THE SCFTWARE IMPLEMENTATION OF

PARALLEL DEVICE HANDLERS AND DRIVERS

Revision B

May 22, 1984

www.atarimuseum.com



Software Implementation Of Parallel Device Handlers Ana Drivers

1. OVERVIEW

Computers in the Atari 600XL/800XL/1450XLD line provide a parallel
bus. Paraliel devices on this bus physically include a ROM wnich
contains code for hanaling 1/0 requests and driving the cevice. Thus
document describes the interface between the Operating System ana a
Parallel Device Handler and/or Driver.

As many as eight paralliel devices, numbered 0 tnrough 7, may be on
the parallel bus. A device's number is determinad by hardware on tne
device, e.g., a configuration switch. The ROM spaze in every paralle.
device 1is two kilobytes, adaressed D80OH through DFFFH, in the same
address space as the Operating System's Floating Point Package. When a
paraliel device is selected, addresses D80OH trrcugh DFFFH reter to
locations within the device ROM. Selection of a device ana it's ROM is
accomplished by setting the corresponding bit in hardware register
D1FFH. For instance, storing O4H at D1FFH selects device 2. (It 1is
illegal to set more than one bit in D1FFH.) Storing zero at DIFfH
deselects any parallel device and selects the Flcating Point Package.
Since the Floating Point Package and each parallel device RCM occupy
the same address space, the parallel device handlers and drivers may
neither use the Floating Point Package nor invoke any other code which
uses the Floating Point Package.

The Operating System is responsible for selecting the paralle.
devices at appropriate times, transferring control to tne devices via
fixed vectors within the device ROM's, receiving control back from the
devices, and re-instating the Floating Point Package. A paratle.
device may be selected for the following four reasons:

1) Initialization

2) Processing of a Device Handler request

3) Processing of a low-level Serial I/0 (JIC) type request

4) Processing of a paraliel device interrupt request (IRQ)

A parallel device ROM, then, would provide code to process each of
these four occurrences and vectors to tne appropriate portions of code
within the ROM.

In support of paraliel device hanalers ana drivers, the Operating

System apportions 512 bytes of RAM, addressed D600OH through DTFFH, to
the eight possible devices.



Software Implementation Of Paraliel Device Handlers And Drivers

2. PARALLEL DEVICE R REQUIREMENTS

The Operating System requires a data tablc which starts at tne low
address of a rparallel device RCM. This data table atfirms the
existence of a ROM for the device selected and provides vectors to
routines within the ROM., Device selection and transferring of control
from the Cperating System will not be pertormed coriectly unless tnis
data is correct.

The data table consists of mandatory and optional entries. Only
the mandatory entries are required for correct operation. The optional
entries describe the ROM and device and only suggestions as to tneir
use are given here.

It should be noted that the Device Handler Vector Table (D8ODH
thrcugh D81CH) has the same fcrmat as cther Operating System Resident
Handler (e.g., Printer Handler) vector tables.



Software Implementation Of Paralliel Device Handlers Ana Drivers

Paraliel Device ROM Data Table

D800 - D801 (Optional) ROM Checksum (Juw byte, high byte)

D802 | (Optional) Revisicn Number

D803 (Mandatory) ID Number 1
Value = 80H

D804 (Optional) Name or Type

D805 - D807 (Mandatory) Low-level I/0 Vector
Value = JMP acdress (low byte, high byte)

808 -~ D80A (Mandatory) IRQ Handler Vector
- Value = JMP audress (low byte, high byte)

rgce (Mandatcry) ID Number 2
Value = G1H
D80C (Optional) Device Name

Value = Device Name in ASCII

D8CD ~ D8CE (Mandatory) Device Handler Open Vector
Value = address-1 (low byte, high byte)

D8OF ~ D810 (Mandatory) Device Handler Close Vector
Value = address-~1 (low byte, high byte)

D811 ~ D812 (Mandatory) Device Handler Get-Byte Vector
Value = address-1 (low byte, high byte)

D813 ~ D814 (Mandatory) Device Handler Put-Byte Vector
Value = adaress-1 (low byte, high byte)

D815 ~ D816 (Mandatory) Device Handler Status Vector
Value = aduress-1 (low byte, high byte)

D817 - D818 (Mandatory) Device Handler Special Vector
Value = address-~1 (low byte, high byte)

D819 ~ D81B (Mandatory) Initialization Vector
Value = JMP address (low byte, high byte)

