[image: image1.jpg]THE ULTIMATE

DISK

ARCHIVER
AND

EDITOR
\ 810/1050

810 CHIP
1050 CHIP
810 HAPPY
1050 HAPPY

O oo o

B&C ComputerVisions
3283 Kifer Road
Santa Clara, CA 95051
(408) 749-1003

CONTENTS

INTRODUCTION

 REQUIREMENTS
1

 PURPOSE.
1

 USER RIGHTS
1

 WARRANTY
1

GETTING STARTED

 GENERAL INFORMATION
3

 BOOTING SCAN‑IT! .
3

 NORMAL BACKUP PROCEDURES
4

 SOME CONVENTIONS USED
5

SCREEN CONVENTIONS

 ON THE SURFACE
7

 THE OPTION LINE
7

 THE STATUS LINE
12

 THE COMMAND LINE
14

 SECTOR DISPLAY FORMAT
14

THE ARCHIVER

 AN OVERVIEW
17

 NUMBER OF COPIES
17

 AUTOMATIC COPY
18

 ENTER EDITOR
18

THE EDITOR

 AN OVERVIEW .
19

 READING TRACKS
20

 WRITING TRACKS
20

 ENTER EDITOR MODE
20

 DISASSEMBLER
22

 MOVEMENT BETWEEN SECTORS
22

 CLEAR TRACK FROM BUFFER
22

 CLEAR SECTOR FROM BUFFER
23

 TRANSFERRING SECTORS
23

 CREATING BAD SECTORS
23

 CUSTOM FORMATTER
24

 ADDRESS CHANGING .
26

 INSERTING CUSTOM FORMAT
27

 MOVING TRACKS
27
 TRACK MAPPER
.
27

 ENTER THE ARCHIVER
28

CONTENTS

THE CHIP

 OPENING/CLOSING THE CHIP
29

 LOCKING THE CHIP
29

 TWO DRIVE COPYING
29

 THE BOOT SECTOR
30

 MOTOR OFF DELAY
30

 LOCKING FORMAT/WRITE/OPEN
30

DISK FORMATTING THEORY

 AN OVERVIEW .
31

 DISKETTE STRUCTURE
31

 THE BASICS OF A SECTOR.............. .
32

 TRACK LAYOUT/FORMAT .
33

 THE READ COMMAND
33

 THE WRITE COMMAND .
34

 LOGIC SEEKING READ/WRITE COMMANDS
34

 READ FORMAT COMMANDS
34

 TO SPEED RESTRICTIONS
35

 DOUBLE SECTORS
36

 BAD SECTORS .
37

 CRC ERROR SECTORS
37

 DATA TYPE FLAGS
37

 STATUS
38

USEFUL HINTS

 CYCLIC FORMATS .
41

 20 OR MORE SECTORS .
41

 GARBAGE TRACKS
42

APPENDIX

 HEX NUMBER CONVERSIONS
43

 ARCHIVER COMMAND SUMMARY
44

 EDITOR COMMAND SUMMARY .
45

 CHANGING DRIVE MOTOR SHUTDOWN DELAY
47

 ERROR MESSAGES
48

INTRODUCTION

REQUIREMENTS

To use SCAN‑ IT!, you must have either a disk drive with the

SCAN‑IT! CHIP installed, or a disk drive with a Happy

modification. The CHIP program is automatically downloaded

to the Happy to emulate the SCAN‑IT! CHIP.

The SCAN‑IT! CHIP program will greatly expand the

operating capabilities of the disk drive. Special CHIP

commands allow SCAN‑IT! to get at a wealth of information

that never before has been possible. Sophisticated CHIP

read/write/format/map ping commands allow SCAN‑IT! to

duplicate almost any diskette, or create custom formats. In

addition, SCAN‑IT! allows the user easy access to the

powerful capabilities designed into the CHIP program.

The SCAN‑IT! CHIP is a permanent replacement for the ROM

currently in your disk drive. The installation is straight

forward and not very difficult, however, it does require three

circuit board trace cuts and three jumpers. Therefore, if you

have had little or no experience with a soldering iron, we

STRONGLY urge that you either have a service center install

it or get help from someone with the required experience.

PURPOSE

It is NOT our intention to promote software piracy, in fact, w e

are strongly against this, and disregarding copyrights is

STRICTLY AGAINST FEDRAL COPYRIGHT LAWS! Pirating

tends to raise prices and discourage software companies, so

PLEASE respect the software companies rights.

The reason for the production and sale of this product to the

end user is for his/her own protection. The backing up of

original software is necessary because diskettes do fail

whether due to physical damage, constant use, or magnetic

fields nearby (I.e. your TV or monitor). Therefore, with the

proper use of this product, you can be spared the grief of

having your only copy of a program suddenly crash.

INTRODUCTION

USER RIGHTS

The copying and distribution of the SCAN‑IT! program or the

CHIP is forbidden under Federal copyright laws. Due to

‑

pirating of earlier versions of this program, w e now copy

_

protect the Happy versions of SCAN‑it!. It will not backup

itself. However, for your protection, we have provided you

with a backup copy. Please put it aside for safe keeping. If

your master disk should become damaged, you may obtain

another copy by sending the disk along with $10.00 to B&C

Computervisions.

WARRANTY

If upon purchase the buyer finds that the CHIP or SCAN‑IT! program prove defective, B & C will exchange is at no charge.

If, at anytime after 30 days from date of purchase, The SCAN‑IT! program becomes defective, B&C will EXCHANGE it for a charge of $10. If the CHIP becomes defective, B & C will EXCHANGE it for a charge of $30.

There are no other warranties either expressed or implied.

2

GETTING STARTED

a

GENERAL INFORMATION

IF the CHIP or the Happy upgrade is not yet installed in the disk
v

drive, please go to the appropriate installation manual and

follow the step‑by‑step procedure.

In this section you will find a step‑by‑step procedure instructing

you on how to boot up the SCAN‑ IT! program and how to make a

backup of other programs. Also found m this section are a few

conventions used in this manual as well as in the SCAN‑IT!

program itself.

BOOTING SCAN‑IT!

The following bootup procedure is only for using the SCAN‑IT!

program. This procedure differs from the normal suggested

booting procedures, so please make note of any differences.

Now follow the brief instructions on how to use SCAN‑IT! to

make a backup of atypical program.

1. Take all cartridges out A the computer.

2. Turn off all computer equipment.

3. If you have the Happy version of SCAN‑IT!:

Turn o n the disk drive, then insert the SCAN‑IT! program .

 If you have the CHIP version of SCAN‑IT!

insert the SCAN‑IT! program in the disk drive, then

 turn the drive on. This is done to allow the CHIP to

 "boot" in sector $2D0 which contains a small

 program that will "open" your disk drive's CHIP so

 that it will accept all the new disk commands that

 give the disk drive its extended capabilities. NOTE:

 Do NOT boot any other disk in this manner!

4. Turn o n the computer and T V (or monitor). If you plan

 on using the printer when using the EDITOR, you may turn

 the printer and interface on at any time.

5. When the title page appears, remove the SCAN‑ IT! diskette

 and put it away.

 3

GETTING STARTED

NORMAL BACKUP PROCEDURE

1. Follow the boot procedure given above.

2. When the ARCHIVER page is displayed (screen changes to a brownish‑ yellow) then press C (for Copy).

3. The ARCHIVER will respond by asking you to insert source diskette. Now insert the program you wish to backup and then press the START button.

4. After a short time, you will be requested to insert destination diskette. At this time, you should insert the

diskette you wish to put the copy on. When you have done

this, press the START button.

Note: The destination diskette does not have to be previously formatted. The program formats each track as ii is written if the F+ parameter is selected.

