
Addendum to the SpartaDOS X 4.20 Reference Manual
addressing new features introduced in v.4.40

© 2006-2008 DLT Ltd.

Chapter 2: Introduction to SpartaDOS X

Setting time and date

The default time and date format as of version 4.40 is the European
format (dd-mm-yy). Optionally, users can select the US format (mm-dd-
yy). Because of that, the DATE command now displays the message
about the proper order of numbers to type:

Current date is 10-09-06
Enter new (DD-MM-YY):

Running programs

Preceding the program name with the # character has the same effect as
the X command, for example, typing:

#DISKRX

at the DOS prompt will do the same as typing:

X DISKRX

Most programs written for AtariDOS should be executed using
X.COM. Doing so is most of the time the proper way of getting rid of the
troublesome „Memory conflict” error; if using X.COM does not cure that,
you probably need to reconfigure the system (see Chapter 8 –
Configuring Your System).

Hard disks users will probably be glad to hear, that it is now possible to
configure the DOS so that it can, if necessary, disable the ROM module
automatically while executing a program.

DOS 2 Equivalents

M – RUN AT ADDRESS External command RUN

Chapter 3: SpartaDOS X Overview

Device identifiers

As of version 4.40 the DOS can handle up to fifteen drives attached
simultaneously to the computer. At the SIO level the drives are numbered
from 1 to 15 ($01-$0F). Drives 1-9 have, just as in the earlier SpartaDOS
X versions, identifiers 1: ... 9: or A: ... I: in the Command Processor, and
D1: ... D9: or DA: ... DI: in BASIC.

The drives 10-15 have letter-identifiers only, i.e. J: ... O: in the
Command Processor, and DJ: ... DO: in BASIC.

Apart from DSK:, CAR:, PRN: and COM: there is also the NUL:
device in the system. It can accept any amount of data written to it (not
saving it anywhere), and while read, it can behave in one of the three
ways, as follows:

NUL: or NUL1: – returns error 136 (EOF).
NUL2: – an infinite number of zeros is returned.
NUL3: – an infinite number of random bytes is returned.

Disk Format Compatibility

The SpartaDOS X 4.40 disk format is a slightly modified version of the
format known from the previous SpartaDOS releases. It is backward
compatible with the format used in SpartaDOS 2.x/3.x/X 4.x, so there
should be no problem exchanging data between all these SpartaDOS
versions.

It is, however, not recommended to do any write operations (including
file deletions) on SpartaDOS 1.1 diskettes, should they remain
accessible to SpartaDOS 1.1 afterwards. The advice is to copy the files
over to a SpartaDOS X disk first, and edit thereafter.

The SpartaDOS X 4.40 is able to build filesystems on disks formatted
to 512 bytes per sector. This density, new to the Atari world, is called DD
512. Files saved on such a disk are not accessible to any other version of
SpartaDOS (including any older version of SpartaDOS X), and, as far as
we know, neither to any other DOS running on Atari.

Chapter 4: The Command Processor – Commands

APPEND

Purpose: to append the given path at the end of the $PATH variable.
Syntax: APPEND pathname
Type: external – on device CAR:

The command appends the given pathname at the end of the $PATH
variable.

ARC

The bug, when ARC, if run with the XH option, was displaying a
message to the user without enabling the ANTIC display, is now fixed.
Also, it is now possible to answer (apart from „No” and „Yes”) „All” to
the question, whether the data being extracted should replace an already
existing disk file with the same name.

BASIC

The BASIC command can now execute the internal Atari BASIC
module even if the computer has 1088k RAM. This was not possible in
previous SpartaDOS X versions.

The environment variable $BASIC has no default value now, unless
RAMDISK.SYS is installed. If the $BASIC variable has not been set by
the user (with the SET keyword in CONFIG.SYS) while RAMDISK.SYS
is being installed, the ramdisk driver sets the variable so that it points to a
BAS.SAV file residing in the ramdisk.

BLOAD

Purpose: to load the given file into the given memory area starting at
the given address.

Syntax: BLOAD fname.ext [$]address
Type: external – on device CAR:

The file fname.ext is loaded as a raw data block into the specified area,
and then the control is handed back to the Command Processor.

There are no checks done, whether the file fits in the memory, or if
vital operating system areas are safe – it is assumed, that the user invokes
the command on purpose.

See also LOAD.

CHKDSK

In the previous versions of the SpartaDOS X the CHKDSK was a
command internal to the Command Processor. Now typing CHKDSK at
the DOS prompt invokes the program called CHKDSK.COM residing on
the CAR: device (CAR:CHKDSK.COM).

Adding /X to the command causes an extended disk information to be
displayed. Additionally, on /V, the disk bitmap (VTOC) is loaded into the
memory and analysed, and the information about the remaining free
space is compared with the amount of free space indicated by the
bootsector. This allows to check quickly, if there are lost sectors on the
disk. The /V will only work with the regular SpartaDOS disks.

COLD

In the Maxflash versions of the SpartaDOS X v.4.40 the COLD /C
command is an equivalent to the COLD alone (without the parameter).

COMP

Purpose: to compare the given files.
Syntax: COMP [d:][path]fname1.ext [d:][path]fname2.ext
Type: external – on device CAR:

The program compares both files and displays information about the
differences.

COPY

COPY is a command internal to the Command Processor. The only
thing it does, however, is to launch CAR:COPY.COM. Now it is possible
to replace this one with an arbitrary program. The environment variable
$COPY is used for that. For example:

SET COPY=C:>SYS>CP.COM

causes the Command Processor to launch the indicated program
instead of its defaults, and to pass all of the user-specified parameters to
it.

DATE

The DOS now displays time and date in the European (dd-mm-yy) or
American format (mm-dd-yy) depending on user selection. This applies
to the DATE command as well. To change the format you should set the
$DAYTIME variable in the environment. Its meaning is as follows:

SET DAYTIME=1

selects the American format, and

SET DAYTIME=2

the European one. Lack of the variable or DAYTIME=0 selects the
default format – i.e. the European one in the current version of the DOS.

DELTREE

Purpose: to delete subdirectory trees recursively.
Syntax: DELTREE [d:][path]dirname
Type: external – on device CAR:

The command when executed asks for the confirmation, and, if
confirmed, removes the given subdirectory recursively with all the
content, reporting progress successively.

If it aborts displaying Can’t delete directory, that means, that there is
an invalid directory entry on the disk – a file, that was opened for writing,
but never closed for a reason (e.g. because of a system crash). Such an
entry is invisible in directory listings and cannot be normally deleted, but
even when all the files inside a directory have been removed, due to the
presence of such an invalid entry, the directory is not considered empty
and cannot be deleted. This is an error condition that indicates that the
filesystem structure is not completely valid: you should run the CleanUp
program to verify the filesystem structure and fix it.

DF

Purpose: to display summary information about free space on all disks.
Syntax: DF
Type: external – on device CAR:

The command produces a list of all active drives, displaying the
following information for every single drive: the drive letter, the total
number of sectors, the number of free sectors, the number of free
kilobytes, the percent of the disk used, the volume name. A summary is
displayed at the end.

DIR and DIRS

Earlier SpartaDOS versions display six last digits of the file size
information in directory listings, even though the file size can be an 8-

digit number, and such long files can be created and are correctly handled
(despite this flaw). Thus, it is rather difficult to properly estimate the size
of some long files.

SpartaDOS X 4.40 solves this problem: when a file exceeds 999999
bytes in size, this number is displayed in kilobytes, and to indicate this,
there is a ‘k’ character printed at the end. Example:

Volume: TEST
Directory: MAIN

BACKUP TAR 6988k 10-09-06 15:55
 51483 FREE SECTORS

Short directory listing obtained by DIRS contains subdirectory
extensions (instead of DIR). A colon is used to indicate a subdirectory,
like in MyDOS.

The switch /A displays file attributes in the list. It is used mostly
together with “+”, for example DIR + /A command shows all files with
their attributes.

DPOKE

The DPOKE is similar to POKE, except that it puts a two-byte value (a
word) into the given address, preserving the usual 6502 byte order
(low/high).

DUMP

The /A switch is added, that causes some ATASCII-specific characters
(semigraphics, inverse video characters etc.) to be replaced with dots.
This allows to print the DUMP output on a printer even, if the printer
interface does not allow full translation or if it's not using a graphics
mode to print.

ECHO

Purpose: to enable or disable the „echo” in the Command Processor.
Syntax: ECHO ON|OFF
Type: internal, executed by COMMAND.COM.

ECHO OFF disables echoing user commands, passed to the Command
Processor from the command line or fetched from a batch file. ECHO ON
restores the default.

ED

Purpose: a text editor.
Syntax: ED [d:][path][filename.ext]
Type: external – on device CAR:

ED.COM is a SpartaDOS X-compliant, relocatable version of JBW
Edit. The main purpose of the program is to edit the DOS configuration
files, but it obviously can be used to edit any text files, if they are not too
big (the practical file size limit is about 6-8 kB, even if the editor buffer is
much larger).

When there is a filename given on the command line, the program will
attempt to load it. There are the following editing commands available:

Esc – cancel the function or quit the program.
Ctrl/L – Load – load a file into the buffer.
Ctrl/S – Save – save the buffer to a file.
Ctrl/U – Up – move up the low margin of the editor window.
Ctrl/D – Down – move down the low margin of the editor window.
Ctrl/V – Visible – make EOL characters visible.
Ctrl/B – Begin – move the cursor to the beginning of the text.
Ctrl/E – End – move the cursor to the end of the text.
Ctrl/A – move the cursor to the beginning of the line.
Ctrl/Z – move the cursor to the end of the line.
Ctrl/T – Tag – tag the current line.
Ctrl/G – Go – move the cursor to the tagged line.
Ctrl/Q – Quit – quit the control mode, the next key combination will

be interpreted as a character.
Shift/Ctrl/up arrow – page up.
Shift/Ctrl/down arrow – page down.
Shift/Insert – insert the current line before the tagged one (see Ctrl/T),

the cursor moves to the next line.
Shift/Ctrl/E – Erase – clear the editing buffer.

ELSE

See Chapter 5, section „Batch files”.

EXIT

See Chapter 5, section „Batch files”.

FI

See Chapter 5, section „Batch files”.

FORMAT

The formatter has been enhanced to support larger filesystems (up to
32 MB per disk is now possible), to handle greater sectors (up to 512
bytes), and to be able to use more drives. The drives are selected by the U
function (as in Unit) using letters from A (drive 1) to O (drive 15). The
density selection offers, apart from the three old ones, i.e. Single, Dual,
Double, the fourth density named DD 512. This is the double density at
512 bytes per sector (just as the Dual is in fact double with 128 bytes per
sector). The DD 512 density is usable with certain types of hard drives
(KMK/JŻ/IDEa), and with TOMS floppy drives, either the original ones
(TOMS 710, TOMS 720), or third party drives with TOMS Turbo Drive
or TOMS Multi Drive extensions installed.

There is also a new option there – Optimize. The earlier SpartaDOS
versions build directories in such a way that the last sector on the disk is
marked as occupied and left unused. When the Optimize option is enabled
in the formatter, that sector is reclaimed and assigned to the data area, so
that you have one free sector more, than you usually have on a freshly
formatted diskette.

There are some ancient hard drives however, which are physically
formatted so that the very first sector of a partition has number 0, and
not 1, as it should be on an Atari disk. This 0 sector is not accessible, but
it does count into the summary of existing sectors returned to the
computer by the disk controller. This problem occurs e.g. in Supra Corp.
and K-Products drives. On such a drive, the sector ‘reclaimed’ by the
formatter’s ‘Optimize’ function does not really exist. If you have such a
drive, you should keep the ‘Optimize’ off when building directories.

Caution: the FORMAT command uses the 6502 stack space
intensively. Because of that, some floppy turbo systems, which load the
fast serial I/O patch onto the stack, will not work in turbo mode.
Problems will occur with Top Drive 1050, TOMS Turbo Drive or any
other using the same method. Such a drive can be used with SpartaDOS
X, but only at the „slow” (i.e. standard) baudrate.

Other turbo systems, such as TOMS Multi Drive (in the Ultra Speed
mode), TOMS 710/720, CA-2001, Atari XF551, LDW 2000 Super, Indus
GT, Happy 1050, US Doubler – will work normally.

FSTRUCT

Purpose: to analyse a binary file
Syntax: FSTRUCT [d:][path]filename.ext
Type: external – on device CAR:

The command displays the information about the structure of the
specified binary file (type, load address, length of the segments etc.).

FSYMBOL

Purpose: to convert a symbol to an address.
Syntax: FSYMBOL symbol_name
Type: external – on device CAR:

The command displays the address associated with the specified
symbol. See also SL.

IF

See Chapter 5, section „Batch files”.

GOSUB and GOTO

See Chapter 5, section „Batch files”.

MAN

Purpose: documentation viewer
Syntax: MAN [filename]
Type: external – on device CAR:

MAN.COM is a simple text viewer. Its main purpose is to view
documentation files to programs and commands given as the parameter.
The program’s operation is similar to the UNIX’ man command (where it
is an abbreviation for manual), thus the name.

To use it, it is required to define $MANPATH first in the environment.
The variable will contain a list of directories to be searched for text files,
in an identical manner as $PATH contains a list of directories to be
searched for executables:

SET MANPATH=C:>MAN;D:>DOC

Now if you put to any of these directories a file with *.MAN, *.DOC
or *.TXT extension, and then give its name (but omitting the extension)
to MAN.COM, the file will get searched for and displayed when found.

For example, the HDSC.ARC archive contains a text file named
HDSC.DOC filled with informations about the program. When you have
unpacked the archive, you can put the executable to any directory pointed
to by $PATH, and the *.DOC file to any of the directories pointed to by
$MANPATH. Now, when you want to read the instructions, you do not
need to remember, where the original archive is, unpack it again etc. It is
enough to execute this command instead:

MAN HDSC

and the HDSC.DOC appears on the screen.
If the text file has „long lines”, or in an extreme case the entire file

consists of a single line, the viewer will try to justify the text so that it fits
to the current width of the screen.

MAP

Purpose: SIO.SYS control.
Syntax: MAP [unit] [SIO|OS|NORMAL|OFF] [d:]

or: MAP [filename.ext]
Type: external – on device CAR:

The command „maps” the given drive identifier (d:) to the drive
associated with the specified number (unit). An internal SIO translation
table is used here. The additional options control the communication
mode for the specified disk:

NORMAL – standard mode, the PBI has priority over the SIO.
SIO – SIO communications only (the PBI is bypassed).
OS – the communication is redirected to the ROM OS.
OFF – drive disabled (or handled by another driver).

The „SIO” option allows to gain access to a serial floppy drive, which
has been masked out by a parallel (PBI) drive having the same number.
For instance, the command MAP 1 SIO D2: creates a logical D2:
drive, which uses physical disk drive number 1 (the D1: can be a partition
of a parallel hard drive).

The „OS” parameter applies, when the OS ROM routines are to be
used instead of the native SpartaDOS communication routines. „OS”
cannot be used, when the DOS is configured to USE OSRAM mode.

The SIO parameters to be changed can be stored in a file, and the name
of that file can be given to the MAP command as the first (and only)
argument. That should be a text file, and each line should contain correct
MAP parameters starting from the unit value. This feature allows for
changing the settings of multiple drives at once.

Caution: MAP does not work, when SIOOLD.SYS is installed instead
of SIO.SYS!

MDUMP

Purpose: to display memory in hex and ATASCII.
Syntax: MDUMP [$]address
Type: external – on device CAR:

The command does the same to memory, what DUMP does to files. It
is useful to check the memory contents quickly.

MEM

Purpose: to display memory information.
Syntax: MEM [/X]
Type: external – on device CAR:

The MEM command is now external, using the program that resides on
the CAR: device (CAR:MEM.COM). MEM now displays additional
information on the current memory configuration, i.e. the mode being
used by the DOS (NONE, OSRAM or BANKED). The additional /X
switch makes the information a bit more detailed.

The information about the number of free banks may differ from what
was displayed by the previous versions of SpartaDOS X. The reason is
that the SpartaDOS X 4.2x was not able to properly recognize some types
of RAM expansions, and because of that, for example 256k TOMS (12
banks) was seen as 192k (8 banks). As of 4.40 the memory handler is
fixed.

PROC

See Chapter 5, section „Batch files”.

RENAME

The RENAME command and the corresponding kernel function have
been improved so that you should not be able to give a name to a file,
when such a name already exists in the same directory.

RENDIR

Purpose: to rename directories.
Syntax: RENDIR [d:][path]old_name new_name
Type: external – on device CAR:

The command does the same to directories, what RENAME does to
files.

RETURN

See Chapter 5, section „Batch files”.

RUN

Purpose: to run the code at the specified address.
Syntax: RUN [$]address
Type: external – on device CAR:

The command makes a JMP to the specified address. It is not sanity-
checked before, it is assumed, that the user is invoking the command on
purpose.

SETERRNO

See Chapter 5, section „Batch files”.

SIOSET

Purpose: SIO.SYS serial speed control.
Syntax: SIOSET [d: [type [usindex]]]
Type: external – on device CAR:

The SIOSET purpose is advanced serial protocol control for the
SIO.SYS driver. Typically the serial transmission parameters are
determined automatically and there is no need to change them.
Sometimes however (e.g. when a drive was changed to another type at
runtime) you may want to change them by hand.

With no arguments given, SIOSET displays the current configuration
for all drives. The type parameter has the following meaning:

RESET – the transmission parameters for the drive are cleared; they
will be determined on next I/O request sent to that drive.

NORMAL – the drive works at standard baudrate.
XF – the drive uses the XF551 protocol.
US – the drive uses the UltraSpeed protocol.
INDUS – the drive uses the Indus protocol.

