
THE SOF1i~ARE IMPLEMENTATION OF 

PARALLEL DEVICE HANDLERS AND DRIVERS 

~e'lision B 

~1ay 22, 1984 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers Ana Dr1vers 

1. OVERVIEW 

Canputers in the Atari 600XLI~OXL/1450XLD line pr~vide a parallel 
bus. Parallel devices on this bus physically include a ROM wnich 
contains code for handling I/0 requests and driving the ~evice. ~s 
document describes the interface between the Operating System ana a 
Parallel Device Handler and/or Driver. 

As many as eight parallel devices, numbered 0 tnrough 7, may be on 
the parallel bus. A device's number is determin.:d by hardware on tne 
device, e.g., a configuration switch. The ROM spa~e in every paralle~ 
device is two kilobytes, addressed D800H tnrough DFFFH, in tne same 
address space as the Operating System's Floating Point Package. When a 
parallel device is selected, addresses D800H ttrough DFFFH refer to 
locations within the device ROM. Selection of a device ana it's ROM is 
accomplished by setting the corresponding bit in hardware register 
D1FFH. For instance, storing 04H at D1FFH select3 dev i ce 2. (It is 
illegal to set more than one bit in D1FFH.) Storing zero at D1FFH 
deselects any parallel device and selects the Floating Po1nt Package. 
Since the Floating Point Package and each parallel device ROM occupy 
the same address space, the parallel device hanalers and dr i vers may 
neither use the Floating Point Package nor invoke any other code which 
uses the Floating Point Package. 

The Operating System is responsible for selecting tne paralle~ 
devices at appropriate times, transferring control to tne devices via 
fixed vectors within the device ROM's, receiv1ng control back from the 
devices, and re-instating the Floating Point Package. A paraJ.le~ 
device may be selected for the following four reasons: 

1) Initialization 

2) Processing of a Device Handler request 

3) Processing of a low-level Serial I/0 (~IO) type request 

4) Processing of a paralJ.el device interrupt request (IRQ) 

A parallel device ROM, then, would provide code to process each of 
these four occurrences and vectors to tne appropriate port1ons of code 
within the ROM. 

In support of parallel device hanalers ana drivers, the Operating 
System apportions 512 bytes of RAM, addressed D600H through D7FFH, to 
the eight possible devices. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers Ana Dr1vers 

2. PARALLEL DEVICE Ret~ REQUIREMENTS - -... -. -

The Operating System requires a data tabl~ ~~1ch starts at tne low 
address of a parallel device RCM. This data table atTinns the 
existence of a ROM for the device selected and provides vectors to 
routines within the ROM. Device selection ana transferring of control 
from the Cperating System will not be performed co!":-·ec~ly unless tnis 
data is correct. 

The data table consists of manaatory and optlonal entries. Only 
the manaatory entries are required for correct operation. The 6pt1onal 
entries describe the ROM and device and only suggest1ons as to tne1r 
use are given here. 

It should be noted that the Device Handler Vector Table (D80DH 
thi~ugh D81CH) has the same format as otner Operating System ~esident 
Handler (e.g., Printer Handler) vector tables. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers Ana Dr1vers 

Parallel Dev1ce ROM Data Table 

D800 - D801 

D802 

0803 

D804 

D805 - D807 

D808 - D80A 

reo~ 

D80C 

D800 - D80E 

D80F - D810 

D811 - D812 

0813 - 0814 

0815 - D816 

D817 - 0818 

0819 - 081B 

081C 

(Optional) R~ Checl<St.JD (l.w byte, high byte) 

(Optional) Revisic~ Number 

(Mandatory) ID Number 1 
Value = SOH 

(Optional) Name or Type 

(Mandatory) LO'to.t-level I/0 Vector 
Value = JMP aC:dress (lO'tol byte, high byte) 

(Mandatory) IRQ Handler Vector 
Value = JMP address (low byte, hlgh byte) 

(Mandatcry) ID Number 2 
Valt;e = 91 H 

(Optional) Dev1ce Name 
Value = Dev1ce Name in ASCII 

(Mandatory) Device Handler Open Vector 
Value = adaress-1 (low byte, high byte) 

(Mandatory) Device Handler Close Vector 
Value = address-1 (low byte, high byte) 

(Mandatory) Device Handler Get-Byte Vector 
Value = address-1 (lO'tol byte, high byte) 

(Mandatory) Device Handler Put-Byte Vector 
Value = adaress-1 (lO'tol byte, high byte) 