5. If the ARCHIVER asks you to, insert the source diskette again and repeat steps 3 and 4.

6. Depending on the length of the program, fro m 1 to 3 passes may be required on a 48K computer. The larger the computer memory is, the fewer the number of passes required. The ARCHIVER will indicate on the screen when the copy is done.

7. When the copy process is completed, put the original diskette away in a safe place and use only the backup copy.

If you get a Read Format Error, most likely you did not follow steps 3 of the boot procedure carefully. Otherwise the command option parameters may require some changes to enable you to custom modify the diskette copying technique (refer to THE ARCHIVER section in this manual).

4

GETTING STARTED

SOME CONVENTIONS USED

1. All numbers used in SCAN‑IT! are Hexadecimal al (HEX) which is a base 16 numbering system. If you do not understand hexadecimal numbering, then refer to the table in the

Appendix. In this manual all HEX numbers are preceded by

a $ symbol.

2. Pressing the ESC key will bring you back to the command mode of the program you are currently in. The only exception is during actual disk I/ O, (R/ W) in which case holding down the OPTION button will stop the disk 1/0 at the end of the track read/write operation which then allows you to abort the operation by pressing the ESC key or to press START to continue the 1/0 operation.

3. Whenever disk 1/0 needs to be performed or continued you must press the START BUTTON TO PROCEED.

4. At anytime during the use of the EDITOR program (except during disk I/O) a CTRL‑P will create a printout of what is currently on the screen on your printer.

5. The CTRL and SHIFT keys need never be used except for printing as described in 4. However you may press CTRL or SHIFT if you like, but these key functions are disregarded and unnecessary.

6. Whenever any writing is to be performed, the border color will change to red. Whenever any reading is to be performed, the border color will change to white.

5

SCREEN CONVENTIONS

This section deals with the various command lines and prompts used by the SCAN‑IT! program. You should read this and each of the remaining sections to become aware of all the many capabilities provided by this program.

ON THE SURFACE

Figure 1 below shows the screen for the ARCHIVER. however, the EDITOR, the FORMATTER, MAPPER, and the DISASSEMBLER screens all have similar Option, Status, and Command lines. The Option and Status lines provide 16 unique parameters for disk sector/track format changing. The following paragraphs explain how to use each parameter:

[image: image2.jpg]OPTION
LINE —

STATUS —>
LINE

COMMAND
LINE ——

3% THE ARCHIVER U1.8 %

§:1 b:1 R:88,27 U+ L+ C+ AG+ F+ S+ B+

TR:27 SE:11 FM:2CF n66608 CO:01 MU:00

N -x-x-x
N N <<
I .
I << <
<< <
I <<
< < <
< I < I < < T <
<H-HR<IE N
<INl I .
<Hl-<EN-<EE IR
<<l I I
<<l I I .
<xHR-<EE W T I
<l N NE B .
<l N BN BN

>>> READING <<<

FIGURE 1 — SCREEN PROGRAM LINES

THE OPTION LINE

The Option line contains parameters used by both the ARCHIVER and the EDITOR. All of these parameters can be changed at any time when you are in the command mode. To modify these parameters, type P . You will see a cursor on the Option line. To move the cursor right and left, press the <‑ or ‑> key. Pressing RETURN selects that parameter to be changed. After the parameter has been changed, the cursor will

7

SCREEN CONVENTIONS

if

b e o n the Option line ready to select another parameter to change. Pressing the ESC key returns control backtothe command level. A description of each parameter follows:

Source Drive‑ S:x

This is the drive number from which all reading is done.

Pressing RETURN when o n this parameter will increment the drive number and wrap around at four (4) to one (1). NOTE: This drive must b e opened prior to reading from it, otherwise an error will occur. This drive must also be compatible with the version of SCAN‑IT! you are using.

Destination Drive‑ D:x

This is the drive number to which all writing is done. Selecting this drivels done in the same manner as selecting the source drive.

Track Range‑ R:xx,yy

This is the range of tracks that will be copied using the ARCHIVER (or tracks read/written/form atted when using the EDITOR). The xx is the start track and the y y is the end track. When pressing RETURN with the cursor positioned on this parameter a prompt will appear on the command line requesting a new range of tracks. There are three allowable syntaxes:

RETURN : same as typing 0 0,2 7 (tracks 0 0 to 2 7 HEX).

x, y

: set start to x and end track to y.

x

: set both start and end tracks to x.

ESC will exit this option without modifying the range of tracks. RETURN enters the range you entered and updates the option line accordingly. If you make an

illegal entry a track range error occurs.

SCREEN CONVENTIONS

Verify‑V+

This is the write with verify flag. Pressing a RETURN simply toggles this parameter:

+ :

verify on

verify off

If the verify is on, a verification will be done on the track after it is written. Because the verify pass is separate from the write pass, it is faster than the standard DOS write with verify.

Logic Seeking Read/Write‑ L+

This is the read/write logic seek ing flag. Pressing RETURN simply toggles this parameter:

+ : Logic seeking on

‑ : Logic seeking off

When reading or writing multiple sectors with the same number (i.e. two sectors $09) you must be able to read or write the correct sector, therefore,th ere are logic seeking read/write commands in the CHIP that automatically synchronize to the format on the track and read/write the correct sector. Since synchronizing to a sack takes a little more than one revolution, these commands are slower than the standard read/write commands. The only time a you would want to change this to a ‑ is when the format cannot be synchronized. For more information o n this, refer to the paragraph entitled CYCLIC FORMATS in the USEFUL HINTS section of this manual. If the logic seeking is off, it is suggested that you turn compaction off. The ARCHIVER and EDITOR programs only use the logic seeking commands (if enabled) when a non‑unique numbered sector is to be read or written.

i

9

SCREEN CONVENTIONS

Compaction ‑ Q+

This is the compaction flag. Simply pressing RETURN toggles this parameter:

+

compaction on

compaction off

If you have compaction on when using the ARCHIVER,

the sector will neither be read nor wHttenifitisfilled by

a single value (Le. $ 0 0 etc.). If you are in the L‑ mode

a

you should have co m paction off. Sectors filled with the

values $01‑ $08 will not be compacted as these are

format control bytes. These "fill" bytes are placed in the

sector automatically when the track is formatted.

The C +/‑ parameter has the same function in the

EDITOR as it does in the ARCHIVER, however, in the

EDITOR the results are more readily apparent_

`a

Compaction only works o n sectors which are not bad and

that have a single byte filling the entire sector. Also,

sectors filled with the values of $01‑ $08 will not be

compacted. If the sector was compacted, the EDITOR will

X

NOT display the data in the sector. The EDITOR will only

display sectors it actually read. The CHIP program

actually reads the data and reports back to the EDITOR

‑

that the sector is to be compacted, thus saving the time

it would take to read the data into the computer.

Format Read Type‑ A6+

This is the type of track reading that SCAN‑IT! will use to

determine the format on the tracks. Either 4 or 6 bytes of

information about the sector can be selected (A4 or A6). The

+ or ‑ is the toggle to turn o n (+) or off (‑) the format

verification logic. Normally the A6+ will be desired. To change

this parameter, simply press RETURN with the control cursor

positioned on the A6. The meaning of each of the codes is as

follows:

6 :

Six bytes are returned to the program for each

sector, thus SCAN‑IT! will be able to rotate

the sequence so that the end‑of‑track gaps

will b e identical (A 6 + only). This is mainly

cosmetic but does have significance on fast

SCREEN CONVENTIONS

formats. Because 6 bytes are returned, a maximum of 21 sectors per track can be fetched. If there are more than 21 sectors,

then a 4 mode should be used.

4 :
Four bytes are returned to the program for each sector, thus some information about each sector is missing. This is intended for 2 2 to 24 sector formats.

+ :
The track is cycled through twice co m paring the first sector sequence to what the CHIP finds the second time. This is an internal function of the CHIP program.