When UltraSpeed is used, the additional usindex parameter allows to
determine the serial speed. For example, the so called 3xSIO mode
(3x19200, i.e. 57,6 kbps) requires $08 as usindex value.

Caution: SIOSET does not work, if SIOOLD.SYS was loaded instead
of SIO.SYS!

SL

Purpose: generates a list of SpartaDOS X symbols.
Syntax: SL

Type: external – on device CAR:

The command generates the list of SpartaDOS X symbols.

SORTDIR

Purpose: to sort filenames in directories by name, type, date or size.
Syntax: SORTDIR [d:][path] [/NTSDX]
Type: external – on device CAR:

The command reads the specified directory, sorts it using the specified
criteria, and then writes it back. The criteria can be:

/N – sort by name
/T – sort by type
/S – sort by size
/D – sort by date and time
/X – in descending order

The file specification may be omitted, the current directory is sorted
then, but a criterion is obligatory. SORTDIR invoked without arguments
displays a brief copyright information and lists available options.

When the files are sorted by name, the file type is a second priority.
When sorting by type, the second priority is the file name. When sorting
by size, the second priority is the name, and the type is the third. Digits
are prior to letters. Everything is sorted in ascending order by default,
the /X switch reverses that order.

SWAP

The SWAP command has no effect on drives from J: to O:.

TD

The TD command has been fixed (the „Y2K problem” is fixed). The
format in which the time is displayed depends on the value of the
DAYTIME variable (see DATE command). Additionally, the „X” letter
reflects the Caps/Inverse state. See also Z.SYS (chapter 8).

UNERASE

UNERASE.COM in SpartaDOS X 4.20 contains a long-known bug,
that causes it to screw up the disk’s bitmap, when the file being undeleted
resides in a series of data sectors, and the group of bits representing these
sectors happens to cross a sector boundary in the bitmap. This bug is

fixed, the test distributed with Nelson Nieves' NNTOOLS now passes
without errors.

VDEL

Purpose: delete selectively in groups of files.
Syntax: VDEL [d:][path]filename.ext
Type: external – on device CAR:

The command finds a file matching the specified filename mask,
displays its name and asks, if the file should be deleted. The procedure is
repeated until no file matches the mask anymore. At the end, a brief
summary is displayed. The program can be aborted with the Esc key.

VDEL is useful in the (rare) cases, when in a group of many files, there
are some to be deleted, and none of them share a common filename mask
with the others. The files must be then deleted one by one, and VDEL, at
least partially, facilitates this task. It can be yet more conveniently done
with the MENU program.

XFCONF

Purpose: density selection in floppy drives.
Syntax: XFCONF [d:] [/12345]
Type: external – on device CAR:

Some floppy disk drives have problems when it comes to automatic
density detection. This problem particularly beats the Atari XF551 disk
drive (thus the name of the command), but the program can be handy in
case of any other drive too, when it happens to be somehow stuck in an
improper density. Then, the XFCONF allows to force the drive into the
proper one by hand.

The command invoked without arguments displays menus, where you
can choose drive number (1-4) and the desired density. After the new
configuration was sent out to the drive, it is checked, whether the drive
has really selected it (some drives do accept and positively acknowledge
densities impossible for them, for example 360k for an Atari 1050 Top
Drive, or 720k for an Atari XF551 – the drive’s controller selects
something closest to the requested configuration and replies „OK” to the
computer – which is surely far from being OK). The message Drive
cannot do this density means, that the requested density was accepted, but
the drive is in fact unable to realise it.

Other messages:
Drive not configurable – the drive is a stock Atari 810 or Atari 1050,

without modifications. It is not possible to change densities.
Drive is not a floppy disk – an attempt to change density of a ramdisk

or harddisk.
Drive rejected the density – the drive explicitly denied to select the

density.
XFCONF accepts command line arguments too. Giving a drive

identifier alone causes the computer to check, if the drive is a floppy drive
and if it is configurable. The reply Drive is configurable confirms that.
The density change can be accomplished by adding a switch followed by
a digit from 1 to 5, where the digits mean densities as follows:

/1 – single density (SSSD, 90k)
/2 – dual density (SSED, 130k)
/3 – double density (SSDD, 180k)
/4 – double sided double density, 40 tracks (DSDD, 360k)
/5 – double sided double density, 80 tracks (DSDD, 720k)

Other commands

Apart from the commands mentioned above, there are two programs on
the CAR: device, written for hard disk interface users:

S2I – for SIO2IDE
MNT – for KMK/JŻ IDE and IDEa

The description of these two programs belongs to the documentation of
the respective hardware and thus will not be discussed here.

Chapter 5: The Command Processor – Advanced Features

Running programs

If a program requires free memory in the area normally occupied by
the I/O library ($A000-$BFFF), it should be executed with the X
command. You can also precede the program name with the hash mark
instead, for example, typing at the DOS prompt:

#DISKRX

will have the same effect as:

X DISKRX

BATCH FILES

A text line starting with a semicolon (;) is understood as a comment
and skipped over without parsing.

The command ECHO OFF used in a batch file prevents displaying the
commands read from the batch file. ECHO ON enables the echoing.

As of SpartaDOS version 4.41 batch files are executed with ECHO
OFF by default: you have to write ECHO ON explicitly in the batch file,
if you want to see what is being done.

Conditionals

The external commands IF, ELSE, FI allow simple conditional
expressions in batch files. The general syntax is:

IF [NOT] EXISTS [atr] pathname|ERROR [n]|INKEY [‘c’|n]
...
FI

or

IF [NOT] EXISTS [atr] pathname|ERROR [n]|INKEY [‘c’|n]
...
ELSE
...
FI

Such conditionals can be nested, up to 255 levels of nesting is allowed.

The IF EXISTS conditional

The operator EXISTS allows to check the presence of the specified file
or directory on a disk. For example, IF EXISTS FOO.BAR is true, if a
file named „FOO.BAR” exists in the current directory. NOT negates the
result, so IF NOT EXISTS FOO.BAR will be false in this case. It can
only see regular files by default, to check if a directory exists, you have to
specify the attribute the usual way: IF EXISTS +S FOO returns true, if a
subdirectory named „FOO” exists in the current directory. Example
usage:

IF EXISTS %1.ARC
 IF NOT EXISTS +S %1
 ECHO Creating dir %1
 MD %1
 ARC X %1 %1>
 ELSE
 ECHO %1 already exists
 FI
ELSE
 EXIT 170
FI

Save this as a batch file named for example X.BAT somewhere in your
$PATH. Then, typing at the command prompt:

-X FILES

allows to unpack the archive FILES.ARC into a subdirectory
automatically created on the purpose.

The IF ERROR conditional

The operator ERROR allows to check error conditions. IF ERROR is
true, if any error has been recorded by the system. Similarly, IF NOT
ERROR is true, when there was no error condition. Alternatively you can
specify the exact error number: IF ERROR 170 returns true, if the error
that occurred last was „File not found”.

The ERROR keyword uses a system variable called ERRNO, that is
only written to by the system library on any error condition, and never
cleared. This means, that the error code the variable contains may not
necessarily have been generated by the command that was executed last.
It is therefore a good practice to do SETERRNO 0 before running a
command that is about to be checked later with IF ERROR.

The IF INKEY conditional

When this operator is encountered, the batch file execution stops and
the system waits for a key to be pressed. The expression IF INKEY is
true, when the user hits any key (except Break – it is false then). You may

also specify the key to be waited for. To accomplish that, an argument
must be specified to the INKEY keyword, either a numeric ATASCII
code of the key, or its text value in single quotes. For example, when it is
the „A”-key you want the batch file to wait for, the command doing that
may be in any of the form below:

IF INKEY 65
IF INKEY $41
IF INKEY ‘A’

This serves well in simple comparisons, but for more complex tasks,
like for example a menu with many options, you should use the INKEY
command described below.

Comparisons

Some parts of a batch file can be executed or not depending on the
value of an environment variable. Checking the value is accomplished
with the equation sign (=), which is employed here as a comparator. For
example, IF DAYTIME=2 is true, if the environment variable DAYTIME
contains the text „2”. There is no separate „not equal” operator, this
condition can be checked by combining the equation sign and the logical
negator NOT. So, IF NOT DAYTIME=2 means „if DAYTIME is not
equal to 2”.

GOTO jumps

The GOTO command allows to make a jump within the batch file. The
syntax is:

GOTO label

This simply transfers the batch file execution to the line following the
one, that contains the „label” at its beginning. An example definition of a
label may look as follows:

:LABEL

That is the definition. Giving the label’s name as a parameter to the
GOTO keyword you have to omit the colon.

Bear in mind, that a GOTO searching for its label always goes through
the entire batch file from its beginning. This means, that the farer within
the batch file is the label, the slower a GOTO jump will be.