(Mandatory) Dev1ce Handler Status Vector 
Value = aJ<Jress-1 ( lO'tol byte, high byte) 

(Mandatory) Device Handler Special Vector 
Value = address-1 (low byte, tugh byte) 

(Mandatory) Initialization Vector 
Value = JMP address (low byte, high byte) 

(Optional) Not Used 
Value = 0 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers Ana Dr1vers 

3. GENERAL DEVICE SEl.ECTION PROCESS 

Seven registers are used in ~~e parallel device selection process: 

1) PDVS (D1 FFH), Parallel device select hardware register 

2) SHPDVS (0248H), Parallel de.-j_ct select shadow 

3) PDVMSK (0247H), Parallel dev1ce mask 

4) PDVI (D1FFH), External parallel device IRQ hardware regis~er 

5) PDIMSK (0249H), External parallel device IRQ mask 

6) IPDVI (D1CFH), Internal parallel device IRQ hardware register 

7) IPDIMK (0254H), Internal parallel device IRQ mask 

Wri ting a value to the parallel cevice selection register, PDVS, 
causes a device or the Floating Point Pa~kage to be selected. Sett1ng 
bit n of PDVS causes parallel dev1ce n to be selected. Storing 0 into 
PDVS causes the Floating Point Package to be selected. 

RAM location SHPDVS is a shadow of the value written into tne 
device selection register, PDVS. Whenever tne Operating System wri~es 
a value into PDVS, the same value is stored in SHPDVS. Th1s is 
necessary because the device selection value is not avai~able by 
reading PDVS. For instance, if code within a device ROM neeas to ~~ow 
the device's number it can inspect SHPDVS to determine which device is 
currently selected. (N.B.: When storing values into PDVS and SHPDVS, 
you MUST store flrst into SHPDVS and then into PDVS.) 

The parallel device mask, PDVMSK, is used to control the selection 
process in all cases except for initiallzation and IRQ processing. By 
convention, if bit n of PDVHSK is set tnen device number n exists on 
the parallel bus. If bit n of PDVMSK is clear, then device n will not 
be selected. The Operating System, itselt, does not set PDVMSK. It is 
the responsibilit; - of each device's initialization routine to set tne 
PDVHSK bit corresponding to the device's number. 

The parallel device IRQ hardware registers, PDVI and IPDVI, 
indicate wtuch of the J:aral1el devices initiated an IRQ. These are 
read-only locations. Bit n of PDVI is set it" external parallel device 
n initiated an IRQ, ana bit n of IPDVI is set if internal parallel 
device n initiated an IRQ. (External parallel devices are devices that 
are physically located outside the computer and are connected via the 
Parallel I/0 Port. Internal pa;alleJ. devices are devices that are 
built into the computer, e.g., the disk drive on tne 1450XLD.) 

The parallel device IRQ masks, PDIMSK ana IPDil«, are used to 
determine wh1ch parallel devices are allowed to receive IRQ requests. 
Parallel device n will be selected to handle its IRQ only if bit n in 
PDIMSK or IPDil« (whichever is appropriate) is set. The Operat1ng 
System does not set PDIMSK or IPDIMK. It is the responsibility of each 

-----

w
w

w
.a

ta
rim

us
eu

m
.c

om



-

Software Implementation Of Parallel Device Ha~dlers And Drivers 

4. DEVICE INITIALIZAITON I~RFACE 

4.1 OPERATING ~.:~'l'a4 INITIALIZAITON 

During cold-start and warm-start ini tia.llzation, at·ter 
initializing residP.~"~t device handlers, ana before attemp1:ing to 
initialize the cartridge, ~e Operating System initiallzes each of the 
parallel d~vices. In order of device number (number 0 flrst), tne 
Operating System selects each device and, if the two ID bytes are 
correct (D303H contains 80H and D80BH contains 91 H), transfers control 
to the parallel device initialization routine v1a a JSR to tne jump 
vector at D819H. Thus, only those devices which physically exist ana 
have the correct ID byte values are initialized. 

4.2 PARALLiL DEVICE INITIALIZATION 

After receiving cont~ol from the operating system, tne paralle~ 

device initialization routine performs device depenaent initial1zat1cn. 

In addition, certain device independent initialization must be 
performed. In order to receive control to process device hanaler 
requests ana low-level devlce 110, the device initiallzation routine 
must set the bit in PDVMSK corresponding to the number of the dev1ce. 
(That bit is the lowest order bit set in SHPDVS, the device select 
shadow.) In order to receive control to ha.nelle device IRQ's, tne 
device initialization routine must set the bit in PDIMSK or IPDIMK 
corresponding to the nt.~nber of the device. 

Also, if the device provides its own device haneller (some paralle~ 
devices may instead rely on resident device hanellers to process 
medium-level I/0 requests), it must ensure tnat tne name of the device 
is i11 the Operating System Device Table, HATABS, and that the 
corresponding haneller address is that of the resident Generic Para.Ll~l 
Device Handler, GPDVV (E48FH). The address of the Generic Para.Lle.l 
Device Handler, ana not tne adaress of the parallel device hanaler at 
D~DH, must be used because the device does r.ot rema1n selected at all 
times. It is the responsibility of the Generic Parallel Device Handler 
to select the device and transfer control to the appropriate handler 
routine within the device ROM. 

Upon completion, the parallel device initiallzation routine 
returns control to the operating system via an RTS. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers &~ Drivers 

device's initialization routine to set the PDIMSK or IPDIMK bi~ 
corresponding to the device's number if the device driver is to hancle 
IRQ's. 

N.B.: Clearing 3 device's ~\tin PDIMSK or IPDIHK merely preven~s 
the OS fran recognizing IRQ' s initiated by that device; 1 t doe~ not 
prevent the IRQ' s fran occurring. Consequently, IF A PAR AIr EI DEVICE 
INITIATES AN IRQ WHEN l'tol JUT IN PDIHSK OR IPDIHK IS CLEAR, mE 
OPERATD«i SYSTI14 WILL GC INTO AN INFINITE LOOP. In order to prevent an 
infinite loop, the parallel device hanaler must set its bit in PDIMSK 
or IPDIMK before it enables lts hardware, ana it must disable its 
hardware before it clears its bit in PDIMSK or IPDIHK. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Devlce Handlers Ana Drivers 

put-byte request, in the originating IOCB) and return the C Flag clear 
if it cannot hanale the request. The other difference is that the 
handler would not call SIO to perronn the physical I/0, but insr.ead 
would call a la.~-level I/0 routine (driver) Wlthin the parallel device 
ROM. 

Af'~r hanaling the request, the parallel device hanaler returns to 
the Generic Parallel Device Handler via an RTS. On exit, tne A 
refi ster contains a data byte, if necessary; the Y register contains 
the status for the request; and the C Flag should be set to indicate 
that the request was hanaled. 

N . .a.: Prior to beginning the device selection process, tne Generic 
Parallel De•1ice Handler sets the critical I/0 flag (CRITIC) to disable 
deferred vertlcal blank processing. This is a bug ir. the O.S., ana 
usually has undesirable consequences. In order to compensate for this 
bug, any parallel device handler routine which is more tnan a few 
instructions long should store 0 into CRITIC. 

· ... _ ---

. ... 
6 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers And Drivers 

5 • D_EVICE HANDLER JNTERF ACE 

5.1 GE:m=:itiC PARALLEL DEVICE ~DLER 

The Generic Parallel Device P.andler is a resident handler which is 
responsible for ~nvoking the har.aler rc~tines within the parallel 
device ROM's. Like other dev1ce hanalers, it processes medium-level 
I/0 requests to open a device, close a dev1ce, get a byte, put a byte, 
return status, and perform special functions. Typically, the Generic 
Parzllel Device Handler is called by CIO, but it may be called directly 
by an application, as well. Like other resident device handlers, the 
Generic Parallel Device Handler is reached v1a an entry in HATABS which 
pr·ov ides the address (GPDVV, E48FH) of a table of vector entries into 
the handler. The Operating System, itself, does not enter tne Generic 
Parallel Device P.andler into P~TABS. It is not invoked unless some 
parallel device which supports a device handler enters it (and the 
device's name) into HATABS. 

The Generic Parallel Device Handler routines, not know1ng wnich of 
the parallel device hanalers will precess tne req~est, select each of 
the parallel devices, in order of dev1ce number (number 0 first), and 
transfer control to the corresponding routine within the handler. The 
entry point of the parallel device hanaler's routine is determined from 
the address vector table starting at D80DH. The C Status Flag is used 
to determine if the selected parallel device hanaler actually peri ormed 
the request. Upon return to tne Generic Parallel Device Handler, if 
the C Flag is clear, the currently selected parallel device did not 
perform the request and the next parallel device is selected. (Thus, 
even those parallel devices which do not provide a device handler must 
have a simple hanaler rout1ne whl.ch ignores all handler requests and 
returns the C Flag clear.) If the C Flag is set, tne request was 
performed and the Generic Parallel Dev1ce Handler terminates tne 
selectip_n process and returns to the routine which called it. If cuter 
calling all of .the parallel device handlers the handler request ha~ not 
been performed, the Generic Parallel Device Handler returns a 
Non-existent Device (82H) status to the calllng routine. 

The entry conditions into a par·allel device handler are tne same 
as for the resident device hanalers. Paraneter passing is accomplished 
using the A, X and Y registers and the page zero IOCB. On entry, the A 
register contains a data byte, if necessary; the X register contains 
the index to the originating IOCB; and the Y register contains a 
Function Not Supported (92H) status • 

. 5.2 PARALLEL DEVICE HANDLER 

The function of a parallel device hanaler is very simtiar to the 
resident device handlers. One difference is that a parallel device 
handler may be called even though the request is for a different device 
type or a different device unit number. The paralle..l device hanaler 
must check the request (in the page zero IOCB or, in the case of a 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers And Drivers 

6. !...al-LEVEl. DEVICE I/0 INTERFACE 

Parallel device ROM's may contain a routine similar to SID for 
performing the low-level physical I/0 for the parallel device. 

c .1 OPERATING SYSTEl-1 LOW-LEVEL I/0 

All low-level I/0 requests (including those for Serial I/0) w111 
go to the Operating System low-level I/0 rou~1ne which attemp~s to 
perform the request via the low-level I/0 routines within the paralleJ. 
device ROM's. Serial I/0 requests are included so that tne resident 
device hanaler or application need not know whetner tne device is a 
serial device or parallel device. For example, the parallel disK 
hanaler on the 1450XLD relies ~n the DOS to handle medium-level 
( CIO-type) I/0 reqt..ies~s. The DOS makes lC'..I-level ( SIO-ty~e) I/0 
requests wh1ch are scmet1mes for a serial drive and otner times for a 
paralJ.el drive. 

The Operating System low-level I/0 routine (PIO) is reached via 
the jump vector at SIOV (E459H). 

As in the Generic Parallel Device Handler, PIO selects each of the 
parallel devices, in order of device number (number 0 flrst), ana 
transfers control to the low-level I/0 routine wlthin the paralle~ 
device ROM. Control is transferred via a JSR to the jump vector at 
D805H. Again, the C 3tatus Flag is used to determine if the selecteu 
parallel device low-level I/0 routine actually pert onned the request. 
If a parallel device I/0 routine returns the C Flag clear, then the 
next parallel device is selected. If a device I/0 routine returns tne 
C Flag set, the selection process is terminated and control is returnea 
to the routine whlch requested the I/0. If after call1ng all of the 
parallel device low-level I/0 routines the I/0 request has not been 
performed, then the Operating System low-level I/0 routine calls the 
resident Serial I/0 routine to process tne request. 

To disable deferred vertical blank process1ng, the Operating 
System sets the Critical Section Flag, CRITIC, during the selection 
process. 

The entry conditions into a parallel device low-level I/0 routine · 
are the same as for entry into the resident Serial. I/0 routine. All 
paraneters passed are contained in the Dev1ce Control Block (DCB, 
0300H). 

6.2 PARAI I Fl DEVICE I.CJi-LEVEl. I/0 

The parallel device low-level I/0 routine (driver) penorms 
requests for }Xlysical I/0 for a parallel device. Because the request 
may be for a different device type or a different device unit nl.lllber, 
tt,e parallel device lCM-level I/0 rout1ne must checK tne request (bus 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation bf Parallel Device Handlers And Drivers 

ID and unit number in the DCB) and return the C Flag clear it" tne I/0 
request is for some other device. 

If the parallel device ROH provides both a CIO-level hanC1ler and 
an SIO-level driver, it is recommenaed that tne ROM incorporate a 
sin~e routine for actually performing the physical I/0. Thls routine 
would not check the request for the correct device type and physical 
device unit ntlllber. Both the parallel device hanC1ler (it" present) and 
the parallel device la.-level I/0 routine, which do check the request 
for validity, could then call this routine to pen onn the validated I/0 
request. 

After pert'onnlng the request, the parallel device low-level I/0 
routine returns to the Operating System low-level I/O routine via an 
RTS. On exit, the I/0 has been initiated (or completed, if the device 
is not interrupt-driven), theY register contains the status for the 
request, and the C Flag should be set to indicate tnat tne request was 
processed. 

N.B.: The parallel device low-level I/0 routine is NOT allowed to 
modify the DCB, except for DUNIT (0301 H). The original value of DUNIT 
is saved by PIO before the parallel device lew-level I/0 routine is 
called, and it will be restored after tne parallel device low-level I/0 
routine returns. This restoration takes place only at tne very end of 
PIO, so that if a paral.1.el device la.J-level I/0 routine changes DUNIT 
and then returns with Carry clear, suosequent parallel device low-level 
I/0 routines and SIO will see tne modified value of DUNIT. 

------- w
w

w
.a

ta
rim

us
eu

m
.c

om



Softwa~·e Implementation Of Parallel Device Handlers Ana Drivers 

7. DEVICE IRQ HANDLER INTERFACE 

7.1 OPERATING SYSTEM IRQ PROCESSitli 

When an IRQ occurs, after checking for a serial inpul; IRQ, the 
O~ratir.g System checks PDVI ana IPDVI to see it' a paralle.L device 
initiated the IRQ. If a parallel device initiated tne IRQ and the bit 
corresponding to that device is set in PDIMSK or IPDIMK (Whichever is 
appropriate), the Operating Systems transfers control to tne IRQ 
handler of the parallel device which initiated the IRQ. If more tnan 
one device initiated the IRQ, only the lowest-numbered dev1ce w111 get 
control (IRQ' s fran higher-numbered devices rema1n penaing). Transrer 
of control is accomplished via a JSR to the jump vector at D808H. 

Because a parallel device may be executing when the interrupt 
occurs, before selecting a device to handle the IRQ, the Operating 
System places the value of the dev1ce select shadow, SHFDVS, on the 
stack. When all parallel device IRQ' s have been handled, the value of 
the device select fran the stacK is restored to PDVS (and SHPDVS). 

After the parallel device IRQ hanaler returns control, the 
Operating System returns to the interrupted routine v1a an RTI. 

7.2 PARALLEL DEVICE IRQ HANDLm:i 

The parallel device IRQ hanaling routine processes the interrupt. 
After the interrupt has been processea, the parallel device IRQ handler 
returns to the Operating System via an RTS instructlon. 

The Operating System sup~ parallel bus is designed so 
that parallel I/0 and serial I/0 are able to be done concurrently. 
Therefore, in order to avoid the loss of serial port data, interrup~s 
fran parallel devices must be cleared and interrupt:.s enabled w1 tn1n 
about 150 microseconds. 

N~B.: Earlier revlsions of this document stated that a parallel 
device IRQ routine could re-enable interrupts by executing a CLI 
instruction. Those earl1er rev1sions are wrong. A PARALLEL DEVICE IRQ 
RaJTINE MUST NOT £HABLE INTERRUPTS. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers Ana Drivers 

8.2 ZEROPAGE RAM 

There are 11 bytes on ~ge zero which can be used by parallel 
device handlers and drivers (except during IRQ processing): 

S1'AnJS 
CHKSUH 
BUFRLO 
BUFRHI 
BFENLO 
BFENHI 
BUFRFL 
RECVDN 
XMTDON 
CHKSNI' 
NOCKSM 

[30H, 1] 
[31H, 1] 
[ 32H, 1] 
[33H,1] 
[34H,1] 
[35H,1] 
[38H, 1] 
[39H,1] 
[ 3AH, 1] 
[3BH, 1] 
[3CH,1] 

These 11 bytes are normally reserved for use by SIO. Since it is 
not t:ossibl e fer SIC ':o te Gcti ve 3t tne t1~ tnat a paraLlel device 
handler or driver is called (except during IRQ process1ng), par~lel 
device hanalers ana drivers ~~y use these locatlons freely; thelr 
original val~es do not have to be saved and restored. 

In addition, there are 4 bytes on page zero tnat are reserved for 
use by parallel device IRQ routines: 

ABUFPT [ 1CH,4] 

The only part of the OS which uses these 4 bytes is the immediate 
IRQ handler. Parallel dev1ce IRQ routines need not save ana restore 
the original values of these memory locations. 

