PC Atari Emulator

Windows Version

Version 2.3

Users Manual

John Dullea

May, 2000

johnpcae@yahoo.com

Contents

2Contents

1 What is PCAE?
4
System Requirements
4
Features
4
2 Setting It Up
6
Installing the Software
6
Setting Up Folders
6
Setting Preferences
6
Setting Custom Colors
7
Setting Up Controllers (Interfaces and Capabilities)
7
3 Playing Games
9
The Command Line
9
The Main Window
9
The Game Menu
9
Other Main Menu Items
10
The Game Profile File
11
What is Bankswitching?
11
When the Game Is Running
12
4 Development Tools
14
Debugger Layout
15
Entering one or more bytes of data
15
Stopping execution at a certain scan line
15
Changing a 6507 register’s contents
15
Saving to Disk
16
Breaking On an Equation/Expression
16
The Disassembler
17
5 Troubleshooting
18
The emulator runs VERY slowly
18
The emulator runs more slowly when I use joysticks than when I use the keyboard
18
The emulator runs much slower than the DOS version
18
The emulator runs, but there is no sound
18
The emulator runs too fast; games are unplayable
19
The menu doesn’t show any games to run
19
The emulator works on one computer, but one of the above problems arises when I copy it to another machine
19
When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately
19
One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen
19
I get an error message saying that a file is missing
19
My game controller doesn’t work or isn’t detected
20
I start this game, and it displays, but the next screen is “frozen”
20
6 Acknowledgements
21
7 Disclaimer
22

1 What is PCAE?

The PC Atari Emulator, or PCAE, is an MS-DOS program designed to emulate the famous Atari 2600 Video Computer System on PC’s compatible with the Intel 80486 CPU or better. It accomplishes this with an emulation engine that is written almost entirely in assembly language, with extra features written in Borland Delphi 5.0.

System Requirements

OS:
Microsoft Windows 95 or 98, using DirectX 5.

CPU:
Intel 80486 or greater, for the BSWAP instruction (though a Pentium-160 or greater is highly recommended for performance purposes)

RAM:
32Mb or greater recommended

Other:
A 4-button joystick is strongly recommended, ESPECIALLY a Gravis GamePad or Gravis GrIP controller. Two joysticks are strongly recommended for two-player games To use joysticks to emulate paddles two and three, analog joysticks are required.

Sound:
Any sound card that conforms to DirectSound.

Features

· Very fast emulation due to the Pentium-optimized assembly implementation

· Full collision checking

· One paddle is emulated using the mouse, and two other paddles can be emulated using analog joysticks.

· Emulates the Atari Video Touch Pad (for Star Raiders) and Atari Keyboard Controllers.

· Emulates Atari Indy 500 Driving Controllers (for Indy 500) and CBS Booster-Grip (for Omega Race)

· Support for two joysticks (four-button joysticks can control select, reset, and both players' fire buttons in all games)

· Built-in menu allows easy selection of games

· Support for a game profile file that contains all the cartridge types and controller settings for every game in your library

· On-line help is available in the integrated debugger

· Built in interactive debugger that supports bank-switched images

· Built-in disassmebler for images 4k or smaller, as well as many 8k, 16k, Super-Chip, and CBS games.

· Support for Atari 8k, Atari 16k, Super-chip, Parker Brothers, CBS RAM-Plus, TigerVision, M-Network, and Pitfall II bank switched cartridges

· Supports 64k cartridges containing 32 independent 2k games (32-in-1 games)

· Supports 64k Brazilian Megaboy cartridge

· Supports extended Super-chip and TigerVision bankswitching specifications

· Support of Starpath Supercharger single-load and multi-load games

· Sound emulation using Ron Fries’ TIA Emulation Library on 100% Sound Blaster-compatible sound cards

· Emulation speed can be slowed down to a user-selectable number of frames per second for especially fast computers

· Support for higher resolutions for compatibility with PAL games and nonstandard NTSC games

· Support for multiple DirectInput controllers, inlcluding USB controllers

· Supports the PAL graphics palette in addition to the NTSC palette

· Built-in vertical autocentering for different games, which can be disabled by the user

· Ability to capture the screen to Windows .BMP files

· Ability to save a game in progress to disk and restore it later

· Accurate emulation of Pitfall II music

· Same emulation engine as PCAE 2.3 for MS-DOS

· In the debugger, hitting the “+“ (plus) key toggles display of a crosshair mark showing the current CRT beam position when the game screen has been displayed with the space bar.

· In the debugger, hitting the “-“ (plus) key shows the positions of the graphics objects when the game screen has been displayed with the space bar.

· Main game menu can be configured to display filename and extension, filename only, or real game title

· Games can be highlighted by game type, alphabetically, or by alternating rows

· Game menu colors can be changed for alternating modes

· Resizeable game menu and debugger

· Right-clicking on a game in the game menu displays an information screen showing a screen shot, box scan, and cartridge scan, if available.

