsole::powerUp().

The environment argument is a string containing definitions of environment variables in the
following format: @code NAME[=VALUE]\n NAME[=VALUE]\n ... @endcode where \\n is the
new line character. These environment variables will be appended to the environment of the
VirtualBox server process. If an environment variable exists both in the server process and in
this list, the value from this list takes precedence over the server’s variable. If the value of the
environment variable is omitted, this variable will be removed from the resulting environment.
If the environment string is null or empty, the server environment is inherited by the started
process as is.

If this method fails, the following error codes may be reported:

E_UNEXPECTED: Virtual machine not registered.

E_INVALIDARG: Invalid session type type.

VBOX_E_OBJECT_NOT_FOUND: No machine matching machineId found.

e VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

VBOX_E_IPRT_ERROR: Launching process for machine failed.

VBOX_E_VM_ERROR: Failed to assign machine to session.

5.43.35 lockMachine

void IMachine::lockMachine(
[in] ISession session,
[in] LockType lockType)

session Session object for which the machine will be locked.

lockType If set to Write, then attempt to acquire an exclusive write lock or fail. If set to Shared,
then either acquire an exclusive write lock or establish a link to an existing session.

Locks the machine for the given session to enable the caller to make changes to the machine
or start the VM or control VM execution.
There are two ways to lock a machine for such uses:

140

5 Classes (interfaces)

If you want to make changes to the machine settings, you must obtain an exclusive write
lock on the machine by setting LockType to Write.

This will only succeed if no other process has locked the machine to prevent conflicting
changes. Only after an exclusive write lock has been obtained using this method, one
can change all VM settings or execute the VM in the process space of the session object.
(Note that the latter is only of interest if you actually want to write a new front-end for
virtual machines; but this API gets called internally by the existing front-ends such as
VBoxHeadless and the VirtualBox GUI to acquire a write lock on the machine that they are
running.)

On success, write-locking the machine for a session creates a second copy of the IMachine
object. It is this second object upon which changes can be made; in VirtualBox terminology;,
the second copy is “mutable”. It is only this second, mutable machine object upon which
you can call methods that change the machine state. After having called this method, you
can obtain this second, mutable machine object using the ISession::machine attribute.

If you only want to check the machine state or control machine execution without actually
changing machine settings (e.g. to get access to VM statistics or take a snapshot or save
the machine state), then set the LockType argument to Shared.

If no other session has obtained a lock, you will obtain an exclusive write lock as described
above. However, if another session has already obtained such a lock, then a link to that
existing session will be established which allows you to control that existing session.

To find out which type of lock was obtained, you can inspect ISession::type, which will
have been set to either WriteLock or Shared.

In either case, you can get access to the IConsole object which controls VM execution.

Also in all of the above cases, one must always call ISession::unlockMachine() to release the
lock on the machine, or the machine’s state will eventually be set to “Aborted”.

To change settings on a machine, the following sequence is typically performed:

1.

2
3
4.
5

Call this method to obtain an exclusive write lock for the current session.

. Obtain a mutable IMachine object from ISession::machine.

. Change the settings of the machine by invoking IMachine methods.

Call saveSettings().

. Release the write lock by calling ISession::unlockMachine().

If this method fails, the following error codes may be reported:

E_UNEXPECTED: Virtual machine not registered.
E_ACCESSDENIED: Process not started by OpenRemoteSession.
VBOX_E_INVALID OBJECT_STATE: Session already open or being opened.

VBOX_E_VM_ERROR: Failed to assign machine to session.

5.43.36 mountMedium

void

IMachine: :mountMedium(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] IMedium medium,
[in] boolean force)

141

5 Classes (interfaces)

name Name of the storage controller to attach the medium to.
controllerPort Port to attach the medium to.

device Device slot in the given port to attach the medium to.
medium Medium to mount or NULL for an empty drive.

force Allows to force unmount/mount of a medium which is locked by the device slot in the
given port to attach the medium to.

Mounts a medium (IMedium, identified by the given UUID id) to the given storage controller
(IStorageController, identified by name), at the indicated port and device. The device must
already exist; see attachDevice() for how to attach a new device.

This method is intended only for managing removable media, where the device is fixed but
media is changeable at runtime (such as DVDs and floppies). It cannot be used for fixed media
such as hard disks.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

The specified device slot can have a medium mounted, which will be unmounted first. Speci-
fying a zero UUID (or an empty string) for medium does just an unmount.

See IMedium for more detailed information about attaching media.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.

e VBOX_E_INVALID OBJECT_STATE: Attempt to attach medium to an unregistered virtual
machine.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.
e VBOX_E_OBJECT_IN_USE: Medium already attached to this or another virtual machine.

5.43.37 passthroughDevice

void IMachine::passthroughDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] boolean passthrough)

name Name of the storage controller.
controllerPort Storage controller port.

device Device slot in the given port.

passthrough New value for the passthrough setting.

Sets the passthrough mode of an existing DVD device. Changing the setting while the VM is
running is forbidden. The setting is only used if at VM start the device is configured as a host
DVD drive, in all other cases it is ignored. The device must already exist; see attachDevice() for
how to attach a new device.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.
e VBOX_E_INVALID OBJECT_STATE: Attempt to modify an unregistered virtual machine.
e VBOX_E_INVALID_VM_STATE: Invalid machine state.

142

5 Classes (interfaces)

5.43.38 queryLogFilename

wstring IMachine::queryLogFilename(
[in] unsigned long idx)

idx Which log file name to query. 0=current log file.

Queries for the VM log file name of an given index. Returns an empty string if a log file with
that index doesn’t exists.

5.43.39 querySavedGuestSize

void IMachine::querySavedGuestSize(
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.
width Guest width at the time of the saved state was taken.

height Guest height at the time of the saved state was taken.

Returns the guest dimensions from the saved state.

5.43.40 querySavedScreenshotPNGSize

void IMachine::querySavedScreenshotPNGSize(
[in] unsigned long screenId,
[out] unsigned long size,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.

size Size of buffer required to store the PNG binary data.
width Image width.

height Image height.

Returns size in bytes and dimensions of a saved PNG image of screenshot from saved state.

5.43.41 querySavedThumbnailSize

void IMachine::querySavedThumbnailSize(
[in] unsigned long screenId,
[out] unsigned long size,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.
size Size of buffer required to store the bitmap.
width Bitmap width.

height Bitmap height.

Returns size in bytes and dimensions in pixels of a saved thumbnail bitmap from saved state.

143

5 Classes (interfaces)

5.43.42 readlLog

octet[] IMachine::readLog(
[in] unsigned long idx,
[in] long long offset,
[in] long long size)

idx Which log file to read. O=current log file.
offset Offset in the log file.
size Chunk size to read in the log file.

Reads the VM log file. The chunk size is limited, so even if you ask for a big piece there might
be less data returned.

5.43.43 readSavedScreenshotPNGToArray

octet[] IMachine::readSavedScreenshotPNGToArray (
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.
width Image width.
height Image height.

Screenshot in PNG format is retrieved to an array of bytes.

5.43.44 readSavedThumbnailPNGToArray

octet[] IMachine::readSavedThumbnailPNGToArray (
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.
width Image width.
height Image height.

Thumbnail in PNG format is retrieved to an array of bytes.

5.43.45 readSavedThumbnailToArray

octet[] IMachine::readSavedThumbnailToArray (
[in] unsigned long screenId,
[in] boolean BGR,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.

BGR How to order bytes in the pixel. A pixel consists of 4 bytes. If this parameter is true, then
bytes order is: B, G, R, OxFF. If this parameter is false, then bytes order is: R, G, B, OxFF.

width Bitmap width.
height Bitmap height.

Thumbnail is retrieved to an array of bytes in uncompressed 32-bit BGRA or RGBA format.

144

5 Classes (interfaces)

5.43.46 removeAllICPUIDLeaves

void IMachine::removeAllCPUIDLeaves()

Removes all the virtual CPU cpuid leaves

5.43.47 removeCPUIDLeaf

void IMachine::removeCPUIDLeaf (
[in] unsigned long id)

id CPUID leaf index.

Removes the virtual CPU cpuid leaf for the specified index
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

5.43.48 removeSharedFolder

void IMachine::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes the permanent shared folder with the given name previously created by
createSharedFolder() from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

e VBOX_E_OBJECT_NOT_FOUND: Shared folder name does not exist.

5.43.49 removeStorageController

void IMachine::removeStorageController(
[in] wstring name)

name

Removes a storage controller from the machine.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

5.43.50 saveSettings

void IMachine::saveSettings()

Saves any changes to machine settings made since the session has been opened or a new ma-
chine has been created, or since the last call to saveSettings() or discardSettings(). For registered
machines, new settings become visible to all other VirtualBox clients after successful invocation
of this method.

Note: The method sends IMachineDataChangedEvent notification event after the con-
figuration has been successfully saved (only for registered machines).

145

5 Classes (interfaces)

Note: Calling this method is only valid on instances returned by ISession::machine and
on new machines created by IVirtualBox::createMachine() but not yet registered, or on
unregistered machines after calling unregister().

If this method fails, the following error codes may be reported:
e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

e E_ACCESSDENIED: Modification request refused.

5.43.51 setBandwidthGroupForDevice

void IMachine::setBandwidthGroupForDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] IBandwidthGroup bandwidthGroup)

name Name of the storage controller.

controllerPort Storage controller port.

device Device slot in the given port.

bandwidthGroup New value for the bandwidth group or NULL for no group.

Sets the bandwidth group of an existing storage device. The device must already exist; see
attachDevice() for how to attach a new device.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.
e VBOX_E_INVALID_OBJECT_STATE: Attempt to modify an unregistered virtual machine.
e VBOX_E_INVALID_VM_STATE: Invalid machine state.

5.43.52 setBootOrder

void IMachine::setBootOrder(
[in] unsigned long position,
[in] DeviceType device)

position Position in the boot order (1 to the total number of devices the machine can boot from,
as returned by ISystemProperties::maxBootPosition).

device The type of the device used to boot at the given position.

Puts the given device to the specified position in the boot order.

To indicate that no device is associated with the given position, Null should be used.
@todo setHardDiskBootOrder(), setNetworkBootOrder()

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Boot position out of range.

e E_NOTIMPL: Booting from USB device currently not supported.

146

5 Classes (interfaces)

5.43.53 setCPUIDLeaf

void IMachine::setCPUIDLeaf (
[in] unsigned long id,
[in] unsigned long valEax,
[in] unsigned long valEbx,
[in] unsigned long valEcx,
[in] unsigned long valEdx)

id CPUID leaf index.

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Sets the virtual CPU cpuid information for the specified leaf. Note that these values are not
passed unmodified. VirtualBox clears features that it doesn’t support.

Currently supported index values for cpuid: Standard CPUID leafs: 0 - 0xA Extended CPUID
leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information about the cpuid in-
struction and its leafs.

Do not use this method unless you know exactly what you're doing. Misuse can lead to random
crashes inside VMs.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

5.43.54 setCPUProperty

void IMachine::setCPUProperty(
[in] CPUPropertyType property,
[in] boolean value)

property Property type to query.
value Property value.

Sets the virtual CPU boolean value of the specified property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

5.43.55 setExtraData

void IMachine::setExtraData(
[in] wstring key,
[in] wstring value)

key Name of the data key to set.

value Value to assign to the key.

Sets associated machine-specific extra data.
If you pass null or an empty string as a key value, the given key will be deleted.

147

5 Classes (interfaces)

Note: Before performing the actual data change, this method will ask all registered
listeners using the IExtraDataCanChangeEvent notification for a permission. If one of
the listeners refuses the new value, the change will not be performed.

Note: On success, the [ExtraDataChangedEvent notification is called to inform all reg-
istered listeners about a successful data change.

Note: This method can be called outside the machine session and therefore it’s a caller’s
responsibility to handle possible race conditions when several clients change the same
key at the same time.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.43.56 setGuestProperty

void IMachine::setGuestProperty(
[in] wstring property,
[in] wstring value,
[in] wstring flags)
property The name of the property to set, change or delete.

value The new value of the property to set, change or delete. If the property does not yet exist
and value is non-empty, it will be created. If the value is null or empty, the property will
be deleted if it exists.

flags Additional property parameters, passed as a comma-separated list of “name=value” type
entries.

Sets, changes or deletes an entry in the machine’s guest property store.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Property cannot be changed.

e E_INVALIDARG: Invalid flags.

e VBOX_E_INVALID VM_STATE: Virtual machine is not mutable or session not open.

e VBOX_E_INVALID OBJECT_STATE: Cannot set transient property when machine not run-

ning.

5.43.57 setGuestPropertyValue

void IMachine::setGuestPropertyValue(
[in] wstring property,
[in] wstring value)

property The name of the property to set, change or delete.

148

5 Classes (interfaces)

value The new value of the property to set, change or delete. If the property does not yet exist
and value is non-empty, it will be created. If the value is null or empty, the property will
be deleted if it exists.

Sets, changes or deletes a value in the machine’s guest property store. The flags field will be
left unchanged or created empty for a new property.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Property cannot be changed.
e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable or session not open.
e VBOX_E_INVALID_OBJECT_STATE: Cannot set transient property when machine not run-

ning.

5.43.58 setHWVirtExProperty

void IMachine::setHWVirtExProperty(
[in] HWVirtExPropertyType property,
[in] boolean value)

property Property type to set.
value New property value.

Sets a new value for the specified hardware virtualization boolean property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

5.43.59 setStorageControllerBootable

void IMachine::setStorageControllerBootable(
[in] wstring name,
[in] boolean bootable)

name
bootable

Sets the bootable flag of the storage controller with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

e VBOX_E_OBJECT_IN_USE: Another storage controller is marked as bootable already.

5.43.60 showConsoleWindow

long long IMachine::showConsoleWindow()

Activates the console window and brings it to foreground on the desktop of the host PC. Many
modern window managers on many platforms implement some sort of focus stealing prevention
logic, so that it may be impossible to activate a window without the help of the currently active
application. In this case, this method will return a non-zero identifier that represents the top-
level window of the VM console process. The caller, if it represents a currently active process,
is responsible to use this identifier (in a platform-dependent manner) to perform actual window
activation.

149

5 Classes (interfaces)

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

5.43.61 unregister

IMedium[] IMachine::unregister(
[in] CleanupMode cleanupMode)

cleanupMode How to clean up after the machine has been unregistered.

Unregisters a machine previously registered with IVirtualBox::registerMachine() and option-
ally do additional cleanup before the machine is unregistered.

This method does not delete any files. It only changes the machine configuration and the list of
registered machines in the VirtualBox object. To delete the files which belonged to the machine,
including the XML file of the machine itself, call delete(), optionally with the array of IMedium
objects which was returned from this method.

How thoroughly this method cleans up the machine configuration before unregistering the
machine depends on the cleanupMode argument.

e With “UnregisterOnly”, the machine will only be unregistered, but no additional cleanup
will be performed. The call will fail if the machine is in “Saved” state or has any snapshots
or any media attached (see IMediumAttachment). It is the responsibility of the caller to
delete all such configuration in this mode. In this mode, the API behaves like the former
IVirtualBox::unregisterMachine() API which it replaces.

e With “DetachAllReturnNone”, the call will succeed even if the machine is in “Saved” state
or if it has snapshots or media attached. All media attached to the current machine state
or in snapshots will be detached. No medium objects will be returned; all of the machine’s
media will remain open.

e With “DetachAllReturnHardDisksOnly”, the call will behave like with “DetachAllReturn-
None”, except that all the hard disk medium objects which were detached from the ma-
chine will be returned as an array. This allows for quickly passing them to the delete() API
for closing and deletion.

e With “Full”, the call will behave like with “DetachAllReturnHardDisksOnly”, except that all
media will be returned in the array, including removable media like DVDs and floppies.
This might be useful if the user wants to inspect in detail which media were attached to the
machine. Be careful when passing the media array to delete() in that case because users
will typically want to preserve ISO and RAW image files.

A typical implementation will use “DetachAllReturnHardDisksOnly” and then pass the result-
ing IMedium array to delete(). This way, the machine is completely deleted with all its saved
states and hard disk images, but images for removable drives (such as ISO and RAW files) will
remain on disk.

This API does not verify whether the media files returned in the array are still attached to other
machines (i.e. shared between several machines). If such a shared image is passed to delete()
however, closing the image will fail there and the image will be silently skipped.

This API may, however, move media from this machine’s media registry to other media reg-
istries (see IMedium for details on media registries). For machines created with VirtualBox 4.0 or
later, if media from this machine’s media registry are also attached to another machine (shared
attachments), each such medium will be moved to another machine’s registry. This is because

150

5 Classes (interfaces)

without this machine’s media registry, the other machine cannot find its media any more and
would become inaccessible.

This API implicitly calls saveSettings() to save all current machine settings before unregister-
ing it. It may also silently call saveSettings() on other machines if media are moved to other
machines’ media registries.

After successful method invocation, the IMachineRegisteredEvent event is fired.

The call will fail if the machine is currently locked (see ISession).

Note: If the given machine is inaccessible (see accessible), it will be unregistered and
fully uninitialized right afterwards. As a result, the returned machine object will be
unusable and an attempt to call any method will return the “Object not ready” error.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Machine is currently locked for a session.

5.44 IMachineDataChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Any of the settings of the given machine has changed.

5.45 IMachineDebugger

’ Note: This interface is not supported in the web service.

5.45.1 Attributes
5.45.1.1 singlestep (read/write)
boolean IMachineDebugger::singlestep

Switch for enabling singlestepping.

5.45.1.2 recompileUser (read/write)
boolean IMachineDebugger::recompileUser

Switch for forcing code recompilation for user mode code.

5.45.1.3 recompileSupervisor (read/write)

boolean IMachineDebugger::recompileSupervisor

Switch for forcing code recompilation for supervisor mode code.

5.45.1.4 PATMEnabled (read/write)
boolean IMachineDebugger: :PATMEnabled

Switch for enabling and disabling the PATM component.

151

5 Classes (interfaces)

5.45.1.5 CSAMEnabled (read/write)

boolean IMachineDebugger: :CSAMEnabled

Switch for enabling and disabling the CSAM component.

5.45.1.6 logEnabled (read/write)

boolean IMachineDebugger: :logEnabled

Switch for enabling and disabling the debug logger.

5.45.1.7 logFlags (read-only)

wstring IMachineDebugger::logFlags

The debug logger flags.

5.45.1.8 logGroups (read-only)

wstring IMachineDebugger: :logGroups

The debug logger’s group settings.

5.45.1.9 logDestinations (read-only)

wstring IMachineDebugger::logDestinations

The debug logger’s destination settings.

5.45.1.10 HWVirtExEnabled (read-only)

boolean IMachineDebugger: :HWVirtExEnabled

Flag indicating whether the VM is currently making use of CPU hardware virtualization exten-
sions.

5.45.1.11 HWVirtExNestedPagingEnabled (read-only)

boolean IMachineDebugger: :HWVirtExNestedPagingEnabled

Flag indicating whether the VM is currently making use of the nested paging CPU hardware
virtualization extension.

5.45.1.12 HWVirtExVPIDEnabled (read-only)
boolean IMachineDebugger: :HWVirtExVPIDEnabled
Flag indicating whether the VM is currently making use of the VPID VT-x extension.
5.45.1.13 OSName (read-only)
wstring IMachineDebugger: :0SName

Query the guest OS kernel name as detected by the DBGF.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

152

5 Classes (interfaces)

5.45.1.14 OSVersion (read-only)

wstring IMachineDebugger::0SVersion

Query the guest OS kernel version string as detected by the DBGF.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.1.15 PAEEnabled (read-only)

boolean IMachineDebugger: :PAEEnabled

Flag indicating whether the VM is currently making use of the Physical Address Extension CPU
feature.

5.45.1.16 virtualTimeRate (read/write)

unsigned long IMachineDebugger::virtualTimeRate

The rate at which the virtual time runs expressed as a percentage. The accepted range is 2%
to 20000%.

5.45.1.17 VM (read-only)

long long IMachineDebugger::VM

Gets the VM handle. This is only for internal use while we carve the details of this interface.

5.45.2 detectOS

wstring IMachineDebugger: :detect0S()

Tries to (re-)detect the guest OS kernel.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.3 dumpGuestCore

void IMachineDebugger: :dumpGuestCore(
[in] wstring filename,
[in] wstring compression)
filename The name of the output file. The file must not exist.

compression Reserved for future compression method indicator.

Takes a core dump of the guest.
See include/VBox/dbgfcorefmt.h for details on the file format.

5.45.4 dumpGuestStack

wstring IMachineDebugger: :dumpGuestStack(
[in] unsigned long cpuld)

cpuld The identifier of the Virtual CPU.

Produce a simple stack dump using the current guest state.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

153

5 Classes (interfaces)

5.45.5 dumpHostProcessCore

void IMachineDebugger: :dumpHostProcessCore(
[in] wstring filename,
[in] wstring compression)

filename The name of the output file. The file must not exist.

compression Reserved for future compression method indicator.

Takes a core dump of the VM process on the host.
This feature is not implemented in the 4.0.0 release but it may show up in a dot release.

5.45.6 dumpStats

void IMachineDebugger: :dumpStats(
[in] wstring pattern)

pattern The selection pattern. A bit similar to filename globbing.

Dumps VM statistics.

5.45.7 getRegister

wstring IMachineDebugger: :getRegister(
[in] unsigned long cpuld,
[in] wstring name)

cpuld The identifier of the Virtual CPU.

name The register name, case is ignored.

Gets one register.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.8 getRegisters

void IMachineDebugger: :getRegisters(
[in] unsigned long cpuld,
[out] wstring names|[],
[out] wstring values[])

cpuld The identifier of the Virtual CPU.
names Array containing the lowercase register names.

values Array paralell to the names holding the register values as if the register was returned by
getRegister().

Gets all the registers for the given CPU.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

154

5 Classes (interfaces)

5.45.9 getStats

void IMachineDebugger: :getStats/(
[in] wstring pattern,
[in] boolean withDescriptions,
[out] wstring stats)
pattern The selection pattern. A bit similar to filename globbing.
withDescriptions Whether to include the descriptions.
stats The XML document containing the statistics.

Get the VM statistics in a XMLish format.

5.45.10 info

wstring IMachineDebugger::info(
[in] wstring name,
[in] wstring args)

name The name of the info item.

args Arguments to the info dumper.

Interfaces with the info dumpers (DBGFInfo).
This feature is not implemented in the 4.0.0 release but it may show up in a dot release.

5.45.11 injectNMI

void IMachineDebugger::injectNMI()

Inject an NMI into a running VI-x/AMD-V VM.

5.45.12 modifyLogDestinations

void IMachineDebugger: :modifylLogDestinations(
[in] wstring settings)

settings The destination settings string. See iprt/log.h for details.

Modifies the debug logger destinations.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.13 modifyLogFlags

void IMachineDebugger: :modifylLogFlags(
[in] wstring settings)

settings The flags settings string. See iprt/log.h for details.

Modifies the debug logger flags.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

155

5 Classes (interfaces)

5.45.14 modifyLogGroups

void IMachineDebugger: :modifyLogGroups (
[in] wstring settings)

settings The group settings string. See iprt/log.h for details.

Modifies the group settings of the debug logger.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.15 readPhysicalMemory

octet[] IMachineDebugger::readPhysicalMemory (
[in] long long address,
[in] unsigned long size)

address The guest physical address.

size The number of bytes to read.

Reads guest physical memory, no side effects (MMIO+ +).
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.16 readVirtualMemory

octet[] IMachineDebugger::readVirtualMemory (
[in] unsigned long cpuld,
[in] long long address,
[in] unsigned long size)
cpuld The identifier of the Virtual CPU.
address The guest virtual address.

size The number of bytes to read.

Reads guest virtual memory, no side effects (MMIO+ +).
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.17 resetStats

void IMachineDebugger::resetStats(
[in] wstring pattern)

pattern The selection pattern. A bit similar to filename globbing.

Reset VM statistics.

5.45.18 setRegister

void IMachineDebugger::setRegister(
[in] unsigned long cpuld,
[in] wstring name,
[in] wstring value)
cpuld The identifier of the Virtual CPU.

name The register name, case is ignored.

156

5 Classes (interfaces)

value The new register value. Hexadecimal, decimal and octal formattings are supported in
addition to any special formattings returned by the getters.

Gets one register.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.19 setRegisters

void IMachineDebugger::setRegisters(
[in] unsigned long cpuld,
[in] wstring names[],
[in] wstring values[])

cpuld The identifier of the Virtual CPU.
names Array containing the register names, case ignored.

values Array paralell to the names holding the register values. See setRegister() for formatting
guidelines.

Sets zero or more registers atomically.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.20 writePhysicalMemory

void IMachineDebugger: :writePhysicalMemory (
[in] long long address,
[in] unsigned long size,
[in] octet bytes[])

address The guest physical address.
size The number of bytes to read.

bytes The bytes to write.

Writes guest physical memory, access handles (MMIO+ +) are ignored.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.45.21 writeVirtualMemory

void IMachineDebugger: :writeVirtualMemory(
[in] unsigned long cpuld,
[in] long long address,
[in] unsigned long size,
[in] octet bytes[])

cpuld The identifier of the Virtual CPU.
address The guest virtual address.
size The number of bytes to read.

bytes The bytes to write.

Writes guest virtual memory, access handles (MMIO+ +) are ignored.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

157

5 Classes (interfaces)

5.46 IMachineEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Base abstract interface for all machine events.

5.46.1 Attributes
5.46.1.1 machineld (read-only)

uuid IMachineEvent::machineld

ID of the machine this event relates to.

5.47 IMachineRegisteredEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

The given machine was registered or unregistered within this VirtualBox installation.

5.47.1 Attributes
5.47.1.1 registered (read-only)

boolean IMachineRegisteredEvent::registered

If true, the machine was registered, otherwise it was unregistered.

5.48 IMachineStateChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Machine state change event.

5.48.1 Attributes
5.48.1.1 state (read-only)

MachineState IMachineStateChangedEvent::state

New execution state.

158

5 Classes (interfaces)

5.49 IManagedObjectRef

’ Note: This interface is supported in the web service only, not in COM/XPCOM.

Managed object reference.

Only within the webservice, a managed object reference (which is really an opaque number)
allows a webservice client to address an object that lives in the address space of the webservice
server.

Behind each managed object reference, there is a COM object that lives in the webser-
vice server’s address space. The COM object is not freed until the managed object refer-
ence is released, either by an explicit call to release() or by logging off from the webservice
(IWebsessionManager::logoff()), which releases all objects created during the webservice ses-
sion.

Whenever a method call of the VirtualBox API returns a COM object, the webservice represen-
tation of that method will instead return a managed object reference, which can then be used to
invoke methods on that object.

5.49.1 getinterfaceName

wstring IManagedObjectRef::getInterfaceName()

Returns the name of the interface that this managed object represents, for example, “IMa-
chine”, as a string.

5.49.2 release

void IManagedObjectRef::release()

Releases this managed object reference and frees the resources that were allocated for it in the
webservice server process. After calling this method, the identifier of the reference can no longer
be used.

5.50 IMedium

The IMedium interface represents virtual storage for a machine’s hard disks, CD/DVD or floppy
drives. It will typically represent a disk image on the host, for example a VDI or VMDK file
representing a virtual hard disk, or an ISO or RAW file representing virtual removable media,
but can also point to a network location (e.g. for iSCSI targets).

Instances of IMedium are connected to virtual machines by way of medium attachments, which
link the storage medium to a particular device slot of a storage controller of the virtual machine.
In the VirtualBox API, virtual storage is therefore always represented by the following chain of
object links:

e IMachine::storageControllers[] contains an array of storage controllers (IDE, SATA, SCSI,
SAS or a floppy controller; these are instances of IStorageController).

e IMachine::mediumAttachments[] contains an array of medium attachments (instances of
IMediumAttachment created by IMachine::attachDevice()), each containing a storage con-
troller from the above array, a port/device specification, and an instance of IMedium rep-
resenting the medium storage (image file).

For removable media, the storage medium is optional; a medium attachment with no
medium represents a CD/DVD or floppy drive with no medium inserted. By contrast, hard
disk attachments will always have an IMedium object attached.

159

5 Classes (interfaces)

e Each IMedium in turn points to a storage unit (such as a file on the host computer or
a network resource) that holds actual data. This location is represented by the location
attribute.

Existing media are opened using IVirtualBox::openMedium(); new hard disk media can be
created with the VirtualBox API using the IVirtualBox::createHardDisk() method. Differencing
hard disks (see below) are usually implicitly created by VirtualBox as needed, but may also be
created explicitly using createDiffStorage(). VirtualBox cannot create CD/DVD or floppy images
(ISO and RAW files); these should be created with external tools and then opened from within
VirtualBox.

Only for CD/DVDs and floppies, an IMedium instance can also represent a host drive. In
that case the id attribute contains the UUID of one of the drives in IHost::DVDDrives[] or
[Host::floppyDrives[].

Media registries

When a medium has been opened or created using one of the aforementioned APIs, it be-
comes “known” to VirtualBox. Known media can be attached to virtual machines and accessed
through IVirtualBox::findMedium(). They also appear in the global IVirtualBox::hardDisks[],
IVirtualBox::DVDImages[] and IVirtualBox::floppylmages[] arrays.

Prior to VirtualBox 4.0, opening a medium added it to a global media registry in the
VirtualBox.xml file, which was shared between all machines and made transporting machines
and their media from one host to another difficult.

Starting with VirtualBox 4.0, media are only added to a registry when they are attached to a
machine using IMachine::attachDevice(). For backwards compatibility, which registry a medium
is added to depends on which VirtualBox version created a machine:

e If the medium has first been attached to a machine which was created by VirtualBox 4.0
or later, it is added to that machine’s media registry in the machine XML settings file. This
way all information about a machine’s media attachments is contained in a single file and
can be transported easily.

e For older media attachments (i.e. if the medium was first attached to a machine which was
created with a VirtualBox version before 4.0), media continue to be registered in the global
VirtualBox settings file, for backwards compatibility.

See IVirtualBox::openMedium() for more information.

Media are removed from media registries by the close(), deleteStorage() and mergeTo() meth-
ods.

Accessibility checks

VirtualBox defers media accessibility checks until the refreshState() method is called explicitly
on a medium. This is done to make the VirtualBox object ready for serving requests as fast as
possible and let the end-user application decide if it needs to check media accessibility right away
or not.

As a result, when VirtualBox starts up (e.g. the VirtualBox object gets created for the first time),
all known media are in the “Inaccessible” state, but the value of the lastAccessError attribute is
an empty string because no actual accessibility check has been made yet.

After calling refreshState(), a medium is considered accessible if its storage unit can be read.
In that case, the state attribute has a value of “Created”. If the storage unit cannot be read
(for example, because it is located on a disconnected network resource, or was accidentally
deleted outside VirtualBox), the medium is considered inaccessible, which is indicated by the
“Inaccessible” state. The exact reason why the medium is inaccessible can be obtained by reading
the lastAccessError attribute.

Medium types

There are five types of medium behavior which are stored in the type attribute (see
MediumType) and which define the medium’s behavior with attachments and snapshots.

160

5 Classes (interfaces)

All media can be also divided in two groups: base media and differencing media. A base
medium contains all sectors of the medium data in its own storage and therefore can be used
independently. In contrast, a differencing medium is a “delta” to some other medium and con-
tains only those sectors which differ from that other medium, which is then called a parent. The
differencing medium is said to be linked to that parent. The parent may be itself a differencing
medium, thus forming a chain of linked media. The last element in that chain must always be a
base medium. Note that several differencing media may be linked to the same parent medium.

Differencing media can be distinguished from base media by querying the parent attribute:
base media do not have parents they would depend on, so the value of this attribute is always
null for them. Using this attribute, it is possible to walk up the medium tree (from the child
medium to its parent). It is also possible to walk down the tree using the children[] attribute.

Note that the type of all differencing media is “normal”; all other values are meaningless for
them. Base media may be of any type.

Automatic composition of the file name part

Another extension to the location attribute is that there is a possibility to cause VirtualBox to
compose a unique value for the file name part of the location using the UUID of the hard disk.
This applies only to hard disks in NotCreated state, e.g. before the storage unit is created, and
works as follows. You set the value of the location attribute to a location specification which only
contains the path specification but not the file name part and ends with either a forward slash or
a backslash character. In response, VirtualBox will generate a new UUID for the hard disk and
compose the file name using the following pattern:

<path>/{<uuid>}.<ext>

where <path> is the supplied path specification, <uuid> is the newly generated UUID and
<ext> is the default extension for the storage format of this hard disk. After that, you may call
any of the methods that create a new hard disk storage unit and they will use the generated
UUID and file name.

5.50.1 Attributes
5.50.1.1 id (read-only)

uuid IMedium::id

UUID of the medium. For a newly created medium, this value is a randomly generated UUID.

Note: For media in one of MediumState NotCreated, MediumState Creating or Medi-
umState Deleting states, the value of this property is undefined and will most likely be
an empty UUID.

5.50.1.2 description (read/write)

wstring IMedium::description
Optional description of the medium. For a newly created medium the value of this attribute is
an empty string.

Medium types that don’t support this attribute will return E_ NOTIMPL in attempt to get or set
this attribute’s value.

161

5 Classes (interfaces)

Note: For some storage types, reading this attribute may return an outdated (last
known) value when state is Inaccessible or LockedWrite because the value of this at-
tribute is stored within the storage unit itself. Also note that changing the attribute
value is not possible in such case, as well as when the medium is the LockedRead state.

5.50.1.3 state (read-only)

MediumState IMedium::state

Returns the current medium state, which is the last state set by the accessibility check per-
formed by refreshState(). If that method has not yet been called on the medium, the state is
“Inaccessible”; as opposed to truly inaccessible media, the value of lastAccessError will be an
empty string in that case.

Note: As of version 3.1, this no longer performs an accessibility check automatically;
call refreshState() for that.

5.50.1.4 variant (read-only)

unsigned long IMedium::variant

Returns the storage format variant information for this medium as a combination of the flags
described at MediumVariant. Before refreshState() is called this method returns an undefined
value.

5.50.1.5 location (read/write)

wstring IMedium::location

Location of the storage unit holding medium data.

The format of the location string is medium type specific. For medium types using regular files
in a host’s file system, the location string is the full file name.

Some medium types may support changing the storage unit location by simply changing
the value of this property. If this operation is not supported, the implementation will return
E_NOTIMPL in attempt to set this attribute’s value.

When setting a value of the location attribute which is a regular file in the host’s file system,
the given file name may be either relative to the VirtualBox home folder or absolute. Note that
if the given location specification does not contain the file extension part then a proper default
extension will be automatically appended by the implementation depending on the medium type.

5.50.1.6 name (read-only)

wstring IMedium::name

Name of the storage unit holding medium data.

The returned string is a short version of the location attribute that is suitable for represent-
ing the medium in situations where the full location specification is too long (such as lists and
comboboxes in GUI frontends). This string is also used by frontends to sort the media list alpha-
betically when needed.

For example, for locations that are regular files in the host’s file system, the value of this
attribute is just the file name (+ extension), without the path specification.

Note that as opposed to the location attribute, the name attribute will not necessary be unique
for a list of media of the given type and format.

162

5 Classes (interfaces)

5.50.1.7 deviceType (read-only)

DeviceType IMedium::deviceType
Kind of device (DVD/Floppy/HardDisk) which is applicable to this medium.
5.50.1.8 hostDrive (read-only)
boolean IMedium::hostDrive
True if this corresponds to a drive on the host.
5.50.1.9 size (read-only)
long long IMedium::size

Physical size of the storage unit used to hold medium data (in bytes).

Note: For media whose state is Inaccessible, the value of this property is the last known
size. For NotCreated media, the returned value is zero.

5.50.1.10 format (read-only)

wstring IMedium::format

Storage format of this medium.

The value of this attribute is a string that specifies a backend used to store medium data. The
storage format is defined when you create a new medium or automatically detected when you
open an existing medium, and cannot be changed later.

The list of all storage formats supported by this VirtualBox installation can be obtained using
ISystemProperties::mediumFormats[].

5.50.1.11 mediumFormat (read-only)

IMediumFormat IMedium::mediumFormat

Storage medium format object corresponding to this medium.

The value of this attribute is a reference to the medium format object that specifies the backend
properties used to store medium data. The storage format is defined when you create a new
medium or automatically detected when you open an existing medium, and cannot be changed
later.

Note: null is returned if there is no associated medium format object. This can e.g.
happen for medium objects representing host drives and other special medium objects.

163

5 Classes (interfaces)

5.50.1.12 type (read/write)

MediumType IMedium::type

Type (role) of this medium.
The following constraints apply when changing the value of this attribute:

e If a medium is attached to a virtual machine (either in the current state or in one of the
snapshots), its type cannot be changed.

e As long as the medium has children, its type cannot be set to Writethrough.

e The type of all differencing media is Normal and cannot be changed.

The type of a newly created or opened medium is set to Normal, except for DVD and floppy
media, which have a type of Writethrough.

5.50.1.13 parent (read-only)

IMedium IMedium::parent

Parent of this medium (the medium this medium is directly based on).
Only differencing media have parents. For base (non-differencing) media, null is returned.

5.50.1.14 children (read-only)

IMedium IMedium::children|]

Children of this medium (all differencing media directly based on this medium). A null array
is returned if this medium does not have any children.

5.50.1.15 base (read-only)

IMedium IMedium::base

Base medium of this medium.

If this is a differencing medium, its base medium is the medium the given medium branch
starts from. For all other types of media, this property returns the medium object itself (i.e. the
same object this property is read on).

5.50.1.16 readOnly (read-only)

boolean IMedium::readOnly

Returns true if this medium is read-only and false otherwise.

A medium is considered to be read-only when its contents cannot be modified without breaking
the integrity of other parties that depend on this medium such as its child media or snapshots of
virtual machines where this medium is attached to these machines. If there are no children and
no such snapshots then there is no dependency and the medium is not read-only.

The value of this attribute can be used to determine the kind of the attachment that will
take place when attaching this medium to a virtual machine. If the value is false then the
medium will be attached directly. If the value is true then the medium will be attached indirectly
by creating a new differencing child medium for that. See the interface description for more
information.

Note that all Immutable media are always read-only while all Writethrough media are always
not.

164

5 Classes (interfaces)

Note: The read-only condition represented by this attribute is related to the medium
type and usage, not to the current medium state and not to the read-only state of the
storage unit.

5.50.1.17 logicalSize (read-only)
long long IMedium::logicalSize
Logical size of this medium (in bytes), as reported to the guest OS running inside the virtual

machine this medium is attached to. The logical size is defined when the medium is created and
cannot be changed later.

Note: Reading this property on a differencing medium will return the size of its base
medium.

Note: For media whose state is state is Inaccessible, the value of this property is the
last known logical size. For NotCreated media, the returned value is zero.

5.50.1.18 autoReset (read/write)

boolean IMedium::autoReset

Whether this differencing medium will be automatically reset each time a virtual machine it
is attached to is powered up. This attribute is automatically set to true for the last differencing
image of an “immutable” medium (see MediumType).

See reset() for more information about resetting differencing media.

Note: Reading this property on a base (non-differencing) medium will always false.
Changing the value of this property in this case is not supported.

5.50.1.19 lastAccessError (read-only)

wstring IMedium::lastAccessError

Text message that represents the result of the last accessibility check performed by
refreshState().

An empty string is returned if the last accessibility check was successful or has not yet been
called. As a result, if state is “Inaccessible” and this attribute is empty, then refreshState() has
yet to be called; this is the default value of media after VirtualBox initialization. A non-empty
string indicates a failure and should normally describe a reason of the failure (for example, a file
read error).

165

5 Classes (interfaces)

5.50.1.20 machinelds (read-only)

uuid IMedium::machinelds]]

Array of UUIDs of all machines this medium is attached to.
A null array is returned if this medium is not attached to any machine or to any machine’s
snapshot.

Note: The returned array will include a machine even if this medium is not attached to
that machine in the current state but attached to it in one of the machine’s snapshots.
See getSnapshotlds() for details.

5.50.2 cloneTo

IProgress IMedium::cloneTo(
[in] IMedium target,
[in] unsigned long variant,
[in] IMedium parent)

target Target medium.
variant Exactimage variant which should be created (as a combination of MediumVariant flags).

parent Parent of the cloned medium.

Starts creating a clone of this medium in the format and at the location defined by the target
argument.

The target medium must be either in NotCreated state (i.e. must not have an existing storage
unit) or in Created state (i.e. created and not locked, and big enough to hold the data or else the
copy will be partial). Upon successful completion, the cloned medium will contain exactly the
same sector data as the medium being cloned, except that in the first case a new UUID for the
clone will be randomly generated, and in the second case the UUID will remain unchanged.

The parent argument defines which medium will be the parent of the clone. Passing a null
reference indicates that the clone will be a base image, i.e. completely independent. It is possible
to specify an arbitrary medium for this parameter, including the parent of the medium which is
being cloned. Even cloning to a child of the source medium is possible. Note that when cloning
to an existing image, the parent irgument is ignored.

After the returned progress object reports that the operation is successfully complete, the tar-
get medium gets remembered by this VirtualBox installation and may be attached to virtual
machines.

Note: This medium will be placed to LockedRead state for the duration of this opera-
tion.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: The specified cloning variant is not supported at the moment.

5.50.3 close

void IMedium::close()

166

5 Classes (interfaces)

Closes this medium.

The medium must not be attached to any known virtual machine and must not have any
known child media, otherwise the operation will fail.

When the medium is successfully closed, it is removed from the list of registered media, but its
storage unit is not deleted. In particular, this means that this medium can later be opened again
using the IVirtualBox::openMedium() call.

Note that after this method successfully returns, the given medium object becomes uninitial-
ized. This means that any attempt to call any of its methods or attributes will fail with the
"Object not ready" (E_ACCESSDENIED) error.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Invalid medium state (other than not created, created
or inaccessible).

e VBOX_E_OBJECT_IN_USE: Medium attached to virtual machine.
e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.50.4 compact
IProgress IMedium::compact()

Starts compacting of this medium. This means that the medium is transformed into a possibly
more compact storage representation. This potentially creates temporary images, which can
require a substantial amount of additional disk space.

This medium will be placed to LockedWrite state and all its parent media (if any) will be
placed to LockedRead state for the duration of this operation.

Please note that the results can be either returned straight away, or later as the result of the
background operation via the object returned via the progress parameter.

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Medium format does not support compacting (but potentially
needs it).

5.50.5 createBaseStorage

IProgress IMedium::createBaseStorage(
[in] long long logicalSize,
[in] unsigned long variant)

logicalSize Maximum logical size of the medium in bytes.
variant Exactimage variant which should be created (as a combination of MediumVariant flags).

Starts creating a hard disk storage unit (fixed/dynamic, according to the variant flags) in in
the background. The previous storage unit created for this object, if any, must first be deleted
using deleteStorage(), otherwise the operation will fail.

Before the operation starts, the medium is placed in Creating state. If the create operation
fails, the medium will be placed back in NotCreated state.

After the returned progress object reports that the operation has successfully completed, the
medium state will be set to Created, the medium will be remembered by this VirtualBox instal-
lation and may be attached to virtual machines.

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: The variant of storage creation operation is not supported. See
IMediumFormat::capabilities.

167

5 Classes (interfaces)

5.50.6 createDiffStorage

IProgress IMedium::createDiffStorage(
[in] IMedium target,
[in] unsigned long variant)

target Target medium.

variant Exactimage variant which should be created (as a combination of MediumVariant flags).

Starts creating an empty differencing storage unit based on this medium in the format and at
the location defined by the target argument.

The target medium must be in NotCreated state (i.e. must not have an existing storage unit).
Upon successful completion, this operation will set the type of the target medium to Normal and
create a storage unit necessary to represent the differencing medium data in the given format
(according to the storage format of the target object).

After the returned progress object reports that the operation is successfully complete, the tar-
get medium gets remembered by this VirtualBox installation and may be attached to virtual
machines.

Note: The medium will be set to LockedRead state for the duration of this operation.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: Medium notin NotCreated state.

5.50.7 deleteStorage

IProgress IMedium::deleteStorage()

Starts deleting the storage unit of this medium.

The medium must not be attached to any known virtual machine and must not have any
known child media, otherwise the operation will fail. It will also fail if there is no storage unit to
delete or if deletion is already in progress, or if the medium is being in use (locked for read or
for write) or inaccessible. Therefore, the only valid state for this operation to succeed is Created.

Before the operation starts, the medium is placed in Deleting state and gets removed from the
list of remembered hard disks (media registry). If the delete operation fails, the medium will be
remembered again and placed back to Created state.

After the returned progress object reports that the operation is complete, the medium state
will be set to NotCreated and you will be able to use one of the storage creation methods to
create it again.

See also: #close()

Note: If the deletion operation fails, it is not guaranteed that the storage unit still
exists. You may check the state value to answer this question.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: Medium is attached to a virtual machine.

e VBOX_E_NOT_SUPPORTED: Storage deletion is not allowed because neither of storage cre-
ation operations are supported. See IMediumFormat::capabilities.

168

5 Classes (interfaces)

5.50.8 getProperties

wstring[] IMedium::getProperties(
[in] wstring names,
[out] wstring returnNames[])

names Names of properties to get.
returnNames Names of returned properties.

Returns values for a group of properties in one call.

The names of the properties to get are specified using the names argument which is a list of
comma-separated property names or an empty string if all properties are to be returned. Note
that currently the value of this argument is ignored and the method always returns all existing
properties.

The list of all properties supported by the given medium format can be obtained with
IMediumFormat::describeProperties().

The method returns two arrays, the array of property names corresponding to the names argu-
ment and the current values of these properties. Both arrays have the same number of elements
with each elemend at the given index in the first array corresponds to an element at the same
index in the second array.

Note that for properties that do not have assigned values, an empty string is returned at the
appropriate index in the returnValues array.

5.50.9 getProperty

wstring IMedium::getProperty(
[in] wstring name)

name Name of the property to get.

Returns the value of the custom medium property with the given name.

The list of all properties supported by the given medium format can be obtained with
IMediumFormat::describeProperties().

Note that if this method returns an empty string in value, the requested property is supported
but currently not assigned any value.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Requested property does not exist (not supported by the
format).

e E_INVALIDARG: name is null or empty.

5.50.10 getSnapshotids

uuid[] IMedium::getSnapshotIds(
[in] uuid machineId)

machineld UUID of the machine to query.

Returns an array of UUIDs of all snapshots of the given machine where this medium is attached
to.

If the medium is attached to the machine in the current state, then the first element in the array
will always be the ID of the queried machine (i.e. the value equal to the machinelId argument),
followed by snapshot IDs (if any).

If the medium is not attached to the machine in the current state, then the array will contain
only snapshot IDs.

The returned array may be null if this medium is not attached to the given machine at all,
neither in the current state nor in one of the snapshots.

169

5 Classes (interfaces)

5.50.11 lockRead

MediumState IMedium::lockRead()

Locks this medium for reading.

A read lock is shared: many clients can simultaneously lock the same medium for reading
unless it is already locked for writing (see lockWrite()) in which case an error is returned.

When the medium is locked for reading, it cannot be modified from within VirtualBox. This
means that any method that changes the properties of this medium or contents of the storage
unit will return an error (unless explicitly stated otherwise). That includes an attempt to start a
virtual machine that wants to write to the the medium.

When the virtual machine is started up, it locks for reading all media it uses in read-only
mode. If some medium cannot be locked for reading, the startup procedure will fail. A medium
is typically locked for reading while it is used by a running virtual machine but has a depending
differencing image that receives the actual write operations. This way one base medium can have
multiple child differencing images which can be written to simultaneously. Read-only media such
as DVD and floppy images are also locked for reading only (so they can be in use by multiple
machines simultaneously).

A medium is also locked for reading when it is the source of a write operation such as cloneTo()
or mergeTo().

The medium locked for reading must be unlocked using the unlockRead() method. Calls to
lockRead() can be nested and must be followed by the same number of paired unlockRead()
calls.

This method sets the medium state (see state) to “LockedRead” on success. The medium’s
previous state must be one of “Created”, “Inaccessible” or “LockedRead”.

Locking an inaccessible medium is not an error; this method performs a logical lock that
prevents modifications of this medium through the VirtualBox API, not a physical file-system
lock of the underlying storage unit.

This method returns the current state of the medium before the operation.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Invalid medium state (e.g. not created, locked, inac-
cessible, creating, deleting).

5.50.12 lockWrite

MediumState IMedium::lockWrite()

Locks this medium for writing.

A write lock, as opposed to lockRead(), is exclusive: there may be only one client holding a
write lock, and there may be no read locks while the write lock is held. As a result, read-locking
fails if a write lock is held, and write-locking fails if either a read or another write lock is held.

When a medium is locked for writing, it cannot be modified from within VirtualBox, and it
is not guaranteed that the values of its properties are up-to-date. Any method that changes the
properties of this medium or contents of the storage unit will return an error (unless explicitly
stated otherwise).

When a virtual machine is started up, it locks for writing all media it uses to write data to. If
any medium could not be locked for writing, the startup procedure will fail. If a medium has
differencing images, then while the machine is running, only the last (“leaf”) differencing image
is locked for writing, whereas its parents are locked for reading only.

A medium is also locked for writing when it is the target of a write operation such as cloneTo()
or mergeTo().

The medium locked for writing must be unlocked using the unlockWrite() method. Write locks
cannot be nested.

170

5 Classes (interfaces)

This method sets the medium state (see state) to “LockedWrite” on success. The medium’s
previous state must be either “Created” or “Inaccessible”.

Locking an inaccessible medium is not an error; this method performs a logical lock that
prevents modifications of this medium through the VirtualBox API, not a physical file-system
lock of the underlying storage unit.

For both, success and failure, this method returns the current state of the medium before the
operation.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Invalid medium state (e.g. not created, locked, inac-
cessible, creating, deleting).

5.50.13 mergeTo

IProgress IMedium::mergeTo(
[in] IMedium target)

target Target medium.

Starts merging the contents of this medium and all intermediate differencing media in the
chain to the given target medium.

The target medium must be either a descendant of this medium or its ancestor (otherwise this
method will immediately return a failure). It follows that there are two logical directions of the
merge operation: from ancestor to descendant (forward merge) and from descendant to ancestor
(backward merge). Let us consider the following medium chain:

Base <- Diff_1 <- Diff_2

Here, calling this method on the Base medium object with Diff_2 as an argument will be a
forward merge; calling it on Diff_2 with Base as an argument will be a backward merge. Note
that in both cases the contents of the resulting medium will be the same, the only difference is
the medium object that takes the result of the merge operation. In case of the forward merge
in the above example, the result will be written to Diff_2; in case of the backward merge, the
result will be written to Base. In other words, the result of the operation is always stored in the
target medium.

Upon successful operation completion, the storage units of all media in the chain between this
(source) medium and the target medium, including the source medium itself, will be automati-
cally deleted and the relevant medium objects (including this medium) will become uninitialized.
This means that any attempt to call any of their methods or attributes will fail with the "Object
not ready" (E_ACCESSDENIED) error. Applied to the above example, the forward merge of
Base to Diff_2 will delete and uninitialize both Base and Diff_1 media. Note that Diff_2 in
this case will become a base medium itself since it will no longer be based on any other medium.

Considering the above, all of the following conditions must be met in order for the merge
operation to succeed:

e Neither this (source) medium nor any intermediate differencing medium in the chain be-
tween it and the target medium is attached to any virtual machine.

e Neither the source medium nor the target medium is an Immutable medium.

e The part of the medium tree from the source medium to the target medium is a linear
chain, i.e. all medium in this chain have exactly one child which is the next medium in
this chain. The only exception from this rule is the target medium in the forward merge
operation; it is allowed to have any number of child media because the merge operation
will not change its logical contents (as it is seen by the guest OS or by children).

e None of the involved media are in LockedRead or LockedWrite state.

171

5 Classes (interfaces)

Note: This (source) medium and all intermediates will be placed to Deleting state and
the target medium will be placed to LockedWrite state and for the duration of this
operation.

5.50.14 refreshState

MediumState IMedium::refreshState()

If the current medium state (see MediumState) is one of “Created”, “Inaccessible” or “Locke-
dRead”, then this performs an accessibility check on the medium and sets the value of the state
attribute accordingly; that value is also returned for convenience.

For all other state values, this does not perform a refresh but returns the state only.

The refresh, if performed, may take a long time (several seconds or even minutes, depending
on the storage unit location and format) because it performs an accessibility check of the storage
unit. This check may cause a significant delay if the storage unit of the given medium is, for
example, a file located on a network share which is not currently accessible due to connectivity
problems. In that case, the call will not return until a timeout interval defined by the host OS
for this operation expires. For this reason, it is recommended to never read this attribute on the
main Ul thread to avoid making the UI unresponsive.

If the last known state of the medium is “Created” and the accessibility check fails, then the
state would be set to “Inaccessible”, and lastAccessError may be used to get more details about
the failure. If the state of the medium is “LockedRead”, then it remains the same, and a non-
empty value of lastAccessError will indicate a failed accessibility check in this case.

Note that not all medium states are applicable to all medium types.

5.50.15 reset

IProgress IMedium::reset()

Starts erasing the contents of this differencing medium.

This operation will reset the differencing medium to its initial state when it does not contain
any sector data and any read operation is redirected to its parent medium. This automatically
gets called during VM power-up for every medium whose autoReset attribute is true.

The medium will be write-locked for the duration of this operation (see lockWrite()).

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: This is not a differencing medium.

e VBOX_E_INVALID_OBJECT_STATE: Medium is not in Created or Inaccessible state.

5.50.16 resize

IProgress IMedium::resize(
[in] long long logicalSize)

logicalSize New nominal capacity of the medium in bytes.

Starts resizing this medium. This means that the nominal size of the medium is set to the new
value. Both increasing and decreasing the size is possible, and there are no safety checks, since
VirtualBox does not make any assumptions about the medium contents.

Resizing usually needs additional disk space, and possibly also some temporary disk space.
Note that resize does not create a full temporary copy of the medium, so the additional disk
space requirement is usually much lower than using the clone operation.

This medium will be placed to LockedWrite state for the duration of this operation.

172

5 Classes (interfaces)

Please note that the results can be either returned straight away, or later as the result of the
background operation via the object returned via the progress parameter.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Medium format does not support resizing.

5.50.17 setiDs

void IMedium::setIDs(
[in] boolean setImageld,
[in] uuid imageld,
[in] boolean setParentld,
[in] uuid parentId)

setimageld Select whether a new image UUID is set or not.

imageld New UUID for the image. If an empty string is passed, then a new UUID is automatically
created, provided that setImageld is true. Specifying a zero UUID is not allowed.

setParentld Select whether a new parent UUID is set or not.

parentld New parent UUID for the image. If an empty string is passed, then a new UUID is
automatically created, provided setParentId is true. A zero UUID is valid.

Changes the UUID and parent UUID for a hard disk medium.

5.50.18 setProperties

void IMedium::setProperties(
[in] wstring names[],
[in] wstring values[])

names Names of properties to set.

values Values of properties to set.

Sets values for a group of properties in one call.

The names of the properties to set are passed in the names array along with the new values
for them in the values array. Both arrays have the same number of elements with each elemend
at the given index in the first array corresponding to an element at the same index in the second
array.

If there is at least one property name in names that is not valid, the method will fail before
changing the values of any other properties from the names array.

Using this method over setProperty() is preferred if you need to set several properties at once
since it will result into less IPC calls.

The list of all properties supported by the given medium format can be obtained with
IMediumFormat::describeProperties().

Note that setting the property value to null or an empty string is equivalent to deleting the
existing value. A default value (if it is defined for this property) will be used by the format
backend in this case.

5.50.19 setProperty

void IMedium::setProperty(
[in] wstring name,
[in] wstring value)

173

5 Classes (interfaces)

name Name of the property to set.

value Property value to set.

Sets the value of the custom medium property with the given name.

The list of all properties supported by the given medium format can be obtained with
IMediumFormat::describeProperties().

Note that setting the property value to null or an empty string is equivalent to deleting the
existing value. A default value (if it is defined for this property) will be used by the format
backend in this case.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Requested property does not exist (not supported by the
format).

e E_INVALIDARG: name is null or empty.

5.50.20 unlockRead

MediumState IMedium::unlockRead()

Cancels the read lock previously set by lockRead().

For both success and failure, this method returns the current state of the medium after the
operation.

See lockRead() for more details.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Medium not locked for reading.

5.50.21 unlockWrite

MediumState IMedium::unlockWrite()

Cancels the write lock previously set by lockWrite().

For both success and failure, this method returns the current state of the medium after the
operation.

See lockWrite() for more details.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Medium not locked for writing.

5.51 IMediumAttachment

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

The IMediumAttachment interface links storage media to virtual machines. For each medium
(IMedium) which has been attached to a storage controller (IStorageController) of a machine
(IMachine) via the IMachine::attachDevice() method, one instance of IMediumAttachment is
added to the machine’s IMachine::mediumAttachments[] array attribute.

Each medium attachment specifies the storage controller as well as a port and device number
and the IMedium instance representing a virtual hard disk or floppy or DVD image.

174

5 Classes (interfaces)

For removable media (DVDs or floppies), there are two additional options. For one, the
IMedium instance can be null to represent an empty drive with no media inserted (see
IMachine::mountMedium()); secondly, the medium can be one of the pseudo-media for host
drives listed in IHost::DVDDrives[] or IHost::floppyDrives[].

Attaching Hard Disks

Hard disks are attached to virtual machines using the IMachine::attachDevice() method and
detached using the IMachine::detachDevice() method. Depending on a medium’s type (see
IMedium::type), hard disks are attached either directly or indirectly.

When a hard disk is being attached directly, it is associated with the virtual machine and
used for hard disk operations when the machine is running. When a hard disk is being attached
indirectly, a new differencing hard disk linked to it is implicitly created and this differencing hard
disk is associated with the machine and used for hard disk operations. This also means that if
IMachine::attachDevice() performs a direct attachment then the same hard disk will be returned
in response to the subsequent IMachine::getMedium() call; however if an indirect attachment is
performed then IMachine::getMedium() will return the implicitly created differencing hard disk,
not the original one passed to IMachine::attachDevice(). In detail:

e Normal base hard disks that do not have children (i.e. differencing hard disks linked
to them) and that are not already attached to virtual machines in snapshots are attached
directly. Otherwise, they are attached indirectly because having dependent children or
being part of the snapshot makes it impossible to modify hard disk contents without break-
ing the integrity of the dependent party. The IMedium::readOnly attribute allows to quickly
determine the kind of the attachment for the given hard disk. Note that if a normal base
hard disk is to be indirectly attached to a virtual machine with snapshots then a special
procedure called smart attachment is performed (see below).

e Normal differencing hard disks are like normal base hard disks: they are attached directly
if they do not have children and are not attached to virtual machines in snapshots, and
indirectly otherwise. Note that the smart attachment procedure is never performed for
differencing hard disks.

e Immutable hard disks are always attached indirectly because they are designed to be non-
writable. If an immutable hard disk is attached to a virtual machine with snapshots then a
special procedure called smart attachment is performed (see below).

e Writethrough hard disks are always attached directly, also as designed. This also means
that writethrough hard disks cannot have other hard disks linked to them at all.

e Shareable hard disks are always attached directly, also as designed. This also means that
shareable hard disks cannot have other hard disks linked to them at all. They behave
almost like writethrough hard disks, except that shareable hard disks can be attached to
several virtual machines which are running, allowing concurrent accesses. You need special
cluster software running in the virtual machines to make use of such disks.

Note that the same hard disk, regardless of its type, may be attached to more than one virtual
machine at a time. In this case, the machine that is started first gains exclusive access to the hard
disk and attempts to start other machines having this hard disk attached will fail until the first
machine is powered down.

Detaching hard disks is performed in a deferred fashion. This means that the given hard disk
remains associated with the given machine after a successful IMachine::detachDevice() call until
IMachine::saveSettings() is called to save all changes to machine settings to disk. This deferring
is necessary to guarantee that the hard disk configuration may be restored at any time by a call
to IMachine::discardSettings() before the settings are saved (committed).

Note that if IMachine::discardSettings() is called after indirectly attaching some hard disks
to the machine but before a call to IMachine::saveSettings() is made, it will implicitly delete

175

5 Classes (interfaces)

all differencing hard disks implicitly created by IMachine::attachDevice() for these indirect at-
tachments. Such implicitly created hard disks will also be immediately deleted when detached
explicitly using the IMachine::detachDevice() call if it is made before IMachine::saveSettings().
This implicit deletion is safe because newly created differencing hard disks do not contain any
user data.

However, keep in mind that detaching differencing hard disks that were implicitly created by
IMachine::attachDevice() before the last IMachine::saveSettings() call will not implicitly delete
them as they may already contain some data (for example, as a result of virtual machine exe-
cution). If these hard disks are no more necessary, the caller can always delete them explicitly
using IMedium::deleteStorage() after they are actually de-associated from this machine by the
IMachine::saveSettings() call.

Smart Attachment

When normal base or immutable hard disks are indirectly attached to a virtual machine then
some additional steps are performed to make sure the virtual machine will have the most recent
“view” of the hard disk being attached. These steps include walking through the machine’s
snapshots starting from the current one and going through ancestors up to the first snapshot.
Hard disks attached to the virtual machine in all of the encountered snapshots are checked
whether they are descendants of the given normal base or immutable hard disk. The first found
child (which is the differencing hard disk) will be used instead of the normal base or immutable
hard disk as a parent for creating a new differencing hard disk that will be actually attached to
the machine. And only if no descendants are found or if the virtual machine does not have any
snapshots then the normal base or immutable hard disk will be used itself as a parent for this
differencing hard disk.

It is easier to explain what smart attachment does using the following example:

BEFORE attaching B.vdi: AFTER attaching B.vdi:
Snapshot 1 (B.vdi) Snapshot 1 (B.vdi)
Snapshot 2 (D1->B.vdi) Snapshot 2 (D1->B.vdi)
Snapshot 3 (D2->D1.vdi) Snapshot 3 (D2->D1.vdi)
Snapshot 4 (none) Snapshot 4 (none)
CurState (none) CurState (D3->D2.vdi)
NOT

CurState (D3->B.vdi)

The first column is the virtual machine configuration before the base hard disk B.vdi is at-
tached, the second column shows the machine after this hard disk is attached. Constructs like
D1->B.vdi and similar mean that the hard disk that is actually attached to the machine is a
differencing hard disk, D1.vdi, which is linked to (based on) another hard disk, B.vdi.

As we can see from the example, the hard disk B.vdi was detached from the machine before
taking Snapshot 4. Later, after Snapshot 4 was taken, the user decides to attach B.vdi again.
B.vdi has dependent child hard disks (D1.vdi, D2.vdi), therefore it cannot be attached directly
and needs an indirect attachment (i.e. implicit creation of a new differencing hard disk). Due
to the smart attachment procedure, the new differencing hard disk (D3.vdi) will be based on
D2.vdi, not on B.vdi itself, since D2.vdi is the most recent view of B.vdi existing for this
snapshot branch of the given virtual machine.

Note that if there is more than one descendant hard disk of the given base hard disk found in
a snapshot, and there is an exact device, channel and bus match, then this exact match will be
used. Otherwise, the youngest descendant will be picked up.

There is one more important aspect of the smart attachment procedure which is not related
to snapshots at all. Before walking through the snapshots as described above, the backup
copy of the current list of hard disk attachment is searched for descendants. This backup
copy is created when the hard disk configuration is changed for the first time after the last

176

5 Classes (interfaces)

IMachine::saveSettings() call and used by IMachine::discardSettings() to undo the recent hard
disk changes. When such a descendant is found in this backup copy, it will be simply re-attached
back, without creating a new differencing hard disk for it. This optimization is necessary to make
it possible to re-attach the base or immutable hard disk to a different bus, channel or device slot
without losing the contents of the differencing hard disk actually attached to the machine in
place of it.

5.51.1 Attributes
5.51.1.1 medium (read-only)

IMedium IMediumAttachment::medium

Medium object associated with this attachment; it can be null for removable devices.

5.51.1.2 controller (read-only)

wstring IMediumAttachment::controller

Name of the storage controller of this attachment; this refers to one of the controllers in
IMachine::storageControllers[] by name.

5.51.1.3 port (read-only)

long IMediumAttachment::port

Port number of this attachment. See IMachine::attachDevice() for the meaning of this value
for the different controller types.

5.51.1.4 device (read-only)

long IMediumAttachment::device

Device slot number of this attachment. See IMachine::attachDevice() for the meaning of this
value for the different controller types.

5.51.1.5 type (read-only)
DeviceType IMediumAttachment::type

Device type of this attachment.
5.51.1.6 passthrough (read-only)
boolean IMediumAttachment::passthrough

Pass I/0 requests through to a device on the host.
5.51.1.7 bandwidthGroup (read-only)
IBandwidthGroup IMediumAttachment: :bandwidthGroup

The bandwidth group this medium attachment is assigned to.

177

5 Classes (interfaces)

5.52 IMediumChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a medium attachment changes.

5.52.1 Attributes
5.52.1.1 mediumAttachment (read-only)
IMediumAttachment IMediumChangedEvent::mediumAttachment

Medium attachment that is subject to change.

5.53 IMediumFormat

The IMediumFormat interface represents a medium format.
Each medium format has an associated backend which is used to handle media stored in this
format. This interface provides information about the properties of the associated backend.
Each medium format is identified by a string represented by the id attribute. This string is
used in calls like IVirtualBox::createHardDisk() to specify the desired format.
The list of all supported medium formats can be obtained using ISystemProperties::mediumFormats[].
See also: IMedium

5.53.1 Attributes
5.53.1.1 id (read-only)
wstring IMediumFormat::id

Identifier of this format.
The format identifier is a non-null non-empty ASCII string. Note that this string is case-
insensitive. This means that, for example, all of the following strings:

"WDI"
nydi®
"dT"

refer to the same medium format.

This string is used in methods of other interfaces where it is necessary to specify a medium
format, such as IVirtualBox::createHardDisk().
5.53.1.2 name (read-only)

wstring IMediumFormat::name

Human readable description of this format.
Mainly for use in file open dialogs.

5.53.1.3 capabilities (read-only)
unsigned long IMediumFormat::capabilities

Capabilities of the format as a set of bit flags.
For the meaning of individual capability flags see MediumFormatCapabilities.

178

5 Classes (interfaces)

5.53.2 describeFileExtensions

void IMediumFormat::describeFileExtensions(
[out] wstring extensions[],
[out] DeviceType typel])

extensions The array of supported extensions.

type The array which indicates the device type for every given extension.

Returns two arrays describing the supported file extensions.

The first array contains the supported extensions and the seconds one the type each extension
supports. Both have the same size.

Note that some backends do not work on files, so this array may be empty.

See also: IMediumFormat::capabilities

5.53.3 describeProperties

void IMediumFormat::describeProperties(
[out] wstring names[],
[out] wstring description[],
[out] DataType types[],
[out] unsigned long flagsI[],
[out] wstring defaults[])

names Array of property names.
description Array of property descriptions.
types Array of property types.

flags Array of property flags.

defaults Array of default property values.

Returns several arrays describing the properties supported by this format.

An element with the given index in each array describes one property. Thus, the number
of elements in each returned array is the same and corresponds to the number of supported
properties.

The returned arrays are filled in only if the Properties flag is set. All arguments must be
non-null.

See also: DataTypeSee also: DataFlags

5.54 IMediumRegisteredEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

The given medium was registered or unregistered within this VirtualBox installation.

5.54.1 Attributes
5.54.1.1 mediumid (read-only)

uuid IMediumRegisteredEvent::mediumId

ID of the medium this event relates to.

179

5 Classes (interfaces)

5.54.1.2 mediumType (read-only)

DeviceType IMediumRegisteredEvent::mediumType
Type of the medium this event relates to.

5.54.1.3 registered (read-only)

boolean IMediumRegisteredEvent::registered

If true, the medium was registered, otherwise it was unregistered.

5.55 IMouse

The IMouse interface represents the virtual machine’s mouse. Used in IConsole::mouse.
Through this interface, the virtual machine’s virtual mouse can be controlled.

5.55.1 Attributes
5.55.1.1 absoluteSupported (read-only)

boolean IMouse::absoluteSupported

Whether the guest OS supports absolute mouse pointer positioning or not.

Note: You can use the IMouseCapabilityChangedEvent event to be instantly informed
about changes of this attribute during virtual machine execution.

See also: putMouseEventAbsolute()

5.55.1.2 relativeSupported (read-only)

boolean IMouse::relativeSupported

Whether the guest OS supports relative mouse pointer positioning or not.

Note: You can use the IMouseCapabilityChangedEvent event to be instantly informed
about changes of this attribute during virtual machine execution.

See also: putMouseEvent()

5.55.1.3 needsHostCursor (read-only)

boolean IMouse: :needsHostCursor

Whether the guest OS can currently switch to drawing it’s own mouse cursor on demand.

Note: You can use the IMouseCapabilityChangedEvent event to be instantly informed
about changes of this attribute during virtual machine execution.

See also: putMouseEvent()

180

5 Classes (interfaces)

5.55.1.4 eventSource (read-only)

IEventSource IMouse::eventSource

Event source for mouse events.

5.55.2 putMouseEvent

void IMouse: :putMouseEvent (
[in] long dx,
[in] long dy,
[in] long dz,
[in] long dw,
[in] long buttonState)

dx Amount of pixels the mouse should move to the right. Negative values move the mouse to
the left.

dy Amount of pixels the mouse should move downwards. Negative values move the mouse
upwards.

dz Amount of mouse wheel moves. Positive values describe clockwise wheel rotations, negative
values describe counterclockwise rotations.

dw Amount of horizontal mouse wheel moves. Positive values describe a movement to the left,
negative values describe a movement to the right.

buttonState The current state of mouse buttons. Every bit represents a mouse button as follows:
Bit 0 (0x01)left mouse buttonBit 1 (0x02)right mouse buttonBit 2 (0x04)middle mouse
button A value of 1 means the corresponding button is pressed. otherwise it is released.

Initiates a mouse event using relative pointer movements along x and y axis.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Console not powered up.

e VBOX_E_IPRT_ERROR: Could not send mouse event to virtual mouse.

5.55.3 putMouseEventAbsolute

void IMouse: :putMouseEventAbsolute(
[in] long x,
[in] long vy,
[in] long dz,
[in] long dw,
[in] long buttonState)

X X coordinate of the pointer in pixels, starting from 1.
y Y coordinate of the pointer in pixels, starting from 1.

dz Amount of mouse wheel moves. Positive values describe clockwise wheel rotations, negative
values describe counterclockwise rotations.

dw Amount of horizontal mouse wheel moves. Positive values describe a movement to the left,
negative values describe a movement to the right.

buttonState The current state of mouse buttons. Every bit represents a mouse button as follows:
Bit 0 (0x01)left mouse buttonBit 1 (0x02)right mouse buttonBit 2 (0x04)middle mouse
button A value of 1 means the corresponding button is pressed. otherwise it is released.

181

5 Classes (interfaces)

Positions the mouse pointer using absolute x and y coordinates. These coordinates are ex-
pressed in pixels and start from [1,1] which corresponds to the top left corner of the virtual
display.

Note: This method will have effect only if absolute mouse positioning is supported by
the guest OS.

See also: absoluteSupported
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Console not powered up.

e VBOX_E_IPRT_ERROR: Could not send mouse event to virtual mouse.

5.56 IMouseCapabilityChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the mouse capabilities reported by the guest have changed. The new capa-
bilities are passed.

5.56.1 Attributes
5.56.1.1 supportsAbsolute (read-only)

boolean IMouseCapabilityChangedEvent::supportsAbsolute

Supports absolute coordinates.

5.56.1.2 supportsRelative (read-only)

boolean IMouseCapabilityChangedEvent::supportsRelative

Supports relative coordinates.

5.56.1.3 needsHostCursor (read-only)

boolean IMouseCapabilityChangedEvent::needsHostCursor

If host cursor is needed.

5.57 IMousePointerShapeChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the guest mouse pointer shape has changed. The new shape data is given.

182

5 Classes (interfaces)

5.57.1 Attributes
5.57.1.1 visible (read-only)
boolean IMousePointerShapeChangedEvent::visible

Flag whether the pointer is visible.

5.57.1.2 alpha (read-only)
boolean IMousePointerShapeChangedEvent::alpha

Flag whether the pointer has an alpha channel.

5.57.1.3 xhot (read-only)
unsigned long IMousePointerShapeChangedEvent: :xhot

The pointer hot spot X coordinate.

5.57.1.4 yhot (read-only)
unsigned long IMousePointerShapeChangedEvent::yhot

The pointer hot spot Y coordinate.

5.57.1.5 width (read-only)
unsigned long IMousePointerShapeChangedEvent: :width

Width of the pointer shape in pixels.

5.57.1.6 height (read-only)
unsigned long IMousePointerShapeChangedEvent::height

Height of the pointer shape in pixels.

5.57.1.7 shape (read-only)
octet IMousePointerShapeChangedEvent: :shapel]

Shape buffer arrays.

The shape buffer contains a 1-bpp (bits per pixel) AND mask followed by a 32-bpp XOR (color)
mask.

For pointers without alpha channel the XOR mask pixels are 32 bit values: (Isb)BGRO(msb).
For pointers with alpha channel the XOR mask consists of (Isb)BGRA(msb) 32 bit values.

An AND mask is used for pointers with alpha channel, so if the callback does not support
alpha, the pointer could be displayed as a normal color pointer.

The AND mask is a 1-bpp bitmap with byte aligned scanlines. The size of the AND mask
therefore is cbAnd = (width + 7) / 8 * height. The padding bits at the end of each scanline
are undefined.

The XOR mask follows the AND mask on the next 4-byte aligned offset: uint8_t *pXor =
pAnd + (cbAnd + 3) & 3. Bytes in the gap between the AND and the XOR mask are undefined.
The XOR mask scanlines have no gap between them and the size of the XOR mask is: cXor =
width = 4 * height.

Note: If shape is 0, only the pointer visibility is changed.

183

5 Classes (interfaces)

5.58 INATEngine

Interface for managing a NAT engine which is used with a virtual machine. This allows
for changing NAT behavior such as port-forwarding rules. This interface is used in the
INetworkAdapter::natDriver attribute.

5.58.1 Attributes
5.58.1.1 network (read/write)

wstring INATEngine::network

The network attribute of the NAT engine (the same value is used with built-in DHCP server to
fill corresponding fields of DHCP leases).

5.58.1.2 hostIP (read/write)

wstring INATEngine::hostIP

IP of host interface to bind all opened sockets to.

Note: Changing this does not change binding of port forwarding.

5.58.1.3 tftpPrefix (read/write)

wstring INATEngine::tftpPrefix

TFTP prefix attribute which is used with the built-in DHCP server to fill the corresponding
fields of DHCP leases.

5.58.1.4 tftpBootFile (read/write)

wstring INATEngine::tftpBootFile

TFTP boot file attribute which is used with the built-in DHCP server to fill the corresponding
fields of DHCP leases.

5.58.1.5 tftpNextServer (read/write)

wstring INATEngine::tftpNextServer

TFTP server attribute which is used with the built-in DHCP server to fill the corresponding
fields of DHCP leases.

Note: The preferred form is IPv4 addresses.

5.58.1.6 aliasMode (read/write)

unsigned long INATEngine::aliasMode

184

5 Classes (interfaces)

5.58.1.7 dnsPassDomain (read/write)

boolean INATEngine::dnsPassDomain

Whether the DHCP server should pass the DNS domain used by the host.

5.58.1.8 dnsProxy (read/write)

boolean INATEngine::dnsProxy

Whether the DHCP server (and the DNS traffic by NAT) should pass the address of the DNS
proxy and process traffic using DNS servers registered on the host.

5.58.1.9 dnsUseHostResolver (read/write)

boolean INATEngine::dnsUseHostResolver

Whether the DHCP server (and the DNS traffic by NAT) should pass the address of the DNS
proxy and process traffic using the host resolver mechanism.

5.58.1.10 redirects (read-only)

wstring INATEngine::redirects[]

Array of NAT port-forwarding rules in string representation, in the following format:
“name,protocol id,host ip,host port,guest ip,guest port”.

5.58.2 addRedirect

void INATEngine::addRedirect(
[in] wstring name,
[in] NATProtocol proto,
[in] wstring hostIp,
[in] unsigned short hostPort,
[in] wstring guestIp,
[in] unsigned short guestPort)

name The name of the rule. An empty name is acceptable, in which case the NAT engine auto-
generates one using the other parameters.

proto Protocol handled with the rule.

hostlp IP of the host interface to which the rule should apply. An empty ip address is acceptable,
in which case the NAT engine binds the handling socket to any interface.

hostPort The port number to listen on.

guestlp The IP address of the guest which the NAT engine will forward matching packets to. An
empty IP address is acceptable, in which case the NAT engine will forward packets to the
first DHCP lease (x.x.x.15).

guestPort The port number to forward.

Adds a new NAT port-forwarding rule.

185

5 Classes (interfaces)

5.58.3 getNetworkSettings

void INATEngine::getNetworkSettings(
[out] unsigned long mtu,
[out] unsigned long sockSnd,
[out] unsigned long sockRcv,
[out] unsigned long TcpWndSnd,
[out] unsigned long TcpWndRcv)

mtu
sockSnd
sockRcv
TepWndSnd
TcpWndRcv

Returns network configuration of NAT engine. See setNetworkSettings() for parameter descrip-
tions.

5.58.4 removeRedirect

void INATEngine::removeRedirect(
[in] wstring name)

name The name of the rule to delete.

Removes a port-forwarding rule that was previously registered.

5.58.5 setNetworkSettings

void INATEngine::setNetworkSettings(
[in] unsigned long mtu,
[in] unsigned long sockSnd,
[in] unsigned long sockRcv,
[in] unsigned long TcpWndSnd,
[in] unsigned long TcpWndRcv)

mtu MTU (maximum transmission unit) of the NAT engine in bytes.
sockSnd Capacity of the socket send buffer in bytes when creating a new socket.
sockRcv Capacity of the socket receive buffer in bytes when creating a new socket.

TcpWndSnd Initial size of the NAT engine’s sending TCP window in bytes when establishing a
new TCP connection.

TcpWndRcv Initial size of the NAT engine’s receiving TCP window in bytes when establishing
a new TCP connection.

Sets network configuration of the NAT engine.

5.59 INATRedirectEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when NAT redirect rule added or removed.

186

5 Classes (interfaces)

5.59.1 Attributes
5.59.1.1 slot (read-only)

unsigned long INATRedirectEvent::slot

Adapter which NAT attached to.

5.59.1.2 remove (read-only)

boolean INATRedirectEvent::remove

Whether rule remove or add.

5.59.1.3 name (read-only)

wstring INATRedirectEvent: :name

Name of the rule.

5.59.1.4 proto (read-only)

NATProtocol INATRedirectEvent::proto

Protocol (TCP or UDP) of the redirect rule.

5.59.1.5 hostlp (read-only)

wstring INATRedirectEvent::hostIp

Host ip address to bind socket on.

5.59.1.6 hostPort (read-only)

long INATRedirectEvent::hostPort

Host port to bind socket on.

5.59.1.7 guestlp (read-only)

wstring INATRedirectEvent::guestIp

Guest ip address to redirect to.

5.59.1.8 guestPort (read-only)

long INATRedirectEvent::guestPort

Guest port to redirect to.

5.60 INetworkAdapter

Represents a virtual network adapter that is attached to a virtual machine. Each virtual machine
has a fixed number of network adapter slots with one instance of this attached to each of them.
Call IMachine::getNetworkAdapter() to get the network adapter that is attached to a given slot

in a given machine.

Each network adapter can be in one of five attachment modes, which are represented by the
NetworkAttachmentType enumeration; see the attachmentType attribute.

187

5 Classes (interfaces)

5.60.1 Attributes
5.60.1.1 adapterType (read/write)

NetworkAdapterType INetworkAdapter::adapterType

Type of the virtual network adapter. Depending on this value, VirtualBox will provide a differ-
ent virtual network hardware to the guest.

5.60.1.2 slot (read-only)

unsigned long INetworkAdapter::slot

Slot number this adapter is plugged into. Corresponds to the value you pass to
IMachine::getNetworkAdapter() to obtain this instance.

5.60.1.3 enabled (read/write)

boolean INetworkAdapter::enabled

Flag whether the network adapter is present in the guest system. If disabled, the virtual
guest hardware will not contain this network adapter. Can only be changed when the VM is not
running.

5.60.1.4 MACAddress (read/write)

wstring INetworkAdapter::MACAddress

Ethernet MAC address of the adapter, 12 hexadecimal characters. When setting it to null or
an empty string, VirtualBox will generate a unique MAC address.

5.60.1.5 attachmentType (read-only)

NetworkAttachmentType INetworkAdapter::attachmentType

5.60.1.6 hostlInterface (read/write)

wstring INetworkAdapter::hostInterface

Name of the host network interface the VM is attached to.

5.60.1.7 internalNetwork (read/write)

wstring INetworkAdapter::internalNetwork

Name of the internal network the VM is attached to.

5.60.1.8 NATNetwork (read/write)

wstring INetworkAdapter::NATNetwork

Name of the NAT network the VM is attached to.

5.60.1.9 VDENetwork (read/write)

wstring INetworkAdapter::VDENetwork

Name of the VDE switch the VM is attached to.

188

5 Classes (interfaces)

5.60.1.10 cableConnected (read/write)

boolean INetworkAdapter::cableConnected

Flag whether the adapter reports the cable as connected or not. It can be used to report offline
situations to a VM.

5.60.1.11 lineSpeed (read/write)

unsigned long INetworkAdapter::lineSpeed

Line speed reported by custom drivers, in units of 1 kbps.

5.60.1.12 traceEnabled (read/write)

boolean INetworkAdapter::traceEnabled

Flag whether network traffic from/to the network card should be traced. Can only be toggled
when the VM is turned off.

5.60.1.13 traceFile (read/write)

wstring INetworkAdapter::traceFile

Filename where a network trace will be stored. If not set, VBox-pid.pcap will be used.

5.60.1.14 natDriver (read-only)

INATEngine INetworkAdapter::natDriver

Points to the NAT engine which handles the network address translation for this interface. This
is active only when the interface actually uses NAT (see attachToNAT()).

5.60.1.15 bootPriority (read/write)

unsigned long INetworkAdapter::bootPriority

Network boot priority of the adapter. Priority 1 is highest. If not set, the priority is considered
to be at the lowest possible setting.

5.60.1.16 bandwidthLimit (read/write)

unsigned long INetworkAdapter::bandwidthLimit

Maximum throughput allowed for this network adapter, in units of 1 mbps. A zero value
means uncapped/unlimited.

5.60.2 attachToBridgedinterface

void INetworkAdapter::attachToBridgedInterface()

Attach the network adapter to a bridged host interface.

5.60.3 attachToHostOnlyinterface

void INetworkAdapter::attachToHostOnlyInterface()

Attach the network adapter to the host-only network.

189

5 Classes (interfaces)

5.60.4 attachTolnternalNetwork

void INetworkAdapter::attachToInternalNetwork()

Attach the network adapter to an internal network.

5.60.5 attachToNAT

void INetworkAdapter::attachToNAT()

Attach the network adapter to the Network Address Translation (NAT) interface.

5.60.6 attachToVDE

void INetworkAdapter::attachToVDE()

Attach the network adapter to a VDE network.

5.60.7 detach

void INetworkAdapter::detach()

Detach the network adapter

5.61 INetworkAdapterChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of one of the virtual network adapters changes. Interested callees
should use INetworkAdapter methods and attributes to find out what has changed.

5.61.1 Attributes
5.61.1.1 networkAdapter (read-only)

INetworkAdapter INetworkAdapterChangedEvent::networkAdapter

Network adapter that is subject to change.

5.62 IParallelPort

The IParallelPort interface represents the virtual parallel port device.

The virtual parallel port device acts like an ordinary parallel port inside the virtual machine.
This device communicates to the real parallel port hardware using the name of the parallel device
on the host computer specified in the #path attribute.

Each virtual parallel port device is assigned a base I/0 address and an IRQ number that will be
reported to the guest operating system and used to operate the given parallel port from within
the virtual machine.

See also: IMachine::getParallelPort

190

5 Classes (interfaces)

5.62.1 Attributes
5.62.1.1 slot (read-only)

unsigned long IParallelPort::slot

Slot number this parallel port is plugged into. Corresponds to the value you pass to
IMachine::getParallelPort() to obtain this instance.

5.62.1.2 enabled (read/write)

boolean IParallelPort::enabled

Flag whether the parallel port is enabled. If disabled, the parallel port will not be reported to
the guest OS.

5.62.1.3 I0Base (read/write)

unsigned long IParallelPort::IOBase

Base 1/0 address of the parallel port.

5.62.1.4 IRQ (read/write)

unsigned long IParallelPort::IRQ

IRQ number of the parallel port.

5.62.1.5 path (read/write)

wstring IParallelPort::path

Host parallel device name. If this parallel port is enabled, setting a null or an empty string as
this attribute’s value will result into an error.

5.63 IParallelPortChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of one of the virtual parallel ports changes. Interested callees
should use ISerialPort methods and attributes to find out what has changed.

5.63.1 Attributes
5.63.1.1 parallelPort (read-only)

IParallelPort IParallelPortChangedEvent::parallelPort

Parallel port that is subject to change.

191

5 Classes (interfaces)

5.64 IPciAddress

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Address on the PCI bus.

5.64.1 Attributes
5.64.1.1 bus (read/write)

short IPciAddress::bus

Bus number.

5.64.1.2 device (read/write)

short IPciAddress::device

Device number.

5.64.1.3 devFunction (read/write)

short IPciAddress::devFunction

Device function number.

5.64.2 aslLong

long IPciAddress::asLong()

Convert PCI address into long.

5.64.3 fromLong

void IPciAddress::fromLong(
[in] long number)

number

Make PCI address from long.

5.65 IPciDeviceAttachment

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Information about PCI attachments.

192

5 Classes (interfaces)

5.65.1 Attributes
5.65.1.1 name (read-only)

wstring IPciDeviceAttachment: :name

Device name.

5.65.1.2 isPhysicalDevice (read-only)

boolean IPciDeviceAttachment::isPhysicalDevice

If this is physical or virtual device.

5.65.1.3 hostAddress (read-only)

long IPciDeviceAttachment::hostAddress

Address of device on the host, applicable only to host devices.

5.65.1.4 guestAddress (read-only)

long IPciDeviceAttachment::guestAddress

Address of device on the guest.

5.66 IPerformanceCollector

The IPerformanceCollector interface represents a service that collects and stores performance
metrics data.

Performance metrics are associated with objects of interfaces like [Host and IMachine. Each
object has a distinct set of performance metrics. The set can be obtained with getMetrics().

Metric data is collected at the specified intervals and is retained internally. The interval and
the number of retained samples can be set with setupMetrics(). Both metric data and collection
settings are not persistent, they are discarded as soon as VBoxSVC process terminates. Moreover,
metric settings and data associated with a particular VM only exist while VM is running. They
disappear as soon as VM shuts down. It is not possible to set up metrics for machines that are
powered off. One needs to start VM first, then set up metric collection parameters.

Metrics are organized hierarchically, with each level separated by a slash (/) character. Gener-
ally, the scheme for metric names is like this:

Category/Metric[/SubMetric][:aggregation]

“Category/Metric” together form the base metric name. A base metric is the smallest unit for
which a sampling interval and the number of retained samples can be set. Only base metrics
can be enabled and disabled. All sub-metrics are collected when their base metric is collected.
Collected values for any set of sub-metrics can be queried with queryMetricsData().

For example “CPU/Load/User:avg” metric name stands for the “CPU” category, “Load” metric,
“User” submetric, “average” aggregate. An aggregate function is computed over all retained data.
Valid aggregate functions are:

e avg — average
e min — minimum

e max — maximum

193

5 Classes (interfaces)

When setting up metric parameters, querying metric data, enabling or disabling metrics wild-
cards can be used in metric names to specify a subset of metrics. For example, to select all
CPU-related metrics use CPU/x*, all averages can be queried using *:avg and so on. To query
metric values without aggregates *: can be used.

The valid names for base metrics are:

e CPU/Load
e CPU/MHz
e RAM/Usage
The general sequence for collecting and retrieving the metrics is:
e Obtain an instance of IPerformanceCollector with IVirtualBox::performanceCollector

e Allocate and populate an array with references to objects the metrics will be collected for.
Use references to IHost and IMachine objects.

e Allocate and populate an array with base metric names the data will be collected for.
e Call setupMetrics(). From now on the metric data will be collected and stored.
e Wait for the data to get collected.

e Allocate and populate an array with references to objects the metric values will be queried
for. You can re-use the object array used for setting base metrics.

e Allocate and populate an array with metric names the data will be collected for. Note that
metric names differ from base metric names.

e Call queryMetricsData(). The data that have been collected so far are returned. Note that
the values are still retained internally and data collection continues.

For an example of usage refer to the following files in VirtualBox SDK:

e Java: bindings/webservice/java/jax-ws/samples/metrictest.java

e Python: bindings/xpcom/python/sample/shellcommon.py

5.66.1 Attributes
5.66.1.1 metricNames (read-only)

wstring IPerformanceCollector::metricNames|[]

Array of unique names of metrics.

This array represents all metrics supported by the performance collector. Individual objects do
not necessarily support all of them. getMetrics() can be used to get the list of supported metrics
for a particular object.

5.66.2 disableMetrics

IPerformanceMetric[] IPerformanceCollector::disableMetrics(
[in] wstring metricNames[],
[in] $unknown objects[])

metricNames Metric name filter. Comma-separated list of metrics with wildcard support.

objects Set of objects to disable metrics for.

194

5 Classes (interfaces)

Turns off collecting specified base metrics. Returns an array of IPerformanceMetric describing
the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty object array
means all existing objects. If metric name array contains a single element and object
array contains many, the single metric name array element is applied to each object
array element to form metric/object pairs.

5.66.3 enableMetrics

IPerformanceMetric[] IPerformanceCollector::enableMetrics(
[in] wstring metricNames[],
[in] $unknown objects[])

metricNames Metric name filter. Comma-separated list of metrics with wildcard support.
objects Set of objects to enable metrics for.

Turns on collecting specified base metrics. Returns an array of [PerformanceMetric describing
the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty object array
means all existing objects. If metric name array contains a single element and object
array contains many, the single metric name array element is applied to each object
array element to form metric/object pairs.

5.66.4 getMetrics

IPerformanceMetric[] IPerformanceCollector::getMetrics(
[in] wstring metricNames[],
[in] $unknown objects[])

metricNames Metric name filter. Currently, only a comma-separated list of metrics is supported.
objects Set of objects to return metric parameters for.

Returns parameters of specified metrics for a set of objects.

Note: Null metrics array means all metrics. Null object array means all existing
objects.

5.66.5 queryMetricsData

long[] IPerformanceCollector::queryMetricsData(
[in] wstring metricNames[],
[in] $unknown objects[],
[out] wstring returnMetricNames[],
[out] $unknown returnObjects[],
[out] wstring returnUnits[],
[out] unsigned long returnScales[],
[out] unsigned long returnSequenceNumbers[],
[out] unsigned long returnDatalndices[],
[out] unsigned long returnDatalLengths[])

195

5 Classes (interfaces)

metricNames Metric name filter. Comma-separated list of metrics with wildcard support.
objects Set of objects to query metrics for.

returnMetricNames Names of metrics returned in returnData.

returnObjects Objects associated with metrics returned in returnData.

returnUnits Units of measurement for each returned metric.

returnScales Divisor that should be applied to return values in order to get floating

point values. For example: (double)returnDatalreturnDataIndices[0]+i] /
returnScales[0] will retrieve the floating point value of i-th sample of the first met-
ric.

returnSequenceNumbers Sequence numbers of the first elements of value sequences of par-
ticular metrics returned in returnData. For aggregate metrics it is the sequence number
of the sample the aggregate started calculation from.

returnDatalndices Indices of the first elements of value sequences of particular metrics re-
turned in returnData.

returnDataLengths Lengths of value sequences of particular metrics.

Queries collected metrics data for a set of objects.

The data itself and related metric information are returned in seven parallel and one flat-
tened array of arrays. Elements of returnMetricNames, returnObjects, returnUnits,
returnScales, returnSequenceNumbers, returnDataIndices and returnDatalLengths
with the same index describe one set of values corresponding to a single metric.

The returnData parameter is a flattened array of arrays. Each start and length of a sub-
array is indicated by returnDataIndices and returnDatalLengths. The first value for metric
metricNames[i] is at returnData[returnIndices[i]].

Note: Null or empty metric name array means all metrics. Null or empty object array
means all existing objects. If metric name array contains a single element and object
array contains many, the single metric name array element is applied to each object
array element to form metric/object pairs.

Note: Data collection continues behind the scenes after call to @c queryMetrics-
Data. The return data can be seen as the snapshot of the current state at the time
of queryMetricsData call. The internally kept metric values are not cleared by the
call. This makes possible querying different subsets of metrics or aggregates with sub-
sequent calls. If periodic querying is needed it is highly suggested to query the values
with interval*count period to avoid confusion. This way a completely new set of data
values will be provided by each query.

5.66.6 setupMetrics

IPerformanceMetric[] IPerformanceCollector::setupMetrics(
[in] wstring metricNames[],
[in] $unknown objects[],
[in] unsigned long period,
[in] unsigned long count)

196

5 Classes (interfaces)

metricNames Metric name filter. Comma-separated list of metrics with wildcard support.
objects Set of objects to setup metric parameters for.
period Time interval in seconds between two consecutive samples of performance data.

count Number of samples to retain in performance data history. Older samples get discarded.

Sets parameters of specified base metrics for a set of objects. Returns an array of
IPerformanceMetric describing the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty object array
means all existing objects. If metric name array contains a single element and object
array contains many, the single metric name array element is applied to each object
array element to form metric/object pairs.

5.67 IPerformanceMetric

The IPerformanceMetric interface represents parameters of the given performance metric.

5.67.1 Attributes
5.67.1.1 metricName (read-only)

wstring IPerformanceMetric: :metricName

Name of the metric.

5.67.1.2 object (read-only)

$unknown IPerformanceMetric::object

Object this metric belongs to.

5.67.1.3 description (read-only)

wstring IPerformanceMetric::description

Textual description of the metric.

5.67.1.4 period (read-only)

unsigned long IPerformanceMetric::period

Time interval between samples, measured in seconds.

5.67.1.5 count (read-only)

unsigned long IPerformanceMetric::count

Number of recent samples retained by the performance collector for this metric.
When the collected sample count exceeds this number, older samples are discarded.

197

5 Classes (interfaces)

5.67.1.6 unit (read-only)

wstring IPerformanceMetric::unit

Unit of measurement.

5.67.1.7 minimumValue (read-only)

long IPerformanceMetric::minimumValue

Minimum possible value of this metric.

5.67.1.8 maximumValue (read-only)

long IPerformanceMetric::maximumValue

Maximum possible value of this metric.

5.68 IProgress

The IProgress interface is used to track and control asynchronous tasks within VirtualBox.

An instance of this is returned every time VirtualBox starts an asynchronous task (in other
words, a separate thread) which continues to run after a method call returns. For example,
IConsole::saveState(), which saves the state of a running virtual machine, can take a long time
to complete. To be able to display a progress bar, a user interface such as the VirtualBox graphical
user interface can use the IProgress object returned by that method.

Note that IProgress is a “read-only” interface in the sense that only the VirtualBox internals
behind the Main API can create and manipulate progress objects, whereas client code can only
use the IProgress object to monitor a task’s progress and, if cancelable is true, cancel the task by
calling cancel().

A task represented by IProgress consists of either one or several sub-operations that run se-
quentially, one by one (see operation and operationCount). Every operation is identified by a
number (starting from 0) and has a separate description.

You can find the individual percentage of completion of the current operation in
operationPercent and the percentage of completion of the task as a whole in percent.

Similarly, you can wait for the completion of a particular operation via waitForOperationCompletion()
or for the completion of the whole task via waitForCompletion().

5.68.1 Attributes
5.68.1.1 id (read-only)
uuid IProgress::id

ID of the task.

5.68.1.2 description (read-only)

wstring IProgress::description

Description of the task.

5.68.1.3 initiator (read-only)
$unknown IProgress::initiator

Initiator of the task.

198

5 Classes (interfaces)

5.68.1.4 cancelable (read-only)

boolean IProgress::cancelable

Whether the task can be interrupted.

5.68.1.5 percent (read-only)

unsigned long IProgress::percent

Current progress value of the task as a whole, in percent. This value depends on how many
operations are already complete. Returns 100 if completed is true.

5.68.1.6 timeRemaining (read-only)

long IProgress::timeRemaining

Estimated remaining time until the task completes, in seconds. Returns O once the task has
completed; returns -1 if the remaining time cannot be computed, in particular if the current
progress is 0.

Even if a value is returned, the estimate will be unreliable for low progress values. It will
become more reliable as the task progresses; it is not recommended to display an ETA before at
least 20% of a task have completed.

5.68.1.7 completed (read-only)

boolean IProgress::completed

Whether the task has been completed.

5.68.1.8 canceled (read-only)

boolean IProgress::canceled

Whether the task has been canceled.

5.68.1.9 resultCode (read-only)

long IProgress::resultCode

Result code of the progress task. Valid only if completed is true.

5.68.1.10 errorinfo (read-only)

IVirtualBoxErrorInfo IProgress::errorInfo

Extended information about the unsuccessful result of the progress operation. May be null if
no extended information is available. Valid only if completed is true and resultCode indicates a
failure.

5.68.1.11 operationCount (read-only)

unsigned long IProgress::operationCount

Number of sub-operations this task is divided into. Every task consists of at least one suboper-
ation.

199

5 Classes (interfaces)

5.68.1.12 operation (read-only)

unsigned long IProgress::operation

Number of the sub-operation being currently executed.

5.68.1.13 operationDescription (read-only)

wstring IProgress::operationDescription

Description of the sub-operation being currently executed.

5.68.1.14 operationPercent (read-only)

unsigned long IProgress::operationPercent
Progress value of the current sub-operation only, in percent.
5.68.1.15 operationWeight (read-only)
unsigned long IProgress::operationWeight
Weight value of the current sub-operation only.
5.68.1.16 timeout (read/write)
unsigned long IProgress::timeout

When non-zero, this specifies the number of milliseconds after which the operation will auto-
matically be canceled. This can only be set on cancelable objects.

5.68.2 cancel

void IProgress::cancel()

Cancels the task.

Note: If cancelable is false, then this method will fail.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Operation cannot be canceled.

5.68.3 setCurrentOperationProgress

void IProgress::setCurrentOperationProgress(
[in] unsigned long percent)

percent

Internal method, not to be called externally.

200

5 Classes (interfaces)

5.68.4 setNextOperation

void IProgress::setNextOperation(
[in] wstring nextOperationDescription,
[in] unsigned long nextOperationsWeight)

nextOperationDescription

nextOperationsWeight

Internal method, not to be called externally.

5.68.5 waitForCompletion

void IProgress::waitForCompletion(
[in] long timeout)

timeout Maximum time in milliseconds to wait or -1 to wait indefinitely.

Waits until the task is done (including all sub-operations) with a given timeout in milliseconds;
specify -1 for an indefinite wait.

Note that the VirtualBox/XPCOM/COM/native event queues of the calling thread are not pro-
cessed while waiting. Neglecting event queues may have dire consequences (degrade perfor-
mance, resource hogs, deadlocks, etc.), this is specially so for the main thread on platforms
using XPCOM. Callers are adviced wait for short periods and service their event queues between
calls, or to create a worker thread to do the waiting.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Failed to wait for task completion.

5.68.6 waitForOperationCompletion

void IProgress::waitForOperationCompletion(
[in] unsigned long operation,
[in] long timeout)

operation Number of the operation to wait for. Must be less than operationCount.

timeout Maximum time in milliseconds to wait or -1 to wait indefinitely.

Waits until the given operation is done with a given timeout in milliseconds; specify -1 for an
indefinite wait.

See for event queue considerations.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Failed to wait for operation completion.

5.69 IReusableEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Base abstract interface for all reusable events.

201

5 Classes (interfaces)

5.69.1 Attributes
5.69.1.1 generation (read-only)

unsigned long IReusableEvent::generation

Current generation of event, incremented on reuse.

5.69.2 reuse

void IReusableEvent::reuse()

Marks an event as reused, increments ’generation’, fields shall no longer be considered valid.

5.70 IRuntimeErrorEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when an error happens during the virtual machine execution.
There are three kinds of runtime errors:

e fatal
e non-fatal with retry

e non-fatal warnings

Fatal errors are indicated by the fatal parameter set to true. In case of fatal errors, the virtual
machine execution is always paused before calling this notification, and the notification handler
is supposed either to immediately save the virtual machine state using IConsole::saveState() or
power it off using IConsole::powerDown(). Resuming the execution can lead to unpredictable
results.

Non-fatal errors and warnings are indicated by the fatal parameter set to false. If the virtual
machine is in the Paused state by the time the error notification is received, it means that the user
can try to resume the machine execution after attempting to solve the problem that caused the
error. In this case, the notification handler is supposed to show an appropriate message to the
user (depending on the value of the id parameter) that offers several actions such as Retry, Save
or Power Off. If the user wants to retry, the notification handler should continue the machine
execution using the IConsole::resume() call. If the machine execution is not Paused during this
notification, then it means this notification is a warning (for example, about a fatal condition that
can happen very soon); no immediate action is required from the user, the machine continues its
normal execution.

Note that in either case the notification handler must not perform any action directly on a
thread where this notification is called. Everything it is allowed to do is to post a message to
another thread that will then talk to the user and take the corresponding action.

Currently, the following error identifiers are known:

e "HostMemoryLow"
e "HostAudioNotResponding"
e "VDIStorageFull"

e "3DSupportIncompatibleAdditions"

202

5 Classes (interfaces)

5.70.1 Attributes
5.70.1.1 fatal (read-only)

boolean IRuntimeErrorEvent::fatal

Whether the error is fatal or not.

5.70.1.2 id (read-only)

wstring IRuntimeErrorEvent::id

Error identifier.

5.70.1.3 message (read-only)

wstring IRuntimeErrorEvent::message

Optional error message.

5.71 ISerialPort

The ISerialPort interface represents the virtual serial port device.

The virtual serial port device acts like an ordinary serial port inside the virtual machine. This
device communicates to the real serial port hardware in one of two modes: host pipe or host
device.

In host pipe mode, the #path attribute specifies the path to the pipe on the host computer that
represents a serial port. The #server attribute determines if this pipe is created by the virtual
machine process at machine startup or it must already exist before starting machine execution.

In host device mode, the #path attribute specifies the name of the serial port device on the
host computer.

There is also a third communication mode: the disconnected mode. In this mode, the guest
OS running inside the virtual machine will be able to detect the serial port, but all port write
operations will be discarded and all port read operations will return no data.

See also: IMachine::getSerialPort

5.71.1 Attributes
5.71.1.1 slot (read-only)

unsigned long ISerialPort::slot

Slot number this serial port is plugged into. Corresponds to the value you pass to
IMachine::getSerialPort() to obtain this instance.

5.71.1.2 enabled (read/write)

boolean ISerialPort::enabled

Flag whether the serial port is enabled. If disabled, the serial port will not be reported to the
guest OS.

5.71.1.3 10Base (read/write)

unsigned long ISerialPort::IOBase

Base I/0 address of the serial port.

203

5 Classes (interfaces)

5.71.1.4 IRQ (read/write)

unsigned long ISerialPort::IRQ

IRQ number of the serial port.

5.71.1.5 hostMode (read/write)

PortMode ISerialPort::hostMode

How is this port connected to the host.

Note: Changing this attribute may fail if the conditions for path are not met.

5.71.1.6 server (read/write)

boolean ISerialPort::server

Flag whether this serial port acts as a server (creates a new pipe on the host) or as a client
(uses the existing pipe). This attribute is used only when hostMode is PortMode HostPipe.

5.71.1.7 path (read/write)

wstring ISerialPort::path

Path to the serial port’s pipe on the host when hostMode is PortMode HostPipe, or the host
serial device name when hostMode is PortMode HostDevice. For both cases, setting a null or
empty string as the attribute’s value is an error. Otherwise, the value of this property is ignored.

5.72 ISerialPortChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of one of the virtual serial ports changes. Interested callees
should use ISerialPort methods and attributes to find out what has changed.

5.72.1 Attributes
5.72.1.1 serialPort (read-only)

ISerialPort ISerialPortChangedEvent::serialPort

Serial port that is subject to change.

204

5 Classes (interfaces)

5.73 ISession

The ISession interface represents a client process and allows for locking virtual machines (repre-
sented by IMachine objects) to prevent conflicting changes to the machine.

Any caller wishing to manipulate a virtual machine needs to create a session object first, which
lives in its own process space. Such session objects are then associated with IMachine objects
living in the VirtualBox server process to coordinate such changes.

There are two typical scenarios in which sessions are used:

e To alter machine settings or control a running virtual machine, one needs to lock a machine
for a given session (client process) by calling IMachine::lockMachine().

Whereas multiple sessions may control a running virtual machine, only one process can
obtain a write lock on the machine to prevent conflicting changes. A write lock is also
needed if a process wants to actually run a virtual machine in its own context, such as the
VirtualBox GUI or VBoxHeadless front-ends. They must also lock a machine for their own
sessions before they are allowed to power up the virtual machine.

As a result, no machine settings can be altered while another process is already using
it, either because that process is modifying machine settings or because the machine is
running.

e To start a VM using one of the existing VirtualBox front-ends (e.g. the VirtualBox GUI or
VBoxHeadless), one would use IMachine::launchVMProcess(), which also takes a session
object as its first parameter. This session then identifies the caller and lets the caller control
the started machine (for example, pause machine execution or power it down) as well as
be notified about machine execution state changes.

How sessions objects are created in a client process depends on whether you use the Main API
via COM or via the webservice:

e When using the COM API directly, an object of the Session class from the VirtualBox type
library needs to be created. In regular COM C++ client code, this can be done by calling
createlLocalObject(), a standard COM API. This object will then act as a local session
object in further calls to open a session.

e In the webservice, the session manager (IWebsessionManager) instead creates a session ob-
ject automatically whenever IWebsessionManager::logon() is called. A managed object ref-
erence to that session object can be retrieved by calling IWebsessionManager::getSessionObject().

5.73.1 Attributes
5.73.1.1 state (read-only)
SessionState ISession::state

Current state of this session.

5.73.1.2 type (read-only)
SessionType ISession::type
Type of this session. The value of this attribute is valid only if the session currently has a
machine locked (i.e. its state is Locked), otherwise an error will be returned.
5.73.1.3 machine (read-only)
IMachine ISession::machine

Machine object associated with this session.

205

5 Classes (interfaces)

5.73.1.4 console (read-only)

IConsole ISession::console

Console object associated with this session.

5.73.2 unlockMachine

void ISession::unlockMachine()

Unlocks a machine that was previously locked for the current session.

Calling this method is required every time a machine has been locked for a particular session
using the IMachine::launchVMProcess() or IMachine::lockMachine() calls. Otherwise the state
of the machine will be set to Aborted on the server, and changes made to the machine settings
will be lost.

Generally, it is recommended to unlock all machines explicitly before terminating the applica-
tion (regardless of the reason for the termination).

Note: Do not expect the session state (state to return to “Unlocked” immediately after
you invoke this method, particularly if you have started a new VM process. The session
state will automatically return to “Unlocked” once the VM is no longer executing, which
can of course take a very long time.

If this method fails, the following error codes may be reported:

e E_UNEXPECTED: Session is not locked.

5.74 I1SessionStateChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

The state of the session for the given machine was changed. See also: IMachine::sessionState

5.74.1 Attributes
5.74.1.1 state (read-only)

SessionState ISessionStateChangedEvent::state

New session state.

5.75 ISharedFolder

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

The ISharedFolder interface represents a folder in the host computer’s file system accessible
from the guest OS running inside a virtual machine using an associated logical name.
There are three types of shared folders:

206

5 Classes (interfaces)

e Global (IVirtualBox::sharedFolders[]), shared folders available to all virtual machines.

e Permanent (IMachine::sharedFolders[]), VM-specific shared folders available to the given
virtual machine at startup.

e Transient (IConsole::sharedFolders[]), VM-specific shared folders created in the session
context (for example, when the virtual machine is running) and automatically discarded
when the session is closed (the VM is powered off).

Logical names of shared folders must be unique within the given scope (global, permanent or
transient). However, they do not need to be unique across scopes. In this case, the definition of
the shared folder in a more specific scope takes precedence over definitions in all other scopes.
The order of precedence is (more specific to more general):

1. Transient definitions
2. Permanent definitions
3. Global definitions

For example, if MyMachine has a shared folder named C_DRIVE (that points to C:\\), then
creating a transient shared folder named C_DRIVE (that points to C:\\\\WINDOWS) will change
the definition of C_DRIVE in the guest OS so that \\\\VBOXSVR\\C_DRIVE will give access to
C:\\WINDOWS instead of C:\\ on the host PC. Removing the transient shared folder C_DRIVE
will restore the previous (permanent) definition of C_DRIVE that points to C:\\ if it still exists.

Note that permanent and transient shared folders of different machines are in different name
spaces, so they don’t overlap and don’t need to have unique logical names.

’ Note: Global shared folders are not implemented in the current version of the product.

5.75.1 Attributes
5.75.1.1 name (read-only)

wstring ISharedFolder::name

Logical name of the shared folder.

5.75.1.2 hostPath (read-only)

wstring ISharedFolder::hostPath

Full path to the shared folder in the host file system.

5.75.1.3 accessible (read-only)

boolean ISharedFolder::accessible

Whether the folder defined by the host path is currently accessible or not. For example, the
folder can be inaccessible if it is placed on the network share that is not available by the time
this property is read.

5.75.1.4 writable (read-only)

boolean ISharedFolder::writable

Whether the folder defined by the host path is writable or not.

207

5 Classes (interfaces)

5.75.1.5 autoMount (read-only)

boolean ISharedFolder::autoMount

Whether the folder gets automatically mounted by the guest or not.

5.75.1.6 lastAccessError (read-only)

wstring ISharedFolder::lastAccessError

Text message that represents the result of the last accessibility check.

Accessibility checks are performed each time the accessible attribute is read. An empty string
is returned if the last accessibility check was successful. A non-empty string indicates a failure
and should normally describe a reason of the failure (for example, a file read error).

5.76 ISharedFolderChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a shared folder is added or removed. The scope argument defines
one of three scopes: global shared folders (Global), permanent shared folders of the machine
(Machine) or transient shared folders of the machine (Session). Interested callees should use
query the corresponding collections to find out what has changed.

5.76.1 Attributes
5.76.1.1 scope (read-only)

Scope ISharedFolderChangedEvent: :scope

Scope of the notification.

5.77 1IShowWindowEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a call to IMachine::showConsoleWindow() requests the console window to
be activated and brought to foreground on the desktop of the host PC.

This notification should cause the VM console process to perform the requested action as
described above. If it is impossible to do it at a time of this notification, this method should
return a failure.

Note that many modern window managers on many platforms implement some sort of focus
stealing prevention logic, so that it may be impossible to activate a window without the help
of the currently active application (which is supposedly an initiator of this notification). In this
case, this method must return a non-zero identifier that represents the top-level window of the
VM console process. The caller, if it represents a currently active process, is responsible to use
this identifier (in a platform-dependent manner) to perform actual window activation.

This method must set winId to zero if it has performed all actions necessary to complete the
request and the console window is now active and in foreground, to indicate that no further
action is required on the caller’s side.

208

5 Classes (interfaces)

5.77.1 Attributes
5.77.1.1 winld (read/write)

long long IShowWindowEvent::winId

Platform-dependent identifier of the top-level VM console window, or zero if this method has
performed all actions necessary to implement the show window semantics for the given platform
and/or this VirtualBox front-end.

5.78 ISnapshot

The ISnapshot interface represents a snapshot of the virtual machine.

Together with the differencing media that are created when a snapshot is taken, a machine
can be brought back to the exact state it was in when the snapshot was taken.

The ISnapshot interface has no methods, only attributes; snapshots are controlled through
methods of the IConsole interface which also manage the media associated with the snapshot.
The following operations exist:

e IConsole::takeSnapshot() creates a new snapshot by creating new, empty differencing im-
ages for the machine’s media and saving the VM settings and (if the VM is running) the
current VM state in the snapshot.

The differencing images will then receive all data written to the machine’s media, while
their parent (base) images remain unmodified after the snapshot has been taken (see
IMedium for details about differencing images). This simplifies restoring a machine to
the state of a snapshot: only the differencing images need to be deleted.

The current machine state is not changed by taking a snapshot except that IMachine::currentSnapshot
is set to the newly created snapshot, which is also added to the machine’s snapshots tree.

e IConsole::restoreSnapshot() resets a machine to the state of a previous snapshot by delet-
ing the differencing image of each of the machine’s media and setting the machine’s settings
and state to the state that was saved in the snapshot (if any).

This destroys the machine’s current state. After calling this, IMachine::currentSnapshot
points to the snapshot that was restored.

e IConsole::deleteSnapshot() deletes a snapshot without affecting the current machine state.

This does not change the current machine state, but instead frees the resources allocated
when the snapshot was taken: the settings and machine state file are deleted (if any), and
the snapshot’s differencing image for each of the machine’s media gets merged with its
parent image.

Neither the current machine state nor other snapshots are affected by this operation, except
that parent media will be modified to contain the disk data associated with the snapshot
being deleted.

When deleting the current snapshot, the IMachine::currentSnapshot attribute is set to the
current snapshot’s parent or NULL if it has no parent. Otherwise the attribute is unchanged.

Each snapshot contains a copy of virtual machine’s settings (hardware configuration etc.). This
copy is contained in an immutable (read-only) instance of IMachine which is available from the
snapshot’s machine attribute. When restoring the snapshot, these settings are copied back to the
original machine.

In addition, if the machine was running when the snapshot was taken (IMachine::state is
Running), the current VM state is saved in the snapshot (similarly to what happens when a VM’s

209

5 Classes (interfaces)

state is saved). The snapshot is then said to be online because when restoring it, the VM will be
running.

If the machine was in Saved saved, the snapshot receives a copy of the execution state file
(IMachine::stateFilePath).

Otherwise, if the machine was not running (PoweredOff or Aborted), the snapshot is offline; it
then contains a so-called “zero execution state”, representing a machine that is powered off.

5.78.1 Attributes
5.78.1.1 id (read-only)

uuid ISnapshot::id
UUID of the snapshot.

5.78.1.2 name (read/write)
wstring ISnapshot::name

Short name of the snapshot.

Note: Setting this attribute causes IMachine::saveSettings() to be called implicitly.

5.78.1.3 description (read/write)
wstring ISnapshot::description

Optional description of the snapshot.

Note: Setting this attribute causes IMachine::saveSettings() to be called implicitly.

5.78.1.4 timeStamp (read-only)
long long ISnapshot::timeStamp

Time stamp of the snapshot, in milliseconds since 1970-01-01 UTC.

5.78.1.5 online (read-only)
boolean ISnapshot::online

true if this snapshot is an online snapshot and false otherwise.

When this attribute is true, the IMachine::stateFilePath attribute of the machine object as-
sociated with this snapshot will point to the saved state file. Otherwise, it will be an empty
string.

5.78.1.6 machine (read-only)

IMachine ISnapshot::machine

Virtual machine this snapshot is taken on. This object stores all settings the machine had when
taking this snapshot.

Note: The returned machine object is immutable, i.e. no any settings can be changed.

210

5 Classes (interfaces)

5.78.1.7 parent (read-only)

ISnapshot ISnapshot::parent

Parent snapshot (a snapshot this one is based on), or null if the snapshot has no parent (i.e.
is the first snapshot).

5.78.1.8 children (read-only)

ISnapshot ISnapshot::children|[]

Child snapshots (all snapshots having this one as a parent). By inspecting this attribute starting
with a machine’s root snapshot (which can be obtained by calling IMachine::findSnapshot() with
a null UUID), a machine’s snapshots tree can be iterated over.

5.79 ISnapshotChangedEvent (ISnapshotEvent)

Note: This interface extends ISnapshotEvent and therefore supports all its methods
and attributes as well.

Snapshot properties (name and/or description) have been changed. See also: ISnapshot

5.80 ISnapshotDeletedEvent (ISnapshotEvent)

Note: This interface extends ISnapshotEvent and therefore supports all its methods
and attributes as well.

Snapshot of the given machine has been deleted.

Note: This notification is delivered after the snapshot object has been uninitialized on
the server (so that any attempt to call its methods will return an error).

See also: ISnapshot

5.81 ISnapshotEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Base interface for all snapshot events.

5.81.1 Attributes
5.81.1.1 snapshotld (read-only)

uuid ISnapshotEvent::snapshotId

ID of the snapshot this event relates to.

211

5 Classes (interfaces)

5.82 ISnapshotTakenEvent (ISnapshotEvent)

Note: This interface extends ISnapshotEvent and therefore supports all its methods
and attributes as well.

A new snapshot of the machine has been taken. See also: ISnapshot

5.83 IStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the execution state of the machine has changed. The new state is given.

5.83.1 Attributes
5.83.1.1 state (read-only)

MachineState IStateChangedEvent::state

New machine state.

5.84 IStorageController

Represents a storage controller that is attached to a virtual machine (IMachine). Just as drives
(hard disks, DVDs, FDs) are attached to storage controllers in a real computer, virtual drives
(represented by IMediumAttachment) are attached to virtual storage controllers, represented by
this interface.

As opposed to physical hardware, VirtualBox has a very generic concept of a storage controller,
and for purposes of the Main AP, all virtual storage is attached to virtual machines via instances
of this interface. There are five types of such virtual storage controllers: IDE, SCSI, SATA, SAS
and Floppy (see bus). Depending on which of these four is used, certain sub-types may be
available and can be selected in controllerType.

Depending on these settings, the guest operating system might see significantly different vir-
tual hardware.

5.84.1 Attributes
5.84.1.1 name (read-only)

wstring IStorageController::name

Name of the storage controller, as originally specified with IMachine::addStorageController().
This then uniquely identifies this controller with other method calls such as IMachine::attachDevice()
and IMachine::mountMedium().

5.84.1.2 maxDevicesPerPortCount (read-only)

unsigned long IStorageController: :maxDevicesPerPortCount

Maximum number of devices which can be attached to one port.

212

5 Classes (interfaces)

5.84.1.3 minPortCount (read-only)

unsigned long IStorageController::minPortCount

Minimum number of ports that portCount can be set to.

5.84.1.4 maxPortCount (read-only)

unsigned long IStorageController::maxPortCount

Maximum number of ports that portCount can be set to.

5.84.1.5 instance (read/write)

unsigned long IStorageController::instance

The instance number of the device in the running VM.

5.84.1.6 portCount (read/write)

unsigned long IStorageController::portCount

The number of currently usable ports on the controller. The minimum and maximum number
of ports for one controller are stored in minPortCount and maxPortCount.

5.84.1.7 bus (read-only)

StorageBus IStorageController::bus

The bus type of the storage controller (IDE, SATA, SCSI, SAS or Floppy).

5.84.1.8 controllerType (read/write)

StorageControllerType IStorageController::controllerType

The exact variant of storage controller hardware presented to the guest. Depending on this
value, VirtualBox will provide a different virtual storage controller hardware to the guest. For
SATA, SAS and floppy controllers, only one variant is available, but for IDE and SCSI, there are
several.

For SCSI controllers, the default type is LsiLogic.

5.84.1.9 useHostlOCache (read/write)

boolean IStorageController::useHostIOCache

If true, the storage controller emulation will use a dedicated I/O thread, enable the host I/0
caches and use synchronous file APIs on the host. This was the only option in the API before
VirtualBox 3.2 and is still the default for IDE controllers.

If false, the host I/0 cache will be disabled for image files attached to this storage controller.
Instead, the storage controller emulation will use asynchronous I/O APIs on the host. This makes
it possible to turn off the host I/0 caches because the emulation can handle unaligned access to
the file. This should be used on OS X and Linux hosts if a high 1/0 load is expected or many
virtual machines are running at the same time to prevent I/O cache related hangs. This option
new with the API of VirtualBox 3.2 and is now the default for non-IDE storage controllers.

213

5 Classes (interfaces)

5.84.1.10 bootable (read-only)

boolean IStorageController::bootable

Returns whether it is possible to boot from disks attached to this controller.

5.84.2 getIDEEmulationPort

long IStorageController::getIDEEmulationPort(
[in] long devicePosition)

devicePosition

Gets the corresponding port number which is emulated as an IDE device. Works only with
SATA controllers.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: The devicePosition is not in the range O to 3.

e E_NOTIMPL: The storage controller type is not SATAIntelAhci.

5.84.3 setIDEEmulationPort

void IStorageController::setIDEEmulationPort(
[in] long devicePosition,
[in] long portNumber)

devicePosition

portNumber

Sets the port number which is emulated as an IDE device. Works only with SATA controllers.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: The devicePosition is not in the range O to 3 or the portNumber is not
in the range 0 to 29.

e E_NOTIMPL: The storage controller type is not SATAIntelAhci.

5.85 IStorageControllerChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a medium attachment changes.

5.86 ISystemProperties

The ISystemProperties interface represents global properties of the given VirtualBox installation.
These properties define limits and default values for various attributes and parameters. Most
of the properties are read-only, but some can be changed by a user.

214

5 Classes (interfaces)

5.86.1 Attributes
5.86.1.1 minGuestRAM (read-only)

unsigned long ISystemProperties::minGuestRAM

Minimum guest system memory in Megabytes.

5.86.1.2 maxGuestRAM (read-only)

unsigned long ISystemProperties: :maxGuestRAM

Maximum guest system memory in Megabytes.

5.86.1.3 minGuestVRAM (read-only)

unsigned long ISystemProperties::minGuestVRAM

Minimum guest video memory in Megabytes.

5.86.1.4 maxGuestVRAM (read-only)

unsigned long ISystemProperties::maxGuestVRAM

Maximum guest video memory in Megabytes.

5.86.1.5 minGuestCPUCount (read-only)

unsigned long ISystemProperties::minGuestCPUCount

Minimum CPU count.

5.86.1.6 maxGuestCPUCount (read-only)

unsigned long ISystemProperties::maxGuestCPUCount

Maximum CPU count.

5.86.1.7 maxGuestMonitors (read-only)

unsigned long ISystemProperties::maxGuestMonitors
Maximum of monitors which could be connected.

5.86.1.8 infoVDSize (read-only)

long long ISystemProperties::infoVDSize

Maximum size of a virtual disk image in bytes. Informational value, does not reflect the limits
of any virtual disk image format.

5.86.1.9 networkAdapterCount (read-only)

unsigned long ISystemProperties::networkAdapterCount

Number of network adapters associated with every IMachine instance.

215

5 Classes (interfaces)

5.86.1.10 serialPortCount (read-only)

unsigned long ISystemProperties::serialPortCount

Number of serial ports associated with every IMachine instance.

5.86.1.11 parallelPortCount (read-only)

unsigned long ISystemProperties::parallelPortCount

Number of parallel ports associated with every IMachine instance.

5.86.1.12 maxBootPosition (read-only)

unsigned long ISystemProperties::maxBootPosition

Maximum device position in the boot order. This value corresponds to the total number of
devices a machine can boot from, to make it possible to include all possible devices to the boot
list. See also: IMachine::setBootOrder()

5.86.1.13 defaultMachineFolder (read/write)

wstring ISystemProperties::defaultMachineFolder

Full path to the default directory used to create new or open existing machines when a machine
settings file name contains no path.

Starting with VirtualBox 4.0, by default, this attribute contains the full path of folder named
“VirtualBox VMs” in the user’s home directory, which depends on the host platform.

When setting this attribute, a full path must be specified. Setting this property to null or an
empty string or the special value “Machines” (for compatibility reasons) will restore that default
value.

If the folder specified herein does not exist, it will be created automatically as needed.

See also: IVirtualBox::createMachine(), IVirtualBox::openMachine()

5.86.1.14 mediumFormats (read-only)

IMediumFormat ISystemProperties::mediumFormats[]

List of all medium storage formats supported by this VirtualBox installation.

Keep in mind that the medium format identifier (IMediumFormat::id) used in other API calls
like IVirtualBox::createHardDisk() to refer to a particular medium format is a case-insensitive
string. This means that, for example, all of the following strings:

"WDI"
nydi®
ngI"

refer to the same medium format.

Note that the virtual medium framework is backend-based, therefore the list of supported
formats depends on what backends are currently installed.

See also: IMediumFormat,

216

5 Classes (interfaces)

5.86.1.15 defaultHardDiskFormat (read/write)

wstring ISystemProperties::defaultHardDiskFormat

Identifier of the default medium format used by VirtualBox.

The medium format set by this attribute is used by VirtualBox when the medium format was
not specified explicitly. One example is IVirtualBox::createHardDisk() with the empty format
argument. A more complex example is implicit creation of differencing media when taking a
snapshot of a virtual machine: this operation will try to use a format of the parent medium
first and if this format does not support differencing media the default format specified by this
argument will be used.

The list of supported medium formats may be obtained by the mediumFormats[] call. Note
that the default medium format must have a capability to create differencing media; otherwise
operations that create media implicitly may fail unexpectedly.

The initial value of this property is "VDI" in the current version of the VirtualBox product, but
may change in the future.

Note: Setting this property to null or empty string will restore the initial value.

See also: mediumFormats[], IMediumFormat::id, IVirtualBox::createHardDisk()

5.86.1.16 freeDiskSpaceWarning (read/write)

long long ISystemProperties::freeDiskSpaceWarning

Issue a warning if the free disk space is below (or in some disk intensive operation is expected
to go below) the given size in bytes.

5.86.1.17 freeDiskSpacePercentWarning (read/write)

unsigned long ISystemProperties::freeDiskSpacePercentWarning

Issue a warning if the free disk space is below (or in some disk intensive operation is expected
to go below) the given percentage.

5.86.1.18 freeDiskSpaceError (read/write)

long long ISystemProperties::freeDiskSpaceError

Issue an error if the free disk space is below (or in some disk intensive operation is expected
to go below) the given size in bytes.

5.86.1.19 freeDiskSpacePercentError (read/write)

unsigned long ISystemProperties::freeDiskSpacePercentError

Issue an error if the free disk space is below (or in some disk intensive operation is expected
to go below) the given percentage.

217

5 Classes (interfaces)

5.86.1.20 VRDEAuthLibrary (read/write)

wstring ISystemProperties::VRDEAuthLibrary

Library that provides authentication for Remote Desktop clients. The library is used if a virtual
machine’s authentication type is set to “external” in the VM RemoteDisplay configuration.

The system library extension (“.DLL” or “.so”) must be omitted. A full path can be specified; if
not, then the library must reside on the system’s default library path.

The default value of this property is "VBoxAuth". There is a library of that name in one of the
default VirtualBox library directories.

For details about VirtualBox authentication libraries and how to implement them, please refer
to the VirtualBox manual.

Note: Setting this property to null or empty string will restore the initial value.

5.86.1.21 webServiceAuthLibrary (read/write)

wstring ISystemProperties::webServiceAuthLibrary

Library that provides authentication for webservice clients. The library is used if a virtual
machine’s authentication type is set to “external” in the VM RemoteDisplay configuration and
will be called from within the IWebsessionManager::logon() implementation.

As opposed to VRDEAuthLibrary, there is no per-VM setting for this, as the webservice is a
global resource (if it is running). Only for this setting (for the webservice), setting this value to
a literal "null" string disables authentication, meaning that IWebsessionManager::logon() will
always succeed, no matter what user name and password are supplied.

The initial value of this property is "VBoxAuth", meaning that the webservice will use the
same authentication library that is used by default for VRDE (again, see VRDEAuthLibrary). The
format and calling convention of authentication libraries is the same for the webservice as it is
for VRDE.

Note: Setting this property to null or empty string will restore the initial value.

5.86.1.22 defaultVRDEEXxtPack (read/write)

wstring ISystemProperties::defaultVRDEExtPack

The name of the extension pack providing the default VRDE.

This attribute is for choosing between multiple extension packs providing VRDE. If only one is
installed, it will automatically be the default one. The attribute value can be empty if no VRDE
extension pack is installed.

For details about VirtualBox Remote Desktop Extension and how to implement one, please
refer to the VirtualBox SDK.

5.86.1.23 LogHistoryCount (read/write)

unsigned long ISystemProperties::LogHistoryCount

This value specifies how many old release log files are kept.

218

5 Classes (interfaces)

5.86.1.24 defaultAudioDriver (read-only)

AudioDriverType ISystemProperties::defaultAudioDriver

This value hold the default audio driver for the current system.

5.86.2 getDefaultloCacheSettingForStorageController

boolean ISystemProperties::getDefaultIoCacheSettingForStorageController(
[in] StorageControllerType controllerType)

controllerType The storage controller to the setting for.

Returns the default I/0 cache setting for the given storage controller

5.86.3 getDeviceTypesForStorageBus

DeviceType[] ISystemProperties::getDeviceTypesForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns list of all the supported device types (DeviceType) for the given type of storage bus.

5.86.4 getMaxDevicesPerPortForStorageBus

unsigned long ISystemProperties::getMaxDevicesPerPortForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the maximum number of devices which can be attached to a port for the given storage
bus.

5.86.5 getMaxinstancesOfStorageBus

unsigned long ISystemProperties::getMaxInstancesOfStorageBus (
[in] ChipsetType chipset,
[in] StorageBus bus)

chipset The chipset type to get the value for.

bus The storage bus type to get the value for.

Returns the maximum number of storage bus instances which can be configured for each VM.
This corresponds to the number of storage controllers one can have. Value may depend on
chipset type used.

5.86.6 getMaxPortCountForStorageBus

unsigned long ISystemProperties::getMaxPortCountForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the maximum number of ports the given storage bus supports.

219

5 Classes (interfaces)

5.86.7 getMinPortCountForStorageBus

unsigned long ISystemProperties::getMinPortCountForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the minimum number of ports the given storage bus supports.

5.87 IUSBController

5.87.1 Attributes
5.87.1.1 enabled (read/write)

boolean IUSBController::enabled

Flag whether the USB controller is present in the guest system. If disabled, the virtual guest
hardware will not contain any USB controller. Can only be changed when the VM is powered off.

5.87.1.2 enabledEhci (read/write)

boolean IUSBController::enabledEhci

Flag whether the USB EHCI controller is present in the guest system. If disabled, the virtual
guest hardware will not contain a USB EHCI controller. Can only be changed when the VM is
powered off.

5.87.1.3 proxyAvailable (read-only)

boolean IUSBController::proxyAvailable

Flag whether there is an USB proxy available.

5.87.1.4 USBStandard (read-only)

unsigned short IUSBController::USBStandard

USB standard version which the controller implements. This is a BCD which means that the
major version is in the high byte and minor version is in the low byte.

5.87.1.5 deviceFilters (read-only)

IUSBDeviceFilter IUSBController::deviceFilters|[]

List of USB device filters associated with the machine.

If the machine is currently running, these filters are activated every time a new (sup-
ported) USB device is attached to the host computer that was not ignored by global filters
(IHost::USBDeviceFilters[]).

These filters are also activated when the machine is powered up. They are run against a list
of all currently available USB devices (in states Available, Busy, Held) that were not previously
ignored by global filters.

If at least one filter matches the USB device in question, this device is automatically captured
(attached to) the virtual USB controller of this machine.

See also: IUSBDeviceFilter, ::IUSBController

220

5 Classes (interfaces)

5.87.2 createDeviceFilter

IUSBDeviceFilter IUSBController::createDeviceFilter(
[in] wstring name)

name Filter name. See IUSBDeviceFilter::name for more info.

Creates a new USB device filter. All attributes except the filter name are set to empty (any
match), active is false (the filter is not active).

The created filter can then be added to the list of filters using insertDeviceFilter().

See also: #deviceFilters

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: The virtual machine is not mutable.

5.87.3 insertDeviceFilter

void IUSBController::insertDeviceFilter(
[in] unsigned long position,
[in] IUSBDeviceFilter filter)

position Position to insert the filter to.
filter USB device filter to insert.

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater than the
number of elements in the list, the filter is added to the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter that is already in the
collection, will return an error.

See also: #deviceFilters
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.
e E_INVALIDARG: USB device filter not created within this VirtualBox instance.

e VBOX_E_INVALID_OBJECT_STATE: USB device filter already in list.

5.87.4 removeDeviceFilter

IUSBDeviceFilter IUSBController::removeDeviceFilter(
[in] unsigned long position)

position Position to remove the filter from.

Removes a USB device filter from the specified position in the list of filters.

Positions are numbered starting from 0. Specifying a position equal to or greater than the
number of elements in the list will produce an error.

See also: #deviceFilters

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

e E_INVALIDARG: USB device filter list empty or invalid position.

221

5 Classes (interfaces)

5.88 IUSBControllerChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of the virtual USB controller changes. Interested callees should
use IUSBController methods and attributes to find out what has changed.

5.89 IUSBDevice

The TUSBDevice interface represents a virtual USB device attached to the virtual machine.
A collection of objects implementing this interface is stored in the IConsole::USBDevices|[]
attribute which lists all USB devices attached to a running virtual machine’s USB controller.

5.89.1 Attributes
5.89.1.1 id (read-only)

uuid IUSBDevice::id

Unique USB device ID. This ID is built from #vendorld, #productld, #revision and #serial-
Number.

5.89.1.2 vendorld (read-only)

unsigned short IUSBDevice::vendorId

Vendor ID.

5.89.1.3 productld (read-only)

unsigned short IUSBDevice::productId

Product ID.

5.89.1.4 revision (read-only)

unsigned short IUSBDevice::revision

Product revision number. This is a packed BCD represented as unsigned short. The high byte
is the integer part and the low byte is the decimal.

5.89.1.5 manufacturer (read-only)

wstring IUSBDevice::manufacturer

Manufacturer string.

5.89.1.6 product (read-only)

wstring IUSBDevice::product

Product string.

222

5 Classes (interfaces)

5.89.1.7 serialNumber (read-only)

wstring IUSBDevice::serialNumber

Serial number string.

5.89.1.8 address (read-only)

wstring IUSBDevice::address

Host specific address of the device.

5.89.1.9 port (read-only)

unsigned short IUSBDevice::port

Host USB port number the device is physically connected to.

5.89.1.10 version (read-only)

unsigned short IUSBDevice::version

The major USB version of the device - 1 or 2.

5.89.1.11 portVersion (read-only)

unsigned short IUSBDevice::portVersion

The major USB version of the host USB port the device is physically connected to - 1 or 2. For
devices not connected to anything this will have the same value as the version attribute.

5.89.1.12 remote (read-only)

boolean IUSBDevice::remote

Whether the device is physically connected to a remote VRDE client or to a local host machine.

5.90 IUSBDeviceFilter

The IUSBDeviceFilter interface represents an USB device filter used to perform actions on a group
of USB devices.

This type of filters is used by running virtual machines to automatically capture selected USB
devices once they are physically attached to the host computer.

A USB device is matched to the given device filter if and only if all attributes of the device
match the corresponding attributes of the filter (that is, attributes are joined together using the
logical AND operation). On the other hand, all together, filters in the list of filters carry the
semantics of the logical OR operation. So if it is desirable to create a match like “this vendor
id OR this product id”, one needs to create two filters and specify “any match” (see below) for
unused attributes.

All filter attributes used for matching are strings. Each string is an expression representing a
set of values of the corresponding device attribute, that will match the given filter. Currently, the
following filtering expressions are supported:

223

5 Classes (interfaces)

e Interval filters. Used to specify valid intervals for integer device attributes (Vendor ID,
Product ID and Revision). The format of the string is:

int: ((m) [([m]-[n]))(, (m)|([m]-[n]))x*

where m and n are integer numbers, either in octal (starting from 0), hexadecimal (starting
from 0x) or decimal (otherwise) form, so that m < n. If m is omitted before a dash (-), the
minimum possible integer is assumed; if n is omitted after a dash, the maximum possible
integer is assumed.

e Boolean filters. Used to specify acceptable values for boolean device attributes. The format
of the string is:

true|false|yes|no|0|1

e Exact match. Used to specify a single value for the given device attribute. Any string that
doesn’t start with int: represents the exact match. String device attributes are compared
to this string including case of symbols. Integer attributes are first converted to a string
(see individual filter attributes) and then compared ignoring case.

e Any match. Any value of the corresponding device attribute will match the given filter. An
empty or null string is used to construct this type of filtering expressions.

Note: On the Windows host platform, interval filters are not currently available. Also
all string filter attributes (manufacturer, product, serialNumber) are ignored, so they
behave as any match no matter what string expression is specified.

See also: IUSBController::deviceFilters, IHostUSBDeviceFilter

5.90.1 Attributes

5.90.1.1 name (read/write)

wstring IUSBDeviceFilter::name

Visible name for this filter. This name is used to visually distinguish one filter from another, so
it can neither be null nor an empty string.

5.90.1.2 active (read/write)

boolean IUSBDeviceFilter::active

Whether this filter active or has been temporarily disabled.

5.90.1.3 vendorld (read/write)

wstring IUSBDeviceFilter::vendorId

Vendor ID filter. The string representation for the exact matching has the form XXXX, where X
is the hex digit (including leading zeroes).

5.90.1.4 productld (read/write)

wstring IUSBDeviceFilter::productId

Product ID filter. The string representation for the exact matching has the form XXXX, where X
is the hex digit (including leading zeroes).

224

5 Classes (interfaces)

5.90.1.5 revision (read/write)

wstring IUSBDeviceFilter::revision

Product revision number filter. The string representation for the exact matching has the form
IIFF, where I is the decimal digit of the integer part of the revision, and F is the decimal digit
of its fractional part (including leading and trailing zeros). Note that for interval filters, it’s best
to use the hexadecimal form, because the revision is stored as a 16 bit packed BCD value; so the
expression int:0x0100-0x0199 will match any revision from 1.0 to 1.99.

5.90.1.6 manufacturer (read/write)

wstring IUSBDeviceFilter::manufacturer

Manufacturer filter.

5.90.1.7 product (read/write)

wstring IUSBDeviceFilter::product

Product filter.

5.90.1.8 serialNumber (read/write)

wstring IUSBDeviceFilter::serialNumber
Serial number filter.

5.90.1.9 port (read/write)

wstring IUSBDeviceFilter::port
Host USB port filter.

5.90.1.10 remote (read/write)

wstring IUSBDeviceFilter::remote

Remote state filter.

Note: This filter makes sense only for machine USB filters, i.e. it is ignored by IHos-
tUSBDeviceFilter objects.

5.90.1.11 maskedInterfaces (read/write)

unsigned long IUSBDeviceFilter::maskedInterfaces

This is an advanced option for hiding one or more USB interfaces from the guest. The value is
a bit mask where the bits that are set means the corresponding USB interface should be hidden,
masked off if you like. This feature only works on Linux hosts.

225

5 Classes (interfaces)

5.91 IUSBDeviceStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a USB device is attached to or detached from the virtual USB controller.

This notification is sent as a result of the indirect request to attach the device because
it matches one of the machine USB filters, or as a result of the direct request issued by
IConsole::attachUSBDevice() or IConsole::detachUSBDevice().

This notification is sent in case of both a succeeded and a failed request completion. When the
request succeeds, the error parameter is null, and the given device has been already added to
(when attached is true) or removed from (when attached is false) the collection represented
by IConsole::USBDevices[]. On failure, the collection doesn’t change and the error parameter
represents the error message describing the failure.

5.91.1 Attributes
5.91.1.1 device (read-only)

IUSBDevice IUSBDeviceStateChangedEvent: :device
Device that is subject to state change.
5.91.1.2 attached (read-only)
boolean IUSBDeviceStateChangedEvent::attached
true if the device was attached and false otherwise.
5.91.1.3 error (read-only)
IVirtualBoxErrorInfo IUSBDeviceStateChangedEvent::error

null on success or an error message object on failure.

5.92 IVBoxSVCAvailabilityChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when VBoxSVC becomes unavailable (due to a crash or similar unexpected cir-
cumstances) or available again.

5.92.1 Attributes
5.92.1.1 available (read-only)

boolean IVBoxSVCAvailabilityChangedEvent::available

Whether VBoxSVC is available now.

226

5 Classes (interfaces)

5.93 IVFSExplorer

The VFSExplorer interface unifies access to different file system types. This includes local file
systems as well remote file systems like S3. For a list of supported types see VFSType. An
instance of this is returned by [Appliance::createVFSExplorer().

5.93.1 Attributes
5.93.1.1 path (read-only)

wstring IVFSExplorer::path

Returns the current path in the virtual file system.

5.93.1.2 type (read-only)

VFSType IVFSExplorer::type

Returns the file system type which is currently in use.

5.93.2 cd

IProgress IVFSExplorer::cd(
[in] wstring aDir)

aDir The name of the directory to go in.

Change the current directory level.

5.93.3 cdUp

IProgress IVFSExplorer::cdUp()

Go one directory upwards from the current directory level.

5.93.4 entryList

void IVFSExplorer::entryList(
[out] wstring aNames[],
[out] unsigned long aTypes|],
[out] unsigned long aSizes[],
[out] unsigned long aModes[])

aNames The list of names for the entries.
aTypes The list of types for the entries.
aSizes The list of sizes (in bytes) for the entries.

aModes The list of file modes (in octal form) for the entries.

Returns a list of files/directories after a call to update(). The user is responsible for keeping this
internal list up do date.

227

5 Classes (interfaces)

5.93.5 exists

wstring[] IVFSExplorer::exists(
[in] wstring aNames|[])

aNames The names to check.

Checks if the given file list exists in the current directory level.

5.93.6 remove

IProgress IVFSExplorer::remove(
[in] wstring aNames[])

aNames The names to remove.

Deletes the given files in the current directory level.

5.93.7 update

IProgress IVFSExplorer::update()

Updates the internal list of files/directories from the current directory level. Use entryList() to
get the full list after a call to this method.

5.94 IVRDEServer

5.94.1 Attributes
5.94.1.1 enabled (read/write)

boolean IVRDEServer::enabled

VRDE server status.

5.94.1.2 authType (read/write)

AuthType IVRDEServer::authType

VRDE authentication method.

5.94.1.3 authTimeout (read/write)

unsigned long IVRDEServer::authTimeout

Timeout for guest authentication. Milliseconds.

5.94.1.4 allowMultiConnection (read/write)

boolean IVRDEServer::allowMultiConnection

Flag whether multiple simultaneous connections to the VM are permitted. Note that this will
be replaced by a more powerful mechanism in the future.

228

5 Classes (interfaces)

5.94.1.5 reuseSingleConnection (read/write)

boolean IVRDEServer::reuseSingleConnection

Flag whether the existing connection must be dropped and a new connection must be estab-
lished by the VRDE server, when a new client connects in single connection mode.

5.94.1.6 VRDEExtPack (read/write)

wstring IVRDEServer::VRDEExtPack

The name of Extension Pack providing VRDE for this VM. Overrides ISystemProperties::default VRDEExtPack.

5.94.1.7 AuthLibrary (read/write)

wstring IVRDEServer::AuthLibrary

Library used for authentication of RDP clients by this VM. Overrides ISystemProperties::VRDEAuthLibrary.

5.94.1.8 VRDEProperties (read-only)

wstring IVRDEServer::VRDEProperties|[]

Array of names of properties, which are supported by this VRDE server.

5.94.2 getVRDEProperty

wstring IVRDEServer::getVRDEProperty(
[in] wstring key)

key Name of the key to get.

Returns a VRDE specific property string.
If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

5.94.3 setVRDEProperty

void IVRDEServer::setVRDEProperty(
[in] wstring key,
[in] wstring value)
key Name of the key to set.
value Value to assign to the key.

Sets a VRDE specific property string.
If you pass null or empty string as a key value, the given key will be deleted.

5.95 IVRDEServerChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of the VRDE server changes. Interested callees should use IVRDE-
Server methods and attributes to find out what has changed.

229

5 Classes (interfaces)

5.96 IVRDEServerinfo

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Contains information about the remote desktop (VRDE) server capabilities and status. This is
used in the IConsole::VRDEServerInfo attribute.

5.96.1 Attributes
5.96.1.1 active (read-only)

boolean IVRDEServerInfo::active

Whether the remote desktop connection is active.

5.96.1.2 port (read-only)

long IVRDEServerInfo::port

VRDE server port number. If this property is equal to 0, then the VRDE server failed to start,
usually because there are no free IP ports to bind to. If this property is equal to -1, then the
VRDE server has not yet been started.

5.96.1.3 numberOfClients (read-only)

unsigned long IVRDEServerInfo::numberOfClients
How many times a client connected.

5.96.1.4 beginTime (read-only)

long long IVRDEServerInfo::beginTime

When the last connection was established, in milliseconds since 1970-01-01 UTC.

5.96.1.5 endTime (read-only)

long long IVRDEServerInfo::endTime

When the last connection was terminated or the current time, if connection is still active, in
milliseconds since 1970-01-01 UTC.

5.96.1.6 bytesSent (read-only)
long long IVRDEServerInfo::bytesSent
How many bytes were sent in last or current, if still active, connection.
5.96.1.7 bytesSentTotal (read-only)
long long IVRDEServerInfo::bytesSentTotal

How many bytes were sent in all connections.

230

5 Classes (interfaces)

5.96.1.8 bytesReceived (read-only)

long long IVRDEServerInfo::bytesReceived

How many bytes were received in last or current, if still active, connection.

5.96.1.9 bytesReceivedTotal (read-only)

long long IVRDEServerInfo::bytesReceivedTotal

How many bytes were received in all connections.

5.96.1.10 user (read-only)

wstring IVRDEServerInfo::user

Login user name supplied by the client.

5.96.1.11 domain (read-only)

wstring IVRDEServerInfo::domain

Login domain name supplied by the client.

5.96.1.12 clientName (read-only)

wstring IVRDEServerInfo::clientName

The client name supplied by the client.

5.96.1.13 clientIP (read-only)

wstring IVRDEServerInfo::clientIP

The IP address of the client.

5.96.1.14 clientVersion (read-only)

unsigned long IVRDEServerInfo::clientVersion

The client software version number.

5.96.1.15 encryptionStyle (read-only)

unsigned long IVRDEServerInfo::encryptionStyle

Public key exchange method used when connection was established. Values: 0 - RDP4 public
key exchange scheme. 1 - X509 certificates were sent to client.

5.97 IVRDEServerinfoChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the status of the VRDE server changes. Interested callees should use
IVRDEServerInfo attributes to find out what is the current status.

231

5 Classes (interfaces)

5.98 IVetoEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Base abstract interface for veto events.

5.98.1 addVeto

void IVetoEvent::addVeto(
[in] wstring reason)

reason Reason for veto, could be null or empty string.

Adds a veto on this event.

5.98.2 getVetos

wstring[] IVetoEvent::getVetos()

Current veto reason list, if size is O - no veto.

5.98.3 isVetoed

boolean IVetoEvent::isVetoed()

If this event was vetoed.

5.99 IVirtualBox

The IVirtualBox interface represents the main interface exposed by the product that provides
virtual machine management.

An instance of IVirtualBox is required for the product to do anything useful. Even though the
interface does not expose this, internally, IVirtualBox is implemented as a singleton and actually
lives in the process of the VirtualBox server (VBoxSVC.exe). This makes sure that IVirtualBox can
track the state of all virtual machines on a particular host, regardless of which frontend started
them.

To enumerate all the virtual machines on the host, use the machines[] attribute.

5.99.1 Attributes
5.99.1.1 version (read-only)

wstring IVirtualBox::version

A string representing the version number of the product. The format is 3 integer numbers
divided by dots (e.g. 1.0.1). The last number represents the build number and will frequently
change.

5.99.1.2 revision (read-only)

unsigned long IVirtualBox::revision

The internal build revision number of the product.

232

5 Classes (interfaces)

5.99.1.3 packageType (read-only)

wstring IVirtualBox::packageType

A string representing the package type of this product. The format is OS_ARCH_DIST where
OS is either WINDOWS, LINUX, SOLARIS, DARWIN. ARCH is either 32BITS or 64BITS. DIST is
either GENERIC, UBUNTU_606, UBUNTU_710, or something like this.

5.99.1.4 homeFolder (read-only)

wstring IVirtualBox::homeFolder

Full path to the directory where the global settings file, VirtualBox.xml, is stored.

In this version of VirtualBox, the value of this property is always <user_dir>/.VirtualBox
(where <user_dir> is the path to the user directory, as determined by the host OS), and cannot
be changed.

This path is also used as the base to resolve relative paths in places where relative paths are
allowed (unless otherwise expressly indicated).

5.99.1.5 settingsFilePath (read-only)

wstring IVirtualBox::settingsFilePath

Full name of the global settings file. The value of this property corresponds to the value of
homeFolder plus /VirtualBox.xml.

5.99.1.6 host (read-only)
IHost IVirtualBox::host
Associated host object.
5.99.1.7 systemProperties (read-only)
ISystemProperties IVirtualBox::systemProperties
Associated system information object.
5.99.1.8 machines (read-only)
IMachine IVirtualBox::machines[]
Array of machine objects registered within this VirtualBox instance.
5.99.1.9 hardDisks (read-only)
IMedium IVirtualBox::hardDisks|[]

Array of medium objects known to this VirtualBox installation.
This array contains only base media. All differencing media of the given base medium can be
enumerated using IMedium::children[].

5.99.1.10 DVDImages (read-only)

IMedium IVirtualBox::DVDImages]|]

Array of CD/DVD image objects currently in use by this VirtualBox instance.

233

5 Classes (interfaces)

5.99.1.11 floppylmages (read-only)

IMedium IVirtualBox::floppyImages|]

Array of floppy image objects currently in use by this VirtualBox instance.

5.99.1.12 progressOperations (read-only)

IProgress IVirtualBox::progressOperations|]

5.99.1.13 guestOSTypes (read-only)

IGuest0SType IVirtualBox::guestOSTypes|[]

5.99.1.14 sharedFolders (read-only)
ISharedFolder IVirtualBox::sharedFolders|[]
Collection of global shared folders. Global shared folders are available to all virtual machines.

New shared folders are added to the collection using createSharedFolder(). Existing shared
folders can be removed using removeSharedFolder().

Note: In the current version of the product, global shared folders are not implemented
and therefore this collection is always empty.

5.99.1.15 performanceCollector (read-only)

IPerformanceCollector IVirtualBox::performanceCollector

Associated performance collector object.

5.99.1.16 DHCPServers (read-only)

IDHCPServer IVirtualBox::DHCPServers[]

DHCP servers.

5.99.1.17 eventSource (read-only)

IEventSource IVirtualBox::eventSource

Event source for VirtualBox events.

5.99.1.18 extensionPackManager (read-only)

IExtPackManager IVirtualBox::extensionPackManager

Note: This attribute is not supported in the web service.

The extension pack manager.

234

5 Classes (interfaces)

5.99.2 checkFirmwarePresent

boolean IVirtualBox::checkFirmwarePresent (
[in] FirmwareType firmwareType,
[in] wstring version,
[out] wstring url,
[out] wstring file)

firmwareType Type of firmware to check.
version Expected version number, usually empty string (presently ignored).
url Suggested URL to download this firmware from.

file Filename of firmware, only valid if result == TRUE.

Check if this VirtualBox installation has a firmware of the given type available, either system-
wide or per-user. Optionally, this may return a hint where this firmware can be downloaded
from.

5.99.3 composeMachineFilename

wstring IVirtualBox::composeMachineFilename (
[in] wstring name,
[in] wstring baseFolder)

name Suggested machine name.

baseFolder Base machine folder (optional).

Returns a recommended full path of the settings file name for a new virtual machine.
This API serves two purposes:

e It gets called by createMachine() if NULL is specified for the settingsFile argument
there, which means that API should use a recommended default file name.

e It can be called manually by a client software before creating a machine, e.g. if that client
wants to pre-create the machine directory to create virtual hard disks in that directory
together with the new machine settings file. In that case, the file name should be stripped
from the full settings file path returned by this function to obtain the machine directory.

See IMachine::name and createMachine() for more details about the machine name.

If baseFolder is a null or empty string (which is recommended), the default machine set-
tings folder (see ISystemProperties::defaultMachineFolder) will be used as a base folder for the
created machine, resulting in a file name like “/home/user/VirtualBox VMs/name/name.vbox”.
Otherwise the given base folder will be used.

This method does not access the host disks. In particular, it does not check for whether a
machine of this name already exists.

5.99.4 createAppliance

IAppliance IVirtualBox::createAppliance()

Creates a new appliance object, which represents an appliance in the Open Virtual Machine
Format (OVF). This can then be used to import an OVF appliance into VirtualBox or to export
machines as an OVF appliance; see the documentation for IAppliance for details.

235

5 Classes (interfaces)

5.99.5 createDHCPServer

IDHCPServer IVirtualBox::createDHCPServer(
[in] wstring name)

name server name

Creates a dhcp server settings to be used for the given internal network name
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

5.99.6 createHardDisk

IMedium IVirtualBox::createHardDisk(
[in] wstring format,
[in] wstring location)

format Identifier of the storage format to use for the new medium.

location Location of the storage unit for the new medium.

Creates a new base medium object that will use the given storage format and location for
medium data.

Note that the actual storage unit is not created by this method. In order to do it, and before
you are able to attach the created medium to virtual machines, you must call one of the following
methods to allocate a format-specific storage unit at the specified location:

e IMedium::createBaseStorage()

e IMedium::createDiffStorage()

Some medium attributes, such as IMedium::id, may remain uninitialized until the medium
storage unit is successfully created by one of the above methods.

After the storage unit is successfully created, it will be accessible through the findMedium()
method and can be found in the hardDisks[] array.

The list of all storage formats supported by this VirtualBox installation can be obtained using
ISystemProperties::mediumFormats[]. If the format attribute is empty or null then the default
storage format specified by ISystemProperties::defaultHardDiskFormat will be used for creating
a storage unit of the medium.

Note that the format of the location string is storage format specific. See IMedium::location
and IMedium for more details.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: format identifier is invalid. See ISystemProperties::mediumFormats[].

e VBOX_E_FILE_ERROR: location is a not valid file name (for file-based formats only).

5.99.7 createMachine

IMachine IVirtualBox::createMachine(
[in] wstring settingsFile,
[in] wstring name,
[in] wstring osTypeld,
[in] uuid id,
[in] boolean forceOverwrite)

236

5 Classes (interfaces)

settingsFile Fully qualified path where the settings file should be created, or NULL for a default
folder and file based on the name argument (see composeMachineFilename()).

name Machine name.
osTypeld Guest OS Type ID.
id Machine UUID (optional).

forceOverwrite If true, an existing machine settings file will be overwritten.

Creates a new virtual machine by creating a machine settings file at the given location.

VirtualBox machine settings files use a custom XML dialect. Starting with VirtualBox 4.0,
a “.vbox” extension is recommended, but not enforced, and machine files can be created at
arbitrary locations.

However, it is is recommended that machines be created in the default machine folder (e.g.
“/home/user/VirtualBox VMs/name/name.vbox”; see ISystemProperties::defaultMachineFolder).
If you specify NULL for the settingsFile argument, composeMachineFilename() is called au-
tomatically to have such a recommended name composed based on the machine name given in
the name argument.

If the resulting settings file already exists, this method will fail, unless forceOverwrite is set.

The new machine is created unregistered, with the initial configuration set according to the
specified guest OS type. A typical sequence of actions to create a new virtual machine is as
follows:

1. Call this method to have a new machine created. The returned machine object will be
“mutable” allowing to change any machine property.

2. Configure the machine using the appropriate attributes and methods.

3. Call IMachine::saveSettings() to write the settings to the machine’s XML settings file. The
configuration of the newly created machine will not be saved to disk until this method is
called.

4. Call registerMachine() to add the machine to the list of machines known to VirtualBox.

The specified guest OS type identifier must match an ID of one of known guest OS types listed
in the guestOSTypes[] array.

Optionally, you may specify an UUID of to assign to the created machine. However, this is
not recommended and you should normally pass an empty (null) UUID to this method so that
a new UUID will be automatically generated for every created machine. You can use UUID
00000000-0000-0000-0000-000000000000 as null value.

Note: There is no way to change the name of the settings file or subfolder of the created
machine directly.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: osTypeld is invalid.

e VBOX_E_FILE ERROR: Resulting settings file name is invalid or the settings file already
exists or could not be created due to an I/0 error.

e E_INVALIDARG: name is empty or null.

237

5 Classes (interfaces)

5.99.8 createSharedFolder

void IVirtualBox::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable,
[in] boolean automount)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly

automount Whether the share gets automatically mounted by the guest or not.

Creates a new global shared folder by associating the given logical name with the given host
path, adds it to the collection of shared folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

’ Note: In the current implementation, this operation is not implemented.

5.99.9 findDHCPServerByNetworkName

IDHCPServer IVirtualBox::findDHCPServerByNetworkName (
[in] wstring name)

name server name

Searches a dhcp server settings to be used for the given internal network name
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

5.99.10 findMachine

IMachine IVirtualBox::findMachine(
[in] wstring nameOrId)

nameOrld What to search for. This can either be the UUID or the name of a virtual machine.

Attempts to find a virtual machine given its name or UUID.

Note: Inaccessible machines cannot be found by name, only by UUID, because their
name cannot safely be determined.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching nameOrId.

238

5 Classes (interfaces)

5.99.11 findMedium

IMedium IVirtualBox::findMedium(
[in] wstring location,
[in] DeviceType type)

location What to search for. This can either be the UUID or the location string of an open
medium.

type Device type (must be HardDisk, DVD or Floppy)

Returns a medium of the given type that uses the given fully qualified location or UUID to
store medium data.

The given medium must be known to this VirtualBox installation, i.e. it must be previously
created by createHardDisk() or opened by openMedium().

The search is done by comparing the value of the location argument to the IMedium::location
and IMedium::id attributes of each known medium.

On case sensitive file systems, a case sensitive comparison is performed, otherwise the case of
symbols in the file path is ignored.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No medium object matching location found.

5.99.12 getExtraData

wstring IVirtualBox::getExtraData(
[in] wstring key)

key Name of the data key to get.

Returns associated global extra data.

If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.99.13 getExtraDataKeys

wstring[] IVirtualBox::getExtraDataKeys()

Returns an array representing the global extra data keys which currently have values defined.

5.99.14 getGuestOSType

IGuest0SType IVirtualBox::getGuestOSType(
[in] uuid id)

id Guest OS type ID string.

Returns an object describing the specified guest OS type.

The requested guest OS type is specified using a string which is a mnemonic identifier of the
guest operating system, such as "win31" or "ubuntu". The guest OS type ID of a particular
virtual machine can be read or set using the IMachine::OSTypeld attribute.

The guestOSTypes[] collection contains all available guest OS type objects. Each object has an
IGuestOSType::id attribute which contains an identifier of the guest OS this object describes.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: id is not a valid Guest OS type.

239

5 Classes (interfaces)

5.99.15 openMachine

IMachine IVirtualBox::openMachine(
[in] wstring settingsFile)

settingsFile Name of the machine settings file.

Opens a virtual machine from the existing settings file. The opened machine remains unregis-
tered until you call registerMachine().

The specified settings file name must be fully qualified. The file must exist and be a valid
machine XML settings file whose contents will be used to construct the machine object.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file name invalid, not found or sharing violation.

5.99.16 openMedium

IMedium IVirtualBox::openMedium(
[in] wstring location,
[in] DeviceType deviceType,
[in] AccessMode accessMode)

location Location of the storage unit that contains medium data in one of the supported storage
formats.

deviceType Must be one of “HardDisk”, “DVD” or “Floppy”.

accessMode Whether to open the image in read/write or read-only mode. For a “DVD” device
type, this is ignored and read-only mode is always assumed.

Opens a medium from an existing storage location.

Once a medium has been opened, it can be passed to other VirtualBox methods, in particular
to IMachine::attachDevice().

Depending on the given device type, the file at the storage location must be in one of the media
formats understood by VirtualBox:

e With a “HardDisk” device type, the file must be a hard disk image in one of the formats
supported by VirtualBox (see ISystemProperties::mediumFormats[]). After this method
succeeds, if the medium is a base medium, it will be added to the hardDisks[] array at-
tribute.

e With a “DVD” device type, the file must be an ISO 9960 CD/DVD image. After this method
succeeds, the medium will be added to the DVDImages[] array attribute.

e With a “Floppy” device type, the file must be an RAW floppy image. After this method
succeeds, the medium will be added to the floppylmages[] array attribute.

After having been opened, the medium can be found by the findMedium() method and can be
attached to virtual machines. See IMedium for more details.

The UUID of the newly opened medium will either be retrieved from the storage location, if
the format supports it (e.g. for hard disk images), or a new UUID will be randomly generated
(e.g. for ISO and RAW files). If for some reason you need to change the medium’s UUID, use
IMedium::setIDs().

If a differencing hard disk medium is to be opened by this method, the operation will suc-
ceed only if its parent medium and all ancestors, if any, are already known to this VirtualBox
installation (for example, were opened by this method before).

This method attempts to guess the storage format of the specified medium by reading medium
data at the specified location.

240

5 Classes (interfaces)

If accessMode is ReadWrite (which it should be for hard disks and floppies), the image is
opened for read/write access and must have according permissions, as VirtualBox may actually
write status information into the disk’s metadata sections.

Note that write access is required for all typical hard disk usage in VirtualBox, since VirtualBox
may need to write metadata such as a UUID into the image. The only exception is opening a
source image temporarily for copying and cloning (see IMedium::cloneTo() when the image will
be closed again soon.

The format of the location string is storage format specific. See IMedium::location and
IMedium for more details.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE ERROR: Invalid medium storage file location or could not find the medium
at the specified location.

e VBOX_E_IPRT_ERROR: Could not get medium storage format.
e E_INVALIDARG: Invalid medium storage format.
e VBOX_E_INVALID_OBJECT_STATE: Medium has already been added to a media registry.

5.99.17 registerMachine

void IVirtualBox::registerMachine(
[in] IMachine machine)

machine

Registers the machine previously created using createMachine() or opened using openMachine()
within this VirtualBox installation. After successful method invocation, the IMachineRegisteredEvent
event is fired.

Note: This method implicitly calls IMachine::saveSettings() to save all current machine
settings before registering it.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No matching virtual machine found.

e VBOX_E_INVALID_OBJECT_STATE: Virtual machine was not created within this
VirtualBox instance.

5.99.18 removeDHCPServer

void IVirtualBox::removeDHCPServer(
[in] IDHCPServer server)

server Dhcp server settings to be removed

Removes the dhcp server settings
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

241

5 Classes (interfaces)

5.99.19 removeSharedFolder

void IVirtualBox::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes the global shared folder with the given name previously created by createSharedFolder()
from the collection of shared folders and stops sharing it.

Note: In the current implementation, this operation is not implemented.

5.99.20 setExtraData

void IVirtualBox::setExtraData(
[in] wstring key,
[in] wstring value)

key Name of the data key to set.

value Value to assign to the key.

Sets associated global extra data.
If you pass null or empty string as a key value, the given key will be deleted.

Note: Before performing the actual data change, this method will ask all registered
event listener using the IExtraDataCanChangeEvent notification for a permission. If
one of the listeners refuses the new value, the change will not be performed.

Note: On success, the [ExtraDataChangedEvent notification is called to inform all reg-
istered listeners about a successful data change.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

e E_ACCESSDENIED: Modification request refused.

5.100 IVirtualBoxClient

’ Note: This interface is not supported in the web service.

Convenience interface for client applications. Treat this as a singleton, i.e. never create more
than one instance of this interface.

At the moment only available for clients of the local API (not usable via the webservice). Once
the session logic is redesigned this might change.

242

5 Classes (interfaces)

5.100.1 Attributes
5.100.1.1 virtualBox (read-only)

IVirtualBox IVirtualBoxClient::virtualBox

Reference to the server-side API root object.

5.100.1.2 session (read-only)

ISession IVirtualBoxClient::session

Create a new session object and return the reference to it.

5.100.1.3 eventSource (read-only)

IEventSource IVirtualBoxClient::eventSource

Event source for VirtualBoxClient events.

5.101 IVirtualBoxErrorinfo

The IVirtualBoxErrorInfo interface represents extended error information.

Extended error information can be set by VirtualBox components after unsuccessful or par-
tially successful method invocation. This information can be retrieved by the calling party as an
IVirtualBoxErrorInfo object and then shown to the client in addition to the plain 32-bit result
code.

In MS COM, this interface extends the IErrorInfo interface, in XPCOM, it extends the nsIExcep-
tion interface. In both cases, it provides a set of common attributes to retrieve error information.

Sometimes invocation of some component’s method may involve methods of other components
that may also fail (independently of this method’s failure), or a series of non-fatal errors may
precede a fatal error that causes method failure. In cases like that, it may be desirable to preserve
information about all errors happened during method invocation and deliver it to the caller. The
next attribute is intended specifically for this purpose and allows to represent a chain of errors
through a single IVirtualBoxErrorInfo object set after method invocation.

Note that errors are stored to a chain in the reverse order, i.e. the initial error object you query
right after method invocation is the last error set by the callee, the object it points to in the next
attribute is the previous error and so on, up to the first error (which is the last in the chain).

5.101.1 Attributes
5.101.1.1 resultCode (read-only)

long IVirtualBoxErrorInfo::resultCode

Result code of the error. Usually, it will be the same as the result code returned by the method
that provided this error information, but not always. For example, on Win32, CoCreatelnstance()
will most likely return E_ NOINTERFACE upon unsuccessful component instantiation attempt, but
not the value the component factory returned. Value is typed ’long’, not 'result’, to make interface
usable from scripting languages.

Note: In MS COM, there is no equivalent. In XPCOM, it is the same as nsIExcep-
tion::result.

243

5 Classes (interfaces)

5.101.1.2 interfacelD (read-only)

uuid IVirtualBoxErrorInfo::interfacelD

UUID of the interface that defined the error.

Note: In MS COM, it is the same as IErrorInfo::GetGUID, except for the data type. In
XPCOM, there is no equivalent.

5.101.1.3 component (read-only)

wstring IVirtualBoxErrorInfo::component

Name of the component that generated the error.

Note: In MS COM, it is the same as IErrorInfo::GetSource. In XPCOM, there is no
equivalent.

5.101.1.4 text (read-only)

wstring IVirtualBoxErrorInfo::text

Text description of the error.

Note: In MS COM, it is the same as IErrorInfo::GetDescription. In XPCOM, it is the
same as nsIException::message.

5.101.1.5 next (read-only)

IVirtualBoxErrorInfo IVirtualBoxErrorInfo::next

Next error object if there is any, or null otherwise.

Note: In MS COM, there is no equivalent. In XPCOM, it is the same as nsIExcep-
tion::inner.

5.102 IVirtualSystemDescription

Represents one virtual system (machine) in an appliance. This interface is used in the
IAppliance::virtualSystemDescriptions[] array. After IAppliance::interpret() has been called, that
array contains information about how the virtual systems described in the OVF should best be
imported into VirtualBox virtual machines. See IAppliance for the steps required to import an
OVF into VirtualBox.

5.102.1 Attributes
5.102.1.1 count (read-only)

unsigned long IVirtualSystemDescription::count

Return the number of virtual system description entries.

244

5 Classes (interfaces)

5.102.2 addDescription

void IVirtualSystemDescription::addDescription(
[in] VirtualSystemDescriptionType aType,
[in] wstring aVBoxValue,
[in] wstring aExtraConfigValue)

aType
aVBoxValue

aExtraConfigValue

This method adds an additional description entry to the stack of already available descrip-
tions for this virtual system. This is handy for writing values which aren’t directly supported by
VirtualBox. One example would be the License type of VirtualSystemDescriptionType.

5.102.3 getDescription

void IVirtualSystemDescription::getDescription(
[out] VirtualSystemDescriptionType aTypes[],
[out] wstring aRefs[],
[out] wstring aOvfValues|[],
[out] wstring aVBoxValues|[],
[out] wstring aExtraConfigValues[])

aTypes
aRefs
aOvfValues
aVBoxValues

aExtraConfigValues

Returns information about the virtual system as arrays of instruction items. In each array,
the items with the same indices correspond and jointly represent an import instruction for
VirtualBox.

The list below identifies the value sets that are possible depending on the VirtualSystemDescriptionType
enum value in the array item in aTypes[]. In each case, the array item with the same index in
alOvfValues[] will contain the original value as contained in the OVF file (just for informational
purposes), and the corresponding item in aVBoxValues[] will contain a suggested value to be
used for VirtualBox. Depending on the description type, the aExtraConfigValues[] array item
may also be used.

e “OS”: the guest operating system type. There must be exactly one such array item on
import. The corresponding item in aVBoxValues[] contains the suggested guest operating
system for VirtualBox. This will be one of the values listed in IVirtualBox::guestOSTypes[].
The corresponding item in aOvfValues[] will contain a numerical value that described the
operating system in the OVF.

e “Name”: the name to give to the new virtual machine. There can be at most one such
array item; if none is present on import, then an automatic name will be created from
the operating system type. The corresponding item im aOvfValues[] will contain the
suggested virtual machine name from the OVF file, and aVBoxValues[] will contain a
suggestion for a unique VirtualBox IMachine name that does not exist yet.

e “Description”: an arbitrary description.

245

5 Classes (interfaces)

“License”: the EULA section from the OVF, if present. It is the responsibility of the calling
code to display such a license for agreement; the Main API does not enforce any such policy.

Miscellaneous: reserved for future use.

“CPU”: the number of CPUs. There can be at most one such item, which will presently be
ignored.

“Memory”: the amount of guest RAM, in bytes. There can be at most one such array item;
if none is present on import, then VirtualBox will set a meaningful default based on the
operating system type.

“HardDiskControllerIDE”: an IDE hard disk controller. There can be at most two such
items. An optional value in aOvfValues[] and aVBoxValues[] can be “PIIX3” or “PIIX4” to
specify the type of IDE controller; this corresponds to the ResourceSubType element which
VirtualBox writes into the OVF. The matching item in the aRefs[] array will contain an
integer that items of the “Harddisk” type can use to specify which hard disk controller a
virtual disk should be connected to. Note that in OVF, an IDE controller has two chan-
nels, corresponding to “master” and “slave” in traditional terminology, whereas the IDE
storage controller that VirtualBox supports in its virtual machines supports four channels
(primary master, primary slave, secondary master, secondary slave) and thus maps to two
IDE controllers in the OVF sense.

“HardDiskControllerSATA’: an SATA hard disk controller. There can be at most one such
item. This has no value in aOvfValues[] or aVBoxValues[]. The matching item in the
aRefs[] array will be used as with IDE controllers (see above).

“HardDiskControllerSCSI”: a SCSI hard disk controller. There can be at most one such
item. The items in aOvfValues[] and aVBoxValues[] will either be “LsiLogic”, “Bus-
Logic” or “LsiLogicSas”. (Note that in OVF, the LsiLogicSas controller is treated as a SCSI
controller whereas VirtualBox considers it a class of storage controllers of its own; see
StorageControllerType). The matching item in the aRefs[] array will be used as with IDE
controllers (see above).

“HardDiskImage”: a virtual hard disk, most probably as a reference to an image file. There
can be an arbitrary number of these items, one for each virtual disk image that accompanies
the OVF.

The array item in aOvfValues[] will contain the file specification from the OVF file (with-
out a path since the image file should be in the same location as the OVF file itself), whereas
the item in aVBoxValues[] will contain a qualified path specification to where VirtualBox
uses the hard disk image. This means that on import the image will be copied and con-
verted from the “ovf” location to the “vbox” location; on export, this will be handled the
other way round.

The matching item in the aExtraConfigValues[] array must contain a string of the fol-
lowing format: “controller=<index>;channel=<c>“ In this string, <index> must be an
integer specifying the hard disk controller to connect the image to. That number must be
the index of an array item with one of the hard disk controller types (HardDiskController-
SCSI, HardDiskControllerSATA, HardDiskControllerIDE). In addition, <c> must specify
the channel to use on that controller. For IDE controllers, this can be O or 1 for master or
slave, respectively. For compatibility with VirtualBox versions before 3.2, the values 2 and
3 (for secondary master and secondary slave) are also supported, but no longer exported.
For SATA and SCSI controllers, the channel can range from 0-29.

“CDROM?”: a virtual CD-ROM drive. The matching item in aExtraConfigValue[] contains
the same attachment information as with “HardDiskImage” items.

246

5 Classes (interfaces)
e “CDROM?”: a virtual floppy drive. The matching item in aExtraConfigValue[] contains
the same attachment information as with “HardDiskImage” items.

e “NetworkAdapter”: a network adapter. The array item in aVBoxValues[] will specify the
hardware for the network adapter, whereas the array item in aExtraConfigValues[] will
have a string of the “type=<X>* format, where <X> must be either “NAT” or “Bridged”.

e “USBController”: a USB controller. There can be at most one such item. If and only if such
an item ispresent, USB support will be enabled for the new virtual machine.

e “SoundCard”: a sound card. There can be at most one such item. If and only if such an item
is present, sound support will be enabled for the new virtual machine. Note that the virtual
machine in VirtualBox will always be presented with the standard VirtualBox soundcard,
which may be different from the virtual soundcard expected by the appliance.

5.102.4 getDescriptionByType

void IVirtualSystemDescription::getDescriptionByType(
[in] VirtualSystemDescriptionType aType,
[out] VirtualSystemDescriptionType aTypesl|],
[out] wstring aRefs[],
[out] wstring aOvfValues|[],
[out] wstring aVBoxValues[],
[out] wstring aExtraConfigValues[])

aType
aTypes
aRefs
aOvfValues
aVBoxValues

aExtraConfigValues

This is the same as getDescription() except that you can specify which types should be returned.

5.102.5 getValuesByType

wstring[] IVirtualSystemDescription::getValuesByType(
[in] VirtualSystemDescriptionType aType,
[in] VirtualSystemDescriptionValueType aWhich)

aType
aWhich

This is the same as getDescriptionByType() except that you can specify which value types should
be returned. See VirtualSystemDescriptionValueType for possible values.

247

5 Classes (interfaces)

5.102.6 setFinalValues

void IVirtualSystemDescription::setFinalValues(
[in] boolean aEnabled[],
[in] wstring aVBoxValues|[],
[in] wstring aExtraConfigValues[])

aEnabled
aVBoxValues

aExtraConfigValues

This method allows the appliance’s user to change the configuration for the virtual system
descriptions. For each array item returned from getDescription(), you must pass in one boolean
value and one configuration value.

Each item in the boolean array determines whether the particular configuration item should
be enabled. You can only disable items of the types HardDiskControllerIDE, HardDiskCon-
trollerSATA, HardDiskControllerSCSI, HardDiskimage, CDROM, Floppy, NetworkAdapter, USB-
Controller and SoundCard.

For the “vbox” and “extra configuration” values, if you pass in the same arrays as returned in
the aVBoxValues and aExtraConfigValues arrays from getDescription(), the configuration remains
unchanged. Please see the documentation for getDescription() for valid configuration values for
the individual array item types. If the corresponding item in the aEnabled array is false, the
configuration value is ignored.

5.103 IWebsessionManager

’ Note: This interface is supported in the web service only, not in COM/XPCOM.

Websession manager. This provides essential services to webservice clients.

5.103.1 getSessionObject

ISession IWebsessionManager::getSessionObject(
[in] IVirtualBox refIVirtualBox)

reflVirtualBox

Returns a managed object reference to the internal ISession object that was created for this
web service session when the client logged on.
See also: ISession

5.103.2 logoff

void IWebsessionManager::logoff(
[in] IVirtualBox refIVirtualBox)

reflVirtualBox

Logs off the client who has previously logged on with logoff() and destroys all resources as-
sociated with the session (most importantly, all managed objects created in the server while the
session was active).

248

5 Classes (interfaces)

5.103.3 logon

IVirtualBox IWebsessionManager::logon(
[in] wstring username,
[in] wstring password)

username

password

Logs a new client onto the webservice and returns a managed object reference to the IVirtu-
alBox instance, which the client can then use as a basis to further queries, since all calls to the
VirtualBox API are based on the IVirtualBox interface, in one way or the other.

249

6 Enumerations (enums)

6.1 AccessMode
Access mode for opening files.

ReadOnly
ReadWrite

6.2 AdditionsRunLevelType

Guest Additions run level type.

None Guest Additions are not loaded.
System Guest drivers are loaded.
Userland Common components (such as application services) are loaded.

Desktop Per-user desktop components are loaded.

6.3 AdditionsUpdateFlag

Guest Additions update flags.

None No flag set.

WaitForUpdateStartOnly Only wait for the update process being started and do not wait while
peforming the actual update.

6.4 AudioControllerType

Virtual audio controller type.

AC97
SB16
HDA

6.5 AudioDriverType
Host audio driver type.

Null Null value, also means “dummy audio driver”.

WinMM Windows multimedia (Windows hosts only).

250

6 Enumerations (enums)

OSS Open Sound System (Linux hosts only).

ALSA Advanced Linux Sound Architecture (Linux hosts only).
DirectSound DirectSound (Windows hosts only).

CoreAudio CoreAudio (Mac hosts only).

MMPM Reserved for historical reasons.

Pulse PulseAudio (Linux hosts only).

SolAudio Solaris audio (Solaris hosts only).

6.6 AuthType

VirtualBox authentication type.
Null Null value, also means “no authentication”.
External

Guest

6.7 BIOSBootMenuMode

BIOS boot menu mode.
Disabled
MenuOnly

MessageAndMenu

6.8 BandwidthGroupType

Type of a bandwidth control group.
Null Null type, must be first.
Disk The bandwidth group controls disk I/0.

Network The bandwidth group controls network 1/0.

6.9 CPUPropertyType

Virtual CPU property type. This enumeration represents possible values of the IMachine get- and
setCPUProperty methods.

Null Null value (never used by the API).

PAE This setting determines whether VirtualBox will expose the Physical Address Extension
(PAE) feature of the host CPU to the guest. Note that in case PAE is not available, it will
not be reported.

Synthetic This setting determines whether VirtualBox will expose a synthetic CPU to the guest
to allow teleporting between host systems that differ significantly.

251

6 Enumerations (enums)

6.10 ChipsetType

Type of emulated chipset (mostly southbridge).
Null null value. Never used by the API.

PIIX3 A PIIX3 (PCI IDE ISA Xcelerator) chipset.
ICH9 A ICH9 (I/0 Controller Hub) chipset.

6.11 CleanupMode

Cleanup mode, used with IMachine::unregister().

UnregisterOnly Unregister only the machine, but neither delete snapshots nor detach media.

DetachAllReturnNone Delete all snapshots and detach all media but return none; this will keep
all media registered.

DetachAllReturnHardDisksOnly Delete all snapshots, detach all media and return hard disks
for closing, but not removable media.

Full Delete all snapshots, detach all media and return all media for closing.

6.12 ClipboardMode

Host-Guest clipboard interchange mode.
Disabled

HostToGuest

GuestToHost

Bidirectional

6.13 CopyFileFlag

Host/Guest copy flags. At the moment none of these flags are implemented.
None No flag set.
Recursive Copy directories recursively.

Update Only copy when the source file is newer than the destination file or when the destination
file is missing.

FollowLinks Follow symbolic links.

6.14 CreateDirectoryFlag

Directory creation flags.

None No flag set.

Parents No error if existing, make parent directories as needed.

252

6 Enumerations (enums)

6.15 DataFlags

None
Mandatory
Expert
Array
FlagMask

6.16 DataType
Int32

Int8
String

6.17 DeviceActivity

Device activity for IConsole::getDeviceActivity().
Null

Idle

Reading

Writing

6.18 DeviceType

Device type.

Null Null value, may also mean “no device” (not allowed for IConsole::getDeviceActivity()).
Floppy Floppy device.

DVD CD/DVD-ROM device.

HardDisk Hard disk device.

Network Network device.

USB USB device.

SharedFolder Shared folder device.

253

6 Enumerations (enums)

6.19 ExecuteProcessFlag

Guest process execution flags.
None No flag set.

WaitForProcessStartOnly Only use the specified timeout value to wait for starting the guest
process - the guest process itself then uses an infinite timeout.

IgnoreOrphanedProcesses Do not report an error when executed processes are still alive
when VBoxService or the guest OS is shutting down.

Hidden Don’t show the started process according to the guest OS guidelines.

NoProfile Do not use the user’s profile data when exeuting a process.

6.20 FaultToleranceState

Used with IMachine::faultToleranceState.
Inactive No fault tolerance enabled.
Master Fault tolerant master VM.

Standby Fault tolerant standby VM.

6.21 FirmwareType

Firmware type.

BIOS BIOS Firmware.

EFI EFI Firmware, bitness detected basing on OS type.
EFI32 Efi firmware, 32-bit.

EFI64 Efi firmware, 64-bit.

EFIDUAL Efi firmware, combined 32 and 64-bit.

6.22 FramebufferPixelFormat

Format of the video memory buffer. Constants represented by this enum can be used to test for
particular values of IFramebuffer::pixelFormat. See also IFramebuffer::requestResize().
See also www.fourcc.org for more information about FOURCC pixel formats.

Opaque Unknown buffer format (the user may not assume any particular format of the buffer).

FOURCC_RGB Basic RGB format (IFramebuffer::bitsPerPixel determines the bit layout).

6.23 GuestMonitorChangedEventType

How the guest monitor has been changed.
Enabled The guest monitor has been enabled by the guest.
Disabled The guest monitor has been disabled by the guest.

NewOrigin The guest monitor origin has changed in the guest.

254

6 Enumerations (enums)

6.24 HWVirtExPropertyType

Hardware virtualization property type. This enumeration represents possible values for the
IMachine::getHWVirtExProperty() and IMachine::setHWVirtExProperty() methods.

Null Null value (never used by the API).

Enabled Whether hardware virtualization (VI-x/AMD-V) is enabled at all. If such extensions
are not available, they will not be used.

Exclusive Whether hardware virtualization is used exclusively by VirtualBox. When enabled,
VirtualBox assumes it can acquire full and exclusive access to the VI-x or AMD-V feature of
the host. To share these with other hypervisors, you must disable this property.

VPID Whether VI-x VPID is enabled. If this extension is not available, it will not be used.

NestedPaging Whether Nested Paging is enabled. If this extension is not available, it will not
be used.

LargePages Whether large page allocation is enabled; requires nested paging and a 64 bits
host.

Force Whether the VM should fail to start if hardware virtualization (VI-x/AMD-V) cannot be
used. If not set, there will be an automatic fallback to software virtualization.

6.25 HostNetworkinterfaceMediumType

Type of encapsulation. Ethernet encapsulation includes both wired and wireless Ethernet con-
nections. See also: IHostNetworkInterface

Unknown The type of interface cannot be determined.
Ethernet Ethernet frame encapsulation.
PPP Point-to-point protocol encapsulation.

SLIP Serial line IP encapsulation.

6.26 HostNetworkinterfaceStatus

Current status of the interface. See also: IHostNetworkInterface

Unknown The state of interface cannot be determined.
Up The interface is fully operational.

Down The interface is not functioning.

6.27 HostNetworkinterfaceType
Network interface type.

Bridged

HostOnly

255

6 Enumerations (enums)

6.28 KeyboardHidType

Type of keyboard device used in a virtual machine.
None No keyboard.

PS2Keyboard PS/2 keyboard.

USBKeyboard USB keyboard.

ComboKeyboard Combined device, working as PS/2 or USB keyboard, depending on guest
behavior. Using of such device can have negative performance implications.

6.29 LockType

Used with IMachine::lockMachine().
Write Lock the machine for writing.

Shared Request only a shared read lock for remote-controlling the machine.

6.30 MachineState

Virtual machine execution state.

This enumeration represents possible values of the IMachine::state attribute.

Below is the basic virtual machine state diagram. It shows how the state changes during
virtual machine execution. The text in square braces shows a method of the IConsole interface
that performs the given state transition.

R [powerDown()] <- Stuck <--[failure]-+

v I
+-> PoweredOff --+-->[powerUp()]--> Starting --+ | +----- [resume()]----- +
I I I |V I
| Aborted ----- + +--> Running --[pause()]--> Paused
I I ~ ~
| Saved ----------- [powerUp()]--> Restoring -+ || |
I ” [[
| | B L R R T + +
I I I I I
| | +-- Saving <-------- [takeSnapshot()]<------- R TR +
I I I I
| LEEEEEEER Saving <-------- [saveState()]<---------- R R LR +
I I I
R Stopping ------- [powerDown()]<---------- T T +

Note that states to the right from PoweredOff, Aborted and Saved in the above diagram are
called online VM states. These states represent the virtual machine which is being executed in
a dedicated process (usually with a GUI window attached to it where you can see the activity
of the virtual machine and interact with it). There are two special pseudo-states, FirstOnline
and LastOnline, that can be used in relational expressions to detect if the given machine state is
online or not:

if (machine.GetState() >= MachineState_FirstOnline &&
machine.GetState() <= MachineState_LastOnline)

{

...the machine is being executed...

}

256

6 Enumerations (enums)

When the virtual machine is in one of the online VM states (that is, being executed), only a few
machine settings can be modified. Methods working with such settings contain an explicit note
about that. An attempt to change any other setting or perform a modifying operation during this
time will result in the VBOX_E_INVALID_VM_STATE error.

All online states except Running, Paused and Stuck are transitional: they represent temporary
conditions of the virtual machine that will last as long as the operation that initiated such a
condition.

The Stuck state is a special case. It means that execution of the machine has reached the “Guru
Meditation” condition. This condition indicates an internal VMM (virtual machine manager)
failure which may happen as a result of either an unhandled low-level virtual hardware exception
or one of the recompiler exceptions (such as the too-many-traps condition).

Note also that any online VM state may transit to the Aborted state. This happens if the process
that is executing the virtual machine terminates unexpectedly (for example, crashes). Other than
that, the Aborted state is equivalent to PoweredOff.

There are also a few additional state diagrams that do not deal with virtual machine execution
and therefore are shown separately. The states shown on these diagrams are called offline VM
states (this includes PoweredOff, Aborted and Saved too).

The first diagram shows what happens when a lengthy setup operation is being executed (such
as IMachine::attachDevice()).

+-> PoweredOff --+

| | I
| -> Aborted ----- +-->[lengthy VM configuration call] --> SettingUp ----- +

+-> Saved ------- +

The next two diagrams demonstrate the process of taking a snapshot of a powered off virtual
machine, restoring the state to that as of a snapshot or deleting a snapshot, respectively.

| +-->[takeSnapshot()] ------------------- > Saving ------ +
+-> Aborted ----- +

+-> PoweredOff --+

| Aborted ----- +-->[restoreSnapshot()]------- > RestoringSnapshot -+
| | [deleteSnapshot() J------- > DeletingSnapshot --+
+-> Saved ------- +

| |
+---(Saved if restored from an online snapshot, PoweredOff otherwise)---+

Note that the Saving state is present in both the offline state group and online state group.
Currently, the only way to determine what group is assumed in a particular case is to remember
the previous machine state: if it was Running or Paused, then Saving is an online state, other-
wise it is an offline state. This inconsistency may be removed in one of the future versions of
VirtualBox by adding a new state.

Null Null value (never used by the API).

PoweredOff The machine is not running and has no saved execution state; it has either never
been started or been shut down successfully.

257

6 Enumerations (enums)
Saved The machine is not currently running, but the execution state of the machine has been
saved to an external file when it was running, from where it can be resumed.

Teleported The machine was teleported to a different host (or process) and then powered off.
Take care when powering it on again may corrupt resources it shares with the teleportation
target (e.g. disk and network).

Aborted The process running the machine has terminated abnormally. This may indicate a
crash of the VM process in host execution context, or the VM process has been terminated
externally.

Running The machine is currently being executed.
Paused Execution of the machine has been paused.

Stuck Execution of the machine has reached the “Guru Meditation” condition. This indicates a
severe error in the hypervisor itself.

Teleporting The machine is about to be teleported to a different host or process. It is possible
to pause a machine in this state, but it will go to the TeleportingPausedVM state and it
will not be possible to resume it again unless the teleportation fails.

LiveSnapshotting A live snapshot is being taken. The machine is running normally, but some of
the runtime configuration options are inaccessible. Also, if paused while in this state it will
transition to Saving and it will not be resume the execution until the snapshot operation
has completed.

Starting Machine is being started after powering it on from a zero execution state.

Stopping Machine is being normally stopped powering it off, or after the guest OS has initiated
a shutdown sequence.

Saving Machine is saving its execution state to a file, or an online snapshot of the machine is
being taken.

Restoring Execution state of the machine is being restored from a file after powering it on from
the saved execution state.

TeleportingPausedVM The machine is being teleported to another host or process, but it is not
running. This is the paused variant of the state.

Teleportingln Teleporting the machine state in from another host or process.

FaultTolerantSyncing The machine is being synced with a fault tolerant VM running else-
where.

DeletingSnapshotOnline Like DeletingSnapshot, but the merging of media is ongoing in the
background while the machine is running.

DeletingSnapshotPaused Like DeletingSnapshotOnline, but the machine was paused when
the merging of differencing media was started.

RestoringSnapshot A machine snapshot is being restored; this typically does not take long.

DeletingSnapshot A machine snapshot is being deleted; this can take a long time since this may
require merging differencing media. This value indicates that the machine is not running
while the snapshot is being deleted.

SettingUp Lengthy setup operation is in progress.

FirstOnline Pseudo-state: first online state (for use in relational expressions).

258

6 Enumerations (enums)

LastOnline Pseudo-state: last online state (for use in relational expressions).
FirstTransient Pseudo-state: first transient state (for use in relational expressions).

LastTransient Pseudo-state: last transient state (for use in relational expressions).

6.31 MediumFormatCapabilities

Medium format capability flags.

Uuid Supports UUIDs as expected by VirtualBox code.

CreateFixed Supports creating fixed size images, allocating all space instantly.

CreateDynamic Supports creating dynamically growing images, allocating space on demand.
CreateSplit2G Supports creating images split in chunks of a bit less than 2 GBytes.

Differencing Supports being used as a format for differencing media (see IMedium::createDiffStorage()).
Asynchronous Supports asynchronous I/O operations for at least some configurations.

File The format backend operates on files (the IMedium::location attribute of the medium
specifies a file used to store medium data; for a list of supported file extensions see
IMediumFormat::describeFileExtensions()).

Properties The format backend uses the property interface to configure the storage location
and properties (the IMediumFormat::describeProperties() method is used to get access to
properties supported by the given medium format).

TcpNetworking The format backend uses the TCP networking interface for network access.
VFS The format backend supports virtual filesystem functionality.

CapabilityMask

6.32 MediumState

Virtual medium state. See also: IMedium

NotCreated Associated medium storage does not exist (either was not created yet or was
deleted).

Created Associated storage exists and accessible; this gets set if the accessibility check per-
formed by IMedium::refreshState() was successful.

LockedRead Medium is locked for reading (see IMedium::lockRead()), no data modification is
possible.

LockedWrite Medium is locked for writing (see IMedium::lockWrite()), no concurrent data
reading or modification is possible.

Inaccessible Medium accessibility check (see IMedium::refreshState()) has not yet been
performed, or else, associated medium storage is not accessible. In the first case,
IMedium::lastAccessError is empty, in the second case, it describes the error that occurred.

Creating Associated medium storage is being created.

Deleting Associated medium storage is being deleted.

259

6 Enumerations (enums)

6.33 MediumType

Virtual medium type. For each IMedium, this defines how the medium is attached to a virtual
machine (see IMediumAttachment) and what happens when a snapshot (see ISnapshot) is taken
of a virtual machine which has the medium attached. At the moment DVD and floppy media are
always of type “writethrough”.

Normal Normal medium (attached directly or indirectly, preserved when taking snapshots).

Immutable Immutable medium (attached indirectly, changes are wiped out the next time the
virtual machine is started).

Writethrough Write through medium (attached directly, ignored when taking snapshots).

Shareable Allow using this medium concurrently by several machines.

Note: Present since VirtualBox 3.2.0, and accepted since 3.2.8.

Readonly A readonly medium, which can of course be used by several machines.

Note: Present and accepted since VirtualBox 4.0.

MultiAttach A medium which is is indirectly attached, so that one base medium can be used
for several VMs which have their own differencing medium to store their modifications. In
some sense a variant of Immutable with unset AutoReset flag in each differencing medium.

’ Note: Present and accepted since VirtualBox 4.0.

6.34 MediumVariant

Virtual medium image variant. More than one flag may be set. See also: IMedium

Standard No particular variant requested, results in using the backend default.
VmdkSplit2G VMDK image split in chunks of less than 2GByte.

VmdkStreamOptimized VMDK streamOptimized image. Special import/export format which
is read-only/append-only.

VmdKESX VMDK format variant used on ESX products.
Fixed Fixed image. Only allowed for base images.

Diff Differencing image. Only allowed for child images.

260

6 Enumerations (enums)

6.35 MouseButtonState

Mouse button state.

LeftButton
RightButton
MiddleButton
WheelUp
WheelDown
XButton1
XButton2

MouseStateMask

6.36 NATAliasMode

AliasLog
AliasProxyOnly

AliasUseSamePorts

6.37 NATProtocol

Protocol definitions used with NAT port-forwarding rules.

UDP Port-forwarding uses UDP protocol.
TCP Port-forwarding uses TCP protocol.

6.38 NetworkAdapterType

Network adapter type.

Null Null value (never used by the API).

Am79C970A AMD PCNet-PCI II network card (Am79C970A).
Am79C973 AMD PCNet-FAST III network card (Am79C973).
1I82540EM Intel PRO/1000 MT Desktop network card (82540EM).
182543GC Intel PRO/1000 T Server network card (82543GC).
1I82545EM Intel PRO/1000 MT Server network card (82545EM).

Virtio Virtio network device.

261

6 Enumerations (enums)

6.39 NetworkAttachmentType

Network attachment type.

Null Null value, also means “not attached”.
NAT

Bridged

Internal

HostOnly

VDE

6.40 PointingHidType

Type of pointing device used in a virtual machine.

None No mouse.
PS2Mouse PS/2 auxiliary device, a.k.a. mouse.
USBMouse USB mouse (relative pointer).

USBTablet USB tablet (absolute pointer).

ComboMouse Combined device, working as PS/2 or USB mouse, depending on guest behavior.
Using of such device can have negative performance implications.

6.41 PortMode

The PortMode enumeration represents possible communication modes for the virtual serial port

device.

Disconnected Virtual device is not attached to any real host device.

HostPipe Virtual device is attached to a host pipe.
HostDevice Virtual device is attached to a host device.

RawgFile Virtual device is attached to a raw file.

6.42 ProcessinputFlag

Guest process input flags.

None No flag set.

EndOfFile End of file (input) reached.

262

6 Enumerations (enums)

6.43 ProcessorFeature
CPU features.

HWVirtEx

PAE

LongMode

NestedPaging

6.44 Scope

Scope of the operation.
A generic enumeration used in various methods to define the action or argument scope.

Global
Machine

Session

6.45 SessionState

Session state. This enumeration represents possible values of IMachine::sessionState and
ISession::state attributes.

Null Null value (never used by the API).

Unlocked In IMachine::sessionState, this means that the machine is not locked for any sessions.

In ISession::state, this means that no machine is currently locked for this session.

Locked In IMachine::sessionState, this means that the machine is currently locked for a session,
whose process identifier can then be found in the IMachine::sessionPid attribute.

In ISession::state, this means that a machine is currently locked for this session, and
the mutable machine object can be found in the ISession::machine attribute (see
IMachine::lockMachine() for details).

Spawning A new process is being spawned for the machine as a result of IMachine::launchVMProcess()
call. This state also occurs as a short transient state during an IMachine::lockMachine()
call.

Unlocking The session is being unlocked.

6.46 SessionType

Session type. This enumeration represents possible values of the ISession::type attribute.

Null Null value (never used by the API).

WriteLock Session has acquired an exclusive write lock on a machine using IMachine::lockMachine().
Remote Session has launched a VM process using IMachine::launchVMProcess()

Shared Session has obtained a link to another session using IMachine::lockMachine()

263

6 Enumerations (enums)

6.47 SettingsVersion

Settings version of VirtualBox settings files. This is written to the “version” attribute of the root
“VirtualBox” element in the settings file XML and indicates which VirtualBox version wrote the
file.

Null Null value, indicates invalid version.

v1_0 Legacy settings version, not currently supported.

v1_1 Legacy settings version, not currently supported.

v1_2 Legacy settings version, not currently supported.

v1_3pre Legacy settings version, not currently supported.

v1_3 Settings version “1.3”, written by VirtualBox 2.0.12.

v1_4 Intermediate settings version, understood by VirtualBox 2.1.x.
v1_5 Intermediate settings version, understood by VirtualBox 2.1.x.
v1_6 Settings version “1.6”, written by VirtualBox 2.1.4 (at least).
v1_7 Settings version “1.7”, written by VirtualBox 2.2.x and 3.0.x.
v1_8 Intermediate settings version “1.8”, understood by VirtualBox 3.1.x.
v1_9 Settings version “1.9”, written by VirtualBox 3.1.x.

v1_10 Settings version “1.10”, written by VirtualBox 3.2.x.

v1_11 Settings version “1.11”, written by VirtualBox 4.0.x.

Future Settings version greater than “1.11”, written by a future VirtualBox version.

6.48 StorageBus

The bus type of the storage controller (IDE, SATA, SCSI, SAS or Floppy); see IStorageController::bus.
Null null value. Never used by the APIL.

IDE

SATA

Scsi

Floppy
SAS

264

6 Enumerations (enums)

6.49 StorageControllerType
The exact variant of storage controller hardware presented to the guest; see IStorageController::controllerType.

Null null value. Never used by the APIL.

LsiLogic A SCSI controller of the LsiLogic variant.

BusLogic A SCSI controller of the BusLogic variant.

IntelAhci An Intel AHCI SATA controller; this is the only variant for SATA.
PIIX3 An IDE controller of the PIIX3 variant.

PlIX4 An IDE controller of the PIIX4 variant.

ICH6 An IDE controller of the ICH6 variant.

182078 A floppy disk controller; this is the only variant for floppy drives.

LsiLogicSas A variant of the LsiLogic controller using SAS.

6.50 USBDeviceFilterAction

Actions for host USB device filters. See also: IHostUSBDeviceFilter, USBDeviceState

Null Null value (never used by the API).
Ignore Ignore the matched USB device.

Hold Hold the matched USB device.

6.51 USBDeviceState

USB device state. This enumeration represents all possible states of the USB device physically
attached to the host computer regarding its state on the host computer and availability to guest
computers (all currently running virtual machines).

Once a supported USB device is attached to the host, global USB filters (IHost::USBDeviceFilters[])
are activated. They can either ignore the device, or put it to USBDeviceState Held state, or do
nothing. Unless the device is ignored by global filters, filters of all currently running guests
(IUSBController::deviceFilters[]) are activated that can put it to USBDeviceState Captured
state.

If the device was ignored by global filters, or didn’t match any filters at all (including guest
ones), it is handled by the host in a normal way. In this case, the device state is determined by
the host and can be one of USBDeviceState_Unavailable, USBDeviceState Busy or USBDeviceS-
tate_Available, depending on the current device usage.

Besides auto-capturing based on filters, the device can be manually captured by guests
(IConsole::attachUSBDevice()) if its state is USBDeviceState Busy, USBDeviceState Available or
USBDeviceState Held.

Note: Due to differences in USB stack implementations in Linux and Win32, states US-
BDeviceState Busy and USBDeviceState Unavailable are applicable only to the Linux
version of the product. This also means that (IConsole::attachUSBDevice()) can only
succeed on Win32 if the device state is USBDeviceState Held.

265

6 Enumerations (enums)

See also: IHostUSBDevice, IHostUSBDeviceFilter

NotSupported Not supported by the VirtualBox server, not available to guests.
Unavailable Being used by the host computer exclusively, not available to guests.
Busy Being used by the host computer, potentially available to guests.

Available Not used by the host computer, available to guests (the host computer can also start
using the device at any time).

Held Held by the VirtualBox server (ignored by the host computer), available to guests.

Captured Captured by one of the guest computers, not available to anybody else.

6.52 VBoxEventType

Type of an event. See IEvent for an introduction to VirtualBox event handling.

Invalid Invalid event, must be first.

Any Wildcard for all events. Events of this type are never delivered, and only used in registerLis-
tener() call to simplify registration.

Vetoable Wildcard for all vetoable events. Events of this type are never delivered, and only used
in registerListener() call to simplify registration.

MachineEvent Wildcard for all machine events. Events of this type are never delivered, and
only used in registerListener() call to simplify registration.

SnapshotEvent Wildcard for all snapshot events. Events of this type are never delivered, and
only used in registerListener() call to simplify registration.

InputEvent Wildcard for all input device (keyboard, mouse) events. Events of this type are
never delivered, and only used in registerListener() call to simplify registration.

LastWildcard Last wildcard.

OnMachineStateChanged See IMachineStateChangedEvent.
OnMachineDataChanged See IMachineDataChangedEvent.
OnExtraDataChanged See IExtraDataChangedEvent.
OnExtraDataCanChange See IExtraDataCanChangeEvent.
OnMediumRegistered See IMediumRegisteredEvent.
OnMachineRegistered See IMachineRegisteredEvent.
OnSessionStateChanged See ISessionStateChangedEvent.
OnSnapshotTaken See ISnapshotTakenEvent.
OnSnapshotDeleted See ISnapshotDeletedEvent.
OnSnapshotChanged See ISnapshotChangedEvent.
OnGuestPropertyChanged See IGuestPropertyChangedEvent.

OnMousePointerShapeChanged See IMousePointerShapeChangedEvent.

266

6 Enumerations (enums)

OnMouseCapabilityChanged See IMouseCapabilityChangedEvent.
OnKeyboardLedsChanged See IKeyboardLedsChangedEvent.
OnStateChanged See IStateChangedEvent.
OnAdditionsStateChanged See IAdditionsStateChangedEvent.
OnNetworkAdapterChanged See INetworkAdapterChangedEvent.
OnSerialPortChanged See ISerialPortChangedEvent.
OnParallelPortChanged See IParallelPortChangedEvent.
OnStorageControllerChanged See IStorageControllerChangedEvent.
OnMediumChanged See IMediumChangedEvent.
OnVRDEServerChanged See IVRDEServerChangedEvent.
OnUSBControllerChanged See IUSBControllerChangedEvent.
OnUSBDeviceStateChanged See IUSBDeviceStateChangedEvent.
OnSharedFolderChanged See ISharedFolderChangedEvent.
OnRuntimeError See IRuntimeErrorEvent.

OnCanShowWindow See ICanShowWindowEvent.
OnShowWindow See IShowWindowEvent.

OnCPUChanged See ICPUChangedEvent.
OnVRDEServerinfoChanged See IVRDEServerInfoChangedEvent.
OnEventSourceChanged See IEventSourceChangedEvent.
OnCPUExecutionCapChanged See ICPUExecutionCapChangedEvent.
OnGuestKeyboard See IGuestKeyboardEvent.

OnGuestMouse See IGuestMouseEvent.

OnNATRedirect See INATRedirectEvent.

OnHostPciDevicePlug See IHostPciDevicePlugEvent.
OnVBoxSVCAuvailabilityChanged See IVBoxSVCAvailabilityChangedEvent.
OnBandwidthGroupChanged See IBandwidthGroupChangedEvent.
OnGuestMonitorChanged See IGuestMonitorChangedEvent.

Last Must be last event, used for iterations and structures relying on numerical event values.

267

6 Enumerations (enums)

6.53 VFSFileType

File types known by VFSExplorer.
Unknown

Fifo

DevChar

Directory

DevBlock

File

SymLink

Socket

WhiteOut

6.54 VFSType

Virtual file systems supported by VFSExplorer.
File

Cloud

S3

WebDav

6.55 VirtualSystemDescriptionType

Used with IVirtualSystemDescription to describe the type of a configuration value.
Ignore

oS

Name

Product
Vendor
Version
ProductUrl
VendorUrl
Description
License
Miscellaneous
CPU

268

6 Enumerations (enums)

Memory
HardDiskControllerIDE
HardDiskControllerSATA
HardDiskControllerSCSI
HardDiskControllerSAS
HardDisklmage

Floppy

CDROM
NetworkAdapter
USBController
SoundCard

6.56 VirtualSystemDescriptionValueType

Used with IVirtualSystemDescription::getValuesByType() to describe the value type to fetch.
Reference

Original

Auto

ExtraConfig

269

7 Host-Guest Communication Manager

The VirtualBox Host-Guest Communication Manager (HGCM) allows a guest application or a
guest driver to call a host shared library. The following features of VirtualBox are implemented
using HGCM:

e Shared Folders
e Shared Clipboard

e Guest configuration interface

The shared library contains a so called HGCM service. The guest HGCM clients establish
connections to the service to call it. When calling a HGCM service the client supplies a function
code and a number of parameters for the function.

7.1 Virtual hardware implementation

HGCM uses the VMM virtual PCI device to exchange data between the guest and the host. The
guest always acts as an initiator of requests. A request is constructed in the guest physical
memory, which must be locked by the guest. The physical address is passed to the VMM device
using a 32 bit out edx, eax instruction. The physical memory must be allocated below 4GB by
64 bit guests.

The host parses the request header and data and queues the request for a host HGCM service.
The guest continues execution and usually waits on a HGCM event semaphore.

When the request has been processed by the HGCM service, the VMM device sets the comple-
tion flag in the request header, sets the HGCM event and raises an IRQ for the guest. The IRQ
handler signals the HGCM event semaphore and all HGCM callers check the completion flag in
the corresponding request header. If the flag is set, the request is considered completed.

7.2 Protocol specification
The HGCM protocol definitions are contained in the VBox/VBoxGuest.h

7.2.1 Request header

HGCM request structures contains a generic header (VMMDevHGCMRequestHeader):

Name Description

size Size of the entire request.

version Version of the header, must be set to 0x10001.

type Type of the request.

rc HGCM return code, which will be set by the VMM device.

reservedl | A reserved field 1.

reserved2 | A reserved field 2.

flags HGCM flags, set by the VMM device.

result The HGCM result code, set by the VMM device.

270

7 Host-Guest Communication Manager

Note:

o All fields are 32 bit.

e Fields from size to reserved? are a standard VMM device request header, which
is used for other interfaces as well.

The type field indicates the type of the HGCM request:

Name (decimal value) Description

VMMDevReq HGCMConnect | Connect to a HGCM service.

(60)

VMMDe- Disconnect from the service.
vReq_HGCMDisconnect

(61)

VMMDevReq HGCMCall32 Call a HGCM function using the 32 bit interface.
(62)

VMMDevReq HGCMCall64 Call a HGCM function using the 64 bit interface.
(63)

VMMDevReq HGCMCancel Cancel a HGCM request currently being processed by a host
(64) HGCM service.

The flags field may contain:

Name (hexadecimal value) Description

VBOX_HGCM_REQ_DONE (0x00000001) The request has been processed by the host
service.

VBOX_HGCM_REQ_CANCELLED This request was cancelled.

(6x00000002)

7.2.2 Connect

The connection request must be issued by the guest HGCM client before it can call the HGCM
service (VMMDevHGCMConnect):

Name Description
header | The generic HGCM request header with type equal to
VMMDevReq HGCMConnect (60).

type The type of the service location information (32 bit).

loca- The service location information (128 bytes).

tion

clien- The client identifier assigned to the connecting client by the HGCM subsystem (32
tld bit).

The type field tells the HGCM how to look for the requested service:

Name (hexadecimal Description

value)

VMMDevHGCM- The requested service is a shared library located on the host and
Loc_LocalHost the location information contains the library name.

(ox1)

VMMDevHGCM- The requested service is a preloaded one and the location
Loc_LocalHost_Existing information contains the service name.

(6x2)

271

7 Host-Guest Communication Manager

Note: Currently preloaded HGCM services are hard-coded in VirtualBox:
e VBoxSharedFolders
e VBoxSharedClipboard

e VBoxGuestPropSvc

e VBoxSharedOpenGL

There is no difference between both types of HGCM services, only the location mechanism is
different.

The client identifier is returned by the host and must be used in all subsequent requests by the
client.

7.2.3 Disconnect

This request disconnects the client and makes the client identifier invalid (VMMDevHGCMDis-
connect):

Name | Description

header | The generic HGCM request header with type equal to
VMMDevReq_HGCMDisconnect (61).

clien- The client identifier previously returned by the connect request (32 bit).
tld

7.2.4 Call32 and Call64
Calls the HGCM service entry point (VMMDevHGCMCall) using 32 bit or 64 bit addresses:

Name | Description

header| The generic HGCM request header with type equal to either
VMMDevReq HGCMCall32 (62) or VMMDevReq HGCMCall64 (63).
clien- | The client identifier previously returned by the connect request (32 bit).
tld
func- | The function code to be processed by the service (32 bit).
tion
cParms| The number of following parameters (32 bit). This value is 0 if the function
requires no parameters.

parms | An array of parameter description structures (HGCMFunctionParameter32 or
HGCMFunctionParameter64).

The 32 bit parameter description (HGCMFunctionParameter32) consists of 32 bit type field
and 8 bytes of an opaque value, so 12 bytes in total. The 64 bit variant (HGCMFunctionParame-
ter64) consists of the type and 12 bytes of a value, so 16 bytes in total.

272

7 Host-Guest Communication Manager

Type Format of the value

VMMDevHGCMParm- A 32 bit value.

Type_32bit

€3]

VMMDevHGCMParm- A 64 bit value.

Type 64bit

(2)

VMMDevHGCMParm- A 32 bit size followed by a 32 bit or 64 bit guest physical

Type PhysAddr address.

3)

VMMDevHGCMParm- A 32 bit size followed by a 32 bit or 64 bit guest linear address.
Type_LinAddr The buffer is used both for guest to host and for host to guest
4 data.

VMMDevHGCMParm- Same as VMMDevHGCMParmType_LinAddr but the buffer is
Type LinAddr In used only for host to guest data.

(5)

VMMDevHGCMParm- Same as VMMDevHGCMParmType_LinAddr but the buffer is
Type LinAddr Out used only for guest to host data.

(6

VMMDevHGCMParm- Same as VMMDevHGCMParmType_LinAddr but the buffer is
Type LinAddr Locked already locked by the guest.

(7)

VMMDevHGCMParm- Same as VMMDevHGCMParmType_LinAddr_In but the buffer is
Type LinAddr Locked In | already locked by the guest.

€3]

VMMDevHGCMParm- Same as VMMDevHGCMParmType_LinAddr_Out but the buffer
Type LinAddr Locked Out is already locked by the guest.

€3]

The

7.2.5 Cancel
This request cancels a call request (VMMDevHGCMCancel):

Name | Description
header | The generic HGCM request header with type equal to VMMDevReq HGCMCancel
(64).

7.3 Guest software interface

The guest HGCM clients can call HGCM services from both drivers and applications.

7.3.1 The guest driver interface

The driver interface is implemented in the VirtualBox guest additions driver (VBoxGuest), which
works with the VMM virtual device. Drivers must use the VBox Guest Library (VBGL), which
provides an API for HGCM clients (VBox/VBoxGuestLib.h and VBox/VBoxGuest.h).

DECLVBGL (int) VbglHGCMConnect (VBGLHGCMHANDLE xpHandle, VBoxGuestHGCMConnectInfo xpData);

Connects to the service:

VBoxGuestHGCMConnectInfo data;

273

7 Host-Guest Communication Manager

memset (&data, sizeof (VBoxGuestHGCMConnectInfo));
data.result = VINF_SUCCESS;

data.Loc.type = VMMDevHGCMLoc_LocalHost_Existing;
strcpy (data.Loc.u.host.achName, "VBoxSharedFolders");
rc = VbglHGCMConnect (&handle, &data);

if (RT_SUCCESS (rc))

{
rc = data.result;

}

if (RT_SUCCESS (rc))

{
/* Get the assigned client identifier. x/
ulClientID = data.u32ClientID;

}

DECLVBGL (int) VbglHGCMDisconnect (VBGLHGCMHANDLE handle, VBoxGuestHGCMDisconnectInfo *pData);

Disconnects from the service.

VBoxGuestHGCMDisconnectInfo data;

RtlZeroMemory (&data, sizeof (VBoxGuestHGCMDisconnectInfo));

data.result
data.u32ClientID

VINF_SUCCESS;
ulClientID;

rc = VbglHGCMDisconnect (handle, &data);

DECLVBGL(int) VbglHGCMCall (VBGLHGCMHANDLE handle, VBoxGuestHGCMCallInfo *pData, uint32_t cbData);

Calls a function in the service.

typedef struct _VBoxSFRead

{
VBoxGuestHGCMCallInfo calllnfo;

/** pointer, in: SHFLROOT
* Root handle of the mapping which name is queried.
*/

HGCMFunctionParameter root;

/**x value64, in:
* SHFLHANDLE of object to read from.
*/

HGCMFunctionParameter handle;

/** value64, in:
* 0ffset to read from.
*/
HGCMFunctionParameter offset;

/** value64, in/out:
* Bytes to read/How many were read.
*/

HGCMFunctionParameter cb;

274

7 Host-Guest Communication Manager

/** pointer, out:
*+ Buffer to place data to.
*/
HGCMFunctionParameter buffer;
} VBoxSFRead;

/** Number of parameters x*/
#define SHFL_CPARMS_READ (5)

VBoxSFRead data;

/* The call information. x*/

data.callInfo.result = VINF_SUCCESS; /* Will be returned by HGCM. x/
data.callInfo.u32ClientID = ulClientID; /* Client identifier. x/
data.callInfo.u32Function = SHFL_FN_READ; /*x The function code. x/

data.callInfo.cParms

SHFL_CPARMS_READ; /* Number of parameters. x/

/* Initialize parameters. */

data.root.type = VMMDevHGCMParmType_32bit;
data.root.u.value32 = pMap->root;

data.handle.type = VMMDevHGCMParmType_64bit;
data.handle.u.value64 = hFile;

data.offset.type = VMMDevHGCMParmType_64bit;
data.offset.u.value64 = offset;

data.cb.type = VMMDevHGCMParmType_32bit;
data.cb.u.value32 = *xpcbBuffer;

data.buffer.type = VMMDevHGCMParmType_LinAddr_Out;
data.buffer.u.Pointer.size = *pcbBuffer;

data.buffer.u.Pointer.u.linearAddr = (uintptr_t)pBuffer;
rc = VbglHGCMCall (handle, &data.callInfo, sizeof (data));
if (RT_SUCCESS (rc))

{

rc = data.callInfo.result;
*pcbBuffer = data.cb.u.value32; /*x This is returned by the HGCM service. x/

7.3.2 Guest application interface

Applications call the VirtualBox Guest Additions driver to utilize the HGCM interface. There are
IOCTL’s which correspond to the Vbgl+ functions:

e VBOXGUEST_TOCTL_HGCM_CONNECT
e VBOXGUEST_TIOCTL_HGCM_DISCONNECT
e VBOXGUEST_TIOCTL_HGCM_CALL

These IOCTL’s get the same input buffer as VbglHGCM«* functions and the output buffer has the
same format as the input buffer. The same address can be used as the input and output buffers.

For example see the guest part of shared clipboard, which runs as an application and uses the
HGCM interface.

275

7 Host-Guest Communication Manager

7.4 HGCM Service Implementation

The HGCM service is a shared library with a specific set of entry points. The library must export
the VBoxHGCMSvcLoad entry point:

extern "C" DECLCALLBACK(DECLEXPORT(int)) VBoxHGCMSvcLoad (VBOXHGCMSVCFNTABLE *ptable)

The service must check the ptable->cbSize and ptable->u32Version fields of the input
structure and fill the remaining fields with function pointers of entry points and the size of the
required client buffer size.

The HGCM service gets a dedicated thread, which calls service entry points synchronously, that
is the service will be called again only when a previous call has returned. However, the guest
calls can be processed asynchronously. The service must call a completion callback when the
operation is actually completed. The callback can be issued from another thread as well.

Service entry points are listed in the VBox/hgcmsvc. h in the VBOXHGCMSVCFNTABLE structure.

Entry | Description

pf- The service is being unloaded.

nUn-

load

pfn- A client u32ClientID is connected to the service. The pvClient parameter points

Con- to an allocated memory buffer which can be used by the service to store the client

nect information.

pfnDis- | A client is being disconnected.

con-

nect

pfn- A guest client calls a service function. The callHandle must be used in the

Call VBOXHGCMSVCHELPERS::pfnCallComplete callback when the call has been
processed.

pfn- Called by the VirtualBox host components to perform functions which should be

Host- not accessible by the guest. Usually this entry point is used by VirtualBox to

Call configure the service.

pfn- The VM state is being saved and the service must save relevant information using

SaveS- | the SSM API (VBox/ssm.h).

tate

pfn- The VM is being restored from the saved state and the service must load the saved

Load- information and be able to continue operations from the saved state.

State

276

8 RDP Web Control

The VirtualBox RDP Web Control (RDPWeb) provides remote access to a running VM. RDPWeb is
a RDP (Remote Desktop Protocol) client based on Flash technology and can be used from a Web
browser with a Flash plugin.

8.1 RDPWeb features

RDPWeb is embedded into a Web page and can connect to VRDP server in order to displays the
VM screen and pass keyboard and mouse events to the VM.

8.2 RDPWeb reference

RDPWeb consists of two required components:
e Flash movie RDPClientUI. swf
e JavaScript helpers webclient.js
The VirtualBox SDK contains sample HTML code including:

e JavaScript library for embedding Flash content SWFObject. js
e Sample HTML page webclient3.html

8.2.1 RDPWeb functions

RDPClientUI.swf and webclient. js work with each other. JavaScript code is responsible for
a proper SWF initialization, delivering mouse events to the SWF and processing resize requests
from the SWF. On the other hand, the SWF contains a few JavaScript callable methods, which
are used both from webclient. js and the user HTML page.

8.2.1.1 JavaScript functions

webclient. js contains helper functions. In the following table Elementld refers to an HTML
element name or attribute, and Element to the HTML element itself. HTML code

<div id=“FlashRDP">
</div>

would have Elementld equal to FlashRDP and Element equal to the div element.

e RDPWebClient.embedSWF(SWFFileName, ElementId)
Uses SWFObject library to replace the HTML element with the Flash movie.

e RDPWebClient.isRDPWebControlById(ElementId)

Returns true if the given id refers to a RDPWeb Flash element.

277

8 RDP Web Control

o RDPWebClient.isRDPWebControlByElement (Element)

Returns true if the given element is a RDPWeb Flash element.

e RDPWebClient.getFlashById(ElementId)

Returns an element, which is referenced by the given id. This function will try to resolve
any element, event if it is not a Flash movie.

8.2.1.2 Flash methods callable from JavaScript
RDPWebClienUI.swf methods can be called directly from JavaScript code on a HTML page.

e getProperty(Name)

setProperty(Name)

connect()

disconnect()

keyboardSendCAD()

8.2.1.3 Flash JavaScript callbacks
RDPWebClienUI.swf calls JavaScript functions provided by the HTML page.

8.2.2 Embedding RDPWeb in an HTML page

It is necessary to include webclient.js helper script. If SWFObject library is used, the
swfobject.js must be also included and RDPWeb flash content can be embedded to a Web
page using dynamic HTML. The HTML must include a “placeholder”, which consists of 2 div
elements.

8.3 RDPWeb change log
8.3.1 Version 1.2.28

e keyboardLayout, keyboardLayouts, UUID properties.
e Support for German keyboard layout on the client.

e Rebranding to Oracle.

8.3.2 Version 1.1.26
e webclient. js is a part of the distribution package.
e lastError property.

e keyboardSendScancodes and keyboardSendCAD methods.

8.3.3 Version 1.0.24

e Initial release.

278

9 VirtualBox external authentication
modules

VirtualBox supports arbitrary external modules to perform authentication. The module is
used when the authentication method is set to “external” for a particular VM VRDE access
and the library was specified with VBoxManage setproperty vrdeauthlibrary. Web ser-
vice also use the authentication module which was specified with VBoxManage setproperty
websrvauthlibrary.

This library will be loaded by the VM or web service process on demand, i.e. when the first
remote desktop connection is made by a client or when a client that wants to use the web service
logs on.

External authentication is the most flexible as the external handler can both choose to grant
access to everyone (like the “null” authentication method would) and delegate the request to
the guest authentication component. When delegating the request to the guest component, the
handler will still be called afterwards with the option to override the result.

An authentication library is required to implement exactly one entry point:

#include "VBoxAuth.h"

/%%
* Authentication library entry point.

Parameters:
szCaller The name of the component which calls the library (UTF8).
pUuid Pointer to the UUID of the accessed virtual machine. Can be NULL.
guestJudgement Result of the guest authentication.
szUser User name passed in by the client (UTF8).
szPassword Password passed in by the client (UTF8).
szDomain Domain passed in by the client (UTF8).
fLogon Boolean flag. Indicates whether the entry point is called
for a client logon or the client disconnect.
clientId Server side unique identifier of the client.
Return code:
AuthResultAccessDenied Client access has been denied.

AuthResultAccessGranted Client has the right to use the
virtual machine.

AuthResultDelegateToGuest Guest operating system must
authenticate the client and the
library must be called again with
the result of the guest
authentication.

Note: When ’'fLogon’ is 0, only pszCaller, pUuid and clientId are valid and the return
code is ignored.

ECE R R D S R R S R R R S R R S G S R L DR N

*/

AuthResult AUTHCALL AuthEntry(
const char xszCaller,
PAUTHUUID pUuid,
AuthGuestJudgement guestJudgement,
const char xszUser,
const char *szPassword
const char xszDomain
int fLogon,

279

9 VirtualBox external authentication modules

unsigned clientId)

{
/* Process request against your authentication source of choice. */
// if (authSucceeded(...))
// return AuthResultAccessGranted;
return AuthResultAccessDenied;
}

A note regarding the UUID implementation of the pUuid argument: VirtualBox uses a consis-
tent binary representation of UUIDs on all platforms. For this reason the integer fields comprising
the UUID are stored as little endian values. If you want to pass such UUIDs to code which as-
sumes that the integer fields are big endian (often also called network byte order), you need to
adjust the contents of the UUID to e.g. achieve the same string representation. The required
changes are:

e reverse the order of byte 0, 1, 2 and 3
e reverse the order of byte 4 and 5

e reverse the order of byte 6 and 7.

Using this conversion you will get identical results when converting the binary UUID to the string
representation.

The guestJudgement argument contains information about the guest authentication status.
For the first call, it is always set to AuthGuestNotAsked. In case the AuthEntry function returns
AuthResultDelegateToGuest, a guest authentication will be attempted and another call to the
AuthEntry is made with its result. This can be either granted / denied or no judgement (the
guest component chose for whatever reason to not make a decision). In case there is a problem
with the guest authentication module (e.g. the Additions are not installed or not running or the
guest did not respond within a timeout), the “not reacted” status will be returned.

280

10 Using Java API

10.1 Introduction

VirtualBox can be controlled by a Java API, both locally (COM/XPCOM) and from remote (SOAP)
clients. As with the Python bindings, a generic glue layer tries to hide all platform differences,
allowing for source and binary compatibility on different platforms.

10.2 Requirements

To use the Java bindings, there are certain requirements depending on the platform. First of all,
you need JDK 1.5 (Java 5) or later. Also please make sure that the version of the VirtualBox API
Jar file exactly matches the version of VirtualBox you use. To avoid confusion, the VirtualBox API
provides versioning in the Java package name, e.g. the package is named org.virtualbox_3_2
for VirtualBox version 3.2.

e XPCOM: - for all platforms, but Microsoft Windows. A Java bridge based on JavaXPCOM is
shipped with VirtualBox. The classpath must contain vboxjxpcom. jar and the vbox.home
property must be set to location where the VirtualBox binaries are. Please make sure that
the JVM bitness matches bitness of VirtualBox you use as the XPCOM bridge relies on native
libraries.

Start your application like this:
java -cp vboxjxpcom.jar -Dvbox.home=/opt/virtualbox MyProgram

e COM: - for Microsoft Windows. @ We rely on Jacob - a generic Java to COM
bridge - which has to be installed seperately. See http://sourceforge.net/
projects/jacob-project/ for installation instructions. Also, the VirtualBox provided
vboxjmscom. jar must be in the class path.

Start your application like this:
java -cp vboxjmscom.jar;c:\jacob\jacob.jar -Djava.library.path=c:\jacob MyProgram

e SOAP - all platforms. Java 6 is required, as it comes with builtin support for SOAP via the
JAX-WS library. Also, the VirtualBox provided vbojws.jar must be in the class path. In
the SOAP case it’s possible to create several VirtualBoxManager instances to communicate
with multiple VirtualBox hosts.

Start your application like this:
java -cp vboxjws.jar MyProgram

Exception handling is also generalized by the generic glue layer, so that all methods could
throw VBoxException containing human-readable text message (see getMessage() method)
along with wrapped original exception (see getWrapped () method).

281

http://sourceforge.net/projects/jacob-project/
http://sourceforge.net/projects/jacob-project/

10 Using Java API

10.3 Example

This example shows a simple use case of the Java API. Differences for SOAP vs. local version
are minimal, and limited to the connection setup phase (see ws variable). In the SOAP case it’s
possible to create several VirtualBoxManager instances to communicate with multiple VirtualBox
hosts.

import org.virtualbox_3_3.x;

VirtualBoxManager mgr = VirtualBoxManager.createInstance(null);
boolean ws = false; // or true, if we need the SOAP version
if (ws)

String url = “http://myhost:18034";
String user = “test”;

String passwd = “test”;
mgr.connect(url, user, passwd);

IVirtualBox vbox = mgr.getVBox();

System.out.println(“VirtualBox version: “ + vbox.getVersion() + “\n”);
// get first VM name

String m = vbox.getMachines().get(0).getName();
System.out.println(“\nAttempting to start VM '“ + m + “'");

// start it

mgr.startVm(m, null, 7000);

if (ws)
mgr.disconnect();

mgr.cleanup();

For more a complete example, see TestVBox. java, shipped with the SDK.

282

11 License information

The sample code files shipped with the SDK are generally licensed liberally to make it easy for
anyone to use this code for their own application code.

The Java files under bindings/webservice/java/jax-ws/ (library files for the object-
oriented web service) are, by contrast, licensed under the GNU Lesser General Public License
(LGPL) V2.1.

See sdk/bindings/webservice/java/jax-ws/src/COPYING.LIB for the full text of the

LGPL 2.1.
When in doubt, please refer to the individual source code files shipped with this SDK.

283

12 Main API change log

Generally, VirtualBox will maintain API compatibility within a major release; a major release
occurs when the first or the second of the three version components of VirtualBox change (that
is, in the x.y.z scheme, a major release is one where x or y change, but not when only z changes).

In other words, updates like those from 2.0.0 to 2.0.2 will not come with API breakages.

Migration between major releases most likely will lead to API breakage, so please make sure
you updated code accordingly. The OOWS Java wrappers enforce that mechanism by putting
VirtualBox classes into version-specific packages such as org.virtualbox_2_2. This approach
allows for connecting to multiple VirtualBox versions simultaneously from the same Java appli-
cation.

The following sections list incompatible changes that the Main API underwent since the origi-
nal release of this SDK Reference with VirtualBox 2.0. A change is deemed “incompatible” only
if it breaks existing client code (e.g. changes in method parameter lists, renamed or removed
interfaces and similar). In other words, the list does not contain new interfaces, methods or
attributes or other changes that do not affect existing client code.

12.1 Incompatible APl changes with version 4.0

e A new Java glue layer replacing the previous OOWS JAX-WS bindings was intro-
duced. The new library allows for uniform code targeting both local (COM/XPCOM)
and remote (SOAP) transports. Now, instead of IWebsessionManager, the new class
VirtualBoxManager must be used. See Java API chapter for details.

e The confusingly named and impractical session APIs were changed. In existing client code,
the following changes need to be made:

— Replace any IVirtualBox::openSession(uuidMachine, ...) API call with the
machine’s IMachine::lockMachine() call and a LockType.Write argument. The func-
tionality is unchanged, but instead of “opening a direct session on a machine” all
documentation now refers to “obtaining a write lock on a machine for the client ses-
sion”.

— Similarly, replace any IVirtualBox: :openExistingSession(uuidMachine, ...)
call with the machine’s IMachine::lockMachine() call and a LockType.Shared argu-
ment. Whereas it was previously impossible to connect a client session to a run-
ning VM process in a race-free manner, the new API will atomically either write-
lock the machine for the current session or establish a remote link to an exist-
ing session. Existing client code which tried calling both openSession() and
openExistingSession() can now use this one call instead.

— Third, replace any IVirtualBox::openRemoteSession(uuidMachine, ...) «call
with the machine’s IMachine::launchVMProcess() call. The functionality is un-
changed.

— The SessionState enum was adjusted accordingly: “Open” is now “Locked”, “Closed”
is now “Unlocked”, “Closing” is now “Unlocking”.

¢ Virtual machines created with VirtualBox 4.0 or later no longer register their media in the
global media registry in the VirtualBox.xml file. Instead, such machines list all their

284

12 Main API change log

media in their own machine XML files. As a result, a number of media-related APIs had to
be modified again.

Neither IVirtualBox::createHardDisk() nor IVirtualBox::openMedium() register media
automatically any more.

IMachine::attachDevice() and IMachine::mountMedium() now take an IMedium ob-
ject instead of a UUID as an argument. It is these two calls which add media to a
registry now (either a machine registry for machines created with VirtualBox 4.0 or
later or the global registry otherwise). As a consequence, if a medium is opened but
never attached to a machine, it is no longer added to any registry any more.

To reduce code duplication, the APIs IVirtualBox::findHardDisk(), getHard-
Disk(), findDVDImage(), getDVDImage(), findFloppylmage() and getFloppy-
Image() have all been merged into IVirtualBox::findMedium(), and I[Virtual-
Box::openHardDisk(), openDVDImage() and openFloppylmage() have all been
merged into IVirtualBox::openMedium().

The rare use case of changing the UUID and parent UUID of a medium previously
handled by openHardDisk() is now in a separate IMedium::setIDs method.

ISystemProperties::get/setDefaultHardDiskFolder() have been removed
since disk images are now by default placed in each machine’s folder.

The ISystemProperties::infoVDSize attribute replaces the getMaxVDISize () API call;
this now uses bytes instead of megabytes.

e Machine management APIs were enhanced as follows:

IVirtualBox::createMachine() is no longer restricted to creating machines in the de-
fault “Machines” folder, but can now create machines at arbitrary locations. For this
to work, the parameter list had to be changed.

The long-deprecated IVirtualBox::createLegacyMachine() API has been re-
moved.

To reduce code duplication and for consistency with the aforementioned media APIs,
IVirtualBox::getMachine() has been merged with IVirtualBox::findMachine(),
and IMachine: :getSnapshot () has been merged with IMachine::findSnapshot().

IVirtualBox::unregisterMachine() was replaced with IMachine::unregister()
with additional functionality for cleaning up machine files.

IConsole::forgetSavedState has been renamed to IConsole::discardSavedState().

e All event callbacks APIs were replaced with a new, generic event mechanism that can be
used both locally (COM, XPCOM) and remotely (web services). Also, the new mechanism
is usable from scripting languages and a local Java. See events for details. The new concept
will require changes to all clients that used event callbacks.

e additionsActive() was replaced with additionsRunLevel() and getAdditionsStatus() in
order to support a more detailed status of the current Guest Additions loading/readiness
state. IGuest::additionsVersion() no longer returns the Guest Additions interface version
but the installed Guest Additions version and revision in form of 3.3.0r12345.

e To address shared folders auto-mounting support, the following APIs were extended to
require an additional automount parameter:

IVirtualBox::createSharedFolder()
IMachine::createSharedFolder()
IConsole::createSharedFolder()

Also, a new property named autoMount was added to the ISharedFolder interface.

285

12 Main API change log

e The appliance (OVF) APIs were enhanced as follows:

— IMachine::export() received an extra parameter location, which is used to decide
for the disk naming.

— IAppliance::write() received an extra parameter manifest, which can suppress creat-
ing the manifest file on export.

— IVFSExplorer::entryList() received two extra parameters sizes and modes, which
contains the sizes (in bytes) and the file access modes (in octal form) of the returned
files.

e Support for remote desktop access to virtual machines has been cleaned up to allow third
party implementations of the remote desktop server. This is called the VirtualBox Remote
Desktop Extension (VRDE) and can be added to VirtualBox by installing the corresponding
extension package; see the VirtualBox User Manual for details.

The following API changes were made to support the VRDE interface:

IVRDPServer has been renamed to IVRDEServer.

IRemoteDisplayInfo has been renamed to IVRDEServerInfo.
IMachine::VRDEServer replaces VRDPServer.
IConsole::VRDEServerInfo replaces RemoteDisplayInfo.

ISystemProperties::VRDEAuthLibrary replaces RemoteDisplayAuthLibrary.

The following methods have been implemented in IVRDEServer to support generic
VRDE properties:

*x IVRDEServer::setVRDEProperty
*x IVRDEServer::getVRDEProperty
x [VRDEServer::VRDEProperties

A few implementation-specific attributes of the old IVRDPServer interface have been
removed and replaced with properties:

*x IVRDPServer::Ports has been replaced with the "TCP/Ports" property. The
property value is a string, which contains a comma-separated list of ports or
ranges of ports. Use a dash between two port numbers to specify a range. Exam-
ple: "5000,5010-5012"

x IVRDPServer: :NetAddress has been replaced with the "TCP/Address" prop-
erty. The property value is an IP address string. Example: "127.0.0.1"

x IVRDPServer::VideoChannel has been replaced with the "VideoChannel/Enabled"

property. The property value is either "true" or "false"

x IVRDPServer: :VideoChannelQuality has been replaced with the "VideoChannel/Quality"

property. The property value is a string which contain a decimal number in range
10..100. Invalid values are ignored and the quality is set to the default value 75.
Example: "50"

e The VirtualBox external authentication module interface has been updated and made more
generic. Because of that, VRDPAuthType enumeration has been renamed to AuthType.

12.2 Incompatible APl changes with version 3.2

¢ The following interfaces were renamed for consistency:

— IMachine::getCpuProperty() is now IMachine::getCPUProperty();

286

12 Main API change log

IMachine::setCpuProperty() is now IMachine::setCPUProperty();
IMachine::getCpuldLeaf() is now IMachine::getCPUIDLeaf();
IMachine::setCpuldLeaf() is now IMachine::setCPUIDLeaf();
IMachine::removeCpuldLeaf() is now IMachine::removeCPUIDLeaf();
IMachine::removeAllCpuldLeafs() is now IMachine::removeAllCPUIDLeaves();
the CpuPropertyType enum is now CPUPropertyType.

IVirtualBoxCallback::onSnapshotDiscarded() is now IVirtualBoxCallback::onSnapshotDeleted.

e When creating a VM configuration with IVirtualBox::createMachine) it is now possible to
ignore existing configuration files which would previously have caused a failure. For this
the override parameter was added.

e Deleting snapshots via IConsole::deleteSnapshot() is now possible while the associated VM
is running in almost all cases. The API is unchanged, but client code that verifies machine
states to determine whether snapshots can be deleted may need to be adjusted.

e The IoBackendType enumeration was replaced with a boolean flag (see IStorageController::useHostIOCache).

e To address multi-monitor support, the following APIs were extended to require an addi-
tional screenId parameter:

— IMachine::querySaved ThumbnailSize ()

— IMachine::readSavedThumbnailToArray()

— IMachine::querySavedScreenshotPNGSize()

— IMachine::readSavedScreenshotPNGToArray()

e The shape parameter of IConsoleCallback::onMousePointerShapeChange was changed
from a implementation-specific pointer to a safearray, enabling scripting languages to pro-
cess pointer shapes.

12.3 Incompatible API changes with version 3.1

e Due to the new flexibility in medium attachments that was introduced with version 3.1
(in particular, full flexibility with attaching CD/DVD drives to arbitrary controllers), we
seized the opportunity to rework all interfaces dealing with storage media to make the API
more flexible as well as logical. The IStorageController, IMedium, IMediumAttachment
and, IMachine interfaces were affected the most. Existing code using them to configure
storage and media needs to be carefully checked.

All media (hard disks, floppies and CDs/DVDs) are now uniformly handled through
the IMedium interface. The device-specific interfaces (IHardDisk, IDVDImage,
IHostDVDDrive, IFloppyImage and IHostFloppyDrive) have been merged into
IMedium; CD/DVD and floppy media no longer need special treatment. The device type of
a medium determines in which context it can be used. Some functionality was moved to
the other storage-related interfaces.

IMachine: :attachHardDisk and similar methods have been renamed and generalized to
deal with any type of drive and medium. IMachine::attachDevice() is the API method for
adding any drive to a storage controller. The floppy and DVD/CD drives are no longer
handled specially, and that means you can have more than one of them. As before, drives
can only be changed while the VM is powered off. Mounting (or unmounting) removable
media at runtime is possible with IMachine::mountMedium().

Newly created virtual machines have no storage controllers associated with them. Even
the IDE Controller needs to be created explicitly. The floppy controller is now visible as

287

12 Main API change log

a separate controller, with a new storage bus type. For each storage bus type you can
query the device types which can be attached, so that it is not necessary to hardcode any
attachment rules.

This required matching changes e.g. in the callback interfaces (the medium specific change
notification was replaced by a generic medium change notification) and removing associ-
ated enums (e.g. DriveState). In many places the incorrect use of the plural form “media”
was replaced by “medium”, to improve consistency.

e Reading the IMedium::state attribute no longer automatically performs an accessibility
check; a new method IMedium::refreshState() does this. The attribute only returns the
state any more.

e There were substantial changes related to snapshots, triggered by the “branched
snapshots” functionality introduced with version 3.1. IConsole::discardSnapshot was
renamed to IConsole::deleteSnapshot(). IConsole::discardCurrentState and ICon-
sole::discardCurrentSnapshotAndState were removed; corresponding new functionality
is in IConsole::restoreSnapshot(). Also, when IConsole::takeSnapshot() is called on a run-
ning virtual machine, a live snapshot will be created. The old behavior was to temporarily
pause the virtual machine while creating an online snapshot.

e The IVRDPServer, IRemoteDisplayInfo and IConsoleCallback interfaces were
changed to reflect VRDP server ability to bind to one of available ports from a list of
ports.

The IVRDPServer: :port attribute has been replaced with IVRDPServer: :ports, which
is a comma-separated list of ports or ranges of ports.

An IRemoteDisplayInfo::port attribute has been added for querying the actual port
VRDP server listens on.

An IConsoleCallback::onRemoteDisplayIlnfoChange() notification callback has been added.

e The parameter lists for the following functions were modified:

— IHost::removeHostOnlyNetworkInterface()

— IHost::removeUSBDeviceFilter()

e In the OOWS bindings for JAX-WS, the behavior of structures changed: for one, we imple-
mented natural structures field access so you can just call a “get” method to obtain a field.
Secondly, setters in structures were disabled as they have no expected effect and were at
best misleading.

12.4 Incompatible APl changes with version 3.0

e In the object-oriented web service bindings for JAX-WS, proper inheritance has been in-
troduced for some classes, so explicit casting is no longer needed to call methods from a
parent class. In particular, IHardDisk and other classes now properly derive from IMedium.

e All object identifiers (machines, snapshots, disks, etc) switched from GUIDs to strings (now
still having string representation of GUIDs inside). As a result, no particular internal struc-
ture can be assumed for object identifiers; instead, they should be treated as opaque unique
handles. This change mostly affects Java and C++ programs; for other languages, GUIDs
are transparently converted to strings.

e The uses of NULL strings have been changed greatly. All out parameters now use empty
strings to signal a null value. For in parameters both the old NULL and empty string is
allowed. This change was necessary to support more client bindings, especially using the

288

12 Main API change log

webservice API. Many of them either have no special NULL value or have trouble dealing
with it correctly in the respective library code.

e Accidentally, the TSBool interface still appeared in 3.0.0, and was removed in 3.0.2. This
is an SDK bug, do not use the SDK for VirtualBox 3.0.0 for developing clients.

e The type of IVirtualBoxErrorInfo::resultCode changed from result to long.
e The parameter list of IVirtualBox::openHardDisk was changed.

e The method IConsole::discardSavedState was renamed to IConsole::forgetSavedState, and
a parameter was added.

e The method IConsole::powerDownAsync was renamed to IConsole::powerDown, and the
previous method with that name was deleted. So effectively a parameter was added.

e In the IFramebuffer interface, the following were removed:

- the operationSupported attribute;

(as a result, the FramebufferAccelerationOperation enum was no longer needed
and removed as well);

— the solidFill() method;
— the copyScreenBits () method.

e In the IDisplay interface, the following were removed:

the setupInternalFramebuffer() method;
the lockFramebuffer () method;
the unlockFramebuffer () method;

the registerExternalFramebuffer() method.

12.5 Incompatible APl changes with version 2.2

e Added explicit version number into JAX-WS Java package names, such as org.virtualbox_2_ 2,
allowing connect to multiple VirtualBox clients from single Java application.

e The interfaces having a “2” suffix attached to them with version 2.1 were renamed again
to have that suffix removed. This time around, this change involves only the name, there
are no functional differences.

As a result, IDVDImage2 is now IDVDImage; IHardDisk2 is now IHardDisk; IHard-
Disk2Attachment is now IHardDiskAttachment.

Consequentially, all related methods and attributes that had a “2” suffix have been re-
named; for example, IMachine::attachHardDisk2 now becomes IMachine::attachHardDisk().

e IVirtualBox::openHardDisk has an extra parameter for opening a disk read/write or read-
only.

e The remaining collections were replaced by more performant safe-arrays. This affects the
following collections:

IGuestOSTypeCollection
[HostDVDDriveCollection
IHostFloppyDriveCollection
[HostUSBDeviceCollection

289

12 Main API change log

IHostUSBDeviceFilterCollection

IProgressCollection
ISharedFolderCollection
ISnapshotCollection
IUSBDeviceCollection
IUSBDeviceFilterCollection

e Since “Host Interface Networking” was renamed to “bridged networking” and host-only
networking was introduced, all associated interfaces needed renaming as well. In detail:

The HostNetworkInterfaceType enum has been renamed to HostNetworkInterfaceMediumType

The THostNetworkInterface::type attribute has been renamed to IHostNetworkInterface::mediumType

INetworkAdapter::attachToHostInterface() has been renamed to INetworkAdapter::attachToBridgedInterfs

In the IHost interface, createHostNetworkInterface() has been renamed to
createHostOnlyNetworkInterface()

Similarly, removeHostNetworkInterface() has been renamed to removeHostOnlyNetworkInterface()

12.6 Incompatible API changes with version 2.1

e With VirtualBox 2.1, error codes were added to many error infos that give the caller a
machine-readable (numeric) feedback in addition to the error string that has always been
available. This is an ongoing process, and future versions of this SDK reference will docu-
ment the error codes for each method call.

e The hard disk and other media interfaces were completely redesigned. This was necessary
to account for the support of VMDK, VHD and other image types; since backwards compat-
ibility had to be broken anyway, we seized the moment to redesign the interfaces in a more
logical way.

— Previously, the old IHardDisk interface had several derivatives called IVirtualDiskIm-
age, IVMDKImage, IVHDImage, IISCSIHardDisk and ICustomHardDisk for the various
disk formats supported by VirtualBox. The new IHardDisk2 interface that comes with
version 2.1 now supports all hard disk image formats itself.

- IHardDiskFormat is a new interface to describe the available back-ends for hard disk
images (e.g. VDI, VMDK, VHD or iSCSI). The IHardDisk2::format attribute can be
used to find out the back-end that is in use for a particular hard disk image. ISys-
temProperties::hardDiskFormats[] contains a list of all back-ends supported by the
system. ISystemProperties::defaultHardDiskFormat contains the default system for-
mat.

- In addition, the new IMedium interface is a generic interface for hard disk, DVD and
floppy images that contains the attributes and methods shared between them. It can
be considered a parent class of the more specific interfaces for those images, which
are now IHardDisk2, IDVDImage2 and IFloppylmage2.

In each case, the “2” versions of these interfaces replace the earlier versions that did
not have the “2” suffix. Previously, the IDVDImage and IFloppylmage interfaces were
entirely unrelated to IHardDisk.

— As a result, all parts of the API that previously referenced IHardDisk, IDVDIm-
age or IFloppylmage or any of the old subclasses are gone and will have replace-
ments that use IHardDisk2, IDVDImage2 and IFloppylmage2; see, for example, IMa-
chine::attachHardDisk2.

290

12 Main API change log
- In particular, the IVirtualBox::hardDisks2 array replaces the earlier IVirtual-
Box::hardDisks collection.

IGuestOSType was extended to group operating systems into families and for 64-bit sup-
port.

The IHostNetworkInterface interface was completely rewritten to account for the changes
in how Host Interface Networking is now implemented in VirtualBox 2.1.

The IVirtualBox::machines2[] array replaces the former IVirtualBox::machines collection.
Added IHost::getProcessorFeature() and ProcessorFeature enumeration.

The parameter list for IVirtualBox::createMachine() was modified.

Added IMachine::pushGuestProperty.

New attributes in IMachine: accelerate3DEnabled, HWVirtExVPIDEnabled, guestPropertyNotificationPatterns,
CPUCount.

Added IConsole::powerUpPaused() and IConsole::getGuestEnteredACPIMode().

Removed ResourceUsage enumeration.

291

	1 Introduction
	1.1 Modularity: the building blocks of VirtualBox
	1.2 Two guises of the same "Main API": the web service or COM/XPCOM
	1.3 About web services in general
	1.4 Running the web service
	1.4.1 Command line options of vboxwebsrv
	1.4.2 Authenticating at web service logon
	1.4.3 Solaris host: starting the web service via SMF

	2 Environment-specific notes
	2.1 Using the object-oriented web service (OOWS)
	2.1.1 The object-oriented web service for JAX-WS
	2.1.2 The object-oriented web service for Python
	2.1.3 The object-oriented web service for PHP

	2.2 Using the raw web service with any language
	2.2.1 Raw web service example for Java with Axis
	2.2.2 Raw web service example for Perl
	2.2.3 Programming considerations for the raw web service

	2.3 Using COM/XPCOM directly
	2.3.1 Python COM API
	2.3.2 Common Python bindings layer
	2.3.3 C++ COM API
	2.3.4 Event queue processing
	2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts
	2.3.6 C binding to XPCOM API

	3 Basic VirtualBox concepts; some examples
	3.1 Obtaining basic machine information. Reading attributes
	3.2 Changing machine settings. Sessions
	3.3 Launching virtual machines
	3.4 VirtualBox events

	4 The VirtualBox shell
	5 Classes (interfaces)
	5.1 IAdditionsStateChangedEvent (IEvent)
	5.2 IAppliance
	5.2.1 Attributes
	5.2.2 createVFSExplorer
	5.2.3 getWarnings
	5.2.4 importMachines
	5.2.5 interpret
	5.2.6 read
	5.2.7 write

	5.3 IAudioAdapter
	5.3.1 Attributes

	5.4 IBIOSSettings
	5.4.1 Attributes

	5.5 IBandwidthControl
	5.5.1 Attributes
	5.5.2 CreateBandwidthGroup
	5.5.3 DeleteBandwidthGroup
	5.5.4 GetAllBandwidthGroups
	5.5.5 GetBandwidthGroup

	5.6 IBandwidthGroup
	5.6.1 Attributes

	5.7 IBandwidthGroupChangedEvent (IEvent)
	5.7.1 Attributes

	5.8 ICPUChangedEvent (IEvent)
	5.8.1 Attributes

	5.9 ICPUExecutionCapChangedEvent (IEvent)
	5.9.1 Attributes

	5.10 ICanShowWindowEvent (IVetoEvent)
	5.11 IConsole
	5.11.1 Attributes
	5.11.2 adoptSavedState
	5.11.3 attachUSBDevice
	5.11.4 createSharedFolder
	5.11.5 deleteSnapshot
	5.11.6 detachUSBDevice
	5.11.7 discardSavedState
	5.11.8 findUSBDeviceByAddress
	5.11.9 findUSBDeviceById
	5.11.10 getDeviceActivity
	5.11.11 getGuestEnteredACPIMode
	5.11.12 getPowerButtonHandled
	5.11.13 pause
	5.11.14 powerButton
	5.11.15 powerDown
	5.11.16 powerUp
	5.11.17 powerUpPaused
	5.11.18 removeSharedFolder
	5.11.19 reset
	5.11.20 restoreSnapshot
	5.11.21 resume
	5.11.22 saveState
	5.11.23 sleepButton
	5.11.24 takeSnapshot
	5.11.25 teleport

	5.12 IDHCPServer
	5.12.1 Attributes
	5.12.2 setConfiguration
	5.12.3 start
	5.12.4 stop

	5.13 IDisplay
	5.13.1 completeVHWACommand
	5.13.2 drawToScreen
	5.13.3 getFramebuffer
	5.13.4 getScreenResolution
	5.13.5 invalidateAndUpdate
	5.13.6 resizeCompleted
	5.13.7 setFramebuffer
	5.13.8 setSeamlessMode
	5.13.9 setVideoModeHint
	5.13.10 takeScreenShot
	5.13.11 takeScreenShotPNGToArray
	5.13.12 takeScreenShotToArray

	5.14 IEvent
	5.14.1 Attributes
	5.14.2 setProcessed
	5.14.3 waitProcessed

	5.15 IEventContext
	5.16 IEventListener
	5.16.1 handleEvent

	5.17 IEventSource
	5.17.1 createAggregator
	5.17.2 createListener
	5.17.3 eventProcessed
	5.17.4 fireEvent
	5.17.5 getEvent
	5.17.6 registerListener
	5.17.7 unregisterListener

	5.18 IEventSourceChangedEvent (IEvent)
	5.18.1 Attributes

	5.19 IExtPack (IExtPackBase)
	5.19.1 queryObject

	5.20 IExtPackBase
	5.20.1 Attributes
	5.20.2 queryLicense

	5.21 IExtPackFile (IExtPackBase)
	5.21.1 Attributes
	5.21.2 install

	5.22 IExtPackManager
	5.22.1 Attributes
	5.22.2 IsExtPackUsable
	5.22.3 QueryAllPlugInsForFrontend
	5.22.4 cleanup
	5.22.5 find
	5.22.6 openExtPackFile
	5.22.7 uninstall

	5.23 IExtPackPlugIn
	5.23.1 Attributes

	5.24 IExtraDataCanChangeEvent (IVetoEvent)
	5.24.1 Attributes

	5.25 IExtraDataChangedEvent (IEvent)
	5.25.1 Attributes

	5.26 IFramebuffer
	5.26.1 Attributes
	5.26.2 getVisibleRegion
	5.26.3 lock
	5.26.4 notifyUpdate
	5.26.5 processVHWACommand
	5.26.6 requestResize
	5.26.7 setVisibleRegion
	5.26.8 unlock
	5.26.9 videoModeSupported

	5.27 IFramebufferOverlay (IFramebuffer)
	5.27.1 Attributes
	5.27.2 move

	5.28 IGuest
	5.28.1 Attributes
	5.28.2 copyToGuest
	5.28.3 createDirectory
	5.28.4 executeProcess
	5.28.5 getAdditionsStatus
	5.28.6 getProcessOutput
	5.28.7 getProcessStatus
	5.28.8 internalGetStatistics
	5.28.9 setCredentials
	5.28.10 setProcessInput
	5.28.11 updateGuestAdditions

	5.29 IGuestKeyboardEvent (IEvent)
	5.29.1 Attributes

	5.30 IGuestMonitorChangedEvent (IEvent)
	5.30.1 Attributes

	5.31 IGuestMouseEvent (IReusableEvent)
	5.31.1 Attributes

	5.32 IGuestOSType
	5.32.1 Attributes

	5.33 IGuestPropertyChangedEvent (IMachineEvent)
	5.33.1 Attributes

	5.34 IHost
	5.34.1 Attributes
	5.34.2 createHostOnlyNetworkInterface
	5.34.3 createUSBDeviceFilter
	5.34.4 findHostDVDDrive
	5.34.5 findHostFloppyDrive
	5.34.6 findHostNetworkInterfaceById
	5.34.7 findHostNetworkInterfaceByName
	5.34.8 findHostNetworkInterfacesOfType
	5.34.9 findUSBDeviceByAddress
	5.34.10 findUSBDeviceById
	5.34.11 getProcessorCPUIDLeaf
	5.34.12 getProcessorDescription
	5.34.13 getProcessorFeature
	5.34.14 getProcessorSpeed
	5.34.15 insertUSBDeviceFilter
	5.34.16 removeHostOnlyNetworkInterface
	5.34.17 removeUSBDeviceFilter

	5.35 IHostNetworkInterface
	5.35.1 Attributes
	5.35.2 dhcpRediscover
	5.35.3 enableDynamicIpConfig
	5.35.4 enableStaticIpConfig
	5.35.5 enableStaticIpConfigV6

	5.36 IHostPciDevicePlugEvent (IMachineEvent)
	5.36.1 Attributes

	5.37 IHostUSBDevice (IUSBDevice)
	5.37.1 Attributes

	5.38 IHostUSBDeviceFilter (IUSBDeviceFilter)
	5.38.1 Attributes

	5.39 IInternalMachineControl
	5.39.1 adoptSavedState
	5.39.2 autoCaptureUSBDevices
	5.39.3 beginPowerUp
	5.39.4 beginPoweringDown
	5.39.5 beginSavingState
	5.39.6 beginTakingSnapshot
	5.39.7 captureUSBDevice
	5.39.8 deleteSnapshot
	5.39.9 detachAllUSBDevices
	5.39.10 detachUSBDevice
	5.39.11 endPowerUp
	5.39.12 endPoweringDown
	5.39.13 endSavingState
	5.39.14 endTakingSnapshot
	5.39.15 finishOnlineMergeMedium
	5.39.16 getIPCId
	5.39.17 lockMedia
	5.39.18 onSessionEnd
	5.39.19 pullGuestProperties
	5.39.20 pushGuestProperty
	5.39.21 restoreSnapshot
	5.39.22 runUSBDeviceFilters
	5.39.23 setRemoveSavedStateFile
	5.39.24 unlockMedia
	5.39.25 updateState

	5.40 IInternalSessionControl
	5.40.1 accessGuestProperty
	5.40.2 assignMachine
	5.40.3 assignRemoteMachine
	5.40.4 enumerateGuestProperties
	5.40.5 getPID
	5.40.6 getRemoteConsole
	5.40.7 onBandwidthGroupChange
	5.40.8 onCPUChange
	5.40.9 onCPUExecutionCapChange
	5.40.10 onMediumChange
	5.40.11 onNetworkAdapterChange
	5.40.12 onParallelPortChange
	5.40.13 onSerialPortChange
	5.40.14 onSharedFolderChange
	5.40.15 onShowWindow
	5.40.16 onStorageControllerChange
	5.40.17 onUSBControllerChange
	5.40.18 onUSBDeviceAttach
	5.40.19 onUSBDeviceDetach
	5.40.20 onVRDEServerChange
	5.40.21 onlineMergeMedium
	5.40.22 uninitialize
	5.40.23 updateMachineState

	5.41 IKeyboard
	5.41.1 Attributes
	5.41.2 putCAD
	5.41.3 putScancode
	5.41.4 putScancodes

	5.42 IKeyboardLedsChangedEvent (IEvent)
	5.42.1 Attributes

	5.43 IMachine
	5.43.1 Attributes
	5.43.2 addStorageController
	5.43.3 attachDevice
	5.43.4 attachHostPciDevice
	5.43.5 canShowConsoleWindow
	5.43.6 createSharedFolder
	5.43.7 delete
	5.43.8 detachDevice
	5.43.9 detachHostPciDevice
	5.43.10 discardSettings
	5.43.11 enumerateGuestProperties
	5.43.12 export
	5.43.13 findSnapshot
	5.43.14 getBootOrder
	5.43.15 getCPUIDLeaf
	5.43.16 getCPUProperty
	5.43.17 getCPUStatus
	5.43.18 getExtraData
	5.43.19 getExtraDataKeys
	5.43.20 getGuestProperty
	5.43.21 getGuestPropertyTimestamp
	5.43.22 getGuestPropertyValue
	5.43.23 getHWVirtExProperty
	5.43.24 getMedium
	5.43.25 getMediumAttachment
	5.43.26 getMediumAttachmentsOfController
	5.43.27 getNetworkAdapter
	5.43.28 getParallelPort
	5.43.29 getSerialPort
	5.43.30 getStorageControllerByInstance
	5.43.31 getStorageControllerByName
	5.43.32 hotPlugCPU
	5.43.33 hotUnplugCPU
	5.43.34 launchVMProcess
	5.43.35 lockMachine
	5.43.36 mountMedium
	5.43.37 passthroughDevice
	5.43.38 queryLogFilename
	5.43.39 querySavedGuestSize
	5.43.40 querySavedScreenshotPNGSize
	5.43.41 querySavedThumbnailSize
	5.43.42 readLog
	5.43.43 readSavedScreenshotPNGToArray
	5.43.44 readSavedThumbnailPNGToArray
	5.43.45 readSavedThumbnailToArray
	5.43.46 removeAllCPUIDLeaves
	5.43.47 removeCPUIDLeaf
	5.43.48 removeSharedFolder
	5.43.49 removeStorageController
	5.43.50 saveSettings
	5.43.51 setBandwidthGroupForDevice
	5.43.52 setBootOrder
	5.43.53 setCPUIDLeaf
	5.43.54 setCPUProperty
	5.43.55 setExtraData
	5.43.56 setGuestProperty
	5.43.57 setGuestPropertyValue
	5.43.58 setHWVirtExProperty
	5.43.59 setStorageControllerBootable
	5.43.60 showConsoleWindow
	5.43.61 unregister

	5.44 IMachineDataChangedEvent (IMachineEvent)
	5.45 IMachineDebugger
	5.45.1 Attributes
	5.45.2 detectOS
	5.45.3 dumpGuestCore
	5.45.4 dumpGuestStack
	5.45.5 dumpHostProcessCore
	5.45.6 dumpStats
	5.45.7 getRegister
	5.45.8 getRegisters
	5.45.9 getStats
	5.45.10 info
	5.45.11 injectNMI
	5.45.12 modifyLogDestinations
	5.45.13 modifyLogFlags
	5.45.14 modifyLogGroups
	5.45.15 readPhysicalMemory
	5.45.16 readVirtualMemory
	5.45.17 resetStats
	5.45.18 setRegister
	5.45.19 setRegisters
	5.45.20 writePhysicalMemory
	5.45.21 writeVirtualMemory

	5.46 IMachineEvent (IEvent)
	5.46.1 Attributes

	5.47 IMachineRegisteredEvent (IMachineEvent)
	5.47.1 Attributes

	5.48 IMachineStateChangedEvent (IMachineEvent)
	5.48.1 Attributes

	5.49 IManagedObjectRef
	5.49.1 getInterfaceName
	5.49.2 release

	5.50 IMedium
	5.50.1 Attributes
	5.50.2 cloneTo
	5.50.3 close
	5.50.4 compact
	5.50.5 createBaseStorage
	5.50.6 createDiffStorage
	5.50.7 deleteStorage
	5.50.8 getProperties
	5.50.9 getProperty
	5.50.10 getSnapshotIds
	5.50.11 lockRead
	5.50.12 lockWrite
	5.50.13 mergeTo
	5.50.14 refreshState
	5.50.15 reset
	5.50.16 resize
	5.50.17 setIDs
	5.50.18 setProperties
	5.50.19 setProperty
	5.50.20 unlockRead
	5.50.21 unlockWrite

	5.51 IMediumAttachment
	5.51.1 Attributes

	5.52 IMediumChangedEvent (IEvent)
	5.52.1 Attributes

	5.53 IMediumFormat
	5.53.1 Attributes
	5.53.2 describeFileExtensions
	5.53.3 describeProperties

	5.54 IMediumRegisteredEvent (IEvent)
	5.54.1 Attributes

	5.55 IMouse
	5.55.1 Attributes
	5.55.2 putMouseEvent
	5.55.3 putMouseEventAbsolute

	5.56 IMouseCapabilityChangedEvent (IEvent)
	5.56.1 Attributes

	5.57 IMousePointerShapeChangedEvent (IEvent)
	5.57.1 Attributes

	5.58 INATEngine
	5.58.1 Attributes
	5.58.2 addRedirect
	5.58.3 getNetworkSettings
	5.58.4 removeRedirect
	5.58.5 setNetworkSettings

	5.59 INATRedirectEvent (IMachineEvent)
	5.59.1 Attributes

	5.60 INetworkAdapter
	5.60.1 Attributes
	5.60.2 attachToBridgedInterface
	5.60.3 attachToHostOnlyInterface
	5.60.4 attachToInternalNetwork
	5.60.5 attachToNAT
	5.60.6 attachToVDE
	5.60.7 detach

	5.61 INetworkAdapterChangedEvent (IEvent)
	5.61.1 Attributes

	5.62 IParallelPort
	5.62.1 Attributes

	5.63 IParallelPortChangedEvent (IEvent)
	5.63.1 Attributes

	5.64 IPciAddress
	5.64.1 Attributes
	5.64.2 asLong
	5.64.3 fromLong

	5.65 IPciDeviceAttachment
	5.65.1 Attributes

	5.66 IPerformanceCollector
	5.66.1 Attributes
	5.66.2 disableMetrics
	5.66.3 enableMetrics
	5.66.4 getMetrics
	5.66.5 queryMetricsData
	5.66.6 setupMetrics

	5.67 IPerformanceMetric
	5.67.1 Attributes

	5.68 IProgress
	5.68.1 Attributes
	5.68.2 cancel
	5.68.3 setCurrentOperationProgress
	5.68.4 setNextOperation
	5.68.5 waitForCompletion
	5.68.6 waitForOperationCompletion

	5.69 IReusableEvent (IEvent)
	5.69.1 Attributes
	5.69.2 reuse

	5.70 IRuntimeErrorEvent (IEvent)
	5.70.1 Attributes

	5.71 ISerialPort
	5.71.1 Attributes

	5.72 ISerialPortChangedEvent (IEvent)
	5.72.1 Attributes

	5.73 ISession
	5.73.1 Attributes
	5.73.2 unlockMachine

	5.74 ISessionStateChangedEvent (IMachineEvent)
	5.74.1 Attributes

	5.75 ISharedFolder
	5.75.1 Attributes

	5.76 ISharedFolderChangedEvent (IEvent)
	5.76.1 Attributes

	5.77 IShowWindowEvent (IEvent)
	5.77.1 Attributes

	5.78 ISnapshot
	5.78.1 Attributes

	5.79 ISnapshotChangedEvent (ISnapshotEvent)
	5.80 ISnapshotDeletedEvent (ISnapshotEvent)
	5.81 ISnapshotEvent (IMachineEvent)
	5.81.1 Attributes

	5.82 ISnapshotTakenEvent (ISnapshotEvent)
	5.83 IStateChangedEvent (IEvent)
	5.83.1 Attributes

	5.84 IStorageController
	5.84.1 Attributes
	5.84.2 getIDEEmulationPort
	5.84.3 setIDEEmulationPort

	5.85 IStorageControllerChangedEvent (IEvent)
	5.86 ISystemProperties
	5.86.1 Attributes
	5.86.2 getDefaultIoCacheSettingForStorageController
	5.86.3 getDeviceTypesForStorageBus
	5.86.4 getMaxDevicesPerPortForStorageBus
	5.86.5 getMaxInstancesOfStorageBus
	5.86.6 getMaxPortCountForStorageBus
	5.86.7 getMinPortCountForStorageBus

	5.87 IUSBController
	5.87.1 Attributes
	5.87.2 createDeviceFilter
	5.87.3 insertDeviceFilter
	5.87.4 removeDeviceFilter

	5.88 IUSBControllerChangedEvent (IEvent)
	5.89 IUSBDevice
	5.89.1 Attributes

	5.90 IUSBDeviceFilter
	5.90.1 Attributes

	5.91 IUSBDeviceStateChangedEvent (IEvent)
	5.91.1 Attributes

	5.92 IVBoxSVCAvailabilityChangedEvent (IEvent)
	5.92.1 Attributes

	5.93 IVFSExplorer
	5.93.1 Attributes
	5.93.2 cd
	5.93.3 cdUp
	5.93.4 entryList
	5.93.5 exists
	5.93.6 remove
	5.93.7 update

	5.94 IVRDEServer
	5.94.1 Attributes
	5.94.2 getVRDEProperty
	5.94.3 setVRDEProperty

	5.95 IVRDEServerChangedEvent (IEvent)
	5.96 IVRDEServerInfo
	5.96.1 Attributes

	5.97 IVRDEServerInfoChangedEvent (IEvent)
	5.98 IVetoEvent (IEvent)
	5.98.1 addVeto
	5.98.2 getVetos
	5.98.3 isVetoed

	5.99 IVirtualBox
	5.99.1 Attributes
	5.99.2 checkFirmwarePresent
	5.99.3 composeMachineFilename
	5.99.4 createAppliance
	5.99.5 createDHCPServer
	5.99.6 createHardDisk
	5.99.7 createMachine
	5.99.8 createSharedFolder
	5.99.9 findDHCPServerByNetworkName
	5.99.10 findMachine
	5.99.11 findMedium
	5.99.12 getExtraData
	5.99.13 getExtraDataKeys
	5.99.14 getGuestOSType
	5.99.15 openMachine
	5.99.16 openMedium
	5.99.17 registerMachine
	5.99.18 removeDHCPServer
	5.99.19 removeSharedFolder
	5.99.20 setExtraData

	5.100 IVirtualBoxClient
	5.100.1 Attributes

	5.101 IVirtualBoxErrorInfo
	5.101.1 Attributes

	5.102 IVirtualSystemDescription
	5.102.1 Attributes
	5.102.2 addDescription
	5.102.3 getDescription
	5.102.4 getDescriptionByType
	5.102.5 getValuesByType
	5.102.6 setFinalValues

	5.103 IWebsessionManager
	5.103.1 getSessionObject
	5.103.2 logoff
	5.103.3 logon

	6 Enumerations (enums)
	6.1 AccessMode
	6.2 AdditionsRunLevelType
	6.3 AdditionsUpdateFlag
	6.4 AudioControllerType
	6.5 AudioDriverType
	6.6 AuthType
	6.7 BIOSBootMenuMode
	6.8 BandwidthGroupType
	6.9 CPUPropertyType
	6.10 ChipsetType
	6.11 CleanupMode
	6.12 ClipboardMode
	6.13 CopyFileFlag
	6.14 CreateDirectoryFlag
	6.15 DataFlags
	6.16 DataType
	6.17 DeviceActivity
	6.18 DeviceType
	6.19 ExecuteProcessFlag
	6.20 FaultToleranceState
	6.21 FirmwareType
	6.22 FramebufferPixelFormat
	6.23 GuestMonitorChangedEventType
	6.24 HWVirtExPropertyType
	6.25 HostNetworkInterfaceMediumType
	6.26 HostNetworkInterfaceStatus
	6.27 HostNetworkInterfaceType
	6.28 KeyboardHidType
	6.29 LockType
	6.30 MachineState
	6.31 MediumFormatCapabilities
	6.32 MediumState
	6.33 MediumType
	6.34 MediumVariant
	6.35 MouseButtonState
	6.36 NATAliasMode
	6.37 NATProtocol
	6.38 NetworkAdapterType
	6.39 NetworkAttachmentType
	6.40 PointingHidType
	6.41 PortMode
	6.42 ProcessInputFlag
	6.43 ProcessorFeature
	6.44 Scope
	6.45 SessionState
	6.46 SessionType
	6.47 SettingsVersion
	6.48 StorageBus
	6.49 StorageControllerType
	6.50 USBDeviceFilterAction
	6.51 USBDeviceState
	6.52 VBoxEventType
	6.53 VFSFileType
	6.54 VFSType
	6.55 VirtualSystemDescriptionType
	6.56 VirtualSystemDescriptionValueType

	7 Host-Guest Communication Manager
	7.1 Virtual hardware implementation
	7.2 Protocol specification
	7.2.1 Request header
	7.2.2 Connect
	7.2.3 Disconnect
	7.2.4 Call32 and Call64
	7.2.5 Cancel

	7.3 Guest software interface
	7.3.1 The guest driver interface
	7.3.2 Guest application interface

	7.4 HGCM Service Implementation

	8 RDP Web Control
	8.1 RDPWeb features
	8.2 RDPWeb reference
	8.2.1 RDPWeb functions
	8.2.2 Embedding RDPWeb in an HTML page

	8.3 RDPWeb change log
	8.3.1 Version 1.2.28
	8.3.2 Version 1.1.26
	8.3.3 Version 1.0.24

	9 VirtualBox external authentication modules
	10 Using Java API
	10.1 Introduction
	10.2 Requirements
	10.3 Example

	11 License information
	12 Main API change log
	12.1 Incompatible API changes with version 4.0
	12.2 Incompatible API changes with version 3.2
	12.3 Incompatible API changes with version 3.1
	12.4 Incompatible API changes with version 3.0
	12.5 Incompatible API changes with version 2.2
	12.6 Incompatible API changes with version 2.1

