Rainbow TOS Release Notes

Second Edition
5 March 1991

www.atari-history.com

Atari Corporation
1196 Borregas Avenue
Sunnyvatle, CA 94086

COPYRIGHT
Copyright 1991 by Atari Corporation; all rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic. mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior writlen permission of
Atari Corporation, 1186 Borregas Ave., Sunnyvale, CA 94086.

DISCLAIMER
ATARI CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED

"'} WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

PURPOSE. Further, Atari Corporation reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Atari Corporation
to notify any person of such revision or changes. - :

TRADEMARKS
Atari is a registered trademark of Atari Corporation. SLM804, ST, and TOS are trademarks
of Atari Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Rainbow TOS Release Notes were printed in the United States of America.

This document was produced entirely with Atari Computers, Atari SLM Laser Printers, and
Microsoft Write.

Table of Contents

INTOAUCTION............eeeeeeeeeeeeeeeeee et 5
D=7 4 (o o TSSO 7
eSO CANGES.o ittt res et beeaeaeseesassesaesaenaesaesasnsssessaressssensnnnnsnsses 9
A S et 13
AES CRaNGES ...t e et e e e et e a e e e 15
AES Supplemental Documentation..................ooiiiiiiie e e 18
INBW AES Calls. ...ttt e e e e 25
VD ettt 29
VD CANMES.eiieiieieeiie ettt eree et ee e sees s ssbesottesaesassesasenannetnmenanesesessessansnennrnnnnseneeeeeeenes 31
GEMBDOS.......coeoeeeeeeeoeeoeeeeeeeoeoeoeeoe e 33
GEMDOS Changes - Character O...............oio e e 35
GEMDOS Changes - File FUNCHONScooiiiuiiiiee et eerraee et eeeeseesseee e eeeeee e 36
GEMDOS Changes - Directory FUNCHONS. ...t eeeeaae e 37
GEMDOS Changes - Processes and MEMOTY.........ooovvuieiioieeeeeeeeeeeeeeeeieeeeeeeeeeeeeesasaveareean 38
GEMDOS Changes = O T . et e e et e e e e e e e e ieeeees 39
GEMDOS Suppiemental Documentation..............cccoiiiiiieeeeeeeeeeeee e 40
O8 POOl DISCUSSION. ... oot e e e eeeresseeeeeaeeseaae e e e e e e neeaaaaasaaanee 51
FOrcing Media Changet e e e e st e s eareaaeeaessaseneaeenaasa, 52
Bl S Bl S ..o re e 57
BIOS/XBIOS CaNGES.......coi oottt et e e v e s ese e eereeeereeaeeeesesessessssssssseesesansieranens 59
BIOS/XBIOS Supplemental Documentation...........coooeeooeeeeeeeee e, JRTCOR 60
FaXo (o [o U o o OO 65

Introduction

~ Introduction

Welcome to the Rainbow TOS Release Notes!

This document describes the changes made in Rainbow TOS, previously known as TOS
1.4, the latest version of the operating sysiem for Atari ST and Mega computers. They also
c?r_}tgig a good deal of supplemental documentation for Rainbow TOS and/previous versions
0 .

There is a chapter for each layer of TOS (Deskiop, AES, and so on). There is at least one
section in each chapter for "Changes,” and usually a section for "Supplemental
Documentation.” Some chapters have other sections, like "Forcing ‘Media Change'.”
Within each of these sections, entries deal with individual issues, like "Autorun
Applications,” or "Malloc.” Each point within an entry is preceded by a dash {(-). There are
also occasional references to other sections or entries, for more detailed information.

It is suggested you look through the Table of Contents, then read through the document in
the order of your interests.

Please be sure to read the "Addendum" chapter! This describes problems found in
Rainbow TOS after its release, and what can be done about them.

And as always, we welcome your comments about this document.

O Enjoy.

Rainbow TOS Release Noles - 5 March 71997 FPage 5

Desktop

Desklop Changes

) Desktop Changes

J Aborling Operations: - Copy, Delete, and Move operations can be interrupted with <Undo>; holding
down <Undo> results in a dialog asking if the user wishes to abort. (This does
not apply 1o Disk Copy or Format.)

Application Crash: - When recovering from an application crash, wind_update(FALSE) is executed
before going into the main event_multi that waits for user interaction. This s

handled by the new wind_new function. (See "AES Supplemental
Documentation.”)

Autorun Applications: - GEM programs can be autorun from disk. This is set up through the "install
Application” dialog, where the user can select "Auto” (boot) status, then "Save
Deskiop.” The autoboot application can aiso be uninstalled from this dialog. The
autoboot application can be either a "PRG" or a "TOS", but not a "TTP" (TOS
Takes Parameters.)
- Selacting 2 new Autorun Application will replace the previous one.

Copy, Delete, Move: - The Copy, Delete, and Move dialog box shows destination folder and file name as
the operation progresses. The file name is displayed immediately in the box as
the operation begins.

O Desk Accessories: = Desk Accessories can write any MN_SELECTED message to the Desktop.

DESKTOP.INF: - The DESKTOP.INF file remains compatible across all existing versions of TOS.
- A warhing message appears if there is insufficient space to save DESKTOP.INF.

Desktop Info...: - The Desktop's copyright notice now lists "1985, 86, 87, 88, 89". 1988 and 198¢9
were added.
~ Another cosmelic change can be observed in the "About Desktop...” box when it
is shown in color,

5ialog Boxes: - Many dialogs are more concise. This includes error dialogs like the one about
"Your output device is not recelving data...” and others.
- Leading underscores in numeric fields of boxes have been replaced by spaces.

Rainbow TOS Release Notes - 5 March 1997 Page 8

Desklop Changes

Disk Copy:

- Single-drive disk copies now require as few disk swaps as possible; all available .
memory is used as a copy bufier. .
- When copying disks between drives A: and B:, with no disk in source or
g'esllnaiion, an error occwrs. "Cancel™ now returns the user to the Disk Copy
alog.

Disk Copy/Format:

- Disk Copy and Disk Format have been combined into one dialog box. Whichever
operation was chosen from the Desklop is the detault in the box when it appears.
For example, if disk A: is dragged to disk B:, the Copy/Format box appears with
;‘Copy" selected. By clicking the "Format” button, the user can choose to format a

isk.

- It users click Format from Copy, of vice versa, reasonable detaulis appear for the
newly selected operation.

Disk Directories:

- It you vy to get a directory of a drive without a disk, '‘Cancel’ now aborts the
operation and returns you to the Desktop.

- Pressing <Esc> forces the Desktop to read the directory of the topped window.
Before. it would only do so If & media change had beer aelected

- The Desktop now re-reads all open directories (instead of only those of drives A
and B:} after an operation which could change the directory information.

Disk Format:

- The "Format Disk" dialog now defaults to "Exit” if <Return> is pressed. This is
consistent with other parts of the Desktop.

- The Deskiop now formats disks with an MS-DOS compatible boot sector.

- Double-sided disks are now "twisted" in a more-efficient way than before. Single-
sided disks are already "twisted” optimally, and have been since Mega ROMs.

Disk Open:

- if an error occurs when a drive is ‘opened’, a blank window no longer resuits.

File Copy:

- When files are copied, the pointer now changes to a "busy bee” even if the
Desklop is set to copy without confirmation.

- When copying files and an error occurs, the arrow now becomes a busy bee
when Retry is clicked.

- Files dragged to the border of a window whose first foider is not displayed are
copied to the current directory of thal window. Previously, the fles would be
copred into the folder.

Files:

FPage 10

- Files which are both hidden anc’system or read-only will no longer show up on
the Desktop (or in the File Selector).

Rambow TOS Release Noles - 5 March 1997

Desklop Changes

. File Move:

= A file can be "moved” as well as copied. To do this, select the fites, hold down
<Control>, and drag the files to the destination. <Control> is checked when the
mouse bullon is re/eased so users can change their mind between Copy and
Move mid-drag (especially usefut it a number of files have been painstakingly
selected). When the mouse bution is released, a "Move File(s)" box appears.

Filenames: - The Desktop no longer allows users to enter illegal characters (like *,?, or ;) in
filenames.
Folders: = If the user attempis to copy a file inlo a folder containing a folder with the same

name as the fiie being copied, the Deskiop displays an "Invalid Copy Operalion”
alert box. Formerly, it wowld show a TX¥sk Full” error,

- "Show Info...” now allows a folder to be renamed, just as it does files.

- The Deskiop no longer allows users to enter illegal characters {like *,?, or ;) in
folder names.

Installed Applications. - "install Application™ has a "Remove” bution, and "Install” is now the defauit. This

dialog is also used to choose Normal or Autorun status. (See "Autorun
Applications”)

= The default directory of an installed application is always set to the directory of
the document that invoked it, even if the document is opened from a background
window.

- Only the "filename.ext" is passed to the installed application on its command
line. This lixed programs that only expecied 14 characters of command line.

- rsrc_load no longer uses the shel_read/wri te bulfer as temporary storage,
so the full pathname of a Desktop-launched application is always available in the
shel_read/write bulter.

- shel_f1ind now looks first in the directory indicated in the shel_read/write
buller (the directory from which an application was launched), then in the current
directory, then down the environment search path. Installed applications ¢an be
anywhere, and still find their resources.

Install Disk Drive:

= “Install Disk Drive” has "Install” as its defauit.

Name Conflicts:

- Upon a "Name Conflict” during a Copy or Move operation, the user has three
choices: Copy goes ahead and copies the file (overwriting the one on the
destination), Sk does nothing with that particutar file but continues the copy
operation, and Gw/aborts the entire copy operation.

- "Sef Preferences” determines if the system confirms name conllicts. If
"Confirmation required for: File Overwrites™ is set to "No”, files will be overwrilten
without warning. I a foider name conflict occurs, a dialog appears regardless.

- Choosing "Skip” on a folder name conflict skips the entire folder; choosing “Copy”
begins copying files into the targel folder that caused the name contlict.

Rambow TOS Release Nofes - 5 March 7997 FPage 77

Desklop Changes

Print Text File: - The keyboard is checked every 16 characters; g, @, “C and <Undo> all cause *
printing to abort.

Running Applications: - Applications can be run from background windows; when the Desktop launches
an application, it shel_writes the full pathname of the application.

Selecting Files: - If the <Shift> key is held down while selecting files, clicking anywhere w/#a7the
window does not deselect any selected files. Clicking ow/s/oe the window or
clicking anywhere with <Shift> released will deselect all the selected files.

- By popuiar demand, selecting files in inactive windows by holding down the right
mouse button now works and is supported.

Show Info...: - "Show nfc..." for files or folders now uses the same dialog. The name field allows
the file or folder to be renamed, but file attributes are only active for files.
- The date separator in "Show File Info" and "Show Folder Inic” is now “/". Before,
they were inconsistent, one using "/" and the other ™"
- "Byies Avallable” and "Bytes Used" fields have been expanded to accommodate
values up 10 2147483647 (Hex 7FFFFFFF).

Show Text Fite: - Hitting <space> in the middle of a page makes the -More- come 24 lines from the
line being displayed when the key is hit, rather than having the same efiect as
walting {or the -More- and then hitling <space>. :

- d, D and “D cause the -More- to come 1/2 page from the line being displayed .
when the key is hit; <Return> makes it come one line from the line being
displayed when the key is hit.
- g, Q, "C, and <Undo> cause the output 1o stop immediately.
- Line Wrap is not modified; if the VT-52 Emutator is in no-wrap mode, that's what
you get,
- It a "Drive Not Responding™ alert box is displayed when the Desktop "Shows™ a
file, a message is printed to the screen. "Could not find filename.ext”
Pressing any key returns to the Desktop.

Time/Date Stamp: - The Time/Date Stamp on files Is now preserved across Copies and Moves.

Windows: - The desktop now opens the next window where the last window was closed.
- Desktop shows as many flles as possible inside each directory window. The only
limit is the amount of free memory in the system; this removes the old static file
allocation limnit of 400,
- All background windows are updated after a file copy, move, delete, disk copy, or
disk format operation.

Page 12 Rainbow TOS Release Notes - 5 March 1997

AES

AES Changes

_ AES Changes

U appl_init(): - "appl_init()" call returns a version number of 0x0140 in giobal [0].

Autoboot Application: - When running an autoboot application, the AES changes to its directory.

« When an aulobool application Iis active, AES gives accessories the same number
of dispatch calls to initialize as they would have if the Desktop were starting up.

Context Switches: - No context switches are allowed during the AES Critical Error Handier, correcting
a bug where some media errors would cause the File Selector to crash at the
next critical error. {See "File Selector.”)

Default Path: - The Detfault Path when an application starts is not changed by shel_write, nor
is it set when the AES shell runs an application. Frofm the Desktop, the user
selects the "current path™ by determining which window is topped when an
application is jaunched. The right mouse button can be used 10 set a difterent
default path. The behavior for installed documents may change in future versions
of TOS; use shel_f1ind to find files.

Applications which use shel_wri te to chain to another program are responsible
for setting the delault path for the program.

evnt_multi and .
evnt_timer: - avnt_timer (or evnt_multi with a limer) no longer cause Desk Accessories
to sleep forever. :

Rainbow TOS Release Nofes - 5 March 1997 FPage 15

AES Changes

File Selector:

= An application can now send a "title” string 1o the File Selector. See
documentation for "fsel_exinput()."

= FS provides 16 drive label buttons for easier drive selection.

-~ FS now handles <RETURN> differently on text editing: after editing a pathname,

pressing <RETURN> enters the path and redisplays the FS. After editing a
filename, the FS exits.

= It the user passes in a path with a leading backsiash, this path is appended to the
default directory of the default drive internally, and files from the resulting
directory are displayed.

= The static file allocation of 100 per FS has been removed. The AES will
Malloc () memory for directories with large numbers of files. If available
memory is insufiicient, fsel_input () will exit with an error code.

= FS now handies long pathnames.

- FS now handles multiple "abort/continue™ errors correctiy.

= FS preserves current DTA butfer addresses, clip rectangles, and default
directories.

= If a dist~‘te is removed when the file selector is called, the system now handles
"Cancel” on the resulting error dialog correctly.

= FS now handies colons in flenames, even though the colon is NOT a legal
filename character.

- FS no longer dispiays files that have the hidden flag set.

- Sequence of the file selector redraw has been improved to be more visually
appealing.

- Clicking anywhere in the file display window reloads a directory without affecting
the fitename template in the PATH tine,

= Media errors ne longer cause the FS to crash at the next critical error. (See
"Context Switches™)

= New bindings are available for the FS.

form_dial:

- form_dial now only forces the top window 16 be redrawn if it falls inside the
rectangle of the form_dial.

-

Menu Bar:

- Toggling between True and Fatse on the Menu Bar no longer corrupls the
semaphore.

= The Menu Bar line is now redrawn in REPLACE mode, rather than XOR mode;
this prevents the AES from "undrawing” a menu bar line already drawn by an
application.

Menus:

- AES now reserves 1/4 of the current screen memory (rather than 1/4 of 32000
bytes) as a menu dropdown butfer, allowing applications to take advantage of
large monitors with larger menus than possible on smaller screens.

Mouse Clicks:

Fage 16

= Mouse single click response has been improved for applications which don't
request double clicks. Now, applications which use only single click event
reporting will feel more responsive.

Hambow TOS Release Nolfes - 5 March 7997

AES Changes

LT

. Mouse Cursor:

= AES no longer accidentally restores a previously saved mouse state in favor of

the stale set with graf_mouse. This behavior sometimes caused the cursor to
remain a busy bee even after an application had set It to an arrow, or to leave
“frails” in the menu bar.

objc_center:

objc_center was changed so a form's X coordinate is no longer character

aligned; odd-sized forms will no longer appear off center when objc_center is
used to get centered coordinates.

rsrc_load:

rsrc_load no longer uses the shel_read/wri te bufler as temporary storage,
so the full pathname of a Desktiop-launched application is always available in the

shel_read/write butfer.

shel_envrn():

d

shel_envrn() now uses the actual environment siring o search for
environment variables, rather than using its own fixed copy; environments,
including the PATH= string AES uses io find resource files, can be set up in the
AUTO folder and used by all applications thereafter. This can't be accomplished
afterthe AUTO {oider, because AES has an internal pointer to its environment
slring, and its location cannot be fixed {or, as a resuit, documented).
shel_envrn() is still compatible with the old style PATH=0A:\000.

Path name separators can now be commas or semicolons; previously, semicolons
were required

shel_find:

shel_f1ind now looks first in the directory indicated in the shel_read/wri te
butfer (the directory from which an application was taunched), then in the current
directory, then down the environment search path. Installed applications can be
anywhere, and still find their resources.

shel_get() and

shel_put(): - Official documentation is now available for shel_get () and shel_put(),
which were originally implemented for use by the Control Panel.

wind_get(): A wind_get () call with field parameter of WF_SCREEN is now supported.

Windows: When the user clicks in the scroll area of a window, AES waits a double click time

belore starting the scroll repeat. Single clicks ohly cause one message (o be
sent.

Hambow TOS Release Notes - 5 March 7997 Page 17

el e

L ey

AES Supplemental Documenliation

AES Supplemental Documentation

The foliowing section contains documentation supplemental to the existing AES manual, and
clarifications of existing documentation.

Supplement 1o: 6.4 - Object Library Roulines

ob_ednewidx — notused.

ob_edtree - the address of the object tree containing the object with the text to be
edited.

ob_edreturn = objc_edit(ob_edtree, ob_edobject, ‘ob_edchar, ob_edidx, ob_edkind);

Supplement to: 6.3.2 - TEDINFO Structure

te_pvalid - Pointer to a lext string containing characters that validate any entered text.
F - Allow all valid DOS filename characters, plus Question Mark (?),
Asterisk (*), and Colon ().
1 - Allow only valid DOS filename characters.

ob_edreturn = objc_edit(ob_edtree, ob_edobject, ob_edchar, ob_edidx, ob_edkind);

Fage 18 Ramnbow TOS Release Noles - 5 March 1997

‘.

AES Supplemental Documentalion

Suppliement to: 7.3.3 - FORM_ALERT

O

FORM_ALERT)

Parameters. control (0)
control (1)
control (2}
control(3)
control (4)
int_in(0)
int_out{0)

addr_in(0)

fo_adefbttn

fo_aexbttn

fo_astring

Sample call to C language binding:

] 1 n TN oK onon

Purpose: Display an alert. (Section 7.2 describes the compiete segquence of calls internal to

fo_adefbttn
fo_aexbttn

fo_astring

the torm’s DEFAULT exit button (see section 7.1.3.1);
0 - no DEFAULT exit button

1 - first exit bution

2 - second exit button

3 - third exit button

a number idenlifying the exit button selected by the user:
1 - first exit button in string

2 - second exit button in string

3 - third exit button in siring

the address of the string containing the alert (see section 7.1).
* Each alert line must be less than 30 characters.
* Each button must be less than 10 characie_rs.

fo_aexbttn = form_alert(fo_adefbttn, fo_astring);

Rainbow TOS Release Noles - 5 March 1997 Page 19

AES Supplemental Documenialion

Supplement to: 7.3.4 - FORM_ERROR

Purpose: Display an error box.

Parameters: control (0)
control (1)
control(2)
control (3)
control (4)
int_in(0)

int_out(0)

fo_enum

fo_eexbttn

53
1
1
0
0

H 8 0 non

= fo_enum

= fo_eexbttn

- the GEMDOS error codes in MS-DOS format {from 1 onwards).

— a code identifying the user’s exit button selection.
1 - first exit button in string
2 - second exit button in string
3 - third exit button in string

Sample cail to C language binding:

fo_eexbttn = form_error{fo_enum);

Error messages:
fo_enum 2,3,18

fo_enum 4
fo_enum 5

fo_enum 8£,10,11

fo_enum 15

Fage 20

This application cannot find the folder or file you fust tried to access.

This application does not have room to open another document. To make room,
close any document that you do not need.

An item with this name already exists in the directory, or this item is set tc
Read-only siatus.

There is not enough memory for the application you just tried to run.

The drive you specified does not exist.

Rainbow TOS Release Noles - 5 March 1997

AES Supplemental Documenfiation

Supplement to: 13.3.2 - SHEL_WRITE

O

** Purpose: Tells GEM AES whether to run another application and, if so, which application fo run.
Parameters: control(0) = 121

control(l) = 3
control(2) = 1
control(3) = 2
controi{4) = 0
int_in(0) = sh_wdoex
int_in{l) = sh_wisgr
int_in(2) = sh_wiscr
int_out(0) = sh wreturn
addr_in(0) = sh_wpcmd

addr_in(1) = sh_wptail

a coded instruction to exit the system or run another application when the
user exits the current application.

0 - exit and return to GEM DESKTOP

1 - run another application -

Description: sh_wdoex

o sh_wisgr a code for whether the next application is a graphic application.
0 - not a graphic application

1 - graphic application

sh_wiscr - currently ignored by the AES; shouid be set to zero.
sh_wreturn - a coded return rnesdsage
0 - an error exists
N - no error exisis
sh_wpcmd - the address of the new command tile to execute
ah_wptail - the address of the command tail tor the next program. Note: The first byte

of the command tail buffer contains the length (in bytes) of the command
tail. The actual command tail begins at the second byte of the buffer. The
string need not be null-terminated.

Sample call to C language binding:

sh_wreturn = shel_write(sh_wdoex, sh_wisgr, sh_wiscr, sh_wpcmd, sh_wptail);

|

Raimbow TOS Release Noles - 5 March 1997 FPage 27

AES Supplemenital Documenliatlion

Supplement 1o: 13.3.5 - SHEL_GET
[}

Purpose Let the application read data from the AES's shell internal buffer. (The length of the 'get data’ .
buffer must be at least 4192 byles.)

Parameters: control(0) = 122
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0
int_in{(0) = sh_glen

addr_in(0) = sh_gbuff

int_out(0) = sh_greturn

sh_greturn - a coded return message
0 - an error exists
n {(positive integer) - no error exists

sh_glen
sh_gbuff

the length of the butfer.

the address of the bufter.

Sample call to C language binding:

sh_greturn = shel_get(sh_gbuff, sh_glen);

Fage 22 Rainbow TOS Release Motes - 5 March 1997

AES Supplemental Documenltalion

Supplement to: 13.3.6 - SHEL_PUT

Purpose: Let the application save data into the AES's sheil internal buffer.

Note: Currently, the AES Desktop uses this bulier to store the DESKTOP . INF data. Any usage of
this bulfer may corrupt the data already stored there. Also, the length of the data that goes into
the buffer must not be more than 1024 bytes for 11/20/85 TOS and 4/22/87 TOS, and no more

than 4192 bytes for Rainbow TOS.

Parameters: control(0) = 123
control (1) = 1
control(2) = 1
control(3) = 1
control(4) = 0
int_in(0) = sh_plen

addr_in(0) = sh_pbuff
int_out(0) = sh_preturn
sh_preturn - a coded return message

0 - an error exists
n {(positive integer) - no error exists

sh_plen the length of the buffer.

sh_pbuff

the address of the butier.

Sample call to C language binding:

sh_preturn = shel_put(sh_pbuff, sh_plen);

Hamnbow TOS Release Notes - 5 March 71997

FPage 23

il i,

AES Supplemenlal Documeniation

Caliing AES: - Care must be used when calling AES from the 68000's supervisor mode. Some .
AES functions return to the caller in user mode, and all AES functions use the .
68000 register usp lo save the caller’s regisiers. This means that you can not call

AES when you are in supervisor mode as a resuli of the Super(0L) GEMDOS
call, because your user stack and supervisor stack overlap.

Also, when calling Super with an argument other than OL, be careful to leave a
littte room above (that is, at higher-numbered addresses) the initiai stack pointer

you provide as the argument to Super. For instance, this is a tragment using
Super correctly:

myfn()
{

char mystack[8192]);
lTong oldssp;

/* get super mode, set ssp near top of mystack */
oldssp - Super(dmystack[8180]);

/% ... stuff done in supervisor mode ... */

/* get back to user mode */
Super(oldssp);

Fage 24 Rainbow TOS Release Noles - 5 March 1997

New AES Calls

New AES Calls

i There are two new AES calls, FSEL_EXINPUT and WIND_NEW. They are documented below.

10.3.2 FSEL_EXINPUT

Purpose: This function has the same functionality as the FSEL_INPUT call except that it accepts an
additional input parameter called fs_1abe to display a string on the top of the file selector
box. This null-terminated siring should be no more than 30 characters long; it will replace the
original 'File Selector’ string. This feature allows the program to indicate what will be done with
the tile the user selects.

Parameters: control(0) = 91

control(1l) = O

control(2) = 2

control(3) = 3

control{4) = 0

int_out(0) = fs_ireturn

int_out(l) = fs_iexbutton

addr_in(0) = fs_iinpath

addr_in(1) = fs_innsel

addr_in(2) = fs_label

: fs_ireturn - A coded return message.
1 0 - an error exists
O n (positive integer) - no error exists

fs_iexbutton - A code identifying the exit button selected by the user.
0 - Cancel
1-0K

fs_iinpath - The address of the buffer that holds the initial directory specification
displayed in the File Selecior dialog box. This buifer aiso holds the
directory specification in the File Selector dialog box when the user
selected OK or Cancel.

fs_innsel - The address of the buffer that holds the initial selection displayed in the
Fite Selector dialog box. This butier ajso holds the selection in the File
Selector dialog box when the user selected OK or Cancel.

fs_label - The address of the string that will be displayed at the top of the File

Selector box.

Sampie call to C language binding:

fs_ireturn = fsel_exinput(fs_innpath. fs_innsel. &fs_iexbutton, fs_label);

Rambow TOS Release Noles - 5 Marclr 1997 Page 25

New AES Calls

Sample C language binding:

/* Example binding for fsel_exinput()

*%E

** NOTE: This code is an example of how to use fsel_exinput until you
bk get a set of libraries for your compiler that includes the
*% fsel_exinput routine.

*/

#include <osbind.h>
#define FSEL_EXINPUT 91

/* 1If you want the binding to patch the ctrl_cnts array at runtime,

% get PATCH_CTRL to 1. If you don't want it patched at runtime (i.e. you
** have patched ctrl_cnts in your library source) set PATCH_CTRL to 0.

*

#define PATCH_CTRL 1

/*
** Externally defined things
*/
extern char ctrl_ents[115])[3]; /* control array parameter counts */
extern int int_out[]; /* AES arrays */
extern long addr_in[];
extern crys_if(); /* AES interface function */
int fsel_exinput(path, file, button, label)
char *path, *file;
int *button;
char *label;
{
register int *i;
register Tong *a;
register char *c;

/* get TOS version number */
long savessp = Super(0OL);
unsigned TOS_version = *(unsigned int *)(*(long *)(0x4f2) + 2);
Super(savessp);

/* if old TOS version, just do fsel_input() */
if(TOS_version < 0x0104)
return (fsel_input{ path, file, button));

#if PATCH_CTRL
/* Patch ctrl_cnts array with correct control array parameters */
c = &{ctrl_cnts{FSEL_EXINPUT-10][0])};
if((c[1] !'= 2)[i(c2] 1= 3)) {
*c++ = O
Xe++ = 2
*Cc = 3;

}
#endif PATCH_CTRL

Page 26 Ramnbow TOS Release Noles - 5 March 1997

New AES Calls

/* set up parameter blocks */
i = int_out;

. a = addr_in;

*a++ = (long)path;
*a++ = (long)file;
*a = (long)label;

/¥ call the AES */
crys_if(FSEL_EXINPUT);

/* and return */

*button = i{1];
return{ i[0]);

Rainbow TOS Release Noles - 5 March 1997 Page 27

New AES Calls

11.3.10 WIND_NEW

Purpose: Closes and deleies all windows, resets the wind_update () function, flushes all the windows' .
bulters and restores mouse ownership back 1o the system.

Parameters: control{0) = 109
control(l) = 0
control(2) = O
control(3) = 0
control(4) = 0

Sample call to C language binding:

wind_new();

Fage 28 Rainbow TOS Release Noles - 5 March 1997

VDI

VDI Changes

~ VDI Changes

Mouse Code: - VDI Mouse Code now supporls screens larger than 32K. This allows higher-
resolution monitors {i.e. Moniterm).

vst_exient(): - vst_extent() now works correctly when rotation is 270 degrees.

va_mouse(): - vqg_mouse() has been made more reliable through a code rewrite.

Rambow TOS Release Notes - 5 March 1997 Page 37

GEMDOS

GEMDOS Changes - Characler /O

GEMDOS Changes - Character 1/O

Cconrs: = Cconrs now handies keystrokes where the high-order bit of the ASCII code for
the character is 1,
- Cconrs no longer echoes the input line to the console when the standard input is
redirecied to come irom a file.

Econws: - Cconws is faster than before when handle 1 is redirected to a file.

Character 1/O: = Character /O tunctions (including ‘Crawio" and ‘' Cconout ') work predictably
when redirected. In particular, input and output status, and Cconout work when
redirected.

Control-S and

Control-C Handling: - Console handiing of “S and “C is consistent. “C during any "cooked"” input or
output function (Cconin, Cconout, Cnecin, Cconws, Cconrs, and
Fread from a console device) causes the current process to terminate.

Standard Handles: - Closing a standard handie (0-5) causes it to revert to its defauilt BIOS device

definition; previously this was undefined. The normal way to deal with a standard
handle is to Fdup it io make a copy, Fforce it o whatever you want, then
Fforce from the copy when you're done to revert back 1o what it was. Closmg
now works, 1o af least get it back to a known state.

Type-ahead: - Console inpul type-ahead buffers are implemented correctly, and no longer grow
without bound into the surrounding memeory.

Rambow TOS Release Notes - 5 March 1997 FPage 35

GEMDOS Changes - File Functions

GEMDOS Changes - File Functions

Archive Bit: - The “archive" attribute bit (0x20) is now correctly maintained: il is set when a file
is created or modified. Archive/backup programs can check this bit lo see if the
file neaeds to be backed up, and can clear the bit when they have backed it up.
See "Aftribute Byte” in GEMDOS Supplemental Documentation.

Duplicate Filenames. - GEMDOS now prevents duplicate filenames; it no longer occasionally creates
two files with the same name.

Fattrib: - Fattrib checks the legality of what is being attempled; for example, an attempt
to change the directory bit of a file or subdirectory will be denied.

Fdatime: - Fdatime no longer byte-swaps the user's input values when writing a new
dateltime.
- Fdatime returns EIHNDL for invalid handies and handies which refer 1o
character devices (which have no date or time). See isatty in GEMDOS
Supplemental Documentation.

Fread and Fwrite: - Fread and Fwri te with a length argument of zero do nol hang.

- Fwri te calls which write to a character device (CON, AUX, PRN) are no longer
limited to 16K - 1 characters. Appiications should stilt limit writes to retain
compatibility with other versions of TOS, however. Fread calis which read from
a character device have always been limited to 16K - 1 characters, and still are.

Redirection: - Redirection to the printer (handle 3, "PRN: ™) works correctly. Previously,
GEMDOS would make the BIOS call for inpul status on the printer device, which
is not supporied.

Sector Buffering: - Sector butfering in GEMDOS has been improved, and the user can add buffers to
the FAT/root directory list to improve performance dramatically. Oid butfering was
inefficient, and (in one case} aciually wrong. See "GEMDOS Butiers”™ in
GEMDOS Supplemental Documentation.

Tsetdate and

Tsettime: - Tsettime and Tsetdate cause the BIOS time and date to be set, too. The
reverse is also true: setting the BIOS date and time afiects the GEMDOS values.
This is the same behavior as in the 4/22/87 (Mega) ROMSs, where it is necessary
for the real-time clock chip.

FPage 36 Rainbow TOS Release Noles - 5 March 1997

GEMDOS Changes - Direclory Funclions

il P -

@ GEMDOS Changes - Directory Functions ‘ T e
qr
‘ Dcreate: - Dcreate (mkdir) now detects and handles errors; it recovers correctly from
‘ failures while creating a directory (such as write errors and disk-iull errors), and
does not partially build subdirectories.
- Attempting to Dcreate a directory with the name of an existing file will return
EACCDN. Previously, it would delete the file, then create the directory.

Ddelete: - Ddelete immediately foliowing a Dcreate now works correctty. Formerly, this
would fail but a second Ddelete would work.

Folder Limits: - The so-called "40-folder bug" is fixed. There are still limits, mainly on the depth of
folders and the accumulated depth of open liles, but these limits are very far away
and ¢=n still be extended with "FOLDRXXX.PRG" which is widely avaitable. Also,
a folder only takes up space when it is "active”, not just when you've seen il. See
"0S Pool Discussion.”

Frename: - Frename can how rename a folder; it cannot, however, move the folder around in
the directory structure, the way it can a file.
- The entries for "." and ".." in subdirectories are correctly daie-stamped.

Rainbow TOS Felease Notes - 5 March 1997 Page 37

GEMDOS Changes - Processes and Memory

GEMDOS Changes - Processes and Memory

Malloc: - By and large, the restrictions on Mal1oc have been lifted. {i.e. the 20
blocks/process limit.) Malloc siill uses the same internal “OS Pool” as folders,
80 it should still be used sparingly. Use Malloc for large chunks, and use

another manager (such as a C compiler library's mal 1oc () function) for general-
purpose memory management. Also, FOLDR100.PRG can be used to add to the
OS Pool, which both subdirectories and Mal1oc use. See "OS Pool Discussion.”

OS Pool: - Internal usage of the OS Pool has been vastly improved; see "OS Pool
Discussion.”

- An exhausted OS Pool now results in predictable (and safe) behavior. The
machine will fock up with a message to the effect that the pool has been
exhausted, and that you need to use FOLDRXXX.PRG to enfarge it. it no longer
gives incorrect results; nor does it damage disks.

- The OS Pool has been reduced to 11/20/85 size. This may allow some programs
that ran on 520STs with 11/20/85 ROMSs but failed to run with Mega ROMSs.

Pexec: - Pexec handles exceptional cases correctly; it no longer causes bombs or leaves
files open, and it releases memory correctly.
- Pexec deals correcily with files having more than 32K of relocation informaticn.
- Pexec Mode 6, "Just Go, Then Free', has been added. Mode & is similar to Mode
4, except memory ownership is changed to the chitd process; when the child
ferminates, GEMDOS frees any memory allocated to the child, including its TPA.
See "Pexec” in GEMDOS Supplemental Documentation for more information.

Program Startup: - Program startup is as fast as Mega ROMs; faster than 11/20/85 ROMs.

- The second of the two reserved longwords in a PRG file header is no longer
reserved: it is now defined as a bitmap of requests for new features. When the
lowest-order bit, 0x00000001, is set, it indicates that Pexec should not bother to
clear ihe program'’s enlire heap, only the declared BSS. This shaves up to one
second off program load time on a Mega 4. Many programs can have this bit set
with no ill etfects; it is generally considered bad practice to assume that
*stack+heap” space is clear when you start up. Some programs cannot have the
bit set, and this is why the defaull (zero) case is to clear the heap.

Program Termination: - When a program is terminated with bombs (bus error, address error, eic.), its
parent’s Pexec () call returns with error code 0x0000ffit. Previously, it returned
with error code 0.

FPage 38 Rambow TOS Release Notes - 5 March 1997

GEMDOS Changes - Other

GEMDOS Changes - Other

DTA - The structure of the private part of the DTA (used tor Fsfirst/Fsnext) has
changed. Applications that were counting on its (eserved, undocumented)
| siructure may cease to function properly.

FAT Search Code: - The FAT searching code for hard disks and floppies is much faster. This
speedup is especially dramatic when using “Show info...”, or when crealing a file
on a heavily loaded hard disk.

FATs (12 bit): - The 12-bit FAT code now deals with disks of up to 4096 clusters correctly.
{Formerly, only 2048 clusters worked; above thal there were sign-extension
problems.)

Media Change: - GEMDOS now recognizes "media change” better. It would sometimes fail before
because GEMDOS was, in effect, using a cache withoul checking for media
change.

- Mediach() is more reliabie when using logical drives A: and B: on a single-drive
system. See "Forcing 'Media Change’.”

Rainbow TOS Release Notes - 5 March 1997 Page 39

GEMDOS Supplemental Documentation

GEMDOS Supplemental Documentation

Attribute Byte: - The Attribute Byte tooks like this:
0x01 Read-only Denies delete and open for write.
0x02 Hidden See below.
Ox04 System See below.
0x08 Volume label Exciusive {no other bits should be set)
0x10 Subdirectory Exclusive (no other bits shouid be set)
0x20 Archive File is new ot has been modified. (Doesn't work

in old system, does In new.)

File atiribute Ox08 is exclusive: no other bits should be set. Same with 0x10.
Files with illegal atiribute combinations are not guaranteed to work predictably.

This is an ordered list of matching rules for attributes in Fsfirst / Fsnext
searches:)

1. It input atiribute == Ox08, include ONLY if {file attribute == 0x08).
2. li file atiribute & 0x21 (archive or R/O), or file atiribute == 0, include.
3. If ({tile atiribute} & (input atiribute)) != 0, include.

So, with "ia" the input attribute and "fa" the file atiribute, match if
this expression is TRUE:

((*fa && (ia 1= 8)) || (Gia | Ox21) & fa))

(1fa && (ia !'= B)) means fa 0 matches any search except 0x08.
((ia | 0x21) & fa) means a one bit match between fa and ia maiches, but
also that fa with archive or read-only set will cause a match regardless. .

This means that for a hidden file to be hidden, it can’t be R/O or ARCHIVE.
Same for system. A file which is both hidden and system (but nothing else) will
appear when either of these bits is set in the input aftribute.

Subdirectories are included when (input & 0x10) != 0. Same with labels and
{input & 0x08) 1= 0. '

You can Fcreate files with any combination of the ARCHIVE, R/O, HIDDEN,
and SYSTEM bits. You can’t use Fattrib to change to an illegal combination,
and you can't use Fattrib, Frename, Fopen, or Fdelete on labels or
subdirectories.

DTA: - i an Fsfirst or Fsnext call returns a nonzero value {(meaning tailure), you
cannot assume the DTA contains any useful information.

Page 40 Rainbow TOS Release Nofes - 5 March 7897

GEMDOS Supplemental Documentalion

(' Environment String: - The environment string passed to Pexec is defined as a series of null-terminated

o

strings. The suggested format for these sirings is the same as MS-DOS and
UNIX (where $0 means a null byte):

NAMEl-valuel$0
NAMEZ=valueZ$0

ﬁAﬁEn-va1uen$0$0

All that's enforced, however, is the trailing doubie-null: the environment string is
copied up to the first double-null.

- The default environment thal gets set up for the \AUTO\ folder and Desktop (and
therefore programs started from the Deskiop) has a couple of peculiarities.

It consists of these bytes:
PATH=$0A:\3030

The fif'si $0 shoutd not be there -- environment variables are meant to have the
name, an equals sign, and the value, ending with a nul| byte.

The second problem is that the drive letter is always A:. Some programs,
including some versions of AHDI, change this environment string. For these
reasons, this environment string is useless. Don't use it.

Error Numbers: - GEMDOS error numbers are documented incorrectly: ENMFIL is -49. not -47,
and ENSAME is -48.