· Option for slightly more realistic Pitfall II music

· User-selectable folders for cartridge files, screen shots, cart scans, and box scans.

· Debugger supports breakpoint on symbolic equation

· Controller functions are fully re-mappable

· Maintenance of profile settings for each individual game

2 Setting It Up

Installing the Software

Most likely you will acquire the emulator via a ZIP archive file that was either downloaded from somewhere or placed on a CD-ROM. The first thing to do is to create a new directory in which to place all the files contained in the archive file. For example, DOS users would type:

C> CD\

(move to the root directory

C> MD PCAEWIN

(create the new directory

C> CD\PCAEWIN

(move to the new directory

The next thing to do is to place all the files in the archive file into the new directory. There are a number of programs available for extracting a ZIP file, such as PKWare’s PKUNZIP for MS-DOS, or the shareware WINZIP for MS-Windows. Symantec’s Norton Navigator File Manager for Windows 95 is also a good choice. Using whichever method you choose, extract all the files contained in the ZIP archive into the new directory you just created.

Setting Up Folders

The first step after running PCAE is to set up the folders it uses. There are four folder settings:

· Game (ROM) folder

· Screen shot folder

· Box scan folder

· Cart scan folder

These folders must be different. Screen shots, box scans, and cart scans are displayed when one right-clicks on a game name in the game selection menu. The names of screen shots, box scans, and cart scans should match the filename of the game (ROM) file, with only the extension being different. PCAE supports Windows BMP and JPEG files. Folders are set in the preferences section, which can be accessed either from the main menu or the toolbar.

Setting Preferences

At this point it is a good idea to set all of your other preferences. Available options include:

· Menu color scheme

· Menu display scheme

· Menu colors (for all display schemes except “game type”)

· Folders (discussed above)

· Auto-centering (off by default)

· Realistic Pitfall II sound (on by default)

· Frame rate (60 fps by default)

· Game menu font

· Debugger/configuration menus font (Courier recommended)

· Emulate sound

A detailed description of some options lies below.

Auto-Centering
Toggle automatic vertical auto-centering (off by default)

File list color scheme
Highlight game files by game type, alphabetically, or alternate colors every 3, 4, 5, or 6 rows

File list display scheme
Display game files by: name + extension + 2, 3, or 4 spaces; name only + 2, 3, or 4 spaces; real title (flush left); or real title (centered)

Set frames per second
Limit the emulator to display a specific number of frames per second (e.g. 60 fps)

Realistic Pitfall II music
Attempts to re-create the “muddy” sound of Pitfall II music as heard on televisions by rounding off the corners of the square-wave music (on by default)

Setting Custom Colors

If you choose an alternating color scheme, you can change the foreground and background components of the two alternating colors. You can select any color that you can display in Windows for the four colors.

Setting Up Controllers (Interfaces and Capabilities)

Note to users of the MS-DOS version: the Interfaces… submenu from the main menu allows you to configure interfaces and capabilities exactly as they are done in the DOS version. If you are familiar with setting up interfaces and capabilities in the DOS version, you can probably skip this section.

Once setting your general preferences, the next step is to configure your interfaces. Interfaces are physical means by which you interface with your computer. Your mouse, keyboard, joystick, gamepad, etc. are all examples of interfaces. You have to tell PCAE how those interfaces will be translated to Atari 2600 functions. An example of configuring an interface would setting which keyboard key corresponds to the fire button on joystick 1. You can remap nearly every key on your keyboard, map mouse buttons, map mouse axes, or map just about any function of your game controller to an Atari 2600 function. Available Atari 2600 functions include joysticks, paddles, keyboard controllers, Video Touch Pad controllers, CBS Booster-Grip conrtollers, Indy 500 driving controllers, and console switches.

You configure interfaces by selecting Interfaces… Configure… from the main menu. A pop-up menu will appear, listing three choices: Mouse, Keyboard, and Digital. “Digital” refers to any game controller you may have connected, whether it is an analog joystick gamepad, or other controller. if you select “Digital”, you will be presented with another menu asking you choose which game controller you wish to configure.

Once you have decided what device you want to configure, you will be presented with an appropriate menu listing that device’s capabilities. Capabilities are those features that are particular to a given device. For example, a particular game controller has a certain number of buttons, analog axes, digital axes, etc. Mice have up to three buttons and two movement axes, and keyboards have (of course) all of their keys. For your device, select which capability you want to configure and decide what Atari 2600 function you wish it to map to. For example, button 5 of your game pad could be simultaneously mapped to the fire button of joystick 1, the fire button of paddle 1, the fire button of driving controller 1, and a button of the keyboard controller. This illustrates the point that a given capability can be mapped to multiple Atari 2600 functions. For each function, a check mark will appear showing you that it is mapped there.

When mapping game controller capabilities, PCAE simply numbers each capability. For example, if your gamepad has 10 buttons, PCAE will number each button from one to ten. For each capability (whether it be a button, hat, axis, or whatever), you can determine which one it is by manipulating it. For example, pressing a button when you are looking at the button list for your controller results in an asterisk (*) showing that that button has been depressed. Moving an axis or hat will display a rotating bar that shows which axis or hat is being moved. In that way you can visually determine which capabilities you are dealing with.

Once you have configured your interfaces, the final step is to enable them. PCAE uses a hierarchical order for interfaces; “Digital” takes highest priority, then “Keyboard”, and finally “Mouse”. This means that, for example, if a game controller button is mapped to a particular Atari 2600 function, and a keyboard key is mapped to the same function, and both interfaces are enabled, the keyboard key will have no effect. This is necessary to eliminate conflicts between interfaces. In the above example, disabling the Digital interface would allow the Keyboard interface to take over. However, you can have keyboard keys mapped to Atari 2600 functions that aren’t mapped in the Digital interface, and they will function. You can enable and disable interfaces at will without affecting the interface’s configuration (i.e. it won’t be lost).

Final note: right-clicking on a configuration menu closes it and moves to the next higher menu in the chain.

3 Playing Games

Once the software has been set up and the sound card is configured properly, you are ready to try the emulator with any games that you own. PCAE requires that all games have extensions of .BIN (for NTSC games) or .PAL (for PAL games).

The Command Line

PCAE (Windows version) only supports one command line argument, an optional game path:

PCAE [path]

path
path to a .BIN game directory, e.g. C:\CARTS

The Main Window

The main window is where games will be displayed when run. There is a toolbar that allows you to open a game file, set preferences, start emulation, stop emulation, reset cartridge (equivalent to turning power off and on), and control the Atari 2600 console switches. From the main menu you can also perform the same functions, as well as configure interfaces, enable interfaces, and select the video mode.

The Game Menu

The game menu is the area from which games can be loaded. It provides for easy selection of any game in the directory.

The menu consists of a text display showing all the .BIN and .PAL files detected in the directory. They will normally be displayed in color-coded fashion, with different colors denoting different file sizes:

black
2k and 4k

cyan
8k

yellow
16k

red
8,448-byte (or multiples thereof) Starpath Supercharger games

green
10,495-byte Pitfall II: Lost Caverns game

blue
all others

Files can be selected by using the cursor keys or the mouse to move the highlight bar to the desired file. The file size at the bottom will change to reflect the selected file.

Right-clicking on a particular game will display a pop-up information window that displays a screen shot, box scan, and cartridge scan if they are found in their respective folders (see chapter 2 for setting them up). Clicking anywhere on the window closes it, but you don’t have to close it to right-click on another game to view its information. Closing the game menu automatically closes the information window.

Once a desired file is selected, it can be played either by hitting the Enter key or double-clicking on it. If it is not listed in the profile file, a special bankswitching key might have to be pressed instead, depending on the type of game that it is:

If it listed in the game profile file
Enter / double-click

Standard 8k (not any other bankswitched scheme)
Enter / double-click

Standard 16k (not any other bankswitched scheme)
Enter / double-click

12k CBS RAM-Plus
Enter / double-click

16k or larger SuperChip
R

8k Parker Brothers
P

16k M-Network
M

Activision Decathlon or Robot Tank
A

8k or larger TigerVision
T

Pitfall II: Lost Caverns
2

32-in-1 game
3

Brazilian Megaboy game
G

Games that have the .BIN extension will use the NTSC screen palette by default; games with extension .PAL will default to the PAL screen palette.

A note about Pitfall II: Lost Caverns: this game, unlike all other Atari 2600 games, has a special chip that contains 2k of extra data in addition to the standard 8k. It also contains three random number generators and a three-channel square wave generator. To play Pitfall II on PCAE, the ROM file must be 10,495 bytes in size. The first 8k must be the standard 8k dump of the main ROM chip; the next 2048 bytes must consist of the 2k of extra data in the special chip, and the last 255 bytes must be read from one of the random number generators (the three random number generators each have a 255-byte cycle and produce the same values). Such a ROM file encompasses all the data that can be generated from the cartridge; PCAE is designed to automatically read whichever part is appropriate, depending on the addresses accessed.

Other Main Menu Items

In addition to general configuration, there are other main menu items used by PCAE. These involve rebuilding the profile file and controller settings for games that aren’t listed in the profile file. A description of the available functions is as follows:

Rebuild game profile
Automatically generate PCAE.PRO, the game profile file

Profile settings
Change profile settings for a game that has been loaded

Use joystick controllers
Set the program to emulate Atari joystick controllers

Use paddle controllers
Set the program to emulate Atari paddle controllers

Use keyboard controllers
Set the program to emulate Atari Keyboard Controllers

Use Indy 500 controllers
Set the program to emulate Atari Indy 500 Driving Controllers (used with Indy 500)

Use Video Touch Pad
Set the program to emulate Atari Video Touch Pad (used with Star Raiders)

Load game
Load save game from disk

Save game
Save game to disk

Save screen shot
Save a screen shot either to a JPEG or Windows BMP file. PCAE defaults to the screen shot folder and automatically chooses a file name matching the game file name (e.g. INDY500.BIN (INDY500.JPG).