‑ :
This mode is slightly faster than the + mode, however, no verify is done on reading the format. This is generally used for speed and also if the track is badly garbled. Unformatted tracks can return strange sector headers on some diskettes.

Format Flaq‑ F+

This is the format before write flag. Normally you will want a F+ mode. Simply pressing RETURN will toggle this flag when the cursor is positioned on the F+.

+ : Format track before doing the write pass.

‑

: Do not format. This option is selected only if
..

you already have an identical form at on the

track or if you are simply trying to put sectors

o n the destination track. If there are multiple

i

sectors with the same number and the track

formats are not identical, the logic seeking

read/write commands will not work correctly.

Also, the verify may not work correctly if it tries to verify wrong sectors. This flag also allows you to convert slow formats by first form atin g the destination track with a fast format and then write out th a sectors that were read from a slow formatted diskette.

11

SCREEN CONVENTIONS

Screen Code Conversion‑ S+

This is used in the EDITOR only. It refers to the conversion of characters displayed o n the normal EDITOR page to the right of the sector display. A RETURN to ggles this parameter.

+

: Convert data to ATA S CII characters.

‑ :

No conversion. Display data as Atari screen

codes.

Bad Sector (CRC)‑n‑‑B+

This flag refers to the method of writing CRC bad sectors.

Pressing RETURN toggles flag o n (+) or off (‑). This flag should always be set to + when in the ARCHIVER.

+ : Write a full bad CRC sector.

‑ :
Only write a partial sector (CRC bad). The number of bytes written depends on the last byte of the sector data. That byte refers to the number of bytes that will b e written. This allowsfor the capability of increasing the number of sectors on atrackto above 20 (i.e. two half sectors take about the same amount of room as a full sector).

THE STATUS LINE

The status line is the third line o n the screen. It will display the

current track,sector,composite sector number, the amount of

free buffer memory, current copy number and the number of

copies to make (in the ARCHIVER or the sector data address in

;

the EDITOR). The only directly adjustable parameters are the

t

C O:xx which refers to the number of copies to make and the

j

L OC:xxxx which is the sector start address. The status line

parameters are as follows:

i

12

SCREEN CONVENTIONS

THE STATUS LINE (cont'd)

T R:xx

This is
the current track number the

program

is processing. (Tracks range from

$00

‑ $27).

S E:xx
This is the current sector number the program is processing. (Sectors range from $01 ‑ $12, a ‑‑ means that the sector number is invalid).

F M:xxxx
This is the composite sector number used by Atari DOS. These numbers are arrived at by the formula F M = T R'$12 + S E. Where T R is the track number and S E is the sector number. The F M ranges from $001 to $2D0.

A

‑‑ indicates that the sector number

is invalid.

x x x x
This is the current free memory for storage of the sector data and track information. When data is being read into the buffers, the

memory counter will decrement $80 for each sector read and also for each track read.

NOTE: If compaction is on, compacted sectors do not take up memory space, however, there is a $80 byte overhead to store sector layouts and various other inform ation o n each tack. O n a 4 8 K machine this field will read $9900 (about 38K).

N U:xx
This is the number of the copy being made. A $OO indicates it is on are ad pass. A $01 to $FF is the number of the current copy being written.

C O:xx
This is the number of copiesto be made per each read pass. This is defaultedto one ($01) whenever the ARCHIVER program mode is entered. This value can range from $ 01 to $FF.

L O C:xxxx
This parameter is used with the EDITOR and is the address location in which all disassembly or displays of sector data will start. This is for purely cosmetic reasons and does not affect the data.

13 '

w~

SCREEN CONVENTIONS

THE COMMAND LINE

The command line is at th a bottom of the display. This line will contain all necessary screen prompts, input commands and error messages. When using one key command entries no RETURN Is necessary to enable thatcommand. Simply press the desired key for the desired command input. However, on numeric input pressing RETURN is necessary to enter the numeric information.

Messing the space bar will erase an error message or copy done/abort message immediately. Other wise the message will

disappear after approximately 4 seconds.
i

YSECTOR DISPLAY FORMAT

The sector layout displayed on the screen is somewhat unique.

i

r

SCREEN CONVENTIONS

Figure 2 ‑ Track/Sector Display Format

These hack and sector numbers are not used internally by the Atari computer Instead, the operating system refers to each sector as a number from $001‑ $2D0(1‑ 720 decimal). The computer's disk operating syste m (or DOS) will access the disk drive using this c o m p osite sector number Then, within the disk drive, the co m posite sector number is broken down into a track and sectornumber using the relationship:

composite = (track) ' ($12) + (sector)

Thus, the first sector in figure 2 ($12) would b e called $ 2 4 (3 6 in decimal) within the computer. N otiic a in the figure that there are two sectors with the number $09. If the computer were to read sector $213 (composite). It would get one of the two possible sectors. This is called a 'double sector'.

15

THE ARCHIVER

AN OVERVIEW

The ARCHIVER is an automatic copier designed to copy your protected (or unprotected) software for backup purposes. The A R C HIV E R is easy to use and will backup most protected software.

In general, diskettes can be copied by simply typing a C . For some special disk formats it may be desireable to change several of the ARCHIVER operating parameters. The program will alto w the making of multiple copies per each read pass. O n a 48K system a disk will take up to 3 passes to copy. However, most diskettes can be cooed in one or two passes depending on the amount of data o n the diskette.

A s a safety feature, both the ARCHIVER and EDITOR require that you press the START button before any disk reading or writing will take place. If you wish to abort thereading or writing during disk 1/0, press the OPTION button and hold it down until the track is completely read or written. To continue, press the START button and to exit the operation press the ESC key.

The ESC key will always return control to the previous command mode while disk 1/0 is non‑active.

NUMBER OF COPIES

This command will allow you to select the number of copies that will be made on each read pass. To enter the number of copies you wish to make, type an N . You will be prompted to enter the number of copies to make. Type the number in HEX followed by a RETURN . The number selected will be reflected after the C O . When making copies on a single drive, screen prompts will signal when to insert the source diskette and when to insert the destination diskette. O n a two drive system (both with a CHIP), the first copy will be made automatically and subsequent copies will be prompted. The number after the N U indicates which copy is currently being processed. A $00 means you are on the read pass.

17

THE ARCHIVER

AUTOMATIC COPY

The command to start making copies is initiated by pressing the C key. When activated, screen prompts will be displayed for inserting the source (original) and destination (backup copy diskettes throughout the process. Remember, to press STAR4 to acknowledge to the prompt that you are ready. The copy command C makes the number of copies specified by the C O:x x field and does its functions according to the parameters o n the Option line (if applicable). The memory buffer containing the previously read data will be cleared prior to each read pass.

If you have problems copying, check the following:

1. Change to a different destination diskette.

2. A6+ to A 6‑.

3. A6, L, and C to ‑.

4.
If the diskette has 20 or more sectors on attack, read each sector/track using the EDITOR and write it onto the destin atio n dis kette.

5.
Be sure you have current version hardware and that the disk drive is running at the right speed.

ENTER EDITOR

To enter the EDITOR, type E . Alt data currently in the memory buffers will transfer.

18

THE EDITOR

The EDITOR will allow you to actually edit the sector data and do many manipulations with it. Custom formatting can also be done, thus enabling you to make protection schemes or modify protection schemes as desired. Because formats can now have over 19 sectors, the EDITOR is necessary in order to duplicate these sophisticatedformats. Formats greater than 19 sectors have never been used to protect diskettes designed for use on the Atari computers before the introduction of the CHIP.

	
	
	
	THE
	EDITOR
	V1.4
	

	S:l b:i
	8:43,47 V+ L+
	C+
	A6+
	F+ S+ g+

	TR:45
	SE:48 FM:462 u7E44
	LOC:4404

	
	M
	Ou
	8
	
	'o, 101 n"
	
	
	

	5 7 4
	
	4
	7 4
	~ ~ 7

4
	7 ~
	7 4

	
	
	
	
	
	
	
	
	

	4000:
	DA
	DA
	DA
	OR
	DA OR
	DA
	DA
	ZZ772ZZZ

	000$:
	OR
	DA
	OR
	OR
	DA DA
	OR
	OR
	ZZZ2ZZZZ

	0010:
	OR
	DA
	DA
	OR
	OR OR
	OR
	OR
	2222ZZZZ

	0018:
	OR
	OR
	DA
	OR
	OR OR
	OR
	OR
	ZZZZ77ZZ

	00c0:
	OR
	DA
	DA
	DA
	OR OR
	DA
	OR
	Z772Z7ZZ

	008:
	OR
	DA
	OR
	DA
	OR OR
	GA
	OR
	222ZZZZZ

	0030:
	OR
	DA
	DR
	DA
	OR OR
	GA
	OR
	Z2ZZZZZZ

	0038:
	DA
	DA
	DA
	OR
	DA DA
	DA
	00
	ZZZZZZZ_

	0040:
	0D
	00
	00
	00
	00 00
	06
	00
	

	0048:
	0D
	0D
	0D
	0D
	00 00
	00
	00
	

	00505
	00
	00
	0D
	00
	0D 00
	00
	0D
	

	0058:
	00
	00
	00
	0D
	00 00
	00
	0D
	

	OGS02
	GO
	00
	00
	OD
	00 OD
	00
	00
	

	006s:
	my
	OD
	e0
	00
	ov 00
	00
	OD
	

	0070:
	00
	OD
	OD
	00
	OD 00
	00
	OD
	

	0078:
	eD
	OD
	00
	OD
	00 OD
	00
	OD
	

	
	
	__>
	ENTER
	COMMAND
	-->1

 Figure 3 ‑ The Editor Screen

AN OVERVIEW

The EDITOR is designed to be easy to use yet it doesn't lack in sophistication. One key commands allow you to browse through the many parts of the EDITOR. Unlike the ARCHIVER, only one track's sector list will be displayed at a time. The EDITOR allows you to move between sectors by simply pressing the left and right arrow keys on the keyboard. You will notice the dual purpose of the track format lines as both a sector selection aid and as a sector layout display. This will be discussed in more detail later. The normal EDITOR display will be of the actual sector data of the sector that the cursor is on (on the sector

19

THE EDITOR

layout lines). If there is no track in memory, the sector layout lines will b e blank. The main sector d ata display will contain data only if there is at least one track in the memory buffer and the sector that the cursor is on contains data.

READING TRACKS

To read a range of tracks first be sure thatthe R:xx,yy parameter is correct, then type an R followed by pressing the START button to start the read process. As a safety feature, f a track is currently in memory that was specified in a read operation, the reading of that particular track will not occur. That track will be skipped and the read process will continue with the next track.

WRITING TRACKS

To write a range of tracks first set the track range (as is the read). Press W along with START to initiate the writing process. Only the tracks and sectors actually in memory within the range selected will be written. If formatting is to occur before the write, the fill bytes will be written during the format op the compacted sectors. If a sector was deleted that sector will not be written. If formatting is on, then zeros will fill that sector.

ENTER EDITOR MODE

Prior to entering the Edit Mode, the sector data must first b e displayed. If so, press E to enter the Edit Mode. Otherwise, read in the track you want to edit, then press E . The cursor appears within the sector data and you may start editing the code. The commands available for use while in the edit more are as follows:

THE EDITOR

ENTER EDIT MODE (CONT'D)

Move cursor one byte toward the beginning of the buffer (left).

Move cursor one byte toward the end of the buffer (right).

I Move the cursor eight bytes toward the

beginning of the buffer (one line up).

Move cursor eight bytes toward the end of the buffer (down one line).

RETURN :
Move the cursor to the beginning of the next data line.

DELETE :
Delete the byte the cursor is on. All data beyond the cursor moves up one byte and a zero is placed in the last byte of the sector.

INSERT :
Insert a byte at the cursor position. All data moves down one byte from the data that the cursor was on. The last byte of the buffer is lost.

i

CLEAR :
Fill the entire buffer with the character currently under the cursor.

H

:
Move the cursor to the first byte in the

buffer.

xx

:
Typing HEX numbers changes the data to

exactly what you see. The cursor will

automatically move to the next byte when a

byte has been entered. All spaces are

automatically skipped between each byte.

ESC :
Exit the edit mode. All changes will be saved to a memory buffer (not the disk) and are permanent unless changed later. This will also update the characters on the right to their new value (This is not done automatically during the Edit Mode).

The address at the left is arbitrary and is used strictly for reference. The address can be changed by the IL command.

e

21

THE EDITOR

DISASSEMBLER

The EDITOR has a built in dis asse m bier. First enter the Edit mode and then move the edit cursor to the byte at which you wish to begin the disassembly. Exit the Edit mode (press ESC) and then press D to begin the disassembly. The disassembled listing will instantly be displayed on the screen. To scroll up or down the listing, use the up or down arrows on the keyboard. The disassembly will not scroll above the byte that the edit cursor was on and will not proceed beyond the end of the sector. Scrolling will occur in increments of eight lines. CTRL P will dump the screen to a printer if desired.

MOVEMENT BETWEEN SECTORS

t

When in the command mode the cursor movement keys allow

you to move from one sector to the next. The right and left

arrow keys will move the sector cursor right and left. This

allows you to display any sector in that track. The u p and

r

down arrow keys moves the Edit display screen between

i

tracks. If the track is in memory that track will b e displayed,

otherwise, that track will be skipped and the next track

present will be displayed. If the cursor happens to rest upon

a sector which is not in memory, the sector data window will

be blank. Sectors which have an x under them cannot be

viewed. This is because these sectors are inaccessable to a

normal disk dirve. As you move from sector to sector, the

track, sector, and composite numbers are automatically

updated.

CLEAR TRACK FROM BUFFER

The CLEAR key will delete a n entire track from memory. The next track will then b e displayed. The memory indicator will automatically b e incremented reflecting the deletion. If you wish to delete all tracks from memory, sim ply holding down the CLEAR key will do the job. Pressing RESET also clears tracks from memory, but it sets all parameters to their default values.

THE EDITOR

CLEAR SECTOR FROM BUFFER

The DELETE key will delete the sector currently displayed.

If n o sector is being displayed, a beep will sound to indicate that there is nothing to delete. If a write occurs, that sector's data will not be written, however, the sector header will be put o n the diskette (if formatting is on). Deleting a sector simply erases the data and does not modify the track layout.

TRANSFERRING SECTORS

Typing an H will copy the sector being displayed into a hold buffer. Pressing the INSERT key will copy the buffer to the sector the cursor is currently on. If a sector is being displayed, the new data will replace the old. If the sector was originally empty, the new data will b e inserted. NOTE: All disk I/O use the same buffer so the data held will be lost.

CREATING BAD SECTORS

When a sector is being displayed you can cause that sector to be bad by pressing the B . When you do this, only a flag is changed so you must write the entire track in order for the sectors to be written as bad. If there is no data in the sector, the sector will not be written. Thus that sector will not be bad on the track. ONLY SECTORS ACTUALLY WRITTEN WILL B E BAD (if they were selected to be bad). There are seven types of bad sectors possible using this method (see Figure 4). There are three flags that can flag a bad sector. Any combination of these three flags can be set by pressing B .

The symbol under the sector number will cycte through all combinations of bad sectors plus one good sector. The reason for having several types of bad sectors is that the three flags can each be read and examined on an unmodified disk drive.

23

THE EDITOR

	SYMBOL
	BIT 6
	BIT 5
	BIT 3
	BIT 3: CRC

	r
	CLR
	SET
	CLR
	error bit.