D81C (Optional) Not Used
Value = 0



Software Implementation Of Paralliel Device Handlers And Drivers

3. GENERAL DEVICE SELECTION PROCESS

Seven registers are used in the parallel device selection process:
1) PDVS (D1FFH), Parallel device select hardware register

2) SHPDVS (0248H), Parallel de.ice select shadow

3) PDVMSK (0247H), Parallel device mask

4) PDVI (D1FFH), External parallel device IRQ hardware register
5) PDIMSK (0249H), External parallel device IRQ mask

6) IPDVI (D1CFH), Internal paraliel device IRQ hardware register
7) IPDIMK (0254H), Internal parallel device IRQ mask

Writing a value to the parallel cdevice selecticn register, PDVS,
causes a device or the Floating Point Pa<tkage to be selected. Setting
bit n of PDVS causes paraliel device n to be selected. Storing 0 into
PDVS causes the Floating Point Package to be selected.

RAM location SHPDVS is a shadow of the value written into tne
device selection register, PDVS. Whenever tne Operating System wric.es
a value into PDVS, the same value 1is stored in SHPDVS. This is
necessary because the device selection value is not avaiiable by
reading PDVS. For instance, if code within a device ROM neeas to know
the device's number it can inspect SHPDVS to determine which device 1is
currently selected. (N.B.: When storing values into PDVS and SHPDVS,
you MUST store first into SHPDVS and then into PDVS.)

The paraliel device mask, PDVMSK, is used to control the selection
process in all cases except for initialization and IRQ processing. By
convention, if Dbit n of PDVMSK is set tnen device number n exists on
the parallel bus, If bit n of PDVMSK is clear, then device n will not
be selected. _The Operating System, itsel:t, does not set PDVMSK. It is
the responsiEEI?EY“of each device's initialization routine to set tne
PDVMSK bit corresponding to the device's number.

The paraliel device IRQ hardware registers, PDVI ana IPDVI,
indicate which of the parallel devices initiated an IRQ. These are
read-only locations. Bit n of PDVI is set it external parailel device
n initiated an IRQ, anda bit n of IPDVI is set if internal parallel
device n initiated an IRQ. (External parallel devices are devices that
are physically located outside the computer and are connected via the
Parallel I/0 Port. Internal parallel devices are devices that are
built into the computer, e.g., the disk drive on tne 1450XLD.)

The paraliel device IRQ masks, PDIMSK ana IPDIMK, are used to
determine which paraliel devices are allowed to receive IRQ requests.
Parallel device n will be selected to handle its IRQ only if bit n in
PDIMSK or IPDIMK (whichever is appropriate) is set. The Operating
System does not set PDIMSK or IPDIMK. It is the responsibility of each



Software Implementation Of Paraliel Device Handlers And Drivers

4, DEVICE INITIALIZATION INTERFACE
4.1 OPERATING StSTEM INITIALIZATION

During cold-start and warm-start initialization, atter
initializing residert device handlers, ana before attempring to
initialize the cartridge, the Operating System initiatizes each of the
paraliel davices. In order of device number (number O first), tne
Operating System selects each device and, if the two ID bytes are
correct (D303H contains 80H and D80OBH contains 91H), transfers control
to the paraliel device initialization routine via a JSR to tne jump
vector at D819H. Thus, only those devices which physically exist and
have the correct ID byte values are initialized.

4.2 PARALLeL DEVICE INITIALIZATICN

After receiving cont=cl from the operating system, the parallel
device initialization routine pertorms device depenaent initializaticn.

In addition, certain device independent initialization must be
performed. In order to receive control to process device handler
requests ana low-level device I/0, the device initialization routine
must set the bit in PDVMSK corresponding to the number of the device.
(That bit is the lowest order bit set in SHPDVS, the device select
shadow.) In order to receive control to handle device IRQ's, the
device initialization routine must set the bit in PDIMSK or IPDIMK
corresponding to the number of the device.

Also, if the device provides its own device hanaler (some paralles
devices may instead rely on resident device handlers to process
mediun-level I/0 requests), it must ensure that the name of the device
is in che Operating System Device Table, HATABS, and that tne
corresponding hanaler address is that of the resident Generic Parailel
Device Handler, GPDVV (EU48FH). The address of the Generic Parailes
Device Handler, and not the address of the parallel device hanaler at
D8ODH, must be used because the device does rot remain selected at alil
times. It is the responsibility of the Generic Parallel Device Handler
to select the device and transfer control to the appropriate handler
routine within the device ROM.

Upon completion, the paraliel device initiailization routine
returns control to the operating system via an RTS.