Use debugger
Displays the built-in interactive debugger

Disassemble
Generate assembly disassembly of game file

Video
Select full-screen or windowed mode, reolution (useful for PAL and nonstandard NTSC games), and full-screen type

Note that the above controller settings are completely ignored if the game is listed in the profile file. Also, when changing profile settings for a particular game, those changes will not be saved to disk until the emulator has been exited.

Please note that save files contain most of the emulator’s memory contents, including the data stored in its game space. This means that save files will generally contain the same information as a game file, and should be treated the same as game files for copyright purposes.

The Game Profile File

The game profile file, PCAEWIN.PRO, is a text file the emulator can automatically generate that contains the game type, controller information, and title for each file in the game directory. It is intended to eliminate the need to memorize which bankswitching and controller keys are associated with which game, allowing all games to be played with the Enter key or by double-clicking on it. All Parker Brothers, M-Network, and TigerVision games cannot be automatically detected by the profile creation process, and must be referenced in the known game profile file. In addition, there may be other games that are not correctly identified and must be included in this file. The emulator has no way of autodetecting controller information for each game, and will thus give each game an “unknown type” controller code. This will result in games defaulting to joystick emulation

Each line of text in the known game profile file can be either a valid game reference, a remark, or a blank line. Valid game reference lines should contain the filename of a particular game, one or more spaces, a two-letter code describing the game type, one or more spaces, and a two-letter code describing the controller information. After the controller information, the game title may be entered into the profile file in double quotes. Titles must not themselves contain double quotes, and one or more spaces must separate the title and two-letter controller mnemonic. Remarks are not allowed on valid game reference lines. All remark lines should begin with a semicolon (;) as the first character (no leading spaces). The two-letter codes describing game types must be from the following list:

Standard 2k game
2K

Standard 4k game
4K

Standard Atari bankswitched 8k game
8K

Standard Atari bankswitched 16k game
16

Atari Super-chip game
SC

Parker Brothers 8k game
PB

M-Network 16k game
MN

Starpath Supercharger game
SP

CBS 12k RAM-Plus game
CB

TigerVision game
TV

Pitfall II: Lost Caverns
P2

Activision Robot Tank or Decathlon
AC

Unknown
??

Likewise, the two-letter controller codes are as follows:

Joystick
JY

Paddle
PD

Video Touch Pad
VT

Indy 500 Driving Controllers
DR

Keyboard Controllers
KB

Unknown
%%

What is Bankswitching?

Before discussing bankswitching, it is first necessary to briefly explain a little bit about the Atari 2600 architecture. The VCS uses a processor designated as the 6507, which is a limited version of the more popular 6502. The 6507 processor can address up to 8k bytes of memory. In the 2600, some of this memory area is used for hardware support (e.g. video and audio), as well as for a small amount of RAM in the console. Although much of the address space is unused, there is generally 4k available for game programs. It was not long before companies like Atari and Activision realized that 4k of ROM was not enough to produce more complex games, so they had to devise a way to access more memory even though the CPU in the system could not. They accomplished this with bankswitching—placing higher-capacity ROM chips in their cartridges but only letting the CPU “see” up to 4k of them at a time. For example, a bankswitched 8k game might only let the CPU see either the first 4k or the last 4k, but never both. The switch would be accomplished by special hardware that would detect any CPU access to special “hot” memory addresses, which the manufacturer would designate to the game programmers as areas for switching the bank.

Several game manufacturers used the bankswitching approach for making larger, more complex games, but they tended to use different game sizes and “hot” bankswitching addresses—they had different bankswitching schemes. Some would switch the entire 4k area at a time, others switched smaller 1k areas, and still others included extra RAM in their games. Since each of their cartridges contained specialized hardware to accomplish the bankswitching, there was no need for 2600 users to worry about which scheme was being used by which manufacturer; they simply had to plug the game in and turn the machine on. An emulator, however, does not have any specialized hardware to automatically detect a bankswitching type and accomplish it, so there has to be some way to notify it whether bankswitching is involved and what kind it is.

Regarding Pitfall II: Lost Caverns, the bankswitching idea was taken to an entirely new level. Not only does the game contain 8k of game code using somewhat standard bankswitching, as well as some RAM, it also contains an additional 2k of data accessible by a very special chip. Data can be accessed in standard, bit-reversed, or reversed-nybble formats, and can be “bracketed” such that only data in a certain range is accessible. In addition, it contains a three-channel square wave generator with adjustable phase, frequency, pulse width, and mixing attributes. Just like standard bankswitching, it is necessary to tell the emulator somehow that this game is selected so that it knows to emulate these functions.

When the Game Is Running

Hopefully at this point you have selected a game and are seeing it on the screen. It is recommended that the first games you try are small 2k and 4k games with no bankswitching issues, just to make sure the emulator is running correctly instead of possibly running a bankswitched game with the wrong game setting.

Once the game is visible, PCAE is actually emulating the game code in the file. Since your PC doesn’t have the six switches that are located on Atari 2600 consoles for playing a game, the emulator maps certain function keys to those switches. Just like on the actual console, you start by interacting with the game just as you would with a VCS unit—but with the function keys instead of switches. The function key assignments are as follows:

F1
Display a help/status popup window that shows the function keys available and lets you view and change the player difficulty settings, as well as enable or disable vertical autocentering

F2
Reset

F3
Toggle between NTSC and PAL screen palettes

F4
Select

F5
Color/Black-and-white toggle

F6
Player 1 difficulty toggle (A/B)

F7
Player 2 difficulty toggle (A/B)

F10
Enable/disable vertical autocentering

Esc
Pause game (i.e. Power) and return to windowed screen

- (minus)
Shift screen downward

=
Shift screen upward

Vertical autocentering is a feature that attempts to optimally center the screen on your monitor. This is enabled by default, and works well for nearly every game. However, it might be desirable to disable this feature for certain games; in this case, the F10 key can be used to toggle it.

Slowing Down the Emulator For Faster PC’s

At the time PCAE was written, many people were still using computers with i486 and slower Pentium processors. The assembly implementation was absolutely necessary to achieve a decent emulation speed. Since then, faster Pentium and Pentium Pro processors have become affordable, which presents the problem of games that run far faster on the emulator than on the original Atari 2600. To address this problem, the preferences dialog contains a feature that can be used to limit the emulator to display a certain number of frames per second. For example, standard NTSC Atari 2600’s display at 60 fps, so selecting “Set frames per second” from the Preferences popup menu and entering “60” should limit the emulator to the standard NTSC Atari speed. In addition, this feature can be used to make certain games either easier or harder by slowing them down or allowing them to be played faster.

4 Development Tools

In addition to the emulation engine, PCAE includes features designed to assist developers of Atari 2600 programs and other Atari 2600 emulators. It contains an integrated debugger that can be run in conjunction with any 2600 program by either using the “DEBUG” command line parameter or using the “Toggle debugger” option from the popup menu. It has a somewhat similar look and feel to Borland’s Turbo Debugger, but with only those features that are basic to program debugging in general and specific to the Atari 2600:

· Display of program code in a code window which can be navigated using the cursor keys

· Display of all 6507 register contents as well as flag bits

· Display of the contents of Atari RAM addresses 80h to FFh

· Displays the contents of the GRP0 and GRP1 player graphics registers

· Displays the current bank number for some bankswitching schemes

· Displays the scan line and horizontal position of the Atari CRT beam

· Displays the screen address that corresponds to the beam position

· Ability to execute unhindered, trace into, trace over, and execute until specific instructions or specific scan lines

· Online command reference and TIA register reference

· Ability to switch the debugger display to 320x400x256 video mode (should be compatible with all VGA cards) to display additional information

· Can display the current contents of the emulated video screen

· Ability to enter multiple bytes of data into the 6507’s addressable range

· Ability to change a 6507 register’s contents

· Ability to save the ROM range 1000h-1FFFh to disk

· Can show the current scan line when the game screen has been displayed

· Can break on a symbolic algebraic equation

A list of debugger functions follows:

Scroll bar
Navigate the code window

Mem
Enter one or more bytes of data into the 6507’s address range

Go
Execute the code unhindered until <Esc> is pressed

Here
Run to here—execute until the instruction at the top of the code window

Line
Run until a specific scan line

Reg
Change a 6507 register’s contents

Step
Step over—execute until next instruction

Trace
Execute current instruction only

Exp
Enter breakpoint expression

Save
Save 4k data area 1000h to 1FFFh to disk

PC
Move the highlight to the instruction pointed to by the Program Counter

“Arrow”
Move the highlight to 1000h

TIA Ref
Display TIA help reference window

Exp Ref
Display break expression reference window

Beam
Toggles display of the current CRT position and graphics object positions when the space bar has been used to show the game screen

Debugger Layout

The largest window, in the upper left corner of the screen, displays the assembly code in the 2600 game program. A yellow highlight bar will be positioned on the next instruction to execute and the code window can be navigated using the cursor keys. To the right of the code window is an area that displays the contents of the 6507 P (flag) register, and right below that is an area that displays the contents of all the 6507 registers in hexadecimal format. Farther down, the beam scan line and horizontal position, its corresponding screen address, bank number, and GRP0 and GRP1 register contents are displayed.

