www.atari-history.com

S.ALAD.
Still Another Line A Document

COPYRIGHT

Copyright 1987 by Atari Corp. All rights reserved. No part of this

publication may be reproduced, transmitted, transcribed, stored in a

retrieval system, or transtated into any language or computer

language, in any form or by any means, electronic, mechanical,

magnetic, optical, chemical, manual, or otherwise, without the prior

gzict]teg permission of Atari Corp., 1196 Borregas Ave., Sunnyvale, CA
86.

DISCLAIMER

ATAR! CORP. MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Atari
Corp. reserves the right to revise this publication and to make changes
from time to time in the content hereof without obligation of Atari Corp.
to notify any person of such revision or changes.

TRADEMARKS
Atari. ST, and TOS are trademarks of Atari Corp.

Stili Another Line A Document was printed in the United States of
America.

First Edition: December 17, 1987

This document was written on an Atari Mega 4 computer using
Microsoft Write and an Atari SLM804 laser printer.

Sectlion 1. Introduction to “Line A”

TOS provides two software interfaces 10 its graphics routines: VDi and Line A. This
document describes the "Line A" interface to the ST's low-level graphics primitives, as provided in all
ST computers with TOS in ROM. It assumes you are familiar with the ST's operating system and
68000 assembly language.

Whiie VDI is appropriate for many applications, it is sometimes advaniageous to give up
some convenience for speed and additional features, like support for all 16 Bit Bit logic operations in
TextBit. Line A provides an interface for simple graphics operations, with these additional features.

Line A Opcodes

Since Line A is an "underlying” portion of TOS, its interface to the world is designed more for
the convenience of the operating system than for humans. The Line A interface consists of 16
opcodes, each of which is one word in length. The upper 4 bits are 1010 (A in hex, hence Line "A%)
and the lower 12 bils are used as the opcode field. The 15 opcedes are’

initialization {$AD00) Return Line A pointers

Put Pixel ($A001) Draw a pixel

Get Pixel ($A002) Return the value of a pixel
Arbitrary Line ($A003) Draw an arbitrary line
Horizontal Line {$A004) Draw a horizontal line

Filled Rectangle ($A005) Draw a filled rectangle

Filled Polygon {$ADD6) Draw one hline of a filled polygon
BitBi ($A007) Move/copy a section of memory
TextBit ($A008) Move text {o the screen

Show Mouse ($A009) Show the mouse pointer

Hide Mouse ($A00DA) Hide the mouse pointer
Transtorm Mouse ($ADDB) Transform the mouse pointer
Undraw Sprite {$A00C) Undraw soliware “sprite”

Draw Sprite {($A00D) Draw sofiware "sprite”

Copy Raster {$AQ0E) Copy raster memory form
Seediill ($AD0F) Seedtill

To use Line A (in two easy steps):

-Set up the inpul variables for the functions you need.
-Declare a constant word of $ADOX, where X is the number of your function.

When the 68000 encounters the $A00X opcode, it performs a "Line A™ exception, executes
the Line A function, and returns control o your code.

Section 1: Introduction to “Line A"

Most Line A functions depend on a structure in memory for input parameters. The Line A Init
call, $A000, returns a pointer 1o this siructure in both a0 and d0. The Line A variables are accessed

relative to this value. Here's a diagram:

a0 points to ~ ---—--—---
2(a0) " " | I

} S > | VPLANES (word) +0

I > | VWRAP (word) +2

| CONTRL (long) +4

FINTIN {long) +8

Once you have the pointer to this structure, you can use the Line A "offsets” to address
specific variables. Some variables, like VPLANES (number of bit pianes in current resolution), are
global variables that reflect the current state of the system. Others, like X1 and Y1, are areas for
passing parameters 10 Line A, which you must sel up yourself. For a list of these ofisets, see

Section 3, “The Line A Variable Structure”.

Line A allows your application to set “clipping boundaries” for many of its functions. These
boundaries are sat with the XMINCL, XMAXCL, YMINCL, and YMAXCL variabies, which limit where
Line A is allowed to draw. This prevents it from “coloring outside the lines.” This is handy il you want
io have an onhscreen "window", and make sure Line A doesn't disturb anything outside its boundaries.

Many Line A functions support clipping. A few that do not are init {obviously), PutPixel,

GeiPixel, Line, Horizontal Line, and BitBlt.

O

Section 2: Line A Function Reference

$ADO0 -- Initialization

Returns several uselul pointers, including the pointer 1o the Line A Variable Structure.

input: None.

Returns:

Notes:

Do
AQ
Al

A2

pointer to Line A variable structure

pointer to Line A variable siructure :

pointer 1o a null terminated array of pointers to the system font headers, allowing you
to point 1o custom fonts in the TexiBIt call.

pointer to a nul! terminated array of pointers to the Line A routines, allowing you 1o
call the routines directly without incurring the overhead of processing a Line A
exception. (You MUST be in supervisor mode 1o do this.)

In order 1o make calis to most Line A routines, you will need to make this call once fo get a
pointer 1o the Line A Variable Structure. Once you have that pointer, save il somewhere, and
you needn't use Line A init again. .

Example:

de.w $A000 : Make the Line A init call

Section 2: Line A Function Reference

$A001 -- Put Pixel

Plots a single pixe! at the given X and Y coordinates.

Input:

INTIN[O] = Color value to use when plotting the pixel
PTSIN[0] = x coordinate for pixel
PTSIN[1] = y coordinale for pixel

Returns: Nothing.

Notes:

This function receives its parameters via the INTIN and PTSIN arrays. The Line-A Variable
Structure contains pointers to these arrays, at offsets +8 and +C, respectively. Offsets within
the INTIN and PTSIN arrays are given in words.

The tunction itself is straightforward. Build a PTSIN array containing the x and y coordinates
for the pixel, build an INTIN array containing the color you want for the pixel, set Line-A's
INTIN and PTSIN variables to point to your arrays, and perform the PutPixe! call.

Example:

Plot a pixel at {(10,10) with color 1

de.w $A000 . Make Line A init call
move.l - #*intINTIN(a0) . Address of INTIN array
move.| #point, PTSIN(aC) : Address of PTSIN array
de.w $AD01 : Put Pixel

.data

Deiine the INTIN and PTSIN arrays.

int: de.w 1
point: dc.w 10.10

Saction 2: Line A Function Reference

$A002 -- Get Pixel
Gets the value of a single pixel at the given X and Y coordinates. Returns this value in d0.

Input:

PTSIN[O] = X coordinate of pixel
PTSIN[1] = Y coordinate of pixel

Returns:
DO = value of the pixel
Notes:

Code for using this function is very similar 1o that for PutPixel, instead of putting a pixel on the
screen, it returns the value of a pixel in dO.

Example:

Return the value of pixe! at

:(10,10) in d0
de.w $A000 : Init Line-A
move.| #point, PTSIN(a0) - Address of PTSIN
dc.w $A002 : Get Pixel

.data

: Define the PTSIN array...
point; dc.w 10,10

seaction 2: Line A Function Reference

$A003 -- Arbitrary Line i ’

Draws a line between the (X1.Y1) and (X2,Y2). The line can be vertical. hortzontal, or diagonal. I
you know the line is horizontal, Horizontal Line ($A004) is slightly taster.

Input:
COLBITO = Dbit value for plane 0 +024 $018 word
COLBITH = bit value for plane 1 +026 $O1A word
COLBIT2 = bit value for plane 2 +028 $01C word
COLBIT3 = bil value for plane 3 +030 $SC1E word
LSTLIN = Draw last pixel of line?
(O=yes 1=no) +032 $020 word
LNMASK = line style mask
{line pattern) +034 $022 word
WMODE = writing mode +036 $024 word
X1 = X1 coordinate +038 $026 word
Yt = Y1 coordinate +040 $028 word
X2 = X2 coordinate +042 $02A word
Y2 = Y2 coordinate +044 $02C word
Side Eflects:

LNMASK is rotated to align with the right-most endpoint.
Returns: Nothing.
Notes:

LNMASK is a one-word mask containing the pattern of the line. WMODE determines what
mode a line is drawn in, replace, fransparent, reverse transparent, of XOR mode.

LSTLIN determines if the last pixe! of a line is drawn. If LSTLIN is nonzero, the las! pixel wil!
NOT be drawn. This is helps prevent two connecied lines from XORing a common endpoint
out of existence.

Example:

5 draw a solid line from (0,0} to (100,100)

de.w $A000 : Make Line A Init call
movew #1,COLBITO(ad) : get COLBIT variables
move.w *1,.COLBIT1{a0)

move.w *1 COLBIT2{a0)

move.w *1,COLBIT3(aD)

movew %0, LSTLIN(a0) , draw last pixel of line
move.w ®$FFFF LNMASK(a0) : line style mask
move.w *0,WMODE(a0) : writing mode (replace)
move.w 0 X1(a0) : (x1,y1) and (x2,y2) into
move.w *0,Y1(a0) ; appropriate variables

movew #100,X2(a0)
move.w %100,Y2(a0)
de.w $A003 . Arbitrary Line

Section 2: Line A Function Relerence

$A004 -- Horizontal Line

Draw a horizontal line between (X1,Y1) and (X2,Y1). Horizontal line is slightly faster than the
Arbitrary Line function.

Input:
COLBITO = bit value for ptane 0 +024 $018 word
COLBIT! = bit value for plane 1 +026 $01A word
COLBIT2 = bit value for plane 2 +(028 $01C word
COLBIT3 = bit value for plane 3 +030 $01E word
WMODE = Writing mode +036 $024 word
X1 = X1 coordinate +038 $028 word
Y1 = Y1 coordinate +040 $028 word
X2 = X2 coordinate +042 $02A word
PATPTR = Pointer to fill pattern +045 $02E long
PATMSK = Patlern index +050 $032 word
MFILL = multi-plane pattern flag +052 $034 word

Returns: Nothing.
Notes:
PATPTR points to an array of line patterns.

The line pattern is chosen from the array of line patterns based on Y1 AND PATMSK.
PATMSK should equal the number of line patterns in the array minus one.

If MFILL is nonzero, ali planes will be filled with the values in the COLBITs. This overrides
WMODE, since a multi-plane fill will happily perform a REPLACE of the destination bitpianes
with no regard for the WMODE.

Example:

' Draw a dashed line from (0,10) 1o (10,100}

de.w $A000 : Line A Init
movew *1 COLBITO(a0) . set COLBIT variables
movew %1 ,COLBIT1(a0)
move.w *1 COLBIT2(a0)
movew *1,COLBIT3(a0}
movew *0 WMODE(al) : writing mode (replace)
movew %0 X1(a0) :x1, y1, and x2 into
movew *10,Y1(ad) : appropriate variables
move.w %100,X2(ad)
move.| #pal PATPTR{a0) : pattern poinler
move.w *0,PATMSK(aD) : Pattern length n-1=0
move.w *0 MFILL(a0) : Multiple Plane fill ofi
de.w $AD04 : Horizontal Line

.data

pat: de.w $FOFO : Pattern for line.

Section 2: Line A Function Reference

$AD05 -- Filled Rectangie

Draw a tilled rectangle with upper left corner at (X1,Y1), and lower right corner at (X2,Y2).

Input:

CoLBITO
coLBITt
COLBIT2
COLBIT3
WMODE
X1

Y1

X2

Y2
PATPTR
PATMSK
MFILL
CLIP
XMINCL
XMAXCL
YMINCL
YMAXCL

Returns: Nothing.

Exampile:

bit value for plane O

bit value for plane 1

bit value for plane 2

bit value for plane 3
writing mode

X1 coordinate

Y1 coordinale

X2 coordinate

Y2 coordinatle

Pointer to the fill patiern
Fill pattern index
Muit-—lane fill pattern flag
clipping flag

X minimum for clipping
X maximum for clipping
Y minimum for clipping
Y maximum for clipping

+024 $018
+026 $01A
+028 $01C
+030 $O1E
+036 $024
+038 $026
+040 $028
+042 $02A
+044 $02C
+046 $02E
+050 $032
+052 $034
+054 $036
+056 $038
+058 $03A
+060 $03C
+062 $03E

word
worg
word
word
word
word
word
word
word
long

word
word
word
word
word
word
word

Section 2: Line A Function Reference

. Draw a filled rectangle with its upper
; left corner at (0,0) and its lower right
; corner at (100,100). Clip the rectangle

; to within (0,0) and (50,50).
de.w $A000
movew *1{ COLBITO(ad)
movew *1 COLBIT1{a0)
movew ®1 COLBIT2(a0)
movew ®1 COLBIT3{a0)
movew %0 WMODE(a0)
movew *0,X1(a0)
movew %0 Y1(a0)
movew %100 X2(a0)
movew *100,Y2(a0)
move! *iujiPATPTR(a0)
movew %15 PATMSK(a0)
move.w *0MFILL(-")
movew #1 CLIP(a0)
move.w %0, XMINCL(a0)
move.w *50 XMAXCL(a0)
movew *0,YMINCL(a0)
move.w #50 YMAXCL(a0)
de.w $AD05

.data

fuji: dec.w $0000
de.w $05A0
de.w $05A0
dc.w $05A0

O dc.w $O5A0

dc.w $0DB0
de.w $0DB0
dc.w $10B8
dc.w $399C
dc.w $79%E
dc.w $718E
de.w $718E
dew $6186
de.w $4182
dew $0000
dc.w $0000

; Line A init
; bit planes for shape

; wtiting mode (replace)
; X and Y values for shape

; pattern pointer 1o fuji

: Pattern length = 16-1 = 15
: multi-plane fill (off)

: clipping stalus {on)

; clipping boundaries

; Filled Rectangle

- 0000000000000000
: 0000010110100000
: 00000101 10100000
: 0000010110100000
: 50000 10110100000
' 0000110110110000
: 0000110110110000
£ 0001110110111000
£ 0011100110011100
:0111100110011110
:0111000110001110
:0111000110001110
: 0110000110000110
: 0100000110000010
© 0000000000000000
: 0000000000000000

Section 2: Line A Function Reference

$A006 -- Filled Polygon

Draws a filled polygon line-by-line.

Input:

PTSINI] = Pointer to an array of polygon veruces.
{(x1.y1).(x2,y2)...00n,yn),(x1,y1))

CONTRLI1] = n=pnumber of vertices
COLBITO = bit value for plane 0 +024 $018 word
COLBIT1 = bit value for plane 1 +026 $O1A word
COLBIT2 = bit value for piane 2 +028 $01C word
COLBIT3 = bit value for plane 3 +030 $O1E word
WMODE = wriling mode +036 $024 word
Y1 = y coordinate of scan-line to fill +040 $028 word
PATPTR = Pointer to the fill pattern +046 $02E long
PATMSK = Fill pattern index +050 $032 word
MFILL = Multi-plane fill patiern ftag +052 $034 word
CLiP = clipping flag +054 $036 word
XMINCL = X minimum for clipping +056 $038 word
XMAXCL = X maximum for clipping +058 $03A word
YMINCL = Y minimum for clipping +060 $03C word
YMAXCL = Y maximum for clipping +062 $03E word

Side Efiects:

AD is destroyed.
X1 and X2 are destroyed.

