PC Atari Emulator

Version 2.3

Users Manual

John Dullea

May, 2000

johnpcae@yahoo.com

Contents

41 What is PCAE?

System Requirements
4
Features
4
New in Version 2.1
5
New in Version 2.2
5
New in Version 2.3
6
Emulation Speed
6
2 Setting It Up
7
Installing the Software
7
Setting Up Sound Support
7
Setting up Gravis GrIP support
9
Microsoft SideWinder support
9
Logitech Digital Controller support
9
Note for Windows Users
10
3 Playing Games
11
The Command Line
11
The Main Menu
12
The Configuration Popup Menu
13
The Preferences Popup Menu
13
Setting Custom Colors
14
Custom Game Resolutions
14
The Game Profile File
14
Note: After changing the PCAE.KNW file, it is necessary to regenerate the profile file (PCAE.PRO) for the changes to take effect.
14
What is Bankswitching?
15
When the Game Is Running
16
What are Interfaces?
17
Using Joysticks With PCAE
18
Using the Keyboard With PCAE
18
Emulating Paddles With the Mouse and Joysticks
18
Using Real Atari Controllers With PCAE
18
Slowing Down the Emulator For Faster PC’s
19
Configuring the Emulator’s Sound Output
19
160-Pixel Game Resolutions
19
Changing the Main Screen Resolution
20
4 Development Tools
21
Debugger Layout
22
Entering one or more bytes of data
22
Stopping execution at a certain scan line
22
Changing a 6507 register’s contents
23
Saving to Disk
23
Breaking On an Equation
23
5 SideWinder Support
25
LEARN.EXE: A Helping Hand
26
6 The Real Controller Board
28
7 Troubleshooting
30
The computer hangs (or the emulator crashes) when the emulator is run
30
The emulator runs VERY slowly
30
The emulator runs more slowly when I use joysticks than when I use the keyboard
31
The emulator runs, but there is no sound
31
The emulator runs too fast; games are unplayable
31
The cursor is uncontrollable from the main menu; it keeps moving by itself
32
The menu doesn’t show any games to run
32
When I try to run the program I get a “Runtime error” message.
32
The emulator works on one computer, but one of the above problems arises when I copy it to another machine
32
When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately
32
When I use a 160-pixel screen mode, all or part of the screen is blank when a game is run
33
I’m having trouble calibrating my joystick(s)
33
One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen
33
I’m trying to use real controllers, but it doesn’t work or doesn’t work fully
33
When I run PCAE, I get an error like “EMM386: Unsupported DMA mode. Press Enter to reboot”
34
I get an error message saying that a file is missing
34
My Gravis GrIP controller doesn’t work or isn’t detected
34
My Microsoft SideWinder controller isn’t detected
34
I chose a VESA mode and I now get a blank screen
34
When I go to change the main screen mode, I don’t see any VESA modes available
34
I want to use a 640-pixel-wide VESA mode but PCAE won’t let me
35
I want to use a really high-resolution screen mode that I know my card has, but it isn’t listed
35
I start this game, and it displays, but the next screen is “frozen”
35
Sound is garbled under Windows 95 or 98
35
8 Acknowledgements
36
9 Disclaimer
37

1 What is PCAE?

The PC Atari Emulator, or PCAE, is an MS-DOS program designed to emulate the famous Atari 2600 Video Computer System on PC’s compatible with the Intel 80486 CPU or better. It accomplishes this with an emulation engine that is written almost entirely in assembly language, with extra features written in Borland Pascal 7.0 for DOS.

System Requirements

OS:
MS-DOS, though it will run from within a Windows DOS prompt. Some users have successfully run it from within an OS/2 DOS prompt by setting the “Allow access to hardware timer” flag to ON.

CPU:
Intel 80486 or greater, for the BSWAP instruction (though a Pentium is highly recommended for performance purposes)

RAM:
540K free low DOS memory (though 590K or greater is strongly recommended

Other:

A mouse is required for single-player paddle emulation

A 4-button joystick is strongly recommended, ESPECIALLY a Gravis GamePad or Gravis GrIP controller. Two joysticks are strongly recommended for two-player games To use joysticks to emulate paddles two and three, analog joysticks are required.

A special home-built board is necessary for connecting real Atari controllers to the PC.

Sound:
A SoundBlaster or 100% compatible sound card is required for sound support utilizing DSP versions 2.00 or greater.

Features

· Very fast emulation due to the Pentium-optimized assembly implementation

· Full collision checking

· One paddle is emulated using the mouse, and two other paddles can be emulated using analog joysticks.

· Emulates the Atari Video Touch Pad (for Star Raiders) and Atari Keyboard Controllers.

· Emulates Atari Indy 500 Driving Controllers (for Indy 500) and CBS Booster-Grip (for Omega Race)

· Support for two joysticks (four-button joysticks can control select, reset, and both players' fire buttons in all games)

· Built-in menu allows easy selection of games

· Support for a game profile file that contains all the cartridge types and controller settings for every game in your library

· On-line help is available in the menu system, integrated debugger, and while playing games

· Built in interactive debugger that supports bank-switched images

· Built-in disassmebler for images 4k or smaller, as well as many 8k, 16k, Super-Chip, and CBS games.

· Support for Atari 8k, Atari 16k, Super-chip, Parker Brothers, CBS RAM-Plus, TigerVision, M-Network, and Pitfall II bank switched cartridges

· Supports 64k cartridges containing 32 independent 2k games (32-in-1 games)

· Supports 64k Brazilian Megaboy cartridge

· Supports extended Super-chip and TigerVision bankswitching specifications

· Support of Starpath Supercharger single-load and multi-load games

· Sound emulation using Ron Fries’ TIA Emulation Library on 100% Sound Blaster-compatible sound cards

· Emulation speed can be slowed down to a user-selectable number of frames per second for especially fast computers

· The sound playback rate can be varied for compatibility with certain sound cards

· Supports optional extended VGA resolutions for games which utilize more than 200 scan lines (might not be compatible with all VGA cards and/or monitors)

· Support for connecting real Atari 2600 controllers to a PC using a home-built board that connects to a PC joystick port and bidirectional parallel port

· Supports the PAL graphics palette in addition to the NTSC palette

· Built-in vertical autocentering for different games, which can be disabled by the user

· Ability to capture the screen to Windows .BMP files

· Ability to save a game in progress to disk and restore it later

New in Version 2.1

· Ability to capture the screen to Windows .BMP files

· Ability to save a game in progress to disk and restore it later

· Vastly improved sound using revamped sound code (XMS is no longer necessary). However, sound cards must now be compatible with Creative Labs DSP versions 2.00 or greater (the vast majority of sound cards at this time)

· Emulation of Pitfall II music is much more accurate, no longer using FM synthesis but instead attempting to generate the correct waveforms digitally

· Minor graphics engine bugfixes

· If a file is missing or there are no game files in the target directory, the emulator exits gracefully and displays an error message

· Compiler run-time library problems relating to ultra-fast PC’s (300MHz+) have been fixed

· Updated joystick code that might help with faster machines

· Sound cards set at DMA 0 to 3 now work properly

· In the debugger, hitting the “—“ (minus) key toggles display of a hack mark showing the current scan line when the game screen has been displayed with the space bar.

New in Version 2.2

· Main game menu can be configured to display filename and extension, filename only, or real game title

· Games can be highlighted by game type, alphabetically, or by alternating rows

· Game menu colors can be changed for alternating modes

· Main game screen can be displayed in 80x25 text mode, 80x30 text mode, or high-resolution VESA graphics modes

· Option for slightly more realistic Pitfall II music

· Debugger supports breakpoint on symbolic equation

· Major TIA fixes—emulation is much more accurate

· Emulator settings moved to industry-standard .INI file

· Completely new controller support allowing mouse, keyboard, and joystick functions to be remapped

· Fully re-mappable Gravis GrIP controller support (requires Gravis DOS driver—see chapter 2)

· Fully re-mappable Microsoft SideWinder controller support—can be expanded to support future SideWinder controllers

· PCAE and PCAE160 have been combined into a single executable

· Additional game resolution modes for PAL games and greater compatibility with various video cards

· Several emulator bug fixes

· Experimental program to assist in detecting new SideWinder controller packet structures

· Improved debugger online help

· During emulation, pressing F8 allows the user to type in a game title. Title, game type, controller information, and the vertical position (as set with the plus and minus keys) are saved to the profile file. Thus the emulator “remembers” where the last vertical position was set by the user.

· Improved joystick calibration routine that should be more friendly to “jittery” joysticks

· Thrustmaster FCS, CH Flightstick Pro, and some multi-button gamepads supported (all but the FCS are untested)

· Improved external interface board design

· Minus key in debugger moved to equals (plus) key, and also shows the CRT horizontal position

· Hitting the minus key in the debugger shows the positions of the player objects, missiles, and ball (when the game screen is being displayed)

· Slightly improved disassembler should be more compatible with backswitched images

New in Version 2.3

· Minor bug fixes to the VESA routines that allow VESA text modes to be selected.

· Fixed bug in graphics-mode text-entering routines that could cause heap overflow errors.

· Switched license to GNU GPL.

Emulation Speed

The emulated speed of games run on the software varies by game and system type. I have found that a Pentium-90 system can run most games at a slightly higher speed than the original Atari console, but there are a few exceptions for which a faster computer might help. I have received e-mails claiming that i486-120 computers can just reach 100% emulated speed using the emulator.

2 Setting It Up

Installing the Software

Most likely you will acquire the emulator via a ZIP archive file that was either downloaded from somewhere or placed on a CD-ROM. The first thing to do is to create a new directory in which to place all the files contained in the archive file. For example, DOS users would type:

C> CD\

(move to the root directory

C> MD PCAE

(create the new directory

C> CD\PCAE

(move to the new directory

The next thing to do is to place all the files in the archive file into the new directory. There are a number of programs available for extracting a ZIP file, such as PKWare’s PKUNZIP for MS-DOS, or the shareware WINZIP for MS-Windows. Symantec’s Norton Navigator File Manager for Windows 95 is also a good choice. Using whichever method you choose, extract all the files contained in the ZIP archive into the new directory you just created.

Setting Up Sound Support

PCAE supports sound emulation of the Atari 2600 using 100% Sound Blaster-compatible sound cards. Although using “true-blue” Creative Labs hardware is strongly recommended, there are a great many sound cards that will work with the emulator. In all cases, if you intend to turn on sound support in the emulator, you should first check to see if your sound card is compatible with the emulator and that it is properly configured.

PCAE supports 100% Sound Blaster-compatible sound cards using IRQ settings in the range 0 to 15 and 8-bit DMA settings in the range 0 to 3. To my knowledge, all SB-compatible sound cards use an 8-bit DMA setting in the range 0 to 3, but any that do not will not work with the emulator. To find out or change your card’s settings, you should read the installation manual that was included with your hardware. Most sound cards (especially those from Creative Labs) come with a test program that will tell you the current IRQ and DMA settings of your card. Another way to possibly find out the settings is to check them from within the Windows 3.x or Windows 95 Control Panel.

If you have verified that your sound card’s IRQ and DMA settings are compatible with PCAE, the next step is to ensure that the BLASTER environment string is properly set. This environment string is the mechanism by which PCAE gets your sound card’s settings, and is absolutely necessary for sound emulation to work properly; otherwise, lockups or crashes will likely occur. Usually this line is set automatically by your sound card’s installation software, but this is not always the case. You can check to see if it is set by typing “SET” from the MS-DOS prompt:

Example:

C> SET

TEMP=C:\WINDOWS\TEMP

winbootdir=C:\WINDOWS

SOUND=F:\SBPRO

windir=C:\WINDOWS

COMSPEC=C:\COMMAND.COM

PATH=C:\;C:\DOS;C:\WINDOWS;C:\WINDOWS\COMMAND;…

.

.

.

BLASTER=A220 I7 D1

(This is the line you’re interested in
The basic format of the BLASTER environment string is as follows: There should be a field in the form A#, where the number is the sound card’s address in hexadecimal. For example, my Creative Labs Sound Blaster Pro is at address 220h. Second, there should be a field in the form I#, where # is the IRQ setting of the card. Finally, there should be a field in the form D#, where # is the 8-bit DMA setting of the card. More advanced cards will probably have additional fields on the line, for such features as 16-bit DMA and MIDI ports.

If this line is present in your environment string list, then, as long as the numbers match the actual hardware settings, there is nothing more to check regarding your sound hardware. However, if the line is not present, you will have to see to it that one is present before running the emulator. This can be done manually or it can be added to a batch file, such as AUTOEXEC.BAT. In either case, the process of adding or changing an environment string is a simple DOS command:

C> SET BLASTER=A220 I7 D1

(Example of setting the BLASTER line

All you do is type the DOS “SET” command as above but add the line to be added after it. “BLASTER=” identifies the name of the environment string and “A220 I7 D1” is the environment string it will refer to.

Please note that environment strings from SET commands do not use up any low DOS memory in the same manner as TSR (terminate-and-stay-resident) files, but they do take up environment string space. Usually the largest environment string you will have is your PATH statement, which is usually set in the AUTOEXEC.BAT file. If you look in this file, you will probably see lines that begin with “PATH” instead of beginning with “SET”. Because the PATH environment string is used by everyone, the people at Microsoft included a special command called PATH that sets the PATH environment string. Using “SET PATH=…” instead of “PATH” would yield the same result. At any rate, if you do not have a BLASTER environment string and try to add one, you might run out of environment string space if you have a lot of other environment strings or a few large ones. You can check this by typing “SET” after setting the BLASTER environment string and checking to see if the entire string is present. If it isn’t there or is truncated, you might have to either (1) shorten or eliminate another environment string (such as your path) or (2) increase the amount of environment string space. The method for increasing environment string space varies widely with operating systems and is beyond the scope of this document. The only method with which I am familiar is the “/E:xxxx” command line option in MS-DOS COMMAND.COM, which would be specified in CONFIG.SYS as follows:

SHELL=COMMAND.COM /P /E:1024

This sets the environment string area to 1024 bytes upon bootup. The /P option is necessary to tell DOS that COMMAND.COM is to be loaded permanently. This should work for those using MS-DOS, Windows 3.x, or those running PCAE after restarting Windows 95 in MS-DOS mode. For Windows 95 MS-DOS prompts, you might not have to change the setting since it has an “Auto” feature, but it is available by exploring to the MS-DOS prompt, right-clicking on it, and selecting “Properties”. The initial environment string area size can then be changed by clicking on the “Memory” tab and changing the “Initial environment” setting.

Note: Several users with Pro Audio Spectrum sound cards have expressed problems getting the sound to operate properly. By default, the emulator plays sound at a rate of 31.4 kHz which may be too fast for some cards. There is a feature in the popup menu that allows the playback rate to be set to a lower value which hopefully should help matters (to be discussed in a later section).

Once your BLASTER environment string is set properly, you might want to check to see if your sound card’s mixer settings (if any) are set properly. For DOS users, this usually involves a mixer utility that comes with your sound card. For example, my Sound Blaster 16 SCSI-2 has two programs, SB16SET (which is loaded in my AUTOEXEC.BAT) and SB16MIX, which is a TSR that lets me control the mixer settings. This is important because PCAE uses digital sound output for the majority of Atari 2600 sound emulation, but uses FM sound output for the music in Pitfall II: Lost Caverns. For the sound to be properly balanced, the mixer settings for digital and FM sound output should be of equal value. Windows users will probably have similar utilities for their sound cards, and Windows 95 users can try double-clicking on the little speaker icon in the system tray at the bottom right. This should bring up a mixer window that enables control over different settings. FM sound output is usually controlled by the “Midi” slider, and digital output by the “Wave” slider. Be sure also to pay attention to the “Master” slider to ensure that you get sound.

Setting up Gravis GrIP support

PCAE supports the use of multiple Gravis GrIP controllers such as the Gravis GamePad Pro and Gravis Xterminator using the Gravis DOS driver, GRIP.GLL. This driver should come with your Gravis product. If you do not have this file, you should contact Gravis technical or customer support.

Setting up GrIP support is very easy. Like the BLASTER environment string, you will need an environment string like the following:

GRIP=C:\GRIP

In the above example, the folder C:\GRIP contains the DOS driver GRIP.GLL. PCAE reads this environment string if available, locates the driver, and loads it. This should allow flawless GrIP controller operation since Gravis’ own driver is used.

Microsoft SideWinder support

At this point PCAE only supports one SideWinder controller at a time, and currently supports the SideWinder GamePad, Freestyle Pro, and Precision Pro. It should also work with the Force Feedback Pro, since that controller allegedly has the same packet structure as the Precision Pro (though, of course, force feedback won’t work). Users should please note, though, that SideWinder support was only just added to PCAE and is somewhat experimental—there could be some difficulty when initially detecting your controller. If your controller is not detected, please retry detecting it a few times.

Note that the SideWinder 3D Pro was not mentioned in the above list. I don’t have one available for testing, so that controller isn’t supported in the current distribution. However, PCAE’s INI file supports having additional controller profiles added to it. Supplied with PCAE is an experimental program called LEARN.EXE (described later) that should assist in detecting a SideWinder controller’s packet structure. It guides the user through a series of steps in an attempt to figure out what the packet structure is. It doesn’t completely detect a controller’s packet structure, so some manual editing is needed, but it can be a great help.

Logitech Digital Controller support

No, PCAE doesn’t support Logitech controllers yet, though I did buy a WingMan digital gamepad and PCAE has latent code for reading Logitech packets (thanks to Vojtech Pavlik, author of the Linux joystick driver, for the packet format). I was unable to figure out how to get the controller to start transmitting digital packets through the joystick port—if someone would be kind enough to provide me with this information, then a version 2.3 would be in order.

Note for Windows Users

PCAE requires that all its support files reside in the same directory, and that they reside in the same directory from which the program is run. When setting up a Windows 3.1 or Windows 95 shortcut, be sure to specify the PCAE directory as the one in which the program should start. Leaving this entry blank will likely cause the program to abort with an error since it always looks in the current directory for its support files and might not find them.

3 Playing Games

Once the software has been set up and the sound card is configured properly, you are ready to try the emulator with any games that you own. PCAE requires that all games have the extension .BIN. Games can be run in two ways: from the command line using arguments, or using the built-in menu. The easiest way to run games is to place all of them in the same directory, preferably though not necessarily in the same directory as PCAE and use the built-in menu.

The Command Line

Although not necessary for most users, the command line has the benefit of allowing PCAE to be run from within other game shells or allowing individual games to have Windows shortcuts. The format is as follows:

PCAE [path |

 file [BANK | BANK16 | BANKA | BANKM | BANKP | BANKC | BANKSC |

 BANKSP | BANKT | BANK2 | BANK3 | BANKG | PROFILE]

 [32IN1NUMxx]

 [DEBUG]

 [DISASM]

 [FRAMExx]

 [KB | INDY500 | VTP | PADDLE]

path
path to a .BIN game directory, e.g. C:\CARTS

file
filename of an individual game

BANK
needed for Atari 8k bankswitched games

BANK16
needed for Atari 16k bankswitched games

BANKA
needed for Activision Decathlon and Robot Tank

BANKM
needed for M-Network bankswitched games

BANKP
needed for 8k Parker Brothers bankswitched games

BANKT
needed for 8k or larger TigerVision bankswitched games

BANKC
needed for 12k CBS RAM-Plus bankswitched games

BANKSC
needed for Atari 16k or larger Super-Chip bankswitched games

BANKSP
needed for Starpath SuperCharger games

BANK2
needed for Pitfall II: Lost Caverns

BANK3
needed for 32-in-1 games

BANKG
needed for Brazilian Megaboy game

PROFILE
Use profile file for bankswitching and controller information

DEBUG
Activate built-in integrated debugger

DISASM
Disassemble a 4k or smaller game to LISTING.ASM

FRAMExx
Limit the number of frames per second to xx for fast computers (or 0 for no limit)

KB
Emulate Atari Keyboard Controllers

INDY500
Emulate Atari Indy 500 Driving Controllers

VTP
Emulate Atari Video Touch Pad

PADDLE
Emulate Atari paddles

32IN1NUMxx
Play 2k game xx (0-31) from 32-in-1 game

Note that the path argument is not used with any other command line argument; it is intended for using the built-in menu with game files that are not located in the same directory as the emulator. Some examples of command line usage are:

C> PCAE D:
C> PCAE D:\GAMES
C> PCAE PACMAN.BIN
C> PCAE DIGDUG.BIN BANKSC
C> PCAE COMBAT.BIN DISASM
C> PCAE OMEGARAC.BIN BANKC
C> PCAE ROBOTANK.BIN BANKA DEBUG
C> PCAE BNJ.BIN BANKM DISASM DEBUG
C> PCAE INDY500.BIN INDY500 FRAME60
Generally it is cumbersome for most users to use the command line in any but the first example unless writing shortcuts to individual games or writing a game shell.

The Main Menu

The main menu is the area from which most games will be run. It provides for easy selection of any game in the directory, as well as configuration of the emulator. In addition, the menu is the area from which the online help reference can be reached.

The menu consists of a text display showing all the .BIN and .PAL files detected in the directory. They will normally be displayed in color-coded fashion, with different colors denoting different file sizes:

gray
2k and 4k

white
8k

yellow
16k

red
8,448-byte (or multiples thereof) Starpath Supercharger games

green
10,495-byte Pitfall II: Lost Caverns game

black
all others

Files can be selected by using the cursor keys or joystick 1 to move the highlight bar to the desired file. The file size at the top will change to reflect the selected file.

Once a desired file is selected, it can be played by hitting either the Enter key or joystick 1’s button 1 if it’s color was gray or red. If it was any other color and you are not using the profile feature, a special bankswitching key might have to be pressed instead, depending on the type of game that it is:

If the game profile file has been generated
Enter / joystick 1 button 1

Standard 8k (not any other bankswitched scheme)
Enter / joystick 1 button 1

Standard 16k (not any other bankswitched scheme)
Enter / joystick 1 button 1

12k CBS RAM-Plus
Enter / joystick 1 button 1

16k or larger SuperChip
R

8k Parker Brothers
P

16k M-Network
M

Activision Decathlon or Robot Tank
A

8k or larger TigerVision
T

Pitfall II: Lost Caverns
2

32-in-1 game
3

Brazilian Megaboy game
G

Games that have the .BIN extension will use the NTSC screen palette by default; games with extension .PAL will default to the PAL screen palette.

A note about Pitfall II: Lost Caverns: this game, unlike all other Atari 2600 games, has a special chip that contains 2k of extra data in addition to the standard 8k. It also contains three random number generators and a three-channel square wave generator. To play Pitfall II on PCAE, the ROM file must be 10,495 bytes in size. The first 8k must be the standard 8k dump of the main ROM chip; the next 2048 bytes must consist of the 2k of extra data in the special chip, and the last 255 bytes must be read from one of the random number generators (the three random number generators each have a 255-byte cycle and produce the same values). Such a ROM file encompasses all the data that can be generated from the cartridge; PCAE is designed to automatically read whichever part is appropriate, depending on the addresses accessed.

The Configuration Popup Menu

In addition to the keys that are dedicated to playing games, there are several functions that affect PCAE’s general configuration. These are generally related to the controllers that are to be emulated, and the sound and controller configuration. They are accessible by pressing F10 from the main menu, which will pop-up the configuration menu. A description of the available functions is as follows:

Build game profile
Automatically generate PCAE.PRO, the game profile file

Use joystick controllers
Set the program to emulate Atari joystick controllers

Use paddle controllers
Set the program to emulate Atari paddle controllers

Use keyboard controllers
Set the program to emulate Atari Keyboard Controllers

Use Indy 500 controllers
Set the program to emulate Atari Indy 500 Driving Controllers (used with Indy 500)

Use Video Touch Pad
Set the program to emulate Atari Video Touch Pad (used with Star Raiders)

Configure controllers
Configure mouse, keyboard, joystick, GrIP, SideWinder, or external controllers

Enable interfaces
Enable mouse, keyboard, joystick, GrIP, SideWinder, or external controllers

Preferences
Brings up the Preferences Popup Menu

Toggle debugger
Toggle using the integrated debugger, which will be invoked when a game is started

Toggle sound
Toggle sound emulation on or off

The Preferences Popup Menu

The Preferences menu allows the user to set options that affect the emulator as a whole. This generally involves screen and sound options. A description of the available options is below.

Auto-Centering
Toggle automatic vertical auto-centering (off by default)

Screen mode
Set main game menu screen mode (80x25, 80x30, and VESA modes are available)

File list color scheme
Highlight game files by game type, alphabetically, or alternate colors every 3, 4, 5, or 6 rows

File list display scheme
Display game files by: name + extension + 2, 3, or 4 spaces; name only + 2, 3, or 4 spaces; real title (flush left); or real title (centered)

Game resolution
Display games in 320x200, 320x204, 160x200, 160x204, 160x215, 160x250, or 160x305 resolution. There are two methods available for displaying each 160-column mode, for greater compatibility with video cards

Set frames per second
Limit the emulator to display a specific number of frames per second (e.g. 60 fps)

Set sound options
Adjust the sound playback rate

Realistic Pitfall II music
Attempts to re-create the “muddy” sound of Pitfall II music as heard on televisions by rounding off the corners of the square-wave music (on by default)

In addition to the above commands, the F1 key can be pressed to display summary screens of the command line syntax.

Setting Custom Colors

If you choose an alternating color scheme, you can change the foreground and background components of the two alternating colors. A window will pop up showing four color columns. The left half is color 1 and the right half is color 2. For each color, the foreground color is the left column. Use the left and right arrow keys to choose which component to change and use the up and down arrow keys to change that component. Press <Esc> when you are finished to save your changes.

Custom Game Resolutions

The Atari 2600 display specification defines a standard viewable area of 160 pixels by 192 scan lines, which was expected to work on all television sets. However, there are a few games that utilize more than this, in fact more than 200 scan lines. In addition, the PAL specification allows up to 305 scan lines. For this reason, PCAE has the ability of being switched into a non-standard VGA mode that supports extra scan lines. This can be done in the Preferences Popup Menu.

The Game Profile File

The game profile file, PCAE.PRO, is a text file the emulator can automatically generate that contains the game type, controller information, and title for each file in the game directory. It is intended to eliminate the need to memorize which bankswitching and controller keys are associated with which game, allowing all games to be played with the Enter key or joystick 1 button 1. It is supplemented by a user-modifiable known game profile file, PCAE.KNW, which contains filenames, game type codes, and controller codes for all games that are not automatically detected by the profile creation process. All Parker Brothers, M-Network, and TigerVision games cannot be automatically detected by the profile creation process, and must be referenced in the known game profile file. In addition, there may be other games which are not correctly identified and must be included in this file. The emulator has no way of autodetecting controller information for each game, and will thus give each game an “unknown type” controller code. This will result in games defaulting to joystick emulation. It is therefore necessary to add entries in the PCAE.KNW file for games the use paddles, Keyboard Controllers, etc.

Note: After changing the PCAE.KNW file, it is necessary to regenerate the profile file (PCAE.PRO) for the changes to take effect.

Each line of text in the known game profile file can be either a valid game reference, a remark, or a blank line. Valid game reference lines should contain the filename of a particular game, one or more spaces, a two-letter code describing the game type, one or more spaces, and a two-letter code describing the controller information. After the controller information, the game title may be entered into the profile file in double quotes. Titles must not themselves contain double quotes, and one or more spaces must separate the title and two-letter controller mnemonic. Remarks are not allowed on valid game reference lines. All remark lines should begin with a semicolon (;) as the first character (no leading spaces). The two-letter codes describing game types must be from the following list:

Standard 2k game
2K

Standard 4k game
4K

Standard Atari bankswitched 8k game
8K

Standard Atari bankswitched 16k game
16

Atari Super-chip game
SC

Parker Brothers 8k game
PB

M-Network 16k game
MN

Starpath Supercharger game
SP

CBS 12k RAM-Plus game
CB

TigerVision game
TV

Pitfall II: Lost Caverns
P2

Activision Robot Tank or Decathlon
AC

Unknown
??

Likewise, the two-letter controller codes are as follows:

Joystick
JY

Paddle
PD

Video Touch Pad
VT

Indy 500 Driving Controllers
DR

Keyboard Controllers
KB

Unknown
%%

The automatically-generated profile file, PCAE.PRO, follows the same format as the known game profile file, except that the emulator inserts a variable number of spaces between the filename and the two-letter game type code so that different codes will appear in different columns (for readability). Although the file can be modified, it will be automatically overwritten whenever the auto-generate option is selected from the popup menu; it is meant to be readable by the user and supplemented by the known file, PCAE.KNW, which overrides any settings in the automatically-generated profile file.

What is Bankswitching?

Before discussing bankswitching, it is first necessary to briefly explain a little bit about the Atari 2600 architecture. The VCS uses a processor designated as the 6507, which is a limited version of the more popular 6502. The 6507 processor can address up to 8k bytes of memory. In the 2600, some of this memory area is used for hardware support (e.g. video and audio), as well as for a small amount of RAM in the console. Although much of the address space is unused, there is generally 4k available for game programs. It was not long before companies like Atari and Activision realized that 4k of ROM was not enough to produce more complex games, so they had to devise a way to access more memory even though the CPU in the system could not. They accomplished this with bankswitching—placing higher-capacity ROM chips in their cartridges but only letting the CPU “see” up to 4k of them at a time. For example, a bankswitched 8k game might only let the CPU see either the first 4k or the last 4k, but never both. The switch would be accomplished by special hardware that would detect any CPU access to special “hot” memory addresses, which the manufacturer would designate to the game programmers as areas for switching the bank.

Several game manufacturers used the bankswitching approach for making larger, more complex games, but they tended to use different game sizes and “hot” bankswitching addresses—they had different bankswitching schemes. Some would switch the entire 4k area at a time, others switched smaller 1k areas, and still others included extra RAM in their games. Since each of their cartridges contained specialized hardware to accomplish the bankswitching, there was no need for 2600 users to worry about which scheme was being used by which manufacturer; they simply had to plug the game in and turn the machine on. An emulator, however, does not have any specialized hardware to automatically detect a bankswitching type and accomplish it, so there has to be some way to notify it whether bankswitching is involved and what kind it is.

Regarding Pitfall II: Lost Caverns, the bankswitching idea was taken to an entirely new level. Not only does the game contain 8k of game code using somewhat standard bankswitching, as well as some RAM, it also contains an additional 2k of data accessible by a very special chip. Data can be accessed in standard, bit-reversed, or reversed-nybble formats, and can be “bracketed” such that only data in a certain range is accessible. In addition, it contains a three-channel square wave generator with adjustable phase, frequency, pulse width, and mixing attributes. Just like standard bankswitching, it is necessary to tell the emulator somehow that this game is selected so that it knows to emulate these functions.

When the Game Is Running

Hopefully at this point you have selected a game and are seeing it on the screen. It is recommended that the first games you try are small 2k and 4k games with no bankswitching issues, just to make sure the emulator is running correctly instead of possibly running a bankswitched game with the wrong game setting.

Once the game is visible, PCAE is actually emulating the game code in the file. Since your PC doesn’t have the six switches that are located on Atari 2600 consoles for playing a game, the emulator maps certain function keys to those switches. Just like on the actual console, you start by interacting with the game just as you would with a VCS unit—but with the function keys instead of switches. The function key assignments are as follows:

F1
Display a help/status popup window that shows the function keys available and lets you view and change the player difficulty settings, as well as enable or disable vertical autocentering

F2
Reset

F3
Toggle between NTSC and PAL screen palettes

F4
Select

F5
Color/Black-and-white toggle

F6
Player 1 difficulty toggle (A/B)

F7
Player 2 difficulty toggle (A/B)

F8
Enter title and save game info to profile file

F9
Capture screen to Windows .BMP file

F10
Enable/disable vertical autocentering

F11
Save game in progress to disk

F12
Restore saved game from disk

Esc
Exit game (i.e. Power)

- (minus)
Shift screen downward

=
Shift screen upward

One note about the F8 key: it actually saves the information to memory, and the profile file is actually modified when you exit the emulator (so if you lose power or something before exiting, the profile file won’t be updated).

Vertical autocentering is a feature that attempts to optimally center the screen on your monitor. This is enabled by default, and works well for nearly every game. However, it might be desirable to disable this feature for certain games; in this case, the F10 key can be used to toggle it.

The F9 key pops up a window asking you for a filename for capturing the screen. It saves the screen as a 256-color Windows .BMP file. It is important to note that 160-column modes save the file with only 160 pixels across, so a paint program will have to be used to stretch the picture in the horizontal direction to achieve a correct aspect ratio.

F11 and F12 allow you to save games to disk so they can be continued later. F11 asks for a save filename, and F12 asks for a filename to restore. If there is an error reading or writing a file, an error window is displayed. Please note that save files contain most of the emulator’s memory contents, including the data stored in its game space. This means that save files will generally contain the same information as a game file, and should be treated the same as game files for copyright purposes.

What are Interfaces?

Interfaces are the means with which you interact with your computer. For example, in front of you there is a mouse and a keyboard, and perhaps a joystick. Or maybe you have a Gravis GrIP controller like the Xterminator, or maybe it’s a SideWinder Freestyle Pro. Or if you’re really resourceful, maybe you’ve built an external interface board to your parallel port and have connected the controllers that came with your 2600. In any case, each of these things are interfaces—they’re the means by which you interact with your computer.

Beginning with PCAE 2.2, the way in which each of these interfaces affects the emulator has been completely redesigned. All available interfaces are arranged in order of priority, and each interface can have none, one, or several of its functions mapped to capabilities. A capability is something like: “joystick 1 up” or “paddle 1 button” or “console reset switch”; it’s something that you would find on an actual 2600 console with actual 2600 controllers.

So how do you connect the interfaces that you have in front of you with the capabilities of the Atari 2600? You assign capabilities to them. For example, if you want button 1 of your joystick to correspond to the fire button of the 2600 joystick 1, you would perform the following steps:

· Select configure controllers

· Select the joystick interface

· Select button 1

· Select the 2600 joystick 1

· Select the button capability

This may look tedious, but once it’s all set up, you could, for example, have your mouse control the paddle, your joysticks control the 2600 joysticks, you keyboard control the keyboard controllers, etc.

You might be wondering now, “But what’s the point? This isn’t any better than 2.1, and it’s way more complicated.” The answer is, (1) everything is remappable (well, with the exception of “special” emulator-specific keyboard keys, such as the function keys), and (2) you can assign multiple capabilities to an interface. You can (aside from the above exception) completely remap the keyboard, joystick, mouse, or any other interface. You joystick could control both the joysticks and paddles, or both joysticks simultaneously. Your Gravis Xterminator could control several controllers at once. It gives you (nearly) complete freedom to configure the emulator any way you want.

But what about the interface priority that was mentioned earlier? Basically, interfaces are arranged in hierarchical order, and you can enable or disable a particular interface at will. For those interfaces that are enabled, higher-priority interfaces take precedence over lower ones for those capabilities that are assigned to them. For instance, if you have the 2600 joystick capabilities assigned to both your keyboard and joystick and both interfaces are enabled, the joystick interface will take precedence over the keyboard interface since it has a higher priority. That is, the keyboard keys that share those capabilities will have no effect. To use them, you have to disable the joystick interface. This prevents interfaces from interfering with each other. The priority order (lowest to highest) is: mouse, keyboard, joystick, GrIP, SideWinder, and external.

If you have a capability assigned to an interface, PCAE will let you know by placing a check mark next to that capability. Additionally, for each controller type assigned to an interface, that controller type will be checked. In this way you could easily tell, for instance, if you have anything assigned from paddle 1 to an interface.

Using Joysticks With PCAE

PCAE will work with either none, one, or two standard PC joysticks. In addition, one Thrustmaster FCS, CH Flightstick Pro, or six- or eight-button gamepad are supported. Either four-button or two-button joysticks will work, but it is recommended that one of the joysticks support four buttons to allow easy use of the Atari Select and Reset functions from the joystick instead of the keyboard. To enable joystick support, make sure they are first plugged into your game port. To connect two joysticks, it might be necessary to purchase a joystick “Y” cable to connect both joysticks to a standard joystick port. Some newer game port cards have two ports on them, such as the Gravis GameCard that sells for about $15.00 (US).

When the joystick(s) are connected, select “Configure controllers” from the popup menu. You will be given a list of interfaces. Select the Joystick interface and choose your joystick type. You will be prompted with available joystick buttons and axes, and a calibration option. Select the calibration option. You will be prompted with calibration questions for joystick 1. At this point it is generally a good idea to center any X/Y trimmer adjustments on the joystick. After you have followed the directions, the same questions will appear for joystick 2. If you have two joysticks connected, you can follow them to calibrate it, but if only one is connected, hit the <Esc> key to notify the emulator that only one joystick is connected. The emulator will turn off support for joystick 2. In the event that recalibration is desired, the calibrate option can be used to recalibrate all joysticks. This is also necessary when unplugging the second joystick to switch control for player 2 back to the keyboard.

Using the Keyboard With PCAE

PCAE has the capability of mapping most if not all controller functions to the keyboard. Keys can be mapped to capabilities by configuring the keyboard interface and selecting a key to map. Mapped keys appear in yellow.

Emulating Paddles With the Mouse and Joysticks

If you have a mouse connected and have a DOS mouse driver loaded, you can map paddle or Indy 500 controller capabilities to the mouse. If you are running PCAE from a Windows DOS prompt, mouse support might already be provided, so it might not be necessary to load a DOS mouse driver. If you have analog joystick(s) connected and calibrated, their horizontal axes can be used to emulate paddles two and three, respectively.
Using Real Atari Controllers With PCAE

PCAE supports connecting real Atari 2600 controllers to your PC if you have either built or acquired a special interface board. It connects to your PC’s joystick port and a parallel port, which must support bidirectional transfer. Most motherboard parallel ports support this, and are usually configurable for standard, EPP (Enhanced Parallel Port), or ECP (Enhanced Capabilities Port) functionality. The joystick port should be a fully functional one, supporting two PC joysticks. If you have the board, you can use it to get the feel of playing an actual Atari 2600, as well as play games requiring more than one paddle.

To use real controllers, first configure the “external” interface and set the parallel port from the popup menu to choose the port number that matches your bidirectional parallel port. You might have to get this information from your BIOS setup, jumper settings, or Windows configuration, depending on your hardware and software setup. The emulator will display a list of all detected parallel ports and prompt you to choose one. Once this is done, enable the external interface from the main popup menu. Being the highest priority interface, it will override all other interfaces, and the board will be polled instead for controller information. The final step is to calibrate your paddle controllers. Connect a set of Atari paddle controllers to the player 1 port of the controller board, and select “Calibrate paddles” from the external interface configuration popup menu. You will be prompted to turn the paddles fully counterclockwise and hit a key. This tells the emulator the full extent of their travel as reported by your PC and will allow both sets of paddles to be connected and properly emulated by the program. It is necessary to calibrate the paddles only once, since the information is saved in the configuration file.

Slowing Down the Emulator For Faster PC’s

At the time PCAE was written, many people were still using computers with i486 and slower Pentium processors. The assembly implementation was absolutely necessary to achieve a decent emulation speed. Since then, faster Pentium and Pentium Pro processors have become affordable, which presents the problem of games that run far faster on the emulator than on the original Atari 2600. To address this problem, the popup menu contains a feature that can be used to limit the emulator to display a certain number of frames per second. For example, standard NTSC Atari 2600’s display at 60 fps, so selecting “Set frames per second” from the Preferences popup menu and entering “60” should limit the emulator to the standard NTSC Atari speed. In addition, this feature can be used to make certain games either easier or harder by slowing them down or allowing them to be played faster.

