www.atarimuseum.com

TABLE OF CONTENTS

INTRODUCTION
AFFPLICAELE DOCUMENTS

HOW THE A1200 COMFARES TO THE A400/800

3.1 The Help Key
3.2 What the Function Keys Do

Coursor Left

Cursor Right

Cursor Up

Cursor Down

Home Cursor

Cursor to Lower Left Corner

Cursor to EBeqimnning of Fhysical Line
Cursor to End of Fhysical Line
Keyboard Ernable/Disable

Screen DMA Ensble/Disable

Key—-Click Enahle/Disahle
Domestic/International Chasr. Set Select

3.3 HKey Redefinition

Contents of the Key Redefinmition Table
Reassignment of the funcltion keys only
Non—reassignable Keys and combinations

tIser—Alterable Key Auto—-Repeat Rate
Caps/Lowr Keys Taogqle Action

LED Inmitizlization

Game Cartridge Rempove/Insert Interlochk
Fower—-Dn Self-Test

Option Jumpers
Additional Hardware Screen Modes

Text Screen Finme Scrolling

Disk Communications Ernhancements
Fower—-0n Display Erhancerment
Deleted Features

LI Y
b

-

L]

* L] *

-

WWWWWWwWwwww
T RS

DW= o

L

MEMORY MAF GF THE A1200

ENHANCEMENTS T0 THE A400/800 REV.E OFERATING
SYSTEHM INCORFORATED IN THE A1200

Feripheral Handler Additions
Gereral Improvements

OTHER CHANGES/GENERAL INFORMATION

Improved Handling of 0S5 Databhase Variables

NTSC/7FAL. Timing Frovisions
A1200 0OS ROM Identification and Checlsum

www.atarimuseum.com

)

TAELE OF

AFPFENDIX

AFPENDIX
AFFENDIX

AFPFENDIX

CONTENTS (CONT’D)

A — An Example O0f Hegboard Reassignment

EE — Suggestions for the Construction of a New
Character Set for the New Graphics Modes

C - Serial Bus Feripheral Handler Loading,
Lirnking, Use

D - Relocsting Loader

www.atarimuseum.com

C

1.0 INTRODUCTION

Thie marnual is desigrned to serve a3s a3 supplement to the
ATARIA00LTMI and ATARIBOO0LCLTMI OFERATING SYSTEM MANUAL.

The A1200, 3s sheown 1n sections 3-5, is 3 technical
upgrade of the AB0DO0. The operating system for the
A17200 has been writtem to wmazintasin, as wmuch as

possitile, compatibility with aspplication programs which
have 2lready been developed for the A400/800,

Since the basic hardwsre which controls the vuser
interfsace and the display 1is, for the most part.
compatible Wwith +the earlier designs, the operating
system, except for the enhamncements or changes
described here, has remained largely +the S3MEe .
Therefore the dasta contained in the 0S5 manual for the
A400/800 1s sti1l1ll wvalid.

This manual has been written to provide the user with

data reqarding usage of the added festures of the A1200
opereting system, with some details about the
characteristics of the peripheral devices with which it

will operate. Frogrammers or peripheral developers who
require 3 qgreater level of detzil reqarding the _
handlirnge of peripheral ‘devices should refer +to - the
documents referenced in item 2 of section 2 below.

www.atarimuseum.com

AFFLICAELE DOCUMENTS

1. ATARI Home Caomputer Operating Systems Manual.
Describes the 0S for the A400 zrnd AB00,
which is the hasis for the enharncements
described in this manual,

2+ SERIAL INFUT/OUTFUT INTERFACE USER‘S HANDEOOK
FART 1.

This document provides a detzsiled explanation
of the interface requirements and the timing
relationships for the serial communiications
capabilities of a1l of the uiits

(A400/800/71200) .

3. ATARI Home Computer Hardware Manual and A1200
Supplement.

The Hardware Hanuzl covers the hardware
registers which control the various functions
of the A400 arnd AB00. The supplement to the
hardware manual _covers_ the added features for
control of the A1200. Such detasils which are
appropriste to the 0S8 harndling of such
hardware regqisters ARE contained in this 0S
tmanual. The wuvser who has rieed for other
harduware—-relsted data should refer to *the
hardware marnual for more informatiori.

4. DE RE ATARI

This document provides the user with an
introduction to the effective use of the
ATARI Home Computer hardwares Althouah
written to cover +the A4060/800, the datsa
contasined +therein i1s valid for the A1200 as

well.

www.atarimuseum.com

3.0 HOW THE A1200 COMFARES TO THE A400/800

The following 1s a3 list of the features and TfTunctions
which will be discussed in this chapter. Fach will be
explained 1in &8 separate section.,

In this chapter, you will learn about?
1. The HELF Key

2 The Function Keys

3. How Ley codes are redefined snd which ones
canrnol be redefined

1. How to alter the ley repesat rste
Se The asction of the Caps/Lowr Key
G How the 0S8 initializes the LED’s an the kegboard

7. What happens when a3 cartridgee is installed or
removed

8. What happens during power—on self-test..
Q. What the option jumper assignements mean

10. Hhat new screen modes ﬂhe 641200 can use

L 4

11. How to eriable fine scrolling of the text screen

12. How the disk handler has heenn charnged for improved
operstion

13. Hhat king of display is now produced at power—up

14. What features have been deleted as caompared to the
A400 or ABOOD

EFach of the items eniumerated shove corresponds to the
paragrapt number in this sectiorn which follows. For
example, item 1 above is covered in paragraph 3.1, item
2 in paraqgraph 3.2 and so forth.

www.atarimuseum.com

3.1 The HELF Keg

The operating system, while watching the keyboard, will recogqnize
the pressimg of the HELF key a3s & request to set & flag in the 0S5
database. This flaq can he read by whichever application program
is in control at the time and resct accordingly,

No ATASCII ‘teycode is created for passing to the applications
PTOQTr3m. Ornly the database variasble 1s affected. Therefore if
your progaram 1s expecting the Help key to be pressed, you must
rnot only watch the keygboard for incoming ATASCII codes other than
Help, btut also occasionally check ("poll™) the contents of the
HELFFG (help flaq) datahase wvariable +to see if Help Was
requested.
732

The location of this variable 1s $02DC. The rconditions to which
it responds are listed helow, &long with the codes which will be

stored in HELFFG:
He:x value Condition represented

00 o The Help flzq is cleared. This flag is cleared
at initial power—up reset and subsequently, if
set, must be cleared by the application program.

11 17 HELF key alone was pressed.,
51 8 SHIFT-HELF key combination was pressed.
91 jis CTRL-HELF key combination was pressed.

The HELF key can be uvsed during the power-on display and during
the self test feature. See those sections for more information.

3.2 What The FUNCTION Keys Do

The A1200 1s provided with 8 set of four function keys. You may
redefime the ATASCII values which these keys produce 1if you
desire, As a matter of fact, the entire kegboard ATASCII output
m3y tbe redefined as will be seen later. This section shows the
normal defimition of the F1-F4 keys, itheir functions and the
ATASCIY codes which they produce (if any) as a8 result of the
power—-on reset assignment. All values in the tasble below are

given in nex»xadecimal.

FUNCTION KEY ASSIGNMENT SUMMARY

Kewy If pressed alone
F1 Froduces the Cursor—up furnction, returns ATASCII 1C

2 Froduces the Cursor—down furnction, returns ATASCITI 1D
‘F3 Froduces the Cursor-left function, returns ATASCII 1E
F4 Froduces the Cursor-right fuonction, returns ATASCII 1F

www.atarimuseum.com

FUNCTION KEY ASSIGNMENT SUMMARY (cont’d)

{ey If pressed with SHIFT

F1 See HOME CURSOR helow

F2 See CURSOR 70 LOWER LEFT CORNER below

F3 See CURSOR TO EBEGINNING OF FHYSICAL LINE helow
F4 See CURSOR TO0 FAR RICGHT 0OF FHYSICAL LINE bhelow
{ley If pressed with CTRL

F1 See KEYEOARD ENAELE/DISAELE below

Fz2 See SCREEN DMA ENAELE/DISAELE below

F3 See HEY-CLICK ENAEBILE/DISAELE below

F4 See DOMESTIC/INTERNATIONAL CHARACTER SET below
ley If pressed with CTRL+GHIFT

F1 Ianored

F2 Igriored

F3 ITarnored

F3 Iariored

HOME CURSOR FUNCTION

SHIFT-F1 cawses the cursor to move to the home position of the
screen as well as producing the default ATASCII code 1C. The
default «code i1s reassignable, however the home cursor Sfupction
Wwill remain assigned to this key combination regardless of the

code to be produced.

CURSOR TO LOWER LEFT CORNER

SHIFT-F2 causes the cursor to move to the lower left corrner of
the screen as well 3s producing the defasult ATASCII code 1D, The
default vcode is reassignable, however this cursor move function
Wwill remain assigned to this key combination regardless of the

code to be produced.

CURSOR TO EEGINNING OF FHYSICAL LINE

SHIFT-F3 causes the cursor to move to the far left of the
physical linme on which it is located (rniote, mot the logiczsl line
which, in the screen editor, could be a3s many as 3 physical
lines+) This function is performed by the screen editor 3s well
3s generating the default ATASCII code 1E. The default code 1s
reassignable, however this cursor move function will remazin
assiqned to this key combinzation reaardless of the code to bhe

produced.

2 www.atarimuseum.com

CURSOR TO FAR RIGHT WITHIN FHYSICAL LINE

SHIFT-F4 cawuses the cursor to move to the far right side of the

physical lime o which 1t is located. This function is perforwmed
by the screern editor as well a3s generating the defautlt ATASCII
code 1F, The defauwlt code 1s reassiqgrnable, however this cursor

move function will remain assigned to this key cowmbinstion
regardless of the code to be produced.

KEYEOARD ENAELE/DISAELE

CTRL~-F1 controls the ltegboard ensble/disasble function. It
produces ro ATASCITI code. This key combination affects the
operating system handling of the Fkeyboard and is rot

reassianable.

SCREEN DMA ENAELE/DISAELE

CTRL-F2Z controls the Screen Emnsbles/Disabhle Direct Memory Access
(DMA) . It prodiices no ATASCII code. This key combinstion
affects the operating system handling of the display functiorie

This key comhination is not reassigrnable.

The A1200, on power—up, 3lways. ensbles the screen DHMA. What this
means is that the system will 3luways initislize itself to display
anything which has been defirmed for the screen display during power
Lip, This same screen DMA enable will a3lso occur if you touch anyg
keyboard key other than the CTRL-FZ combination. v

VUarious types of progarams which you write may be heavily involved
in arithmetic computations. To speed up the processing, 1in the
A400 or ABDO, wou may disable the screen DHA. Hhen i1t 1is
disabled, the ANTIC processor does not steal memory cycles from
the 6502 to get its data for the screene. Therefore during
disable mode, the screen remains blank. When it is enabled, the
full display which you have defined is visible, however, the
processor 1is slowed down by anywhere from 10 to 40 percent 35
explained 1in the section o ANTIC DMA in the Atari Hardware

Manual.

Onn the A1200, to start the higher speed/ nmo display function,
press the CTRL-F2 lkey combination. The display will go blank.
To restore the display sagzin a3t any time, you can press any other

}’-.E’B)

During ygour arithmetic caslculations, you may he 1in continuwous
praocess of wupdating the memory asrea where the display data is
contained. You can then et a3 status of the operation in process
at 3rny time simply by pressing any key other thanm CTRL-FZ, then
~again press CTRL-F2 to re-enter the higher speed mode.

»

3 www.atarimuseum.com

Your program, thern, on comnpletion of the calcwlation, could
exercise direct program control over the ANTIC DMA variasbhle +to
restore +the display when the arithmetic intensive part is over.
(See the ATARI Home Computer Hardware Mamial for dsta on
programmed control of this variable.))

KEY-CLICK ENAELE/DISAELE

CTRL-F3 conrntrols the Hey-Click ernzble/disable furnctior. If
pressed once, it disables the audible feedback on lkeystrokes,
Fressed agsimnm reenables it. This fumction combimstion only
affects an 0S5 databease vasrishle and produces o ATASCII code. It

is ot reassigrable.

You wmay control the key click enable/disable from Your pProgram.
All that nmeeds to be done i1s to change the same flsg which the
operating system uses to indicate whether a2 key c¢lick 1is
- required, This flasg 1is called NOCLIK, It is one of the 0S
database variables, contaimed a3t locatiomrn $02DE, :
e

Onn power up and reset, the operating system imitializes this
varisble +to 3 value of 00, wmeaning that key click is enahled,
This location, when it contains the value $FF, indicates that mo
key click is desired., The key combination CTRL-F3 toggles it

between the values 00 and FF.

In addition to this flazaq, when the operating system controls the
keghoard, it tells you the enable/diszsbhle status using the light
emitting diode number 1 (referred to as LED 1.) Whenever the
operating system disabhles the keyboard, it will 1light LED 13}
whenever it enables the kegboard, it will turn 1t off. The
operating system does not change the status of the light if YQU
disable or re—enable the keyboard under program controle.