Returns. Nothing.

Notes:

The first vertex must be repeated at the end of the list of n endpoints.

Filled polygon requires CONTRL to point to an array in which the second word contains the
number of vertices. This is handied in the example program by the line "control: dc.w
0,.NUMVERTS".

PTSIN must point to an array of vertices in the format X1, Y1, X2, Y2, X3, Y3, and 50 on.
Each coordinate is a word in length. In the example, this is handied by the array starting at
"verts:”,

The polygon is drawn one line at a time. The Y coordinate is contained in Y1. To fill an
entire polygon, a simple loop increments Y and performs the Filled Polygon call repeatedly.
In the example, this is done by a routine called "loop™.

10

Example:

Section 2;: Line A Function Reference

: Draw a polygon with vertices a1 (0,0),
: (319,120}, and (25,199). One line is

: drawn ai a time. The clipping variables
: ara set but not evaluated, since CLIP

: ig get to O (off).

TOP equ
BOTTOM equ
NUMVERTS equ
PATLENGTH equ

dew
move.|
move.l
move.w
move.w
move.w
move w
move.w
move.|
move.w
move.w
move. w
move.w
move w
move w
move.w

0
189
3
15

$AD00

syerts PTSIN(a0)
scontrol, CONTRL(a0)
#1 COLBITO(a0)

#1 COLBIT1{ald)
#1,COLBIT2(al)

*1 COLBIT3(al)

#0) WMODE(aD)

#{uji, PATPTR(a0)
SPATLENGTH,PATMSK{a0)
#0 MFILL{a0)

0. CLIP(a0)

#0, XMINCL(a0)
#100,XMAXCL(a0)

&0 YMINCL{a0}

#100, YMAXCL(a0)

Main loop o draw the polygon

move.!
move.w
move.w
sub.w
loop: de.w
addq
dbra

a0,a5 -
*TOP.Y1(a5)
$BOTTOM, d4
*TOP,d4
$A006
#1.Y1(a5)

d4 . loop

: Uppermost Y in polygon
: Lowermost Y in polygon
- number of verlices

: length of pattern

: Line-A init
; Address of veris
: Address of "control”

- writing mode (replace)
: address of pattern

; length of fill pattern

- Multi-piane fill (off)

: clipping status {off)

: clipping boundaries

: Save a0 in a5.

- Maximum y to Y1

: Maximum y into d4

: minus minimum y

: Filled Polygon (one line)
: Decrement current Y

t1

Section 2: Line A Function Relerence

.data

control: de.w 0. NUMVERTS - CONTRLI[1] = no. of verts

verts: dc.w 0.0,319,120,25,199,0,0

fujt: de.w $0000 : 0000000000000000
dew $05A0 : 00000101 10100000
dc.w $05A0 - 0000010110100000
de.w $05A0 - 0000010110100000
dc.w $05A0 : 0000010110100000
dc.w $0DBO : 0000110110110000
dc.w $0DB0O : 0000110110110000
de.w $1DB8 - 0001110110111000
dc.w $399C 1 0011100110011100
de.w $798E :0111100110011110
de.w $718E - 0111000110001110
dc.w $718E ;0111000110001110
dc.w $6186 : 0110000110000110
de.w $4182 : 0100000110000010
dc.w $0000 : 0QO0000000000000
de.w $0000 : 0000000000000000

12

Seclion 2: Line A Function Reference

$A007 -- BitBlt

Perform a BIT BLock Transter

Input:
a6 = pointer to the BitBit parameter block
The BitBIt routines recsive information through their own parameter block, the address of
which must be put into a6 before the bitblt call is made. The format of this block Is shown

below. This block must be 76 bytes jong, including 24 bytes at the end for use by the Bt
Variables marked with a {D} may be destroyed during the blit.

8_WD +00 ($00) (word) Width of block to blit {in pixels)
B_HT +02 ($02) (word) Height of biock to blit (in pixels)
PLANE_CT +04 ($04) {word) Number of consecutive planes to blit {D}
FG_COL +06 ($06) (word) Foreground color {logic op index:hi bit) {D}
BG_COL +08 ($08) (word) Background color (logic op index:lo bit) {D}
OP_TAB +10 ($0A) (long} Logic ops for ali fore and background combos
S_XMIN +14 ($0E) {word) Minimum X: source
S_YMIN +16 ($10) {word) Minimum Y: source
S_FORM +18 ($12) {long) Source form base address
S_NXWD +22 ($16) (word) Ofiset to next word in line

(in bytes)

" S _NXLN +24 ($18) {word) Oftset 10 nex! line in plane

{in bytes}
S_NXPL +26 ($14) (word) Offset from start of current plane to next plane
D_XMIN +28 ($1C) (word) Minimum X: destination
D_YMIN +30 ($1E) {word) Minimum Y. destination
D_FORM +32 ($20) (long) Destination form base address.

(For example, Physbase of the screen.)
D_NXWD +36 ($24) (word) Offset to nexi word in line

(in bytes)
D_NXLN +38 ($26) (word) Ofiset to nex! line in plane

(in bytes)
D_NXPL +40 ($28) {word) Ofiset from start of current plane to next plane.
P_ADDR +42 ($2A) (long) Address of patiern butfer

(O=no pattern)

13

Section 2: Line A Funciion Reference

AT
P_NXLN +46 ($2E) (word) Ofiset to next fine in patiern
{in bytes)
P_NXPL +48 ($30) (word) Otisel to next plane in pattern
{in bytes)
P_MASK +50 (§32) (word) Pattern index mask
SPACE +52 ($34) 24 bytes Extra Space, required by the blit. Be sure o define

this or the next 24 bytes of memory will be clobbered,
resulting in a mangled image or worse!

§_FORM and D_FORM point 1o the first words of the source memory form and destination memory
forms, respectively. These addresses must be on word boundaries.

S_NXWD and D_NXWD are ofisets to the next word in a plane of the memory form. For example, in
a monochrome mode screen the value is 2, in medium resolution, 4, and in fow resolution, 8.

S_NXLN and D_NXLN are fo...: widths for source and destination. These widths must be even byte
values, since they represent the ofiset from one row of the form to the next and forms must be word
aligned and an integral number of words wide. (hint: The hi rez screen value is 90 while low and
medium rez values are 160.)

S_NXPL and D_NXPL are oftsets irom the start of one plane to the start of the next plane. Because
of the ST screen's interleaved plane structure, this value is always two. Alternative universes allow
for a series of contiguous planes where NXPL vaiues are the number of bytes in each plane. Thus, it
is possible to BLT from the contiguous universe into the interieaved ST universe and vice versa.

The actual bit aligned blocks of memory are defined within the form by an upper jett anchor point, a
pixe! width, and a pixel height: (S_XMIN, S_YMIN, B_WD, and B_HT). The location in the
destination form is defined by an anchor point (D_XMIN, D_YMIN). No harm will come if these two
areas overlap. Note thal no clipping is performed and there is no checking 1o determine whether the
bit biocks fall within the confines of the encompassing memory forms. Finally, the number of planes
1o be transferred (the number of iterations of the BL.T algorithm) is contained in the PLANE_CT word.

OP_TAB is a table of four RASTER OP codes. Each of the byte wide entries in OP_TAB contain a
code for one of the sixteen logical operations between source and destination blocks. For each
plane, the logical operation is chosen by indexing into the OP_TAB with & value derived from the
FG_COL and BG_COL words. For a given plane "n", bit “n” of FG_COL is the hi bit of the two bit
index value and bit "n" of BG_COL is the lo bit of ihe index value:

EG(n) BG(n) OP TAB eotry
0 0 first byte

0 1 second byle

1 0 third byte

1 1 fourth byte

For each unique combination of FG and BG, a speclfic logic operation can be defined with OP_TAB.

BitBit Logic Ops

S = Source pixel
D = Destination pixel
D' = Destination after operation

14

Section 2: Line A Function Reference

Combination Rule

D=0

D'=SANDD

D' =5 AND [NOT D]

D' = & (Replace Mode)

g = ngT S]AND D (Erase Mode)
D' =S XOR D {XOR mode)
DD=SORD

D' = NOT [S OR D]

D' = NOT [S XOR D]
D'=NOTD

D' =S OR [NOT D}
D'=NOTS
D'=[NOTSIORD

g = I;JOT [S AND DJ

E MTMOODFEFO®NONEGN-O %

Patierns are word-wide, word-aligned images that are logically ANDed with the source prior fo the
logical combination of source and destination.

Patterns are packed in an imaginary grid anchored at the upper left corner {0,0) of the destination
memory form.

Patterns are 16 bits wide and repeated every 16 pixels horizontally.
Patterns are an integral power of 2 in height and repeat vertically at that frequency. (1,2,4.8,...)

The source is shilted into alignment with the destination rectangle prior to the combination of source
with pattern. Thus, the relationship between source and pattern is dependent upon the X,Y
positioning of the destination rectangle.

P_ADDR points to the first word of the pattern. 1f this pointer is 0, a pattern Is not combined with the
source rectangle.

P_NXLN is the offset (in bytes) between consecutive words in the pattern. This number should be an
infegral power of two (2, 4, 8...)

P_NXPL is the offset (in bytes) from the beginning of a plane to the beginnning of the next piane. in
the case of a single plane pattern used in a multi-plane environment, this value would be zero. Thus,
the same pattern is repeaied through all planes.

P_MASK works with P_NXLN to specify the length of the pattern. The length (in words) of the
pattern must be an inlegral power of two.

HP_NXIN=2%*"n
then P_MASK = {length in words -1) <<n

To BLT from a single plane source to multi-plane destinalion, S_NXPL = 0. The same source plane

g BLTed to all destination planes. To map 1s to foreground color and Os 1o background color, sel
P_TAB to:

15

Section 2: Line A Function Relerence

Offset Logic Op

+00 00 All zeros

+01 04 D' <- {NOT S]AND D
+02 07 D'<-SORD

+03 15 All cnes

Load toreground color into FG_COL and background color into BG_COL.

To map 1s to foreground color and make 0s transparent set OP_TAB to:

Qliset Logic Op

+00 04 D <- [NOT S]AND D
+01 04 D' <- [NOT S] AND D
+02 07 D'<-SORD

+03 07 D'<-SORD

Load foreground color into FG_COL; BG_COL is irrelevant. Be sure S_NXPL is set 10 0.

To BLT & pattern without Source to the Destination, define a word of ones, and set S_FORM at it
Set S_NXLN, S_NXPL, S_NXWD, S_XMIN, and S_YMIN to 0. Set up the patiern as you usually
would. The BLT will create a pattern-filleg rectangle.

To make a simple sprite-like device, build a monoplane mask. Everywheie there is a 1in the mask,
the background will be removed. Wherever a 1 falls, the background is left intact. Set OP_TAB to:

Qttsel Logic Op

+00 04 D' <- [NOT S|AND D
+01 04 D' < [NOT S]AND D
+02 07 D'<-SORD

+03 07 D<-SORD

Load foreground color into FG_COL; BG_COL is irrelevant.

Take & monoplane form (or multi-plane form) and "OR" it (OP 7) into the area that you just scooped
out with the mask.

Example:

16

Section 2: Line A Function Relerence

.. ' BitBIt a monochrome invertebrate

; 1o the screen.
move.w %2.-(sp) ; get screen base address
trap *14
addq *2 sp
move.| d0,.screen
lea blit,aé ; address of blil parameter block
dc.w $AD07 : BitBit

.data

E BitBlt Parameter Block

blit: de.w $0030 ; width of source in pixels
de.w $0014 ; height of source in pixels
de.w $0001 : number of consecutive ptanes to blit
dcw $0001 : ig color {logic op index: hi bit)
de.w $0000 ; bg color (logic op index: lo bit)
de.l $07070707 : logic ops for all ig and bg combos
dc.w $0000 ; minimum X: source
dc.w $0000 ; minimum Y: source
dec.i slug : source form base address
dc.w $0002 : byte offset to next word in line
de.w $0006 : byte offset to next line in plane
de.w $0002 : offset o next plane (in bytes)
de.w $00FF : minimum X: destination
dc.w $0064 : minimum Y destination
screen: de.l $00000000 . destination form base address
dc.w $0002 : byte offset to next word in line
T dc.w $0050 : byte offset to next line in plane
dc.w $0002 : offsel 1o next plane (in bytes)
dec.l $00000000 . address of pattern butfer
. - (O=no pattern)
de.w $0000 : byte offset to next line in pattern
dc.w $0000 ; byte offset to next plane in pattern
dc.w $0000 ; pattern index mask
de.w $0000, $0000, $0000., $0000
dc.w $0000, $0000, $0000, $0000
de.w $0000, $0000, $0000, $0000

Section 2: Line A Function Reference

image definition from:
- NEOchrome cut butler contents (left justified).

pixels/scanline = $0030 (bytes/scanline: $0006)
« gcanlines (height) = $0014 .
Monochrome mask (1 plane; background=0/non-background=1)

slug: dcw $0000, $0000, $0030, $0000, $0000, $0066, $0000, $0000
dew $O06C, $0000, $0000, SOOCE, $0000, $0000, $COCC, $0000
dow $0000, $0198, $0000, $0000, $03BO, $0000, $0000, $0770
dew $0000, $0000, $0760, $0000, $0000, $OEEOQ, $0000, $0000
dew $7FCO, $0000, $0003, S$FFCO, $0000, $003F, $FFCO, $0000
dcw S$OOFF, $FFEO, $0000, $IFFF, $FFFO, $O0IFF, $FFFF, $FEFO
dew SOFFF, $FFFF, S$FF70, SIFFF, $FFFF, S$FF80, SFFFF, S$FFFF
dew SFFEO, $FFFF, $FFFF, $FFCO

Note: This example might not be admissable in a programming ciass, since it changes some of its
~dc.w's. In the real world, you'd probably want to copy all this into your bss, then make the changes.

18

®

$A008 -- TextBil

Perform a TEXT BLock Transfer of 1 character

input:

Notes:

WMODE

CLIP
XMINCL
YMINCL
XMAXCL
YMAXCL
XDDA
DDAINC

SCALDIR
MONO
SOURCEX

SOURCEY
DESTX
DESTY

DELX
DELY
FBASE

FWIDTH
STYLE
LITEMASK
SKEWMASK
WEIGHT
ROFF

LOFF
SCALE
CHUP
TEXTFG
SCRTCHP
SCRPT2

TEXTBG

Most of the effort for TextBIt goes into setting up its variables, as shown
the font itsell is contained in the font header,

information you need about
Not all of the variables are always evaiuated, as the

VDI manual under "Ford Format”.