Fdatime; - The arguments o Fdatime are documented incorrectly; the correct usage is:
Fdatime(timeptr,handle,wflag)
int *timeptr; /* ptr to 2 ints */
int handle; /* handle to read/write */
int wflag; /* 1 to write from timeptr to file, 0 to read */

Fdelete and Frename: - If you Fdelete a file which somebody else has open, it will be denied. i you
Fdelete a file which YOU have open, GEMDOS closes the file and then deletes
. Unfortunately, there's a bug: GEMDOS closes the file, but not the file’s handie.
The handle lives on in the OS Pool, taking up space lorever. Frename doesn't
even &y to ciose the file or deny access.

The morat is, "Don't call Fdelete or Frename on files which are open.”

Rainbow TOS Release Notes - 5 March 1997 Fage 47

GEMDOS Supplemental Documenlialion

Frename: - Frename can move a file from one directory to another without copying it and
deleting the old one, assuming that both pathnames are on the same drive:

Frename (0, "\foldrl\foo.doc","\foldr2\foo.doc")

moves foo.doc from foldrl to foldr2. This has always been true.

GEMDOS Buffers: - You can add buffers to GEMDOS -- they won't work exactly like a cache, but it
will be close. It can make hard disk VO up to 10 times faster. There are two
bufier lists: one for FATs and root directories, and one for the rest of the disk.
A buffer control biock looks like this:

_bufl = $4h2 : two buffer-list headers

.ABS
B_link: ds.1 1 : -> next BCB
B8_negl: ds.w 1 ;o= -1
B_priv: ds.w S ; private parts
8_bufp: ds.1 1 ; —> data buffer
BCB_size: ; how big is it
Or, inC:
typedef struct _bcb {
struct _bcb *b_link;
int b_negl;
int b_private[5];
char *b_buf;
} BCB; .
To add buifers, you must first find out what hard disk driver is running. This is
important because il your buliers aren't the right size, the hard disk driver will
obliterate the data in memory after the buffer. The normai sector size is 512
bytes, the same as a physica! sector. If you are running AHD! 3.0 or later, itis
possibie that the logical sector size may be more than 512 bytes. Here are some
more definitions:
Defsize = 512 ; default sector buffer size
pun_ptr = $516 : pointer to pun_info struct

MAXUNITS = 16 ; max number of physical units
-ABS

puns: ds.w 1 number of physical units

pun: ds.b MAXUNITS : physical unit for each logical unit
part_start: ds.1 MAXUNITS : start of partition on the phys. unit
P_cookie: ds.1 1 ; only exists after 890302 version
P_cookptr: ds.1 1 : points to cookie

P_version: ds.w 1

P_max_sector: ds.w 1 : max sector size being handled

Fage 42 Rambow TOS Release Notes - 5 March 1997

@

GEMDOS Supplemental Documenltation

The following code fragment will leave the correct sector buffer size in-register d7:..

*---- Get sector buffer size

getSize:
move #Defsize,d7 assume default size
move,] pun_ptr,a0 get address of pun structure
Tea P_cookie(a0),al get address of AHDI cookie

cmp. 1 #'AHDI', (al)

bne.b usebDef

cmp.1 4(al),al

bne.b useDef

move P_max_sector(a0),d7 ; set sector buffer size
useDef:

cookie?
no, use default
check the cookie pointer

M Wt e o wE ome me

Or,inC:

#define MAXUNITS 16
typedef struct _pun_info {

int puns;
char p .[MAXUNITS];
long part_start[MAXUNITS];
Tong P_cookie;
Tong *P_cookptr;
unsigned P_version;
int P_max_sector;
} PUN_INFO;

int getSize() /* returns correct size of sector buffers */

Tong savessp = Super{0OL); ‘
register PUN_INFO *pinfo = *(struct _pun_info **)(0x516);
Super(savessp);

if({pinfo->P_cookie == Ox41484449) &&
{pinfo->P_cookptr == &(pinfo->P_cookie))
return pinfo->P_max_sector;
else
return 512;

Once you have the correct butfer size, do the following:

1. Atlocate a BCB (let's call it 'b').

2. Aliocate the bulfer for that BCB (let’s call it 'bb’).

3. Set b.b_neg1 1o -1 ($11ff).

4. Set b.b_bufr to point to bb.

5. To add this buffer to the FAT/Root Directory list, set b.b_link to the current
vaiue of _bufl[0] (the longword at $4b2), and set _bufl[0] to &b. To add this
bufler to the other iist, set b.b_link 1o the current value of _buli[1] (the longword
at $4b6), and set _bufi[1] = &b.

Repeat the above once per buffer you want to allocate. Then terminate
and stay resident, reserving the bufter memory that you just gave to
the OS.

A much easier way to add bulfers to the system is to use the program
CACHENnnN, available from Atari.

Rambow 705 Release Notes - 5 March 1997 FPage 43

GEMDOS Supplemental Documenialion

ikbd driver state .
variable: - Kbdvbase returns a pointer to a list of vectors for the IKBD/MIDI subsystem. At .
offset $24 from that pointer is a byte which is the ikbd driver state variable. This
has always been true; it's now being declared official, and will remain true.

The only supported use for this variable by outside programs is to determine if the
IKBD is in the midst of sending a packet of some lype. The variable is nonzerc
when the IKBD is sending a packel, and zero when i's not.

Programs which want to change the keyboard handier vector should do so only
when the driver is not processing any packet (i.e. when the variable is zero).
Since there are high-speed interrupts involved, some care must be taken. This
code fragment should suffice:

Called from supervisor mode, this subroutine safely changes the
keyboard handler vector to its argument (on the stack) and returns
the old value of the vector, in d0.

This code is tricky because it is possible for an interrupt to
arrive between the time we find the state variable to be zero
and the time we change the vector. So another check is made at
IPL 7 to be sure.

s we me wa ws we we we

_setkvec:
move.w #Kbdvbase,-(sp)
trap #Se
addg.1 #2,sp
move.] d0, a0
move .1 $20(a0),d0 ; get old vector value to d0

; now wait until the IKBD isn't processing a packet (wait until the
; ikbd state variable is zero).

wait: tst.b $24(a0)
bne wait

; state variable is zero; check it again at IPL 7.

move .w sr,dl
or.w #$0700,sr ; go to IPL 7
tst.b $24(a0) ; still idle?
beqg.s ok2change ; if yas, go finish up.
move .w dl,sr ; not still idle; drop IPL
bra wait ; and try again
ok2change:
move .1 4(sp),$20{a0) : set the new value {still IPL 7)
move.w di,sr ; go back to old IPL
rts : return. 01d value is still in dO.

Fage 44 Rambow TOS Release Nofes - 5 March 1997

GEMDOS Supplemenial Documenfalion

. isatty(): - Some compiler fibraries did strange things to implement isatty using Fdatime.
The approved method of determining isatty is:

int isatty(handle)
int handle;

long oldoffset;
Tong rc;

oldoffset = Fseek(OL,handle,1);
rc = Fseek(1L,handle,0);
Fseek(oldoffset, handle,0);
return (rc !'= 1);

Pexec; - The correct arguments for Pexec are (and always have been):

long errcode = Pexec(0,prgfile,cmdline,envptr) /* load & go */
long basepage = Pexec(3,prgfile,cmdline,envptr) /* load, don't go */

long errcode = Pexec{4,0L,basepage,0L) /* just go */
long basepage = Pexec(5,0L,cmdline,envptr) /* just create a
basepage */
char *prgfile; /* the file to Yoad */
char *cmdline; /* command line; first byte is its length */
char *envptr; /* OL or points to double-null-terminated env */
O if the envptr argument is OL, the child inherits a copy of your environment. See
the discussion of the environment string for more about this,

Pexec mode 0 is the only one which really works reliably. The others run into
trouble with memory and file ownership and things like that. Use them only with
extreme caution, after you have read the Atari Pexec Cookbook.

it has always been true that programs are started at IPL €. This is now official
and will continue to be true. (HBLANK interrupts at level 2 and the defaull
handler increases the IPL to 3, so the system normally runs at IPL 3.)

~ Pexec in Rainbow TOS supporis a new mode, called 'Just Go, Then Free', or 6’
This mode executes a loaded process which owns its TPA. The child’'s memory
is freed when it exits. Returns values in the same manner as mode 0. An
example of this call is:

LONG Pexec(6, OL, BASEPAGE *basePage, 0OL);

This function is available only in TOS versions 1.4 (GEMDOS version 0x1500) or
higher. It functions like Pexec mode 4, with one important exceplion. memory
ownership is changed to the child process. When the child terminates, GEMDOS
frees any memory allocated to the child, including its TPA. For more information,
see the Atari Pexec Cookbook.

Rainbow TOS Release Notes - 5 March 1997 Page 45

‘ GEFMDOS Supplemental Documentalion

Super(): - The Super () call is incorrectly documented: Super (1L) intefrogates supervisor
mode. It returns -1L if you're in super mode, and OL if user mode. {The original

documentation said that Super{-1L) returned 1L if in super mode. In fact,
Super(-11.) gives an address error.]

Super(OL), when called from user mode, returns the old supervisor stack
pointer, and returns with the processor in supervisor mode. The argument OL
means "use my old user stack as the supervisor stack.” There is usually pienty of
space on the user stack for both you and any interrupts, etc. which come along.
When called from Supervisor mode, Super returns to user mode; it is a toggle.
The Super() call is intended to work like this:

extern long trapl();
#define Super(x) trapl(0x20,x)

super_sampie()
Jong oldssp;

/* get super mode */
oldssp = Super(0L);

/* do stuff in super mode; ssp is old usp. Don't call AES! */
/* get back to user mode */

Super(oldssp);

There may be some vagaries of using it in other ways: be careful. Calling AES
will blow up in a big way, because AES uses the User Stack Pointer (usp) to
store your registers, even if it's called from Supervisor mode. '

Page 46 Rainbow TOS Release Notes - 5 March 1997

o e
R

GEMDOS Supplemental Documentation

m System Variables: - Starting with the Mega ROMs, there are three more system variables you can get
at; pointers to them are in the system header block. A pointer to the system
header block can be found at address $4f2 (_sysbase). Do not assume that the
system header is in ROM, ot that the ROM staris at FC0000. See "OS Header”
in BIOS/XBIOS Supplemental Documentation for more information.

At offset $20 trom the address at _sysbase is a pointer to the variable
"_root." _root is a pointer which holds the base of the OS Pool, the internal
memory used by GEMDOS. This pointer is used by FOLDR100.PRG. You can
still add pool to the OS the same way as before, but you shouid know that the 0S
will take the poo! you added and use it DIFFERENTLY from the way il was used
before. The rule is, once you give memory to the OS, DON'T TOUCH IT after
that. See "OS Pool", and "OS Pool Discussion” for more information.

At ofiset $24 from _sysbase is a pointer to the variable kbshi ft, a byte which
holds the keyboard shift state bits.

At ofis.. $28 from _sysbase is a pointer to the variable _run, a longword which
holds the process ID (basepage address) of the process GEMDOS is currently
executing. See "0OS Header” in BIOS/IXBIOS Supplemental Documentation for
more information. .

All these variables are for READING ONLY -- unpredictable and bad things can
happen if they are written to. kbshi ft is the most useful of these, because it
lets you check for a keyboard shift key sequence very quickly. For instance, the
following combination of routines can be used to test for both left and right shift
keys down, which might, for example, cause a break in your program.

char *p_kbshift;

init()
{
long _sysbase = *((long *)0x4f2);

if (*(unsigned *)(sysbase + 2) == 0x0100)
p_kbshift = (char *)Oxelbl; -

p-kbshift = *{long *)(sysbase+0x24):

else
}
#define kbtest() { if ((*(p_kbshift) & 0x03) == 0x03) abort(); }
After init () is called, using the macro kbtest () inside the main loop of your

program is a fast way to detect both shiit keys down. This is much faster than
using the Kbshi ft () BIOS cali, and amounts to the same thing.

Version Numbers: = The 11/20 (original) ROMSs have the version number $0100 as the second word of
the OS header, which is pointed to by _sysbase, (at $412).
- The Mega ROMs have the version number $0102.
= Rainbow TOS ROMs have the version number $0104.
= The version number is the best way to check ihe version of the ROMs. You can

check the GEMDOS version number specifically by using the Sversion call, and
you can check the date in the OS header, but the version number is the best bet
because it is the same across all countries, whereas the date sometimes isn't.

Rainbow TOS Release Noles - 5 March 1997 Page 47

GEMDOS Supplemental Documenltation

Volume Labels: - The only available operations on volume labels are Fsfirst (if bit 0x08 is set, '
you'll see them} and FCreate.
- Fecreate(file,0x08) will create m volume label IF the 'file’ ends up in the root
direclory of a device. Otherwise you get EACCDN.
= Once you Fcreate a volume label, you should FClose the handle immediately.
This is not enforced, but any data you write to the handle is lost forever.

- Belore the new label is created, any label on that device is deleted. (Well,
specifically, the first fiie in the root directory of the device with attributes == 0x08,
it any, is deleted.)

- You can create a volume label with the same name as an existing file, or vice
versa. Both will coexist just fine on the disk.

- You cannot Fdelete, Frename, or Fattrib a volume label.
- You cannot use Fattrib to make a file into a volume label.

- You cannot remove a volume label. {(But see above; you can rename one simply
by crealing one with the new name.)

- in the old GEMDOS, people sometimes did this to create a new label’

Fsetdta(&dta);
if (WFsfirst("*.*" ,0x08)) {
/* a label already exists: delete it. */
fd = Fcreate(dta.name,0);
Fclose(fd);
fdelete(dta.name);

}
fd = Fcreate("\\mylabel" , 0x08);
Fclose(fd);

This sequence worked because Fcreateing a file with the same name as the
label would remove the label. Then you could delete the file. Having done that.

you know the last Fcreate will be the only volume label on the disk.

Well, this sequence will still work. The clause which checks for and deletes an

existing label is not needed, but harmless. The last FCcreate will replace the old
volume label with the new one. -

In the old GEMDOS, the above algorithm will wipe out an existing file which has
the same name as the NEW label. In the new one, it will wipe out a file with the
same name as the OLD label. The advantage of the new GEMDOS is that you
don't need the first clause at all: just Fcreate the new label, and you won't wipe
out any files at all:

fd = Fcreate("\\mylabel" , 0x08);
Fclose(fd);

This works whether you already have a label or not, and whether you have a file
called mylabel or not, and it doesn't wipe out that file if it exists.

Of course, since programs should run on any sysiem with any ROMSs, and you
should do error checking, the following code will work best.

FPage 48 Rambow TOS Release Notes - 5 March 1997

GEMDOS Supplemental Documenlalion

*

/

Program to change a disk's volume label.

Should be run from the volume's root directory. The single command-1ine
argument should be the new label to create. Any old label is removed.
Works for all ROM versions, both pre- and post-TOS 1.4.

This code is for Alcyon, but should compile under almost all ST
compilers.

Written by Allan Pratt, of Atari Corporation, October 12, 1988; released
to the general public to be freely used and copied with no restrictions.

T % % 4 ARt R R

*/
#include <osbind.h>

int romvers;
long mklabel();

main{argc,argv)
int argc;
char *argv[];

long oldssp;

int *sysbase;

char newlabel[14];
char pathbuf[128];
extern char *index();

oldssp = Super(0L);
syshase = *(int **)0x4f2;
romvers = *(sysbase+l);
Super(oldssp);

Dgetpath(pathbuf,0);

if (*pathbuf 1= °*\0' || /¥ must run from the root directory */
argc 1= 2 || /* expect exactly one argument */
argv[1][1] == *:* || /* which must not have a drive spec */

index(argv[1],"\\"))> { /* ...or a path spec */

Cconws("Usage: label <newlabel>\r\n");
Cconws{"Must be run from the root directory,\r\n");
Cconws("and <newlabel> must be a simple file name.\r\n");
Pterm(1l);

}

/* copy the argument because Fsfirst may overwrite it! */
strncpy(newlabel,argv{1],12);
newlabel[12] = '\0';

if (mklabel(newlabel)) {
Cconws("Failed.\r\n");
Pterm(1);

}
Pterm0();

Ramnbow TOS Release Notes - 5 March 7897 Page 49

E

GEMPDOS Supplemerital Documenlation

~
+

mklabel: this procedure creates a new volume label on the current drive,
replacing any existing label. The current directory must be the root
of the drive you want to create the label on, and the argument must

not contain a drive or path specifier.

{Those restrictions are not demanded by Fcreate; they're demanded
by the section of code inside "if (romvers < 0x0104)" because that
way Fsfirst("*.*",0x08) will refer to the same drive & directory
as the label you're trying to create.)

% o % % % % %

*/

struct _dta {

char reserved[21];

char attr;

int time;

int date;

long size;

char namef14]; /* null terminated */
} *dta;

Tong mklabel(newlabel)
register char *newlabel;
{
register long err;
register int fd;
extern int romvers;

/* If earlier than TOS 1.4, delete the old label. */
/* Assume that romvers has been set elsewhere. */

if (romvers < 0x0104) {
dta = Fgetdta();
err = Fsfirst("*.%" 0x08);
if (err == 0) {
/* An old label exists: create a normal file with */
/* the same name, then delete that new file. */

if ((fd =-err = Fcreate(dta->name,0)) < 0)
return err;

Fclose(fd);

Fdelete(dta->name);

}

}

if ((fd = err = Fcreate(newlabel,0x08)) < 0)
return err;

err = Fclose(fd);

return err;

FPage 50 Rainbow TOS Release Notes - 5 March 1997

OS Pool Discussion

. OS Pool Discussion
m

There are limits internal to GEMDOS which programmers using it must understand. In a broad sense, you
should know that these limits have to do with the maximum depih ol your hierarchical file structure
(subdirectories), and the number of open files you can have at once. In most cases, users will never come up
against any of these limits.

The limits come into play when you have lots of files open at the same time, and they are deep in different
subdirectory trees. Also, programs which call the operating system function Mal1oc (memory allocator)

influence these limits -- lots of Mal10c calls means less space is available for keeping track of open files and
the subdirectories leading up to them.

Technically, the limits are as follows: there are 80 blocks In the system's "OS pool.” Two blocks are used per
active foider. An “active” folder is one which is the root directory of the device it's on, or which has open files,
or which is the current directory of one or more processes for that drive, or which has an "active™ child
{subdirectory). Yes, this is a recursive definilion. Remember that each process has a current directory on
every logical device, but aiso remember that one folder only takes up two blocks, no matter how many reasons
it's "active.”

In addition, one block is used per open fite, and 1/4 block is used per memory chunk {allocated or free) in the
system TPA. in this context, an "open” file is one which has been Fopened and not Fclosed; this is not the
same as the "Open” operation in an application.

When files are closed. processes terminate, or memory chunks are freed (and coalesce into larger free chunks)
blocks are freed back into the OS pool.

The improvement over previous ROMs is this: the old definition of "active™ was "seen” -- getting a list of the
files in a directory caused all the folders there to take up blocks in the pool. in addition, blocks never got freed
in the pool. Also, once parts of the pool had been used for managing TPA memory chunks, they were
unavailable for managing folders, and vice versa. All these resirictions are lifted. :

@ It is stiit possible to run out of pool, of course. The program FOLDR100.PRG was released by Atari and is part
of the HDX (hard-disk utilities) distribution. It adds memory to the OS pool, and it still works, adding memory to
the new kind of pool, too. Placing this program in your AUTO folder causes 200 more blocks 1o be added to
the OS pool, which is room for 100 more folders (remember, only ACTIVE folders take up room) or 800 more
memory chunks, or any combination. For more information, see the FOLDR100.PRG documentation in your
HDX manual.

It should be stressed that this program usually will not be necessary. Only if you have an inordinate number
and depth of folders, open files, eic. will you run out of pool, because it is so much more efficiently managed
than before.

in the unlikely event that you do run out of pool, the following message will appear on your screen:

w%% OUT OF INTERNAL MEMORY:
«x# USE FOLDR100.PRG TO GET MORE.
ww% SYSTEM HALTED ***

{This message appears in English regardiess of the couniry you are in.)

It s regretiable but true thal there is nothing you can do at this point but press Reset. Remember what you
were doing when this happened: were you trying to create a directory that was 50 levels deep in the
hierarchy? Were you opening the 10th different file in the 10th difierent subdirectory? If you really want to be
able to)do whatever you were stopped from doing, use FOLDR100.PRG (or increase the "100" if you're already
using ib).

Note: The system call Mal1oc will never cause a panic: it will just return 0, meaning it couldn’t satisfy the
request. When this happens, however, you are on the hairy edge, because that means there is not
even 1/4 of one block availabie for the memory manager. With any luck, the program that is being such
a hog will notice that it's out of memory and ferminate, freeing up enough blocks to be useful.

Ramnbow TOS Release Noles - 5 March 1997 Page 57

Forcing Media Change’

Forcing ‘'Media Change’

It a program changes the file or directory structure of a disk using BIOS calls (e.g. a “disk compactor”), it must
somehow inform GEMDOS of the change. Currently most programs do this by rebooting the machine, but this
is not necessary. Instead, calling this routine will cause GEMDOS to abandon all its cached information about
the drive's files and directories, 80 the changes will be seen. |f you do not use BIOS calls to alter directory
contents on any drive, this routine is not necessary.

This routine can also be used in a program which calls Getbpb directly. Getbpb clears a drive’'s media-
change flag. s0 GEMDOS will not know that new media is in the drive. The routine should be called after using
Getbpb, betore making any GEMDOS calls.

mediach: cause media-change on a logical device.

USAGE:
errcode = mediac* devno); /* returns 1 for error */
int errcode, devno;

This procedure causes a media change by installing a new
handler for the mediach, rwabs, and getbpb vectors; for device
devno, the mediach handler returns "definitely changed,” and
the rwabs handler returns E_CHNG, until the new getbpb handler
is called. The new getbpb handler un-installs the new
handlers.

W ook ah ok ok B % % & % %

After installing the new handlers, this procedure performs a
disk operation (e.g. open a file) which makes GEMDOS check
the media-change status of the drive: this will trigger the
new rwabs, mediach and getbpb handlers to do their things.

RETURNS: 0 for no error, 1 for error (GEMDOS never did a
getbpb call; should never happen.)

PR T SN N R B S N N B NN N BN N N N B

B ooF % % ok % b N 3} % ok % B

.globl _mediach
_mediach:
move.w 4(sp),d0
move.w d0,mydev
add.b #'A°,dO
move.b do, fspec ; set drive spec for search first

Fage 52 Rainbow TOS Release Notes - 5 March 1997

Forcing Media Change’

loop:

. clr.1 ~-{sp) ; get super mode, leave old ssp
move . w #$20,-(sp) ; and "super” function code on stack

trap #1
addq #6,sp
move.] do,-(sp)
move.w #320,-(sp)
move. 1 $472 ,0ldgetbpb
move. 1 $47¢,0ldmediach
move .l $476,0ldrwabs
move. 1 #newgetbpb,$472
move.1 #newmediach, 347e
move. 1 #newrwabs ,3476
: Fopen a file on that drive
move.w #0,-(sp)
move .1 #fspec,-(sp)
move .w #33d,-(sp)
trap #1
addqg #8,sp
; Fclose the handle we just got
1st.] do
bmi.s noclose
move .w do,-(sp)

. move.w #$3e,-(sp)

w . trap #1
addq #4.5p
noclose:
. move. 1 d7,-{sp) ; CORRECTION added 5 March 1991
moveq #0,d7)
cmp.] #newgetbpb, $472 ; stil} installed?
bne.s done ; nope
moveq #1,d7 ; yup! remove & return TRUE
move. 1 oldgethbpb,$472
move.1l oldmediach, $47e
move.1 oldrwabs, %476
done: trap #1 : go back to user mode (use stuff

addq #36,sp ; left on stack above)
move. d7,d0
move.1l (sp)+,d? : CORRECTION added 5 March 1991
rts

Rainbow TOS Release Notes - 5 March 7987

Forcing Media Change’

B o o e e e e e e e e ke e S e e o e e e e 2 o e e B e e e L e o e e +*
* *
* new getbpb: if it's our device, uninstall vectors; *
¥ in any case, call the old getbpb vector (to really *
* get it) *
* *
B o e e e ek e o . B e —— -_—— Pp—]
newgetbpb:

move.w mydev,d0

cmp.w 4(sp),d0

bne.s dooldg

move.) oldgetbpb, $472 : it's mine: un-install new vectors

move.l oldmediach, $47e

move.] oldrwabs, $476
dooldg: move.1 oldgetbpb.a0 : continue here whether mine or not:

+ call old. :

imp (a®
B e e o e e n ———— e e T T *
* *
* new mediach: if it's our device, return 2; else call old. *
* -+
B o e o . e e e St A B B e o o e e ok R T e o o e e A S *
newmediach:

move . w mydev, d0

cmp.w 4(sp),d0

bne.s dooldm

moveq. | #2,d0 : it's mine: return 2 (definitely changed)

rts "I'
dooldm: move. 1l oldmediach,a0 : not mine: call old vector.

: jmp (ald)

Page 54 Rambow TOS Release Notes - 5 March 1997

Forcing Media Change’

k- - P e o o i o o o e o e —_— — ———
* *
* newrwabs: return E_CHG (-14) if it's my device *
+* ®
* . ———— e e = ———— o o o A P i o e . e *
newrwabs:

move . w mydev,d0

cmp.w $e(sp),do

bne.s dooldr

moveq. 1 #-14,d0

rts
dooldr: move. 1l oldrwabs, a0 : CORRECTED S March 1991

jmp (a0}
.data
fspec: dc.b "X:\\X",0 : file to look for (doesn't matter)
.bss
mydev: ds .w 1
oldgetbpb: ds.] 1
oldmediach: ds.1 1
oldrwabs: ds.1 1
B e e e e e e o e e T S e T T e s T A *
* -
* end of mediach *
* *
B o e o e o P o i B A =

Rainbow TOS Release Noles - 5 Marclh 1997 Page 55

BIOS/XBIOS

A

BIOS/XBIOS Changes

- BIOS/XB!OS Changes

Boot Sequence:

- The ROMs check the DMA port for bootable devices. Each device now gets a
second chance if the first iry at a bool sector returns an error.

Disk Boot:

- Floppies are checked for "bootability” on warm andcold starts, even if an
autobooting hard disk is attached. Before, this was done only on a cold bool.

Disk Formatting:

- Disks are formatted to be compatibie with the IBM PC; BIOS 'protobt’ creates
MS-DOS format floppy boot sectors. Programs shouid place E9 00 4E in the
first 3 byles to insure MS-DOS compaltibility. Programs which do not use these
calls 10 tormat the disk will not be attected.

Floppy Seek Rate:

- A new call, Floprate, has been provided to check or set the seek rate for a
floppy drive. See BIOS/XBIOS Supplemental Documentation.

Keyboard Repeat:

- Keyboard repeating has been improved: if you hit a key (say, '*’), and hold it
down, you will get lots of #'s. i you then hit '$’ without lifting your finger oft '*’ you
will get one $, then many $'s. The $'s won't siop repeating untii you let go of the
'$’ key, even if you do let go of the '# key in the meantime.

Keyboard Reset:

- Reset is available from the keyboard. Hold down the <Control> and <Alternate>
keys, and press "Delete” (below "Backspace”). This accomplishes the same thing
as hitting the reset button.

- <Conirol><Alternate><Right Shift><Delete> causes a VERY cold boot. [t clears
ALL of RAM (excep! about 64 byles at the bottom) and then jumps to the ROMs.
This is to get rid of reset-resident RAMdisks, reset-bailout vector stufi, packages,
and miscellaneous system variables that are clear on a cold booi but not touched
by a warm one (notably _bootdev}.

Rsconf:

- Rsconf(-2,-1,-1,-1,-1,-1) now returns the last baud rate value set by
Rsconf. if the first argument to Rsconf is -2, the rest are ignored.
- Rsconf was documented as 'void’ but actually returns the old values of the

ucr, rsr, tsr, and scr registers. It always has, but wasn't documentea
as such untif now.

Rainbow JOS Release Notes - 5 March 1997 Fage 59

BIOS/XEBIOS Supplemental Docurmentalion

BIOS/XBIOS Supplemental Documentation

b
Bconout: = Bconout to the printer returns 0 for failure, and a nonzero value for success. .
This is used for the "Your output device is not responding”™ message in the
Desktop, and is not handied through the critical error handler. This has been true
of all ROMs. :

GEMDOS previous to Rainbow TOS just happened 1o return the leftover value
from DO, sc using the GEMDOS Cpraout () function returned this, too. New
GEMDOS explicitly returns the status trom the BIOS call from Cprnout.

BIOS Output-Status: - The BIOS output-status functions for Ikbd and MIDI (devices 3 and 4,
respectively) are reversed: Bcostat(3) gives MIDI output status, and

Bcostat (4) gives Ikbd output status. We can't change these back because
programs may already be correcting for this behavior.

Floprate: - Floprate, XBIOS function 41, checks or sets the seek rate for a floppy drive.
This is new; the seek rate must be set with {previously) undocumented variables
on earlier versions of TOS.

Floprate example:

int devno,newrate;
oldrate = Floprate(devno,newrate);

This returns the current seek rate if newrate is -1, otherwise sets the seek rate .

to newrate. For doing this with previous versions of TOS, the seekrate byte
locations for Drive A and B are:

0S Version Drive A Drive B
0x0100 $A09 $A0D
0x0102 $A4F $AS3

in either case, valid seek rate byte values are:

Value Rate

00 6 ms
01 12ms
02 2ms
03 3ms

This call does not range-check the drive ID or new seek rate vaiue. It devnois
zero, it assumes drive A:, if nonzero, drive B:.

The following MADMAC source will give you a program which sets the seek tate
on drive B: to 6 ms. This could be used to hook up an Atarl PCF-554 5 1/4” drive
to an ST, for example

Fage 60 Rainbow TOS Helease Noles - 5 March 1997

BIOS/XBIOS Supplemental Documenlfation

**t¥d pef554.s
*x%+% Copyright 1988, 1989 Atari Corporation
#%%* gets 6 ms seek rate for PCF-554 or other 5-1/4" floppy B

.include atari

*

* bios dsb structure
*

.ABS
Acurtrack: ds.w
Aseekrt: ds.w
Bcurtrack: ds.w
Bseekrt: ds.w

; current track#
; floppy's seek-rate
; current track#
; floppy's seek-rate

I

*

* The following are UNDOCUMENTED BIOS BSS variables:

*

* dsb_05 = $6¢8 : RAM TOS - unsupported by this program
dsb_10 = $a06 . ; 11/20/85
dsb_12 - $adc ; 4/22/87
CTEXT
pea hello
Gemdos 59,6 ; Cconws
Super
© move.] _sysbase,al ; get TOS version
move.w 2(a0) ,d7
User
cmp.w #30100,d7 TOS 1.07
beq dolo .
cmp.w #30102,d7 i Blit TOS (1.2)7
beq dol?2
;> TOS 1.2
clr.w -(sp) ; 6ms seek rate
move.w #1,-(sp) ; drive B
Xbios 41,6 " : Floprate call (70S 1.4 and up)
move.w #-1,-(sp) ; inquire rate
move . w #1,-(sp) ; drive B
Xbios 41,6
tst.w do ; did we do it?
beq okfine yeah, get outta here

ne oy e -

pea nodice no, tell the nice user we had a problem
bra punt and go away
dol2:
lea.l dsb_12,a0 ; get Blit TOS dsb loc.
. bra setseek
dol0:
lea.1l dsb_10,a0 ; get TOS 1.0 dsb loc.
setseek:
clr.w Bseekrt(a0) ; set 6ms seek rate
okfine:
pea seekset ; tell the nice user what we've done

Hainbow 705 Aefease Noles - 5 March 1997 Fage 67

BIOS/XBIOS Supplemental Documenlalion

punt:
Gemdos $9.6 ; Cconws
Pterm0 ; bye bye
hello:
dc.b "\n\r \ep 5" ,$AC,"\" ST driver \eqg\n\r”
dc.b * Copyright ",$BD,"” 1988-9, Atari Corporation\n\r“,0
nodice:
dc.b " \ep Couldn't set 6ms seek rate! \eg\n\r\n\r",0
seekset:

dc.b " \ep 6ms seek rate set on B: \egq\n\r\n\r",0

*the
.END
OS Header: - As mentioned elsewhere in this document, the OS header contains a pointer 10
the GEMDOQS variable _run, which holds the basepage address of the process
which is currently running. This has only been true since TOS 1.2, so we are
providing a subrouline below which returns the address ot that variable no matter
what ROM version you have. The GEMDOS variable _run is very important to
TOS, and it should not be fooled with lightly. i you don't know what's going on,
leave it alone.
The address of the variable in TOS 1.0 depends on what couniry your ROM was
built for. The OS header is meant to contain a code 1o indicate that. However, 1o
fix a bug in some versions of the Atari hard disk driver, this value is overwritien in
the RAM copy of the OS Header. Therefore, to get the couniry code, you have to
. logk in the OS header that's in ROM. lis address can be found in the OS header
in RAM, in the field calied 0os_beg. .
Everything else about the copy ol the OS Header in RAM is as advertised.
The OS Header structure is as follows:
typedef struct _osheader { /* offset description *5
/-A' ___________________________________ =
unsigned os_entry; /¥ $00 BRA to reset handler */
unsigned os_version; /* $02 TOS version number */
char *roseth; /* 304 -> reset handler */
struct _osheader *os_beg; /* $08 -> base of 05 */
char *os_end; /* $0c -> end BIOS/GEMDOS/VDI ram usage +/
char *os_rsvl; /* $10 << unused, reserved >> */
char *os_magic; /* $14 -> GEM memory usage parm. block */
Tong os_date; /* 318 Date of system build (SYYYYMMDD) */
unsigned os_conf; /* $1c 0S5 configuration bits */
unsigned os_dosdate; /* $le DOS-format date of system build */
/* The next three fields are only available in TOS versions 1.2 and greater
*/
char **p_root; /* $20 -> base of 0S pool */
char *tpkbshift; /* $24 -> keyboard shift state variable */
char *¥p_run; /* $28 -> GEMDOS PID of current process */
char *p_rsv?; /* $2¢ << unused, reserved >»> */
} OSHEADER;

FPage 62 Rambow TOS Release Notes - 5 March 7997

BIOS/XBIOS Supplemental Documentation

AT ..

The country code is encoded in the os_conf word; the lowest-order bitindicates, - —w .
m NTSC or PAL, and the other bits contain the country code. These are the country

w code values so far; other values are added as we make ROMs for other countries:

#define USA 0 /* United States of America */

#define FRG 1 /* Federal Republic of Germany */

#define FRA 2 /* France */

#define UK 3 /* United Kingdom */

#define SPA 4 /* Spain */

#define ITA 5 /* Italy */

#define SWE 6 /* Sweden */

#define SWF 7 /* Switzerland (French) */

#define SWG 8 /* Switzerland (German) */

#define TUR g9 /* Turkey */

#define FIN 10 /* Finland */
#define NOR 11 /* Norway */
#define DEN 12 /* Denmark */
#define SAU 13 /* Saudi Arabia */
#define HOL 14 /* Holland */

Here is the procedure which will return the address of the variable _run no
matier what ROM you have. It oniy works for ROMSs produced by Atari; no
guarantees are made if you are using a version of TOS which has been modified
in any way.

#define SYSBASE ((OSHEADER *+*){(0x4f2L))
typedef long PID;

/% get_run()
* Return the address of _run (GEMDOS Process ID of current process)
* for any TOS version.
* 890718 kbad
*/
PID *
get_run{)
char *savestack = (char *)Super(OL);
OSHEADER *osheader = *SYSBASE; /* Get the RAM 0S5 header... */
Super(savestack };
osheader = osheader--os_beg; /* Get the ROM OS header, because */
/* the RAM one doesn't contain a */
/* valid os_conf word with some */
/* hard disk drivers. */
if{ osheader->os_version < 0x102) {
if({ (osheader->os_conf >> 1) /* Low bit is palmode: shift right */
== SPA) /* to get country number. */
return {(PID *)0x873c; /* The location of _run in Spanish*/
else /* TOS 1.0 is different from other */
return (PID *)0x602c; /¥ countries. */
} else {
return (PID *)(osheader->p_run);
}
}

Rainbow TOS Release Noles - 5 March 1997 Page 63

BIOS/XBIOS Suypplementfal Documentalion

Physical Screen Base: - The XBIOS documentation for the Setscreen call states that the new physical .
screen base being setl will take effect at the next VBLANK. The factis, the .
address is written immediately, but the Aargware only uses it at the next VBLANK.

The system variable screenpt has the behavior that when it is NULL, nothing
happens, but when It is nonnuli, it gets stuffed into the hardware as the physical
screen base.

if you mix both screenpt and Setscreen to change the physical screen base,
they won't work as one might expect. When you set screenpt, that vaiue is
stufied into the video base register every VBLANK. Setscreen only sets the
regisier once, and at the next VBLANK, the screenpt value is stulfed into the
register again. If you want Setscreen io work as you expect, you have 1o clear
screenpt

i you use sither method exclusively, you won't have these problems.

Reset Bailout Vector: - The documentation for the resel handler is wrong. It states thatl you can return to

the ROMs and iet them continue resetting the system with "jmp (a6)". That will
only work if, as part of your reset handler, you make sure that you invalidate

resvector; that is, load something other than the magic number there.

Because many programs might be counting on getiing control during reset
processing, any program which uses resvector should use something like the
following code:

; install reset handler, including setting up the handoff to.other handlers

resvalid equ 3426 .

resvector equ $42a
resmagic equ $31415926

resinstall:

move.l resvalid,oresvalid : save old resvalid and resvector
move.l resvector,oresvector : (resvalid might be invalid)
move.l #myreset,resvector ; set up my vector

move.l #resmagic,resvalid : and validate it

rts : done with installing

; myreset: gets control during a warm reset

myreset:
: do reset-handler stuff here ... then end with the following:
move .l oresvector,resvector ; restore old values, including
move.l oresvalid.resvalid : resvalid (so if it was invalid,
jmp (ab) ; it stays invalid). Then return.

.bss

oresvalid: ds.] 1

oresvector: ds.] 1

Fage 64 Rambow TOS Release Noles - 5 March 1997

Addendum

Rainbow TOS Caveals

_ Rainbow TOS Caveats

i Two bugs were discovered in Rainbow TOS after its release. Both of these bugs are

corrected by TOS14FIX.PRG, an \AUTON\ folder patch program available from Atari. The bugs
are described in detail below.

rsconf(): - rsconf(), the XBIOS call that sets the configuration of the RS232 port does not
work correctly regarding flow conirol. Three kinds of fiow control are supported
by TOS: RTSICTS, XON/XOFF, and no flow control. .RTS/CTS flow control
didn’t work in the original ROM TOS, but was fixed in Mega TOS. in Rainbow
TOS, the ability to relurn the current baud rate was added to the rsconf () call,
but at the same time, it lost the ability to set RTS/CTS flow control. Any attempt
to set RTS/CTS flow control instead sets NO Hiow conirol.

shel_find(): - if the fisenname you pass to shel_find() is followed in memory by a backslash
or a colon, shel_find() wili search tor a nuli-string filename. This could result
in apparently random inability of the AES to find a fileame you pass it for
shel_find() - it all depends on what is AFTER the string in memory. The
rsrc_load () call could be affected by this bug as well, since it uses
shel_find (O to get the full pathname of a resource file.

Rainbow TOS Release Notes - 5 March 1997 Fage 67

	ahs:

