BASIC

. _TURBO
L. COMPILER

Original documentation translated and compiled by Western New York Atari
Users Group

TURBO BASIC COMMAND LIST

Turbo Basic is fully compatible with Atari Basic and can be used to run any Atari Basic program at
faster speed. Simply boot up the Turbo Basic disk and proceed as usual. The only restriction is that you
will need to re-boot after using DOS (although there are inbuilt DOS functions in Turbo Basic).

There are many extra features in Turbo Basic however and the complete list follows. Programs may
be tvped in upper or lower case. The language itself actually takes up less space than Atari Basic!

DISK I/O
BLOAD BLOAD “D:name”
BRUN BRUN “D:name”
DELETE DELETE “D:name”
DIR DIR
DIR “Dn:*.*"
LOCK LOCK “D:name”
RENAME RENAME “D:oldnew”
UNLOCK UNLOCK ““D:name*
GRAPHICS
CIRCLE CIRCLE x,r
CIRCLE x,v,r,r2
CLS CLS
CLS #6
FCOLOR FCOLOR n
FILLTO FILLTO xwv
PAINT PAINT x.y
TEXT TEXT x,a8
MEMORY
DPOKE DPOKE m,v
MOVE MOVE m,ml m2
-MOVE -MOVE mml m2
BPUT BPUT #n,adr,len
BGET BGET #n,adr,len
o PUT . PUT #n,a
" GET % GET #n,A

Binary loads file name (DOS option L with /N).
Binary load and run file name (DOS option L).

‘Deletes the file name (DOS option D).

Disk directory (DOS option A).

Directory of drive n, note that wildcard extenders may be
used.

Locks the file name (DOS option F).

Renames the file name (DOS option E).

Unlocks the file name (DOS option G).

Plots a circle with center at x,y and radius r.

R2 is an optional ‘vertical radius’ for true circles or
ellipses.

Clears the screen.

Clear screen opened in channel 6.

Determines fill color.

A fill command analagous to the BASIC commands
POSITION x,y: XIO 18,#6,0,0,“S:”

Another type of fill command, this one is a recursive
routine that will fill any closed object as long as x,y are
inside it.

bit-blocks text in a§ at x,y.

Pokes location m,m + 1 with 2-byte integerv(0 <= v

< = 65535),

Block transfer; moves m2 (number of bytes) from starting
position m to new sta ting position ml.

Same as MOVE but copies starting with the last byte of
the block.

Block Put; same as FOR 1=0 TO len-1:PUT #n,PEEK
(adr+I:NEXT I

Block Get; same as FOR [=0 TO len-1:GET #N,A:
POKE adr+I):NEXT I

Until now, there was no convenient way to put numeric
values onto disk or cassette files other than by using
PRINT, which converted them to strings first, a slow and
cumbersome process. % PUT puts the number to the
device ‘as is,’ in ﬁ-byte%P format.

Get a number stored with % PUT from the device and
store it in variable A. Again, this is much faster than using
‘INPUT #n, A’.

STRUCTURED PROGRAMMING

REPEAT
UNTIL

REPEAT
UNTIL <c¢>

Start a REPEAT-UNTIL loop.

Terminate when condition <c> met.

Start a WHILE-WEND loop to end when condition
<¢> met.

Terminate a WHILE-END loop.

Optional extension for IF. The IF condition must not be
followed by a “THEN’, but terminated by end-of-line or
colon.

Ends an IF-ELSE-ENDIF or IF-ELSE condition. Note
that this allows an IF condition to span more than one
BASIC line, provided the ‘IF’ statement is structured as
shown in Note 4.

Starts an ‘infinite’ DO loop.

Cycle back to the start of a DO loop. -

Exita DO-LOOP loop.

Start definition of procedure.

End definition of procedure.

Execute procedure name.

Pause processing for n/50 seconds.

Renumber the program starting at line n,first number is i,
increment is j. This function will handle GOTOs,

TRAPs, and all other line references except those which
involve variables or computed values.

Delete lines n-i. :
Display all variables and values. For numeric arrays, the

numbers are the DIMed values plus one. For strings, the

first number is the current LENgth of it and the second, |
number is the DIMed size of it. DUMP also lists

procedure names and labels with their line values.

DUMP to device name, such as “P:” or
“D:DUMP.DAT?". 3

Trace program during execution.

Turns trace mode off (Default).

Form of SOUND which activates channel-pairing for
increased frequency range. .

Turns off all sounds.

Alternate form of GOTO.

Turn line-indent on (Default).

Turns line-indent off.

Special mode for FOR..NEXT loops which corrects a bug
in Atari BASIC. Seems that in Atari BASIC, an ‘illegal’
reverse loop like ‘FOR X =2 TO 1I:PRINT X:NEXT X’ -
will execute once even though the condition is met initially
(X is already greater than 1). Turbo BASIC fixes this bug,
bur leaves it available for Atari BASIC programs which
may take advantage of it.

Turns off the special FOR..NEXT mode to make Turbo
BASIC act like Atari BASIC.

Command which allows the break key to be trapped via
the “TRAP’ command within a program.

Turns off the special BREAK key mode.

lE‘_ap-?t:ial form of REM which puts 30 dashes in a program
isting.

Assigns the current line number to the label name. This is
a convenient way to get around the problem of
renumbering when using variables as line numbers.
Labels can be thought of as a special form of variable, as
they occupy the variable name table along with the
‘regular’ variables. We also believe that the number of *
variables allowed has been increased from 128 to 256 o,
allow for the addition of these labels.

WHILE WHILE <¢>

‘WEND WEND

ELSE ELSE

ENDIF ENDIF

DO DO

LOOP LOOP

EXIT EXIT

PROC PROC name

ENDPROC ENDPROC

EXEC EXEC name

GENERAL PROGRAMMING

PAUSE PAUSE n

RENUM RENUM n,iy

DEL DEL n,z

DUMP DUMP
DUMP name

TRACE TRACE
TRACE -

DSOUND DSOUND nyf,dv
DSOUND

GOTO GOTOn

*E T
'FL i

*F *F (or *F +)
*F -

*B *B (or *B +)
*B -

LINE LABELS

name

GO# GO# name

Analagous to the GOTO command.

MODIFICATIONS

CLOSE
DIM

GET
INPUT
LIST

" ON

ror
PUT
RESTORE
RND

SOUND
TRAP

CLOSE
DIMa(n)

GET name
INPUT ‘text’;ab...
LIST »,

ON a EXEC nl n2,...
ON a GO# nl n2,...

POP

PUT n
RESTORE #name
RND -

SOUND
TRAP #name

Close channels 1-7.

Will automatically assign a value of zero to all elements of
the numeric array being dimensioned, and null characters
to all elements of a string (The LEN is still variable,
however, and initially zero).

Wait for a key press, assign the value to name. Same as
‘OPEN #7,4,0,“K:":GET #7,name:CLOSE #7’.

Prints text as a prompt before asking for variable(s), same
as Microsoft-BASIC.

List program from line n to end.

Variation of ON...GOSUB for procedures. N1, n2 and so
on are names of procedures to be run.

Similar to ON...GOTO except that line labels are used
instead of line numbers.

This command now pops the runtime stack for all four
types of loops.

Same as ‘PRINT CHRS$(n)’;

Restores the data line indicated by the label name.
Parentheses are no longer needed at the end of this
command, but it will still work if they are there.

Turn off all sounds.

TRAPsS to the line referenced by the label name.

TURBO BASIC FUNCTIONS

ARITHMETIC/LOGIC

HEXS HEX$(n)

DEC DEC(a¥$)

DIV nDIVi

MOD nMOD i

FRAC FRAC(a)

TRUNC TRUNC(a)

RAND RAND(n)

s $nnnn

& n&i

! nli

EXOR nEXOR i

MEMORY

DPEEK DPEEK((m)

TIME TIME

TIMES TIMES

INKEYS INKEYS$S

INSTR INSTR(xS,a8)
INSTR(xS,as,1)

UINSTR UINSTR(xS,af)

! UINSTR(xS,a8,1)

ERR ERR

ERL ERL

Convert n to hex string.

Convert hex string A$ to decimal.

Integer quotient of n/i.

Integer remainder of n/i.

Fractional part of a.

Truncates fractional part of a.

Generates random number 0-n.

Allows input of hexidecimal numbers, but they are
converted to decimal. Ex: ‘FOR 1=80600 to $067F" =
‘FOR I=1536 to 1663’.

8-bit boolean AND.

8-bit boolean OR.

8-bit Exclusive-OR.

Double-PEEK of m,m+1.

Time of day(numeric).

Time of day string, HHMMSS.

Returns last character typed.

Returns relative location of start of string A$ within X§
(returns 0 if not found). The match must be exact; strings
with the same letters but differences in case or type
(normal or inverse) will not be found.

i specifies the starting point of the search.

Same as INSTR, does not distinguish between case or
inverse characters. Ex;: UINSTR(*HeL10”,*hello™)
returns .

Specifies optional starting point.

Value of last error number.

Line last error occurred at.

-\

e g

CONSTANTS

%0
|
Yol

o
r{ta

These four constants simply stand for the numbers 0-3, respecuvety The difference with using
these in a program is that ‘X =1’ requires 10 bytes, whereas ‘X = %1’ only needs 4 (numbers require 7
bytes, 6 for the number plus an identifier preceeding it). It is always a good practice to make variables
for numbers that are used more than three times in a program.

ADDITIONAL NOTES

1. Variable, Procedure and Label names may contain the underscore (_) character.

2. To print a double-quote (“) in a text string, use two of them together, instead of the Atari
BASIC method of using CHR$(34). Ex: “TEST";CHR$(34); TEXT” becomes
“TEST”“TEXT” in Turbo-BASIC, both of which produce the output TEST”TEX

3. Upon initial boot-up, TURBO-BASIC looks for a BASIC file named AUTORUN. BAS If
finds an AUTORUN.BAS file, it will automatically load and run this file.

4, A multiline IF is constructed like this:

10IFX > 10

20 PRINT X-10
30 GO# TOO_BIG
40 ELSE « :
50 PRINT X YOOANE R
60 GO# X_IS_OK 3 3
70 ENDIF S

Note also the use of line labels in the GOTO statements.

ERROR MESSAGES

Turbo-BASIC also prints out English descriptions of all errors, including several new ones for
errors involving the new commands:

Error-22 ?NEST = Loops not properly nested.

Error - 23 *WHILE = WEND with no corresponding WHILE.
Error-24 ?REPEAT = UNTIL with no corresponding REPEAT.
Error-25?D0O = LOOP with no corresponding DO.

Error - 26 ?EXIT = EXIT is outside a loop.

Error -27 ?XPROC = Error executing PROC. ;
Error - 28 7EXEC = ENDPROC with no corresponding EXEC.
Error =29 ?2PROC = Procedure does not exist.

Error - 30 ?# = Label does not exist.

Error 15 has been expanded to include an UNTIL which relates to a REPEAT which has been
deleted.

"THE TURBO COMPILER

Documentation and Operating Instructions
By Dave Arlington
Original Program by Frank Ostrowski

The TURBO COMPILER will increase the speed of your TURBO BASIC programs 3-5 times
and regular Atari BASIC programs can be speeded up to 10-15 times faster. Unfortunately, like
TURBO BASIC, the TU! COMPILER will only run on the XL/XE series of computers and the
finished compiled programs will also only run on the XL/XE series.

The TURBO COMPILER is very easy to operate and can be used with more than one disk drive,
even Drive 8, the 130XE ramdisk. You will find several files on t TURBO BASIC/COMPILER disk.
The files to use with the TURBO COMPILER are COMPILER.COM and RUNTIME.COM.
Before you begin, you should prepare two disks. The first one should be a blank formatted disk with
DOS.SYS and DUP.SYS written on it. The second disk should contain your BASIC program
(TURBO or ATARI BASIC).

' To begin, insert the TURBO COMPILER disk into your drive and turn your computer on. When
it has-finished loading you will be in TURBC BASIC. Type DOS to get to the DOS 2.5 menu. Choose
DOS Option ‘L’, Load Binary File and load the file COMPILER.COM. After a short while, you will
see a screen full of German. If you do not read German, do not worry, that is what this article is for! At
any time that you are on this screen, you may reboot your system by hitting Control-R or you may
return to DOS by hitting Control-D. You will be asked if you really want to do this. If you do, don’t
forget to ‘]’ for Ja and not ‘Y’ for Yes!!

To compile your programs, remove the TURBO COMPILER disk from the drive and insert the
disk with the program you want to compile. (If you have two drives, insert your disk with the program
to-compile in Drive 2 and the blank DOS disk in Drive 1.) Press the number 1 key (Number 2 if you
have two drives). A complete listing of all the files on that drive will appear on the screen with one
highlighted in inverse video. Using the arrow keys, highlight the file you want to compile and hit
RETURN. That’s all there is to it!

At the top of the screen, you will see the line numbers fly by as the program is compiled. When it is
finished, you will be prompted for a file name to save your compiled program under. It has to have an
extender of CTB (for Compiled Turbo Basic). The program will not let you use any other extender. At
this time, if you have one drive, you,should remove the disk with your original program on and replace
it with your blank DOS disk. If you want your compiled program to be an AUTORUN file, you should
name it AUTORUN,CTB. Then the file will automatically load and run at bootup rime.

. There is bne more step that yoir must do to get a completely runnable compiled program. Go back
to DOS and copy; the!file RUNTIME.COM from the TURBO COMPILER disk to the disk with your
compiled program-on it. Rename the, RUNTIME.COM file to the name AUTORUN.SYS. Your disk
is now ready to go, Boet this disk.and you are away! The TURBO COMPILER does not compile to
runnable code; you must.run the RUNTIME.COM file to run your compiled program. If you do not
rename your compiled BASIC program to AUTORUN it may be loaded from the RUNTIME
program by using ‘L’ at the on-screen prompt. At this prompt you may also re-run a program that has
finished or quit to DOS]

One technical note on the TURBO COMPILER. If you are not familiar with other compilers for
the ATARI computers, you should know that many have trouble compiling certain types of statements
or insist that you organize your program structure in a certain way. So far very few of these problems
have occured on any programs we have tested with the TURBO COMPILER. The only statements
that wouldn’t compile so far are the END and NEW statements. The only program structure that we
have had trouble with is a FOR-NEXT loop that has two or more NEXT's for one FOR. For example:

I10FORX=1TO5
20 IF X =3 THEN NEXT X

30 NEXT X

Other than those two examples, we have had no problems compiling any type of program, either
TURBO or ATARI BASIC. If the compiler does encounter a problem it will indicate the type of fault
and the line number. Simply check it out and try to rewrite that part of the program in a different way.
Don’t be discouraged, no compiler can cope with every program!

TEXT TIDIER 1.0

by Dave Yearke

Text Tidier was designed to eliminate much of the editing that goes into processing files
downloaded from such services as CompuServe. These files often have excess spaces for justification,
carriage returns every line, and all kinds of other annoying things that must be weeded out. The most
bothersome types of text files are those which use the Control-] Control-M combination for linefeed
and carriage return. For MS-DOS machines that’s fine, but our Ataris use a totally different character.

In its simplest form, Tidier strips out linefeeds (CTRL-]) and turns ASCII carriage returns
(CTRL-M) into ATASCII returns (code 155). It also breaks down the file into smaller pieces that will
fit into a word processor like AtariWriter or PaperClip. I've downloaded files that were over 100K long,
far too big to fit into any word processor for the Atari!

When you run the program, the first thing it asks for is the maximum file size for the output files.
12,000 is pretty good for AtariWriter, although this depends on what DOS is being used, whether a
printer driver is loaded, and so on. For PaperClip, I've found that on my XL about 24,000 bytes can be
loaded, although I would recommend about 20,000 so you have room to edit the file. Next it asks for
the Input file. Put the disk in the drive and enter the name. If you don’t enter a device like “D:" it will
default to drive one. All Output files will be named ‘SPLIT.0xx’, where ‘xx’ is the number of the file
being written, starting at zero. Be careful not to overwrite any existing files with the same name! Now
come the formatting parameters. When it asks ‘CONVERT RETURN TO SPACE (Y/N)' type ‘Y’ if
you want all carriage returns to be converted. This is nice if you want to reformat the text in your word
processor. This option only converts single returns; if it encounters more after the first one it will leave
them aloue because it assumes that it is a break between two paragraphs. The next option, ‘TIDY UP
SPACING (Y/N)’, is probably the most powerful. It will get rid of multiple spaces between words,
excess spaces before return characters, convert ASCII Tab characters (CTRL-I) to 5 spaces, and will
make sure that two spaces follow all periods, colons, question marks, and exclamation points, and that
one space follows all commas, even if it has to add them. One note: it will not add spaces to periods
which have no spaces after them, because it can’t tell if it is part of a decimal number.

The next option, ‘PROMPT BEFORE WRITING (Y/N)’, should get a “Y’ response if you need
to switch disks between reading and writing, and an ‘N’ response if you want to let it go without
interruption. The ‘BREAK FILES ON SPACE (Y/N)’ simply assures that a word won’t be split over
two files (this may not work if the last word before writing is over 15 characters long, but that’s pretty
rare). The last option is a convenience to those with the AtariWriter or PaperClip word processors. If
you select either ‘A’ or ‘P’ at the prompt, it will write the ‘chain next file’ command at the end of all
files except the last one. In addition, it will put a paragraph symbol where it thinks it’s appropriate, and
convert the ASCII formfeed character (CTRL-L) to its AW or PC equivalent. If you select *N’ for
‘neither’, then the paragraphs will be indented five spaces and formfeeds will be left alone.

By the way, the program only allows character codes within the range 26-127, plus CR (13) and
FF(12). Characters higher than 127 have the high bit stripped to make them ‘normal;’ while control
characters are ignored. If you want to allow inverse and control characters (although this can be a
potential problem with true ASCII files; control characters can have bizarre meanings, and true ASCII
does not allow character codes higher than 127. If you get any, it’s probably a transmission error),
change line 215 to:

215 REPEAT :GET #1,N:UNTIL (N< >LF)
This will only filter linefeed characters.

This program was written out of necessity, but I also had a lot of fun doing it. I hope that you also
find the program useful.

OTHER PROGRAMS ON THIS DISK:

MAGIC.TUR - A Koala type drawing program written in Turbo Basic.

PMMOVE.TUR and PUTGET.TUR - Two demo programs that show off some of TBs
power.

BGET
BLOAD
BPUT
BRUN
CIRCLE

CLOSE
CLS

DEC
DEL
DELETE
DIM

DIR

DIV

DO
DPEEK
DPOKE
DSOUND

DUMP

ELSE
ENDIF
ENDPROC
ERL
ERR

EXEC

COMMAND SUMMARY

n'i

name

$nnnn

Constant
Constant
Constant
Constant

%PUT #n,a
%GET #n,A
n&i

o L

!L L.

*E (or tFi)

:F_

*B (or "B +)
B

BGET #n,adr,len
BLOAD 'D:name"’
BPUT #n,adr,len
BRUN “D:name"
CIRCLE x,y,r
CIRCLE x,y,r,r2
CLOSE

CLS

CLS #6

DEC(a$)

DEL n,i

DELETE “D:name"’
DIM a(n)

DIR

DIR “Dn:*.*"
nDIVi

DO

DPEEK(m)
DPOKE m,v
DSOUND n,f,d,v
DSOUND

DUMP

DUMP name
ELSE

ENDIF -
ENDPROC

ERL

ERR

EXEC name

EXIT
EXOR
FCOLOR
FILLTO
FRAC
GET
GO#

GO TO
HEXS
INKEYS
INPUT
INSTR

LIST
LOCK
LOOP
MOD
MOVE
-MOVE
ON

PAINT
PAUSE
POP
PROC
PUT
RAND
RENAME
RENUM
REPEAT
RESTORE
RND
SOUND
TEXT
TIME
TIMES
TRACE

TRAP
TRUNC
UINSTR

UNLOCK

- UNTIL

WEND
WHILE

EXIT

.. nEXORIi

FCOLOR n
FILLTO x,y
FRAC(a)

GET name

GO# name

GO TOnN

HEX$(n)

INKEY$

INPUT ‘text’;a,b...
INSTR(x$,a%)
INSTR(x$,a$.i)
LIST n,

LOCK “‘D:name”’
LOOP

n MOD i

MOVE m,m1,m2
-MOVE m,m1,m2
ON a EXEC n1,n2,...
ON a GO#n1,n2,...
PAINT x,y

PAUSE n

POP

PROC name

PUT n

RAND(n)
RENAME “D:old,new"’
RENUM n,i,j
REPEAT
RESTORE #name
RND

SOUND

TEXT x,y,a$
TIME

TIMES

TRACE

TRACE -

TRAP #name
TRUNC(a)
UINSTR(x$,a$)
UINSTR(x$,a$,i)
UNLOCK "D:name"
UNTIL <c>
WEND

WHILE <c¢>