Writing mode

Section 2: tLine A Function Reference

+036 $024

{0-3 =>VDI modes, 4-19 =>BiiBlt modes)

clipping flag
X minimum for clipping
Y minimum for clipping
X maximum for clipping
Y maximum for clipping
accumulator for x dela
fractional amount to scale
up or down
scale direction flag (O=down)
monr Haced font fiag
x coord of character
{in font form)
coord of character
in font form)
x coord of character
{in destination form)
coord of character
in destination form)
width of character
height of character
Pointer to start of font data
{tont form)
Width of font form
TextBlt special effects flags
mask for lightening texi
mask for skewing text
width by which to thicken text
offset above character baseline
when skewing
offset below character baseline
when skewing
scaling flag (0 => no scaling}
character rotation vector
Text foreground color
pointer 10 start of text
special effects butier
ofisetl of scaling butier
in SCRTCHP butter {(midpoint)
Text background color

+054 $036
+056 $038
+058 $03A
+060 $03C
+062 $03E
+064 $040

+066 $042
+068 $044
+070 $046

+072 $048
+D74 S04A
+076 $04C

+078 $04E
+080 $050
+082 $052

+084 $054
+088 $058
+090 $05A
+092 $05C
+094 $0SE
+096 $060

+098 $062
+100 $064
+102 $066
+104 $068
+106 $06A
+108 $06C

+112 $070
+114 $072

word

word
word
word
word
word
word

word
word
word

word
word
word

word
word
word

jong

word
word
word
word
word

word
word
word
word
word
iong

word
word

above. The
as described in the

example shows. Check Section 3, "The Line A Variable Struciure,” for more inforrmation on
the Tex!BIt variables and their uses.

After TextBIt outputs one character, it automatically increments its X coordinate by the width
of the character printed.

19

Section 2: Line A Function Reference

TexiBit aliows the four VDI writing modes, as well as the BitBlt modes. VDI modes 1-4 are
TextBit 0-3, and BitB!t modes 0-15 are TextBit modes 4-19.

When using special efiects, make sure the buifer pointed 1o by SCRTCHP is large snough to

contain the worst case (largest) result of the efiects * 2. SCRPT2 must be an offset from the
beginning to the midpoint of this butler.

Example:

Font Header Ofigets

firsi_ade equ 36 : header ofiset to value of first displayable
; character in font

ofi_table equ 72 ; header ofiget lo pointer to offset table

data_table equ 76 ; header ofisel to pointer o font data

form_width equ 80 : header ofiset to total width of font

form_height agqu 82 ; header offset to total height of font

: Print a null-terminated string using

; TaxiBit
dc.w $A000 ; Line A Init
move.w %2 WMODE(a0) : writing mode (VDI XOR)
move.w *0,CLIP(a0) : Clipping status {off)
move.w *0 XMINCL{a0) ; elipping boundaries

movew #125 XMAXCL(ad)

move.w %0, YMINCL{a0)

movew *200 YMAXCL(a0)

move.w %1 TEXTFG(a0) ; Foreground color
move.w *0,TEXTBG(a0) ; Background color
move.w *#100,DSTX(a0)

move.w %100,DSTY(al)

movew ®4 STYLE(aO)

move.w ®0 SCALE(a0)

move.w *1 MONO({al)

Find the sysiem fonts

move.l 4(al),al : Address of 8x8 font
move.| data_table(a1),FBASE(a0) : Address of font gata
move.w form_width(a1},FWIDTH(a0) ; font form width
move.w form_height{a1) DELY(a0) ; height of font

: Print the string

20

print;

dienow;

.data
string:

lea.l
move.|
cird
move.b
ble
sub.w
Ist.w

move. w
move.w
sub.w
move.w
cr.w
movem.|
dc.w
movem.|
bra

ris

dc.b

Saction 2: Line A Function Relerence

string.a2
off_tabie(a1),a3
d0

(a2)+ d0
disnow
first_ade(a1).dD
#1.d40

0(a3,d0), SRCX(a0)
2(a3,d0),d0
SRCX(a0),d0
d0.DELX(a0)
SRCY(al)
a0-a2,-(a?)

$AD0S

(a7)+,a0-22

print

; a2 -> shring to print

: address of offset table
: make sure d0 is clear

; character from string

: end of string, exit

: letter's offset in fonl

: x2 for _word_ offset In
; ofiset table

. X of desired character

: x of next character

: minus x o! desired char
: width of desired char

: gtart at top of char

; push everything on the stack
; TextBlt

; put everything back

; print next character

"Welcome to TexiBIt, Space Guy!".0

21

Saction 2: Line A Function Reference

$A009 -- Show Mouse

Show the mouse cursor.

Input:
INTINIO) (optional, see Notes, below.)
Returns: Nothing.

Useful Variables:

The depth at which the mouse cursor is hidden is held in HIDE_CNT at oftset -538 (-$256).
This variable will be zero If the mouse is shown, and non-zero it hidden. The number is how
many "shows" must be performed to show the mouse cursor.

The x and y coordinates of the mouse cursor are held in GCURX and GCURY, at -602 (-
$25A) and -600 (-$258). _

The mouse button status is held in MOUSE_BT at -596 (-$254). See Section 3, "The Line A
Variable Structure™, for more information. S

Notes:

I Hide Mouse has been used more than once, an equivalent number of Show Mouse calis
must be made to be effective. To force the mouse cursor to be shown regardiess of how
many hides have occured, put a word of zero inlo INTIN{O).

Example:
dc.w $A008

22

Section 2. Line A Function Reference

. $AQ0A -- Hide Mouse

Hide the mouse cursor.

input. None.

Returns: Nothing.

Notes: ‘
If you use more than one Hide Mouse, it must be countered with an equivaient number of
Show Mouse calls 1o show again. This is explained in "Show Mouse”, above.

Example:

dc.w $SAODA

23

Section 2;: Line A Function Reference

$SADOB -- Transtorm Mouse

Transform the mouse's form.

input:

INTIN =

pointer o an array of parameters

Returns: Nothing.

Notes:
This function gets its parameters and data from an array pointed to by INTIN. This array
contains information fike the "hot spots™ for the mouse pointer, colors for the new mouse
pointer, and the actual shape of ihe new mouse pointer.
The existing mouse pointer information is contained in the Line A Variable Structure, starting
at -856 (-$356). This information can be saved away belore you change the mouse cursor
and be used to restore it fo its former sell.
Also, mouse_ftag at -339 (-$153) determines if the mouse interrupts are enabled, and can be
used 1o prevent the mouse cursor from being updated while changing its form. (Be sure to
restore mouse_flag to its previous value when you're done.)
Example:
Replace the familiar arrow with a
; short message. -
HOTX equ 0 - Mouse hot-spols
HOTY equ 0
MASKC equ 0 : color data
‘DATAC equ 1
de.w $A000 : init Line A
move.| emouse, INTIN(a0} : address of mouse dafa
dc.w $AD0A ; Hide Mouse
dgc.w $A00B : Transform Mouse
de.w $A009 . Show Mouse
mouse daia
mouse: de.w HOTX : X hot spot
de.w HOTY . y hot spot
dc.w 1 : Reserved, must be 1...
dew MASKC : Mask color index
de.w DATAC : Data color index
dew 30000.30000,30000,soooo,SFFFF.SFFFF.SFFFF.sFFFF
dc.w SFFFF.SFFFF.50000,50000.50000,30000.50000.50000
de.w 30000.50000.50000.50000.$0002.$632A.$50AA.$5798
dc.w sssu.uoao,soooo,soooo,soooo.soooo.soooo.soooo

24

Section 2: Line A Function Relarence

. $A00C -- Undraw Sprite
Undraw the previously drawn sprite.