4 www.atarimuseum.com

DOMESTIC/INTERNATIONAL CHARACTER SELECTION

CTRL-F4 controls the domestic/intermational character selection.
Default is domestic, It affects arr 05 datahase variable orly and
produces no ATASCII code. It is rot reassianable. It toggles
the display of character sets, changing between the two each time
the bkey combination is pressed. When the interrnational character
set is selected, LED rumbher 2 will be 1it.

The idinternational version of the character set is located in the
ROM begimning at location $CCO0. You can cause the international
character <cet . to be selected by storing the constant $CC to
location %$02F4, This is the location CHEAS, The rnormal character
set 15 located in the ROM starting at $E000. If a3 program stores
¢E0 to CHEAS, 1t selects the display of the normal characters.

If gou have defirned Your own character set, however, pressinq
CTRL-F4 will display the internatiorial character set. This 1is
because the aoperating system will test CHEAS and find that the
value $CB.is not theres Therefore“$CB . must be the next wvalue
which is té\be vuaed (selects int‘l set). Whernn 1t tests CHEAS and

finds $GB~5£Q;EB\there, it knows that $E0 is the mest value to
) TT— / ’
uvuse during the togale- etggen character sets.

\“/\“C
3.3 KEY REDEFINITION ‘

You may redefine most of the A1200 console keys if desired, The
redefimition process consists of setting up a8 pair of tahles
which can be referenpced by the operating system when it
translates your kegstroke into an ATASCII value.

The +two tables are the KEY Definition Table and the Function Key
Definmition Table. The operating system has a pair of data tasbles
from which the rmormal definitions are made. You may define gour
ownn set of tables however, +then simply tell the operating system
where they are located in mMerory.

One such use of key redefinition might be +to0 experiment with
other, possitbly more efficient keyboard layouts, such as perhaps
the Dwvorak Llkewybosrd. An example is aqgiven in Appendix A of 3
Leyboard redefinition to 3llow Yot to do such an experiment.
(Over +the yesars, the GWERTY key layout has beern the accepted
standard however many people have found DVORAK 1o be more
efficient. This would 3llow you to try it for yourself.)

www.atarimuseum.com

(&}

CONTENTS OF THE KEY DEFINITION TAELE

This table a3llows most of the keys of the A1200 to generate any
desired ATASCII code or special internsl function. The
exceptions to this are listed st the end of this section. To
redefimne the hkeys, it is mecessary first to defime anm aresa in
temory where a8 192 byte table may be stored. Into this tabhle,
gout will store the definitiionms of the kegys which you desire.
Later you will tell the operating system where this tahle is
located so +that future referernices may be made to it instead of

the starndard definmition tahle.

The orgamnization of this table is a38s follows:

e +
i Lower case convert., | {(Starts at wser definmed address)

| Group of 64 hytes | The tahle of lower case conversions
ey S S +

| Shift plus lkey |

| Group of 44 bytes } The table of upper case conversions
o +

] CTRL plus key I

{ - Group of 64 bytes | The table of control key combo
e e + conversioris

The bottom-most bhyte in the table shown ahove is 3t the address
KEYTAEBLE_START + 191.

The reason that each of the subdivisiorns of the table has 64
bytes in 1t 1s that the hardware can generate 3 total. of 64
hardware keycodes, These codes, numbered 00-63 decimal (00-3F
hexadecimal) are uwvsed to index directly into one of the three
kegcode tables. Which table is referenced depends on whether the

CTRLL or SHIFT keys are pressed.

Note that there is rno table for the combimstion of both CTRL and
SHIFT. This combhination 1is invalid and is 1igniored by _the

operating system.

Each of the three 64 hyte subsections of the table has the form:é

e +
{ 00 code - Eyte 0 contsins conversion for key code 00

{ | for key alone, key with CTRL, or
+-———————— + ey plus SHIFT. Depends onrn which

| 01 code i table 1s accessed per which keys pressed.,
| | :

e e + Eyte 1 contains conversion for key code 01

{ |

| |

e + .

| 3F code | Egyte 3F comntains conversion for kes code 3F

| |

gy +

6 www.atarimuseum.com

The codes which You place in your table will either generate an

ATASCIT code (for direct character tramslstion) or they will tell
the system to perform a specific function. Specifically any code
in the rarnge of 80 to 92 herxadecimal will he treated as special
by the system. This is 1llustrated inm the tahle below.

CODES AND THEIR EFFECT ON THE SYSTEM AFTER TRANSLATION

CODE . EFFECT (if any)

00 thru 7F Used as the ATASCII code only.
92 thru FF Used as the ATASCII code only.

80 Igriore, invalid kew combination.
81 Invert the video output to the screen.
82 Alpha lock/Lower case toqgle.

83 Alpha lock

84 Control Lock

89 End of file

86 ATASCII code

87 ATASCII code

88 "Gonzo" function

89 Key click on/off

8A Furniction 1 x

8E Function 2 X

8C Function 3 x

8D Function 4 X s

X NOTE: When it sees lhese kegcode translations, it is"told to
DO the function which 1is described im the Function Key
descriptions. This function will ke 8 cursor move and 1is
independent of the ATASCII code which the specific Function Key
will produce. The ATASCII coded generation for the nrmormal and
shifted furnction keys is handled in 38 different tasble, whose
description follows that for the keycode hardware translate

table.

8E Cursor to home

BF Cursor to bottom

?0 Cursor to the left marqin
21 Cursor to the right maraqin

The table below shows the key csp corresponding 1o each key code.
The physical position of each key switech within the table
determines the hardware code which it will generzte. To
determine what code 1t is, take the row address of the cap, and
add it to the column address. The result is the hexadecimal value
returned to the operating system (range 00-3F) for use in the

table lookup for that bkey.

www.atarimuseum.com

KEYCODE DEFINITIONS TAELE

0 1 2 3 4 S 6 7
4 e —— Fm— Fm——— t———— o B S —— o — +
[131] } L] J] H] F1 | F2 | K] +] x]
o ———— e e o p— o o o o ——— +
08 | 0 | | F]] | RET | I | - | =]
F R fm———— o ———— +———— fm——— N F o +
10 | Vv | HLF | C | F3 | F4 } E I X | Z]
+————— o ———— Fmm——— e ———— o o ——— e o +
18] 4] | 3 | 6 | ESC |] i 2 | 1]
4 o ——— e o ——— e —— e —— o ——— F o —— +
20 J , | SFACE } .] N |] H] / I X1 C |
e o —— S S o ——— tomm——— e o o e +
28 i R | | E | Y [TAE | T { 1) { Q {
T e ——— Fm o ——— e — o o —— e +
30 | 9]] 0 | 7 | BEACKS | 8] < i > |
m——— o ———— S e —— 4 ———— o R - S +
38 { Food H | D | | CAFS] G l s | a |
F———— e o I e o — I o +
As an example the key cap "C" is in the table in row 10, column
2 . This means that the hardware generates 2 hardware code 10 + 2
or 12 he:xadecimal. Therefore, in the translation tables shown

abhove;, the function code or ATASCITI code Tor this character will
bhe stored in the btey defimition table position $12 for each of
the three types of “C" which are valid (c aslone, Shifted C, or
Control C». You may cause each of these perform &8 separaste
furction or gerierate a3 separate ATASCII code by reviséng the

tables,

When sou have decided on how yYou want your lkeys to bhe redefined,
you tell the opersting s4ystem where it may Tind the definitions
by .storing the z2ddress of those definmitionms in locations 7?2 and

7 hexadecimale.

The low byte of the hewxadecimal address where you have stored the
bews should be placed in location 79, the hiagh byte 1s location
7. This 1s defined as one of the system vectors. It will point
to the default, or original hkey definition table a8t power-on

reset time.

www.atarimuseum.com

REASSIGNMENT OF THE FUNCTION KEYS ONLY

There masy be times when sou only want Lo redefine the functiion

bews and nrnot redefine the rest of the keshoard. The A1200
operating system sllows you to redefine these Lkeys only by
setting wp an B8-hyte table in place of the 192 buste table which
would have ctherwise heen required, The format of this table is

3s follows:

] F1] <“———— Lowest memory location of the tahble
T — +

] FZz]

Fom e +

| F3]

e +

| F4 |

e +

! SHIFT-F1 !

o +

] SHIFT-FZ2 }

o e +

| SHIFT-F3 |

i +

| SHIFT-F4 | {———— Highest mermory location of the tzble
o +

When you have decided what functions each combination must
perform and have built the table, change the system vector FHKDEF
to point to the lowest address of your table. This vedtor is
located at memory 1locations 60 and 61 hexadecimal, ocation. 60
gets the low hste of the he:x address, location 61 gets the high

b‘jte.

NON-REASSIGNAELE KEYS AND KEY COMEINATIONS

The followirng Fkeys or key combinations are either specifically
wired for special Tunctions or are swubjected to special handling

by the operating system.

Even though there might he 3 hardware-generated key code shown in
the tsbhle azhove, and &8 corresponding space in the +translate
tables, there i1is mo way to reassign these functions. This 1is
becsuse the operating system traps the hardware code directly to
perform the specified function and it never gets to the tramslate

mode. These Fkeys or combinations are as follows?$

EREAK —— This function is fTixed as a special case in
the operating system. It is sensed by the harduware.

SHIFT —— This kew is an inteagral part of the hardware
encoding of any key funciion. -

www.atarimuseum.com

CTRL —- This key is an integral part of the harduware
encoding of any key function.

OFTION ——+ .
SELECT }———— All of these are directly wired to and are

START ——+ sensed by the GTIA circuitry.

RESET -- Directly wired to the 6502 reset line.

HELF —- Furnction is fixed by the opersting system.
The help function handling is descrihed
elsewhere in this manual.

CTRL-1 Screen output start/stop furnction. Trapped
by the ocperatirig system at the harduare lkey
decode level, controls the listing start/stop
furniction. See the Users Manual for the A1200,

CTRL-F1 This key combination is used as the bkeygboard
ernable/disabhle function. If it is pressed while
the keyboard is ensbled, it will disahle 311
leyboard functions with exception of the

fellowing?d

CTRL-F1 can still be wused to re—enabley
RESET is the 6502 reset hey,
: cannot bé disahled;
OFTION/START/SELECT not contrelled by the
operating systenm.

CTRL-F2 See SCREEN DMA CONTROL sbove. As noted there, this
furnction is rniot reassignable,

CTRL-F3 See KEY-CLICK ENAELE/DISAELE sbhove. As noted +there,
' this furnction is rnot reassignable.

CTRL-F4 See DOMESTIC/INTERNATIONAL CHARACTER SET above.

www.atarimuseum.com

10

3+49 USER-ALTERAELE KEY AUTO-REFEAT RATE

The A1200 operating system allows yYou to control the rate at
which 3 key, continuously held down, will repeat its entry to the
system. This change may be done wunder program control by
modifying the 0S5 database variable called KEYREF., It is located
at hex address 02DA. —2z-

This wvariable determines the repetition rate by counting the

rumber of VELANK (vertical blanking) intervals which occure For
the NTSC (460 Hz) system, the initial vslue of this variable is 63
for FAL systems, the value is S, This assures 3 wuniform repeat

rate of 10 characters per second fTfor either system,

Urnder control of this wvariable, the maximum “"controllable" Lkey
repeat rate would be S0 characters per second aon the FAL, and 60
characters per second on the NTSC (screen refresh rate). This

would occur with 8 value of 1 in this variasble,

You may also contrel the initizsl delasy which occurs before the
ey repeat starts, The 0S database variable which controls this
is called KRFDEL. Its hex address is OZD‘?.77q

14

It controls the number of VELANKs which sust occur between the
sensing of the key pressed vuntil the first repeat occurs. From
that time onis the repest rate is controlled ss described above.
The 1irmitisl wvalues used by the 0S5 provide 8 0.8 second initiasl
delay for either NTSC (count = 48) or FAL (count = 40) systems.

¥

3.5 CAFS/LOKRR KEY TOGGLE ACTION

The CAPS/LOKRR key on the A1200 functions as shownn in the chart
below?

KEY COMEINATION CURRENT STATE NEW STATE -
CAFS Corntrol Lochk Lower Case

CAFS Alpha Lock lLower Case

CAFS Lower Case Alpha lLochk

SHIFT-CAFS - any - flpha Lock

CTRL-CAFS - - any - Control Lock -
CTRL-SHIFT-CAFS - ang - - o charnge -

The meaning of the terms is as follows:?

Lower Case — All key caps respaond in lower case mode
Alpha Lock — All s3lphabetic keys (A-7Z) respond in
upper case mode, a3ll other keys lower case
Control Lock — All keys Tespond as though the control
: key is beinq held down a3s well as the
selected key

www.atarimuseum.com

3.6 LED INITIALIZATION

The A1200 has two LED’s on the front parnel, called LED 1, and LED
2. LED 1, when 1lit, indicates that the Hegshoard is disabled. LED
2, whern 1it, indicates that the internatiornal character set 1is
selected. The operating system ernables the keyboard and selects
the dormestic character set on power wp and reset. Therefore

these LED’s will both be off.

3.7 GAME CARTRIDGE REMOVE/INSERT INTERLOCK

In the A400 arngd A800, the cartridge interloch mechanism
physically rermoved the power from the erntire system when the

cartridge door was opened.

The A1200 no longer requires this power dowun of the entire
systere. It does, however, automatically cause &8 power—up
initiaslizrastion sequence to occur if &2 cartridge <change 1is
detected while the power is on. :

The initislization sequence itself contains a3 jump through the
cartridge initialization address which adjusts the A1200 to this

cartridge immediately upon its insertion. Likewise, if a3
cartridge is removed, the system reconfigures itself throuvgh the
power on sequenice, to hbe 38 no-cartridge system. This

inmitialization is handled by the Stage 2 VELANK routine.

—

3.8 FONER-ON SELF-TEST) v

During the initial power-—ar, the A1200 ocperating system will
perform the following quick check of the integrity of the systiem

RAM and ROM?

3 Is it possible to write $FF (311 ones) to 311 RAM locations?

b, Is it possible to write $00 (a3ll zeros) to 311 RAM locations?

Ce Does =& checksum of the two ROM’s compare to that stored
withinmn each ROM?

If 3ny of these tests fa1l, the operating system will transfer
control +to the self-test memory test routine. Here & m~ore
thorough test of both RAM and ROM can take place.

www.atarimuseum.com
17

3.9 O0OFTION JUMFERS

The A1200 is provided with a3 set of four hardware jumpers which
are desiagned to +tell the operating system how the system 1is
configqured, As of the date of this writing, only one of the four
Jjumpers has been assigned, specifically Ji. This is specified in
the +tahle below. During the power—-on sequence; the A1200
operating system reads the state of these jumpers and stores this
state in the 0S datahase variashle JMFERS, location 030E,.

The bit sssigrnments for each of the four jumpers i1s as specified
helow. The bits are 311 active low, meaning that if &8 line
reads 3 digital zero, the jumper is installed.

ETT FUNCTION HARDWARE NAME
0 Self test ernable (will run self test if low) J1 (pot 4)
1-3 KReserved fTor future uvse

4-7 Uriused

3.10 ADDITIONAL HARDWARE SCREEN MODES

The A1200 sdds direct access to the remsining special purpose
display processor operaling rmodes. The table below shows the
current mapping which had been provided for the A400 and AB0OD.
The table which follows thereafter shows the added modes and the
numbers which the software can vse to access the extra modes.,

Mode maspping comron to A400/A800:

Software Mode ANTIC MODE GTIA MODE
0 ($00) 2 ($02) 0

1 ($01) & ($06) 0.

2 ($02) 7 ($07) 0

3 ($03) 8 ($08) 0 -
4 ($04) 9 ($09) 0

5 ($05) 10 ($0A) 0

& ($06) 11 ($0E) 0

7 ($07) 13 ($0D) 0

8 (408) 15 ($0F) 0

9 ($09) 15 ($0F) 1

10 ($04) 15 ($0F) i

11 ($0E) 15 ($0F) 3

Mode mapping fTor A1200 (additiorsl):

Software Mode ANTIC MODE GTIA MODE
12 (¢00C) 4 ($04) 0 (rnote 1)
13 (0D O (305 0 (rote 1)
14 (¢0E) 12 ($00) 0
15 ($0F) 14 ($0E) 0

www.atarimuseum.com
1%

Note 1¢ The existing character sets will riot provide

recognizable characters for these new modes, Therefore
you will have to provide the character set if you se
these modes. This 1is done by defininre the full

character set, then modifying the 0S5 dstahase variahle
CHEAS to point +to the most sigrnificzant byte of the
address at which the character set starts.

Appendix E of this marual contains some suggestiorns on
the method for desigrning a3 nmew character set to suvpport
these asdded modes. :

3.11 TEXT SCREEN FINE SCROLLING

The screen editor (E!) now supports fine scrolling of the text
screen data 23s am option. This fime scrollimg option will he
enabled if the dastahase variasble FINE (hex location 026E) is set
rnonzero prior to issuving the OFEN command to the screen editor.
Likewise the fezture will be disabled if this location is set to
00 before isswuing the OFEN.

3.12 DISK COMMUNICATIONS ENHANCEMENTS

The A1200 adds the capability for the resident disk handler to
read and write disk sectors having variable length from 1 to
65536 tiytes, The default lenqth, a3s is used on the A400 and AB0O
currently, is 128 bytes. Eoth 3t power—-on and RESET (warm
start), +the 128 byte sector length is estahlished. Your program
can alter this length by modifyging the 08 database variable
DSCTLN. The location of this two-byte variable is 02DS and 02Dé6

(lo byte in 02D, hi in 02D&).

In addition to the caspability to read and write varizble lerngth
sectors, the A1200 zlso adds the capability to write s sector to
the disk without s read-verify operation always following it.
This 1is the command ‘F’ which was specifically excluded 1in the
previous releases of the operating system.

With this cspability added, You have a8 choice of either wsing the
verify, Tfor system integrity (always read after write). Or sou
can take a chance of writing a3 bad sector on rare occasions but
increasing your averazge speed of disk usage by some value related
to the verify time. You mnay want to experiment with some of sour
proarams with and without verify to see the results. :

3.13 FOWRER-ON DISFLAY ENHANCEMENT

In place of the oriainal power—on memo pad display uvsed by the
A400 and AB0D (in the a3bsence of a cartridge or disk), the A1200
displays a8 dymamic ATARI rainbow. If you press the HELF key uwhile
the rainbow is displayed, the Al1200 will enter the self-test mode.

www.atarimuseum.com

4.0 MEMORY MAFP OF THE A1200

The followimge +tahle shows how the 6502 processor
perceives the variows address spaces which 1t can
3CCEeSS. The maximum 8llowable address ranqge, Wwith the
16 bit asddress of the 6502 is hexadecimal 0000—-FFFF.
This &address ramnge is split, bty the hardware memory
tianzgement circuitry, 3s follows?

(Note$ The A1200 wses 64K RAM’s as the main systiem
writeable memory. Addresses within those RAM‘’s, which
wonld normally have filled the entire memory access
space af 0000-FFFF of the processor, are prevented from
access by the memory Marn3ger. This 3llows ROM¢s,
cartridge menory, arnd peripherals to occupy 3 part of
the memory space 3s is moted below.)

A1200 MEMORY HMAF

HEX ADDRESS WHAT IS ACCESSED THERE NOTES
FFFF-DBO0O 0S-ROM or RAM if ROM disabled 1
D7/FF-D0DD Active low chip selects are

produced for the peripheral
chips throwugh accesses in ithis
MEMOTY P2Qe.

Memory Mapped I/0 Space split ¥
as DODODD-DOFF GTIA
DZ00-DZ2FF FOKEY
D300~-D3FF FIA
D400-~-D4FF ANTIC
DSO00-DSFF ANy access read
or write to an
address im this
range enahles the
cartridae control
line CCNTL on the
cartridge inter-—
face (same 3s A400/
ABD0) .

D1060-DiFF, D&600~-D&FF, and
D700—-D/7FF are reserved for
future use.
0S—-ROM physically present, but 2
cannot be 3accessed here,

CFFF-CO0G 05-ROM or RAM iT ROM is disabled 1

www.atarimuseum.com

HEX ADDRESS HHAT IS5 ACCESSED THERE NOTES

EFFF-ACO0D FRAaM, or cartridge interface
if RDS lirme is pulled up to
+5V by the cartiridge hoard,
A1200 MEMORY MAF (cont’d)

YFFF-8000 RaM, or cartridge interface
if RD4 lirne is pulled wup to
+5V hy the cartridge board.

/FFF-5800 RAM

57FF-5000 RAaM, unless in self-test mode 2
4FFF-0000 RAM

NOTES ¢ 1. Access to the 0SS ROM may be disahled hy

writing 3 zero to port B of the FIA, bit FEO.
Access is mormally enabled, with a8 1 present
in this bit. (Hhen changing this bit inm the
reqister, other bits showld mot bhe changed.)

2, The self-test ROM code 1is physically
present in the 08 ROM at actusl address DOOO-
D7FF. However, this area is used for the
access to the memory mapped TI/0 devices.
Wherr the self-test feature is invoked, the
RAM located from S000-57FF is disabled.* The
memory manasger remaps the memory access such.
thast the 05 ROM physical addresses DOO0-D/FF
are accessed at S000-S7FF. The memory manager
uses port E of the PIA, bit FE7 to determine
whether to access RAM or ROM in the region
S000-S7FF. FE7 s if high,s accesses RAM. IT
‘low, causes an 05-ROM access instead. (Hhen
changing this bhit in the reqgister, other bits
showld not bhe changed.)

(Port FE was used in the A400/800 to service
the agame ports 3 and 4. The vse of the
remaining bhits of this port are specified
elsewhere in this manual.)

www.atarimuseum.com
\ L

S.0 ENHANCEMENTS TD THE A400/800 REV.E OFERATING
SYSTEM INCORFORATED IN THE A1200

This sectionn describes 3 set of enhancenments which
include new methods of handling peripheral products
and, in a separate section, improvements 1in basic
operations of the system. The latter might be referred
ito as "bug fixes".

FERIFHERAL HANDLER ADDITIONS

To Bccormmodate 3 new class of peripheral devices, the
operating system rnow includes 3 relocating loasder, used
to wpload peripheral handlers throwah the serizl I/0

interface.

In the A400/800, device handlers for the peripherals
were uploaded 2s Tixed location (asbsolute) object code.
These handlers were loaded vsing 8 set of device
inquiries, or polls, known a3s types 0, 1 and 2. These
polls are described further in the Atari 400 and 800 0OS

Manual.

The Al1200 s3dds +two other types of polls to its
operating system. Ore poll, bkrnown as type 3, is issued
at power-on or reset tinme. The other, type 4, can be
issued 3s a result of an OFEN command by an application

PTOQT 3Me

Tspe 3 Feoll Caommsandg

The type 3 paoll comrand itself 1s used a5 an "Are You
There?? type of corrand. fissociated with the type 3
poll are two other types, specificaslly thes

3) Poll Reset
and b)) Null FPoll
Foll Reset consists of the following SI0 command byte

sequence (refer to the SI0 document for further
explanation of the byte types):

Eyte Fosition Value (hex)
Device Address 4F
Command Ryte 40
AUX1 4F
AUXZ2 4F

Command Checksum Normal (checked by peripheral)

1 www.atarimuseum.com

c

The 4F in AUX1 snd AUX2 define this sequernce to 2l1l
peripherals as a poll reset.

After responding to a type 3 poll by sending a3 handler
to the system, 38 peripheral is rnot supposed to respond
aqain to a3 type 3 poll. The Foll Reset command, at
power—-up, resets 31l type 3 peripherals, freeing them
to respond to the poll request. However, no serial bus
device sends bachk any data as a result of a3 poll reset

command.,

Type 3 Foll (Are yow there?)

There may te several types of periphersls which can
respond to 3 type 3 poll. In types 0, 1 and 2, the
device address sent on the serizl line specifies which
exact device is being called. In the type 3 poll
processing, however, the address remains fTixed (4F) and
the devices each respond after & specific number of
poll 3 retries. In other wordsy, during poll 3
operations, the computer doesn’t know which periphersals
are actually zsttached, but will keep asking "is angbody
there” uwuntil it has resched i1its last retry and o

peripheral has responded.

FEach peripheral which does respornd to the type 3 poll
rust be designed to count the number of retries of type
3 polls, then to respond as described below on its own
specified retry slot. Each time it sees 3 command
other than a3 type 3 poll, these peripherals must reset
their retry counters. This 3llows the computer to load
the handler for each peripheral which responds, then
restart its poll 3 sequence (oriqinal retry number
restored) to look for another poll 3 response from the

next peripheral (if ang).

Since each peripheral responds only once (after 2 poll
reset), 8 second request a3t 2 specific retry slot
causes no periphersal response and &llows the next

retry slot to be polled.

This poll ("are you there?”) is sent as follows!?

Eyte FPosition Value (hex)

Device address 4F

Command Byte 40

AUX1 o0

AUXZ 00

Command checksum Normal, checked by periphersal

www.atarimuseum.com

When, after checking the retry count, it i1s 3
peripheral‘“s turn +to respond, it sends back the
following data to the computer on the serizl interfacesd

3) An ACK response bytey and

h) 1., Low byte of handler size in bytes (must be
EVEN)

2+ High byte of handler size

3. Device Serial 1/0 Address to bhe wsed
for loading

4., Peripheral Revision Number

These four bytes, if sent by the peripherzl, will be
stored 1in O0S wvariables DVSTAT (0Z2EA hex) through
DVUSTAT+3., If +there is a3 successful return to the 05
(ot &8 timeoul or other problenm), it indicates that
there 1is & handler to be loaded., The 1loasding is
perforned, then the tgpe 3 poll is repeated until 311
retries are exhausted and no peripheral responds.

Orice the device address data is received from the
peripheral during this type 3 poll, it can thereafter
be referenced directly on the serial bus by its address
in place of the original poll asddress 4F.

Specific detazils of the actions taken by the 05 after
receivine zan answer from a8 peripheral mnay he found in

Appendix C.

Null Foll Command

This command is used a8s & serial bus mo-operation. If
any error should occur during loading of 8 peripheral
handler or by the relocator, (cee zsppendix C and D),
the system should be free to "back out" of the 1linking
of the faulty loader and tell the peripherals that it
is ready for the rnext one to be loaded. Since this
null poll is 8 mon—-type—-3 poll, a8ll peripherals will
have reset their retry counters and should be ready for
another sequence of retries, 1lookina for their own
response retrys slot. This msintains synchronization
between the computer and the peripherals.

9

3 www.atarimuseum.com

This poll differs from the Type 3 Foll in that +the
device name and number 1s¢ included in the poll.
Therefore the peripheral need rnot count retries of the
type 4 poll and should answer the poll as soon as the
poll command is recognized. There is no limitation on
the type 4 poll; the peripheral shouvld znswer its type
4 poll each time it is issued.

The peripheral response to a3 type 4 poll is the same sas
for the type 3 poll. The four response btytes are
placed, by the computer, into DVSTAT throwah DVSTAT+3

(02EA throwgh OZED hex.).

N

5 www.atarimuseum.com

GENERAL ENHANCEMENTS TO THE REV. E 0S FUNCTIONS

The following functions which are supported by the A400/800
Rev. E Operating System have beenr further enharniced by the
addition of the following featurest

Frinter CLOSE with data in the buffer -

The printer handler will insert an EOL (end-of-lirme) character
in the printer buffer, 1if orne is not there, bhefore sending the
buffer teo the primter onn & CLOSE. This assures that the last
line will be printed immedistely rather than having the printer
forced offline to ouwutput the firnal line.

Frinter Unit Number Handling -

The printer handler has beern changed so that it will
process the unit mumber in the I0CE, s3llowing separate
addressing for printers F1 through F8.

CI0 Haridling of Truncated Records onn Read -

The CI0O nrnow places an £0L in the uvsers input buffer on the
occurrence of either a record longer than the buffer being reac
or an EOF being erncountered during the read 3attewmpte. This
assures that 311 records are accessihle, even if the user hae
rnot provided a8 sufficient buffer size, he will at least getl 3¢
tmuch of the record as he has provided for.

CI0 Error Hsasndling With Zero Lenaeth Euffer - -

The CI0 will return a2 buffer length of zero (in the 6502 A~
register) whern there is a8 handler error while effecting a3 zerc
lenath buffer trarnsfere. (See CIO0 section in the 0S manual.)

Display Handler Cursor Hahdling -~

The display handler now accepﬂs 8 screen clear code no matter
what wvalwe is in the cursor X and Y ecoordinastes.

Display Harndler/Screen Editor Memory Clesring -

The Display handler and Screen editor will mot clear memors
beyond the end of memory a3s indicated by RAMTOF., Now it is
possible for the uvuser to specify the top of memory to be usec
by the system and to store device handlers or personzl machine
code in the memory area asbhove the display. Changing displaw
araphics rmodes, then, will ot erase any datz which has beer
placed in the RAM area zhove that gssiagrned for wse by the
display or screen editor.

www.atarimuseum.com

Reworbk of the Flostirmg Foint Faclkage -

The A41200 operating system corrects a8 bug in the Rev E 0SS, It
now produces an error statws when an attempt 15 - made tc

calculate the LOG or LOG10 of zero.

New ROM Vectors -

The followiné fived entry point vectore have heen added to the
A1200 ROM setd

E480 JMF FUFDIS entry to power—on display

E483 JMFP SLFTST entry to the self test pagm

E484 JMF FHENTR entry to wuploaded handler enter.
E48% JMF FHULNK entry to uploaded handler unlink.,
E48C JMF FHINIS entry to uploaded handler inite.

www.atarimuseum.com

6.0 OTHER CHANGES/GENERAL INFORMATION

This section deals with items which involve operating system
changes, but which do not easily fit into anmy other category.

IMFROVED HANDLING OF 0S DATAEASE VARIAELES

During normal power—-on sequence (cold start), the 0S database
varishles from $03ED-$03FF are set to zero. Durimg a2 RESET (warm
start), they are NOT changed by the 0S5, This means that an
ernhanced version of the operating system in the future will he
able to make wuse of these locations without relosding them after

arny RESET operation.

These bytes are 38l11 reserved fTor use in future 05 revisionse.

NTSC/FAL VERSION TIMING FROVISIONS

There are various timing differences hetween the NTSC (460 hz) and
the FAL (50 hz) versions. To eliminste the necessity for
3 special operasting system ROM set for each one, the

providing
timing adjustment values are handled within the single

specific
ROM set.

To determine which type of system the ROM is operating on, the
operating system checks a3 flaag within the GTIA chip and adjusts
811 timings a8ccordingly., This was possible because the GCTIA must
be different to handle the modified displayg format for the S0 Hz
version. By making certain timimgs a3 function of the state of
this TfTlaq, it was possible to make extermal timings independent

of the NTSC or FAL system itself.

The timing values relate to the harndling of the 11 Volt
cassette player (Atari 410} arnd the console suto-repeat rate as

shown in the tahle below:

CASSETTE TIMINGS NOW INDEFENDENT TIMING
Write Inter-record gap (long) 3.0 sec.
Read IRG delay (lang) 2.0 sec.
Hrite IRG (short? 0.29 sec.,
Read IRG delay (short) 0.16 sec.
Write File leader 1.2 sec.
Read lLeader delay Q.6 sec.

0.5 sec.

Eeep cue durstion
6.16 sec.

Eeep cwue separation
futo-repeat functions now indeperndent Timing

- Initial delay for auto-repeat 0.8 SEC.
Repest rate : 10.0 char/sec.

www.atarimuseum.com

A1200 0S ROM IDENTIFICATION AND CHECHKSUM DATA

Each of the two ROM‘s in which the A1200 opersting system 1is
contained has 38 capacity of 64K bits organized a3s 8K by 8, Hithin
each of +the ROM‘s is a block of dsta orgarnized as shown i the
disgram below, to identify the ROM and to give its checksum. The
checksum 1s tested by the operasting c=ystem as part of the power

P Sequerice.

www.atarimuseum.com

The format of the block for the CO00-DFFF ROM is as follows:

Form e +
] ROM Clsum (10))]
+ - —t
| ROM Cksum (hid]
e e e +
1w D1 -~} Dz -}
it o +
| M1] M2 |
o e +
I Y1 | Yz |
Fo————— o — +
! Option bste |
A e +
| Al |
+ - —4
{ HZ |
TV S +
| N1 | N2 l
o o +
| N3 I N4 |
e F +
] N5 | Né]
e B +
} Revision #+]
G +

CGoo

Coo1

cog2 -

€003

Coo4

€005

Co0é

coo7z

£608

£oo9

COGA

COOE

Checksum which is the arithmetic
+-~ sum of all bytes i ROM except
the checlksum bytes themselves.
—
‘ _ el ST _—
+—-- Revision date havirng the form
| DDPMMYY where D=dayg digit
i HM=month digit, Y=year digit
-+ FEach 2 4 bit ECD dicit.
Eit 0 = 080 for CO000-DFFF ROM

—+
{
|
|
]
+~— Fart number havinae the fTorm
| AANNNNNN, wWwhere A’s represent
| ASCII characters, N are ECD digits.
|
]
—+

. www.atarimuseum.com

The format of
as follows:

e +
| D1] D2 |
o T +
| M1 | M2 |
e oo +
| Y1 | Yz |
e e +
] Option byte |
et LT T T +
| Al]
+— —+
| A2 |
o +
| N1 | N2 !
o o —— +
| N3 I N4 !
T e +
[NS I N6 [
R e +
| Kevision # |
A e +
| ROM Clksum (10}
+~ —+
| ROM Crksum ¢(hi)]
T +
| vector table |
I for NHMI, RES |
] and IRQO]
e +

FFEE

FFEF

FFFO

FFF1

FFF2

FFF3

FFF4

FFFS

FFFé

FFF7

FFF8

FFF?

the identification

FFFA - FFFF

block for the EO0DD-FFFF ROM

Revision date having the form
DDMMYY where D=day dioit
M=month digit, Y=year digit

Each 3 4 bhit ECD digit.

Eit 0 =1 for ECOO-FFFF ROM

Fart number having the form
AANNNNNN, where A’s represent
ASCII characters,

is

N are ECD digits,

Checksum which is the arithmetic
sum of 311 bytes inn ROM except for

the checksum bytes themselves.

L 4

This area reserved for the power on

reset vectors,

NMI and IROQ vectors.

www.atarimuseum.com

AFPFNDIX A — AN EXAMPILE OF KEYROARD REASSIGNMENT

Ac suiggested earlier in thie document, the ‘leyboard
functions may he reassigrned. The table bhelow gives the
corresponding lkeys for the Dvorahk (3lso krnown as the
American Simplified) Kegbosrd. HWhen the typewriter was
first invented in 18467, Christopher L. Sholes chose &
l1ayout for the teys which would slow down the acood
typists aof his day zand thereby prevent his wmachine from
jamming. This keyhoard has endured to this day.

In 1932, August Dvorak invented this key lagout which
places the most often used characters, including the
vowels, on the '"home" ley line and 3lso redistributes
the keystrokes from a 60-70% left-hand asctivity to an
3lmost S0/50 activity. Certain manufsacturers currently
offer this key layout as an aption. Now you can try it
for yourself if you wish. Only the 1list of Fkey
correspondence is given here. It is left to the reader
to compose the key function table wsinag the -data
contained earlier in this manual.

TOF ROW OF HEYEOARD CENTER ROW EOTTOM ROW
Current Dvorak Current Dvorak Current Dvorak
a ? A A y4 :
q / . Lz H
W , S 0o X - Q
W * »
E . D E C J
e .
R P F u v K
T Y G i R X
Y F H D N B
u - G J H M M
I c K T ’ 4]
. . W
0 R L N . Vv
. v
P i : S P Z
H 5 / z
1/4 ’ oo " - _ (underline)
1/2 . ’ -

www.atarimuseum.com

Ty

AFPENDIX E - SUGGESTIONS FOR THE CONSTRUCTION OF A NEW
CHARACTER SET FOR THE NEW GRAFHICS MODES

This appendi» covers the new graphics modes 12, 13, 14
and 15 now provided on the A1200. Modes 14 and 15 are
pure graphics modes with resolutions of 1460 by 20 and
160 by 40 respectively, Since these are not character
modes, the discussion below will be limited only to

modes 12 arnd 13,

Graphics 12 a3nd 13 do not produce recognizable
characters, for the wmost part, wsing the standard
character set. One will understand why this is true by
exxamining the following comparison betweenn Graphics
mode 0 to 12 and 13.

Mode D is 3 40 character nmode., Each character is
formed out of 8 pixels (smallest division of the
SCTEEern) « Esch pixel is 1/2 of 8 color clock
wide, '

Modes 12 and 13 are s3lso 40 character modes.
However, each character is forwmed out of only 4
pixels, with each pixel 1 color clock wide, This
forces the character to he the same width as that
vsed im Graphics mode 0, but cannot convey the
same information within 4 bits as with B as far zas
character recognition 1is concerned, (It ig

difficult to form 3 recognizable character in s

four by eight dot wmatrix).

Lets examine how the 4-pixel character is fornedf again
comparing the way the 8-pixel character is formed in
mode 0°¢

Hode 0 has & choice of two colors for each pixel
(the hardware manual says 1 1/2 colors, but it is
actuzlly either the color and luminance ot
playfield 2 if there ics 3 zero bit in the selected
pixel position, or the background color with the
luminance of playfield 1 if there is a 1 bit 1in
the selected pixel position. Therefore each
single bit in the chsracter defimition byte for 3
given line occupies & single 1/Z2-color-clock-wide

pixel position. The character set built inte the

0S defines the characters in an 8 by 8 matrix,
with ome of +the 8 bytes which make wuvp the
character selected for each of the 8 scan 1lines
which comprise the character.

www.atarimuseum.com

g;_

Mode 12 &8lso wses B scan lines per character,
However, it uses the character bytes in a2
different manner. Ezch of the character bytes
retrieved by the ANTIC is trested as a set of four
two-bit quantities, where each bit p=ir describes
the color which is to be applied to orne of the 4
single color-clock-wide pixels which are part of
the character. Mode 13 is the same in 1its
treatment of +the dats bytes, but each of the
characters is double-length (146 scamn lines instesd
of 8) and each data byte is wvsed +twice which
effectively doubles the lenath of the character,

Lets look at 3 typical charsacter, for example 3 H. The
bits which form 3 W in the character set are similar to

the following?

1000 000O01 displays X x
1000 0O0CO01 x x
10011001 x XX X
10011001 x XX X
10100101 X x X X
11900 0011 xX xX
110000211 XX xX
10000001 x x

(NDODTE: This is not the exact representation, but is
used as an exxample of correct interpretation in mode O
and incorrect interpretastion in mModes 12 and 13,2

if you view the sample set of bytes, each at
consecutive addresses within the defined character set,
it actually looks like @ W when you trace the outline
formed by +the 1/¢ in the byte set, &8s shown in the
display example to the riaht of the byte

representation.

In this mode 0 display, each of the 1’s would be one
color, and each of the zeros would be asnother color,
assuring a readable display. ’

For the modes 172 and 13, the four {(rot 8) pixels are
controlled as followss

If two-bit vslue is? Thernn the pixel color is$
00 the bsackaround color
o1 the playfield 0 color
10 the playfield 1 color
11 the playfield 2 eolor

(if bit 7 of char=0)

11 " the playfield 2 color
(if bit 7 of char=1)

€

www.atarimuseum.com

For the example shown, thern, the 4th lime from the
bottom would display a2 10 10 01 01 or 4 pixels of
playfield colors 1, 1, 0, 0 in a3 row, if the standard
character set i1s wused. and the bottom—most lirne would
display playfield colors 1, EAK, FEAK, 0 in 3 row. As
Mmay be imaaqined, difficult to recogqrnize such a
character. (This character is a8 mirror image left to
right - nonsymmetric characters would be evenn nrore

difficult to recognize.)

To build & character set for these modes 12 and 13,
then, it is suqggested that you build each character as
double wide, to 3llow a totsl of 8 pixels (by 8 lires)
to define +the character. This would 3also mean
assianing two charscter set locstions for each
character and treating each character printed in these
modes as two characters to be printed. For the example
of the H, the character set might look like this?

Byte set 1% ‘ BEyle set 2¢
10 00 00 OO 00 0D 00 10
10 06 00 GO 00 00 00 10
10- 00 00 10 106 00 GO 10
10 00 00 10 10 00 00 10
10 00 10 0O 00 10 00 18
10 10 00 00 00 00 10 10
10 10 00 0O 00 00 10 10
10 00 00 00 00 00 00 10

Fyte set 1 may represent ATASCII value hex 57 within
the new character set tabhle, and set 2 m3y be 3t
ATASCII wvalue hex D7 (hex 57 plus hex 80) if desired.
You may Teel Tree, of course, to assign your character
sets in any manner you desire.

- Therefore 1if you would print these two characters side
by side on the screen, it would become effectively a8 20
character per line mode, with the resultant 10-
combination treated as the 1-bit in the mode 0 example
and the 00-combination as the 0-hit in the mode 0
examnple, forming a recoaenizable W in the process.,

Note a3lse that ygouv may want to design these new
character sets in a 7 by 7 matrix starting the upper
left hand corner of the bit-pair set to sllow 3t least
one blank row and column between each of the new
characters, (This was not done in the example).

Thus many combinzstions of colorful characters may be
formed vusing this technique, 23llowing the wuser of the
-A1200 additional flexibhility for his programs.,

www.atarimuseum.com

APPENDIX C — SERIAL BUS PERIPHERAL HANDLER LOADING, LINKING., USE

This appendix contains technical detaills regarding the serial

device handlers. It is not written for the general user however
contains information essential for use by a developer of peripherals
for the A1200 system.

A1200 HANDLER tO0AD AND RELOCATION DURING POWER-UP PROCESSING

[Note: The loading procedure described here is also Used to load
handlers when the loading is application—specified after power—on has
completed. The only differences are where in RAM the handler is
loaded, and handling of loading errors. Accordingly, this single
section deals with both loading operations. The major point of view
is toward loading at power-on time to the MEMLO boundaryi differences
for the application—initiated lpoad are noted. See section titled
APPLICATION~-INITIATED LOAD for mere on this subject.]

After a peripheral rvesponds to the Type 3 Poll, the 0S will then
compare the sum of MEMLO (O2E7 and OR2EB hex) and the size of the
handler to be loaded (DVSTAT and DVSTAT+1, O2EA and O2EB hex} to
MEMTOP (C2ES and O2E& hex) to determine that there is room to load the
handler. If there is insufficient room» the bhandler will not be
loaded, and the 0SS issues a Null Poll command (section on Al1200
POLLING DURING POWER—-ON) and proceed wlth further que 3 Poll1ng

(POWER-ON COLD STARTstep 9).

Otherwise the peripheral handler is loaded, starting at MEMLO and
proceeding until the load is completed. (Note: the load address may
also be application specifiedi see section on APPLICATION-INITIATED

t OAD.) The loading operation is achieved using the Operating System’s
relocator (see Appendix D). A call to the relocator is made, -
specifing all parameters needed:

o Loading address. This is either & copy of MEMLO, or the
application—supplied load address. Before handing this value to
the relocator, the 0OS Type 3 Poll process insures that i¢ is
even—valued by adding one if it is found to be odd; (Note:

a "Bug" exists in the 6502 processor where a JMP indirect
instruction will fail if the two-byte indirect pointer is
Telocated ecross a page boundary. This may be avoided by
placing 211 indirect pointers on even addresses; since
lpading always occurs on even boundaries, the pointer will

never cross a page boundary.
o Zero—page loading address. The handler will not load into page
zero. This address is set to 80 hex:)

o Address of get—-byte subroutine described below.

1

www.atarimuseum.com

The get-byte subroutine supplied to the relocator calls on

SI0 to get the handler relocatable object records from the peripheral
and then pass them a byte at a time to the relocator. The rvrecords

is read from the peripheral in numbered blocks of 128 bytes
each, numbering starting at 0 and going as high as needed (255 max).
The cassette buffer is used for storing each block as it is

being fed to the relocator. The final block may be wunfilled;
get—-bytes will stop from the relocator when the End record is
processed: so the vemaining portion of that block is ignored.

Serial port lcad commands are as follows:
o Device address taken from Poll response;
o Load command "&* (2& hex, 038 decimall;

block number to be loaded:;

1l

o Auxl

o Aux2 = undefined (must be ignored by peripherall;

o Appropriate checksum.

If the peripheral is asked to supply a block whose number is out

of range, it will either NAK or not vrespond (preferable acfion is no
response). The reader will then pass error status to the relocator
which will pass the error on to the caller. At power—on., the caller
is the 0S Type 3 Poll routine, which tesponds to the error by

ignoring this peripheral and continuving polling for other pevipherals
When loading is being called by an application, ¢the IOCB is closed and
ervor 133 (Device Not Open) is returned to the application.

During cold-start processing, the 05 ignores all parameters v
returned by the relocator when relocation completes except the errorn
status. All relocating loader errors produces the results of the

preceding paragraph.

No check will be made that the handler is ectuvally relocated properly.
Some errors will be detected by the relocator; however it is the
responsibility of the peripheral designer to create a proper device

handler.

The hsndler must cccupy conticuous RAM, startinpg ot the loed cddress,
No restriction is placed on the use of this RAM area (it may be code,
variables, or data} except that the linkage conventions (section on
INIT. AND LINKING DURING POWER-ON) must be followed.

When loaded under applications request, the size of the area allocated
for the handler can be larger than {the minimum required, and the
handler may make use of this extra RAM as needed {(see section titled
L.OAD, RELGC. , INIT. , USE). Hhen loaded at MEMLO during power—up, the
handler will specify its RAM neesds (section on INIT. AND LINKING
DURING POWER-ON and section titled SYSTEM RESET REINIT).

2

www.atarimuseum.com

A1200 INITIALIZATION AND LINKING DURING POWER-UP PRDCESSING

CNote: The handler initialization and linking procedures during
power—up processing are very similar to those during warm—start
reinitialization and application-initiated handler loading. Therefore,
this section serves for all processes. It is written in terms of the
power—up sequence, with occasional test conditions for the warm—-start
variations. The mayjor differences in this procedure between power—up
and warm—start are described in section titled SYSTEM RESET REINIT.
Application—initisted load is described in section titled

LOAD, RELOC. , INIT. , USE. 1

Once loaded, a handler will be linked into the system in three

ways:
o The handler ‘s RAM vusage will be declared;
o The handler ‘s name and linkage table address will be entered
into the handler table;
o The handler s linkage ftable will Be entered into a linked—1list

of known Ipaded handlers for System Reset (warm start
reinitialization). A .

3

www.atarimuseum.com

The handler will have a linkage table at its load address. This
table contains the following:

OFFSET CONTENTS
0o - 14 Standard handler entry vectors (reference A):
OPEN vectari
CLOSE vectori’
GETBYTE vector;
PUTBYTE vector;
GETSTAT vectori
SPECIAL vector;

initialization code JMPi

15 tinkaga table'checksum;

16 - 17 Handler size in bytes ¢o add to HEHLD;

18 —-19 - - Handler.linkage table chain forward pointer;
20 - 21 Zero (reservedAfor future expansion)

Byte 13 (checksum} is calculated such that the wrap—around-carry

sum of bytes O through 17 is FF hex {(one ‘s—complement negative .zero}i
it is used by the operafing system to check the integrity of the
linkage table during system reset (warm start) reinitialization.
bytes 0-17 may wvary depending on load address the checksum will be
calculated after the handler is loaded. Butes 18-1% point to the
handler linkage t=ble loaded next. If this ig the last handler
loaded, this forward pointer is null (zerol}.

Since

4

www.atarimuseum.com

The initialization process for a newly loaded handler immediately
follows its loading:

[Note: All steps of this process are performed by a subroutine
which is normally used as part of the 0OS process of linking new
handlers into the system. This subroutine can be called by other
system routines; the calling sequence is discussed in section titled
SUBROUTINE INTERFACES. As vused during power-up loading of handlers
following Type 3 Polling. the MEMLO parameter used in step 4 is set
ons indicating that the handler‘s size is to be cdded to MEMLO. 3

1. The 0S adds the new handler linkage table at the end of
the linkage table chain. This is done by starting st the head
of the chain, CHLINK (in the OS database) and following the
pointers until a null (zero) pointer is found. For each
linkage table in the chain (except the last), the checksum is
checked to verify the integrity of the linkage table; checksum
failure results in failure to initialize the newly loaded
handler, and the rest of this initialization procedure is
bypassed. No error is reported out of the 0S5 during coldstart
(in this case, polling continues with a Null Pall, followed by
Type 3 Poll, POWER-ON COLD START step ?). In the case of a
non—0S caller, the error is indicated to the caller by
returning with carry bit set. If the checksums are OK:, the
address of the new linkage table, which is the load address of
"the handler, is placed in the null pointer which was at the
end of the chain. Then the pointer in the new linkage table is

nulled (zevoed);

2. The 0S loader will then JSR to the handler initialization
codei;

2a. The handler will initialize itself, optionally wutilizing the
handler table enftry subroutine in the resident 0S5 (section
fitled SUBROUTINE INTERFACES). Ervrors occurring in the
linking process will produce linking feilure (discussed
below). The handler will initialize itself as follows:

2b. Cell the OS-vresident{ handler €cble enfry subroutine to add <
handler enftry for this new handleri

2c. Optionclly cesfablich Che linbkcroe Taoble handler cize. The
handler cize could simply heve becn loaded into €he Iinkage
table at relocation time, in which case the handler
initialization procedure now takes no further action.
Alternatively, the handler can calculate the size and insert
the rvesult during this first initialization. The handler will
calculate this size only once, and supply the result to the
operating system in the linkage €able at this point during
power—up initialization. The handler will not modify these
bytes in the linkage table at any subsequent time. The 0S
flag WARMST can be used to disfinguish power—on initialization
from subsequent warm—start reinitialization. The handler size
need not be returned to the 0SS if WARMST is nonzereo. If the

S

www.atarimuseum.com

handler calculates its RAM needs, it is responsible for
insuring that the rvesulting addition to MEMLO does not exceed
MEMTOP. Also, it is the handler’s rvesponsibility to ensure
that the size set by the handler is even—valued. It is safe if
the calculated size does not exceed the size reported by the
Type 3 Poll (section on PERIPHERAL POLL DURING POWER-ON)J;

2d. Return with Carry bit clear if there was no init errori
otherwise, return with carry seti

(Note: the handler init need not save any 6502 registers.)

3. If the handler initialized unsvccessfully (Carry returned set)
the new handler linkage table is rvemoved from the
linkage ¢{able chain using the routine described in section
titled SUBRDUTINE INTERFACES for that purpose, and the handler
installation is terminated. In this case, none of the
following steps is performed; no error indication is given out
of the 0OS during coldstart, and polling continues with a Poll
Reset followed by further Type 3 Polling. In the case of a
non—BS call €o this initialization process, the error is
returned to the caller by returning with the carry bit set.

4. If the handler initialization was successful (Carry returned
‘clear) the OS will then check the parameter to see what mode
of initialization is being performed, to determine whether or
not the handler size should be added ¢to MEMLO. If the
parameter is set, then the handler size should be added %o
MEHMLB. If the parameter is not set, the handler size should
not be added €o HMEMLO. In the -latter case, the handler size
entry in the handler linkage table is cleared to zeros

S. The handler size is added from the.handler linkage table fto.
MEMLO (02E7 and O2ES8 hex);

The lintzge faoble checksum is celculated and inserted

into the table. This is done by first zeroing the checksvumi
then calculetling the checksum of {he first 18 bytes of the
teblei then storing the one’s complement of the resultino sum
as the calculated checksum of the linkage table.

‘0\

In sfep 2+ zbove, {he handler may infterrosate the system flag

WARMST fto determine the time of initialization. WARNMST (0008 hex)

is zeroed by the 0S st the beginning of power—on processing.

Unless modified by other code in ¢the system, WARMST remains zero until
the [SYSTEM. RESET] key is pressed, when it is set to FF {(hex). Should
this be unacceptable to the handler initialization, the handler should
keep an internal variable to keep track of which initialization is

cccurring.

Handler tecble overflow crror is a possibility in step 2b, above.

The handler should rveturn with Carry set to indicate initialization
failure, unless it performs some reasonable ervor recovery.

&

www.atarimuseum.com

Note: The above procedure uses DVSTAT+2 and DVSTAT+3 (02EC and
O2ED hex).

7

www.atarimuseum.com

A1200 APPLICATION-INITIATED LOAD

Most of the loading and initialization processes of an
application-initiated load are identical fto those used for power—up

load.

Those differences between the two (MEMLO handling) which affect

the handler are discussed in section on INIT. AND LINKING DURING
POWER-ON. The major difference liegs in the ppolling processes used.

A1200 APPLICATION—-INITIATED OPEN POLL (TYPE 4}

When an application calls CIO to perform an open the following

DCCUTS!

1.

The 0SS flag HNDLOD (0O2E? hex} is interrogated to

determine whether the application desires a Type 4 Poll for
the device being opened. HNDLOD=zero means condifional poll
(step 3); anything else means uvnconditional poll (step 2}i

CNote: the operafing system sets HNDLOD zero at power—on

4.

]

and sysftem reset. If the application does not modify HNDLOD,
conditional poll will always be selected by any OPEN.]

If uncaoanditional poll is selected, a Type 4 Poll (see below)

ocCurs. If no peripheral answers: step 7 is performed. If a
peripheral answers, its 4-byte answer is returned by CIO to
the application in DVSTAT through DVSTAT+3 (O2EA through O2ED

hex) (proceed to step &)

If conditional poll is specified, CIO checks for ¢the dgvice in
the handler table. If an entry is found: the handler already
exists and normal open processing continues. Proceed to step

Si

If conditionel poll is specified and no handler enfiry ic
found, ¢ Tupe & Poll is¢ izsuvcd. Everything proceeds from here
as in cten Z;

sy fect is flcooced to the cclline
CPpiiciticon Ly cobiine DVETSY ~nd DVUSTAT+I (OR2EA onog C2ED houi
to zero. I/0 status returned indicates either successiul OFoiv
or open feilure for cny of the standard set of possible
TE3sS0NSi

~

I¥{ mo poll woe iss

o
et
jos o
~
"

e

If a8 poll wes issved and successful, the IDCB is
"provisionzslly" eopened. This includes all normal CIO OPEN
processing, but includes none of the handler open processing
since the handler is not loaded &t this timse. The IOCB is
marked “provisionally" open in the following ways:

o The handler tcble pointer ICHID is set to 7F (hex};

8

www.atarimuseum.com

o The put address ICPTL, ICPTH is set pointing to the
OS~-resident application loader voutine;

o0 ICAX3 contains the device name for the handler loader tablej
o ICAX4 contains the device serial address for loading.

Normal status (01) is returned following a provisional open,
and DVSTAT ¢hrough DVSTAT+4 (O2EA through O2ED hex) contain
information needed by the application to provide RAM for the
handler load which will follow (see below);

7. If a poll was issued and no device answered, the I0OCB is not
opened and errvor 130, Non—existent Device, is returned.

The DS flag HNDLOD (0O2E9 hex}) is set to zero each time CIO
treturns to the application, regardless of what call was made or the

results of the call.

Q

www.atarimuseum.com

A1200 LOAD, RELOCATION., INITIALIZATION, USE

Following a "provisional® open the application must check the

DVSTAT bytes to determine the need to allocate an area for the handler
which is to be loaded. The application must set aside an area, on an
even address, at least as large as the handler size specified in
DVSTAT and DVSTAT+1 (O2EA and O2EB hex). Then the application must
place the address of this area in DVSTAT+2 and DVSTAT+3 (02EC and OZED
. hex) and the length of the area in DVSTAT and DVSTAT+1 (QR2EA and C2EB
hex). (The applicaftion may allocate the minimum area by leaving'
DVSTAT and DVSTAT+1 alone.} If the even starting boundary cannot be
assured by the application, it must allocate one more byte than it
reports in DVSTAT/DVSTAT+1. The application signals the completion of
these steps by setting the flag HNDLOD (O2E? hex) nonzero.

The handler load occurs auftomatically when the applicaftion

calls CIO to perform any I/0 coperation except CLOSE via the
“provisionally"” open I0CB, when HNDLOD is nonzero (the CLOSE command
will simply close ¢the I0OCB without loading the handler?). The steps

taken by CIO is as follows:

1. The IOCB is checked to see is it is provisionally open. If it
is not: normal 1/0 processing confinues;

2. If the IDCB is provisionally open, the flag HNDLOD is checked.
If the flag is zero, error 130, Non—-existent Device, is

returned;

3. If the IDCB is provisionally open and HNDLOD is nonzero, the
handler is loaded (using the procedure of section on HANDLER
LOAD AND RELOCATION DURING POWER-UP) and linked (using the
procedure of section on INIT. AND LINKING DURING POWER-ON).
Prior to the load, the load address in DVSTAT+2 & DVSTAT+3 is
forced even. The initialization process is called with the
HMEILD parcameter off, indiceting that the handler size is not

4ttt

added to A=EmL0:

4. If the losding or inifticlizction Tcils: the IODCB is closed and
error 130, HHon—erigtent Dovico, it veturned;

C ic

Ln
et

I+ ¢he locdineg end initicrlizction cucceeds, the I0
modified €o indicate it is properly opcnid:

o Handler ID, ICHID:, is set to point to the proper handler
table entry. If the entry is not found:, erreor 130,
Non—existent Device, is returned, and the IOCB is closed;

o Normal CIO OPEN processing ie pevrtormed, thus filling the
I0CB properly:, including the put address ICPTL, ICPTH which

is set to point to the handler put—byte entry. Additionally,
the handier OPEN entry point is called by CID.

&, CID completes processing of the I/0 command originally called
by the epplication.

10
www.atarimuseum.com

" than once-by-an application. 1-

[Note: it is extremely {mportant that the application not modify

the handler once it has been loaded. Users of high—level languages
such as BASIC or PASCAL must remain aware of how the language
environment, particularly the language memory usfage, may affect the
handler. DOS 2 uvsers must be aware that the DUP overlays memory which
could contain I/0 handlers. [SYSTEM. RESET] "uses" loaded handlers via
the process of reinitialization; therefore, system reset processing
could fail if any loaded handlers have been modified. Also note that

unpredicteble results will occur should the handler be loaded more o

11
www.atarimuseum.com

A1200 SYSTEM RESET (WARM START) REINITIALIZATION

This section describes the sequence of events taken by the

operating system during system reset (warm start) reinitializetion.
This consists of actions which have existed in the 400/800 revision B
operating system plus new operations which are the A1200

enhancements being described in this document.

Only that degree of

detall needed here is included.

1.

E.

To perform the initiclizction of loeded handlers (ctcp

. "The 0S sets the warm start f£1lag WARMST (0008 hex} to FF- -

hax;

rRAM

Certain variables in the 0OS database are cleared to zero.
the

outside the 0S database is left untouched. In particular,
handler tsble and &ll IDOCB‘s is zeroed;

MEMLO (02E7 and 02E8 hex) is set to 0700 hexi;

0S resident handlers is initialized and entered into the
handler ¢able;

The spplicstion cartridge A" is initialized, if
present;

Cassette or disk initialization occurs (CASINI or
DDSINIY. At this time, the DOS updates MEMLO by adding its

size, ‘and any handlers within the DOS are initialized and.
entered into the handler tablei

Upon return from the cassette—booted or disk-booted
reinitialization, ¢the operating system will reinitializa all
bhandlers which have been loaded into RAM. The procedure is

described in detail below;
The 0SS will start the coaréridage or Jump Cthrough DOSVEC.

- - ¥
g cbovel,

the operefing system will proceed cs Follows:

i.

[y

The intevrncl pointer CHLINK ic checked to see if any hondlers
heve bocan roods . Thic pointcr it null {zevol I{ Thoro ove
loaded handlers, or it points to the linkage table of {he
first such handlery

If @ loaded handler exists, its linkage fable checksum is
talculated and checked. If the sum is not two’s—complement
zeroa, the handler has been desiroyed and this portion of the
0S initielization ferminates (no error is recported);

If the linkage table checksum is OK, the handler is ve—linked

and re—iniftialized according to the procedure of steps 2
through &6 of section on INIT. AND LINKING DURING PDWER-DON; the

FMENMLO perameter is set on so that the handler size will be
asdded to HMEMLO; ’

i2

www.atarimuseum.com

If an error occurs while ve—initializing the handler, this
portion of OS initialization is terminated (no error s

veported);

The forward pointer for ¢the handlevr linkage table chain in
this handler ‘s linkage table is checked. If it is null

(zero), this phase of initialization is complete. If it points
fo another bhandlier, steps 2 through % are repeated for each

bandler in ¢the chain.

13

www.atarimuseum.com

Al1200 SUBROUTINE INTERFACES

Three subroutines are added to aid the initjalization process for
loaded handlers. The first searches the handler table for an empty
slot and makes the entry for the handler. The second follows the
handler linkage table chain to remove a handler from the chain. The
third performs inifialization processing for a loaded handler.

-All three routines are called via JSR to the appropriate entry

vectors (below). = All parameters are passed through "the machine "o v s

registers.

The entry addrecsses for these routines is as fellows:

E4B? hex Handler Entry Routine
E4BC hex Handler Linkage Removal Routine
E48F hex Handler Initialization Routine

14
www.atarimuseum.com

HANDLER ENTRY ROUTINE

Parameters for this routine are provided in the machine registers.
The routine is written for use by the 0OS handlers,
The parameters it wuses are passed as follows:

XY Handlér nameéi
A: High byte of linktage table start address;
Y: Low byte of linkage table start address.

This rTvoutine searches the handler table from start to the first empty
slot. If no empty slot is found (fhe table is fulll, ¢the carry is set
on teturn to the handler to indicste an error. If a duplicate handler
name is found, a different error is refurned (also see below). IFf
neither of these error occurs, the handler entry is inserfed into the

table at the first¢ empty slot.

If the entry was successful made, the Carry bit is cleared on return
to the handler.

Ifnthe.héndler table is full, error return is indicated by setting the
carry bit. This error is distinguished from the duplicate—entry error
by also setting the Negative bit. The registers are undaefined when

this return is made. The handler should not proceed with
initialization; see section on INIT. AND LINKING DURING POWER-ON.

If there is a duplicate handler name in the table, the condition is
indicated to the calling handler by refurning with Carry set and
Negative clear. In this case the A and Y registers are returned to
the handler unchanped from the call, and the X register is an offsecé,
relctive to the first byte of the handler tsble, pointing to the
second byte of the 3-byte table entry where the matching device name
was found. The handler has the choice of discontinuing
initiclization: replacinpg the older handler entry, or chaining itself
in (replacing the old entry but saving it in order to cell ¢the older
handler whenever an I1/0 call belongs to the older handler).

15

www.atarimuseum.com

HANDLER LINKAGE REMOVAL SUBROUTINE

This routine undoes the handler linkage performed by the HANDLER
ENTRY routine. Its parameters are also passed to it within the
machine registers. The parameters required are as follows:

jUA:__Higb gutg”pf_qﬁﬁfgssvof hanqlgr linkage ?able;
Y: Low byte of address of handler linkage table.

This subroutine seavrches the handler linkage table chain for the

linktage table having the sddress passed in A and Y. The linkage table
checksums 1s computed and checked along the way to verify the
integrity of the chain. When the proper linkage table is found, t{he
handler size is checked €o determine whether or not the handler was

loaded at MEMLO. If the handler size is nonzero, the handler was
loaded during power up at MEMLO, and it is illegal to remove it. In
this case, the subroutine returns with the Carry set. Otherwise, the

linkage table is removed from the chain by copying i¢ts forward chain
pointer contents into the forward chain pointer of its predecessor in

the chain.

If the chain search terminates either by finding the end of the chain
{(null pointer) or a bad linkage table, no action is taken and the
Carry bit is returned set to indicate the error. Carry is cleared to
indicate that the table was found and removed. The other registers are

undefined upon return.

This subroutine is supplied to allow an application to request removal
of a previously losded handler when it is no longer needed orv when the
RAM must be reclaimed. It is suggested that the handler CLOSE routine
check the flag HNDLOD (0O2E9 hex); it may be set nonzero by the
cpplicction beforc CLOSE to indicete that the opplication wishes the
hondler unlocded., The hendler is responsible for removing itself when
unloccing 18 tcocouvesticed: the handler ¢table entry cshould be deleted:
end the linktecge table must be removed from the chain. The IOCE byte
ICHID may be uscd “o Tind %the hendler table entry. ond this subroutine
is used To rcmove €he link from the chain. INote: The 0SS variable
COLDST is interroseted by this routine to determine when the caller is
the operating system itself at cold start time. In this case: the
handler is wunlinked even fthouvoh it is loaded at HMEMLO. 1

Note that, except as described in the paragraph above: the handler
~must NOT remove itself if it has been loaded at MEMLO. This is the
reason fthat this subroutine checks the handler size for
application—loaded handlers. If the handler receives error status
from this subroutine, it should NDT remove itself €from the system
(except it i1s still permissible to remove the handler table entry).

Handler €able rTemowval is done by zeroing the device name byte in the
handler table.

16

www.atarimuseum.com

INITIALIZATION SUBROUTINE

An INITIALIZATION subroutine entry point is included in the 05 to
provide the handler initialization function to be easily performed
when handlers are loaded by a non—DBS routine, for example by
AUTORUN. SYS.

The INITIALIZATION subroutine performs all €he ftasks (steps 1-6)

for initialization described in section on INIT. AND LINKING DURING ~ -+ -«

POWER-DN. This rouftine requires the following parameters to be passed
to it in the machine registers:)

A High byte of address of handler linksge {able;
Y: Low byte of address of handler linkage table.

In addition, the Carry bit must be set by the caller to indicate
whether the handler size should be added to MEMLO: Carry set on means
the subroutine allows the adding of the handler size {o MEMLO.

Carry clear means the handler size is zeroed, thus suppressing

its addition to tMEHMLO.

This subroutine returns to its caller with the Carry set if a
linking error occurred (and the linking is not performed}. Carry will

be clear if linking was svccessful.

i7

www.atarimuseum.com

g

APPENDIX D — RELOCATING LCADER

-The ££5272="" Operating System ROM includes a subroutine which can be
used to load certain types of object code.

Due to the limited amount of space available in the 0S ROM, only a
limited amount of error checking can be done. Therefore, a strict set
of tules has been established for the format of object code which can
be relocated vsing the facilities of this built-in loader. If the
format is not properly followed, you will obtain unpredictable
results. This loader is not accessible to user programs. I¢ is only
described here to provide peripheral designers with data appropriate
for correct structure aof the handler object code.

FORMAT OF THE LOADER PARAMETER BLOCK

Before executing the relocating loader subroutine, the OS provides

the lpader with certain information. This is & table of data located
at hexadecimal O2CF within the DS RAM area. A total of S bytes of
data must be provided. They are organized as shown here:
T —+
low byte H GETBYTE ADDRESS { $£02CF
+ +
" high byte :
A e e + .
low byte H LOAD ADDRESS _ H $02D1 .
+ ‘ +
high byte | H R
o +
one byte H ZL.OAD ADDRESS H $£02D3
+ :

The interpretation of the bytes in this table is as follows:

The GETBYTE addrsss is a two byte address of the entry point for the
Get Byte routine. This may refer to an existing GETBYTE
routine for a perzpheral already supported with coresident code.

SUBROUTINE" below.

The LOAD ADDRESS parameter specifies the base address from which the
calculation of actual object code placement and cross reference will
be made. For example, if the relocatable object code was all
assembled to be relocated with respect to its own location O0OO0 and
the LOAD ADDRESS specifies 00 (low byte), 20 (high byte), then the
code will be loaded beginning at $9000. All relative relocatable
address references will then bs changed to reference the new code

location at $9000.

i8

www.atarimuseum.com

N

The ZL.OAD ADDRESS is a one byte zero page address which is vused as the
base address for the relocation of any zero page teferences used in
the relocatable rode. Any references to page zero variables are

ad justed during relocation by adding this ZLOAD ADDRESS as an offset
to the relocatable address. This forms the actval load address faor
the variable and its references.

LOADER-TO~-USER PARAMETER BLOCK

Before the DS called the loader vroutine, it had to provide a block of
parameters to give the loader wvarious information. The loader, in
turn, provides a return set of parameters.)

These parameters will allow the OS5 to defermine where the next
relocatable subroutine may be loaded, if desired:, to allow a sequenced
loading of many such routines. It also provides you with the absolute
RUN address once the relocation has taken place to allow a Jjump into
the now resident routine.

Here is a diagram showing the way the table appears in memory. It
begins at hexadecimal address %02C%9.

+
lIow byte H RUN ADDRESS H $02C9
: + +

high byte ! §

T +
Iow byte H HIGH USED ADDRESS | $02CB
y + + .
‘high byte ¢

‘ e + .

one byte i{Zpage Hi Used Address ¢ $02CD .

e s &

RUN ADDRESS is the execution entry point. It has been calcvlated
by the Loader as the absolute address which was specified from the
data in the END record. If the RUN ADDRESS is zero:. then you did
not specify a run address in the END record. (Record structure
is covered in the next section}.
S A SR ther o~~~ tip> 26
bl UL La. TE. . T8l n

=C%
[

i $

- - N

HIGH USED is the address of the next available memory location
above that which has Jjust been used by the loader. If there are
multiple relocatable routines to be loaded, the information in the
low and high bytes of this parameter may be moved directly into the
User—to—loader parameter block to direct where the NEXT rouvtine

is to be loaded. The equivalent locations within that parameter
block are %02D1 (low byte) and $02D2 (high byte) of the LDAD

ADDREGSS.

‘ , 19
www.atarimuseum.com

Zpage Hi Used is the address of the next available zero page
memory location above that which has Jjust been used by the loader
If there are multiple relocatable routines to be loaded, the

data in this parameter may be moved directly to location %02D3,
the ZLOAD ADDRESS. This allows a chain of relocatable files to
dynamically configure themselves in the memory using the loader’s
output as the Input of the next loader call.

RECORD STRUCTURES

The relocatable object file consists of a sequence of one or more
segments. An object segment ctonsists of a single TEXT record
followed by one or more INFORMATION records, The format of the
TEXT and INFORMATION records i{s discussed in the secftions which

follow.

The Loader processes the data obtained by the CETBYTE routine
as obyect segments. The TEXT record is & sequence of machine
instructions and data. The INFDRMATION record(s) associated with
each TEXT record specify exactly which of the bytes within the
TEXT vecord will have to be modified in order to relocate the
code to its intended location.

The velocation process begins with the Loader taking a TEXT record

and loading it into the memory area at the absolute address calculated
from the load address provided. {There may be many TEXT

records in any single rvelocatable object file). Then the loader
reads the next record to see if it is an IKNFORMATION record. An

. INFORMATION record will show the loader which bytes in the loaded

code will have to be modified. If there is no INFORMATION record
associated with this TEXT record, no modification takes place.

This will occur if you have written the machine code to be fully
relocatable. .. that is, no matter where in the memory 1t is placed, it
still will execute the same function. It would also occur for TEXT
segments containing strictly data, when it doesn“t matter where the
data resides as long as it can be referenced. Such a code segment
might be one containing an alternate character set or such data.

If the TEXT record does include address rteferences which must be
relocated, the INFORMATION records which cause the modification
must immediately follow that TEXT record in the record grouping.
You may therefore consider one TEXT record and a number of
INFORMATION records as though it is one complete segment.

The entire relocatable file processed by the Loader will consist

of any number of TEXT/INFO record groupings, then a final record
known as the END record. The record file begins with a TEXT

record and ends with the END record. The Loader exits to the
calling toutine immediately after the END record has been processed.

RECORD FORMAT DEFINITION

20
www.atarimuseum.com

The loader expects the input records to be formatted in a specific
manner. The individual formats for the TEXT, INFORMATION, and END
records are given below. The common element between them is the
first byte of the record, which specifies what type of record is
to be processed. The first byte of the record is known as the
Type ID. As a summary., the various Type ID‘s associated with each
record type are as follows:

TYPE ID RECORD TYPE

00 TEXT — Contains Non—zero—page Relocatable Text
ot TEXT —~ Contains Zero—page Relocatable Text
02 INFO — Points to non—-zervro pagé low byte references

to non—ziero page data in a text record

03 INFO — Points to zero page low byte references to
non—zero page data in a text record

04 INFO — Points to non—zero page single byte reference
fo zero page address within a text record

05 INFD — Points to zero page one byte reference to
zevo page data in a €text record

06 INFO — Points to non*zero'page word rveferences to
non—zero page data in a text record

07 INFO — Points to zero page. word references to
non—zero page data in a text record

08) INFO — Points to non—zero page high byte referenzes

to non—zero page data in a text record

o9 INFO — Points to zero page high byte referance €fo
non—zero page data in a text record

OA TEXT — Contains absolute, nonrelocatble object code
OB END — Is an END record
All of these various tecord types and pointers are illusfrated by

example in the sections on TEXT RECORDS: INFORMATION RECORDS and
END RECORD below.

21

www.atarimuseum.com

TEXT RECORDS

4 TEXT RECORD is a group of bytes containing machine language
instructions and data. It will be loaded intact to a specific
area of memory, then the Loader will modify some or none of the
bytes AFTER placement into RAM according to instructions provided
in the INFORMATION vecords which immediately follow this TEXT
RECORD.

There are three types of TEXT records which may be specified:

A A tecaord containing non—zero page relocatable text. This is
data which is loaded into an area in an area other than zero
page (30100-<FFFF) somewhere and whose address teferences
must be modified to reflect the actual area into which it
and its corresponding zero page segment, have been loaded.

B. A tecord containing zero page relocatable text. This is
data which is loaded into an area within zero page ($0000-
%00FF) somewhere and whose address references must be modi-
fied to reflect the actual area into which it, and its
corresponding non—zero page segment, have been loaded.

C. A record containing Absolute text. This fype of data
does not need any adjustment to ifts address rteferences.
A TEXT record of this type will not have any INFORMATION
records following it. (INFO records specify the
relocation data and this type of ¢text does noft need anq.)

TEXT RECORD FORMAT

Here is a rtepresentation of the content of the fypical TEXT vrecord:

e o e e / ———————- +
! TYPE | Length i Relative Address ! Object text H
H ID H H or i H
H H : Absolute Address H H
e e e e e +
low byte high byte
1 byte 1 byte 2 bytes 0-233 bytes

The TYPE ID field for a TEXT record will contain one of the three
following valves. For a ctomplete description of the meaning of each

record type, see TEXT RECORDS above.

VAL UE TYPE OF TEXT RECORD

22

www.atarimuseum.com

00 Non—zero page vrelocatable text
01 Zero page relocatable text
oA Absolute text

The LENGTH field for a TEXT record will have a value from 2 to 255.
It is computed as the total count of bytes contained in the record
counting from the first byte following the Length byte to the end
of the record. (A complete text record therefore can consist of

a minimum of 4 bytes, to a maximum of 257 bytes).

The ADDRESS field specifies either an Absolute or a Relative Address.

If it is an Absolute Address record type. the object text contained
in this record is to be lovaded to memory at the starting address
specified in this absolute address field. Each byte in the text

is then to be loaded into the next higher address until the

entire record has been loaded.

If it is a Relative Address record type. the obyect text contained
in this vecord is f£o be loaded to memory at the specified address
RELATIVE to the starting address of the relocatable code. The
address field is specified as relative to starting address 0000
which is assumed fto the the first location within a code segment.
The actual address to which this code will be loaded is calculated
by the lLoader by adding the LOAD ADDRESS offset (See USER-LOADER
PARAMETER BLOCK) to the relative address ctontained in the record
itself. The relative address is the 1&—-bit offset from the
beginning of {he actual program so the placement in RAM will
therefore be relative to the starting location which you

specified in the parameter block. -

INFORMATION RECORDS

INFORMATION records are the modifiers for the TEXT records There
may be no information records or many of them.

There are two basic types of information records: those which
reference single byute data or low byte of an address, and those which
reference the hipgh byte of an asddress reference.

L OW BYTE:. ONE BYTE, AND WORD REFERENCE INFORMATION RECCRDS

The format of an information Tecord which can modify low
byte address references, one byte (page zero) addresses
or word references (those which modify a 16-bit address
and point to the lIow byte of that quantity) is shown here:

T e Y +
{ TYPE t LENGTH { Offset 1 | Offset 2 | Offset N !
¢ ID ! : : i !
e e Y +

23

www.atarimuseum.com

The TYPE ID field will specify the type of reference for which the
offset specifies the location. The TYPE ID’s for which this format

1s valid are the following:

TYPE 1D

02

03 -

o4

REFERENCE TYPE

Non—zero page low byfte reference to a non-zero

page address. This means that you may have
referenced something similar to the following:

LDA 4L,NZREF i1get the low byte of the
i16-bit integer assigned
i to address NIREF

This will be an address relative to the beginning

of the relocatable file. If the offsef points

to the immediate value, it is this value which

will be modified when the LOAD ADDRESS low byte

is added to it to obtain the actual current load
address. The TYPE 1D indicates that this instruction

is loaded into a non—zicvo page area.
Example: Code loaded into location $1000,

i DAD ADDR is “0DO1,

NZREF is located at relative address 0050

If code is LDA #L,NZREF, then loader sees:

<1000 a9 (LDA)

1001 S0 L———= offset points here v
foad address low byte is %01

Value found at pointer is <50

{cader adds them, replaces wvalue at peinfer with %51

Zevo pape low byte refTerence to & non—zero
psoe address. This is exactlu 2s¢ described For
Type ID 02 cbove except that ¢the code which 1ic
to be rcloceted has been loaded into ¢ peooc
zero area instead. The rest of {the explsnation

remains exactly the same.

Non—zere page one byte references to a zero page
address. This means that a code segment such as:

i DA ZPAGEl , where ZPAGEl is an address
within page zero,

produces a relocatable code. This code, when stored
in & non—-zero page area: may have to be relocated

if ZPAGE!l 1is a relative address. In this case, the
example might chow the following:

24

www.atarimuseum.com

05

0é

07

Example: Acsume that the code specified above
is loaded at $1000, and ZPAGEl is
zeTo page address %0045, Also assume
that the ZLOAD ADDRESS you specified
earlier (see USER-LOADER PARAMETER BLOCK)}

contains $10.

£1000 AS (LDA ... 1zpage)

1001 43 e Offset points here

The Loader will take the byte at the pointer, add

the ZL.OAD Address offset, and replace the valuve at
the pointer with the newly calculated relocated value.
In this example, £45 is fetched:, adds the offset £10,
so the relocated address value is £55 stored into

location £1001.

Zevo psge one byte reference to a zero page
address. This is exactly like the relocation
example shown for Type ID 04 above. The only
difference is that the ctode which has been loaded
resides in a psge zero area and is modified there.
In the example, the load address:. then, could have
been %00Al, instead of %1000. All else remains

the same.

Non—zereo pege word veference to a non—zero

page address. This means the offsef points to
the low byte of an object code address raference
of code which has been loaded into an area not
in page zero.

Example: Code loaded to location $1000,
consisting of LDA £1234, loaded as:

T1C00 AD
£1001 34 {—-——— offset points here
1002 12

{note thet the address £1234 is an address rtelative
to the start of the object code file itself, which
starts, relative to itself, at location OOOO}

Zero page word reference to a non—zero page
address. This means the offset points to the
low byte of an object ctode address reference
of code which has been loaded inte an area not

293
www.atarimuseum.com

in page zero.

Example: Code loaded to location %0023,
consisting of LDA %1234, loaded as:

£0023 AD
ST 80024 - 34 (<S-= offset points hare
£0025 12

Now that we ‘ve gone over the TYPE ID‘’s for 02-07, the other fields in
this INFORMATION record can be explained. Recall from above they are:
TYPE ID, LENGTH, and OFFSET.

The LENGTH field in this record ftype specifies the total byte count of
the number of OFFSETS which are contained in this record. In other
words, it specifies how many of fhe bytes within the previously loaded
TEXT record are to be modified by the Loader using this specific TYPE
ID. There will be that number of pointers as a part of this record.
The length field may specify a value from 0O to 255.

" The OFFSET field specifies a value from O to 255, one byte for each
offset. This forms & pointer which, when added ¢o the starting
address for. the text record Jyust loaded, gives the address of
“he byte which is to be modified per fhe relocating instructions
as illustrated above. As noted. there may be as many as 255 offsets
total contained in any INFORMATION record. .

SUMMARY OF tOADER PROCESSING FOR WORD, LOW BYTE AND
SINGLE BYTE INFORMATION RECORDS

1. The preceeding TEXT rtecord has been rteaed and its obgect
code has been placed into RAM at the appropriaste
displscement{ relstive to the preceeding reloccfsble
text record.

2. Each offset is wused to obtain & data value (either
one or two bytes, depending on vrecord type}) from the
preceeding obgject text record.

3. The bese address {(user specified L oad Address) is
added to the value obtained.

4. The resulting valuve (one or two bytes, depending on
record type) replaces the data value at the specified
offset location in the RAM.

HIGH BYTE REFERENCES IN INFORMATION RECORDS

26 .

www.atarimuseum.com

The vecord formats for these cases, TYPE ID’s OB and O?.vare different
from those Jjust discussed. This is due to a different type of data
required to calculate the correct address reference.

In the last two cases, (TYPE ID 06 and O7), the pointer specified the
low byte of a two byte address, In order to calculate the correct two
byte address sfter adding the offset, and to replace both bytes with
the correct relocated address, this single offset pointer is
sufficient. The loader will know, in other words, that the high byte

“immediataly follows the low bytei-in the next sequential offseb . - . . .o

locatiaon.

However, in the TYPE ID references which follow, the {oader needs more
information in order to be able to calculate the correct address.

Therefore the format of the INFORMATION record for TYPE ID‘s 0B and 09
appears as follows:

e / I+
{ TYPE ¢ LENGTH | OFFSET 1 { Low ¢ ODFFSET 2 | Low ! MORE DATA 1
t ID & : { Byte 1 ¢ i Byte 2 i Pairs H
e e

If you are referencing the high byte of a relocatable address, the
record which contains this reference must alsoe contain a reference

to the low byte of that address. This would occur as follows:
Exemple: The correct way o reference a high byte
of a relocatable address ...

tbA #L,RADDR iget low byte. This must be
i located within the SAME TEXT

itecord as the reference to the
ihigh bute!

STa4 TERP ido something with it

DA {H,RADDR 1get the high byte of the
itelocstoble address

STA TEHNWP2 Jjdo something with it

If RADDR is relative location 1234, then the ctode, when
stored at some Jlocation (example — %1000), wovuld leook as

follows:
=1000 A9 (LDA ... immedicte mode)

. <1001 34 L TYPE ID OB offset 1 points here
:1002 8D 22 22 (a2ssumes temp storage spot is absolufte

addrecss ©2222 for example use only)

27

www.atarimuseum.com

10035 AT (LDA ... immediate mode)}

$1006 12 L————- TYPE ID 08 offset 2 points here

What the relative code assembler will do is to organize the code
so that both references to the high and low bytes occur within the
same 256 byte block of TEXT record. Then a TYPE ID OB INFORMATION
record can be used €o reference and modify it as shown above.

'The'Loadér5w1117€aké=the~bqte-pointedJtO'bustfset,I-andﬁtreat»uﬁgg;m Sy A e

it as the low byte of a relative address. It will also take the
byte pointed to by Offset 2 and treat it as the high byte of a
telative address. To this combination relative address, it adds
the LLOAD ADDRESS (see USER-LOADER PARAMETER BLOCHK).

The high byte of the result replaces the high byte of the relative
address. If there arve any other byte pairs specified as part of this
TYPE ID OB INFDRMATION rtecord: they ftoo are processed in the same way.

The low byte of the rvesult is DISCARDED. NOTE, if there is a low
byte which must be relocated as well as its high byte, it must be
done by & TYPE ID O2 or 03 INFORMATION record. This rvecard HUST
FOLLOW that which processed the high byte OB or O7 type rvecord.

To summarize, then., .the record types OB and 09 are provided for
the control of references %to the high byteés of relocatable addresses.
The only difference between & type 08 and 09 INFORMATION record
i that the TYPE ID OB i¢ used to process TEXT records loaded -

~into non—-zero page areas of memory. A TYPE ID O% recovrd accom-—
panies a TEXT record loaded into zero page. .
END RECORD
The ERD rtecord is {he last record processed by the Loader. It
hes @ TYPE ID of hexadecimsl OB.
The END vecord always consists of four byftes. The first is., as

veusl, the TYPE ID. The c€ccond brte is czlled the self—start

flayg. The value in the self—start flag has the following meaning:

VALUE INTERPRETATION

00 Program execution after relocation is not reguired.
The two bytes which follow the self start flag in
the END record are ignored: however must still have
been provided to the Loader. The RUN ADDRESS
(See LOADER-USER PARAMETER BLOCK) is left¢t as 000O.

01 This ¢tells the Losder that the execution entry point

address contained in the END record is an absolute

address.

28

www.atarimuseum.com

02 This tells the Loader that the execution entry point
address contained in the END record is a relative
address. To obtain the absolute address:, the user
provided LOAD ADDRESS 1is added to the relative address
contained in the END record.

The calculated absolute start address (or O000 if none is required)
is placed into the RUN ADDRESS location within the LOADER—-USER
parameter block. After the processing of the END record, the

. oader Teturns to. the calling routine with an RTS. . e

27

»

www.atarimuseum.com .

DATA BASE CHANGES FROM REV. B TO 1208

LOCATION REV.B USE 1288 OUSE
1oy’ reserved LNFLG -—- for inhouse debugger.
0081) NGFLAG -- for power-up self test.
pBIC PTIMOT —- to 8314 ABUFPT -- reserved.
281D PBPNT —-- to £82DE -
QEIE PBUFSZ -- to B2DF " -
BB1F PTEMP —-- eliminated "
8836 CRETRY ——- to 829C LTEMPF -- loader temp.
pa37 DRETRY —-- to B2BD "
go4a CKEY —-—- to #3ES ZCHAIN -- handler loader temp.
pe4B CASSBT —— to O3EA "
BB6o NEWROW —-—- to 82F5 FKDEF -- func key def ptr.
gee6l NEWCOL ~——- to B2F6 -
2862 - - PALNTS —-—- PAL/NTSC flag.
Be79 ROWINC —- to ©2F8 KEYDEF —— key def ptr.
BE7A COLINC -- to B2F9 "
P233 . reserved LCOUNT —- loader temp.
p238-6239 - RELADR -—- loader.
8245 o = RECLEN —— loader.
8247 | LINBUF -- eliminated R T SV S v ¥ 25 A e B
,:>9248—ﬁ268A - reserved.
. 826C " VSFLAG —- fine scroll temp.
T 826D Sl) KEYDIS -~ keyboard disable.

- B26E - : FINE -- fine scroll flag.
288 CSTAT -- eliminated HIBYTE —-- loader.)
P2BE reserved- NEWADR -- loader.

@29C THMPX1 —- eliminated CRETRY -- from 8836.

82BD HOLDS —- eliminated DRETRY ——- from ©8837.
p2C9-p2CA reserved RUNADR -- loader.

P2CB-02CC - T HIUSED -- loader.

p2CD-P2CE - ZHIUSE —-- loader.

P2CF-82D8 - GBYTEA -- loader.

22D1-92D2 = LOADAD -- loader.

p2D3-82D4 - ZLOADA —-- loader.

p2D5-82D6 - DSCTLN —-- disk sector size.
$2D7-B2D8 - ACMISR —-- reserved.

B2D9 - KRPDEL -- auto key delay.
22DA = ‘KEYREP —-- auvto key rate.
82DB - NOCLIK —- key click disable.
g2DC - HELPFG —- BELP key flag.
@2DD - DMASAV -— DMA state save.

P 2DE - PBPNT —- from @81D.

8 2DF - PBUFSZ —— from 9B1E. .
P2E9 - HNDLOD —- handler loader flag.
B2P5 - NEWROW —— from 08686.
B2F6-B2F7 - NEWCOL -~ from ©861.)
B2F8 . - ROWINC -~ from 98079.

g2F9 oo COLINC .—= from B87A.

B39E 'ADDCOR —-- eliminated - JMPERS ——- option Jjumpers.

www.atarimuseum.com

8314
B33D
B33E
B33F
B3ESB
B3E9
B3EA

P3EB

B3ED-B3F8

g3F9
B3FA

$3FB-B3FC

r

TEX P2 -
reserved

-~

to 8313

PTIMOT
PUPBTI1
PUPBT2
PUPBT3
SUPERF
CKEY

CASSBT
CARTCK
ACHMVAR
MINTLK
GINTLK
CHLINK

-- from 681C.
-- power-up/RESET.

—— Screen Editor.
~— from BOB4A.
-— from @R24B.
-~ cart checksum.

~-— reserved.
»n

~— cart interlock.
——~ handler chain.

www.atarimuseum.com

GET CEHARACTER DATA

FORMATS

7 (0]
e e B B e e
Modes 12,13 ~— M = color IM] D |
Lo . . modifier . +-4-+-+-+-+-+-+-4 .
D = truncated ATASCII
-4 —+-+—-F+-+-+)
Mode 14 -- D = color] Zero D]
+—t-F-4—-+-F+—4+—+-+
-t 44—t —F—-+—+
Mode 15 —— D = color o Zzero | D |
e T e e T = S
PUT CHARACTER DATA FORMATS
7 ST)
R S I e .
¥odes 12,13 -— M = color I M] . D ")
modifier . +-+-+-+-+-+-+-+—-+
D = truncated ATASCII
-t -t-F—t—t—+—+)
Mode 14 -~ D = color] ? D}
- -t —F-F—F—-+-+-+
- t—4—F-4-F-+—-+-+
Mode 15 -—- D = color | ?] D |
R s 5

>

www.atarimuseum.com

-

CHARACTER DEFINITION FORMAT FOR MODES 12 & 13

do— =k —

R e e R e
! ! I
s e e e e

+—+—+

d—F = —

relative byte 8

relative byte 7
!

Each 2-bit color specification in the character definition maps
to the color registers as shown below:

WN =™

BAK
PF@
PF1

PF2 if bit-7 of color modifier =
PF3 if bit-7 of color modifier =

www.atarimuseum.com

Appendix H (new modes)

-

Mode Boriz. Vert. Vert. Colors Data Color memory
i posit. w/o sp w sp value reg. read.
. _ (split) (full)
12 48 24 28 s gg-7F * 1154 1152
13 40 12 1¢ 5 peg-7F 7* 664 66¢
14 168 182 160 2 e BAK 42780 4236
. 1 PFB
15 168 192 168 4 @ BAK 8112 8138
1 PF®
2 PF1
3 PF2

* See CHARACTER DEFINITION FORMAT FOR MODES 12 & 13.

- _ www.atarimuseum.com