Parallel device IRQ rout1nes which need more tnan 4 bytes of 
zeropage RAM should use the 11 SIO bytes listed above; natur&ly, the 
IRQ routine must save and restore the original values of these bytes, 
Parallel device IRQ routines needing more tnan 15 bytes of zeropage-­
RAM, and parallel device non-IRQ routines needing more tnan 11 bytes of 
zeropage RAM, can get more by saving and restoring otner 1ocat1ons on 
page zero; the safest spot to use for this purpose is probably tne 
zeropage IOCB ([20H,OCH]). w

w
w

.a
ta

rim
us

eu
m

.c
om



Software Implementation Of Parallel Device Handlers And Drivers 

8. RAM AVAILABILITY 

8.1 PAGE D6xxH AND D7xxH RAM 

512 bytes of RAM, addressed D600H through D7FFH, are ava11able for 
use by by parallel device hanalers ana drivers. This RAM is not used 
at all by the O.S.; in particular, it is not zeroea during coldstart or 
warms tart. 

Each card slot has a port1on of this RAM allocated to ir., 
according to the following scheme: 

D600H - D61FH 
D620H - D63FH 
D640H - D67FH 
D600H - D6BFH 
D6COH - D6FFH 
D700H - D73FH 
D7 40H - D77FH 
D700H - D7BFH 
D7COH - D7FFH 

Slot 0 RAM 
Reserved for use by modem devices 
Slot 1 RAM 
Slot 2 RAM 
Slot 3 RAM 
Slot 4 RAM 
Slot 5 RAM 
Slot 6 RAM 
Slot 7 RAM 

As the table indicates, slots 1-7 each own 64 bytes of RAM, whi.l.e 
slot 0 owns 32 bytes of RAM. There are 32 bytes reserved for use by 
modem devices because 64 bytes is not enough to provide the buffering 
that a modem requires. 

Obviously, a parallel dev1ce hanaler which uses more tnan 32 bytes 
of page D6xxH and D7xxH RAM cannot be placed in slot 0. With this one 
exception, parallel device hanalers should be designed so that they 
will function properly in any slot. In particular, before accessing 
page D6xxH and D7xxH RAM, the handler must determine which slot it i::. 
in (by examining SHPDVS) ana do an address calculat1on. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Device Handlers And Drivers 

8.3 OTiiER RAM 

The following memory locat1ons may be used as scratch storage by 
non-IRQ parallel device routines. They are normally reserved for use 
by SIO. 

CDEVIC 
CCOMND 
CAUX1 
CAUX2 
TE·!P 
ERRFLG 
CRETRY 
DRETRY 
TIMFLG 
STACKP 
TSTAT 

8. 4 '/ECI'ORS 

[23AH, 1] 
[23BH, 1] 
[23CH, 1] 
[23DH, 1] 
[23Eli, 1] 
[23FH, 1] 
[29CH,1] 
[2BDH, 1] 
[317H, 1] 
[31 BH, 1] 
[319H,1] 

Parallel device hanolers should provide, in page D6xxH ana D7xxH 
RAM, whatever vectors are necessary to replace the paralle~ cevice 
hanaler with a RAM-resident hanOler. Prime candidates for vector· ing 
are the IRQ entry point (through D808H) and the low-level entry point 
(through D805H). 

There is no uniform scheme for vectoring due to tne fact that any 
program wh1ch intercepts one of these vectors is going to be extremely 
device-specific anyway. 

8 • 5 A FALSE-ADDRESS WARNitij 

Page D5xxH is used for hardware locations within cartridges. 
Therefore, when parallel device hanalers access ti1e.1r RAM on pages 
D6xxH and D7xxH, they must be careful not to generate any references to 
page D5xxH. 

Due to a quirk in the 6502 microprocessor, this is not a simple as 
it sounas. Whenever indexed adores sing is used to cross a page 
boundary, the 6502 will generate an extra memory cycle during which it 
references the memory l~ation one page below the desired address. 

For example, consider: 

LDX #$FE 
LDA $D510,X 

During execution of the LDA instruction, the 6502 will generate = 
reference to memory location D50EH, as well as to tne desirea address 
D60EH. 

w
w

w
.a

ta
rim

us
eu

m
.c

om



Software Implementation Of Parallel Dev1ce Hanolers Ana Driver~ 

This applies not only to LDA instructions, but to all instructlons 
(including stores). It also applies to indirect indexed address1ng, as 
in LDA (ZPAGE),Y. 

w
w

w
.a

ta
rim

us
eu

m
.c

om