Sprites are useful for animating small objects, since Line-A takes care of the housekeeping
for you. Sprites are 16x16, and consist of two "layers™ an image and a mask.

When a sprite is drawn, the screen image “under” it is copied into the sptite save block.
When that sprite is undrawn, the screen is restored 1o its original state.

When using multiple sprites, undraw in reverse order of drawing. If any one sprite intersected
another, it will have copied part of the underlying sprite away into the sprite save block. H you
undraw in order, the underlying sprite will be restored to background, erasing the "top” sprite.
When the top sprite is undrawn, it will restore a part of the underlying sprite. This causes
what is called (in computer graphics) a "mess”.

Input:
A2 = Pointer to spritle save biock

Side Effects:

A6 is destroyed.

Notes:

The sprite save block is used to save the screen underneath the sprite. Its size is 10 byles +
64 bytes per plane: (10 + (VPLANES * 64)) bytes.

Example:

See draw sprite, below.

25

Section 2: Line A Function Relerence

$A00D -- Draw Sprite

| Draw a software gprite.

input:
D1 = Y hot_spot
A0 = pointer to sprite definition block
A2 = poinler to sprite save block
Side Effects:
ABG is destroyed.

Returns: Nothing.

Notes:
The sprite save block is used to save the screen underneath the sprite. s size is 10 byles +
64 bytes per plane: (10 + (VPLANES * 64)) byles.
The Sprite Definition Block is aid out as foliows:
Ofiset Size Description
000 $000 word X oftset of sprite hot-spot
002 $002 word Y offset of sprite hot-spot
004 $004 word Format flag (see below)
006 $006 word Background color (Physical pixel color)
008 $008 word Foreground color (Physical pixel color)
010 $0DA 64 bytes Sprile image.

The format llag determines how the sprite will be drawn. There are two modes, VDI and XOR. |f the
format flag is 1, VDI format is used, it -1, XOR is used. The iwo modes are compared below.

vDI 0 0 Destination {screen) color
Mode 0 1 Background color plotted
1 0 Foreground color plotted
1 1 Foreground colot plotted
XOR 0 0 Destination (screen) color
Mode 0 1 Background color plotted
1 0 invert destination (screen) colot
1 1 Foreground ¢olor piotted

The sprite image is designated as alternating words of background and foreground image, like:

word 0 = background line 0

word 1 = foreground line O

word 2 = background line 1

word 3 = {oreground line 1
Example:

26

Section 2: Line A Function Reference

GCURX equ -602 : Current mouse X position
GCURY equ -600 : Current mouse Y position
MOUSE_BT equ -596 ; Mouse button status
loop: move.w #37,-(sp) : Walt tor VEYNC

trap 14

addg *2 sp

dc.w $AO0A : Hide Mouse

lea save a2 : image save area

de.w $A00C : Undraw Sprite

Draw a sprite tied to the mouse position

draw: dcw $A000 :init Line-A
movew GCURX(a0),d0 : X position
movew GCURY(a0).d1 1 y position
lea sprite,at . sptite image data
lea save,az ; image save area
de.w $AO00D : Draw Sprite
dc.w $A000 ; init Line-A
move.w MOUSE_BT(a0),d3 - Mouse button status
btst d3,*1 - Check right button
bne loop : If not, loop
dc.w $AD09 : Show Mouse
rts
.bss
: Sprite save block
save: ds.w 5 - Storage for misc. info
ds.w 32 : Storage for sprite image
.data
. Sprite data
sprite: dc.w 0 - x oftset of hot spot
dc.w 0 : y offset of hot spot
dc.w 1 : format flag
dc.w 0 : background color
de.w 1 : foreground color
dc.w %0000111111111000,%0000011111110000
de.w %0001111111111100.%0000111111111000
dc.w %0011111111111110,%0001111111101100
dc.w %0011111111111110,%0001 100000000100
de.w %0011111111111110,%0001100000000100
de.w %0011111111111110,%0001000000000100
de.w %0011111111111110,%0001111000111100
de.w %0011111111111110,%0001011101010100
de.w %0011111111111110.%0001000100000100
dc.w 2,0001111111111100,%0000101100101000
de.w %0001111111111100,°/¢0000110111011000
dc.w %,0000111111111100,%0000011000101000
dcw °,0000111111111000,%0000011111010000
de.w %0111111111111000,%0010111000010000
dew ¢,0111111111110000,%0011100111100000

ac.w %0111110000000000,%001 1100000000000

Section 2: Line A Function Referance

28

AR J
TR TIN a

Section 2: Line A Function Reference

$AOOE -- Copy Raster

Same as VDI's Copy Raster functions, but with the Line-A call you needn't open a virfual workstation,
See VDI manual under "Raster Operations”

29

Section 2: Line A Function Reterence

$ACOF -- Seedfill

Same as VDI's Contour Fill function, with the following exceplions:
You needn't open a virtual workstation

You MUST set the clipping variables correctly. They are evaluated regardiess of the siate of
the clipping flag.

SEEDABORT is a veclor to a routine calied at the end of each line fill. Seedtfill aborts or
continues based on the value returned in DO; if zero, it continues, it nonzero, it aborts.

30

Section 3: The Line A Variable Structure

The following is a chart of the Line A Input Variables Structure. It shows the name of the
variable, its offset from the beginning of the table (in decimal and hex), its size, and a briet
description of its function. The top of this chart is lower in memory than the bottom. Note: variables
that begin with "V_" are used by the ST BIOS character output routines.

NAME OFFSET SiIZE IPTION
<310 -$38E to
-906 -$38A RESERVED
CUR_FONT -906 -$38A long pointer to current font header
-902 -$386 to
-856 -$356 RESERVED

The next 37 words contain mouse cursor information, including the mask,
torm, hot spot, gnd writing mode.

M_POS_HX -856 -$356 word Mouse hot spot x coordinate within the
16x16 mouse cursor

M_POS_HY -854 -$354 word Mouse hot spot y coordinate within the
16x16 mouse cursor

M_PLANES -852 -$352 word Writing mode for mouse cursor.

1 indicates "normal” mode, -1 indicates XOR mode. There are iwo
“planes” of information in the mouse cursor, representing the F(oreground)
and B(ackground). The table below shows the dispiayed result for the four
possible combinations in these "planes” for both the “normal™ and "XOR" -

modes.
E 8 Norm XOR
0 0 Dest. Dest. Destination color is unchanged
0 1 B B "Background” mouse color shown
1 0 F NOT Dest. "Foreground” color shown, or destination color is inveried
1 1 F F "Foreground” color shown
M_CDB_BG -850 -$350 word Mouse background physical pixel color
M_CDB_FG -848 -$34E word Mouse foreground physical pixel color
MASK_FORM -846 -$34C Location of system mouse cursor
mask and form.
Afternating words of background and foreground data, like:
background word 0, foreground word 0...background word 15, foreground
word 15.
INQ_TAB -782 -$30E words 45 words, containing the information

returned by the vq_extnd VDI call.
(See VDI manual,

3

Section 3: The Lina A Variable Structure

DEV_TAB -692 -$2B4 words 45 words, containing the inlormation
returned by the v_opnwk VDI call.
{See VDI manual.

GCURX -602 -$25A word Current mouse curgor X position

GCURY -600 -$258 word Current mouse cursor y position

M_HID_CT -598 -$256 word Depth at which the mouse cursor is

currently "hidden™.

When the mouse cursor is hidden, this variable contains a non-zero
value. An application can check this location to determine how deep
thecursor is hidden. An application can also force the mouse cursor to be
shown regardless of how deep it is hidden via the "Show Mouse” call.

MOUSE_BT -596 -$254 ‘word Current mouse button status
Bit 0 = left button status (0=up, 1=down)
Bit 1 = right button status (O=up, 1=down)

One way 1o check the mouse button status. Another is CUR_MS_STAT.

REQ_COL

SiZ_TAB

CUR_WORK

DEF_FONT
FONT_RING

-594 -$252

-498 -$1F2

-468 -$1D4
-466 -$1D2
-464 -$1D0

-460 -$1CC
-456 -$1C8

words

words

word
word

fong

long

longs

3*16 words of internal data for
vq_color (See VDI manual.)

15 words, containing text, line, and
marker sizes in device coordinates:
0 min char width

1 min char height

2 max char width

3 max char height

4 min line width

5 reserved

& max line width

7 reserved

8 min marker width
9 min marker height
10 max marker width
11 max marker height
12-14 RESERVED

RESERVED
RESERVED

Pointer 10 current virtual workstation
attributes

Pointer to default font header

32

FONT_COUNT

CUR_MS_STAT

V_HID_CNT
CUR_X
CUR_Y
CUR_FLAG

Section 3: The Line A Variable Struciure

FONT_RING is an array of four longword pointers to linked lists of
font headers. The first entry is the head pointer 1o the font list, the second
and third are continuation fieids, and the fourth is & null ferminator. When the
VDI searches through the list and encounters a null pointer in the link field of
a font header, it continues the search from the next continuation field in
FONT_RING. [f this field is zero, the search ends. The first twe pointers in
FONT_RING are initialized for resident font lists, and the third is the pointer to
the GDOS fonts, which is normally reinitialized during each VDI call.
FONT_RING[3] is aiways zero to end VDIs quest tor fonts.

When an application requests a specific font size and type, the
sysiem searches its lists tor the first occurrence of the requested style. When
found, VDI searches for the correct height. This search is ferminated when
VDI encounters another style in the header, or when a zero I$ found in
FONT_RING. All fonts of ihe same style must be linked together in
ascending order.

The first font header in a set of user installed fonis should be pointed
to by FONT_RINGI[0], and the link field in the header ol the last user-installed
font should contain the pointer it finds in FONT_RINGIO).

-440 -$1B8 word Number of fonis in the FONT_RING
lists

-438 -$1B6 to

-348 -$15C RESERVED

-348 -$15C byte Mouse stailus

Bil 0 = left mouse bution status (O=up, 1=down)

Bit 1 = right mouse button status (0=up, 1=down)

Bit 2 = reserved

Bit 3 = reserved

Bit 4 = reserved

Bit 5 = mouse movement flag (0=no movement, 1=movement)
Bit 6 = right mouse button change flag (0=no change, 1=change)
Bit 7 = left mouse button change flag (O=no change, 1=change)

One way 1o get the current mouse status. in addition to the mouse
button status, it provides flags indicating if the mouse has moved (bit 5), or
the mouse buttons have changed irom the last mouse interrupt (bits 6 and 7).

-347 -$15B byte RESERVED

-346 -$15A word Hide depth of alpha cursot

-344 -$158 word - Mouse cursor X position

-342 -$156 word Mouse cursor Y position

-340 -$154 byte Nonzero = draw mouse form on
VBLANK.

33

Section 3: The Line A Variable Structure

-

CUR_X, CUR_Y, and CUR_FLAG make up a Communication block o
the VBLANK mouse cursor draw routines. The X and Y at which the mouse
cursor will be drawn are followed by a Hlag indicating if the mouse cursor
should be drawn on the next VBLANK.

MOUSE_FLAG -339 -$153 byte Non-zero If mouse interrupt processing
is enabled
-338 -§152 long RESERVED
V_SAV_XY -334 -$14E word Saved alpha cursor X coordinate
<332 -$14C word Saved alpha cursor Y coordinate
SAVE_LEN =330 -$14A word height of saved form (number of lines
saved from screen)
SAVE_ADDR -3L. -$148 long Screen address of first word saved
from screen
SAVE_STAT -324 -$144 word Save Status
bit 0 => 1 = info in butfer is valid.
0 = info in butier is not valid.
bit 1 => if 1, double-word wide area was saved.

it 2ero, word wide area was saved.
bits 2-15 RESERVED

Save up 1o 4 planes, 16 longwords per

SAVE_AREA -322 -$142
plane.

SAVE_LEN, SAVE_ADDR, SAVE_STAT, and SAVE_AREA are used
by the system to save the screen from under the mouse CUrsor.

USER_TIM -066 -$042 long
NEXT_TIM -062 -$03E long

USER_TIM is a pointer to a user installed routine executed on each
system timer tick. When done, this routine should jump to the address held in
NEXT_TIM. For more information, see the vDI manual under "Exchange
Timer Iinterrupt Vectot.”

USER_BUT -058 -$03A long User button vector
USER_CUR -054 -$036 long User cursor vector
USER_MOT -050 -$032 long User motion vector
V_CEL_HT -046 -$02E word Height of aipha cell in pixels
V_CEL_MX -044 -$02C word Maximum alpha cell X

Number of cells across -1

34

V_CEL_MY
V_CEL_WR
V_COL_BG
V_COL_FG

V_CUR_AD
V_CUR_OF

V_CUR_XY

V_PERIOD
V_CUR_CT

V_FNT_AD
V_FNT_ND
V_FNT_ST
V_FNT_WD
V_REZ_HZ

V_OFF_AD

V_REZ_VT
BYTES_LIN

PLANES

WIDTH

CONTRL

Section 3: The Line A Variable Structure

-042 -$02A word
-040 -$028 word
<038 -$026 word
-036 -$024 word
-034 -$022 long
-030 -$01E word
-028 -$01C word
-026 -$01A word
-024 -$018 byte
-023 -$017 byte
-022 -$016 long
-018 -$012 word
--016 -$010 word
-014 -$00E word
-0%2 -$00C word
-010 -$00A iong
-006 -$006 word
-004 -$004 word
-002 -$002 word
+000 $000 word
+002 $002 worda

Low resolution: $AD (160 decimal)

Maximum cell Y
Number of cells high -1

Byte displacement to nex! vertical
aipha cell

" Physical coior index of background

color

Physical color index of foreground
color

Current alpha cursor address

Byte oftset from screen base to fop of
first cell

Alpha cursor position: cell x
Alpha cursor position: cell y

Alpha cursor flash period {in frames)

Alpha cursor countdown timer to next
toggle ol the cursor form

Address of monospace font data
Last ASCII code in font

First ASCIl code in font

Width of font form in bytes
Horizontal pixel resolution

Address of font ofiset table (per VDI
spec)

RESERVED
Vertical pixel resofution

Width of destination memory form: set
with same value as in WIDTH

Number of bit planes in currert
resolution

Contains the widih of the destination
memory form (usually screen) In bytes.

Medium resolution; $A0 (160 decimal)

High resolution: $50 (80 decimal)

+004 $004 long

Pointer to CONTRL array

35

INTIN
PTSIN
INTOUT
PTSOUT
COLBITO
COLBIT1

COoLBIT2
COLBIT3

LSTLIN

LNMASK

WMODE

Section 3: The Line A Variable Structure

+008 $008 long Pointer to INTIN array

+012 $00C long Pointer to PTSIN array

+016 $010 long Pointer to INTOUT array

+020 $014 long Pointer 1o PTSOUT array

+024 $018 word

+026 $01A word

+028 $01C word

+030 $C1E word Current color bit-piane values for plane

0, 1, 2, and 3, respectively.

Many Line A functions use the COLBITSs to determine what color to
use while drawing. Each of the COLBITs corresponds to one bit piane in the
image, and are labelled for which bit plane they affect. COLBITO afiects bit
plane 0, COLBIT1 bit plane 1, efc. If the value ina COLBIT is zero, the bit is
cleared in the affected plane. If the value is nonzero, the bit is set in the
affected plane.

+032 $020 word

LSTLIN is zero, the last pixel in a fine is drawn. Nonzero, and the
last pixe! is not drawn. This is provided in case you are drawing a series of
connected lines, using & writing mode like XOR, where it two lines try to plot
the same endpoint it will disappear.

+034 $022 word Equivalemjio vDrI's Polyline Type,
described in the VDI manual, under
"Set Polyline Line Type™.

+036 $024 word Equivalent'to VDI's Writing Mode,
described in the VDI manual, under
*Set Writing Mode™.

The four VDI{ writing modes are:

(0) Replace Mode - Ignores the currently disptayed image, replaces it with
Fore AND Mask. i.e. New=(fore AND mask)

(1) Transparent Mode -- Only affects the pixeis where the mask is 1. These
are changed to the foreground value. i.e. New = (fore AND mask) OR (old
AND NOT mask)

(2()):0!2 Mode - Reverses the bits representing the color. .. New = mask
X old :

(3) Reverse Transparent Mode -- Only affects the pixels where the mask is 0.
These are changed to the foreground value. i.e. New = (old AND mask) or
(lore AND NOT mask)

There are several additional writing medes availaﬁle for functions like TexiBit:

36

X1
Y1
X2
Y2

PATPTR

PATMSK

MFILL

cLP

Section 3: The Line A Variable Struciure

E

AND D
ND [NOT D]
Replace Mode)
[NOT S] AND D (Erase Mode)

D
g XOR D (XOR mode)
N

+

nnno

(eYelelu]o)

ORD

OT [S OR D]
D' = NOT [S XOR D]
D'=NOTD

D' = S OR [NOT D]
D'=NOTS

D' =[NOTSIORD
g' = I;IOT [S AND D]

»
4

mmoom>woqmmauMaoR
Qoo

+038 $026 word x1 coordinate
+040 $028 word y1 coordinate
+042 $02A word x2 coordinate
+044 $02C word y2 coordinate
These variables are often used when a Line A routine needs X and Y
coordinates as input, as with Line and Filled Reclangle.
+046 $02E long Pointer 1o the current fill pattern '
Functions like Horizontal Line and Filled Rectangle look here for the
address of their fill pattern.
+050 $032 word Fill pattern "mask”.

This value is ANDed with Y1, and the result used as the ofiset into
the fili pattern.

This maintains alignment of the pattern in relation to the screen. in
most cases, this also acts as the length of the pattern minus one, thus a one
word pattern would merit a zero, a sixteen word patiern a fitleen, efc.
Usually, the pattern should be a power of two in fength.

+052 $034 word Multi-plane fill flag:
If MFILL Is zero, the fill pattern is singlie plane. If MFILL is nonzero, the {ill
pattern is multiple plane.

+054 $036 word Clipping flag:
O=clipping disabled,
nonzero=clipping enabled

37

XMINCL
YMINCL
XMAXCL
YMAXCL
XDDA

DDAINC

SCALDIR
MONO

SOURCEX
SOURCEY

DESTX
DESTY
DELX
DELY

Section 3: The Line A Variable Structure

+056 $038 word Minimum X clipping value

+058 $03A word Minimum Y clipping value

+060 $03C word Maximum X clipping vaiue

+062 $03E word Maximum Y clipping value

+064 $040 word Accumulator for textblt x dda. Should
be initialized to $8000 before each
invocation of TexiBil that requires
scaling.

+066 $042 word Fractional amount 1o scale up or down.

It scaling up. set DDAINC to 256*(intended size-Actual size)/Actuai size. If
scaling down, set DDAINC to 256*(intended size)/Actual size.

+068 $044 word Scale direction flag (O=down, 1=up)

+070 $046 word Current font monospaced?

0 = current font is not monospaced OR
special efiects may increase/decrease
the size of the form.

1 = current font is monospaced AND
thickening is the only speciai effect
allowed.

+072 $048 word X coord of character in font form

+074 $04A word Y coord of character in font form

SOURCEX can be computed from information heid in the font header. (See
VDI manua! for font format)

temp = character value;
temnp -= fni_pir->firsi_ade;
SOURCEX = Int_ptr->oft_table(temp).

SOURCEY is usually set 10 zero (1op line of the font form.)

+076 $04C word X coordinate of character on screen
+078 $04E word 'Y coordinate of character on screen
+080 $050 word Width of character
+082 $052 word Height of character

DELX and DELY can be computed from the font header.
temp = character vaiue;

temp -= int_ptr->first_ade;

SOURCEX = int_ptr->ofi_table(temp).

DELX = int_ptr->ofitable(temp+1)-SOURCEX;

DELY = int_ptr->lorm_height;

38

FBASE
FWIDTH

STYLE

LITEMASK

SKEWMASK

WEIGHT
ROFF

LOFF

SCALE

Section 3: The Line A Variable Structure

+084 $054 long Pointer to font data
+088 $058 word

FBASE and FWIDTH can be retrieved from the font header.

Width of font form

FBASE = int_ptr->dal_table;
FWIDTH = fni_ptr->form_width;

+090 $05A word TextBit special effects flags

bit 0 = Thicken flag

bit 1 = Lighten flag

bit 2 = Skewing flag

bit 3 = Underline flag

(Not handied by TextBlt)

bit 4 = Outline flag

Set the bits to select the desired
eifects. Underlining is done by the
application.

Mask used to lighten text (typically
$5555)

+092 $05C word

Mask used to skew texl (typically
$5555)

Width by which 1o thicken text

+094 $0SE word

+096 $060 word

+098 $062 word Ofisel above character baseline when

skewing

+100 $064 word Offset below character baseline when
) skewing.

The above five input variables can be computed trom the font header.

LITEMASK = ini_ptr->lighten;
SKEWMASK = tni_ptr->skew;
WEIGHT = int_ptr->thicken;

it (skewing) {
ROFF = int_ptr->right_oliset;
%.OFF = Ini_ptr->iefi_ofiset;

else {
ROFF = 0;
;.OFF =0;

Scaling flag

+102 $066 word
{0=no scaling)

38

CHUP

TEXTFG
SCRTCHP

SCRPT2

TEXTBG
COPYTRAN

SEEDABORT

Section 3: The Line A Variable Structure

+104 $068 word Characier rotation vector
0 = normal horizontal orientation .
800 = rotated 90 degrees clockwise
1800 = rotated 180 degrees clockwise
2700 = rotated 270 degrees clockwise

+106 $06A word Texi foreground color

+108 $06C long Pointer to two contiguous special
effects buffers for TexiBi

+112 $070 word Ofiset 1o beginning of the second
buffer in above form.

Each of these special elfects bufters must be large enough to contain the
worst-case (larges!) result of any special elfects you may be using.
Determine that size, then set aside twice that amount, with SCRTCHP
pointing to the beginning of the butfers. Set SCRPT2 to indicate the ofiset to
the beginning of the second butter.

+114 $072 word Text background color

+116 $074 word Copy raster form type lag
zero = opague
Nonzero = transparent

+118 $076 long Pointer to a routine cafled from within
geedtill to allow the fill to be aborted.
The routine is calied afier each
horizontal line fill. Initialized to point 1o
a dummy routine that returns FALSE
{(0). Returning TRUE (nonzero) aborts .
the seedlill.

40

	www:
	atari-history:
	com:

