ATARI GEMDOS

REFERENCE MANUAL

April 4, 1986

www.atari-history.com

TABLE OF CONTENTS
- Introduction

Calling GEMDOS
File Naming

File Operations
Processes
Extended Vectors
Error Handling

GEMDOS Calls

Executable File Format
Disk Structure

>

®

~/text/gemdqs/iptro Introduction (1)

INTRODUCTION

i THIS IS A PRELIMINARY DOCUMENT!
! AND IT DOES NOT CLAIM TO H
! PERFECTLY DESCRIBE REALITY !
| (or even GEMDOS). PLEASE H
! REPORT BUGS AND TYPOS TO]
' ATARI. THANKS! H

This is the Atari GEMDOS User's Manual. It describes
the internals and use of GEMDOS on the Atari ST. This
manual is divided into three parts; a tutorial and introduc-
tion for beginning users, a reference manual for application
writers, and appendices for GEMDOS wizards.

The GEMDOS Tutorial is a gentle introduction to the
basics ‘of GEMDOS. Its intention is to get beginning users
started as.quickly as possible. It gives example prograns,
designed 1o, exercise most of GEMDOS, which combine into a
simple commandline interface, or "shell". The tutorial also
covers common pitfalls and useful shortcuts.

The GEMDOS Reference Manual is the application-writer's
bible. It covers GEMDOS' calling conventions, file and han-
dle manipulation, process execution, and every GEMDOS call.

The Appendices contain nitty-gritty details and hints
for those who have to push GEMDOS to the limit. They are
for application writers (and the merely curious) who have
"need to know" about obscurities in the system.

To use this manual effectively readers should be fami-
liar with C and 68000 assembly language. Familiarity with
MSDOS, Unix[1], and the standard C runtime library will also
help.

[1] Unix ist ein eingetragenes Warenzeichen der Bell La-
boratories.

AZHTRA MNvar Atari CEMHRNQ

“/text/gemdos/calling Calling GEMDOS (1)

CALLING CONVENTIONS

GEMDOS uses the Alcyon (or Digital Research) C calling
conventions. Note that these conventions may differ from
other 68000 C compilers. If you are using another C com-
piler it might not be possible to call GEMDOS directly;
please check your compiler's documentation for compatibil-+
ity.

Arguments are pushed on the stack, in reverse order of'

their declaration. The GEMDOS function number is pushed
last, as a WORD. To do the call to GEMDOS, a 68000 "TRAP
#1" instruction is executed. The trap can be made with the

68000 in user or supervisor mode.

NOTE
Applications running in supervisor m@mode may be
forced back into user mode after making a GEM AES

call.

. Stack Snapshot
(Jpst Before a GEMDOS Trap)

stack! contents
(sp)! WORD function number
2(sp)|! argument 1
X(sp)| argument 2
Y(sp)| argument 3

and so on

b o o o e — e —

. .
o e - ——

Results are returned in DO. Registers D0O-D2 and AO-A2
can be modified; registers D3-D7 and A3-A7 will always be
preserved. The caller is responsible for popping the argu-
ments (including the function number) off of the stack after
the call.

The Alcyon C compiler does not generate TRAP instruc-

tions, so most applications use a small assembly-language
binding. It typically looks like:

hiIh 'TRA& Tvor Atari CEMDINS

“/text/gemdos/calling Calling GEMDOS (2)

! text H
e ’
! # GEMDOS binding for Aleyon C '
P 1
] I
| ¥ NOTE: !
I This binding is NOT re-entrant, and cannot !
I be shared by foregrourd and interrupt code. v
| % !
.- 5
H .globl _gendos '
| _gemdos: . H
' move.l (sp)+,tlsav ; save ret addr ;
' trap #1 ; call GEMDOS i
! move.l tlsav,-(sp) ; restore ret addr i
! rts : do "real" return '
])]
]]
i bss o e i
| tisav: ds.1 1 ; saved ret addr '
1 . . .]
| e J

AL TOF Tyer s Ao roOMTING

~/text/gemdos/filenanes File Names (1)

W

FILENAMES

A filename consists of a drive specification followed
by a pathname and a simple filename. A drive specification
consists of a single letter, A through P, followed by a
colon; if the specification is missing, the default drive is
used. A pathname consists of a 1list of simple filenames
separated with ©backslashes. If the pathname starts with a
backslash it is anchored in the root directory, otherwise it
is anchored in the current directory. If the pathname is
missing, the current directory is used. A simple filename
consists of one to eight characters, optionally followed by
a period and zero to three more characters.

Legal characters in filenames and pathnames include the
alphabet (A-2), digits (0-9), and most punctuation.
Periods, colons, backslashes, slashes, question-marks,
asterisks, control characters (including NULs), and charac-
ters greater than 0x7f may never appear in filenanmes.
Lowercase: letters:'are converted to uppercase.

A fuil'fiié'sﬁecification“may noet exceed 125 charac-
ters.

Legal Characters in Filenames)
letters A-Z, a-z

1

[}

|

i numnbers 0-9
H _ (underscore)
! '

1 .

: + s
I

]

1

1

@ # § ? & ()
<> UL 4}

In a pathname, "." refers to the current directory and
".." refers to the current directory's parent directory.
Thus, the paths:

"..\..\foo"
S O W W NP W W O W NP P N o e T

refer to the same file two directories up from the current
one. (There is no parent directory at the root.)

and

There are three character devices. Only the calls
Fread(), Fwrite() Fopen(), Fcreate(), and Fclose(), and the
standard I/0 functions work on themn:

fA6 08 T~ Atawi OAPMANC

, ~/text/gemdos/filenames File Names (2)

H name handle device ;
i CON:, con:| OxO0ffff (-1)] system console|
i AUX:, aux:, Ox0fffe (-2)] RS232 port H
i PRN:, prn:| O0x0fffd (-3)! printer port |
] § 1 1
] i 1 1

An Fopen() or Fereate() call on one of the character
devices will return a character device handle. The handle
is WORD negative, but not LONG negative.

£ fn tor T oy LY PR ~TM YOO

~“/text/gemdos/fileops File Operations (1)

FILE OPERATIONS

GEMDOS places no restrictions on what a file may con-
tain. Most applications assume that text files contain
lines separated with carriage-return 1linefeeds, with a

control-Z indicating the end of file. The format of executj

able files is documented in the Appendix.

The GEMDOS calls Fcreate() and Fopen() return small.;:“
positive 16~-bit integers, called handles, that refer to open:

files. A file may be opened for reading only, for writing
only, or for reading and writing. Closing the file relinqu-
ishes the handle, allowing the handle to be re-used.

There are three kinds of handles. Standard handles
range from 0 to 5, and may refer to character devices or
files. Non-standard handles start at 6, and refer only to
files, Character handles refer only to character devices;
the handle numbers range from Oxfffd to Oxffff. which are
WORD negative, but not LONG negative.

When a process does a Pexec() call the child process
inherits the parent's standard handlies. Handle 0 is often
referred to as "standard input" or "standard output"; nor-
mally it is connected to the console, CON:. With Fdup() and
Fforce() calls it is possible to redirect a process's stan-
dard I/0 to or from a file or. another character device.

When a media change occurs, all files cpen on the disk
that was removed are forced closed by GEMDOS.

BUGS
There is no concept of "standard error" output.

AFHK7QGA TMuvar Abtar+ CEMNDNC

~/text/gemdos/processes Processes (1)

PROCESSES

Although GEMDOS does not support multitasking, it is
possible to execute processes in a subroutine-like manner.
A process may "call" another with Pexec(); the child process
will terminate with a WORD return code.

A process owns any files it opens and any memory it
allocates. Open files are closed and memory is deallocated
when the process terminates.

Before a process is actually terminated GEMDOS will
call extended vector 0x102. This allows applications to
make a "last ditch" effort to recover from error conditions,
or to deinstall themselves.

The memory model used by GEMDOS is similar to MSDOS's.
A process runs in the TPA (Transient Program Area). The
first 0x100 bytes of the TPA is the process's basepage,
which contains pf@céss—specific information.

‘Basepage Structure

i_offset name description i
! 0x00 p_lowtpa -> base of TPA |
! 0x04 p_hitpa -> end of TPA)
! 0x08 p_tbase base of text segment l
i 0x0c p_tlen size of text segment H
! 0x10 p_dbase base of data segment |
; Ox14 p_dlen size of data segment '
! 0x18 p_bbase size of BSS segment H
! Oxlc p_blen base of BSS segment H
H 0x20 p_dta Disk Transfer Address (DTA)|
: 0x24 p_parent -> parent's basepage !
' 0x28 (reserved) |
H 0x2c p_env ~> enviroment string 1
' 0x80 p_cmdlin comnandline image]
i |
] 1

‘p_lowtpa' points to the basepage {(to itself).
"p_hitpa' points to the TPA's limit, to the first unusable
location. “p_tbase', “p_tlen' and so on contain the start-
ing addresses and sizes of the text, data and BSS segments.
"p_parent' points to the process's parent process's
basepage. "p_env' points to the enviroment string [see
Pexec(}].

The first byte of the commandline image contains the
number of characters in the commandline. The second through
Nth bytes contain the image. The image is not guaranteed to
be null-terminated.

NI feEa Toor At ara TEMDNC

~/text/gemdos/processes Processes (2)

An application receives control at the starting address
of its text segment. The second longword on the stack,
4(sp), will contain a pointer to the process's basepage.
Normally all free memory is allocated to a new process; if
the process is going to use Malloc() or Pexec() then it must
relocate its stack and call Mshrink() to release memory back
toc the system. The stack segment starts near the highest
TPA location and grows toward the BSS.

£/4/86 Dver Atari GEMDOS

.

~“/text/gemdos/vectors Extended Vectors (1)

EXTENDED VECTORS

The 68000 uses vectors 0x02 through 0xff, corresponding
to absolute 1locations 0x0000 through 0x03fc. GEMDOS adds
eight logical vectors, numbered 0x100 through O0x107. The
absolute 1locations of the logical vectors is undefined; it
is up to the BIOS to allocate storage for them.

Logical Vector Assignments

0x103 - 0x107 reserved for future use

! vector use !
! 0x100 timer tick t
H 0x101 critical error handler |
' 0x102 terminate (“C) handler |
1 |
| |

0x100 Timer Tick.

This vector is called periodically (at 50hz) by
the BIOS to maintain the system's date/time-of-day
clock and do housekeeping. The first word on the
stack, 4(sp), contains the number of milliseconds from
the last timer tick interrupt.

To intercept the timer vector, use the BIOS <call
to get and set the vector. Each handler should execute
its own code first, and then follow the o0ld vector.
Interrupt handlers should be short and sweet; dawdling
here will affect system performance.

All registers (except SP and USP) are modified Dby
GEMDOS. The BIOS takes responsibility for saving
registers DO-D7/A0-A6; therefore handlers chained to
this interrupt do not have to save and restore regis-
ters.

0x101 Critical Error Handler
The Critical Error Handler is called by the BIOS
to handle certain errors (rwabs() disk errors and media
change requests.) It allows the application to handle
the errors as it sees fit.

The first word on the stack, 4(sp), is an error

number. Depending on the error, other arguments may
also be on the stack. The critical error handler
should preserve registers D3-D7/A3-A6. When the

handler returns, DO contains a result code:

L /h /2A Mvor Atari CEMINS

’ ~/text/gemdos/vectors Extended Vectors (2)

value in DO.L meaning 1
0x00010000 retry A
0x00000000 pretend there wasn't an error (ignore) |

Oxffffffxx abort with an error

[}
1
|
1
I 1
]]
| 1
- A

The default critical error handler simply returns
-1.

0x102 Terminate ("C) Handler

Before a process is actually terminated, GEMDOS
calls the term’iate vector. If the terminate vector
points to an RTS (the default case), the process will
be terminated. If the application does not wish to be
terminated it should do a longjump (or its equivalent)
to an appropriate handler.

Afa/R6 Nvor Atari GFMDOC

PR N

~/text/gemdos/errors Error Handling (1)
ERROR NUMBERS S
All error numbers are negative. Two ranges of errors are'
defined; BIOS errors range from -1 to -31 and GEMDOS errors
range from -32 to -127.

BIOS Error Codes

{_name number description H
i E_OK 0K (no error)]
! ERROR Error H
i EDRVNR Drive not ready !
| EUNCMD Unknown command H
t E_CRC CRC error !
! EBADRQ Bad request |
| E_SEEK) Seek error !
| EMEDIA Unknown media !
i ESECNF. Sector not found !
! EPAPER Out of paper !
i EWRITF. Write fault !
| EREADF Read fault |
! (unused) '
| EWRPRO Write on write-protected media!
| E_CHNG Media change detected :
i EUNDEV Unknown device '
| EBADSF Bad sectors on format '
{ EOTHER Insert other disk (request) H
] |
] 1

"EOTHER' is really a request from the BIOS to insert
another disk 1in drive A:. The "virtual" disk number (0 or
1) is at 6(sp). This feature is used to fake GEMDOS into
thinking that a single drive system really has two drives.

Hhih/BA TNvar Atari GFMNDNQ

’ ~/text/gemdos/errors Error Handling (2)

GEMDOS Error Codes
(numbers in parenthesis
are MSD0OS-equivalent error#s)

EDRIVE -46 (15) Invalid drive specification
ENMFIL -47 (18) No more files

name number description i
EINVFN -32 (1) Invalid function number !
EFILNF -33 (2) File not found H
EPTHNF -34 (3) Path not found |
ENHNDL -35 (4) Handle pool exhausted H
EACCDN -36 (5) Access denied i
EIHNDL -37 (6) Invalid handie |
ENSMEM -39 (8) Insufficient memory E
!
i
ERANGE -64 Range error H
EINTRN ~-65 GEMDOS internal error !
EPLFMT . ~66 Invalid executable file format)

1
1
]
]
1
1
]
1
1
1
]
]
1
]
'
! EIMBA -40 (9) Invalid memory block address
]
]
]
1
1
1
1
]
f
]
]
I
]
i

EGSBF . .. ~67 Memory block growth failure

-

LILTRE Nupr Atgri OFMDNC

\

GEMDOS FUNCTIONS BY NUMBER

0x00 Pterm0 - Terminate Process

0x01 Cconin — Read character from Standard Input
0x02 Cconout - Write Character to Standard Output
0x03 Cauxin - Read Character from Standard AUX:
0x04 Cauxout — Write Character to Standard AUX:
0x05 Cprnout - Write Character to Standard PRN:
0x06 Crawio - Raw I/0 to Standard Input/Output
0x07 Crawcin - Raw Input from Standard Input
0x08 Cnecin - Read Character from Standard Input, No Echo
0x09 Cconws — Write String to Standard Qutput
0x0A Cconrs — Read Edited String from Standard Input
0x0B Cconis - Check Status of Standard Input
0x0E Dsetdrv - Set Default Drive

0x10 Cconos - Check Status of Standard Output
0x11 Cprnos - Check Status of Standard PRN:

0x12 Cauxis - Check Status of Standard AUX: Input
0x13 Cauxos. - Check Status of Standard AUX: Output
0x19 Dgetdrv - Get Default Drive

0x1A Fsetdta —'Sét 'DTA (Disk Transfer Address)
0x20 Super - Get/Set/Inquire Supervisor Mode
0x2A Tgetdate - Get Date

0x2B Tsetdate - Set Date

0x2C Tgettime - Get Time

0x2D Tsettime - Set Time

0x2F Fgetdta - Get DTA (Disk Transfer Address)
0x30 Sversion - Get Version Number

0x31 Ptermres - Terminate and Stay Resident
0x36 Dfree - Get Drive Free Space

0x39 Dcreate - Create Directory

0x3A Ddelete - Delete Directory

0x3B Dsetpath - Set Current Directory

0x3C Fcreate - Create File

0x3D Fopen - Open File

0x3E Fclose — Close File

0x3F Fread - Read From File

0x40 Fwrite - Write To File

0x41 Fdelete -~ Delete File

0x42 Fseek - Seek File Pointer

0x43 Fattrib - Get/Set File Attributes

0x45 Fdup - Duplicate File Handle

0x46 Fforce - Force File Handle

0x47 Dgetpath - Get Current Directory

0x48 Malloc - Allocate Memory

0x49 Mfree ~ Release Memory

0x4A Mshrink - Shrink Size of Allocated Block
0x4B Pexec - Load/Execute Process

0x4C Pterm - Terminate Process

Ox4E Fsfirst - Search First

O0x4F Fsnext - Search Next

0x56 Frename ~ Rename File

0x57 Fdatime - Get/Set File Timestamp

“/text/gemndos/funcs File System Calls (

GEMDOS FUNCTIbNS BY NAME

0x03
O0x12
0x13
0x04
0x01
0x0B
0x10
0x02
0x0A
0x09
0x08
0x11
0x05
0x07
0x06
0x3g
0x3A
0x36
0x19
0x47
0x0E
0x3B
0x43
0x3E
0x3C
0x57
0x41
0x45
0x46
O0x2F
0x3D
O0x3F
0x56
0x42
0x1A
Ox4E
0x4F
0x40
0x48
0x49
O0x44A
0x4B
0x4cC
0x00
0x31
0x20
0x30
O0x2A
0x2C
0x2B
0x1D

Cauxin - Read Character from Standard AUX:
Cauxis - Check Status of Standard AUX: Input
Cauxos - Check Status of Standard AUX: Qutput
Cauxout - Write Character to Standard AUX:
Cconin - Read character from Standard Input
Cconis - Check Status of Standard Input
Cconos - Check Status of Standard Output
Cconout - Write Character to Standard Output
Cconrs ~ Read Edited String from Standard Input
Cconws — Write String to Standard Output
Cnecin - Read Character from Standard Input, No Echo
Cprnos - Check S*atus of Standard PRN:
Cprnout - Write Character to Standard PRN:
Crawcin - Raw Input from Standard Input
Crawio - Raw I/0 to Standard Input/Output
Dcreate - Create Directory

Ddelete - Delete Directory

Dfree —~ Get Drive Free Space

Dgetdrv. - Get.Default Drive

Dgetpath - Get Current Directory

Dsetdrv - Set Default Drive

Dsetpath - Set Current Directory

Fattrib - Get/Set File Attributes

Fclose — Close File

Fcreate - Create File .