At the bottom of the debugger screen is a data window that displays the contents of the 2600 RAM area, located at memory locations 0080h to 00FFh. Between the code window and the main data window are three smaller data windows that display the TIA write registers and read registers, as well as the horizontal positions of all five graphics objects (player 1, player 2, missile 1, missile 2, and ball).

Entering one or more bytes of data

Clicking the “Mem” button brings up a pop-up window that allows you to enter a target address and one or more bytes of data. The format of the entry should be a hexadecimal address, and equal sign, and one or more hexadecimal bytes, separated by spaces. If a data entry is invalid, that address in the list is skipped. Note that all addresses are bitwise-ANDed with 1FFFh while all data bytes are ANDed with FFh. Also, the debugger does not have the hooks to the code that affects the TIA’s output, and therefore this method cannot be used to change TIA registers (it will only allow addresses in the range (80h to 1FFFh to be changed). Pressing <Esc> at any time aborts the data entry. Finally, be aware that for bankswitched games, all changes made are temporary—when the bank is switched, all changes made are lost.

Examples

1004=00 4 34 AE D3 2F
(Enters these six bytes into 1004h to 1009h

143F=56 – 4E 33
(Enters 56h, 4Eh, and 33h into 143Fh, 1441h, and 1442h

Stopping execution at a certain scan line

Clicking the “Line” button brings up a pop-up window that asks for a scan line value. Entering one starts execution of the program, which will halt and return to the debugger when that scan line value is reached. If a number is entered that is never reached (e.g. 300), execution will continue until <Esc> is pressed.

Changing a 6507 register’s contents

Clicking the “Reg” button opens a pop-up window that asks for a 6507 register and value to be entered. The format should be the register name, an equal sign, and a hexadecimal value to be entered.

Examples

PC=13F3h
(Changes the program counter to 13F3h

A=3
(Changes the accumulator to 03h

P=E2
(Changes the flags register to E2h

X=26
(Changes the X register to 26h

S=9A
(Changes the stack register to 9Ah

Y=71
(Changes the Y register to 71h

Note that data entries are ANDed with FFh to keep the value in the legal byte range.

Saving to Disk

Since you can use the “Mem” button to interactively change a game file as it runs, the “Save” button allows you to permanently save the final ROM dump to disk. Clickong ‘Save” brings up a pop-up window that lets you enter a path and filename at which to save the file. Invalid filenames will be ignored.

Breaking On an Equation/Expression

This is an advanced feature for which a really fast PC is recommended (400MHz or greater) and is accessed via the “Exp” button. It allows you to enter an algebraic equation, which, when true, will cause a breakpoint. For example, you might want to break if a register contains a certain value, if the contents of a memory address is greater than the contents of a different memory address, and so on. The possibilities are nearly limitless. For example the expression:

(P0=5) || ([8D]=4)

will cause a breakpoint if the horizontal position of player 0 is 5 or if the contents of memory location 008Dh is equal to 4.

The syntax is somewhat similar to C, and should be somewhat familiar. Expressions can use equalities or inequalities, multiple levels of nesting, boolean operators, bitwise operators, and algrbraic operators. As long as the entire expression can evaluate to a boolean (true or false) value, anything goes. Multiple nesting with parentheses is allowed. Integers are decimal by default, but are interpreted as hexadecimal if followed by an “h” (e.g. 3Dh). However, address locations (in square brackets) are always interpreted as hexadecimal. All expressions are case-insensitive. The following variables are available (also shown in the online help):

CX
CRT beam X position (-40 at vertical sync top, first displayed line is line 0)

CY
CRT beam Y position (-68 to 160)

P0
Player 0 horizontal position

P1
Player 1 horizontal position

M0
Missile 0 horizontal position

M1
Missile 1 horizontal position

BL
Ball horizontal position

A
Contents of 6507 accumulator

X
Contents of 6507 X register

Y
Contents of 6507 Y register

P
Contents of 6507 P register

S
Contents of 6507 S register

[addr]
Contents of hexadecimal address

The following operators are available (also shown in the online help):

+
Integer addition

-
Integer subtraction/negation

*
Integer multiplication

/
Integer division

%
Integer modulo

&&
Boolean AND

||
Boolean OR

^^
Boolean XOR

! or ~
Boolean NOT

&
Bitwise AND

|
Bitwise OR

^
Bitwise XOR

= or ==
Equality

<> or !=
Inequality

<
Unsigned less than

>
Unsigned greater than

<=
Unsigned less than or equal to

>=
Unsigned greater than or equal to

(…)
Parentheses

Please be aware that running a game will slow to a crawl when using this feature, since the entire expression has to be evaluated on every 6507 instruction. The more complex an expression is, the longer it takes to evaluate. But for those who are developing a game and really need some help tracking down a problem, this could be a very big help. Entering a blank expression will turn the feature back off and restore emulation speed to normal.