	1
	SET
	CLR
	CLR
	

	T
	SET
	SET
	GLR
	BIT 5: Data

type flag

	
	GLR
	GLR
	SET
	gi_

	
	CLR
	SET
	SET
	

	
	SET
	CLR
	SET
	BIT 6: Data

type flag

	
	SET
	SET
	SET
	n2.

	blank
	GLR
	GLR
	GL R
	

I

FIGURE 4 ‑ Types of Bad Sector symbols

7

When you press the B key, the symbols cycle through in

the order as shown above. Only the last entry is a good

E

sector.

NOTE: These bit numbers refer to the status byte returned

r

when executing a STATUS COMMAND, not the 1/0 status

returned after the read.

CUSTOM FORMA TTER

The Custom Formatter allows you to create your own sector layouts and format a range of tracks using your own layout. You can create any sequence of sector numbers you desire. The only restriction is that only sectors with numbers between land 18 can be read.

To enter the Formatter type F . The Form ater has its own screen layout which allows you to set the formatting parameters (except for the range) in which you would like to format. Thus, before entering the formatter, you should select the range of tracks to format from the EDITOR.

THE EDITOR

FIGURE 5 ‑ FORMATTER TRACK LAYOUT

i

The S E row contains the sector numbers which will be

placed in the headers of the track. The LN row contains the

number of bytes that will be in the sector data and the FL

row contains the data fill byte that will go into that particular

sector Fill bytes of 1 to 8 must not be used as these bytes

have special significancetothe disk drive F DC circuit during

formatting. Sector $03, for example, will only contain $40

bytes (64 decimal) and if read, will return a bad status.

Sector $05 will contain the normal number of bytes, $80 (128
x

decimal) but will be filled with all $1A. There are two tables

of twelve sectors each in the formatter screen layout page.

They should be considered sequential (there wasn't enough

room to fit 2 4 sectors o n one row). The table below the

sector tables contains the gap length bytes.

Because a track is only so long, a limited number of bytes

can be placed on a track. After the # is the current number

of bytes the formatter has calculated your form at will use on

the track. This number must remain between $B C O and

$ C B O for your format to be reliable.

25

THE EDITOR

All editing changes in the formatter will remain intact until you reboot the SCAN‑IT! diskette. N o defaults are stored back in this table. Therefore, you can go back and forth between the edit page and the format page without loss of the new format.

The commands used in the Formatter are:

.,‑

: Move cursor left one sector (or gap size

value).

‑r.

: Move cursor right one sector (or gap size

value).

Move cursor u p one parameter field (i.e. FL‑ LN‑ SE‑ gap valuesFL ...).

Move cursor down one parameter field.

DELETE :
Delete sector cursor is on or if the cursor is past the last sector, delete the last sector.

INSERT :
Insert a sector before the sector that the cursor is on.

CLEAR : Clear entire format (start from scratch).

xy

:
Hex entry overwrites what is currently

display a d.

ESC

:
Exit; go back to the Edit screen.

W

:
Format the range of tracks(R:x,y) using

the format created.

ADDRESS CHANGING

The address at which the sector begins may be changed by pressing the L key. Answer the prompt by entering the new address in hexadecimal. This address is used only as a reference and does not physically relocate the buffer contents.

THE EDITOR

INSERTING CUSTOM FORMAT

Pressing the I key allows the insertion of custom formats from the Form atterpageinto a range of tracks(Rxx, y).

The old tracks (if any) will be replaced. N O SECTOR ~ ATA WILL TRANSFER. To insert data in the new sectors, you must use the H and INSERT keys.

MOVING TRACKS

Tracks can be moved (but not duplicated) by pressing the N key. The track currently displayed will be renumbered to a new track number that you enter. The track currently at the destination spot will be deleted and the track you are on will be deleted from its current place and be moved to the new location.

TRACK MAPPER

Pressing an M is used for entering the M apper page. This function will allow you to examine the format of individual tracks. The most significant function of this command is to allow you to determine the gap size between successive sectors.

The S E is the sector number that originates from the sector header (referto Figure 6). the T R is the track number as found in the sector header, and the LN is the sector length byte. For more information on these values, read the chapter on Disk Formatting Theory. The TI is the amount of time between that sector and the succeeding sector in in its of 2048 (decimal) microseconds. There are about 100(decim al) units of tim a on a track, so the sum of these numbers should be about 100.

The S T is the status of the sector header read. Anything

other than a zero means that the sector can not ever be'

accessed. Also, any A4 read format mode will not return

the TI and S T values. This is because the A4 mode

goes for quantity as far as sectors go, while the A 6 mode

goes for quality of information per sector.

The last sector's TI (time) value will only be correct on an A6+ read format mode.

27

Figure 6 ‑ Track Map Layout

ENTER THE ARCHIVER

To enter the ARCHIVER from the EDITOR you must type an A . CAUTION: all data currently in the data buffers will b e lost as soon as the ARCHIVER command C is used. However, the data will not b e lost if you immediately return to the EDITOR.

28

3

THE CHIP

OPENING/CLOSING THE CHIP

Normally the CHIP program will already be open if the disk drive was booted correctly. However here may be some cases when you will want to open a drive. This is possible only if you are using the SCAN‑IT! CHIP. To open the CHIP program, type' O' when in the command mode. You will be prompted to enter the open code and optional drive number

''a

(the default is 1). The code for the CHIP program is 9999. If

you enter a wrong code or just press RETURN, the program

will close. Pressing ESC aborts this option.

TWO DRIVE COPYING

If you want to do a 2 drive copy using SCAN‑IT! and 2 Happy drives, you must first boot drive #1 with S CA N‑IT!, then physically switch it to drive #2. Next, boot your other drive as drive #1 with SCAN‑IT!

t

To do a 2 drive copy with a Happy drive and a CHIP drive, you should use the Happy as #1 and the CHIP as #2, then just open the CHIP drive as #2.

LOCKING THE CHIP

A special boot sector can be created which will lock the CHIP program either open or closed. This is a safeguard to prevent programs from looking for the CHIP program. T O create this sector, first copy track $ 2 7 from the ARCHIVER program disk to your special boot disk. Then use the editor and disasse m bier on sector $12 of track $27 (sector 720) and notice the LDA and STA codes. Location $019D is the LOCK FLAG. Storing $80 in this location locks the CHIP program open. Storing an $ FFlocksitclosed. Change the code and write it to disk. You will now have a special boot disk which will force the drive closed or open and the drive will stay that way until it is turned off.

r

‑

THE CHIP

The following paragraphs deal with several features of the CHIP program which are NOT fully supported in the ARCHIVER and EDITOR programs.

THE BOOT SECTOR

When the 810 disk drive is turned on with the CHIP modification installed, the head will first align itself o n track 0, then will immediately return to track $ 2 7 and read sector $ 2 D O (if prese nt).

The CHIP program checks the last two bytes of the sector and compares them to $4A, $2 5 (or J % in ASCII). If the last two bytes are a $ 4A and $ 2 5, then the program control will be transferred to the sector data for execution O n the SCAN‑IT! diskette, the boot sector willstore a $80 in $195 which will open the drive. It also stores a $02 in $191 which will make the drive shut offone second after it was last accessed. A return is then executed which brings the CHIP program back to its warm entry.

MOTOR OFF DELAY

There are two ways to change the motor turn off delay. The first is to boot a boot sector when you turn on the drive. The other method is to use a built in command which does this automatically. In the

Appendix there is a BASIC program which first opens the chip and then adjusts its motor shutdown delay time.

LOCKING FORMAT/WRITE/OPEN

The CHIP program contains a variable within its memory which allows the opening of the chip and of various write type commands. This feature will probabIe NEVER NEED TO BE USED! However, just in case, location $19 D contains the needed information that will TOTALLY lock the chip from outside mischief. The modifying of $19D would normally be done in the boot sector, which you would need to write.