For users running the emulator from within an OS/2 DOS prompt, it may be necessary to select an option allowing DOS programs to access the hardware timer for PCAE to run properly. The frames-per-second slowdown feature uses the hardware timer to determine how much time has elapsed since the last emulated vertical refresh. Based on the number of frames per second it is told to display, it enters a waiting loop until a certain amount of time has elapsed.

In certain rare circumstances, it might be necessary to use different fps values either with certain system configurations or after an upgrade. This is very unusual, but there have been reports of erroneous timer information reaching the emulator somehow. In cases where 60 frames per second results in very slow operation, try half-multiples such as 90, 120, etc.

Configuring the Emulator’s Sound Output

There are three features that can be used to configure PCAE’s sound output. The first is merely a sound support toggle, which turns all sound on or off via the “Toggle sound” option from the popup menu. The next feature is accessed via the “Set sound options” option (in the Preferences menu); this allows the sound playback rate to be adjusted. By default, the emulator sets the sound card to output the sound at a rate of 31400 Hz, which is the same rate that drives the original Atari 2600 and results in very good sound quality. This seems to work for most sound cards, but there are a few that have had problems getting sound to run. After testing this on a Pro Audio Spectrum 16 sound card, it was found that a slower playback rate would work much better on this card. You can select from four playback rates: 31400 Hz, 22050 Hz, 15700 Hz, and 11025 Hz. It is recommended that you use the highest rate that your sound card supports, since lower rates decrease sound resolution and thus sound quality.

160-Pixel Game Resolutions

From the Preferences submenu there is an option called Game Resolution. You can use this option to display additional scan lines for compatibility with certain games that require more than 200 scan lines. Most of these modes involve switching to a special 160-pixel video mode that uses half as much video memory as the standard 320-pixel modes. This mode also allows the emulator’s display code to perform less work to display playfield graphics, resulting in a ten to fifteen percent increase in overall emulation speed. However, since this is a non-standard video mode, it is not compatible with all VGA cards. Specifically, some video cards may display none or only a portion of the screen in this mode, a result of differences in interpreting the End Horizontal Blanking value. Very fast machines (Pentium-100 and faster) should not need this speed boost; it is intended for slower machines that need every boost they can get and for PAL games. If, after using the standard 320-pixel modes you find that 160-pixel modes work as well, then you can feel free to use them exclusively, but they is certainly not expected to be compatible with many (or even a majority) of VGA cards. I have successfully tested them with three ATI video cards, a local-bus Mach 32-based card with 2Mb of VRAM, a Mach 64-based WinTurbo 2MBU/4MB upgraded to 4Mb of VRAM, and the 3D Pro Turbo PC2TV with 8Mb of SGRAM

Note that there are alternate modes for each 160-pixel mode. Some cards may work only with the first set of modes, while others may only work with the second set, or none, or both. Strictly speaking, both methods arrive at the same set of final register values, so cards that are truly 100% register-compatible with the VGA standard (like ATI cards) should work with either set. I have found, however, that not all cards are like this, so both methods are presented in the hope that one will work.

Changing the Main Screen Resolution

From the Preferences submenu you have the option of changing the main screen mode to something other than the standard 80 columns by 25 rows. If your base screen mode is 80x25, PCAE will also make 80x30 text mode available. Also, if your VGA card has VESA support, PCAE will detect VESA text and graphics modes and make them available. It has code to simulate a DOS text environment in 256-color, 16-bit, 24-bit, and 32-bit VESA graphics modes. This makes it possible to display much more information on screen than the standard text mode.

When changing modes, PCAE will let you know that it is about to attempt a screen mode change, and that, if the new mode does not display correctly, you should wait for it to automatically revert back to the original mode. This is similar to the method of changing resolutions in Windows 95, where upon changing modes you will be asked if the new mode displayed correctly. If you respond <Y>es, the new mode will be retained, otherwise PCAE will return to the original screen mode. PCAE saves screen mode information in PCAE.INI, so that PCAE will automatically use the last screen mode you used when it was last run.

4 Development Tools

In addition to the emulation engine, PCAE includes features designed to assist developers of Atari 2600 programs and other Atari 2600 emulators. It contains an integrated debugger that can be run in conjunction with any 2600 program by either using the “DEBUG” command line parameter or using the “Toggle debugger” option from the popup menu. It has a somewhat similar look and feel to Borland’s Turbo Debugger, but with only those features that are basic to program debugging in general and specific to the Atari 2600:

· Display of program code in a code window which can be navigated using the cursor keys

· Display of all 6507 register contents as well as flag bits

· Display of the contents of Atari RAM addresses 80h to FFh

· Displays the contents of the GRP0 and GRP1 player graphics registers

· Displays the current bank number for some bankswitching schemes

· Displays the scan line and horizontal position of the Atari CRT beam

· Displays the screen address that corresponds to the beam position

· Ability to execute unhindered, trace into, trace over, and execute until specific instructions or specific scan lines

· Online command reference and TIA register reference

· Ability to switch the debugger display to 320x400x256 video mode (should be compatible with all VGA cards) to display additional information

· Can display the current contents of the emulated video screen

· Ability to enter multiple bytes of data into the 6507’s addressable range

· Ability to change a 6507 register’s contents

· Ability to save the ROM range 1000h-1FFFh to disk

· Can show the current scan line when the game screen has been displayed

· Can break on a symbolic algebraic equation

All debugger commands are invoked with certain keystrokes:

<Cursor keys>
Navigate the code window

D
Display toggle—toggle between standard 320x200x256 mode and 320x400x256 mode

E
Enter one or more bytes of data into the 6507’s address range

G
Go—execute the code unhindered until <Esc> is pressed

H
Run to here—execute until the instruction at the top of the code window

L
Run until a specific scan line

P
Move CPU window to a user-specified address

R
Change a 6507 register’s contents

S
Step over—execute until next instruction

T
Trace—execute current instruction only

X
Enter breakpoint equation

Z
Save 4k data area 1000h to 1FFFh to disk

<Ins>
Move the highlight to the instruction pointed to by the Program Counter

<Space>
Display the contents of the emulated game screen

<Esc>
Exit the debugger and return to the main menu

<F1>
Display the help reference screens

+ (plus)
Toggles display of the current crt position when the space bar has been used to show the game screen

— (minus)
Toggles display of the current positions of the player objects, missiles, and ball when the space bar has been used to show the game screen

When in 320x400x256 mode, the debugger also displays the contents of the TIA output registers located at memory locations 00h to 2Ch, as well as the contents of the TIA input registers located at memory locations 00h to 0Dh. In addition, the horizontal positions of the player 1 graphics, player 2 graphics, missile 1 graphics, missile 2 graphics, and ball graphics are displayed. If any of the graphics objects are enabled (if the GRPx registers contain nonzero values or if bit 1 the ENAxx registers is one), then the horizontal position for those objects are displayed in purple instead of black.

Debugger Layout

The largest window, in the upper left corner of the screen, displays the assembly code in the 2600 game program. A yellow highlight bar will be positioned on the next instruction to execute and the code window can be navigated using the cursor keys. To the right of the code window is an area that displays the contents of the 6507 P (flag) register, and right below that is an area that displays the contents of all the 6507 registers in hexadecimal format. Farther down, the beam scan line and horizontal position, its corresponding screen address, bank number, and GRP0 and GRP1 register contents are displayed.

At the bottom of the debugger screen is a data window that displays the contents of the 2600 RAM area, located at memory locations 80h to FFh. When in 320x400x256 mode, between the code window and the main data window are three smaller data windows that display the TIA write registers and read registers, as well as the horizontal positions of all five graphics objects (player 1, player 2, missile 1, missile 2, and ball).

Entering one or more bytes of data

Using the “E” key from the debugger brings up a pop-up window that allows you to enter a target address and one or more bytes of data. The format of the entry should be a hexadecimal address, and equal sign, and one or more hexadecimal bytes, separated by spaces. If a data entry is invalid, that address in the list is skipped. Note that all addresses are bitwise-ANDed with 1FFFh while all data bytes are ANDed with FFh. Also, the debugger does not have the hooks to the code that affects the TIA’s output, and therefore this method cannot be used to change TIA registers (it will only allow addresses in the range (80h to 1FFFh to be changed). Pressing <Esc> at any time aborts the data entry. Finally, be aware that for bankswitched games, all changes made are temporary—when the bank is switched, all changes made are lost.

Examples

1004=00 4 34 AE D3 2F
(Enters these six bytes into 1004h to 1009h

143F=56 – 4E 33
(Enters 56h, 4Eh, and 33h into 143Fh, 1441h, and 1442h

Stopping execution at a certain scan line

Choosing the “L” key brings up a pop-up window that asks for a scan line value. Entering one starts execution of the program, which will halt and return to the debugger when that scan line value is reached. If a number is entered that is never reached (e.g. 300), execution will continue until <Esc> is pressed. You can abort entering a number by hitting <Esc> at any time.

Changing a 6507 register’s contents

Hitting the “R” key opens a pop-up window that asks for a 6507 register and value to be entered. The format should be the register name, an equal sign, and a hexadecimal value to be entered. Hitting <Esc> aborts the process.

Examples

PC=13F3h
(Changes the program counter to 13F3h

A=3
(Changes the accumulator to 03h

P=E2
(Changes the flags register to E2h

X=26
(Changes the X register to 26h

S=9A
(Changes the stack register to 9Ah

Y=71
(Changes the Y register to 71h

Note that data entries are ANDed with FFh to keep the value in the legal byte range.

Saving to Disk

Since the “E” key allows you to interactively change a game file as it runs, the “Z” key allows you to permanently save the final ROM dump to disk. Hitting “Z” brings up a pop-up window that lets you enter a path and filename at which to save the file. Invalid filenames will be ignored, and hitting <Esc> lets you abort the process.