The Disassembler

PCAE also includes a disassembler for building 6507 assembler listings of game files that are 4k in size or smaller, as well as many 8k, 16k, Super-Chip, and CBS RAM-Plus games. It is invoked with the Disassemble menu command, and will prompt you for a file name in which to save the listing. It automatically detects the game code’s starting point and attempts to differentiate between code and data areas by recursively following all code paths. It is not capable of disassembling games that have other bankswitch types, nor can it follow code paths generated by jump tables. To disassemble bank-switched games, it is important to use the proper bankswitching command-line options to tell the emulator that they are in effect.

5 Troubleshooting

The emulator runs VERY slowly

The first thing to check is your computer’s speed. If your computer is slower than a Pentium-166 or so, expect slow operation. You can find out how fast your PC is emulating the 2600 by running a game with a timer (such as a sports game) and timing how long it takes to count to a certain point. Remember, though, to set the frames-per-second value to 0 to allow the emulator to run as fast as possible before performing benchmarks.

If all else fails, check if your computer has a “turbo” feature, usually a button on the case. The effect of the turbo being off should be very noticeable, since ALL software should run slowly. Make sure the turbo is ON, usually indicated by an LED nearby.

The emulator runs more slowly when I use joysticks than when I use the keyboard

It is normal to experience a 10 percent or so degradation of emulation speed when using joysticks with the emulator. This is due to the method required to read analog joysticks. They can only be read by initializing the joystick port and waiting until a certain bit flips or until a time limit has been reached. This occasional waiting loop causes the loss in emulation speed.

The emulator runs much slower than the DOS version

Unfortunately, Windows applications must use operating system calls (such as DirectX) to access the video and sound cards. This means that the emulator must call layers of software instead of accessing the hardware directly. While this makes it more compatible with different video and sound cards, it means much more processor overhead. The DOS version will ALWAYS perform better than the Windows version; if you need more speed, please look into PCAE for MS-DOS.

The emulator runs, but there is no sound

Sometimes simple solutions are the best; make sure that sound is enabled with the “Toggle sound” option, and check to see that your speakers are connected and on if they have a power switch. If your speakers support optional external power supplies for additional amplification, you might have to set the power switch to “Off” if you are not using any additional power supply for them. Try testing sound with another program to make sure your sound card and speakers are set up properly.

If your sound card has mixer software or you are running in Windows 95, check your mixer settings to make sure they are correct. For DOS users, you should have mixer software that came with your card, or they might be available from your manufacturer. For example, my Sound Blaster 16 SCSI-2 has a program called SB16MIX.EXE, a DOS TSR that lets me set the individual mixer settings. Windows users should have similar software, and Windows 95 users can try double-clicking on the little speaker icon in the system tray at the bottom right of the screen. You should make sure that the digital and FM outputs are the same value (they are usually called “wave” and “midi”) and that the master volume is not zero or a small value.

I have sometimes had problems after running other software that would cause the sound card to become inaccessible afterwards. Turning off your computer and turning it back on will reset the sound card and might help matters.

The emulator runs too fast; games are unplayable

From the popup menu, select the “Set frames per second” option. You will be asked to enter a number of frames per second at which the emulator will run. This causes the emulator to limit its speed so as not to exceed the frame rate that you specify. Entering zero will cause the emulator to run as fast as possible. For standard NTSC Atari 2600’s you should enter 60, which should limit the emulator to running at 60 frames per second.

If you had already done this and the emulator still runs too fast, your video card might not be correctly reporting vertical refresh rates to the emulator. Try smaller values, like 45 or 30.

The menu doesn’t show any games to run

Make sure you are running PCAE from the right directory. If the game files are in a different directory than the emulator, you have to specify the alternate directory either from the command line (e.g. PCAE G:\GAMES) or make sure you have the right directory set up in the preferences dialog. Also, make sure that all games have extensions of either .BIN or .PAL, the only extensions the menu displays.

The emulator works on one computer, but one of the above problems arises when I copy it to another machine

Different machines have different hardware and software configurations. Make sure there is adequate memory, that the sound setup is correct, and either disable keyboard support in the emulator or recalibrate the joystick. Follow the troubleshooting help for the given problem to attempt to solve it.

When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately

There are three possibilities: (1) the game isn’t supported by the emulator; (2) the game is a different type than the one you have specified, or (3) the game is a bad ROM dump. If the game isn’t supported, there really is nothing you can do; perhaps a future version might support it. For bankswitched games, you can try other bankswitching types for that game size; for example, try Parker Brothers 8k instead of standard Atari 8k. If you have generated the game profile and are trying to run the game by pressing the Enter key, perhaps the game is a different type and needs to be added to the known game profile file. If you can establish the proper game type, you can change its profile settings from the “Profile settings…” dialog. If nothing works, perhaps it is a bad copy of the game.

One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen

You might have a problem with your joystick. Make sure it is fully plugged in, and test it with some other software. If it works fine with other software, check the joystick button mappings by selecting “Configure controllers” from the main menu and selecting the joystick interface to make sure that you don’t have more than one thing mapped to the same joystick button. If the joystick has problems with other software as well, try remapping the buttons to compensate. In this case, you might consider buying either a new joystick or a new game port. You might be able to tell where the problem is by trying a different joystick to see if the problem persists.

