
AIARI DOS FOUR

TECHNICAL REFERENCE fYIANUAL

Cc::Jopy-r-:i.ght. 1984 ,...,:i.c:ha.tE:!-1.. Ba.-r-a.l..l..

CONTENTS

1. APPLICATION MEMORY LOCATIONS

2. DOS 4 DISK FILE STRUCTURE

3. DISK DRIVE CONFIGURATION DATA

4. DISK CONFIGURATION FILE FORMAT

5. SYSTEM MEMORY LOCATIONS

w
w

w
.a

ta
rim

us
eu

m
.c

om

/

ATARI DOS FOUR TECHNICAL REFERENCE MANUAL

APPLICATION MEMORV LOCAT:X:OHS

This chapttr describes the fixed mtmorv locations within DOS 4 that are indtnded to be used by

application programs. These memory locations are guarantted not to changt in future vtrsions of
DOS 4.

DISK DRIVE HUMBER INDIRECTION

DOS 4 has the ability to support up to eight physical drivn and up to ten logical drivn. The

phys1cal drives are the actual pieces of hardwa,-., and they are numbered from 1 to 8. The logical

drives are the drives which are referred to in filt specifications, and they art numbtrtd from DO: to

D9:. Whtntver vou give a file specification, DOS 4 must read the logical drive number and decide

which physical drivt you art rtferring to. Normally, 01: through 08: reftr to physical drivts 1
through e respectively, while DO: and D9 : are not supported. However, by modifying certain memory

locations within DOS 4, you m&y make uch logical drive refer to whichever physical drive you wish.

Drive number indi,-.ction is controlled by DTYPE at CS73F ,SAJ. The four low-order bits of

mtmory location DTYPE+n gives tht physical drive numbtr which is to be associated with tht logical

drive number Dn:, If the four low-ordtr bits of DTYPE+n are zero then logical drive On: will not bt

~upported.

The contents of DTYPE may be changed at any time, tven if there are open files to the

drives 1n que1tion. The physical drive associated with a. file is determintd whtn tht OPE: N statement

is executed, 50 that changing DTYPE will not cause an open filt to start reading from a different
drive. \Jhtn changing DTYPE:. use AND and OR operations to change the four low-order bits without

cha.nginQ the four high-order bits.

BUFFER ALLOCATION

Buffer alloution is controlled by the conttnts of memory locations BUFHAX at CS710,1J and
BUFSIZ 1.t ($711,1J. BUFMAX contains the number of buffers which a.re to be allocated; it must bt

between 2 a.nd 16 <dtcimall incluaive. If you want to havt N open files on a system with D disk

drives then the minimum number of buffers requirtd is N+MIN<N,Dl. The standard number of buffers
is 5.

BUFSIZ determines the siz~ of the buffers. It must contain either 0 <for 256-byte buffers> or r-

2

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOLR TE~I CAL REFERENCE ~

$80 <for 128-bvte buffers). If you ha.ve a.ny double-densitv drives (or single-density drives with a

two-sector VTOC> then BUfiSIZ must contain 0.

The standard value of BUFSIZ is 0. It is recommended that You use a value of 0 even if you

only havt single-density drives.

The conttnts of BUFMAX &nd BUFSIZ may be changed only when there are no open disk files.

The recommendtd procedure is to <a> m&ke sure all disk files ~ closed, store new values into

BUFMAX and/or BUFSIZ, (c) loa.d the Disk Utility Package, <dl use the WRITS: DOS command to write

out the Mw version of DOS 4, a.nd <e> re-boot the system.

THE RESIDENT BINARV LOADER

The resident File Management System contains & program which can load and run a.

machine-language program in the standard binarv load file format. Tht loader has two entry points:

LOADER a.t S70A and KERNEL at S70D.

EntrY point LOADER should be used if (a) you know that tht loaded program is not going to

overwrite the calling program, or (bJ you know that the loaded program is not going to return, or <cl

YOU are chaining programs and the loaded program 1s the next one in the chain.

When you a.re not chaining programs, the calling sequtnce for LOADER is:

LDY ~FILE&255 ;FILE contains the filespec
LDA #FI LE./256
LDX #$FF :Use #$FF to load and run,

:#0 to load and not run
JSR LOADER :Call the loader
CPY #0 ;Error status returned in Y
BMI ERROR :Branch if error

If vou are chaining pr-oeJrams, the c:&lling sequence for LOADER is:

PLA
PLA :Cancel subroutine cal 1
LDY #FILE&255 ;FILE contains the filespec
LDA #FILE/256
LOX #SFF :Use .. SFF to load and run,

3

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR

;#0 to load and not run
JMP LOADER :Go to the loader

TECHNICAL REFERENCE HANl~

Entrv point KERNEL i1 used in the cue that tht loaded program may ovtrwrite the calling

program and then return. If this should happen, KERNEL will automatically load and run the Command

Procnsor when the ioaded program returns.

The calling s.quenct for KERNEL is tht same as for LOADER, except that before calling

KERNEL you must store a valu! into DUPFLG at [$736,1J and optionally into DUPLO at [$732,2J and
DUPHI at C$734,2J.

Storing zero into DUPFLG will forct KERNEL to load the Command Processor wh1m the loaded

program returns.

Storing any non-zero value into DUPFLG will make KERNEL load the Command Procnsor only if

the calling program was overwritten during the load. In this cue the ct11ling program should store

the address of its first byte into DUPLO tlnd the address of its last bvte into DUPHI. If the calling

program is not overwritten during the load then KERNEL will return to the calling program instead of

loading the CP.

If KERNEL decides that it must load and run the Command Procnsor then, before it does so, it

will stort the error status resulting from the load into BLDFLG at [$737,1]. The CP will examine

BLDFLG and issue an error message if the contents of BLDFLG indicates that an error occurred

during tht binary load process.

Note that both LOADER and KERNEL ust IOCB ~1 to ~rform the load. Therefore, befort

calling either of these routinu, you must make sure that IOCB ~ 1 is closed.

THE S T A HOARD BINARY l..OAD FIL.E FORMAT

DOS 4 uses the same format for biniry load files as Atari DOS 2.0. A binary load file consists

of one or more "segments", each of which gives tht data to be loaded into a contiguous block of

memory. A segment consists of three parts:

1. A two-bvte file type code, in which each byte contains SF F. This is required

on the first segment in the file, but optional on subsequtnt 11gments.

2. A four-byte htader in which the first two bytn give the address where the

first bvte of the data block is to go and the lut two bytes give the address where

the last bvte of the data block goes.

4

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TEC!t41 CAL REFERENCE ~

3. A d&t& block which contains one or more bytes of data that are to be loaded

into memory.

There are two memory locations which have 5ptcial significance to the lo&dtr: INIVEC at

[$2E2.2J a.nd RUNVEC at L$2E:0,2J. Every time the lo&der finishes loading a segment, it checks to

see if a non-zero addrns was loaded into INIYEC. If so, then the loader immtdi&tely executes &

subroutine call <JSR statement> to the address in INIYEC. When the program returns, the loader will

continue the load.

Note that &t the time the loader executes a subroutine call to the address in INIYEC, IOCB #1

will be open for input from the file being lo&ded. This hu two consequences: (1) The program

should not attempt to use IOCB *L <2> If the program wishe& to chain to another program, it must
close IOCB #1 before ca.lling the loader.

When the entire file has been loaded, the loader chtcks to see if a non-zero a.ddrns is in

RUNYEC. If so, tht loader executes a subroutine call (JSR statement> to tha.t address. The loader

will close IOCB #1 before ca.lling the addrns in RUNYEC.

COMMAND PROCESSOR FILENAME

DUPSPC at [$722,$10J contains the name of the file which contains the Command Processor ,
norm All 'I D 1 :QDUP .SYS.

You may change DUPSPC at any time. The filenamt must end with a ca.rria.ge return <S9B>. Use

the WRITE DOS command in the Disk Utility P~ekage to write out the new vers1on of DOS 4.

If you wish to replace the Command Processor with a. program of your own, all you have to do

is to place the n&me of the file containing your program into DUPSPC. One possible use for this

capability is to replace the Command Processor with a batch processor.

Before it loads the CP, the resident FMS will close all IOCB's. The FMS does not cltar the

scrun, so if a screen clear is desired then tht CP must do it. If the CP is going to use the resident

screen editor "E :" then it should begin with an initiAlization routine which (a) sets the screen
margins, opens IOCB .. o to E:, and tht>n <c> dtlaytt long tnough to allow vertical blank to bring up

the screen.

There are two entry points which can cause le&ding of the CP: indirectly through DOSVEC at

$0A, or directly through KERNEL &t $70D. The CP c&n Qetermine which entry point was used by

examining BLDFLG at [$737 ,1 J, The content1 of BLDFLG will be zero if entry OOSYEC was Ultd, and

non-uro if entry KERNEL was used. In the latter cue, the content1 of BLDFLG is the error status

code rtsultino from the binary load procus; a value gruttr than or equal to $80 indicates that an

5

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TECifH CAL REFERENCE ~

Memorv location DUPRB:S at [$738.2J and location [$700,1 J <no name assigned> ari reserved for

u5e by the Command Processor or its replacement. The standard Command Procnsor does not use

thest locations. Thest mtmorv locations are guaranteed to be zero &t power-up and are not

subsequently modified by any othtr program <exctpt that the Disk Utility Packagt sets DUPRE S to

zero at the start of the WRITE: DOS command and then restores the valu. of DUPRES at tht end of

the command>.

SIO/PIO COMMANDS AND INTERCEPTION

The following locations contain the serial or parallel bus commands used bv DOS 4 to

communicate with the disk drive:

standard alternate
symbol location command vllut value

WRCOMD [$73At1 J data write $50 $57
RDCOMD C$73B,1 J rud $52
DWCOMD C$ 73C.i J directory write $57 $50
STCOMD [S73D,1 J status $53

WRCOMD is the command used to write data sectors, and DWCOMD is the command ustd to write

directory and VTOC sectors. Use SSO for fast write (write without verify) and $57 for slow write

<write with verify>.

Memory location RRVE:CT at (S7Dt.3J contai,ns a JMP instruction. Immediately before each call

to SIO or PIO, the FMS executes a subroutine call <JSR statement> to RRVECT. This call takes place

after the Device Control Block has been set up. By storing an address into RRVECT+1 and

RRVECT+2, you can effectivtly intercept all calls to SIO or PIO.

The intended use of RRVE:CT is to allow programs to remain r-nponsive to the user during long
disk operations. A typical RRVECT subroutirw might check to ue if the user has pressed a key and,

if so, echo the key to the scrttn. An RRVECT routine cannot call CIO, but it ca.n make direct calls to

the resident screen handlers.

If for some reason an RRVE:CT routine wants to prevent the FMS from calling SIO or PIO, it can

do so by popping the return address off the stack, adding 3 to it, and then pushing it back on the

stack. If this is done, then the RRVECT routine must return with an error code in the 6502

Y-register and in the OS variablt DSTATS.

6

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOUR TE~l Cit REFERENCE ~

The content5 of RRVECT+i and RRVECT+2 is initialized to point to an RTS during both

coldstart and warmstart.

ENVIRONMENT CONTROL

CT:SOOT at I:$7DS,1 J indicates whether the computer should enter the Cirtridge environment or

the di5k environment at coldstart. If CTBOOT contains zero then the Command Processor will usume

control when the system is booted <even if there is a cartridge installed>. If CT:SOOT contains a

nonzero value then the cartridge will assume control when the system is booted, provided that there

is a cartridge inst..lled (if there is no cartridge installed then the Command Processor will assume
control>. The default value of CT:SOOT is HF.

CRTENV at LS7D4,1J indicates whether the computer should enter the cartridge environment or

the disk environment at warmstart. If CRTENV contains zero then the Command Processor will

assume control when SYSTEM RESET is pressed <even if there is a cartridge installed). If CRTENV

contains a nonzero value then the cartridge will usume control when SYSTEM RESET is pressed,

provided that thert is a cartridge installed (if there is no cartridge installtd thtm the Command
Processor will assume control>.

The FMS initializes CRTENV during coldstart by copying the value of CTBOOT into CRTENV.

The FMS stores 0 into CRTENV every time it loads the CP. The CP and DUP store SFF into CRTENV

whenever the RUN CARTRIDGE command is e>:ecuted. The machine-language programs generated by

the GOBASIC utility also store SFF into CRTENV.

Any program loaded from the Command Processor which passes control to a cartridge should

store a nonzero value into CRTENV immediately before it passu control.

RELAXATION OF FILESPEC RULES

REQEOL at LS7D6,1 J determines whether or not DOS 4 strictly enforces the rules for filespecs.

When the value of REQEOL is between $80 and $FF' <inclusive), filespec rules are strictly enforced.
When the value of REQEOL is between 0 and $7F' <inclusive), filespec rules are relaxed. When

filespec rules are relaxed, any character that could not be part of a valid filespec is interpreted to
mun end-of-filespec.

The default value of REQEOL is HF. The power-on disk configuration program CONFIG.~YS

examines REQEOL and, H REQEOL is non-zero, stores SFF into REQEOL. Thus, valun of SOi
through $7F can be used to "temporarily" relax the rules for filespecs.

7

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOOR TECifHCAL REFERENCE ~

DOS 4 MEMORY MAP

SOA- SOB CP load And Run Vector
soc- SOD F"MS Init Vector
S1A- UB DUP Zero Page
$43- $46 F M S Zero Page

S2S:O- S2S: 1 Binarv Loo1d Run Vector
S2E2- S2E3 Bino1rv Load Init Vector
$701- S17FB File Management Sy~ttm

$17FC- Sector Buffers
S1BFC- S20FB Command Proceaaor
S20FC- S4F'FB Disk Utility Package

Note 1: DOS 4 assumes that the FMS Zero Page is not altered in between calls to the FMS.
Atari DOS 2.0 dots not make this assumption. Therefore, a program which uses memory locations

$43-$46 may work with Atari DOS 2.0 but not with DOS 4.

Note 2: The actual top address of the DUP varies dtpending on the Disk Configuration Files
that have been merged into it. However, the top address will never e>:ceed S4FFE.

8

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TE~I CAL REFERENCE ~

DOS 4 DISK FILE STRUCTURE

This chapter dtscribes the wav in which DOS 4 disk files are organized on the disk.

Data on the disk is physically organized into "sectors". Depending on the disk drive being used,

sectors contain either 128 bytes apiece or 256 bytes apiece. DOS 4 considers all di5ks with 12$-byte

sectors to be "single-density", and all disks with 256-byt~ sectors to be "double-d~nsity", regardless

of the r~cording technique which is acua.llv uud by the hardware.

DOS 4 logically organizes its data into "blocks". Each block consists of an integral number of

sectors. The number of uctors per block varies depending on the disk drive being used; for the

Atari 810 there are six sectors per block. A block is the smallest amount of disk space that can be

allocated by DOS 4; thus, each file will always have a whole number of blocks allocated to it.

Each sector within a. block is usigned a.n "offset": the first sector in a block has offset O, the

ucond sector in a block has offset 1, and so on. Similarly, the bytes within a sector are assigned

"offsets": tht first byte has offset o, the second bvte has offset 1, and so forth.

The allocation of blocks is controlled by the contents of a. sector called the "volume table of

contents" or "VTOC" (on some single-density disks the VTOC actually occupies two sectors>. The

bytes within the VTOC are assigned the following functions:

bytes

0
1
2
3
4
5

6-7
8-$7F

$80
$81-SFF

function

Mode identification code
Garbage list head pointer
Ttmporary uste list hud pointer
Garbage list block count
Zero
Temporary use list block count
Zero
Block lists
Ch~cksum

Block lists (continued>

Each block on the disk has one byte in the VTOC associated with it. Block number 8 is

associated with VTOC byte 8, block number 9 is usociated with VTOC bytt 91 and so on. The blocks

are organized into lists, with tach block's VTOC byte cont&ining the number of the next block in the
list.

9

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TEC~I fAl REFERENCE ~

Each file's blocks are organized into a list in the order in which the blocks occur within the

file. The VTOC bvte corresponding to the lut block in the file contains the offset of the sector

within which the last byte of the file is locattd.

The blocks not currently allocated to any file are organized into a list called the "garbage list".

This list is Alwavs arranged in increasing numerical order. The last byte in the list contains 0.

Any time thtlt DOS 4 t1lloct1tes a block to tl file, it will t11ke the first block in the gtlrbtlge list.

Blocks which have been allocated to files which are currently open for output are organized into

a list called the "temporary use list". The temporary use list also contains any new blocks that h11ve

been alloct1ted to files which are currently open for append.

The temporary use list begins with the blocks allocated to the file which has most recently
been opened for output or append, a.rrt1nged in the order thtlt they occur within the file; next comes

the blocks t11located to the second most recently opened output or append file; and so on. The last
byte in the list contains 0.

The function of the temport1ry use list is to ent1ble DOS 4 to recover blocks tha.t a.re 111loct1ted
to an output or append file which is never closed. Every time DOS 4 reads the VTOC, it checks to

see if there are any blocks in the temporary uu list; if there are, DOS 4 adds them to the garbage

list.

Four bytes in the VTOC are alloctlted to hold the head pointer <number of the first block in the

list) 11nd block count <total number of blocks in the list) for both the garb11ge list 11nd the tempor11ry

use list. The block counts 11re redundant information. Every time DOS 4 ruds the VTOC it compares
the block counts with the a.ctutll number of blocks in the list; if they disagree then DOS 4 will return

ERROR 164.

The checksum byte in the VTOC is computed bv the following program:

LDY ttO
LDA ttO

LOOP CLC
ADC (\.)TOC > , Y

ADC tto
IN'{

BPL LOOP
STA (l)TQC), Y

10

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TECHNICAL REFERENCE MANUAL

The use of VTOC byte $80 to hold & checksum does not luve a. "holt" on tht disk, beca.use

block number $81 begins immedia.tely a.f'ter tht end of block number S7F.

Each tntry in the disk directory occupin sixtttn bytes, so that tach directory nctor holds

tight entrits on & single-dtnsity disk or sixteen entries on a doublt-density disk. Tht contents of a
directory entry is:

bvtes - · -
0

2
3
4

5-K
SD-SF

contents

Flags: $00 = entry never used
$40 = normal closed file
$60 = file locked
$80 = file dtleted
$81 = file open output

File list block count
Offset of last byte in file
File list head pointer
Zero
Primirv filename
S:xtender

The file list block count is redundant information. Any time that DOS 4 is asked to open,

rename, delete, lock, or unlock a file, it will compart the block count in the directory entry to the
actual number of blocks in the list. If the two do not agree, DOS 4 will return ERROR 164. This

comparison is also made whenever DOS 4 is asked to close a file which wu open.d for ippend.

II

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TWtH CAL REFERENCE ~

DISK DRIVE CONFIGURATION DATA

This chapter describes the memorv locations which are used to configure the FMS to work with

different kinds of disk drives. In general, application programs should not make use of these memory

locations. Programs whic:h absolutely must use these locations should be prepared to read Disk
Configuration Files <or the power-on disk configuration program CONFIG.SYS, which contains copies of

all the Disk Configuration Filesl to obtain the data which is to bt stored into these locations.

Each of the eight physical drives has associated with it one bvte in the table MAPOFF and

sixteen bvtes in the table CONTYP. The FMS uses these tables to determine how it should access
each drive in the system.

The symbol MAPOFF is defined to be S'? 48 but actually refers to memory locations $749-$750.

The contents of location MAPOFF+N, where 1 f N f 8, is:

Bit 7 = 0 if physical drive N is double-density <i.e., has 256-bvte uctorsl, and = 1 if

physical drive N is single-density (i.e., has 128-byte sectors).

Bits 6-4 .: Number of filu currently open to physical drive N. You may ex1.mine these

bits but you may not change them.

Bits 3-0 = Offstt of the sector buffer which contains this drive's VTOC. The sector

buffer at the lowest address in memory has offset o, the buffer at the second

lowest address has offset 1, and so on. You may examine these bits but you may

not change them.

The table CONTYP is at C$751,$80]. The first sixteen bvtes of CONTYP refer to physicd drive

1, the second six teen bytes refer to physical drive #2, and so on. The following describes the
meaning of each byte in CONTYP.

DENSTY at CS751,1J contains the following:

Bit 7 = 1 if the drive returns an Atari 810 compatible data frame in response to a

format command, and = 0 if it does not. <An "Atari 810 compatible data frame"
is a data fr1.me in which the first two bvtes contain SFFFF if a.nd only H therE?

were no bad sectors detected during the tormat procns.) If this bit tquals 0
then the drive is still expected to return a data frame in response to a format
command, but the contents of the data frame will be ignored, In any case, a

12

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOUR TE~I CAL REFERENCE ~

single-density drive is expected to return a 12S-byte data frame &nd a

double-density drive is expected to return a 256-byte dati frame.

Bit 6 = 1 if the VTOC occupies two uctors, and = 0 if the VTOC occupies one sector.

Two-sector VTOC's can be uud only with single-density drives.

Bit 5 = 0.

Bits 4-0 = the current mode of this drive. Drive modes correspond to the selections

on the Disk Utility Package's disk drive configuration menu. Mode 0 is choice A

on the menu, mode 1 is choice B on tht menu, and so on.

SCPERB &t ($752,1 J contains the number of disk sectors per block.

VTCSEC &t ($753,2) contains the disk sector in which the VTOC is loc&ted. If the VTOC is two

ectors long, then the contents of VTCSEC is the disk sector which contains the first uctor of the

VTOC; the next disk sector contains the second sector of the VTOC.

FSTSEC at [$7SS,2J is the first sector on the disk. For single-density disks it is normally 1.

For double-density disks it is normally made greater than 1 so as to reserve space at the start of

the disk for a boot file.

LOBLK at [$757 .1 J is the number of the first block on the disk. The first uctor of the first

block is the sector specified in FSTSEC. Note that the contents of LOBLK must be gruter than or

equal to the contents of SCPERB.

HIBLK at C$758 ,1 J is the number of the lut block on the disk. Note that on a single-density

disk with only one VTOC sector, the contents of HIBLK may not exceed $7F. Also note that because

byte $80 of the VTOC is used as t1 checksum, block number $81 follows immediately after block

number S7F.

DIRBLK at [$ 759,1 J contains the number of the block where the directory begins. The directory

begins with the first sector in the block sptcified in DIRBLK and continues through sequentially

numbered sectors.

DIRSEC &t C$75A,1J contAins tht number of sectors in the directory. On a single-density disk,

DIRSEC m&y not excnd 16 <decimal>. On a double-density disk, DIRSEC may not excud 8. Un other

words, the directory cannot contain more than 128 entries.>

-
DIRCNT &t [$75B,i J contains the number of blocks that are to be ~et uide for the directory

and VTOC. DOS 4 will set &side sequentially numbered blocks beginning · with the block specified in

DIRBLK. <Note: If the directory is to include both block $7F and block 581 then DIRCNT must be one

13

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TEC~I CAL REFERENCE ~

greater than the number of blocks which are to be set aside for the directory and VTOC. This is to

allow for the nonexistent block $80.>

DSPERB at C$75C,1J cont&ins the number of stctors per block that DOS 4 is to use in

c&lculating the sector counts which &ppear in tht disk directory, If the disk has fewer than one
thousand data sectors then normally DSPE:R:S is given the same value as SCPE:R:S. However, if the

disk has one thousand or more data sectors then the value of DSPE:RB must be reductd so that the

product of the value of DSPERB timn the number of dat& blocks on the disk il less than one

thousand. In any case, the v&lue of DSPERB may not e>:ceed 10 <decimal).

FMCOMD at [$7SD,1 J contains the serial or parallel bus command used to format the disk.

MODEID at E$7SE:,1J contains the disk mode identificAtion code. When a disk is formatted, the

value of MODEID is written into Byte 0 of the VTOC. Whenever the VTOC is read, the contents of

Byte 0 is compared to MODEID and, if the two do not agree, ERROR 164 is generated,

DRVRES &t Cf75F ,1J is reserved for future use and should be zero.

UNIT at C$760,1 J contains the following:

Bit 7 = 1 for PIO bypass. If this bit is 1 then all I/0 requests to the drive will be

sent dirtctly to the Serial I/0 system, bypassing the Parallel I/0 system. Note

that it is illegal to set this bit to 1 when using the Revision A or B Operating

System.

Bits 6-4 = 0

:Sits 3-0 = Unit number. This number is placed into the DUNIT byte of the Device
Control Block prior to calling SIO or PIO.

It is illeg&l to set UNIT in such a way that two different physical drive numbers refer to the same

piece of hardwue. <Note that it is legal to have two different logical drive numbers refer to the .
same piece of hardware. Also, it is legal to have, for example, one drive be unit #1 on the parallel

bus and another drive be unit tti on the serial bus.>

Certain conventions have been developed regarding the data stored in CONTYP:

1. Block numbering should bt chosen so that block $ 7F is tht last block on tht first side of the

disk and so that no block hu a number less than S.

2. The VTOC should occupy the last sector <or last two sectors) of the block<s> reserved for the

14

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TE~lCAL REFERENCE ~

directory.

3. There should be enough unuud spice within the block<s> reserved for the directory to hold a
stcond copy of the VTOC. <The current version of DOS 4 does not crute a second copy of the VTOC

but a. ~uture version ma.v .)

4. The disk mode identification code <MODEID> is norma.llv given a va.lue of $53 for single-sided
disks, or $44 for double-sided disks.

15

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TECftll CAL REFERENCE ~

DISK CONFIGURATION FILE FORMAT

This chapter de'Scribes the standard Disk Configuration File format used by DOS 4. In order to

use the information in this chapter. you will nud to have a thorough understanding of the chapters

on DOS 4 Disk Drive Configuration Data and DOS 4 Disk File Structure.

GENERAL INFORMATION

A Disk Configuration File (DCF) is a file which contains a description of a disk drive. This

description provides DOS 4 with all the information that it needs to have in order to work on that

drive.

Each DCF describes one disk drive model. <In point of fact. a single DCF can usually handle a

family of two or more different but related disk drives; for our purposes we will consider such a

family of disk drives to be one "model".) The user must obtain a DCF for each model of disk drive

that he has and merge each of them into his copy of the DOS 4 Disk Utility Package.

Each disk drive model has one. two. or three modes into which it can be configured <for

example: single side/single density. · tingle side/double density. and double side/double density).

When three different modes are provided, they should bt as follows:

1. One mode which is the "standard" mode for thc. given disk size. For example,

for 5.~-inch minifloppy disk drives. the "standard" mode is a mode that can read Atari

810-format diskettes. It is intended that all commercially available software be

distributed in the "standard" mode.

2. One mode which uses only the first side of the disk and offers the maximum

po•sible storage capacity.

3. One mode which uses both sides of the disk and offers the maximum possible

storage capacity.

There is 1mough room in the DUP's menu of disk drive configurations to support 8 different disk

drive models. Since the DUP is supplied with the Atari 810 DCF already merged into it, this means

that up to 7 DCF's can be mtrgtd into tht DUP by the user. The total amount of memory .tvailable in

the DUP for DCF's is a littlt mort than 4K. Thtrtfore, individuil DCF's should not be much biggtr

than .~K.

16

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOOR TE~I CAL REFERENCE ~

OUTLINE

Each DCF consists of seven component5. In this section, we will list the stvtn components and

describe each of them briefly. In the remainder of this chapter, we will dncribe each compontnt in

detail. The seven components must occur in the same order tha.t they are listed htre. The sevtn
components are:

1. A S-byte header which contains a file identification code, the length of the file, and the
number of different modes.

2. Two bytes of title information which specifies the location and length of the title.

3. Configuration data., 19 bytn for uch mode. Most of this is ,i.Jst copied into the FMS's disk

drive configuration data. tabln.

4. A 4-byte vector table which specifits the starting locations of the device-dependent

routines.

S. The 1i!!!• a. ch&racter string which specifies how this disk drive model is to be listed in the

menu of disk drive configurations.

6. The confiQuration routine, a subroutine which performs the device-dependent part of

configuring the drive.

7. The write-boot routine, a subroutine which writes a boot file to the disk.

1. THE HEADER

Each DCF must begin with a 5-byte htader. The first two bytes of the header contain the file
identification code, which must be $FEFE. The function of the file identification code is to enable
the DUP to tell the difference betwnn DCF's and othtr types of files.

The third and fourth bytes of the header contain the total length of the DCF, not counting the
S-byte header itself. The length is stored low byte first.

The fifth byte of the huder contains the number of modes. It must be bttween 1 and 3
<inclusive>.

2. TITLE INFORMATION

17

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TE~l CAL REFEROCE ~

Following the hudtr comes two bytn of title information. The first byte conti.ins the address

of _the first byte of the title minus the address of the first byte of title information. The second

byte contains the total number of characttrs in the title (counting the carriage returns).

3. CONFIGURATION DATA

This component of the DCF contains i. 19-bvte di.ta table for each mode. Thus, the
configuration data is 19 bytn long H there is only one mode, 38 bytes long if there are two modes,

and 57 bytes long if there are three modes.

When the DUP constructs its menu of disk drive configurations, these modes will be assigned

consecutive letters. The mode whose table appears first in this section will recieve the first letter,

the mode whose table appears second will receive the second letter, and the mode whose table

appears third will receive the third letter.

The order in which the three modes are listed must be carefully chosen in order to make the

DUP's IDENTIFY MODE command function accurately. The IDENTIFY MODE command works as follows:

For ea.ch of the three modes, beginning with the last mode and working toward the first mode, the
DUP attempts to <a> configure the drive into the mode in question, (b) read the last data sector on

the disk, and then <c> read the VTOC and verify that the mode identification code, garbage list block

count, and temporary use list block count are corrtct. H a.ll thret tnts succred, the IDENTIFY

MODE operation terminates and the mode in question is displayed. If any of the tests fail, the DUP

goes on to tht next mode. When all the modes have bttn tried unsuccessfully, the message UNABLE:

TO IDENTIFY MODE is displayed.

Each 19-byte tablt has the following form:

Byte 0: Bit 7 = 1 if tht drive returns an Atari 810 compatible data frame in response

to a format command. Bit 6 = 1 if the VTOC is two stctors long. Bit 5 = 0.

Bits 4-0 are ignored. <Bits 7-5 of this byte are copied into bits 7-5 of DENSTY.

Bits 4-0 of De:NSTY are supplied by the DUP.l

Byte 1: Number of sectors per block. <This byte is copied into SCPERB.>

Bytes 2-3: Disk sector which contains the VTOC. <These two bytes are copied into

VTCSEC.>

Evtes 4-5: The -hrst sector on the disk. <These two bytes are copied into FSTSE:C.>

Bvte 6: The first block on the disk. <This byte is copied into LOBLK.>

18

/

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TE~l CAL REFERENCE ~

Byte 7: Th• last block on the disk. <This byte is copied into HIBLK.>

Byte 8: The block where the directory begins. <This byte is copied into DIRBLK.l

Byte 9: The number o.f sectors in the directory. (This byte is copied into DIRSEC.)

Byte 10: The number of blocks in the directory. <This byte is copied into DIRCNT.l

Byte 11: The number of logical sectors per block. <This byte is copied into DSPERB.l

Byte 12: The serial or parallel bus format command. <This byte is copied into

FMCOMD.l

Byte 13: Disk mode identification code . <This byte is copied into MODEID.l

Byte 14: Zero. <This byte is copied into DRVRS:S.l

Bvte 15: Contains $80 if sectors are 128 bytts long. Contains 0 if sectors are 256

bytes long. <This byte is ustd to set bit 7 of HAPOFF ,l

Byte 16: Contains the address of this mode 's "mode star" minus the address of byte 0

of this data table. Refer to the description of the title for information about

"mode stars".

Byte 17: Contains the mode-dependent argument. Whenever the DUP calls one of the

device-dependent routines <the configura.tion routine or the write-boot routine),

the mode-dependent argument for the drive's cur-rent mode is passed to the

routine in the 6502 Accumulator. The mode-dependent argument is not otherwise
used by DOS 4.

Byte 18: Contains the addrus of the first byte of the vector table minus the address

of byte 0 of this data table.

4. THE VECTOR TABLE

Following the configuration data is a 4-byte vector table which specifies the starting addresses
of the two device-dependent routines.

The first and second bytes of the vector table contain the address of the fir5t byte o.f the
configuration routine minus the address of the first byte o.f the vector table.

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS FOUR TEC~l CAL REFERENCE ~L

Th• third and fourth bytes of th• v•ctor table contain the address of the fir5t byte of the

write-boot routine minus the address of the third byte of the vector table.

5. THE TITLE

The titl• is a character string which 5pecifies how this drive model is to be listed in the DUP's

menu of disk drive configurations. The title should consist of two lines of text, each terminated

with a carriage return. A lin@ of text cannot contain more than 38 characters (counting the carriage

return>.

The title should contain only standard ASCII characters - no inverse-video, gra.phics, or cursor
control characters. Uppercase letters are preferred.

Each mode is associated with a two-chl.racter sub5tring of the title. The first character of

this substring is called the 11 mode star", and the second character is called the 11 mode letter". When

th• menu of disk drive configurations is displayed, these substrings will be rtplaced with characters

supplied by the DUP. The mode stu will be replaced with an uterisk if the drive is currently
configured to the mode in question, and with a blank otherwise. The mode letter will be replaced

with an uppercase letter from A to X which represents the key that the us•r must press to select the

mode.

6. THE COHF"IGURATIOH ROUTIHE

The configuration routine is a subroutine which performs the device-dependent part of the disk

drive configuration process. Whenever the DUP wants to c:ha.nge the configuration of a disk drive, it

first copies the disk drive configuration data for the desired new mode from the t1.ble in the DCF to

the File Management System's CONTYP and MAPOFF tables. After the data has been copi•d, the DUP

calls the configuration routine in the DCF.

The DUP c.tn change the configuration of a disk drive when the user selects the CONFIGURE
DRIVE command, or when the user selects the /R option of the DUPLICATE FILE or DUPLICATE DISK

commands. The disk configuration may also be changed by the power-up disk configuration program

CONFIG.SYS (the CONFIG.SYS file i& j.Jst a copy of the part of the DUP that does disk
configurations).

The normal function o.f tne configuration routine is to send serial or parallel bus commo1nds to

the drive that tell the drive how it should configure itself. If the drive don not require a.ny such

comlfla.nds, then the configuration routine should at luttt nnd out a. STATUS command to verify that
the drive is rully there. The configuration routine is also allowed to modify the CONTYP and

MAPOFF tables, if desired.

20

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOUR TED+ll CAL REFERENCE ~

The configuration routine must obey the rules described the section entitled "Rules For

Device-Dependent Routines" <below) .

7. THE WRITE -BOOT ROUTINE

The write-boot routine is a subroutine which perform~ the device-dependent part of the process
of making bootable disks. The DUP will call the write-boot routine for each destination disk of a

WRITE DOS command or DUPLICATE DISK command.

The normal function of the write-boot routine is to write an invisible boot file to the first few

sectors of the disk. If the drive does not require a boot file, then the write-boot routine should
ilst return without doing anything.

The boot file normally contains a program which configures the disk drive t1nd then loads and

runs the File Management System. Thus, the write-boot component of the DCF actually contains two

programs: one program to write the boot file, and a second program which is written into the boot

file.

The program which writes the boot file must obey the rules described in the section entitled
"Rules For Device-Dependent Routines" <below>. The program may examine the CONTYP 11nd HAPOFF

tabln, but is not allowed to modify them. Also, the program is not allowed to either examine or

modify any sectors on the disk except those that are specifically reserved for the boot file <by
specifying a value for FSTSEC that is greater than one).

The program which is written into the boot file should obey the following rules:

1. The boot program should assume that the FHS begins in the first data Hctor on the disk

<the sector identified in FSTSECl and continues through sequentially numbered sector5. <Exception: if

the disk directory is located at or near the start of the disk then the FMS will hop over the
directory,) In particular, the boot program need not search the disk directory or read the VTOC. The

FHS is always loadtd from disk drive unit *1.

2. The boot program may UiUme that the FMS loads into a contiguous block of memory
beginning at location $701. The second byte of the FMS (which loads at loc1.tion $702> contains the

number of 128-byte blocks that are to be loaded. It is guaranteed that there will not be more than
34 such blocks.

3. If the boot program is unable to successfully configure the drive and load the FMS, then it

should 5et the 6502 carry bit <with SEC> and return (with RTS>.

4. Aft!r th! FMS is successfully loaded, the boot program must copy the contents of memory

21

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI DOS F~ TEC~l fit. REFEROCE ~

locations $705-$706 into locations fOC-f OD and then JHF to location $707.

RULES FOR DEVICE -DEPENDENT ROUTINES

The device-dependent disk drive configuration routine and the device-dependent write-boot

routine must obey the following rules:

1. The routine must be relocat&ble.

2. At the timt tht routine is called, memory location DSKUTL at ($1A,2J contains the address
of the first byte of the routine . <In fact, the DUF transfers control to the routine with a

JHF <DSKUTU instruction.> The routine is allowed to modify DSKUTL

3. The routine must return by loading an l!rror status code into the 6502 Y-register and then

extcuting an RTS instruction. A status code greater than or equal to $80 will cause an trror

message to be generated. It is not necessary to •et the 6502 sign bit to reflect the value of the

status code.

4. Memory locations $19FC through $1BFB (inclusive> are available for use as scratch storage. ~

5. The routine may communicate with the disk drive by calling OS entry point SlOV.

6. When the routine ii called, OS variables DDB:VIC, DTIMLO, DAUX1, and DAUX2 contain $31, 7,
O, and o, respectively.

7, When the routine is called, OS variable DUN IT contains the unit number of the disk drive in

question.

B. When the routine is called, if PIO bypass has been selected for the disk drive in question,

then OS vAriAble PDVMSK contAins 0. This forces I/0 requests to go to the serial bus instead of the
parallel bus. The DUP will automatically rntore PDVMSK to its original value after the routine

returns.

9. When the routine is called, the 6502 X-register contains the oHset into CONTYP for the disk

drive in question, i.e., the X-register contAins 16*!PDN-1> where FDN is the physical drive number.

iO. When the routine is called, the 6502 Accumulator contains the mode-dependent argument
obtained from byte 17 of the configuration data table in the DCF. The configuration routine should

u~e the value of the Accumulator to determine which mode the drive is to become. The write-boot
routine should use the value of the Accumulator to determine which mode the drive is in.

22

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOUR TECitll CAL REFERENCE ~L

11. When the routint is called, the 6502 Y-register -(.ontains the value 1, &nd the 6502 sign bit

is clear. This means th&t a device-dependent routine which does nothing can consist of j.Jst an RTS
instruction, and that a routine can j.Jmp over &n initill data ti.ble by means of a BPL instruction.

12. The routine should not communicate directly with the user.

23

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOOR TECI+H CAL REFERENCE ~L r "

SVSTE,.....;j-tE.....-tORV L-OCATIONS
,-'

~

This chapter describes fixed memo~y locations in DOS 4 which are intended prim1.rily to allow

the various programs that comprise DOS 4 to communicate with each other. These memory locations

should not be of interest to application programs. While it is unlikely that any of these locations

will be changed in A future version of pos 4, this is not guaranteed.

COMMAND PROCESSOR / DISK UTILITY PACKAGE LINKAGE

linkage between the CP , And DUP is controlled by three memor'y locations within the Command

Processor: VMENU At CUEFC,2J, VMENLO at CUEFE,2J, and VMENHI at C$1C00,2J.

The DUP uses the contents of these loci.tions when it writes out the CP durint~ the WRITE DOS
., ,, -

FILES command. . Tr1e CP consists of an initialization section followed by a run section. The

initialization section extends from address S1EFC to one less than the address contained in VMENLO,

al')d e,xecwtes beginning at address $1C02. The run section extends from the address contained in

\/,MENLO .to one less thAn the address contained in VMENHI, and executes beginning at the address
:. ; r ~ . ..

CO[jtaiP.ed in VM8:NU.
. ..

T!)e DUP Also uses VMENU to implement the COM PROCESSOR command. In general, any

program that does not overwrite the CP can return to the CP by a JMP (VMENU> instruction; this

avoids the overhead of re-loading the CP.

DISI< UTILITY PACKAGE /DISK CONFIGURATION FILE LINKAGE

linkag~ betw~~n the DUP and DC!<'£ i£ controll~d· 'by tive memory location£ •.within the Di£k

U.,ility ·Package: .. UTLTOP at CS2103,2J, MODNUM at CS2105,1J, MDLNUM at ($2106,1J, MODTAE at
. .J • ~ • .,._

r (~210,?,S30J, 1.nd HD~J'AB at ($2137,$10). These m·~rnory locations are ·· also present •.vithin the
,, ,, .;, , _ ·t .

. :powerrpn disk configuration program CONFIG.SYS •

. - . - . ~ ~. I • · ' :~ _,; \,. '

UTLTOP contains the address of the first free byte- above the top of the DUP. Whenever the

I)UP ,.m,erges a DCF into itself, it reads the 5-byte DCF header into a temporary location, then reads
• '~ po... -;:

t,h~ :rest of the DCF into mtmory beginning at 'the address confained in UTL TOP, And finally adds the
' length o~ the DCF to UTL TOP <the DCF header is c:iisc.a.rded}.

;::.1 - . ·.. . ' tl

MDLNUM contains the number of disk drive models H1at have been merged into the DUP; it.r may

24

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATARI OOS FOUR TE~I CAL REFERENCE ~
-..- ~ , ._ ... ,-.

not excttd 8. MODNUM contains the total number of different disk drive modes that are supported;

it may not exceed 24 <thus allowing a maximum of 3 modes per model).

MDLTAB , arid MODTAB are tables of &ddresses, with each addrn~ occupying two consecutive

bytes and with each table being filled starting a.t the lowest address. MDL TAB contains the address

where uch model 's DCF begins; this is the address that was in UTLTOP whtn the DCF was merged .

MODTAB contains the address of the -first byte of each mod~'s 19-byte DCF configuration data table ;

these addresses are calculated when the DCF's are merged. '. ..

~ ·· 1 otJ>(

POWER-ON DISK CONFIGURATION PROGRAM LiNKAGES - . ii

Memory location AUTSPC at C$712,$10J within the FMS contains the name of the file ~hich

contains the power-on disk configuration program, normally D1:CONFIG.SYS. The FMS will load and

run this program during coldstart. H the program is not pres.ent, or if the load cannot be done
r.)'! S+ ~

successfully, then the system will (by design) freeze.

location AUTOSP at C$2147,UOJ, which is pres,nt in both the DUP and the power-on disk .,
configuration program, contains the name of the file to which the power-on disk .configuration progra~

will attempt to link after the disk drives. are configured. This ,is normally Di :AlJTORUN.SYS. '
. ~ : -~ - -

SDTYPE at C$738:,1 J within the FMS is a shadow for DTYPE+L At the start oF the w"RITE DOS

command, the Disk Utility Package copies DTYPE+1 into SDTYPE and then stores a 'i' into tht four

low-order bits of DTYPE+i <the original value of DTYPE+1 is restored at the end of :. the WRITE DOS
command>. This has the effect of forcing the power-on disk configura,.tion program Di :CONFIG.SYS and

the power-on otpplication program Di:AUTORUN.SYS to load frC)m physical drive 4+1, even if logical

drive Di: has been redirected to some other physical drive. The power-on disk configuration pfogram

copies the four low-ordtr bits of SDTYPE into DTYPE+1 aHer it has opened <or atttmpted · to ·openl

the power-on application program.

FILE MANAGEMENT SYSTEM/ BOOT LOADER LINKAGE
~ .

•;.:

linkage between the FMS and the bq_ot loader is controlied by me~;Y locations' '·s7d{-$709.

location [$701,1J contains a flag byte whose value is 0; it has no functi~m,' Locatitin CS70Z,:1J

contains the number of 128-byte blocks which must be read from the ~isk in .ofder to load the ·JfMS.

Location C$703,2J contains the origin address of the FMS, which is 5701.

Location· ($705,2J contains the, initialization address of the FMS. This address is copied. int o

OS variable DOSINI by the boot loader. It is possible to re-initialize the FMS without re-initl"alizing

other progr&ms that are hooked into the DOSINI chain by storing a nonzero v~lue inlo the OS variable
.t>r:-< WARMST and then making a subr outine call to a JMP ($705> instruction.

25

w
w

w
.a

ta
rim

us
eu

m
.c

om

ATAIU DOS FOUR TEDtll CAL REFERENCE WHW..
· ·~ ... ~

Locition CS707.3J conti.ins • JMP instructiory 'o tht ,~lfS's boot ~Qntinuation routine. The boot
.• : . .

lOidtr ttrminates with a JHP $.7Q7 it'IJtruc~ion, illowingjhc FMS to t:011'!Pltte the boot load process.
,,. , ', .,;.·" . ' .

.,.

26

w
w

w
.a

ta
rim

us
eu

m
.c

om