Software Implementation Of Parallel Device Handlers Aud Drivers

device's initialization routine to set the PDIMSK or IPDIMK Dbit
corresponding to the device's number if the device driver is to hanale
IRQ's.

N.B.: Clearing a device's bit in PDIMSK or IPDIMK mereliy prevents
the OS from recognizing IRQ's initiated by that device; it does not
prevent the IRQ's from occurring. Consequently, IF A PARALLEL DEVICE
INITIATES AN IRQ WHEN JTG RIT IN PDIMSK OR IPDIMK IS CLEAR, THE
OPERATING SYSTEM WILL GC INTO AN INFINITE LOOP. In order to prevent an
infinite 1loop, the parallel device hanaler must set its bit in PDIMSK
or IPDIMK before it enables its hardware, ana it must disable its
hardware before it clears its bit in PDIMSK or IPDIMK.



Software Implementation Of Paraliel Device Handlers And Drivers

put-byte request, in the originating IOCB) and return the C Flag clear
if it cannot hanale the request. The other difference is that the
handler would not call SIO to pertorm the physical I/0, but instead
would call a low-level I/0 routine (driver) within the parallel device
ROM. -

Afler hanaling the request, the parallel device hanaler returns to
the Generic Paralliel Device Handler via an RIS. On exit, the A
recister contains a data byte, if necessary; the Y register contains
the status for the request; and the C Flag should be set to indicate
that the request was handled.

M.3.: Prior to beginning the device selection process, the Generic
Paraliel Device Handler sets the critical I1/0 flag (CRITIC) to disable
deferred vertical blank processing. This is a bug irn the 0.S., ana
usually has undesirable consequences. In order to compensate for this
bug, any paraliel device handler routine which is more tnan a few
instructions long should store 0 into CRITIC.



Software Implementation Of Parallel Device Handlers And Drivers

5. DEVICE HANDLER INTERFACE
5.1 GENFrIC PARALLEL DEVICE HANDLER

The Generic Parallel Device Handler is a resident handler which is
responsible for invcking the harndaler rcutines within the raratlel
device ROM's., Like other device hanalers, it processes medium-level
I/0 requests to open a device, close a device, get a byte, put a byte,
return status, and pertorm special functions. Typically, the Generic
Parzllel Device Handler is called by CIO, but it may be called directly
by an application, as well. Like other resident device handlers, the
Generic Parallel Device Handler is reached via an entry in HATABS which
provides the adaress (GPDVV, E48FH) of a table of vector entries into
* the handler. The Operating System, itsel:, does not enter the Generic
Parallel Device Handler into HATABS. It is not invoked unless some
parallel device which supports a device hanadler enters it (and the
device's name) into HATABS.

The Generic Paraliel Device Handler rcutines, not knowing which of
the parallel device hanalers will prccess the request, select each of
the paraliel devices, in order of device number (number 0 first), andg
transfer control to the corresponding routine within the handler. The
entry point of the parallel device handler's routine is determined from
the address vector table starting at D8CDH. The C Status Flag is used
to determine it the selected parallel device hanaler actually pertormed
the request. Upon return to tne Generic Paraiiel Device Handler, it
the C Flag is clear, the currently selected parallel device did not
perform the request ana the next parallel device is selected. (Thus,
even those parallel devices which do not provide a device hanaler must
have a simple handler routine which ignores ali handler requests and
returns the C Flag clear.) If the C Flag is set, the request was
performed and the Generic Paraliel Device Handler terminates the
selection process and returns to the routine which called it. If arter
calling all of the parallel device hanalers the hanaler request has not
been performed, the Generic Parallel Device Handler returns a
Non~existent Device (82H) status to the calling routine.

The entry conditions into a paraliel device handler are the same
as for the resident device hanalers. Parameter passing is accomplished
using the A, X and Y registers and the page zero IOCB. On entry, the A
register contains a data byte, it necessary; the X register contains
the index to the originating IOCB; and tne Y register contains a
Function Not Supported (92H) status.

5.2 PARALLEL DEVICE HANDLER

The function of a parallel device hanaler is very simiilar to the
resident device handlers. One difference is that a parallel device
handler may be called even though the request is for a different device
type or a different device unit number. The paraller device hanaler
must check the request (in the page zero IOCB or, in the case of a



Software Implementation Of Parallel Device Handlers And Drivers

6. LOW-LEVEL DEVICE I/0 INTERFACE

Paraliel device ROM's may contain a routine simiilar to SIO for
performing the low-level physical I/0 for the parallel device.

€.1 OPERATING SYSTEM LOW-LEVEL I/0

A1l low-level I/0 requests (including those for Seriai I/0) will
go to the Operating System low-level I/0 routine which attempts to
pertorm the request via the low-level I/0 routines within the paralle.
device ROM's. Serial I/0 requests are included so that the resident
device hanaler or application need not know whether the device is a
serial device or paraliel device. For example, the parallel disk
hanaler on the 1450XLD relies ~<n the DOS to harndle medium~level
(CIO-type) I1/0 requests. The DCS makes lcw-level (SIO-type) I/0
requests which are scmetimes for a serial crive and ctner times for a
paraliel drive.

The Operating System low-level I,/0 routine (PIO) is reached via
the jump vector at SIOV (E459H).

As in the Generic Paraliel Device Handler, PIO selects each of the
parallel devices, in order of device number (number O first), and
transfers control to the low-level IL/0 routine within the paralles
device ROM. Control 1is transferred via a JSR to the jump vector at
DB0SH. Again, the C 3tatus Flag is used to determine it the selecteu
parallel device low-level I/0 routine actually pertormed the request.
If a paraliel device I/0 routine returns the C Flag clear, then the
next parallel device is selected. If a device I/0 routine returns tne
C Flag set, the selection process is terminated and control is returnea
to the routine which requested the 1/0. If after calling all of the
paraliel device low-level I/0 routines the I1/0O request has not been
performed, then the Operating System low-level LI/0O routine calls the
resident Serial I/0 routine to process the request.

To disable deferred vertical blank processing, the Operating
System sets the Critical Section Flag, CRITIC, during the selection
process,

The entry conditions into a paraliel device low-level I/0 routine
are the same as for entry into the resident Seriai. I/0 routine. All
parameters passed are contained in the Device Control Block (DCB,
0300H).

6.2 PARALLFL DEVICE LOW-LEVEL I/O

The paraliel device low-level I/0 routine (driver) periorms
requests for physical 1/0 for a parallel device. Because the request
may be for a different device type or a different device unit number,
the paraliel device low-level I/0 routine must check the request (bus



Software Implementation Of Parallel Device Handlers And Drivers

ID and unit number in the DCB) and return the C Flag clear it the I/0
request is for some other device.

If the paraliel device ROM provides both a CIO-level handler and
an SIO-level driver, it 1is recommenaed that the ROM incorporate a
single routine for actually performing the physical I/0. This routine
would not check the request for the correct device type and physical
device unit number. Both the parallel device handler (it present) and
the parallel device low-level I/0 routine, which do check the request
for validity, could then call this routine to pertorm the validated 1/0
request. :

After pertorming the request, the parallel device low-level I/0
routine returns to the Operating System low-level 1/0 routine via an
RTS. On exit, the I1/0 has been initiated (or completed, if the device
is not interrupt-driven), the Y register contains the status for the
request, and the C Flag should be set to indicate tnat the request was
processed. '

N.B.: The parallel device low-level I/0 routine is NOT allowed to
modify the DCB, except for DUNIT (0301H). The original value of DUNIT
is =aved by PIO before the parallel device lcw-level I/0 routine is
called, and it will be restored after tne parallel device low-level 1/0
routine returns. This restoraticn takes place only at tne very end of
PIO, so that it a paraliel device low-level I/0 routine changes DUNIT
and then returns with Carry clear, supcsequent parallel device low-level
I/0 routines and SIO will see tnhe mcdified value of DUNIT.



Softwa.'e Implementation Of Parailel Device Handlers And Drivers

7. DEVICE IRQ HANDLER INTERFACE
7.1 OPERATING SYSTEM IRQ PROCESSING

When an IRQ occurs, after checking for a serial input IRQ, tnhe
Operating System checks PDVI ana IPDVI to see it a paralleir device
initiated the IRQ. If a paraliel device initiated tne IRQ and the bit
corresponding to that device is set in PDIMSK or IPDIMK (whichever is
appropriate), the Operating Systems transfers control to tne IRQ
handler of the parallel device which initiated the IRQ. If more tnan
one device initiated the IRQ, only the lowest-numbered device wiil get
control (IRQ's from higher-numbered devices remain penaing). Transter
of control is accomplished via a JSR to the jump vector at D8O8H.

Because a parallel device may be executing when the interrupt
occurs, before selecting a device to handle the IRQ, the Operating
System places the value of the device select shadow, SHFDVS, on the
stack. When all parallel device IRQ's have been handled, the value of
the device select from the stack is restored to PDVS (and SHPDVS).

After the paraliel device IRQ hanaler returns control, the
Operating System returns to the interrupted routine via an RTI.

7.2 PARALLEL DEVICE IRQ HANDLING

The parallel device IRQ hanaling routine processes the interrupct.
After the interrupt has been processed, the paraliel device IRQ hanaler
returns to the Operating System via an RTS instruction.

The Operating System support of-the paraliel bus is designed so
that paraliel I/0 and serial I/0 are able to be done concurrently.
Therefore, in order to avoid the loss of serial port data, interrup.s
from paraliel devices must be cleared and interrupus enabled within
about 150 microseconds.

N.B.: Earlier revisions of this document stated that a paralles
device IRQ routine could re-enable interrupts by executing a CLI
instruction. Those earlier revisions are wrong. A PARALLEL DEVICE IRQ
ROUTINE MUST NOT ENABLE INTERRUPTS.



Software Implementation Of Paraliel Device Handlers And Drivers

8.2 ZEROPAGE RAM

There are 11 bytes on page zero which can be used by parailel
device hanalers and drivers (except during IRQ processing):

STATUS (30H,1]
CHKSUM (31H,1]
BUFRLO [22H,1]
BUFRHI (33H,1]
BFENLO [34H,1]
BFENHI {35H,1]
BUFRFL [38H,1]
RECVDN [39H,1]
XMTDON [3AH,1]
CHKSNT [3BH,1]
NOCKSM {3CH,1]

These 11 bytes are normaliy reserved for use by SIO. Since it is
nct possitle fer SI0 to te active 3t tne time tnat a parallel device
handler or criver is calied (except during IRQ prccessing), paratlel
device hanalers ana drivers may vuse these lccations freely; their
criginal valves do not have to bte saved and restored.

In addition, there are 4 bytes on page zerc that are reserved for
use by paraliel device IRQ routines:

ABUFPT [1CH, 4]

The only part of the 0S which uses these 4 bytes is the immediate
IRQ handler. Paraliel device IRQ routines need not save and restore
the original values of these memory locations.

Paraliel device IRQ routines which need more tnan 4 bytes of
zeropage RAM should use the 11 SIO bytes listed above; naturaily, the
IRQ routine must save and restore the original values of these bytes.
Paraliel device IRQ routines needing more than 15 bytes of =zeropage
RAM, and paraliel device non=-IRQ routines needing more than 11 bytes of
zeropage RAM, can get more by saving and restoring otner locations on
page zero; the safest spot to use for this purpose is probably tne

zeropage ICCB ([20H,0CH]).



Software Implementation Of Paraliel Device“Handlers And Drivers

8. RAM AVATLABILITY
8.1 PAGE D6xxH AND D7xxH RAM

512 bytes of RAM, addressed D60OH through D7FFH, are avaiiable for
use by by paraiiel device hanclers and drivers. This RAM is not used
at all by the 0.S.; in particular, it is not zeroea during coldstart or
warmstart.

Each card slot has a portion of this RAM allocated to it,
according to the following scheme:

- D600OH - D61FH Slot O RAM
D620H - DE3FH Reserved for use by modem devices
D64COH - D6TFH Slot 1 RAM
D680H - DEEFH Slot 2 RAM
D6COH -~ D6FFH Slot 3 RAM
D700H - D73FH Slot 4 RAM
D740H - DT7FH Slot 5 RAM
D780H - D7BFH Slot 6 RAM
D7COH -~ DTFFH Slot 7 RAM

As the table indicates, slots 1-7 each own 64 bytes of RAM, whiie
slot 0 owns 32 bytes of RAM. There are 32 bytes reserved for use by
modem devices because 64 bytes is not enough to provide the buffering
that a modem requires.

Obviously, a paraliel device hanaler which uses more tnan 32 bytes
of page D6xxH and D7xxH RAM cannot be placed in slot 0. With this one
exception, paraliel device hanalers should be designed so that they
will function properly in any slot. 1In particular, before accessing
page D6xxH and D7xxH RAM, the handler must determine which slot it is
in (by examining SHPDVS) and do an address calculation.



LUOD WNasnwiiele' MMM



Software Implementation Of Paraliel Device Handlers And Drivers

This applies not only tc LDA instructions, but to all instructicns

(including stores).
in LDA (ZPAGE),Y.

It also applies to indirect indexed addressing, as

www.atarimuseum.com