I get an error message saying that a file is missing

PCAE is designed to abort gracefully if a file is missing or if there are no game files in the target directory. The message should tell you what the emulator is looking for and the directory in which it is looking. If this is not the directory you expect PCAE to use, check to see that you are in the right directory and that any Windows shortcuts are set up properly. If the directory is correct, check to make sure that the desired file(s) are there.

My game controller doesn’t work or isn’t detected

When I connect my N64 controller using the Adaptoid USB adapter, for some reason controllers connected to my joystick port stop working. This happens throughout Windows, not just when using PCAE. If you have a USB controller connected in addition to standard joystick controllers, try disconnecting the USB controller.

I start this game, and it displays, but the next screen is “frozen”

Try changing the difficulty settings. I have seen at least one game in which a difficulty setting acts as a “pause” function. The default setting for all games in PCAE is difficulty “B”, or “easy”.

6 Acknowledgements

Over the past few years while I have been developing PCAE, I have been lucky enough to receive a lot of help from some gracious people. This should in no way be considered an exhaustive list; I’ve gotten so much feedback over the past three years from so many people that I could never list everyone—my email folder simply isn’t that large, so if you aren’t included here, please don’t take any offense. I am grateful for all the assistance that has come my way.

Those who helped (not necessarily in any real order)

Matt Conte: First and foremost, for giving PCAE a home! Also for spreading the word, doing lots of beta testing, getting me info and tools I needed, fielding a lot of the email, and generally being really helpful.

Kevin Horton: Helped me with a lot of technical details of the 2600 especially bankswitching issues and Pitfall II deciphering. Also made sure I knew about every kind of bankswiching game he could get his hands on.

Norbert Juffa: Wrote the millisecond timer used in the fps limiting code.

Dan Melton: Wrote the keyboard interrupt service routine.

Ron Fries: Wrote the TIA sound routines and sent them to me.

Dan Boris: Introduced me to Ron Fries’ sound routines.

Dave W. (Dave’s Video Game Classics): Did lots of testing of PCAE, and supplied a whole bunch of good suggestions to make it better.

Jim Leonard: Provided lots more web space for PCAE, as well as did some very important testing of the final version. Also converted the documentation and schematics to HTML.

Bradford W. Mott and Keith Wilkins: For making available the source code to Stella, another really great 2600 emulator. This has not been an isolated project, and I’d be lying if I said that Stella wasn’t helpful. I certainly hope that PCAE’s source has been equally helpful.

Eckhard Stolberg: Provided me with a better PAL palette and provided additional information on the Cosmic Ark starfield bug.

John Saeger (author of Z26): Z26 has many of the same sound routines as PCAE, but I found that Z26 actually uses them properly—this made possible the smoother “click-less” sound in the current version.

Vojtech Pavlik (author of Linux joystick driver): for providing specs on SideWinder packets and how to read them.

Hiroyuki Hori (author of DelphiX library). Simply put, without DelphiX, porting PCAE to Windows would not have been possible since I do not have the knowledge to use DirectX directly.

Countless others: Many of the features PCAE has today came from people who emailed me with their suggestions. This document is a direct result of all the feedback I’ve gotten, and is my attempt at making things clearer for everyone.

7 Disclaimer

For the following discussion, this software, the PC Atari Emulator, will be referred to as "PCAE".

The author of PCAE hereby grants unlimited license for users of PCAE to freely copy and install it for personal use. PCAE is supplied as-is; the author WILL NOT be held responsible for ANY damages that may occur as a direct or indirect result of, or inability to use, PCAE. The author will not be held responsible for damages resulting from the loss of business or productivity due to the use of PCAE. Furthermore, the author will not be held liable for any damages that may be incurred as a result of using non-standard video modes or hardware built for use with PCAE. The author also cannot be held liable regarding the merchantability (or lack thereof) of PCAE. The author grants no warranty whatsoever, and none should be implied.

USE IT AT YOUR OWN RISK.

As stated previously, PCAE may be copied and distributed freely for personal use. It MAY NOT be sold by anyone without prior written consent by the author. It may be distributed as part of a shareware/freeware package as long as not more than $7 US (1996 dollars) is charged for its distribution. PCAE MAY NOT be distributed without this document in its complete form. Any other use or distribution of PCAE requires explicit written agreement from the author.

PCAE emulates a commercial game system for which copyrighted software was developed and still exists. The author of PCAE hereby forbids anyone to distribute PCAE in conjunction with any other copyrighted software. In addition, users of PCAE are specifically forbidden from using it in any way with copyrighted software for which they are not in legal ownership. PCAE should IN NO WAY be regarded as condonation of, or an excuse to commit, software piracy, and the author will not be held responsible for the actions of others.