Breaking On an Equation

This is an advanced feature for which a really fast PC is recommended (400MHz or greater) and is accessed via the “X” key. It allows you to enter an algebraic equation, which, when true, will cause a breakpoint. For example, you might want to break if a register contains a certain value, if the contents of a memory address is greater than the contents of a different memory address, and so on. The possibilities are nearly limitless. For example the expression:

(P0=5) || ([8D]=4)

will cause a breakpoint if the horizontal position of player 0 is 5 or if the contents of memory location 008Dh is equal to 4.

The syntax is somewhat similar to C, and should be somewhat familiar. Expressions can use equalities or inequalities, multiple levels of nesting, boolean operators, bitwise operators, and algrbraic operators. As long as the entire expression can evaluate to a boolean (true or false) value, anything goes. Multiple nesting with parentheses is allowed. Integers are decimal by default, but are interpreted as hexadecimal if followed by an “h” (e.g. 3Dh). However, address locations (in square brackets) are always interpreted as hexadecimal. All expressions are case-insensitive. The following variables are available (also shown in the online help):

CX
CRT beam X position (-40 at vertical sync top, first displayed line is line 0)

CY
CRT beam Y position (-68 to 160)

P0
Player 0 horizontal position

P1
Player 1 horizontal position

M0
Missile 0 horizontal position

M1
Missile 1 horizontal position

BL
Ball horizontal position

A
Contents of 6507 accumulator

X
Contents of 6507 X register

Y
Contents of 6507 Y register

P
Contents of 6507 P register

S
Contents of 6507 S register

[addr]
Contents of hexadecimal address

The following operators are available (also shown in the online help):

+
Integer addition

-
Integer subtraction/negation

*
Integer multiplication

/
Integer division

%
Integer modulo

&&
Boolean AND

||
Boolean OR

^^
Boolean XOR

! or ~
Boolean NOT

&
Bitwise AND

|
Bitwise OR

^
Bitwise XOR

= or ==
Equality

<> or !=
Inequality

<
Unsigned less than

>
Unsigned greater than

<=
Unsigned less than or equal to

>=
Unsigned greater than or equal to

(…)
Parentheses

Please be aware that running a game will slow to a crawl when using this feature, since the entire expression has to be evaluated on every 6507 instruction. The more complex an expression is, the longer it takes to evaluate. But for those who are developing a game and really need some help tracking down a problem, this could be a very big help. Entering a blank expression will turn the feature back off and restore emulation speed to normal.

The Disassembler

PCAE also includes a disassembler for building 6507 assembler listings of game files that are 4k in size or smaller, as well as many 8k, 16k, Super-Chip, and CBS RAM-Plus games. It is invoked with the “DISASM” command-line option, generating a source file called LISTING.ASM. It automatically detects the game code’s starting point and attempts to differentiate between code and data areas by recursively following all code paths. It is not capable of disassembling games that have other bankswitch types, nor can it follow code paths generated by jump tables. To disassemble bank-switched games, it is important to use the proper bankswitching command-line options to tell the emulator that they are in effect.

5 SideWinder Support

PCAE includes native support for Microsoft SideWinder digital controllers. These types of controllers communicate with your computer by sending packets of information through your joystick port to your PC. This differs from traditional “analog” joysticks in that all of the joystick information is contained in the digital packet; the controller does not make use of the four analog axis lines on the joystick port. Instead, a packet is sent at high speed along the four digital button lines. This has the benefit of allowing controllers to contain any number of functions, instead of being limited to the traditional four buttons and axes.

The difficulty with digital controllers is that every controller has a different packet size and format. PCAE comes with packet formats for several SideWinder controllers: the GamePad, Freestlye Pro, and Precision Pro. The Precision Pro and Force Feedback Pro allegedly share the same packet format, so that controller should work as well (except for the force feedback function). There exist other SideWinder controllers that PCAE doesn’t initially support, but support can easily be added by adding their profiles to PCAE.INI.

In the [SideWinder] section of PCAE.INI you can add additional profiles describing other SideWinder controllers. There are five entries per controller: DIG#AAA, DIG#DEF, DIG#NUM, DIG#BIT, and DIG#FLP, where # is the profile number, beginning with 1. So, for example, the SideWinder Gamepad’s profile would begin with DIG1, the next with DIG2, and so on. Except for DIG#NAM, all entries are case-insensitive. The five entries are described as follows:

DIG#AAA contains the name of the controller. PCAE already knows it’s a Microsoft product and will automatically add “Microsoft” as the vendor. An example entry would be:

DIG2AAA=SideWinder Precision Pro

The entry has the “AAA” suffix so that it will sit above the five profile entries, since PCAE automatically writes keys to the .INI file sorted alphabetically.

DIG#DEF is a string that defines the basic function of each bit in the digital packet. For a packet of a certain size, this is a string containing an equal number of characters where each character describes that bit’s function. Possible characters are:

B
Button

X
Digital axis (up, down, right, left, diagonal)

H
Digital hat (like digital axis, but works a bit differently)

T
Analog (i.e. proportional) throttle or flipper

A
Analog (i.e. proportional) axis movement, including twist

1
Bit is always 1

0
Bit is always 0

P
Parity bit (even parity)

Letters used in DIG#DEF other than those above will be ignored.

DIG#FLP describes which bits should be flipped before the packet is analyzed. It is the same length as DIG#DEF, where a “0” leaves the corresponding bit alone and any other character results in the bit being flipped.

Some controllers have more than one “throttle”; Gravis Xterminators, for example, have a throttle on top and two proportional flippers near the index finger position. In this case, as far as PCAE is concerned, there are three throttles. Perhaps there will arise a SideWinder controller with similar functionality. An analog throttle is here defined as any one-dimensional proportional control (so an analog joystick is NOT two throttles, though there is nothing to stop you from defining it as such). Likewise, the handle twist of a SideWinder Precision Pro should be defined as a throttle since it has no other axis to counterpart it.

DIG#NUM is the same length as DIG#DEF, and describes to which function each bit refers. For example, a SideWinder Precision Pro has two analog axes: the X (left-right) and Y (up-down) axes. That means DIG#DEF has lots of “A”’s in it. Some of them will be assigned a “0” in DIG#NUM, and some a “1”. This also follows for buttons and throttles, but digital hats and digital axes are handled a bit differently.

A digital axis, as described above, specifically refers to part of a packet where up, down, left, and right each have a separate bit. A good example is the SideWinder Gamepad; pressing up toggles the “up” bit, pressing right toggles the “right” bit, and pressing up and right toggles both bits. With this scheme no more than two bits are toggled at a time. Digital hats are handled differently; even though they also have only eight possible directions, the controller transmits a number between zero (0) and eight (8) to describe the direction (since centered is a “ninth” direction). This is a fundamentally different way of signalling since all three bits can change for a given direction. Why Microsoft used two separate methods is a complete mystery. A good example of a digital hat is the hat on the Precision Pro and the directional pad on the Freestlye Pro, which, although it looks like it would be a digital axis, actually uses hat signalling.

When numbering the digital axis in DIG#NUM, X and Y axes are treated separately (by convention, the X axis is generally thought of as being first, but this isn’t strictly necessary). Therefore, the X axis (the left and right bits) would be numbered “0”, and the Y axis (up and down bits) would be numbered “1”. In the case of multiple D-pads (resulting in more than two digital axes), continue with “3”, “4”, and so on.

Digital hats, from a bit numbering standpoint, are treated as a unit since the bits aren’t initially separatable into X and Y components. So in this case, all three (four for some controllers) bits are numbered the same for each hat, starting with “0”. Internally, PCAE separates the hat data into X and Y components so that it can treat hats the same as digital axes. When you configure a controller with a digital hat, you will see two hat axes, with the X axis first.

If a packet has parity bits or bits that always contain the same value, it is important to define those bits because they make it much easier for PCAE to properly detect a good packet and discard invalid ones. One resource for finding packet structures is the Linux joystick driver, authored by Vojtech Pavlik. Also helpful is the included utility LEARN.EXE, described below.

DIG#BIT, like DIG#NUM, is the same length as DIG#DEF. It describes bit ordering for each function. For buttons this isn’t needed, and those bits are ignored. For digital axes, “left” and “up” are always bit 0, whereas “right” and “down” are always bit 1. Since digital hats, analog throttles, and analog axes transmit numeric information, this field must contain each bit’s position starting from 0 (least significant bit) to some other number (most significant bit). This field is also ignored for parity bits and bits that always contain a certain value.

LEARN.EXE: A Helping Hand

Included with PCAE is a small program intended to help detect the major parts of a SideWinder controller’s digital packet structure. It can’t detect parity bits or bits that always have a certain value (because occasional invalid packets throw it off), nor can it detect bit ordering, but it can tell which bits are button bits, digital axis bits, digital hat bits, throttle bits, or analog bits. It can also tell which bits refer to which button or throttle. It works by guiding the user through a series of steps, where at each step the user is asked to something with his/her controller. When it is finished, it creates a file called LEARN.INI which can be copied and expanded to complete a packet profile (to be placed into PCAE.INI).

When it is run, at the top of the screen the detected packet size is displayed, and immediately below are two lines describing what LEARN.EXE has learned about the packet. They correspond roughly to the DIG#DEF and DIG#NUM entries described above. At the bottom the last packet read from the controller is displayed in real time whenever the user is asked to do something with the controller. Pressing <Esc> at any time aborts the process and exits to DOS.

Because my knowledge of SideWinder packet protocol is incomplete, LEARN sometimes has trouble initially detecting the controller’s packet size. SideWinder controllers initially transmit an ID packet that is different in size from the normal data packet, and I don’t have the format for ID packets. LEARN is designed to perform an initial wait and statistical test to find the data packet size, but this occasionally fails. When the program first comes up, perform step 1 (directions will be on-screen) and watch the real-time packet information at the bottom of the screen. If the data changes repeatedly, LEARN has probably detected the correct packet size. If nothing happens, it has probably detected an ID packet instead. In that case you should exit by hitting <Esc> and try running LEARN again.

When you attempt to configure a SideWinder controller in PCAE, it also may have trouble initially detecting your controller. If the name of your controller doesn’t immediately show up in the controller list and you know that PCAE.INI contains the packet profile for your controller, hit <Esc> and try to detect it again.

6 The Real Controller Board

PCAE supports connecting real Atari 2600 controllers to your PC via a special board that connects to a bidirectional parallel port and a fully functional joystick port. The (second generation) board I built requires the following parts, though many variations on it can exist:

1 40-pin IDE hard-drive ribbon cable

1 40-pin IDC connector (connected to the ribbon cable)

1 DB25 connector, connected to the ribbon cable (plugs into the parallel port)

1 DB15 connector (plugs into the joystick port, connected to the ribbon cable)

2 DB9 connectors (Atari controllers plug into them—connected to the ribbon cable).

1 solder-type board

16 66-ohm resistors (I used ½-watt resistors)

some wire

Most of these parts can be bought at Radio Shack or at a computer show. The schematic is as follows:

[image: image1.wmf]
7 Troubleshooting

The computer hangs (or the emulator crashes) when the emulator is run

First, make sure that there is enough low DOS and XMS memory available for the program. To get more low DOS memory, you might have to change your system configuration, such as removing TSR’s from either your AUTOEXEC.BAT or CONFIG.SYS files, or perhaps by loading them into upper memory blocks (UMB’s). XMS memory must be provided by an XMS memory manager, such as HIMEM.SYS (provided with MS-DOS and Microsoft Windows). There are also third-party memory managers which might help, such as 386MAX and QEMM. You can usually find out how much memory is avaiilable by typing “MEM” from the DOS prompt. The amount of XMS memory required depends on the sound buffer size you have chosen from the main menu; for a 4k buffer size, 2Mb of XMS is required (a 2k buffer size requires 1Mb of XMS, etc.)

If you have met the memory requirements, the next thing to check is if your BLASTER environment string is set properly if you are using sound support. An incorrectly set environment string could cause lockups if sound is enabled in the emulator. You can test this by disabling sound support with the “Toggle sound” option and then attempting to play a game. If the emulator runs properly, this could be an indication of an incorrectly set BLASTER environment string. If this is the case, please see the earlier section on setting the emulator up for help or consult your sound card’s documentation.

If both the memory and sound setups are correct but you are still experiencing lockups, check to see if you have a DOS mouse driver loaded if you are not running the emulator from a Windows or OS/2 MS-DOS prompt (i.e. you are in true MS-DOS mode). Not having a DOS mouse driver loaded really shouldn’t cause a lockup, but it is recommended (and necessary to emulate paddle games). Common mouse drivers are usually called MOUSE.SYS or MOUSE.EXE.

If you are running the emulator from an OS/2 DOS prompt, be sure to enable access to the hardware timer in the DOS prompt setup. There has been a report from an OS/2 user who found out that the emulator would not run without this enabled.

The emulator runs VERY slowly

The first thing to check is your computer’s speed. Benchmarks have shown that, using PCAE.EXE, a Pentium-90 can run most games at about 110% of a normal 2600’s speed. A Pentium-60 will run at two-thirds of a P90, and a 486-66 will run at about 55% to 60% of a P60. There have been reports that a 486-120 can run games at about 100% of an Atari 2600. If your computer is slower than a 486-66, expect slow operation. You can find out how fast your PC is emulating the 2600 by running a game with a timer (such as a sports game) and timing how long it takes to count to a certain point. Remember, though, to set the frames-per-second value to 0 to allow the emulator to run as fast as possible before performing benchmarks.

If tests show that the games are not being emulated as fast as they should, the first thing to check is your joystick calibration setup. If you do not have joysticks connected, you should make sure to disable joystick support with the “Use keyboard” option. Otherwise, the emulator will constantly poll the joysticks, which can take a very long time if none are connected. Similarly, if only one joystick is connected, you might want to recalibrate the joystick, making sure to hit the Esc key when asked to calibrate the second joystick. This will tell the emulator that only one joystick is connected and prevent it from constantly polling joystick two. If the above procedures don’t help, try changing the frames-per-second value. There have been occurrences where certain video cards incorrectly report vertical refresh information to the emulator, causing it to slow itself down more than it should. Trying higher values for frames-per-second might help.

Finally, if all else fails, check if your computer has a “turbo” feature, usually a button on the case. The effect of the turbo being off should be very noticeable, since ALL software should run slowly. Make sure the turbo is ON, usually indicated by an LED nearby.

The emulator runs more slowly when I use joysticks than when I use the keyboard

It is normal to experience a 10 percent or so degradation of emulation speed when using joysticks with the emulator. This is due to the method required to read analog joysticks. They can only be read by initializing the joystick port and waiting until a certain bit flips or until a time limit has been reached. This occasional waiting loop causes the loss in emulation speed.

The emulator runs, but there is no sound

Sometimes simple solutions are the best; make sure that sound is enabled with the “Toggle sound” option, and check to see that your speakers are connected and on if they have a power switch. If your speakers support optional external power supplies for additional amplification, you might have to set the power switch to “Off” if you are not using any additional power supply for them. Try testing sound with another program to make sure your sound card and speakers are set up properly.

If sound is enabled and your speakers are set up properly, the problem is most likely an incorrectly set BLASTER environment string. See the earlier section on setting the emulator up for help with this, or consult your sound card’s documentation. If there still isn’t sound, check to make sure your sound card’s IRQ and DMA are supported by the emulator.

If your sound card has mixer software or you are running in Windows 95, check your mixer settings to make sure they are correct. For DOS users, you should have mixer software that came with your card, or they might be available from your manufacturer. For example, my Sound Blaster 16 SCSI-2 has a program called SB16MIX.EXE, a DOS TSR that lets me set the individual mixer settings. Windows users should have similar software, and Windows 95 users can try double-clicking on the little speaker icon in the system tray at the bottom right of the screen. You should make sure that the digital and FM outputs are the same value (they are usually called “wave” and “midi”) and that the master volume is not zero or a small value.

Incompatible cards are extremely rare these days, but make sure your sound card is 100% Sound Blaster-compatible, preferably Sound Blaster Pro compatible (a simple AdLib FM card or Creative Labs Game Blaster will not do). In my opinion there is no substitute for a true-blue Creative Labs part, but they tend to command a premium.

I have sometimes had problems after running other software that would cause the sound card to become inaccessible afterwards. Turning off your computer and turning it back on will reset the sound card and might help matters.

The emulator runs too fast; games are unplayable

From the popup menu, select the “Set frames per second” option. You will be asked to enter a number of frames per second at which the emulator will run. This causes the emulator to limit its speed so as not to exceed the frame rate that you specify. Entering zero will cause the emulator to run as fast as possible. For standard NTSC Atari 2600’s you should enter 60, which should limit the emulator to running at 60 frames per second.

If you had already done this and the emulator still runs too fast, your video card might not be correctly reporting vertical refresh rates to the emulator. Try smaller values, like 45 or 30.

The cursor is uncontrollable from the main menu; it keeps moving by itself

This probably indicates that either (1) you do not have joysticks connected but joystick support is enabled, or (2) you have joystick(s), but they either need to be recalibrated or aren’t connected. If there are no joysticks, disable joystick support by choosing “Enable interfaces” from the popup menu and disabling the joystick interface. The emulator will stop polling the joysticks for cursor movement, and will only use the keyboard. If you have joysticks, make sure they’re connected and recalibrate them with the “Calibrate and use joystick(s)” option (see the earlier section for the calibration instructons). The above also applies to GrIP, SideWinder, or external interfaces.

The menu doesn’t show any games to run

Make sure you are running PCAE from the right directory. If the game files are in a different directory than the emulator, you have to specify the alternate directory from the command line (e.g. PCAE G:\GAMES). Also, make sure that all games have extensions of either .BIN or .PAL, the only extensions the menu displays.

When I try to run the program I get a “Runtime error” message.

Make sure that the emulator is in the current directory, not in a different directory than the one you are in. For example, typing “C:\PCAE\PCAE” from a directory other than C:\PCAE will not work, since the emulator looks in the current directory for its support files. Also, make sure none of the support files included in the PCAE distribution are missing. If you are running the emulator from a Windows shortcut, make sure to specify PCAE’s starting directory in the shortcut setup. If you are trying to specify an alternate directory for games (e.g. PCAE G:\GAMES), make sure the alternate directory actually exists (i.e. make sure that G:\GAMES exists and is a directory, not just a file).

The emulator works on one computer, but one of the above problems arises when I copy it to another machine

Different machines have different hardware and software configurations. Make sure there is adequate memory, that the sound setup is correct, and either disable keyboard support in the emulator or recalibrate the joystick. Follow the troubleshooting help for the given problem to attempt to solve it.

When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately

There are three possibilities: (1) the game isn’t supported by the emulator; (2) the game is a different type than the one you have specified, or (3) the game is a bad ROM dump. If the game isn’t supported, there really is nothing you can do; perhaps a future version might support it. For bankswitched games, you can try other bankswitching types for that game size; for example, try Parker Brothers 8k instead of standard Atari 8k. If you have generated the game profile and are trying to run the game by pressing the Enter key, perhaps the game is a different type and needs to be added to the known game profile file. Also, if you have added a game to the known profile file or changed its entry, make sure you have regenerated the standard profile afterwards, since changes to PCAE.KNW will not take effect until PCAE.PRO has been regenerated. If you can establish the proper game type, you can edit the known game file, add the game to the list, and regenerate the profile file from the popup menu. If nothing works, perhaps it is a bad copy of the game.

When I use a 160-pixel screen mode, all or part of the screen is blank when a game is run

When setting 160-column modes, PCAE reprograms the VGA registers to attempt to achieve a 160x200x256 screen mode that lets the emulator do less work to display playfield graphics. This results in a ten to fifteen percent speed increase, but, being a non-standard video mode, is not compatible with all VGA cards. If the above symptoms occur, These modes might not be compatible with your VGA card. They have been tested with several cards manufactured by ATI Technologies with good results, but this is no guarantee of compatibility with all brands.

I’m having trouble calibrating my joystick(s)

First, make sure they are connected properly, and test them with some other piece of software to ensure that the joysticks and joystick port are working properly. Then, you should examine your joysticks for what are usually known as X/Y trimmer adjustments. These usually take the form of knobs or sliders, and are used for fine adjustment. Before calibrating the joystick, you should make sure the trimmer adjustments are centered (not at either extreme) to allow the fullest range of values to be reported by the joystick.

If centering the trimmers and recalibrating doesn’t help, and you have a speed-adjustable joystick port, you might want to examine the speed setting of the port. If you have a driver that sets the speed when you boot up, sometimes simply rebooting or powering down and back up helps, since this will reset the joystick port to your speed setting. It might be necessary to change the speed setting as a last resort, but this usually isn’t necessary.

One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen

You might have a problem with your joystick. Make sure it is fully plugged in, and test it with some other software. If it works fine with other software, check the joystick button mappings by selecting “Configure controllers” from the main menu and selecting the joystick interface to make sure that you don’t have more than one thing mapped to the same joystick button. If the joystick has problems with other software as well, try remapping the buttons to compensate. In this case, you might consider buying either a new joystick or a new game port. You might be able to tell where the problem is by trying a different joystick to see if the problem persists.

I’m trying to use real controllers, but it doesn’t work or doesn’t work fully

There could be several problems. First, make sure real controllers are enabled by selecting “Enable interfaces” from the popup menu and enabling the external interface. Second, you should make sure you have selected the right parallel port for the emulator; it must be one that supports bidirectional transfer. You can try a different port by selecting “Set parallel port” from the configuration menu. Also, make sure the board is properly plugged in and that Atari controllers are properly plugged into the board. If you built the board yourself, make sure it is done properly.

If none of the above steps works, it is possible that your parallel port is not set up properly. Make sure it is enabled by either checking your jumpers or entering your BIOS setup. Also, if your port supports standard, EPP, or ECP modes, try setting it to a different mode. You can also try running the emulator and board on a different PC to see if the parallel port is the problem. Also, make sure the joystick port is a fully functional one that supports two joysticks. You can test this by plugging two joysticks into it using a joystick “Y” cable and making sure that both joysticks work. You also should consider checking to see if your parallel port’s port number or IRQ conflicts with other hardware, since some computers will have their sound cards and parallel ports share IRQ settings.

When I run PCAE, I get an error like “EMM386: Unsupported DMA mode. Press Enter to reboot”

There seems to sometimes be a problem when running PCAE with EMM386, if your sound card is compatible with Sound Blaster DSP version 2.00 or higher (the vast majority of sound cards). The problem is that EMM386 doesn’t always like the auto-initialize DMA mode that the emulator uses to achieve near-perfect sound. The best suggestion is to either run the emulator from within a Windows 3.x or Windows 95 prompt, or remark out the EMM386 line from your CONFIG.SYS file.

I get an error message saying that a file is missing

PCAE is designed to abort gracefully if a file is missing or if there are no game files in the target directory. The message should tell you what the emulator is looking for and the directory in which it is looking. If this is not the directory you expect PCAE to use, check to see that you are in the right directory and that any Windows shortcuts are set up properly. If the directory is correct, check to make sure that the desired file(s) are there.

My Gravis GrIP controller doesn’t work or isn’t detected

Make sure you have GRIP.GLL on your system and that you have a DOS environment string called “GRIP=” that points to the folder in which GRIP.GLL is located. The environment string should not contain “GRIP.GLL” itself. If it ends in a backslash, try removing the backslash. Make sure your controller is plugged in, and your game port works. Also, some GrIP controllers have a switch on the bottom that has to be set to GrIP mode (e.g. Gravis GamePad Pro) for GrIP functionality to work. Windows GrIP drivers are NOT necessary to use GrIP controllers. Finally, if you don’t have GRIP.GLL and you have a GrIP controller, contact Gravis customer support or go to the vendor where you got the controller. Please note that the Gravis Standard GamePad (has a D-Pad and four buttons) is NOT a GrIP controller but a standard joystick.

My Microsoft SideWinder controller isn’t detected

First, test the obvious; make sure it’s plugged in, and test it with other software. Try exiting to the main menu and re-detecting it. Sometimes (I don’t know why) it helps to wait thirty seconds or so after plugging the controller in while it initializes. Try unplugging it, plugging it back it in, waiting thirty seconds, and then re-detecting. Make sure that the packet structure is in PCAE.INI and all bits are defined. Finally, see if LEARN.EXE can detect the packet structure.

I chose a VESA mode and I now get a blank screen

Wait a few seconds, and PCAE should revert back to your original screen mode (like Windows). If you changed cards or monitors or got the blank screen when starting PCAE, either delete PCAE.INI to force the standard 80x25 screen (do this as a last resort, since you’ll lose all of your controller mappings), or edit PCAE.INI and delete the SCREENMODEWIDTH, SCREENMODEHEIGHT, and SCREENMODEDEPTH entries from the [GENERAL] section. This will force PCAE to revert to the standard 80x25 text screen.

When I go to change the main screen mode, I don’t see any VESA modes available

Make sure that your video card supports VESA graphics modes. Some cards require that a TSR (terminate-and-stay-resident) program be loaded upon bootup before any VESA software will work. Check the software that came with your video card or with your manufacturer.

I want to use a 640-pixel-wide VESA mode but PCAE won’t let me

A standard 80x25 text screen is 720 pixels wide when using a 9x16-pixel font. PCAE’s main menu is designed to require at least 80 columns of text, and thus won’t let you use any VESA mode that is less than 720 pixels wide.

I want to use a really high-resolution screen mode that I know my card has, but it isn’t listed

Not all screen modes that your video card can do may be VESA modes. Even though PCAE has no upper limit on screen resolution, the “official” VESA standard stops at 1280x1024 pixels. I have seen cards with VESA modes at higher resolutions, but this is a matter that really depends on your card manufacturer and the choices they made when building VESA support into their product. I have heard of a product called Scitech Display Doctor that supposedly creates extra VESA modes; perhaps this might help.

I start this game, and it displays, but the next screen is “frozen”

Try changing the difficulty settings. I have seen at least one game in which a difficulty setting acts as a “pause” function. The default setting for all games in PCAE is difficulty “B”, or “easy”.

Sound is garbled under Windows 95 or 98

This usually doesn’t happen anymore, but I have found that it can still arise for cards that use a driver to emulate Sound Blaster support. I just upgraded to a Creative Labs SB Live! card, and I’m profoundly disappointed to find that it isn’t 100% Sound Blaster compatible! It requires a DOS driver to emulate the Sound Blaster when in DOS mode, and an additional Windows driver as well. The only solution I was able to find here is either to “Restart in MS-DOS mode” or prevent the computer from booting to Windows (either by using the F8 key and selecting “Command prompt only” or using the Microsoft TweakUI PowerToy) and running the emulator in pure DOS. The problem apparently arises from interference between the native Windows driver and the SB emulation driver when in Windows. Perhaps it’s a configuration issue, or a driver problem. I would appreciate it if someone can come up with a solution.

8 Acknowledgements

Over the past few years while I have been developing PCAE, I have been lucky enough to receive a lot of help from some gracious people. This should in no way be considered an exhaustive list; I’ve gotten so much feedback over the past three years from so many people that I could never list everyone—my email folder simply isn’t that large, so if you aren’t included here, please don’t take any offense. I am grateful for all the assistance that has come my way.

Those who helped (not necessarily in any real order)

Matt Conte: First and foremost, for giving PCAE a home! Also for spreading the word, doing lots of beta testing, getting me info and tools I needed, fielding a lot of the email, and generally being really helpful.

Kevin Horton: Helped me with a lot of technical details of the 2600 especially bankswitching issues and Pitfall II deciphering. Also made sure I knew about every kind of bankswiching game he could get his hands on.

Norbert Juffa: Wrote the millisecond timer used in the fps limiting code.

Dan Melton: Wrote the keyboard interrupt service routine.

Ron Fries: Wrote the TIA sound routines and sent them to me.

Dan Boris: Introduced me to Ron Fries’ sound routines.

Dave W. (Dave’s Video Game Classics): Did lots of testing of PCAE, and supplied a whole bunch of good suggestions to make it better.

Jim Leonard: Provided lots more web space for PCAE, as well as did some very important testing of the final version. Also converted the documentation and schematics to HTML.

Bradford W. Mott and Keith Wilkins: For making available the source code to Stella, another really great 2600 emulator. This has not been an isolated project, and I’d be lying if I said that Stella wasn’t helpful. I certainly hope that PCAE’s source has been equally helpful.

Eckhard Stolberg: Provided me with a better PAL palette and provided additional information on the Cosmic Ark starfield bug.

John Saeger (author of Z26): Z26 has many of the same sound routines as PCAE, but I found that Z26 actually uses them properly—this made possible the smoother “click-less” sound in the current version.

Vojtech Pavlik (author of Linux joystick driver): for providing specs on SideWinder packets and how to read them.

Countless others: Many of the features PCAE has today came from people who emailed me with their suggestions. This document is a direct result of all the feedback I’ve gotten, and is my attempt at making things clearer for everyone.

9 Disclaimer

For the following discussion, this software, the PC Atari Emulator, will be referred to as "PCAE".

PCAE emulates a commercial game system for which copyrighted software was developed and still exists. The author of PCAE hereby forbids anyone to distribute PCAE in conjunction with any other copyrighted software. In addition, users of PCAE are specifically forbidden from using it in any way with copyrighted software for which they are not in legal ownership. PCAE should IN NO WAY be regarded as condonation of, or an excuse to commit, software piracy, and the author will not be held responsible for the actions of others.

In addition to the above, PCAE is covered by the GNU General Public License, which can be found in file COPYING.

Source code is available at http://www.geocities.com/dwarfaxe/pcae/index.html.