MACHINE LANGUAGE INTERFACE

The CHIP program can allow user programs to be transferred to and executed within the data buffer inside of the disk drive. This allows for even more flexibility to deal with unforseen situations, thus the program is truly expandable.

30

DISK FORMATTING THEORY

AN OVERVIEW

The Atari disk drive is a n intelligent drive which means it is just another computer capable of reading and writing diskettes and relaying the information to and from the main co mp uter. The SCAN‑IT! chip program is just a program much like the Atari OS that adds a wide variety of functions to the disk drive. A description of the commands understood by ROM C and the operation of the SIO is given in the Atari OS manual so it will not be repeated here.

A powerful feature of the SCAN‑IT! chip over the standard disk drive ROM C is its a bilit to create custom formats and successfully write (and read~sectors of these formats. To use the ARCHIVER and EDITOR progra ms to their fullest, so m e basics should be understood. In this chapter the very basics will be presented, and gradually, the specifics of the track layout and protection schemes will be dealt with.

For the remainder of this (chapter, only the workings of the disk drive and the chip program will be considered. It is assumed that the user is already familiar with the theory of communication between the computer and the disk drive.

DISKETTE STRUCTURE

A diskette is composed of a thin magnetic disk covered by an outer rigid cover (usually black). The outer cover (or jacket) has an oval open area on both sides exposing the disk surface to the drive read/write head. As the diskette spins about its central hub while inside the drive, the read/write head hovers over the jacket oval opening and reads the disk surface much like a cassette recorder would.

The diskette is electronically divided into 4 0 tracks. A track is a ring about the center of the diskette. The disk drive's head can be positioned precisely over any one of the 40 tracks, thus data can be sequentially read in as the disk surface spins underneath the head.

The track data magnetic fields are converted into electric pulses which are fed to the F D C (floppy disk controller). The F DC is the interface between the read/write head and the drive's microprocessor. The F D C is responsible for Interpreting and processing commands from the microprocessor. The F D C performs all sector searches and

r​

DISK FORMATTING THEORY

is an intermediary o n all sector data transfers between the microprocessor and the physical disk surface.

A track is normally divided into 18 sequential sectors of $ 8 0 (128) bytes of data each. The 1050 enhanced density has 27 sequential sectors of 128 bytes. Protection schemes deal with the sector in one form or another so the rest of this chapter will deal explicitly with the sector.

THE BASICS OF A SECTOR

A sector has two parts to it; the header and the data.

Because the track is circular, there is no way to distinguish the beginning of a track fro m the middle, thus, a sector needs to b e able to identify itself to the controller. This is the purpose of the sector header. These sector headers are written during formatting so the sector can be identified upon subsequent reading and writing to and from the sector.

Figure 7 shows the typical Atari disk drive sector/track layout format and the following paragraphs describe the various contents that make u p the sectors.

INDEX AM

GAP 10 TRACK 1NpE LECTOR LECTOR CRC CRC OAP DATA DATA CRC CRC 6A1

3

AM NUMBER Nll1~INER NUMBER NUMBER 1
2
•
JW
FIELD
1
t
5

TRACK NlM16ER!

r

ism‑till

I `78tTE dIC
Tula GIC

~RtR1TTEN

1M11TTEN

(NOT USED

ONfORMAT

AFT

ON $pot

SECTOR NUMBER

F STS tECT~

1*01‑:Tn

W ‑ am

oi•su

m ‑ una

FIGURE 7‑SECTOR/TRACK FORMAT

32

	
	~-OOwLETE SECTOII-81i
	

	GAP

1
	FC
	GAP

2
	OAP

7
	10

ftELO t
	OAP

•
	DATA

ftELD 1
	GAP

5
	GAP

3
	ID

FIELD 2
	GAP

•
	DATA

FIELD
	OA1

S
	DATA

	
	
	
	
	
	
	
	
	
	
	
	
	
	FIELD

a

DISK FORMATTING THEORY

TRACK LAYOUT/FORMAT

Disk formatting is accomplished by the track write command.

Each byte for the entire track must be provided for proper formatting including the gaps as well.

The F D C requests each byte in turn and places it directly onto the surface of the diskette. However, there are ex c eptio ns to the rule. IF data bytes $ F 6 through $ F E are fed to the FD C, it recognizes these as special control bytes and takes appropriate action. The byte sequence in Figure 7.

Gap size restrictions:

a

GAP 1 :
This is always 255 ($ff) bytes and may be over written by the last sector on the track. This is to ensure that no garbage remains between the last sector and the first.

GAP 2 :

(Post Index A M gap) This gap should be at

least one (1) byte.

GAP 3 :

(Pre ID A M gap) This gap should be at least

one (1) byte.

GAP 4 :

(Post ID CRC gap) This gap must be $11

(17) bytes in length.

GAP 5 :
(Post DATA CRC gap) This gap should be at least one, however, in practice, it should be over 9 bytes long. This is to protect the next sector header form being overwritten.

THE READ COMMAND

When the processor issues the read command to the F D C, a search for the sector header begins. The FD C reads the headers of the sectors it finds and compare; the sector number and the track number to those given by the processor. If the test fails, the search continues. Next, the CRC is checked for validity; if not correct, the search continues. If all is correct, the F D C begins searching for the data AM. If found within 2 8 bytes, the sector is read byte by byte and is transferred to the processor. Finally, the CRC is checked for validity at the end. The CRC status error bit is

r​

DISK FORMATTING THEORY

set accordingly. Also, the type of data A M byte will determine the status' of bits 5 and 6 of the status register. If the sector is never found, ie.IDfields don't match, bit 4 of the status is set, and the processor (chip) will reposition the head in hope that somehow the head had gotten over the wrong track and try again.

THE WRITE COMMAND

This works identically to the read command except that once the sector has been located,a write occurs. NOTE: The write requiresthat$11(17) gap bytes be between the sector header and the data. Also, the data A M bytes' value depends upon the last two bits of the write command byte. O n three of the four possibilities, the processor will interpret the sector as 'bad.

LOGIC SEEKING READ/WRITE COMMANDS

These are the read and write commands that are used for double sectors. The CHIP program will first compare the sectorsequenceitcontainsto what it finds on the diskette.

When itsyncronizes itself to the sequence, the write or read function described in the two sections above will take place.

The CHIP program is able to get the sector headers through a read address command (of the F D C) which returns the six bytes contained inthe sector header (track,.,., CRC bytes).

READ FORMAT COMMANDS

Using the method described above, the sector sequence can be fetched. On the A+ modes, the headers are continuously read for slightly more than one revolution. After this, the sector numbers are compared o n the next revolution and the first sequence is cropped to agree with what it finds the second time through. The Amodes read for about one revolution but no double check is made.

34

DISK FORMATTING THEORY

SIO SPEED RESTRICTIONS

The disk drives' processor (and therefore the F D C)receives a full sector of data every 1118 of a disk revolution. This is about .0115 seconds, however, the serial transfer between the computer and the disk drive is considerably slower, (about .09 second). Since the diskette is turning at 288 RPM (or 4.8 rp m s), if you d o a little math, you will find that only two sectors can b e read in one disk revolution. This is the concept behind fast formats.

~IB888888;888808888~

Figure 8

Figure 8 shows the standard format used in the CHIP program as well as the Atari ROM C. Notice that consecutive numbered sectors are nine apart within the sequence and ten apart when crossing the end of the track gap (which is about half a sector in length). If you are thinking ahead, you may realize that even this format can be im proved upon.

~IBB~BBBBBBBBBBBBBBB

Figure g

In Figure 9, the sequential sectors are nine apart except for the end of the track gap, in which case they are eight apart. Here, that gap is large enough such that the eight can be read before the head passes it by (or rather it passes the head by). This format is the fastest format possible o n the disk driv e.

35

DISK FORMATTING THEORY

DOUBLE SECTORS

Suppose that two sectors had the same number. If you just randomly went and read that numbered sector, you could get two different sets of data. This process can b e precisely controlled by first reading the sector nine (9) places before the one you really wish to read, and then read the one you want.

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

5 4 6 5 7 6 8 7 9 8 2 9 2 1 3 2 4 3

a b c d e f g h i j k I m n o p q r

The above sector sequence contains 18 unique sectors but 8 numbers are duplicated. This is a format used in the protection of some software houses. suppose you read sectors in the following order:

12, 4, 9, 5, 3, 9

The actual physical sectors would b e as follows:

k, b, I, d, o, i

You will notice that the two reads of sector 9 did not yield the same result, thus this becomes a valid protection scheme.

This type of protection can ONLY b e created with a drive modification (N CHIP or Happy enhancement).

This idea can easily be expanded upon to include triple or q u adro ple sectors. HOWEVER, the ability to c o nsistantly and reliably get the same results gets hander with the more duplicate numbered sectors you have. Another applicationis to create more than 18 sectors and number two with the same number. Previously, this was difficult to grasp and realize the feasibility of such a scheme, however, now with the EDITOR, you may create as many as 24 sectors on a track, but because there is only so much room, many sectors must be cut short (and thus bad sectors). A word of warning: the data in short sectors is not always reliable and timing between sectors is not the same. timing becomes critical in importance and slight variationsin speed may have adverse effects o n protections.

DISK FORMATTING THEORY

BAD SECTORS

The ability to write bad sectors has been around for quite a

while. It was the first type of true protection. It is possible

to create two types of bad sectors with a standard disk drive.

The first is a CRC error and the second is a missing sector.

The CRC error bad sectors were created by one of two

methods; the first being slo wing down the drive, and the

second being the tape method. The missing sector was

created by writing to the proceeding sector at a high RPM,

thus causing the end of the first sector to overwrite the

header of the next.

Creating bad sectors is an easy and valuable function of the

CHIP program. To create a missing sector, form at the track

without that sector number. T o create CRC bad sectors,

special operations must be performed by the CHIP program

while writing the sector. These functions are all auto m atic

and easy using SCAN‑IT!, however, a brief description of each

type will be given in the next paragraphs.

CRC ERROR SECTORS

The CRC bytes are a sophisticated checksum of the

proceeding data in a sector. If these bytes do not agree with

the data read from the sector, a CRC error will occur. This

type of bad sector is simply created b y stopping the write

process in midstream, thereby keeping the old CRC yet

allowing new data. The status CRC error bit (bit 3 of the

status) will reflect the error after the read. The CHIP

program also carries this process a step furore. You can

specify the number of bytes actually written when creating a

bad sector by putting the number of bytes to be written in the

last byte of the sector data. After th a last byte is written, the

process stops, and on subsequent reads of that sector, the

status will reflect a CRC error (on the B‑ mode only).

r

DATA TYPE FLAGS

Another way to create perfectly good sectors with a bad

status is b y setting data type lags in the write (F D C write)

t

command. When this is done, the data A M marks bits 0 and 1

are changed to reflect the type of data. Although these

sectors are perfectly good, the CHIP program and the ROM C

37

DISK FORMATTING THEORY

will take these sectors as being bad and return an error. Bits 5 and 6 of the status will reflect the results of the read of these types of sectors. With two bits, four combinations can be made; only one of which is a perfectly good sector.

In all there are nine types of sectors: Only one of which is good. The missing sector is another type and the remaining seven are created by combinations of the data type flags and the CRC error bit.

STATUS

The bits referred to as being status bits 3‑6 are not automatically had after reading a sector. The meaning of the SIO status is as follows:

$90

:
A bad sector of ANY type was encountered

upon the read.

$8A

:
Tim eout. The sector was missing and the

drive did not respond in tim e.

$813

:
Device N A K. related to above. If the drive

doesn't respond in time, the SIO tries again.

$01

A good read/write.

The $90 should usually be returned on bad sectors, however, the timeout value of the disk interface routine is borderline thus causing the errors $8A ‑ $8 C. A $90 can be insured by setting the timeout value higher and using the SIOinstead.

The status bits of the F D C are received by executing an S (status) command after reading the sector in question. The S command will return 4 bytes of which only two are really meaningful and only the second is described here. For reference to the others, see chapter 5 (Diskette Handler Commands) of the Atari O S manual. After a read, the hardware status bits are reflected as in figure 10.

38

DISK FORMATTING THEORY

BIT
READ
WRITE
NOTES

7
Not ready
Not ready
always CLR

6
Data type
Write protect

5
D Ata type (a)
Write fault

4
Record not found Record not found (sector missing)

3
CRC error
CRC error

2
Lost data
Lost data
shouldn't happen

1
DRQ
DRQ
always CLR

0
BUSY
BUSY
always CLR

(a)
: can be reliably used

NOTE: All bits are returned in low‑true form (i.e., a good sector returns a $ F F status).

FIGURE 10

USEFUL HINTS

This chapter will deal with tracks and useful things you may do using SCAN‑IT! . This chapter is specifically designed to help the user back up a program that wouldn't work when the defaults were used.

CYCLIC FORMATS

Consider the following formula:

000000000000000000

123456789123456789

If you write out data using this format you may find that you get a verify error, why? Since all the sectors are doubles, the logic seeking commands will be used, but now how does the logic seeking command locate the sector? It can't because it has no way of distinguishing the first half from the second. The solution to this problem is to turn the logic seeking commands OFF (L‑) and the compaction OFF (C‑). Also, you should turn the verify off(V‑). this will cause each sector to be read in correctly because two sectors will b e fetched per revolution and the sectors will automatically be written correctly.

2008 MORE SECTORS

The ARCHIVER can only handle reading and writing a maximum of 19 sectors, however, the EDITOR can handle 24. If a diskette does contain more than 2 0 sectors, the custom

formatter must be used and some sectors must be shortened.

.

.

Notice that 20 full sectors can be written if you set all gaps (except the POST ID C R C) to one (1). However, if more than 20 sectors are being used, you must do some intelligent guessing on which sectors are shortened and go from there. Once you made the format, writing the sectors is easy. The sector sequences must match and the formatting flag must be turned to a B‑ and CRC error bad sector symbols must be created under the sector number (the B command in the EDITOR). Next the sector data must be modified so that the last byte in the bad sectors is the actual number of bytes to

be written to the sector. Finally, you write the track and hope

"

it works. Otherwise, try again.

r

41

r

USEFUL HINTS

GARBAGE TRACKS

Occasionally, you may run into tracks that return a read format error, this is because the tracrs are badly garbled and the second pass does not return he same results as the first pass. This will only happen on unformatted tracks in which case random numbers appear as the sector numbers. To solve this problem, switch to a AS‑ read format mode.

Many software companies insist on checking missing sectors, thus the loud noises as the program boots. Because most software companies do not check the status after such a read, you may reptace their format with a new one that contains the required sectors and the ones that made the noise. When the new format has been created, you must insert bad sectors. The easiest way to do this is to position over the new sector and press the B (first you must get data into that sector). When you have selected all sectors that need to be bad, then write the sectors out, and usually the program will work.

DRIVE SPEED

The CHIP, and heavily protected programs in general, require an accurate drive speed. Make sure your speed does not exceed 288; slightly slower is acceptable, but no faster than 288!

NOTE: Turning a n 810 disk drive off with the disk in place usually writes bad sectors on track $27 (or wherever the head was located when the drive was turned off) and will eventually destroy the program on the disk..

42

IAPPENDIX

HEX NUMBR CONVERSIONS

DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX DECIMAL HEX

0

0
61
3D
122
7A
183
87
244
F4

1

1
62
3E
123
7B
184
B8
245
F5

2

2
63
3F
124
7C
185
89
246
F6

3

3
64
40
125
7D
186
BA
247
F7

4

4
65
41
126
7E
187
BB
248
F8

5

5
66
42
127
7F
188
BC
249
F9

6

6
67
43
128
80
189
BD
250
FA

7

7
68
44
129
81
190
BE
251
F13

8

8
69
45
130
82
191
BF
252
FC

9

9
70
46
131
83
192
CO
253
FD

10

A
71
47
132
84
193
C1
254
FE

11

B
72
48
133
85
194
C2
255
FF

12

C
73
49
134
86
195
C3

13

D
74
4A
135
87
196
C4

14

E
75
4B
136
88
197
C5

15

F
76
4C
137
89
198
C6

16

10
77
4D
138
8A
199
C7

17

11
78
4E
139
8B
200
C8

18

12
79
4F
140
8C
201
C9

19

13
80
50
141
8D
202
CA

20

14
81
51
142
8E
203
CB

21

15
82
52
143
8F
203
CC

22

16
83
53
144
90
205
C D

23

17
84
54
145
91
206
CE

24

18
85
55
146
92
207
CF

25

19
86
56
147
93
208
DO

26

1A
87
57
148
94
209
D1

27

18
88
58
149
95
210
D2

28

1C
89
59
150
96
211
D3

29

1D
90
5A
151
97
212
D4

30

1E
91
5B
152
98
213
D5

31

1F
92
5C
153
99
214
D6

32

20
93
SD
154
9A
215
D7

33

21
94
5E
155
9B
216
D8

34

22
95
5F
156
9C
217
D9

35

23
96
60
157
9D
218
DA

36

24
97
61
158
9E
219
DB

37

25
98
62
159
9F
220
DC

38

26
99
63
160
AO
221
DD

39

27
100
64
161
A1
222
DE

40

28
101
65
162
A2
223
DF

41

29
102
66
163
A3
224
EO

42

2A
103
67
164
A4
225
E1

43

2B
104
68
165
AS
226
E2

44

2C
105
69
166
A6
227
E3

45

2D
106
6A
167
A7
228
E4

46

2E
107
6B
168
A8
229
E5

47

2F
108
6C
169
A9
230
E6

48

30
109
6D
170
AA
231
E7

49

31
110
6E
171
AB
232
E8

50

32
111
6F
172
AC
233
E9
w

51

33
112
70
173
A D
234
EA

52

34
113
71
174
AE
235
EB

53

35
114
72
175
AF
236
EC

54

36
115
73
176
BO
237
ED

55

37
116
74
177
B1
238
EE

56

38
117
75
178
B2
239
EF

57

39
118
76
179
B3
240
FO

58

3A
119
77
180
84
241
F1
;

59

3B
120
78
181
B5
242
F2

60

3C
121
79
182
B6
243
F3

S

43

APPENDIX

ARCHIVER COMMAND SUMMARY

C ‑

Copy

START :start reading/writing

OPTION :halt

E

‑
Enter EDITOR

N

‑
Number of copies

xy

:enter (HEX)

O ‑

Open the CHIP

wxyz,d :wxyzisthe code, disthe drive

P

‑
Parameters

.t‑

:curs or left

‑‑~

:curs or right

R E T

:select parameter

ESC

:anytim a will abort

44

APPENDIX

EDITOR COMMAND SUMMARY

A

‑
ARCHIVER

B

‑
Bad sector select

D

‑
Disassemble

E

‑
Enter edit mode

:cursorup one line

:cursor down one line

cursor left

‑‑~

:cursor right

D EL

:delete byte cursor is on

INS

:insert at cursor

C L R

:fill

H

:home cursor

RET

beginning of line

=

‑
Formatter cursor up

cursor down

.f‑.

:cursor left

cursor right

DEL

:delete sector

INS

:insert sector

C L R

:delete all sectors

W

:write format

H

‑
Hold sector

‑

Insert format

_

‑
Address change

M

‑
Enter m apper ,

xy

:track number

V

‑
Renumber current track

xy

:new number

0

‑
Open CHIP

wxyz,d

:Chip code + wxyz,drive = d

r

45

APPENDIX

EDITOR

COMMAND SUMMARY (cont'd)

P

‑
Parameter

: cursor left

‑r

:cursor right

R E T

:select parameter

R

‑
Read tracks

OPTION :halt

START

begin/continue

W

‑
Write tracks

OPTION : halt

START

begin/continue

C L R ‑ Delete track

DEL ‑

Delete sector

INS ‑

Insert sector

ESC

:return to command mode

46

APPENDIX

CHANGING DRIVE MOTOR SHUTDOWN DELAY

10 DIM A $(4)

20?"W HAT DRIVE DO YOU WANT TO OPEN";

30 INPUT DRIVE :IF DRIVE <1 OR DRIVE>4 THEN 20

40?"W HAT IS THAT DRIVE'S CHIP ID CODE";

50 INPUT A$:IFLEN(A$)<4THEN ?"PLEASE USE 4

DIGITS." :G OTO 40

60 C=0 :F O R A=l T O 4 :B= A S C(A$(A,A))‑48 :B= B‑((B>9)'7)

:C=C'16+B :NEXT A

70 POKE 768,49

80 POKE 769,DRIVE

90 POKE 770,79

100 POKE 771,0

110 POKE 7 74,15

120 C HI=IN T(C/265):C L O= C‑C HI'256

130 POKE 778,C L O :POKE 779,C HI

140 RESTORE :FOR A=l T O 4 :READ B :A$(A,A)= C H R $(B)

:NEXT A

150 X= U S R(A D R(A$))

1601FPEEK(771)<>1THEN?"ERROR, TRY AGAIN." :GOTO

20

170?"THE CHIP WAS OPENED SUCCESSFULLY."

230 POKE 770,78

240 POKE 771,0

260?:?"HOW MANY UNITS OF 1/2 SECONDS DO YOU

WANT TO SET THE DRIVE SHUTDOWN TO";

2701N PUT TIME :IF TIM E<1 O R TIME >255 THEN 260

280 POKE 778,TIM E

290 POKE 779,0

300 X= U S R(A D R(A$))

3101FPEEK(771)<>1THEN?"THE CHIP IS NOT OPEN FOR

CHANGE. PLEASE OPEN IT AND TRY AGAIN.":RUN

320?:?"THE DRIVE AS SUCCESSFULLY MODIFIED."

330 DATA 104,76,89,228

APPENDIX

ERROR MESSAGES

FORMAT ERROR:

After formatting a track, the verify found the track to be bad. Try again and if it persists, the diskette is likely bad.

READ FORMAT ERROR:

The CHIP was unccessful at getting the sector sequence from the diskette. If you suspect more than 21 sectors, use a A 4 mode, otherwise use a Ax

mode.

READ/W RITE ERROR (STD):

Sector could not be read or written. This is a standard read/write co m and and should never happen unless you have a n unreliable drive.

READ WRITE ERROR (POS):

A logic seeking read/write command (sector) failed.

Could b e a format mismatch problem or a n error as in above.

TOO MANY SECTORS:

More than 25 sectors was encountered on the read format. Try piecing the track together b y using A6

read mode repeatedly.

INPUT ERROR:

Invalid entry, try again, or consult appropriate sections regarding the particular function you tried.

48

APPENDIX

F,

ERROR MESSAGES (cont'd)

:

VERIFY ERROR:

The verify pass failed to yield the same results as the d ata writte n. Retry the write process.

OPENING ERROR:

You entered the wrong code or drive of your CHIP when using the O command. Retry the open.

MEMORY FULL:

N o more room to store the data o n reads, inserts, etc. Write some of what you have back out to the disk and delete what is not needed.

I

49