The INKEY command

This command stops the BAT file execution, waits for a key to be
pressed, and, when pressed, assigns the corresponding letter to the
specified environment variable. This value can be read within a
comparison in the IF statement, and so you can this way make for
example a menu with more options:

:MENU
CLS
ECHO A. Option no. 1
ECHO B. Option no. 2
ECHO C. End
INKEY KEY
IF KEY=A

ECHO Option 1 was selected
FI
IF KEY=B

ECHO Option 2 was selected
FI
IF KEY=C

SET KEY
EXIT

FI
PAUSE
GOTO MENU

Caution: data is written to the environment, and the environment space
is only 256 bytes. To avoid filling it with unnecessary garbage, it is a
good practice to delete all variables created in your batch file before
exiting it; just as it is shown in the example above (the fifth line counting
from the end).

The INKEY command should not be confused with the INKEY
operator, which is a part of the IF command.

Procedures

It is now possible to define a procedure within a batch file.
Functionally, a procedure corresponds to a subroutine in Atari BASIC or
a procedure in Turbo-BASIC XL. The definition of a procedure begins
with PROC, and ends with RETURN, in the following manner:

PROC name
...
RETURN

Such a procedure can be called with:

GOSUB name

Alternatively, GOSUB can also call ordinary GOTO-labels (see
above), provided the command sequence marked so is ended with

RETURN.
Procedure calls can be nested, the maximum number of nested calls

ever possible is 20. This number however can be limited down by other
factors, so we do not recommend to exceed some 8 levels of nesting.

Other commands

The EXIT command causes an immediate termination of the batch file
processing. Alternatively you can add an exit code to be taken by the
system as an error code. For example, EXIT 170 causes the batch file to
be terminated with „File not found” error.

The SETERRNO command causes the ERRNO system variable to be
overwritten with the given value. For example:

SETERRNO 170

will set 170 as the last-occurred error in the system. The keyword’s
most obvious usage is to clear the variable before execution of a
command, that is about to be controlled later with the IF ERROR
conditional.

Other comments

While a batch file is being executed, the Command Processor is
periodically loaded to the memory and unloaded (it is not a resident
program). This has some negative influence on interpretation speed. To
speedup this process, the Command Processor can be held in the memory
whilst the batch file is being interpreted. You can accomplish that by
adding the command LOAD COMMAND.COM at the beginning of your
batch file. Before the batch file exits, the Command Processor can be
unloaded with LOAD alone.

Chapter 6: Programming with SpartaDOS X

Set file position – POINT

The internal SpartaDOS X routine, corresponding to this function, has
been rewritten, so that random access to very long files (greater than
500k) should now work up to four times faster than before.

Load binary file (LOAD)

Syntax: XIO 40,#IOCB,4,X,”D:[path]fname.ext”

If X is 0, the file will be loaded to the memory and executed. If X is
128, the file will be loaded without execution.

Get disk information (CHKDSK)

This function is slightly changed, due to the increased number of
supported densities. The earlier versions of SpartaDOS support disks with
128- and 256-byte sectors – SpartaDOS X v. 4.40 adds support for 512-
byte sectors, and theoretically even larger.

The CHKDSK function returns 17 bytes described in the SpartaDOS X
Reference Manual. The byte holding the information about the sector
size, found at the offset buffer+1, has a value of 128 for the 128 BPS
densities (Single, Dual) and 0 for 256 BPS (Double). Originally it is, of
course, just the low byte of the actual sector size value (128 = $0080, 256
= $0100) – and encoding sector sizes larger than 256 bytes is impossible
this way.

Because of that, the interpretation of this byte in the SpartaDOS X v.
4.40 has changed, both inside the DOS itself and in its external utilities.
The new way is of course backward compatible, the „old” values still
retain their traditional meaning.

A value of 128 indicates, just as before, 128 BPS. Any other value is
the high byte of the logical sector size value in bytes, minus 1. This
allows to easily encode sector sizes from 128 bytes to 64 kilobytes, as
follows (‘*’ – not supported):

Size (B) Hex value Encoded as Remarks
----------- --------------- -------------- --------
128 $0080 $80 (128) For backward-compatibility.
256 $0100 $00 (0) As in 2.0 format.
512 $0200 $01 (1)
*1024 $0400 $03 (3)
*2048 $0800 $07 (7)
*4096 $1000 $0F (15)

*8192 $2000 $1F (31)
*16384 $4000 $3F (63)
*32768 $8000 $7F (127)
*65536 $0000 $FF (255)

An assembly routine that calculates the real sector size value out of the
„encoded” one can for example look like this:

; the input code is given in the
; accumulator (A), the result
; is returned in A (low byte)
; and X (high byte)
;
getssize

ldx #$00
cmp #$80
beq quit
tax
inx
lda #$00

quit rts

SpartaDOS User Accessible Data Table (COMTAB)

DECOUT2 COMTAB-21
Contains the right-justified, space-padded output of the misc_conv32

routine, an ASCII string representation of the four byte number at
DIVEND (see Page Seven „Kernel” Values). 10 bytes (including 8 byte
DECOUT).

DIVEND COMTAB-6
A four byte number here will be converted by the misc_conv32 routine

to a string at DECOUT2. See Page Seven „Kernel” Values.

ODATER COMTAB+19 3 bytes
OTIMER COMTAB+22 3 bytes
TDOVER COMTAB+25 1 byte
The function of these registers is similar to the function of DATE,

TIME and DATESET registers respectively, except the TDOVER not
being automatically cleared after use (unlike DATESET).

ODATER, OTIMER and TDOVER are the old date/time stamp control
registers used on SpartaDOS 3.x. SpartaDOS X disabled them and
replaced with the new triad of DATE/TIME/DATESET. This was the
reason, why SpartaDOS 3.2 copy programs, when ran under SpartaDOS
X 4.2x, were not able to control timestamps in the files copied.

SpartaDOS X 4.40 restores the function of these registers, but
DATESET still has the highest priority, and when it is set, the TDOVER
value is ignored.

The TDOVER is cleared after the program quits in SpartaDOS X 4.40,

but not in 3.2. Thus it is a good programming practice to clear this
register always when the program is about to quit to DOS (of course, only
if TDOVER was used).

Decoding the drive identifier

As it was already said in the preceding sections of this addendum, one
of the new facilities offered by SpartaDOS X 4.40 is an increased number
of drive identifiers. In other words, when other DOS-es support eight or
nine disks (numbered from D1: to D9:), SpartaDOS X 4.40 supports
fifteen. The additional drives (above D9:) are identified by drive letters
from DJ: to DO:, following the convenience known from the previous
SpartaDOS X versions, namely that the drive 1 can be referenced either as
D1: or DA:, drive 2 as D2: or DB: and so on.

When a program receives a drive identifier from the DOS (e.g. as a
command line input) and passes it on to another DOS function
unchanged, there should be no problems with the new, „non-standard”
drive identifiers. There will be no difference in the code either, when a
program wants to calculate the real (binary) drive number – for DUNIT
for example. To do that, it is enough to clear the high nibble of the drive
digit or letter with an AND #$0F.

A reverse conversion may be a problem, though, because a $30 should
be added to a DUNIT value to get a drive digit, or a $40 to get a drive
letter. It was not necessary to distinguish these two cases so far, so the
programs doing such a conversion on purpose will probably not work
correctly on „new” drives (10-15). Luckily such a calculation is rarely
necessary, but we supply an example just in case:

dsk2asc
lda dunit
ora #$30
cmp #'9+1
bcc ok
adc #$0f

ok rts

The result – an ASCII character symbolizing the given drive – is
returned in the accumulator. It will work with any DOS. But if the
program is to be used with SpartaDOS X only, the routine may be greatly
simplified:

dsk2asc
lda dunit
ora #$40
rts

Symbols

A symbol is an eight-character name of an object residing somewhere

in the computer’s memory. Such an object can be a routine or a data
structure. When the symbol name is known to the programmer, it can be
translated inside the program to the actual address. Normal binary
programs have to do that „by hand”, i.e. making the appropriate system
call (see Page 7 „Kernel” Values). This is neither the most convenient nor
the only way to do that; some assemblers can generate SpartaDOS-
specific, specially structured binaries; in case of such a binary the
symbol-to-address translation is done automatically by the loader.

If a symbol exists, that means that the corresponding routine is loaded
into the memory, and the symbol itself provides the information, where it
can be found. Addresses pointed to by symbols can change depending on
SpartaDOS version or the order of loading drivers. A part of the symbols
points to the ROM, part of them is even defined in ROM, but even in
such a case they cannot be considered fixed forever – every symbol can,
at any moment, get replaced by its new instance pointing to another place
in the memory. This happens when a device driver replaces or patches a
system procedure.

If a symbol does not exist, most of the time it means that the
corresponding driver is not loaded to the memory.

Vectors Under the OS ROM

The vectors are created under the OS ROM to secure some backward
compatibility with SpartaDOS 3.2 and earlier versions. There is no need
to use them in SpartaDOS X, as the same routines are pointed to by
appropriate symbols, so you do not need to look under the OS ROM or
worry, if the vectors still exist, or were destroyed by a program loaded in
the meanwhile (Turbo BASIC XL, for instance).

Here is a list of symbols corresponding to the old vectors:

Vector Label Symbol Defined by
--------- --------- --------- -----------------------
$FFC0 VGETTD I_GETTD clock drivers (e.g. CLOCK.SYS)
$FFC3 VSETTD I_SETTD as above
$FFC6 VTDON I_TDON TD.COM
$FFC9 VFMTTD I_FMTTD TD.COM
$FFCC† VINITZ _INITZ kernel
$FFCF† VINITZ2 - -
$FFD2 VXCOMLI - -
$FFD5† VCOMND - -
$FFD8† VPRINT PRINTF kernel
$FFDB† VKEYON I_KEYON KEY.COM

The vectors are not used by SpartaDOS X itself, they can also be
accidentally destroyed by software using the RAM under the OS ROM,

so their use implies some trouble. In future versions of SpartaDOS X they
may disappear completely (the cross in the table marks the locations
already obsolete in SpartaDOS X 4.20).

The symbols I_GETTD, I_SETTD, I_TDON and I_KEYON work the
same way as the old vectors VGETTD, VSETTD, VTDON and
VKEYON described in the SpartaDOS X Reference Manual. There is
only one exception, namely that the lack of the appropriate driver being
loaded is known not from the Carry state after the call, but rather from the
impossibility to do the call due to inability to find the symbol.

In the I_GETTD and I_SETTD procedures, the Carry, when set, means
that the clock driver is busy at the moment, you should call the routine
again. It is a good programming practice to count, how many times in a
row the call failed, and break the loop after a certain number (e.g. 255) of
iterations to avoid deadlock, when the clock becomes unresponsive for a
reason (e.g. a hardware failure).

The I_FMTTD is loaded to the memory along with the TD.COM,
being a part of it. It accepts an address of a 32-character buffer in the Y/X
(low/high) registers. When the call returns with Carry set, this means an
error (the clock driver being in permanent busy state). If the Carry is
cleared, there is time and date information in the buffer, in a form of
ASCII, EOL-terminated string.

Page 7 „Kernel” Values

1) The misc vector

The original SpartaDOS X Reference Manual mistakenly prints „4” as
a function code for the misc_convdc, when it is in fact 5. This addendum
gives an occasion to correct that error.

A fact of some importance is that the conversion routine behind this
function code is now 32-bit, with the most significant byte of the
DIVEND at COMTAB-3, and generates resulting 10-character ASCII
strings at DECOUT2. But to retain the compatibility with existing
applications the old misc_convdc entry zeroes that highest byte before
proceeding with the conversion, thus cutting the number down to 24 bits
and the result to 8 digits. For 32-bit conversions a new entry should be
used, labelled misc_conv32, with function code 11. This function code is
available only as of SpartaDOS X 4.40, calling it on an earlier version of
the DOS will cause undefined results.

2) The device register

The device code $6x is assigned to the NUL: device.

3) The block_io vector

block_io $0706

The block_io routines support reading and writing sectors. Using this
vector instead of lsio decreases the number of DCB variables to set in the
program and greatly reduces worries about disk density and the
combinations of the sector number and its size (in the double density, as it
is widely known, the first three sectors are 128-bytes wide each, while the
other sectors in this density are 256-byte each).

Before a call to block_io you should set the following DCB variables:
the device code (DDEVIC), the device number (DUNIT), the buffer
address (DBUFA) and the sector number (DAUX1/2). The function code
should be passed in Y. Upon exit, the system puts the status code into the
accumulator: 0 or 1 for a success, or a negative error code otherwise.

The block_io function codes are here:

0 – bio_rdsec – read sector (standard, no density check)
1 – bio_wrsec – write sector (as above)
4 – bio_rdsys – check density, remember it, and read sector
5 – bio_sbps – remember the sector size currently set in DBYT

Other function codes (2 and 3) are reserved for internal use of the
SPARTA.SYS driver.

Functions number 0 and 4 operate similarly, except that the latter
fetches information about the actual density from the drive first, and
stores it into a memory table for later reference. The functions numbered
0 and 1 use that information, and so a program, that wants to access
sectors this way, must always call the function number 4 first, e.g. to read
sector number 1, and use the function 0 to read all other sectors.

If it is necessary to bypass the density recognition mechanism, and the
sector size is otherwise known, in lieu of the function 4 one can store the
required sector size to the DBYT variable ($0308-$0309), the required
drive number to DUNIT ($0301), call function 5 and then subsequently 0.

4) The fsymbol routine

fsymbol $07EB
ext_on $07F1
ext_off $07F4

One of the new things in SpartaDOS X 4.40 is the fsymbol routine,
which can translate symbols into memory information (an address and
memory code). Finding symbols with this routine is very simple: the
address of the symbol name should be passed in AX (low/high). This
name must always be eight characters long, if it is shorter, pad it with

spaces.
Upon return, when the Z flag is set, then there is no symbol defined of

that name. Otherwise the AX registers contain the address associated with
(pointed to by) the symbol, and the Y register – the memory code. This
code should be given (in accumulator) to the ext_on routine, which
configures the memory appropriately (if necessary) to make the address
available. Afterwards the ext_off should be called to restore the memory
to the previous state to the ext_on call.

5) The sio_index table

sio_index $070F

The sio_index table, changed by the CP’s SWAP command and
referenced by SIO drivers, is still 9 bytes wide and cannot be enlarged,
even though the number of valid SIO drive numbers has been increased to
15. This is the reason why the drives 10-15 cannot be „swapped”.

Chapter 7: Technical information

Boot sectors

In the standard Atari densities, i.e. 128 and 256 BPS, the first three
sectors of a disk have 128 bytes each and are occupied by the SpartaDOS
bootloader. This bootloader is not significantly changed in SpartaDOS X
v. 4.40 and is almost identical to the one found in earlier revisions.

The new thing is, that when data sectors on the disk are greater than
256 bytes, the first three sectors are of the same size as the others.
Moreover, the boot region takes only one sector, the one number 1. The
first 42 bytes of this sector carry information about the filesystem
structure, just like in earlier versions of the SpartaDOS. The remaining
portion of the sector is occupied by the new bootloader, able to handle
512-byte sectors and greater ones.

It can be thought, that such a disk structure (and de facto breaking the
existing standard) is an unnecessary complication. Indeed, in SpartaDOS
X itself and its utilities the changes had to be done with regard to the
mechanism of density detection, which, until now, was based on the fact,
that the size of the first sector is known, and that it is 128 bytes, and the
size of the rest of the sectors can be determined from its (the first sector’s)
contents. The other problem is that a 512 BPS disk can be booted only as
a hard drive partition, because the old XL OS is not able to set the sector
size correctly either, and for a serial drive this means a checksum error
and failure.

But, in our opinion, there are more advantages to this, outnumbering
disadvantages. The first is that we are now compliant with the (real)
standard disk devices used and produced around the world, where all the
sectors are of the same size, and the smallest possible one is 512 bytes.
Another one is having more boot region space (512 instead of 384 bytes)
– creating new booter was possible at all thanks to that. Last but not least,
the free space on the media is used more efficiently – although less than
1,5k is certainly a negligible loss on a harddisk.

Filesystem information

The filesystem information is basically the same as in the standard
SpartaDOS format. The list of differences is below:

31 Physical sector size (1 byte): $80 – 128 bytes, $00 – 256 bytes, $01
– 512 bytes, other values are reserved. Generally, everything else than
$80 is the high byte of the sector size measured in bytes, less 1.

32 Filesystem version number (1 byte): SpartaDOS 2.x, 3.x and
SpartaDOS X 4.2x all set $20 here, which means 2.0. SpartaDOS X 4.40
has $21 here (version 2.1).

33-34 As of FS version 2.1: the „real” physical sector size value in
bytes (2 bytes, low/high).

35-36 As of FS version 2.1: the number of sector entries per file map
sector (2 bytes, low/high).

37 As of FS version 2.1: number of physical sectors per logical sector
(cluster). Note that only one value – $01 – is supported at the moment.

These values are read-only in SpartaDOS X 4.40, it is not
recommended to change them. Bytes 42-63 are reserved for future
extensions and their values should not be altered for upward
compatibility.

CAUTION: locations 33-37 have different meaning in the SpartaDOS
1.1 filesystem, and in the later versions of the filesystem, eventhough
these bytes are not used, they retain values default for the 1.1. This is
why the filesystem version number must be checked by the programmer
before these locations are used in the program!

Directory structure

The directory structure is identical to the one found in the 2.0
filesystem. The only difference is that the first entry (the header) of the
main directory has a valid time stamp: it is the date and time, when the
filesystem was last built on that disk.

Direct disk access

Some programs need direct sector access to the disk bypassing the
DOS – e.g. sector copiers – and as it has already been said before, since
the DD 512 density was introduced, you cannot hope anymore, that the
first sector size is always 128 bytes. To determine the current disk
configuration, where one can judge on the first sector size from, the
READ PERCOM command should be used.

The program printed below is an example of a subroutine, which
returns the information about the size of the sector number 1 in AX
(low/high) for the drive number ($01-$0F) specified in accumulator:

ddevic = $0300
dunit = $0301
dcmnd = $0302
dstats = $0303
dbufa = $0304
dtimlo = $0306
dbyt = $0308
daux1 = $030a
daux2 = $030b
jsioint = $e459
buffer = $0400 ;cassette buffer

getbootsize
sta dunit

lda #$31
sta ddevic
lda #'N ;READ PERCOM
sta dcmnd
lda #$40
sta dstats
lda #<buffer
sta dbufa
lda #>buffer
sta dbufa+1
lda #$07
sta dtimlo

;amount of data: 12 bytes
lda #$0c
sta dbyt
lda #$00
sta dbyt+1

;this shold be zeroed because of
;some floppy turbo systems (e.g.
;Top Drive, TOMS Turbo)

sta daux1
sta daux2
jsr jsioint
bpl success

;error 139 means that the drive
;does not know READ PERCOM cmd
;so it can only do 128 BPS
;(it is an Atari 810 or 1050)

cpy #139
beq a810

;any other error is just an error
cpy #$00
rts

;unmodified 810 or 1050,
;128 bytes per sector
a810 lda #$80

ldx #$00
ldy #$01
rts

success
;low byte of the sector size

lda buffer+7
;high byte of the sector size

ldx buffer+6
;if the BPS < 512, return 128

cpx #$02
bcc a810

;or the returned value otherwise
ldy #$01
rts

PERCOM extensions

SpartaDOS X 4.40 recognizes an extension to the PERCOM standard.
In the 5th byte of the PERCOM block (PERCOM+5) the previously
unused 3rd bit (i.e. +$08) has now meaning as follows: when set (1), it
means, that the disk does not have sides nor heads, thus the 4th byte of
the PERCOM block (PERCOM+4) does not carry the number of them,
but in its stead it contains the third byte of the number of sectors per
track. Otherwise, when this bit is 0, the value of that byte should be
ignored for hard disks, i.e. when the number of tracks is 1 (some hard
drives tend to return the number of their physical heads here).

Chapter 8: Configuring Your System

One of the less desired features of the new SpartaDOS X release is that
it requires more memory. Because of that it is recommended to use the
DOS on machines equipped with at least 128k of RAM, and to configure
it so that the extended memory is used by the DOS (USE BANKED in
the CONFIG.SYS file).

Generally, the low free memory pointer (MEMLO) should never go
higher than $2000 for most programs to be executed. When its value is
bigger, the „Memory conflict” error may occur much more often. The
MEMLO value should be taken into account when installing fancy
drivers, especially if the DOS is configured to run under the OS ROM
(USE OSRAM) and the buffers are located in the main memory.

If the computer does not have more than 64k of RAM, or the RAM
extension is about to be used in a different way, the best solution is to put
DOS buffers under the OS ROM (USE OSRAM / DEVICE SPARTA
OSRAM in CONFIG.SYS). In such a case the MEMLO value remains
relatively low (around $1100 with SPARTA.SYS and SIOOLD.SYS), so
you can load more drivers.

Whilst estimating the MEMLO value you should take into account the
fact, that this pointer is raised by the X.COM program, which in turn is
necessary to run most application programs. Therefore it is a good
practice to do the command LOAD X.COM first, and then check the
MEMLO state (with MEM command).

Character Sets

When the SpartaDOS X is configured to use the RAM under the OS
ROM for buffers (USE OSRAM / DEVICE SPARTA OSRAM in
CONFIG.SYS), a problem may occur with the international character set
(CHARSET 2). A copy of the character set is made in the RAM
shadowing the OS ROM to avoid ugly screen effects when the memory is
being banked, the same memory area, however, is allocated for DOS
buffers. When the number of the buffers exceeds certain limit (i.e. when
they are more than 6), the font gets overwritten and the screen effects
named above do appear.

The solution is to keep the number of the buffers equal or lower than 6
(the default is 4) in this configuration. It should be said again, that these
remarks only apply, when one uses the CHARSET2 and the DOS buffers
are under the ROM.

The CONFIG.SYS file

The default CONFIG.SYS file is to be found now on the CAR: device
(CAR:CONFIG.SYS). It is read from there, when no user-defined

CONFIG.SYS is found on the boot disk. The environment variables
CAR, BASIC and TEMP are defined by the RAMDISK.SYS driver, but
only if the user did not define them before.

The COMSPEC variable is not defined, but its meaning and function
remain the same, as in earlier versions of the DOS (it contains the
pathname of the shell).

Any line beginning with a semicolon (;) is considered a comment and
ignored.

The MERGE keyword

Apart from the usual configuration commands, i.e. USE, SET and
DEVICE, there is a new one: MERGE. Its use is optional, but when it is
used, it must be the last keyword in the current configuration file,
because it aborts its processing and merges another one. This allows you
to form a chain of text files to be processed at system startup, for
example:

USE BANKED
MERGE DEFAULTS

The system will configure memory and then load a file named
DEFAULTS.CFG. That file should contain actual configuration
commands – and also may contain another MERGE at the end, if it is
necessary to merge a portion from yet another file.

This feature is useful in conjunction with the multiple configuration
files managed by the Config Selector (below): such configuration files,
when they differ only at the beginning, may define differences in small
number of commands as shown in the above example, and then merge the
rest of the contents from common source. This allows to keep several
configurations consistent by editing only a single text file.

The limitation to MERGE is that the merged file must be located in the
same directory as the file, that merges. It also cannot be used before the
USE keyword occurs in the stream of configuration commands. The file
name extension (*.CFG) is optional.

Config Selector

SpartaDOS X v. 4.40 offers a built-in config selector. This feature
allows the user to store several alternative CONFIG.SYS files on the disk,
and decide at boot time, which one is to be used instead of the default
one.

At boot time the DOS searches the main directory of the boot disk for a
subdirectory named SPARTA.DOS. When it is found, and contains
*.CFG files, a menu is displayed where each of the *.CFG files (up to

nine) is assigned a number. Hitting the appropriate key chooses the
corresponding file to be used to configure the DOS. If you press any other
key (Esc, Space, Return) or wait few seconds, the DOS closes the menu
and continues with normal procedure.

For this to work the boot disk must be in SpartaDOS format.

The Drivers

There is a number of changes in SpartaDOS X system drivers, there are
some new drivers as well. These news will be discussed in the following
sections.

1) FILESYSTEM DRIVERS

SPARTA.SYS Driver

The structure for a single file (as in nfiles) has grown up from 35 to 40
bytes. The rest of the parameters did not change (minimum 2, maximum
16, 5 by default).

Because of the added support for 512-byte sectors the buffers (as in
nbufs) have been enlarged to 512 bytes each. The maximum number of
them has simultaneously been reduced to eight in some configurations
(USE NONE and USE OSRAM with the buffers kept under the OS
ROM). When the main or banked memory is allocated for buffers, the
maximum is 16. You cannot declare fewer than 3 buffers, and the default
number is 4.

It should be kept in mind, that 16 buffers, 512 bytes each, take twice as
much memory as the same number of 256-byte buffers. If the DOS is told
to USE BANKED, and 16 buffers are declared, it is quite likely that the
extended memory bank the system uses will get completely filled up – in
this case any drivers loaded afterwards will occupy the main memory,
and the MEMLO will get raised. A good practice then is to never declare
more than 12 buffers, unless a bigger number of them is really required.

The SpartaDOS X Reference Manual in this section is not quite
accurate explaining, what the „buffers” are. Unlike the other DOS-es,
where a buffer is usually assigned in a fixed manner to an open file, the
SpartaDOS X buffering mechanism is a sort of a sector cache. This cache
is maintained by the SPARTA.SYS driver to keep last accessed sectors,
regardless of their type, i.e. whether these are boot sectors, bitmap
sectors, file map sectors, data sectors or whatever. The greater the number
of buffers, the less often the DOS is forced to re-read required data from
the actual media. So, decreasing the number of buffers is unlikely to
cause errors, but it certainly will make the filesystem work slower.

2) BLOCK I/O DRIVERS

SIO.SYS Driver

The SIO.SYS driver has been greatly improved over the earlier
versions. First of all, an Ultra Speed drive is asked first, what serial speed
it prefers (the old SIO was fixed at 52 kbps). Next, once the US mode
was enabled, the SIO does not fall back to 19200 bps so easily, when an
error occurs – so the TOMS drives can spread invalid responses around as
they used to do, and the transmission still remains at the turbo baudrate. If
the speed selected automatically turns over to be invalid anyway, you can
still change it by hand using SIOSET command (see there).

Additionally there is a built-in mechanism of „mapping” disks,
accessible by the MAP command (see there).

When someone does not need all that, and would like to get maximum
free memory instead, there is the old-fashioned SIO driver on the CAR:
device named SIOOLD.SYS. The only change that it underwent, was to
make it work with 512-byte sector devices.

SIO2.SYS Driver

This is a lightweight driver for disk devices (an alternative for
SIO.SYS). While not implementing custom communication routines, it
uses the SIO subsystem of the computer operating system instead.
Transmission parameters depend on the OS capabilities: the original Atari
OS is rather poor in this area, while some third-party OSes support turbo
transmission or uncommon devices.

The SIO2.SYS cannot be used, when the DOS is configured to USE
OSRAM mode.

CA2001.SYS Driver

Purpose: the fast serial I/O program for California Access 2001 floppy
drive.

Syntax: DEVICE CA2001 d:
Type: external – on device CAR:

The driver does not allocate memory, it only tries to enable fast serial
protocol (38400 bps) for the specified CA-2001 drive. The drive remains
engaged as long as it is powered on.

RAMDISK.SYS Driver

The ramdisk is installed by default as the drive number 15 (O:).
Additionally, if the users did not define them otherwise, the
RAMDISK.SYS driver defines environment variables $BASIC, $CAR

and $TEMP so that they point to appropriate filenames and its drive
number.

PBI.SYS Driver

Purpose: additional support for PBI devices.
Syntax: DEVICE PBI
Type: external – on device CAR:

The PBI.SYS driver improves support for the parallel bus devices, such
as hard disks. Some programs may fail to load from such a device
because they require the data to be loaded to the memory, that shadows
the PBI ROM area, and the parallel device driver residing in that ROM is
naturally not able to write data under itself. The PBI.SYS solves this
(rare) problem. It also somehow speeds up the transfers on systems,
where there is only one PBI device present.

Caution: MAP and SIOSET commands doesn't handle PBI bus devices
with the driver installed.

3) TIMEKEEPING DRIVERS

ARCCLOCK.SYS Driver

Purpose: the ARC clock driver.
Syntax: DEVICE ARCCLOCK
Type: external – on device CAR:

This is the driver for battery-backed real time clock called ARC (Atari
Real Clock).

Z.SYS Driver

Purpose: SpartaDOS 3.2-compatible Z: device.
Syntax: DEVICE Z [/IS]
Type: external – on device CAR:

A „Z:” device is created in the OS handler table, which offers a simple
interface to SpartaDOS timekeeping functions, accessible e.g. from a
BASIC program. The device is compatible with the driver existing for
SpartaDOS 3.2 (ZHAND.COM there), so the old software using that
should have no problems accessing the desired functions under
SpartaDOS X anymore.

The Z.SYS features four internal functions selected with BASIC XIO
instructions (or appropriate OS directives):

1) XIO 33: read time, unformatted.
2) XIO 35: read date, unformatted
3) XIO 36: set time
4) XIO 37: set date

The correct procedure to read the time is as follows:

10 OPEN #1,4,0,"Z:":REM open for reads
15 REM select reading time
20 XIO 33,#1,4,0,"Z:"
25 REM get the clock state
30 GET #1,H:GET #1,M:GET #1,S
35 CLOSE #1

Setting time:

10 OPEN #1,8,0,"Z:":REM open for writes
15 REM select setting time
20 XIO 36,#1,8,0,"Z:"
25 REM set the clock
30 PUT #1,H:PUT #1,M:PUT #1,S
35 CLOSE #1

The procedure to get and set the date is identical, you just have to
change the XIO function codes to 35 and 37 respectively.

An attempt to read or write more than 3 bytes causes the error 136
(EOF) to occur. To reset the read/write pointer you should close and
reopen the device, or call the appropriate XIO function again.

The functions setting the clock are disabled by default, attempts to
write to the „Z:” device will cause the error 139 (NAK) to occur.
Installing the driver with the /I switch (as in ignore) changes the returned
status to $01 (success), but nothing else is done. To enable these functions
you should load the driver with /S switch (as in set) given as a parameter.

The Z.SYS can only handle one I/O stream – an attempt to open more
of them simultaneously will return error number 161 (Too many channels
open).

Loading TD.COM enables more functions:

5) XIO 38: TD display line enable (TD ON)
6) XIO 39: TD display line disable (TD OFF)
7) XIO 34: read date, formatted
8) XIO 32: read time, formatted

These functions will only work, when TD.COM was loaded – or error
139 (NAK) will be returned otherwise. Example:

10 DIM TIME$(13):REM reserve at least 13
bytes
15 OPEN #1,4,0,"Z:":REM open for reads
20 REM read formatted time

25 XIO 32,#1,4,0,"Z:"
30 INPUT #1;TIME$
35 PRINT TIME$
40 CLOSE #1

Z.SYS requires a hardware clock driver to be loaded first:
CLOCK.SYS, ARCCLOCK.SYS, JIFFY.SYS or any other compatible
driver.

4) SCREEN DRIVERS

XEP80.SYS Driver

Purpose: XEP80 device handler.
Syntax: DEVICE XEP80 [1|2] [/P|/N]
Type: external – on device CAR:

The XEP80 can now be connected to either one of the joystick ports.
The first parameter is the port number to be used (1 or 2, default is 2).

Earlier versions of XEP80.SYS driver contained a bug, which
prevented the driver from working on PAL computers. The current
version recognizes such machines correctly. Additionally, you can force
either display mode by adding switches to the XEP80.SYS command
line: „/P” for PAL or „/N” for NTSC.

QUICKED.SYS Driver

Purpose: screen accelerator.
Syntax: DEVICE QUICKED
Type: external – on device CAR:

QUICKED.SYS is a software screen accelerator. It installs into the
CON: (DOS) and E: (OS) devices, speeding up the GRAPHICS 0 console
operation up to four times.

CON64.SYS Driver

Purpose: 64-column screen console.
Syntax: DEVICE CON64
Type: external – on device CAR:

This is an experimental driver, that installs into the CON: and E:
devices, and emulates a 64x24 text console in software using the 320x192
graphic display. After installing, it defaults to the standard 40x24 text
mode. While in the Command Processor, you can enable the 64-column
text mode by typing „CON64 ON” at the DOS prompt, and then hitting

the Return key, and later disable it similarly with „CON64 OFF”.
The 64-column console is not very useful for Command Processor

operations. First, the screen is, in fact, in GRAPHICS 8, the 320x192
bitmap mode, and occupies nearly 8k of the main memory, having set the
MEMTOP value at $8035. Few programs are actually happy with this.
Second, not every SpartaDOS X utility can cope with the screen
configured so – for example, MENU.COM and ED.COM fail miserably.
Some of these problems may of course be fixed in future releases of the
DOS.

The driver, however, may quite happily be used in BASIC and in your
own programs. It adds two functions to the OS’ „E:” device:

1) XIO 64: enable and disable the 64-column mode
2) XIO 65: check the presence of the CON64.SYS driver in the

memory

When the driver is loaded, regardless of whether the 64-column mode
is enabled or not, XIO 65,#chn,12,0,”E:” should execute without errors –
or it should return status code 146 (Function not implemented) otherwise.
„chn” is the number of the channel open for the console device, usually 0
(referenced as „16” in Atari BASIC). The other values should be as they
were given to the OPEN call – in assembly you can omit setting them.
GRAPHICS 0 corresponds to OPEN #0,12,0,”E:”. The call returns the
current status of the driver in ICAX5 ($034E+IOCB*16): 128 if enabled,
0 otherwise.

If XIO 65 went well, you can use XIO 64,#chn,12,0+m,”E:” to switch
to the 64-column text mode and back. If the „m” parameter is 128, the
64-column text mode will be enabled, and when it is 0, it will be disabled.
The call returns the previous value of the parameter „m” in ICAX3
($034C+IOCB*16).

The 64-column screen console functions identically to the normal 40-
column one, just the logical line is longer: while it still can consist
maximum of three physical screen lines, a physical line, however,
consists now of 64 characters instead of 40 – and that sums up to 192
characters per logical line.

The driver also installs into the S: device. Under the control of the
CON64 driver, there is no traditional form of text window anymore in
any display mode – the 64-column console driver is not able to setup or
handle such a window. The text, however, can be less or more freely
mixed with graphics. The operation of the GRAPHICS 0, 8 and 24 modes
under the control of the driver is as follows:

1) GRAPHICS 0: this is the 64x24 text mode. In this mode, the
BASIC’s POSITION keyword is effective on the text cursor only. You
will probably be able to draw points or lines on it using the OS’ PLOT
and DRAWTO functions, but it is not recommended, since both S: the

display driver and E: the console driver share the same screen
coordinates, and so it is quite likely that an attempt to draw anything via
the former will result in position range errors reported by the latter.

2) GRAPHICS 24: this is the 320x192 bitmap mode. In this mode the
BASIC’s POSITION keyword is effective on the graphic cursor only.
You will probably be able to print text on it using appropriate commands
of the E: device, but it is not recommended for same reason as above.

3) GRAPHICS 8: this is the 320x192 bitmap mode with text window.
In this mode, just as in the GRAPHICS 24, the BASIC’s POSITION
keyword is effective on the graphic cursor only. The text cursor position
can be controlled through OS variables TXTCOL ($0291) and TXTROW
($0290), for the x and y coordinates respectively. In this mode you can
safely both print text and draw graphics, because the screen driver
maintains two separate sets of coordinates for the text and graphic
cursors.

Note that the „text window” is not limited to the bottom three lines of
the screen, but it covers the entire graphic display. This has some side
effects, such as clearing the text screen also clears graphics, and vice
versa.

The CON64.SYS driver requires an XL/XE computer equipped with a
130XE-compatible memory extension.

CON80.SYS Driver

Purpose: 80-column screen console.
Syntax: DEVICE CON80
Type: external – on device CAR:

This is an experimental driver, that installs into the CON: and E:
devices, and emulates an 80x24 text console in software using the
320x192 graphic display. Its operation is very similar to the CON64.SYS
driver described above, so this section will only discuss differences
between them.

After installing, the system defaults to the standard 40x24 text mode.
While in the Command Processor, you can enable the 80-column text
mode by typing „CON80 ON” at the DOS prompt, and then hitting the
Return key, and later disable it similarly with „CON80 OFF”.

The driver adds two functions to the OS’ „E:” device:

1) XIO 80: enable and disable the 80-column mode
2) XIO 81: check the presence of the CON80.SYS driver in the

memory

These work identically to the XIO 64 and XIO 65, respectively,
provided by the CON64.SYS driver. Also the general operation is similar,

the only difference being, that under the control of the CON80.SYS, the
logical line of the screen editor can be as long as 240 characters. Such
long lines, however, can confuse BASIC interpreters, so it is not
recommended to exceed 192 characters per line while typing in a BASIC
program.

Emulating 80-column text on a 320-pixel wide display requires much
less calculations than for 64 columns. This is why the CON80.SYS is
shorter than its 64-column brother, you can also find it being slightly
faster.

The CON80.SYS driver requires an XL/XE computer equipped with a
130XE-compatible memory extension.

5) KEYBOARD DRIVERS

CAD.SYS Driver

Purpose: „soft reset” procedure.
Syntax: DEVICE CAD keycode repeat ON|OFF
Type: external – on device CAR:

Some programs, such as Disk Communicator 3, do not offer an option
allowing the user to return to the DOS. The CAD.SYS solves this
problem: when it is necessary to „kill” a running program, it is enough to
press a defined key combination, and the system returns to the Command
Processor, closing all the files and cleaning up everything it can.

The keycode parameter is a keyboard scancode of the key combination,
which activates the „soft reset”. The recommended values are: $E7
(Ctrl/Shift/Inverse) or $CC (Ctrl/Shift/Return).

The repeat parameter defines, how many times in a row the key
combination should be pressed to activate the procedure. A zero means
256 times.

The last parameter decides whether the keyboard should generate upper
(ON) or lower (OFF) case letters by default.

6) APPLICATION DRIVERS

RUNEXT.SYS Driver

Purpose: file association support.
Syntax: DEVICE RUNEXT [d:][path][filename.ext]
Type: external – on device CAR:

RUNEXT.SYS is an extension to the Command Processor, that allows
to define associations between data types and application programs. For
example, if the *.ARC files are associated this way with the ARC.COM

archiver, and the user types in an *.ARC filename at the command
prompt, the Command Processor can automatically execute the archiver
and hand over the specified filename along with predefined arguments to
it.

The optional argument to the RUNEXT.SYS is a pathname to its
configuration file. When none is given, the CAR:RUNEXT.CFG will be
used.

The config file consists of lines defining one association each, and of
comments (a comment has a semicolon or an asterisk at the beginning).
The format of a line defining an association is the following:

EXT,PROGRAM [,PARAMETERS]

where:

EXT – three-letter filename extension (file type) to be associated.
PROGRAM – file name (with optional path) of the executable we

associate with the file type above.
PARAMETERS – optional arguments to be handed over to the

program; if nothing is defined here, the only argument passed to the
program will be the data file name; if the file name has to be given at
certain point of the command passed, we mark this place with a percent
(%) character.

Example:
ARC,CAR:ARC.COM,L %
This is an association for ARC archives. Such files will be opened

using CAR:ARC.COM. The first parameter handed over to it will be „L”,
the second – the archive file name. As a result, typing in an archive name
at the DOS prompt, for instance:

D1:ARCHIVE.ARC

and hitting the Return key causes the archive’s contents to be listed on
the screen.

Entering the „+” sign at the beginning of a command causes bypassing
the RUNEXT.SYS while executing the command.

COMEXE.SYS Driver

Purpose: automatic cartridge management when launching programs.
Syntax: DEVICE COMEXE
Type: external – on device CAR:

COMEXE.SYS is a system extension, that distinguishes between
*.COM and *.EXE type binaries causing the DOS to load them in slightly

different manner. The *.COM files are considered external commands
and simply searched for and loaded as before; now the *.EXE files are
searched for and loaded, too, but before that the SpartaDOS I/O library
module is automatically switched off releasing the cartridge area at
$A000-$BFFF. In other words, if a binary has an *.EXE extension, it is a
signal for the DOS, that it should be executed using X.COM – the system
can now do it for you automatically, you do not even have to care about
typing in the extension at the DOS prompt.

Entering the „+” sign at the beginning of a command causes bypassing
the COMEXE.SYS while executing the command.

7) OTHERS

Program INIDOS.SYS

Purpose: re-starting SpartaDOS X.
Syntax: none.
Type: external – on device CAR:

Executing the command COLD /N in the Command Processor, or
causing a cold system restart while in BASIC or most application
programs, deactivates the SpartaDOS X cartridge completely. The
reactivation is usually not possible without switching the power off and
back on – and this in turn, for example, invalidates ramdisks.

This problem can be solved using the INIDOS.SYS program. Copy it
onto a disk, where the computer can be booted from, and then type in the
command BOOT INIDOS.SYS. When the SpartaDOS X is about to
be reactivated after COLD /N, you only need to insert this disk in the boot
drive and then reboot the system (without switching the power off).

Chapter 9 – Miscellaneous notes

Using BASIC XE Extensions

Due to the shortage of free RAM the DOS now uses the area at $D800-
$DFFF to keep its internal structures while in USE OSRAM mode.
BASIC XE Extensions load into the same place, so the statement
expressed in the original SpartaDOS X (4.20) Reference Manual, that you
can use BASIC XE Extensions in OSRAM mode, is no longer valid. If
you want to load the BASIC XE Extensions, the DOS must be configured
in BANKED mode and the computer has to have more than 128k RAM.

DiskRx

The SpartaDOS sector editor DiskRx does not recognize the new DD
512 density, thus cannot be used to edit disks formatted in this way. Since
the source code is not available, there was no other solution for that, than
to write a suitable disk editor from scratch. The program has been written,
it is called Eddy, and can be downloaded from http://drac030.krap.pl/en-
sparta-pliki.php

Another problem with the DiskRx is that the program checks the
filesystem type on the disk, where it is loaded from, and refuses to work,
if it is not a SpartaDOS filesystem. The extended SpartaDOS FS built on
a 512 BPS disk is not recognized as correct by this procedure, so DiskRx
1.9 cannot be loaded from such a disk. There is a patched version marked
1.9a, where this problem is fixed. It still, however, cannot edit the DD
512 disks.

CleanUp

The CleanUp program does not have a clue about the newly introduced
DD 512 density and thus, cannot be used to check and repair the
filesystem built on such a disk. A program is planned to address this
issue.

Appendix A

Error messages – as of SpartaDOS X v. 4.40 there are changes as
follows:

148 – the message is changed from „Unrecognized diskette format” to
„Unknown filesystem”.

166 (Range error) – in a file operation this means: while reading, an
attempt to read data or seek past the end of the file; while writing, the file
exceeded its size limit (the limits are: 16 MB for a regular file and 32 kB
for a directory). Generally: a parameter for the operation is beyond the
allowed limit.

169 „Directory full” – new file cannot be created, because there is no
space left in the directory to store its name. A directory may contain
maximum 1423 entries for user files and directories. In earlier SpartaDOS
X versions an attempt to exceed this limit caused the error 162 and the
message „Disk full” used to appear, not quite accurate, since the files still
can probably be saved to the disk, just not in this particular directory.

176 (Access denied) – the first block_io function called for a disk was
not function 4 (bio_rdsys), the disk drive number specified equals 0 or is
greater than 15, or an invalid function number was specified.

179 „Memory conflict” – an attempt to load a program, which overlaps
the DOS kernel or the I/O library area. It often means, that the program
has to be executed using X.COM.

181 „Filesystem corrupt” – the DOS cannot do the requested operation,
because the filesystem structure on the disk is damaged.