Fdatime - Get/Set File Timestamp

Fdelete - Delete File

Fdup - Duplicate File Handle

Fforce - Force File Handle,

Fgetdta - Get DTA (Disk Transfer Address)
Fopen - Open File

Fread - Read From File

Frename - Rename File

Fseek - Seek File Pointer

Fsetdta - Set DTA (Disk Transfer Address)
Fsfirst - Search First

Fsnext - Search Next

Fwrite — Write To File

Malloc - Allocate Menmory

Mfree - Release Memory

Mshrink - Shrink Size of Allocated Block
Pexec - Load/Execute Process

Pterm - Terminate Process

Pterm0 - Terminate Process

Ptermres - Terminate and Stay Resident
Super - Get/Set/Inquire Supervisor Mode
Sversion - Get Version Number

Tgetdate - Get Date

Tgettime - Get Time

Tsetdate - Set Date

Tsettime - Set Time

2)

AR IR Muvaor Abtary CTMDACQ

“/text/gemdos/funcs File System Calls (3)

10x00 PtermQ - Terminate Process|
|]

1 1

void PtermQ()

Terminate this process, closing all files it
opened and releasing any memory it allocated. Return
an exit code of 0x0000 to the parent process.

10x01 Cconin - Read character from Standard Input|
]

LONG Cconin()

Read character from the standard input (handle 0). If
the standard " input device is the console, the longword re-
turned in DO contains both the ASCII and the console scan-
code:

31..24 23..16 15..8 7..0
0x00 or | scancode | -0x00 : ASCII
shift bits]| or 0x00 | ' char
[} i 1

The function keys (F1 through Fi¢, HELP, UNDO, etc.)
return the ASCII «code O0x00, with appropriate scancode
values; see the GEM/VDI manual for keyboard scancode assign-
ments. The ST BIOS 1is capable of placing the keyboard
shift-key status in bits 24..31; see the BIOS Programmer's
Guide for further details.

BUGS

Does not return any indication of end of file.

Control-C is not recognized.

There is no way to tell if standard input is a character
device or a file.

There should be some way to type all possible 256 codes fronm
the keyboard.

4/ b4 /IRA MNear Atari CFMNNQ

“/text/gendos/funcs File System Calls (4)

‘
s SRR
B R
L A

R
R

10x02 Cconout'—‘write Character to Standard Output|

1 1
A |

void Cconout(c)
WORD c:

Write the character ‘c¢' to the standard output (handie
Q). The high eight bits of “c¢' are reserved and must be¢
zero. Tabs are not expanded. x

10x03 Cauxin - Read Character from Standard AUX:
1

|
i
i
A 1

WORD Cauxin()

. :Read . character from handle 1 (normally the serial port,
AUX:). 3

This function causes RS5232 flow-control to fail; applica-
tions should use the BIOS character device calls to avoid
losing received characters.

10x04 Cauxout - Write Character to Standard AUX:

|
-

void Cauxout(c)
WORD ¢

Write “¢' to standard handle 1 (normally AUX:, the
serial port}. The high eight bits of ‘c¢' are reserved and
must be zero. Tabs are not expanded.

BUGS

This function causes RS232 flow-control to fail; appli-
cations should use the BIOS character device calls to avoid
losing transmitted characters.

h/a /86 MNuor Atari CFMDNS

~/text/gemdos/funcs File System Calls (5)

'10x05 Cprnout - Write Character to Standard PRN:
I

1

void Cprnout(c)
WORD c;

Write "¢' to handle 2 (normally PRN:, the ﬁfinter
port). The high eight bits of "c¢' are reserved and mqﬁt:be
zero. Tabs are not expanded S

10x06 Crawioc - Raw 1/0 to Standard Input/Output!
] I
i 1
LONG Crawio(w)
WORD w;

f‘If;TW;‘isinot 0x00FF, write it to the standard output.

Tabs are not expanded

‘Otherwise, if' ‘w' equals 0x00ff, read a character from

the standard input. 0x0000 is returned if no character is
available.

BUGS

Because of the "way this function is defined, “O0xff' cannot
be written to the standard ocutput with this function.

Cannot distinguish between 0x00 and the end of the file.

10x07 Crawcin - Raw Input from Standard Input!
|

1
A |

LONG Crawcin()

Read a character from the standard input (handle 0).
If the input device is CON: no control character processing
is done and the character is not echoed.

BUGS
No end of file indication.

PN TQA Nraor Atari OFMRNQ

~/text/gendos/funcs File System Calls (6)

P

10x08 Cnecin — Read Character from Standard Input, No Echo| -
]

!
1 1

LONG Cnecin()

Read character from the standard input. If the: input
device is CON:, no echoing is done, although control charac-
ters are interpreted. : '

10X09 Cconws - Write String to Standard Output)
)]
1 i
void Cconws(str)
char *str;

Write a null-terminated string. starting at ‘str'., to
the standard:output.

{0x0A Cconrs - Read Edited String from Standard Input)
|]
. I
void Cconrs(buf)
char *buf;

Read string from the standard input, handling common
line editing characters. The editing characters are:

Char Function
{return>, °J End the line
“H, <rub> Kill last character
“U, "X Kill entire line
"R Retype line
“C Terminate the process

b ——————f

The first character of “buf' indicates the size of the
data part of the ©buffer. On return, the second byte of
*buf' is set to the number of characters read, and locations
"buf+2' through 'buf+2+buf[1]' contain the characters.

The string is not guaranteed to be null-terminated.

BUGS
Hangs on end-of-file.

L/4/86 Dver Atari GEMDOS

~/text/semdos/funcs File System Calls (7))

10x0B Cconis - Check Status of Standard Input|
3 1
1 L

WORD Cconis()

Return OxFFFF if a character is available on the stan-
dard input, 0x0000 otherwise.

10x0E Dsetdrv - Set Default Drive]
1]
LONG Dsetdrv(drv)
WORD drv;

Set the default drive to the zero-based drive number
“drv' (ranging from 0 to 15, A: to P:). Return a bit-string
of known‘driyﬁg((bit 0 = A, bit 1 = B, etc.)

A "known drive" is one on which a directory has been

used.

BUGS
GEMDOS only supports 16 drives (bits 0 through 15).
Future systems will support 32 drives.

10x10 Cconos - Check Status of btandard Qutput|
[} 3
- 1

WORD Cconos()

Return OxFFFF if the console 1is ready to receive a
character. Return 0x0000 if the console is NOT ready.

BUGS
CON: and files are always ready, so why check?

10x11 Cprnos -~ Check Status of Standard PRN:
1

WORD Cprnos ()

Return OxFFFF if PRN: is ready to receive a character,
0x0000 if it isn't.

OA/THT/RA Nvear Atari AFMINS

, ~“/text/gendos/funcs File System Calls (8)

10x12 Cauxis - Check Status of Standard AUX: Input]
1 I

WORD Cauxis()

Return OxXFFFF if a character is available on AUX: (han-
dle 1), 0x0000 if not.

10x13 Cauxos - Check Status of Standard AUX: OQutput)
1 |

| 1

WORD Cauxos{)

Return OXFFFF if AUX: (standard handle 1) is ready to
accept a character, 0x0000 if not.

10x19 Dgetdrv - Get Default Drive|
] |

’ WORD Dgetdrv ()

Return the current drive number, 0 through 15.

{0x1A Fsetdta - Set DTA (Disk Transfer Address)!
1 1
[] 1
void Fsetdta(addr)
char *addr;

Set the DTA to “addr'. (The DTA is used only by the
functions Fsfirst() and Fsnext().)

4/4/86 Dver Atari GEMDOS

“/text/semd@s/fuﬁES. File System Calls (9)

SR

10x20 Super:— Get/Set/Inquire Supervisor Mode|
]]
A i
LONG Super(stack)
WORD *stack;

If “stack' is -1L (OxFFFFFFFF) return 0x0000
processor 1is in user mode, or 0x0001 if the processor:
supervisor mode. '

S

Otherwise, if the processor is in user mode, return
with the processor switched to supervisor mode. If “stack'
is NULL (0x00000000) then the supervisor stack will be the
same as the user stack before the call. Otherwise the su-
pervisor stack will be set to “stack'.

If the processor is in supervisor mode, return with the
processor: switched back to user mode. “stack' should be the
value of the supervisor stack that was returned by the first
call to the function.

NOTE" ~ . - |
‘ The original supervisor stack value MUST be re-
stored before the process terminates. Failure to do so
will result in a system crash.

{0x2A Tgetdate - Get Date!
1

WORD Tgetdate()

Return the current date, in DOS format:
15 9 8 5 4 0

nonth
1..12

year since 1980
0..119

day

R]
D ——

RETURNS
Bits:
0..4 contain the day, ranging 1.,.31.
5..8 contain the month ranging 1..12.
9..15 contain the year (since 1980) ranging 0..119,

&/4 /86 Mver Atari GEMDOS

? ~/text/gemdos/funcs File System Calls (10)

l0x2B Tsetdate ~- Set Date!

1 []

1 1
WORD Tsetdate(date)
WORD date;

Set the current date to “date', which is in the férmat
described in Tgetdate(). N

RETURNS
0 on valid date;
ERROR on an obviously screwed-up date.

BUGS
GEMDOS is not picky about date parameters; for in-
stance, it likes Feb 31st

GEMDOS does NOT let the BIOS know that the date has
been changed.

1
1 1

WORD Tgettime()

’ '10x2C Tgettime - Get Time|
]

Return the current time in DOS format:
15 11 10 5 4 0

second
0..29

minute
0..59

! hour

! 0..23
]
]

]

RETURNS
Bits 0..4 contain the second divided by 2, 0..29.
Bits 5..10 contain the minute, 0..59.
Bits 11..15 contain the hour, 0..23.

hla/72A Nyvar Atardi CEMDING

~“/text/gemdos/funcs File System Calls (11)

'0x2D Tsettime - Set Time!

1)
WORD Tsettime(time)
WORD time;

Set the current time to "time', which is in the format
described in Tgettime(). "

RETURNS
0 if GEMDOS liked the time;
ERROR if it didn't,

BUGS
GEMDOS does NOT let the BIOS know that the time has
been changed.

[0x2F Fgetdta - Get DTA (Disk Transfer Address))
]]

1 e

LONG Fgetdta()

Returns the value of the current DTA, a pointer used by
the functions Fsfirst() and Fsnext ().

'0x30 Sversion - Get Version Number)
1]

1 1

WORD Sversion()

Return GEMDOS's version number (in byte-reversed for-
mat). The high byte contains the minor version number, the
low byte contains the major version number.

NOTE
The 5/29/85 (first disk-based) and the 11/20/85 (first
ROM-based) release of GEMDOS had the version number 0x1300.

GEMDOS version numbers and TOS versions numbers are not one

and the same. See the ST BIOS REFERENCE MANUAL for about
TOS version numbers.

a’a/86 MNver Atari GFEMDAS

~/text/gemdos/funcs File System Calls (12)

10x31 Ptermres - Terminate and Stay Resident|
]

1
] 1

void Ptermres(keepcnt, retcode)
LONG keepcnt;
WORD retcode;

Terminate the current process, keeping some of it in
memory. ‘keepcnt' is the amount of the memory belonging to
the process to keep, including and starting at the 256-byte
basepage. ‘retcode' is the exit code that is returned to the
parent process.

Memory the process has allocated (in addition to the
TPA) will NOT be released.

Ptermres() will never return.

BUGS -
Open files are closed as part of termination.

!0x36 Dfree - Get Drive Free Spacel
§

void Dfree()
LONG *buf;
WORD driveno;

Get disk allocation information about the drive
*driveno' and store it into four longwords starting at

“buf':
buf + 0} # of free clusters H
: |
buf + 4! total # of clusters |
| |
] 1
buf + 8] sector size (in bytes) |
| |
] 1
buf + 12! cluster size (in sectors)|
] 1
¥ 1

BUGS

Incredibly slow (5-10 seconds) on a hard disk.

AAHh /1A Muvar Atari OCEMNTINGQ

~/text/gendos/funcs File System Calls (13)

10x39 Dcreate - Create Directory|
[]]
L i
WORD Dcreate(pathname)
char *pathnane;

Create a directory. *pathname' points to a:fnull—
terminated string specifying the pathname of the new direc-
tory.

RETURNS

0 on success;
ERROR or appropriate error number on failure,.

10x3A Ddelete - Delete Directory|
i .]

i i

WORD Ddelete(pathname)
char *pathname;

Delete a directory (it must be empty, except for the
special directories "." and ".."). “pathname' points to a

null-terminated string specifying the pathname of the direc-
tory to remove.

RETURNS
0 on success;
ERROR or appropriate error number on failure.

‘0x3B Dsetpath - Set Current Directory)
| 1

I |

WORD Dsetpath(path)
char *path;

Set the current to “path', a null-terminated string.
If the path begins with a drive letter and a colon, set the
current directory on the specified drive.

A current directory is kept for each drive in the sys-
tem.

RETURNS
0 for success;
ERROR or an appropriate error number.

Ll /RA MNMyvor Abari OFMDING

"/text/gem@os/f@égq File System Calls {(14)

'!0x3C Fcreate - Create File!
I

WORD Fcreate(fname, attribs)
char *fnane;
WORD attribs;

Create a file “fname' and return a write-only 'ndn~;
standard handle to it. The attribute word is stored 1nrthe-
directory entry; its bit assignments are:

mask description H
0x01' file set to read-only)
i
]
]

0x02) file hidden from directory search
0x04! file set to "system"
0x08) file contains 11-byte volume label]

] 1
1 —

RETURNS e
a posit1Ve nuaber, a handle, or:
ERROR or 'an appropriate error number.

BUGS

Useless feature department: If the ‘read-only' ©bit is
set, a write-only handle is returned, and the handle can't
be written to. -

Ideally, only one volume label is permitted in the
volume's root directory. GEMDOS doesn't enforce this,
though, which could cause confusion.

/76784 MNvar Atari OCEMNIOR

~/text/gemdos/funcs File System Calls (15)

[oy O NI

I BT PO (N
ARV Livos
) Ly

!0x3D Fopen - Open File!
1 1

WORD Fopen{(fname, mode)
char *fname;
WORD mode;

Open the “fname' according to “mode', and return. a
non-standard handle to it. The open mode can be:

| _mode | description |
' 0! read only :
! 1] write only H
: 2! read or write|
f 1]
§ 1 i

RETURNS
~a positive number, a handle, or:
~-a'negative error number.

10x3E Fclose - Close File]
1

i
1 .

WORD Fclose(handle)
WORD handle; ~

Close the file associated with the handle.

RETURNS
0 on success;
ERROR or an appropriate error number.

|10x3F Fread - Read From File
]

1
[}
|
1 1

LONG Fread{(handle, count, buffer)
WORD handle;

LONG count;

char *buffer;

Read from a file. From the file referred to by ‘han-
dle' read “count' bytes into memory starting at “buffer'.

RETURNS
the number of bytes actually read, or:
0 on end of file, or:
a negative error number.

414/86 Dver Atari GEMDOS

~/text/semdos/funqs File System Calls (16)

10x40 Fwrite - Write To File|
i]
| 1
LONG Fwrite(handle, count, buffer)
WORD handle:
LONG count;
char *buffer;

Write to a file. Write ‘count' bytes from megory,
starting at ‘buffer', to the file referred to by “handle'.

RETURNS
the number of bytes actually written, or:
a negative error number.

10x41 Fdelete - Delete File]
| . 1

1 A

WORD'?delete(fname)
char *fname;

Delete the file “fname’'.
RETURNS

0, success, or:
a negative error number.

4/4/86 Dver Atari GEMDOS

~/text/gemdos/funcs

File System Calls

l0x42 Fseek - Seek File Pointer|
1 t

1

LONG
LONG
WORD
WORD

with
move

Fseek(offset, handle, seekmode)

offset;
handle;

seekmode:

Set the current position within the file
“offset' is a signed number; positive values
toward the end of the file, and negative values mnove
toward its beginning. “seekmode' can be:

*handle’

(17)

associated

seekmnode

Moves “offset' bytes

o
1

2

fo o —— -

from beginning of file
relative to current position
from end of file

L.

RETURNS " ..

The cﬁfreni,

absolute position in the file.

10x43 Fattrib - Get/Set File Attributes!
1 I

Fattrib(fname, wflag, attribs)

WORD
char *fnane; .
WORD wflag;
WORD attribs;
Get or set a file's attribute bits. “fname'’
a null-terminated pathname. If “wflag' is 1, set

attributes from

BUGS

*attribs’' (no return value}. If
0, return the file's attributes.

The attribute bits are:

peints to
the file's
‘wflag' is

mask

description

0x01 |
0x02!
0x04|
0x08!
0x10}
0x20!}

]

file
file
file
file
file
file

is read-only

hidden from directory search
set to "system"

contains 11-byte volume label
is a subdirectory

has been written to and closed.

O B

The "archive" bit, 0x20, doesn't seem to work as adver-
tised.

/4786 Niver

Atari

CEMNDNG

~“/text/gemdos/funcs File System Calls {(18)

10x45 Fdup - Duplicate File Handle|
]

WORD Fdup(handle)
WORD handle;

The handle “handle' must be a standard handle (61;5):
Fdup() returns a non-standard handle (greater than or equal
to 6) that refers to the same file.

RETURNS
a handle, or:
EIHNDL - n.t a standard handle
ENHNDL - no more standard handles available

10x46 Fforce - Fordé‘File Handle|
1

1

Fforce (stdh, nonstdh)

" WORD stdh;

WORD nonstdh;

Force the standard handle *stdh' to point to the same
file or device as the non-standard handle “nonstdh.’

RETURNS
0K, or:
EIHNDL - 1nvalid handle

10x47 Dgetpath - Get Current Directory|
1 1

1

void Dgetpath(buf, driveno)
char *buf;
WORD driveno;

The current directory for the specified drive ‘drivenq'
is copied into “buf'. The drive number is l1-based: 0 speci-
fies the default drive. 1 specifies A:, and so on.

BUGS

The maximum size of a pathname is not 1limited by the
system; it is up to the application to provide enough buffer
space. 128 bytes should be enough for 8 or 9 levels of sub-
directories.

4/4/86 Dver Atari GEMDOS

~/text/gemdqs_/fungg' File System Calls (19)

{ox48 Malloc - Allocate Memory!
] i
(1 L

LONG Malloc (amount)
LONG amount;

If ‘amount' is —-1L ($FFFFFFFF) return the size of the | v '
largest free block in the system. RS i ‘

Otherwise, if “amount' is not ~1L, attempt to alilocate
“amount' bytes for the current process. Return a pointer to
the beginning of the block or NULL if there is no free block
large enough to meet the request.

BUGS
WARNING

A process may not have, at any time, more than 20
blocks of Malloc()'d memory. Exceeding this limit may crip-
ple GEMDOS. . {It is OK to do many Malloc() calls if they are
followed by .matching Mfree() calls; the limit of 20 is to
the number of fragments a process may generate.]

10x49 Mfree - Release Memory|
i]
1 1
‘ WORD Mfree(saddr)

LONG saddr;:

Free the block of memory starting at ‘saddr'; the block
must be one that was returned by Malloc().

RETURNS

0 if the release was successful, or:
ERROR or an appropriate error number.

hi1h/8A Nver Atari GEMDNS

~/text/gemdos/funcs File System Calls (20)

10x4A Mshrink - Shrink Size of Allocated Block|
] |
I 1

WORD Mshrink (0, block, newsiz)

(WORD) O;

LONG block;

LONG newsiz;

Shrink the size of an allocated block of mﬁﬁ@iy;
*block' points to a process basepage or a piece of memory
allocated by Malloc(), “newsiz' 1is the new size of the
block.

.The first argument must be a WORD of zero.

RETURNS .
0 if the size adjustment was successful, or:
EIMBA '~ invalid memory block address
. EGSBF ='setblock failure due to growth restrictions

BUGS
A block can only be shrunk; “newsiz' must be less- than
or equal to the current block size.

4a/4/86 NDvar Atarts GFMNDNS

“/text/gemdos/funcs File System Calls (21)

10x4B Pexec - Load/Execute Process|

WORD Pexec(mode, piril, ptrz, ptr3)
WORD mode;
char *ptri1;
char *ptr2;
char *ptr3;:

This function wears several hats, according to the flag
“mode':

I

[] |
1 |
H mode ptri ptr2 ptr3 H
' 0 = load & go| file | command | enviroment]
: ! to exec | tail | string |
! 1 t | f
] 1 L 1 3
| 3= load, no goj file | command | enviroment|
R N ! to load | tail | string |
b e et 1 H 1 i
! 4 = just go) ©basepage! (unused)) (unused) !
! ‘ | address | 1 1
' L :) 1
i 5 = create| (unused)]| command | enviroment]
' basepage| ! tail | string |
1 1]] I
1 A 1 1 1

The file to load or exec, “ptrl', and the command tail,
‘ptr2', are null-terminated pathnames. The environment
string, “ptr3', is either NULL (OL), or a pointer to a
string structure of the form:

"stringt\o"

"string2\0"

... ete. ...

"stringN\O0"
H\O 11}

The enviroment string is any number of null-terminated
strings, with an enpty string (a single null) at the end.
If *ptr3' is NULL, then the process inherits a copy of the
parent's enviroment string.

Load-and-go (mode 0) will load the specified file, set-
up its ©basepage, and execute it. Pexec()'s return value
will be the child process's exit code (see PtermC() and
Pterm(}).

Load-nogo will 1load the specified file, setup Iits
basepage, and return a pointer to the basepage; the process
is not executed.

Just-go is passed a pointer to a basepage. The process

L/ /RA Nver Atari GEMDING

by

“/text/gemdos/funcs File System Calls (22)

starts exeéﬁfins at the base of its text segment, as speci-
fied in the basepage. ‘

Create-basepage will allocate the largest free block of

memory and create most of a basepage for it. (Some entries,
most significantly the text/data/bss size and base values,
are NOT setup -- the caller is responsible for maintaining -
them). .

A child process inherits the parent's standard file
descriptors; effectively doing an Fdup() and an Fforce()
call on handles 0 through 5.

Since system resources are allocated when a basepage is
created, the spawned process MUST be terminated in order to
release them. This is especially important when using over-
lays; see the [Pexec cookbook] for details on use of Pex-

ec().’

10x4C Pterm - Terminate Process)
i]

void Pterm(retcode)
WORD retcode;

Terminate the current process, closing all open files
and releasing any allocated memory. Return “retcode' to the
parent process.

n'’h/rA Nvpor Atart ATPMNIINC

’ ~/text/gemdos/funcs File System Calls (23)

i
4

10X4E Fsfirst - Search First)
1

WORD Fsfirst(fspec, attribs)
char *fspec;
WORD attribs;:

Search for the first occurrence of the file “fspec'.
The file specification may contain wildcards (*?' and “*')
in the simple filename, but not in the path specification.
*attrid' controls which files are returned by Fsfirst; its
format is described in the documentation on “Fattrib()'.

If ‘attrib' is zero, then only normal files are
searched for (no volume labels, hidden files, subdirectories
or system files are returned). If “attrib' is set for hid-
den or system files, they are included in the search set.
If “attrib' is set for volume labels, only volume labels are
returned. o

When a file is found, a 44-byte structure is written to
the location pointed to by the DTA:

30f 14 bytes file name + extension
1

1

! affset size - contents |
| E
| i
H 0-20] ! (reserved) !
| 21 Dbyte ! file attribute bits |
! 22! word | time stamp :
! 24! word ! date stamp :
H 26} long I file size I
| i |
i i 1

The filename and extension is null-terminated, and con-
tains no spaces.

RETURNS
0, if a file was found, or:
EFILNF - file not found (no matches), or:
an appropriate error number.

IR TAE Thiee o Ab el evMTINe

"/text/semdos/fﬁn;s“' File System Calls (24)

Yok
AP

10x4F Fsnext - Search Next)
]]

WORD Fsnext()

Search for the next occurrence of a file. (The ‘first -
occurrence should be searched for with Fsfirst()). Bytes
0-20 of the DTA wust remain unmodified from the Fsfirst(}) -
call or the most recent Fsnext{) call. C e

e
T

{
A

RETURNS
0 if a file was found, or:
ENMFIL - no more files were found, or:
an appropriate error number.

10x56 Ffénﬁme ~ Renane File]
t : : ¥
¥

L i
WORD Frepame(0, oldname, newname)
{WORD) O;. -

char *oldname;

char *newname;

Rename a file from ‘oldname' to ‘newname'. The desti-
nation file must not exist. The new file may be in another
directory.

The first argument must be a zero WORD.

RETURNS
EACCDN - destination file already exists;
EPTHNF -~ “oldname' not found;
ENSAME - ‘“newname' not on save drive;
or an appropriate error.

/4784 Nvar Atari GEMNDNS

~/text/ge_mdos/funcs File System Calls (25)

10x57 Pdatime - Get/Set File Timestamp|
]]

1

void Fdatime(handle, timeptr, wflag)

WORD handle;

LONG timeptr; ST
WORD wflag; e

FivOE
The file is reterred to by “handle'. ‘timeptr' points
to two words containing the DOS formatted timestamp (the
time word is first, the date word is second). If “wflag' is
1, set the file's timestamp from “timeptr', otherwise read
the file's timestamp into “timeptr'.

474786 Tver Atari GFEMDOS

b g

”/text/gemdps/prg Executable Files (1)

EXECUTABLE FILES -

An executable file consists of a header followed b&-

images for the text and data segments, zero or more symbol
table entries, a fixup offset, and =zero or more fixup
records:

Executable File Parts

file header

text segment

symbols

i
1
]
A
i
]
]
1
]
1
:
data segment :
]
]
[]
]
1
]
]
L
fixup information]
]

1

e i e -

The file header contains a "magic" number (a signature
to indicate that it is an executable file) and several long-

" words containing size information:

Executable File Header

| 0ffset] Size] Description \
I 0x00 | word! O0x601A (magic number) |
! 0x02 | long} Size of text segment i
| 0x06 | 1long| Size of data segment !
! 0x0A | 1long, Size of BSS segment '
| 0x0OE | 1long} Size of symbol table |
| 0x12 | 1long| (reserved) d
! 0x16 | 1long! (reserved) '
| 0x1A | 1long| (reserved) '
I OX1E | (start of text segment))
| | t
1 L 1

1
1
1
1

The text and data segment images immediately follow the
header. The symbol table, if there is one, follows the data
segment.

GEMDOS will "fix up" a longword in the text or data
segments by adding the base of the text segment to the value
already in the longword. The fixup 1list specifies which
longwords need to be relocated. The first item in the fixup
list is a longword specifying the offset of the first fixup;

4/4/86 Dver Atari GEMDOS

~/text/gemdos/prg - Executable Files (2)

the lonsﬁﬁf& is NULL (OL) if there are no fixups. Single;.

bytes following the longword specify offsets to more fixupsii .

The longwords must start on word boundaries, or the system
will crash. ’

Relocation Bytes

: Byte : Description !
10 ! end of relocation information !
S | | advance 254 bytes, get next byte]
! 2, 4, .. 254} fixup longword at location pointer '
! 3, 5, .. 255! (o071 numbers, reserved for future use)|
1] 1
] : 1

a/4 /8 Nuver Atari GFMNNS

9 ~/text/gemdos/prg Executable Files (3)

SYMBOIL TABLE
The symbol table consists of symbol-table entries, for-
matted as:

Symbol Table Entry

8 bytes
symbol name

"ORD symbol type

LONG symbol value

K'_\
{{{explain @bqut syﬁbol types here. It's really pretty sim-

ple...>>>
Values for Symbol Types

g

0x0100{
|

' Type ! Value }
| defined I 0x8000}
! equated 1 0x4000/]
! global ! 0x2000]
| equated register I 0x1000]
| external reference ! 0x0800}
! data based relocatable] 0x0400;
! text based relocatable] 0x0200]
| BSS based relocatable |

] I

] 1

474786 Nver Atari GFMDOS

~/text/gemq;)_s/diskstruct Volume Structure (1)

VOLUME QBGQHIZ&TION P
" GEMDOS uses the first few sectors of a disk to 1nd1caté9

where files are stored. A volume usually contains five

parts; an optional boot sector, two identical FAT tables, a
root directory, and a cluster area. -

When GEMDOS first accesses a drive (or accesses ofl
after a media change), it makes a “GETBPB' (Get BIOS Paramge
ter Block) BIOS call to determine how big these areas are
and where they are stored on the disk. GETBPB returns 4
pointer to a nine-word structure. From this structure, GEM-
DOS can puzzle out where the various parts of the file sys-
tem are.

BI0OS Parameter Block (BPB)

ngmg«'“!value{- function
recsiz} 51271 physical sector size in bytes

\ !
| P |
! c151z‘f\2§'fj} cluster size in sectors '
H c1$1zb'f 1024”! cluster size in bytes !
! rdlen!: . ! root directory length in sectors]
! fsiz! ! FAT size, in sectors !
t fatrec| ! sector# of 1st sector of 2nd FAT]
| datrec| | sector# of 1st data sector '
! numel} | number .of data clusters on disk |
) | flags |
! H H

bflags|
i

RECSIZ indicates the number of bytes per physi-
cal sector; this must be 512 with the current GEM-
DOS. CLSIZ indicates the number of sectors in a
cluster; this mnust be 2 in the current GEMDOS.
CLSIZB is the number of bytes in a cluster, which
nust be 1024,

RDLEN is the size of the root directory, in
sectors. A directory entry uses 32 bytes, so the
number of root files available is RDLEN * 512 / 32.

FSI1Z is the size of each FAT in sectors. FA-
TREC is the starting sector number of the first sec-
tor of the /second/ FAT.

DATREC is the starting sector# of the first
cluster. NUMCL 1is the number of clusters on the
device.

BFLAGS was supposed to be a bit-vector of
flags. Currently only bit 0 is being used; when set
it indicates that 16-bit FAT entries (instead of
12-bit ones) are to be used.

4/4/86 Dver Atari GEMDOS

9 "'/text/gemdos/diskstruct Volume Structure (2)

If there are boot sectors, they occupy logical sectors
0 through FATREC - FSIZ - 1. The second FAT starts at
FATREC, and the first FAT starts at FATREC - FSIZ. The root
directory starts at FATREC + FSIZ, and the first cluster
starts at DATREC. The cluster region is where the data for,
all files on the volume is kept. S

DIRECTORY ENTRIES

A directory entry contains a filename, some flags, the
file's creation time and date, the file's size, and the
file's starting cluster number. The entry itself is a 32-
byte structure ‘that looks like:

Directory Entry

B-character
primary name

j-character
extension

Attribute byte

{10 bytes unused)

WORD creation time

WORD creation date

WORD starting cluster#

LONG file length

" T o b ok . A i i o e o ol i ks
b e i b e e o e i i e e e s e e =

All WORDS and LONGS in the directory entry are in 8086
"byte reversed" format.

When a file is deleted, the first byte of the name
field is set to Oxe5.

O /lH /%6 Nvar Atari OCFEMANSQ

“/text/gemdos/diskstruct Volume Structure (3)

Sy

A gubdirectbr}‘ is a file that contains directory ..
entries. The first two entries in a subdirectory are always.

1] " "
.

the special directories and "..

FAT ENTRIES

The File Allocation Table (FAT) is wused to allocate
clusters and to 1link «clusters together into files. FAT
entries may be 12 or 16 bits. A file's directory eantry con-
tains the number of the first cluster in the file. Each
cluster's associated FAT entry contains the number of the
next cluster in the file, or a number that indicates end-
of-file. -~ " .

12-bit FAT Entries

value meaning
i

1
0x000! free cluster
0x001} (impossible)
0x002 - Oxfef] next cluster number
0xff0 - 0xff?! ©bad sector
0xff8 — Oxfff|, end of file
1

P-a-—---—_-_-———

16-bit FAT Entries

value meaning

0x0000} free cluster
0x0001; (impossible)

b v s e e o e o [-

0x0002 - 0Ox7fff] next cluster number
0x8000 - Oxffef! (impossible)

Oxfffo - 0xfff7! ©bad sector

Oxfffg8 - Oxffffi{ end of file

For a 12-bit FAT, obtain the next cluster in the file,
NCL, given the current cluster number, CL, by:

[1] (Multiply by 1.5)
NCL = CL + CL / 2

[2] Set NCL to the 16-bit word in the FAT indexed by NCL
(it nust be byte-swapped to 68000 format as well.)
The word might not be on a 68000 word boundary.

[3] (Extract the correct 12 bits.)
If CL is odd, set NCL = NCL >> 4.

AfL 788 Mvar Atari REFMNDNQ

9 "/text/gemdqs/diskstruct Volume Structure { 4)

[4] (Mask off incorrect bits.)
Set NCL = NCL & OxOFFF.

[5] (Interpret the result.)
If NCL is OxOFF8 or higher, then CL was the last
cluster in the file. If NCL is zero or in the range
0xOFF0 to OxOFF7 then there is a file system problem.
Otherwise, NCL is the number of the next cluster in
the file. '

For a 16-bit FAT, obtain the next cluster in the file,
NCL, given the current ciuster number, CL, by:

1] Set NCL to the 16~bit word in the FAT indexed by CL.
The word must “e byte-swapped into 68000 format.

[2] If NCL is 0xfff8 or higher, then CL was the last
cluster in the file. If NCL is5 0 or in the range
0x8000 to Oxfff7? then there is a file system problem.
Otherwise, NCL is the number of the next cluster in
the file Lt ‘

X .‘ th ':’..“‘

To convert fm m a cluster number, CL, to a logical sec-
tor number, LSN:' '
[1] (Adjust: for reserved FAT entr1es)
LSN = CL - 2
[2] Multiply LSN by the number of sectors per cluster
(CLS1Z).
[3] Add the logical sector# of the first cluster to LSN

(DATREC) .

&’ﬂ/gﬁ Nvar &"21"“ CF‘MH(\R‘\

Atari-ST RoundTable
Category 4, Topic 39

Message 148 Sun May 23, 1993 s
A.FASOLDT [Al Fasoldt] at 11:01 EDT .

Daniel, e g;‘l

The ICD CPX shows . You the codes; it should have come with your ICD software.
and it may be available here, too. g L

But here is a listing, for standard SCSI drives. Some do not use this
convention:

$01: No index/sector signal

$02: No seek completion

$03: Write fault

$04: Drive not ready

$05: Drive not selected

$06: No track Zero found

$10: ID or CRC error

$11: Unrecovered read ..ror

$12: No address mark found in ID field
$13: No address mark found in data field
$14: No record found

$15: Seek pos1t10n1ng error

$17: Recovery. ofaread error using controller or drive "read" retries
$18: Recovery of . read error using controller or drive error-correction code
$19: Defect: list . error

$1A: Parameter overrun

$1C: Primary defect list not found

$1E: Recovery of IC with controller or drive error—correction code
$20: Invalid command

$21: Illegal block adress

$22 Illegal function for the type of device

$24: Illegal field

$25: Invalid logical unit number (LUN)

$26: Invalid field in parameter list

$27: Write-protected

$29: Reset of some kind occurred

$2A: Mode select parameters changed

$30: Incompatible cartridge in removable-medium drive

$31: Medium format corrupted

$32: No spare sector available to replace defective sector

$40: Failure in RAM

$44: Internal controller failure of any kind

$45: Select/reset failure

$46: Unsuccessful soft reset

$49: Illegal or inappropriate message

Al

J

RENTANTRVENT TR TV CIPOURTARVINT U SEAPEVI T O PR T - PR PRI TSR SN 7 41 LTIV G T 2 8

evsnvmmmu NEVERNANTERTD K"WTOS ERROR NUMBESS: .

sabysh sl fmuY

O b nhiL 1 :
The GEM don which displuys "msm&u docs not 0 the alert b 1 n gnt lﬂjat‘}.\f ; N ot
returned by GEMDOS or BIOS. Thmemmnvaluesmnegaﬁvaﬂlmbas(eg.mos ﬁgk; Wd
program load format™). Negative GEMDOS cmror retums are translated to MS-DOS error nm:nbm'. for the
form_etror() alert bax you soe. BIOS atrors Yesilthr ! € ritical E:iu" alert, which gives you a ch&lwﬁo*rct!‘yﬂic. \

disk access that caused the emor75 Aaib oy souds sagel BT
Anih itk a0 E-— [i IHE
Rot those of you with a funiture fetish, hete's 2 table: o i e &
wenty o Aedly oot no skl ¥
GEMDOS | M8-DOS v v
Baror description o cmor Aldit toxt (TOS 14 and lates) it toif st 2
othW
Invalid function # -32 1 T0§ Error #1. u: ﬂ, o]
File not found -33 2 Thid application cannot ourfand menod)
Path not found 34 3 fird¥ the folder or flle st i et bt
Nomoreﬂ.!”i ieore ity ol A 'ﬁ%: i Aeds B yq;ijustuiedtoaccess. ERTNA b X
T{y Wﬁ%@% o ' ";n Qumma ?’?llir;uilqm; 1113'1’ 'Pﬂi“ﬂmﬁkh:w 'oa;‘!?r " uibald
- Y 20i R Auily roenl o iq docament that you donot need. Anil 1.1 it
Accessdended ' - 1 -36 5 An itcm with this name already exists in the
EE directory, or this item is sct to Read Only status.
Invalid handle -37 6 TOS Error #6.
Insufficient memory -39 8 Thete is not enough memory in your computet for
Invalid memory block addr.) 9 the application you just tried to run.
‘Invalid drive 13 The drive you specified does not exisi.

Not same drive (on rename) 17 TOS Brror #17.

40
-46
48
Seek out of range -64 nfa TOS Error #33.
Intemal error -65 nfa TOS Error #34.

Invaiid prg load format -66 nja (the infamous) TOS Error #35.
Setblock failed -67 nja TOS Error #36.

Note that some MS-DOS etror codes do not have equivalent GEMDOS crrors, and satne GEMDOS etror codes do
not exist in MS-DOS.

TOS Error #35, probably the most comsnon error alert that is not self explanatory, happens when a program you are
trying to run has somehow been corrupted. What it means is that TOS can not find scime magic numbers it expects
to find cither at the beginning or at the end of the program filc. This error is usually attributable to operator etror
(as in trying to execute an archive or text file as a program), or to bit rot.

Errnr ﬂascriptinn

OK (no BYrOr).ceeeesonas
Fundamental BrrOfceseenn
Drive not ready.........
Unknown command.........
CRC ervraor..... s hamasaans
Bad reguest..... s e s
Seek error...c.a.- P
Unknown media......cuvasa
Sector not found..... .
NO paper.ecscersncaacancns
Write fault.. .. veenen
Read fault.....iceesnenn
Genaral error. . cceeeueen
Write protect...cccvacnn
Media change.....vvave-s
Unknown device..... e
Bad sectors on Format...

(.d Function number.
not found..........
not FOoUNO.e s t s anee=a

_No' Hardles left.........

Access denied.....ceen.n
Invalid handle...c.aa...
Insufficient memory.....

GEM Ervror Messsages

Error code
—=::‘=S==I=="'====================g============

Invalid memory block addressS.....

Invalid drive specified.
No more fFiles......uaeen

s u s = o= * a .

s w e s oxwnown

GEM

.
'Y

-
L3

NONTAPUN-O

-
o

Range error..icuieeeracnncsscncssana &4
Internal BrroOF..cuesusecesaannenanas 63
Invalid program load format......

GEM BOMB Messages
TSI Number
-Description of bombs
=='..;=$================$====================
Reset: Initial PC2...ccceeivenoncnas 1
Bus Error..eeece.ce.. esesmsesnanrnans2
Address Error....... cer s s e R
Illegal Instruction....i.ceeecens .4
Zero Divide....... fa s e e s e a e >
CHK Instruction...-....... e m s .6
TRAPV Instruction.ceeeaees 4
Privilege Violation...eeoereoeeannan 8
TraCBessersnns e n vt e n et a e T
Line 1010 Emulator.ccecserenceacans 10

Line 1111 Emulator.....cevvecanena.ll
funassigned, reservedl..........12-13
Format ErvyOr.. e ceceeeseanovesnsnenn 14
Uninitialized [nterrupt Vector.....1lD
funassigned, reservedl..........16-23

Spurious Interrupt......c... B
Level 1 Interrdpt dAutovector....... 2

' 2 Interrupt Autovector.......26
3 Interrupt Autovector.......2Z27

4 Interrupt Autovector.......zB8

5 Interrupt Autovector....... 29

‘ & Interrupt Autovector....... 30
Level 7 Interrupt Autovector....... 31

Trap Instruction Vectors........32-47

funassigned, reservedl........ L4B8-63

User Interrupt Vectors.........64-235

4

File: F:\UNARC\DESK_INF\NEWDESK.ASC Page 1
The Desktop Information File

A—— S—————— S————=r— —
- ————

by Barton M. Bresnik
GEnie: b.bresnik
Internet: b.bresnik@genie.geis,con

Copyright Information:

This article may be freely copied by any means, provided that it is
copied in its entirety, with all information and warnings intact.

Originally, Joe Heroux had suggested that a review of "Tera Desktop” by
Wout Klarens of the Netherlands would be useful fare for the North Attleboro
(Massachusetts) Atari C-—puter Club newsletter. "“Teradesk" is a superb
replacement for the standard TOS desktop, far superior to versions of TOS
before 2.0x (actually, it is quite similar in use to the latest official
Atari desktop, 4.04). It includes such niceties as dragging a filename to
the desktop, where it becomes an icon; double-clicking on the icon activates
the file. ' Options may be saved with the DESKTOP.INF file... Whereby hangs a
tale. I've been;doing a bit of manipulation of the NEWDESK.INF file, and
thought : perhaps & béginners' tutorial on these .INF files might be helpful.
Anyway, the November, 1993 issue of "Current Notes" has a review of
“Teradesk" by Henry K. van Eyken which goes into greater detail.

When you first turn on an Atari ST-series computer, where does the
computer find the information on your desired boot-up screen resolution, the
location of the drive and trash icons, the type of printer connected and so
forth? This and other data is stored in the DESKTOP.INF file on older
computers, or NEWDESK.INF in later versions of TOS (hereafter called the
JINF file). This file must normally be in the root-directory of the disk
from which you boot, whether floppy.drive A or hard drive C (not in a
folder). You may have different .INF files on different disks, or even load
a new .INF file from the TOS 4.04 desktop, allowing different setups.

Before you play with the .INF file, however, >>> make a backup copy of it
and keep it in a safe place! <<< It is possible to foul up the .INF file to
prevent bootup at all. With newer versions of T0S, holding [Control] during
bootup will inhibit reading this file, but older versions may call for
booting from a floppy with hard-disk drive utilities when the hard-drive
.INF is mangled. ‘“Caveat hackor"; [and don't trust the Ides of March,
neither].

The easiest way to create or replace the .INF file is to highlight the
"Options" menu at the screen—top and choose "Save Desktop". The "Control
Panel" or "Extensible Control Panel" should be installed before saving the
desktop so that the printer, modem, color and other preferences may be saved
in the .INF file. Some parameters preserved are: screen resolution, icon
type and location on-screen, "hot-key"/macros for running programs or
desktop menu selections, filename sorting, display of files as icons or by
name, size and location of windows which have recently been opened, a
program to "autorun", window and desktop style and colors, modem (serial
port) settings, printer settings, key-click and audio control, etc. Not all
versions of TOS store the same data.

File: F:\UNARC\DESK_INF\NEWDESK.ASC Page 2

However, if you're a hacker, you've already viewed the .INF file and
found it is simply an ASCII file, easily created or edited with a program
such as "EdHak" or any other text editor/word processor hav1ns a
plain-vanilla "Save ASCII" option. The most obvious hack is to replace the
names of icons on the desktop; for no good reason, my "TRASH" can is now
“Garbage". Following is the NEWDESK.INF file on my Falcon 030:

#a000000

#b000000

#c7770007000600070055200505552220770557075055507763111103

#d

#Z 01 C:\WARP_S\WARPICNF.PRG@

#K 4F 53 4C 44 46 42 43 57 45 58 00 49 54 00 00 00 00 00 00 00 OC 00 0O 52 00
00 4D 00 00 00 56 @

#E 78 05 00 06 00 18 00 .0 00 OO

#Q 41 40 43 40 7D 48

#W 00 00 08 01 48 16 00 @

#W 00 00 08 09 4A 08 0C @

#W 00 00 06 OF 4A 08 00 @

#¥W 00 00 08 15 4B OA-00 @€

#W 00 00'04 1A 50 08 00 @

#W 00 00-0C OB 4C 09°00 @

#W 00 0008 OF 34 09 00 @

#W 00 00 06 01 34 09 00 @

#N FF 04 Q00 @ *.*@ @

#D FF 01 000 @ *.*@ @

#G FF 04 200 C:\EDHAK30G.ACC@ *.*@ @

#G 03 FF 000 *.APP@ @ @

#G 03 FF 000 *.PRG@ @ @

#Y 03 FF 000 *.GTP@ @ @

#P 03 FF 000 *.TTP@ @ @

#F 03 04 000 *,TOS@ @ @

#G 03 04 00A E:\TOOLS\FORMATTR\TLC_FORM.PRG@ *.@ @
#G 03 04 300 C:\WARP_9\WARPICNF.PRG@ *.@ @

#T 08 0A 02 FF Garbage@ @

#M 08 01 09 FF A Floppy Disk@ @
#M 08 03 0B FF C Hard Disk@ @
#M 08 04 0B FF D Hard Disk@ @
#M 08 05 OB FF E Hard Disk@ @
#M 08 06 OB FF F Hard Disk@ @
#1 08 08 00 FF I RAM Disk@ @

#X 00 02 05 FF F:\WORKS\WORKS.PRG@ Atari Works@

#X 00 01 13 FF C:\STALKER\STALKER.PRG@ Telecom@

#V 00 07 18 FF E:\TOOLS*.*@ Disk Tools@

#V 00 06 OE FF E:\LANGUAGE*.*@ Prgm Lng@

#V 00 05 1A FF E:\ART*.*@ Visual Arts@

#X 00 04 1B FF E:\ART\GVIEW232\GEMVIEW\GEMVIEW.APP@ Art Viewerd
#X 00 03 1E FF F:\ST_WRITR\STWRITER.FRG@ ST Writer@

#X 00 09 OC FF D:\ARCHIVNG\DCX_PLUS.PRG@ AutoArchiver@

#V 00 08 17 FF E:\IMAGE_OF.F\GAMES*.*@ Games@

#V 08 08 0D FF C:\RAM_DISK*.*@ RAM Disk Mkr@

File: F:\UNARC\DESK_INF\NEWDESK.ASC Page 3

Descr1ption._; _

#a - stores the parameters for the serial (communications) port)
As this varies with the partlcular terminal to which you're conne cted
and is set by the application you're running, it's not worth set dng

#b - printer parameters: digit 0 1

1 dot mafrix daisy wheel
2 monochrome color monitor
3 1280 960 points/line
4 draft final (NLQ)
5 parallel serial printer port:
6 continuous pause (single sheet) ~
ex: #b001000 {dot matrix, b/w, 960 p/1, draft, parallel port, contin.}

#c - color palette settings, mouse double-click response, key-click, bell
sound, key delay and key repeat rate

- unused probably reserved for future use

B

#Z - program path and’ f11ename to run automatically at bootup

#K - darned 1f I know . I'm sure those cryptic numbers mean something,
such as a" keyboard layout or extended (256) color palette. Please
let me know if you find out.

#E - parameters for default screen resclution,window directories: as text
or icons, sorting method, confirm deletes, confirm copies, etc. The
second "byte" (in hex) is the resolution: 11=ST low, 12=ST med, 13=ST
high, and other numbers indicate approximate TT resolution, such as
05=736 by 560 monochrone.

#Q - function unknown

#W - screen size and location of various windows which may be opened.':Of
course, after opening them, you may move an re-size the windows.

#T - trash can icon type, position and caption: "Garbage"

#M - disk icon type, drive letter, position and caption; modify "ad 1ib".
Note that if two icons have the same location, the first listed lies
atop the second on the desktop.

#N - function unknown

#D - defines which icon is used to represent folders

#G - install an application to be associated with a screen icon, filename

or function key. Hacking here may be most useful. E.G.:
#G FF 04 200 C:\EDHAK30G.ACC@ *.#*@ @
installs EdHak as the alternative to the GEM "SHOW | PRINT ! CANCEL"

File: F:\UNARC\DESK_INF\NEWDESK.ASC Page 4

_ menu. . Incidentally, EDHAK30G.ACC, though it has the ACCessory file

q type.ending, is treated by the 0S as if it were a .PRG file! This
only, works with ACCessories that also were designed to run as o
programs. Note:that TOS will try to match file types starting at the - -
end of the list, working backwards until there's a match. Since the!' '
associated filetype, %*.%, is a double "wild-card", EdHak will be
accessed for all files that have not run as programs. In a similar
fashion, the line: :

#G 03 04 O0A E:\TOOLS\FORMATTR\TLC_FORM.PRGE@ *.@ @

associates the "TLC Disk Formatter" with function key F10 [00A'in
hexadecimal is ten, decimall]. ;

#Y - associates an icon and directs the function of GEM-Takes—Parameters
programs, such as GEM View

#P - associates an icon and directs the function of TOS-Takes—-Parameters
programs, such as ARC.TTP

#F - associﬁtés'aﬁﬂippp and directs the function of TOS programs

#X - icohiﬁﬁpe, poéifibn, caption, and associated program filename and path
for eXecutable'hFogram files, such as Atari Works

#V - icon type, position, caption, and associated directory path for a -

, directory which will be Viewed by clicking on- the desktop icon, such
as GAMES

Bibliography:

N.B.: Some of these sources present conflicting views about some information!
Jackson, Neil, "Desktop", "ST Format", issue 26, Sept, 1991, Bath, GB
Shannon, Morgan, "DESKTOP.INF Dissection", GEnie #4729, GEM_DESK.ARC, 1987
Turner, Ralph C., "The Atari ST Book", Index Legalis Publishing Co.,

Fairfield, IA 52556, ISBN 0-945959-00-1

[This article originally appeared in the North Attleboro Atari Club
Newsletter, vol 5, no 1, Jan, 1994. Subscriptions to the Newsletter alone
are $2.00/year, and membership, including the Newsletter, $15.00/year.

North Attleboro Atari Computer Club
c/o Computer Zone (508)699-0430
28 East Washington Street
North Attleboro, MA 02760

. Disclaimer:

File: F:\UNARC\DESK_INF\NEWDESK.ASC Page 5

Hacking the DESKTOP.INF or NEWDESK.INF may be hazardous to your data
and sanity! Again, first make a backup of your .INF file and rename it,
using the "Show Information" option of the Desktop. If you make a mess of
editing, you can always rerename it to it's original. Even if your ed.1ted
file seems OK, keep a backup in case of some hidden defect.] R

3

#a

#b

#c

#M

#7

The DESKTORP.INF File

Paramegétg

dddddd

dddddd

S
R PN R AR
. A I

%C %ic hC Yo Yo Yic e Ve
e % Y Yc Yo Ye Y Y
ddddddd

%d Yd

“hs Yvs %ox Yoy Yaw Yh Yhst Yp
%ix %iy %1 %1t “d %lbl

%ix Uiy %i A1t Y%d Albl
w3 Al A1t UF

4g i Alt UF

%i %g %lt %F

%i %g Wt Uf fhinsld

Dest top

Commnents
R8-232 port configuration

Half Duplax:k

1: 0 = Full Duplex 1 = (R
2: O = 9600 bps 1 = 4800 bps L= 2¥an
2 = 1200 bps 3 = 300 bps
3: O = No Parity 1 = Bdd Parity
2 = Even Parity
4: O = B bhits/char 1 = 7 bits/char.
2 =6 bits/char 3 = 5 bits/char
5: O = X OFF, Rts/Cts OFF
0 =X N , Rts/Cts OFF
0 = X OFF, Rts/Cts ON
O =X (ON, Rts/Cts ON
&1 O = Btrip Bit ON 1 = Strip Bit OFF
printer configuration
1: O = Dot-Matrix 1 = Daisywheel
2: 0 = Black & White 1 = Cglor
3: 0 = 1280 pixels/line
1 = 9450 pixels/line
4: O = Draft Guality 1 = Final Quality
S: O = Printer Port | = Modem Port
&: O = Contirnuous feed
1 = Single sheet feed
16 color pallettes (with no spaces)

%c = RGB — Red Green Blus (O - 7)

mouse and keyboard configuration

1: Mouse Button Response (O — 4)

2: 0 = Keyclick OFF 1 = Keyclick ON

3: 0 = Bell OFF 1 =Bell ON

4 & 3: Keyboard Response (0 — 446)

& & 7: Character Repeat Delay (O — 21)

not used

display as: text/icon (Bit 7)

sort by: name, date, size or type (Bit 1,0)
Confirm: Copies & Deletes (Bit 4 & 3)
Default Resclution: 01 Low, 02 Medium, O3 High

atwavs 4, in order of draw, last draw is top
Disk Drive Icon
Y%eix: X location
%iy: y location
%i: 00 - File Drawer
01 - Folder
Q2 - Trash Can
03 — Program
04 - File

%it: Delimeter (FF?

%d: Drive Letter

%lbi: Drive Label

Trash Lan Icon

folder icon (F for folder™?)

document icon (D for doc?

application is GEM (G for GEM?

TOS with commard tail, also used to “install”

Info File — 1 -~

@

iyt W

%cx = x/position in character cell units .
%y = vy position in character cell units o
“Wd = digit it
%“F = file name of application
%g = (FF: AES shell handles this; 04: GEMDOS handles this)?
“h = height in character cell units
%hs = horizontal slider
Yhet = history(?)
i = icon: 00~file cabiret, Ol-document, 0X-trash, 03-program, 04—Folder
%ins = sufix of installed application N
%ix = x position in icon cell units
%iy = vy position in icon cell units
%1bl = icon label
%lt = icon letter — F 3 no effect inside windowsrats!)
“p = path :
“ws = vertical slider
A = width in character cell units
HY 00 00 30 01 1E 17 0B A: \PATHNAMENX. x@
N/ \{ \/ \/ \/ \/‘\/ /
AR T \w'\ \ «\ N \ \
Wy \- N \ \ ‘A \ %o
AV VAR U W U W WY :
AR N N L T N Hhst
A O N U Y W .
ANWNON NN N N %h
ANVY NN NN
AVYOON N NN Ve
ANy NN
A T O R Y oy
NVY NN
NN N YCx
AR AN
AN N pAY=!
AR
AR Yihs
AN
AN "W For window
\
N desktaop preprocessor?!

Desktop Info File - 2 -

	ahs:

