
MAC/65

TABLE OF CONTENTS

Introduction
 Start Up
 Warm Start
 Back up Copy
 Syntax

Chapter 1 -- The Editor
 1.1 General Editor Usage
 1.2 TEXT Mode
 1.3 EDIT Mode

Chapter 2 -- Editor Commands

 2.1 ASM
 2.2 BLOAD
 2.3 BSAVE
 2.4 BYE
 2.5 C (Change Memory)
 2.6 D (Display Memory)
 2.7 DEL
 2.8 DOS
 2.9 ENTER
 2.10 FIND
 2.11 LIST
 2.12 LOAD
 2.13 LOMEM
 2.14 NEW
 2.15 NUM
 2.16 PRINT
 2.17 REN
 2.18 REP
 2.19 SAVE
 2.20 SIZE
 2.21 TEXT
 2.22 ? (hex/dec convert)

Chapter 3 -- The Macro Assembler

 3.1 Assembler Input
 3.2 Instruction Format
 3.3 Labels
 3.4 Operands
 3.5 Operators
 3.6 Assembler Expressions
 3.7 Operator Precedence
 3.8 Numeric Constants
 3.9 Strings

Chapter 4 -- Directives

 4.1 *=
 4.2 =
 4.3 .=

 4.4 .BYTE (and .SBYTE)
 4.5 .CBYTE
 4.6 .DBYTE
 4.7 .ELSE
 4.8 .END
 4.9 .ENDIF
 4.10 .ERROR
 4.11 .FLOAT
 4.12 .IF
 4.13 .INCLUDE
 4.14 .LOCAL
 4.15 .OPT
 4.16 .PAGE
 4.17 .SBYTE (see also .BYTE)
 4.18 .SET
 4.19 .TAB
 4.20 .TITLE
 4.21 .WORD

Chapter 5 -- Macro Facility

 5.1 .ENDM
 5.2 .MACRO
 5.3 Macro Expansion, part 1
 5.4 Macro Parameters
 5.5 Macro Expansion, part 2
 5.6 Macro Strings
 5.7 Some Macro Hints
 5.8 A complex Macro Example

Chapter 6 -- Compatibility

 6.1 Atari's Cartridge

Chapter 7 -- Error Descriptions

INTRODUCTION

This manual assumes the user is familiar with assembly language. It is
not
intended to teach assembly language. This manual is a reference for
commands,
statements, functions, and syntax conventions of MAC65. It is also
assumed
that the user is familiar with the screen editor of the Atari or Apple
II
computer, as appropriate. Consult Atari's or Apple's Reference Manuals
if you
are not familiar with the screen editor.

If you need a tutorial level manual, we would recommend that you ask
your local
dealer or bookstore for suggestions. Two books that have worked well
for many
of our customers are "Machine Language for Beginners" by Richard
Mansfield from

COMPUTE! books and "Programming the 6502" by Rodney Zaks.

This manual is divided into two major sections; the first two chapters
cover
the Editor commands and syntax, source line entry, and executing source
program
assembly. The next three chapters then cover instruction format,
assembler
directives, functions and expressions, Macros, and conditional assembly.

MAC65 is a fast and powerful machine language development tool.
Programs
larger than memory can be assembled. MAC65 also contains directives
specifically designed for screen format development. With MAC65's line
entry
syntax feature, less time is spent re-assembling programs due to
assembly
syntax errors, allowing more time for actual program development.

START UP

Power up the disk drive(s) and monitor, leave the computer off. Insert
MAC65
disk in drive #1 and boot system by turning the computer on. This will
load
and execute DOS XL. Now enter MAC65 (return). This loads and executes
MAC65,
the Editor/Macro Assembler. Refer to the DOS XL Manual for other
capabilities.

WARM START

The user can exit to DOSXL by entering the MAC65 command CP (return) or
by
pressing the System Reset key. To return to MAC65, the user can use
the DOSXL
command RUN (return). This "warm starts" MAC65 and does not clear out
any
source lines in memory.

BACK-UP COPY

Please do not work with your master disk! Make a back-up copy with
DOSXL.
Consult the DOSXL reference manual for specific instructions. Keep
your master
copy in a safe place.

SYNTAX

The following conventions are used in the syntax descriptions in this
manual:

1. Capital letters designate commands, instruction, functions, etc.,
which
must be entered exactly as shown (e.g. ENTER, .INCLUDE, .NOT).

2. Lower case letters specify items which may be used. The various
types are
as follows:

 1no - Line number between 0-65535, inclusive.

 hxnum - A hex number. It can be address or data.
 Hex numbers are treated as unsigned
 integers.

 dcnum - A positive number. Decimal numbers are
 rounded to the nearest two byte unsigned
 integer; 3.5 to 3.9 is rounded to 4 and
 100.1 to 100.4 is rounded to 100.

 exp - An assembler expression.

 string - A string of ASCII characters enclosed by
 double quotes (eg. "THIS IS A STRING").

 strvar - A string representation. Can be a string
 as above, or a string variable within a
 Macro call (eg. %$1).

 filespec - A string of ASCII characters that refers to
 OR refers to a particular device. See device
 file reference manual for more specific
 explanation.

3. Items in square brackets denote an optional part of syntax (eg.
[,1no]).
When an optional item is followed by (...) the item(s) may be repeated
as many
times as needed.

 Example: .WORD exp [,exp ...]

4. Items in parentheses indicate that any one of the items may be used,
eg.
(.Q) (,A).

CHAPTER 1: THE EDITOR

The Editor allows the user to enter and edit MAC/65 source code or
ordinary
ASCII text files.

To the Editor, there is a real distinction between the two types of
files; so
much that there are actually two modes accessible to the user, EDIT
mode and
TEXTMODE. However, for either mode, source code/text must begin with a
line
number between 0 and 65535 inclusive, followed by one space.

 Examples: 10 LABEL LDA #$32
 3020 This is valid in TEXT MODE

The first example would be valid in either EDIT or TEXTMODE, while the
second
example would only be valid in TEXTMODE.

The user chooses which mode he/she wishes to use for editing by
selecting NEW
(which allows general text entry). There is more discussion of the
impact of
these two modes below; but, first, there are several points in common
to the
two modes.

1.1 GENERAL EDITOR USAGE

The source file is manipulated by Editor commands. Since the Editor
recognizes
a command by the absence of a line number, a line beginning with a line
number
is assumed to be a valid source/text line. As such, it is merged with,
added
to, or inserted into the source/text lines already in memory in
accordance with
its line number. An entered line which has the same line number as one
already
in memory will replace the line in memory.

Also, as a special case of the above, a source line can be deleted from
memory
by entering its line number only. (And also see DEL command for
deleting a
group of lines.)

Any line that does not start with a line number is assumed to be
command line.
The Editor will examine the line to determine what function is to be
performed.
If the line is a valid command, the Editor will execute the command.
The
Editor will prompt the user each time a command has been executed or
terminated
by printing:

 EDIT for syntax (MAC/65 source) mode
 TEXTMODE for text mode

The cursor will appear on the following line. Since some commands may
take a
while to execute, the prompt signals the user that more input is
allowed. The
user can terminate a command before completion by hitting the break key
(escape
key on Apple II).

And one last point: If the line is neither a source line or a valid
command. The Editor will print:

 What?

1.2 TEXT MODE

The Editor supports a text mode. The text mode is entered with the
command
TEXT. This mode will NOT syntax check lines entered, allowing the user
to
enter and edit non-assembly language files. All Editor commands
function in
text mode.

Remember, though, that all text lines must begin with a line number;
and, even
in TEXTMODE, the space following the line number is necessary.

1.3 EDIT MODE

MAC/65 is nearly unique among assembler/editor systems in that it
allows the
assembly language user to enter source code and have it IMMEDIATELY
checked for
syntax validity. Of course, since assembly language syntax is fairly
flexible
(especially when macros are allowable, as they are with MAC/65), syntax
checking will by no means catch all errors in user source code. For
example,
the existence of and validity of labels and/or zero page locations is
not and
can not be checked until assembly time. However, we still feel that
this
syntax checking will be a boon to the beginner and experienced
programmer
alike.

Again, remember that source lines must begin with a line number which
must, in
turn, be followed by one space. Then, the second space after the line
number
is the label column. The label must start in this column. The third
space
after the line number is the instruction column. Instructions may
either start
in at least the third column after the line number or at least one
space after
the label. The operand may begin any where after the instruction, and
comments
may begin any where after the operand or instruction. Refer to
Assembler
Section for specific instruction syntax.

As noted, the Editor syntax checks each source line at entry. If the
syntax of
a line is in error, the Editor will list the line with a cursor turned
on
(i.e., by using an inverse or blinking character) at the point of error.

The source lines are tokenized and stored in memory, starting at an
address in
low memory and building towards high memory. The resultant tokenized
file is
60% to 80% smaller than its ASCII counterpart, thus allowing larger
programs to
be entered and edited in memory.

SPECIAL NOTE: If, upon entry, a source line contains a syntax error
and is so
flagged by the Editor, the line is entered into Editor memory anyway.
This
feature allows raw ASCII text files (possibly from other assemblers and
possibly containing one or several syntax errors as far as MAC/65 is
concerned)
to be ENTERed into the Editor without losing any lines. The user can
note the
lines with errors and then edit them later.

CHAPTER 2: EDITOR COMMANDS

This chapter lists all the valid Editor-level commands, in alphabetical
order,
along with a short description of the purpose and function of each.

Again, remember that when the "TEXTMODE" or "EDIT" prompt is present
any input
line not preceded by a line number is presumed to be an Editor command.

If in the process of executing a command any error is encountered, the
Editor
will abort execution and return to the user, displaying the error
number and
descriptive message of the error before re-prompting the user. Refer
to
Appendix for possible causes of errors.

Section 2.1

edit command: ASM

purpose: ASseMble MAC/65 source files

usage: ASM [#file1],[#file2],[#file3],[#file4]

ASM will assemble the specified source file and will produce a listing
and
object code output; the listing may include a full cross reference of
all
non-local labels. File1 is the source device, file2 is the list device,
file3
is the object device, and file4 is a temporary file used to help
generate the
cross reference listing.

Any or all of the four filespec's may be omitted, in which case MAC/65
assumes

the following default filespec(s) are to be used:

 file1 - user source memory
 file2 - screen editor.
 file3 - memory (CAUTION: see below)
 file4 - none, therefore no cross reference

A filespec (#file1, #file3, etc.) can be omitted by substituting a
comma in
which case the respective default will be used.

 Example: ASM #D2:SOURCE,#D:LIST,#D2:OBJECT

In this example, the source will come from D":SOURCE, the assembler
will list
to D:LIST, and the object code will be written to D":OBJECT.

 Example: ASM #D:SOURCE ,,#D:OBJECT

In this example, the source will be read from D:SOURCE and the object
will be
written to D:OBJECT. The assembly listing will be written to the
screen.

 Example: ASM , #P: ,,#D:TEMP

In this example, the source will be read from memory, the object will
be
written to memory (but ONLY if the ".OPT OBJ" directive is in the
source), and
the assembly listing will be written to the printer along with the
complete
label cross reference. The file TEMP on disk drive 1 will be created
and used
as a temporary file for the cross reference.

 Example: ASM #D:SOURCE .#P:

In this example, the source will be read from D:SOURCE and the assembly
listing
will be written to the printer. If the ".OPT OBJ" directive has been
selected
in the source, the object code will be placed in memory.

Note: If assembling from a "filespec", the source MUST have been a
SAVEd file.

Note: Refer to the .OPT directive for specific information on
assembler
listing and object output.

Note: The object code file will have the format of compound files
created by
the DOSXL SAVE command. See the DOSXL manual for a discussion of LOAD
and SAVE
file formats.

Section 2.2

edit command: BLOAD

purpose: allows user to LOAD Binary (memory image)
 files from disk into memory

usage: BLOAD #filespec

The BLOAD command will load a previously BSAVEd binary file, an
assembled
object file, or a binary file created with DOSXL SAVe command.

 Example: BLOAD #D:OBJECT

This example will load the binary file "OBJECT" to memory at the
address where
it was previously saved from or assembler for.

CAUTION: it is suggested that the user only BLOAD files which were
assembled
into MAC/65's free area (as shown by the SIZE command) or which will
load into
known safe areas of memory.

Section 2.3

edit command: BSAVE

purpose: SAVE a Binary image of a portion of
 memory. Same as DOSXL SAVE command

usage: BSAVE #filespec < hxnum1 ,hxnum2

The BSAVE command will save the memory addresses from hxnum1 through
hxnum2 to
the specified device. The binary file created is compatible with the
DOSXL
SAVe command.

 Example: BSAVE #D:OBJECT< (,)(hxnum) [(,)(,hxnum) ...]

Although MAC/65 does not included a debug capability, there are a few
machine
level commands included for the convenience of the user who would, for
example,
like to change system registers and the like (screen color, margins,
etc.).
The C command is provided for this purpose.

C allows the user to modify memory. Hxnum1 is the change start address.
The
remaining hxnum(s) are the change bytes. The comma will skip an
address.

 Example: C 50000" and "<" have quite different meanings when used
as unary

operators.

3.5.4 Operators: .OR .AND .NOT

These operators also perform logical operations and should not be
confused with their bitwise companions. Remember, these operators
always return only TRUE or FALSE.

EXAMPLES: 3 .OR 0 returns 1
 3 .AND 2 returns 1
 6 .AND 0 returns 0
 .NOT 7 returns 0

3.5.5 Operator: - (unary)

The minus sign may be used as a unary operator. Its effect is the same
as if a minus sign had been used in a binary operation where the first
operator is zero.

EXAMPLE: -2 is $FFFE (same as 0-2)

3.5.6 Operators: < > (unary)

These UNARY operators are extremely useful when it is desired to
extract just the high order or low order byte of an expression label.
Probably their most common use will be that of supplying the high and
low order bytes of an address to be used in a "LDA #" or similar
immediate instruction.

EXAMPLE: FLEEP = $3456
 LDA #FLEEP (same as LDA #$34)

3.5.7 Operator: .DEF

This unary operator tests whether the following label has been defined
yet, returning TRUE or FALSE as appropriate.

CAUTION: Defining a label AFTER the use of a .DEF which references it
can be dangerous, particularly if the .DEF is used in a .IF directive.

EXAMPLE: .IF .DEF ZILK
 .BYTE "generate some bytes"
 .ENDIF
 ZILK = $3000

In this example, the .BYTE string will NOT be generated in the first
pass but WILL be generated in the second pass. Thus, any following code
will almost undoubtedly generate a PHASE ERROR.

3.5.8 Operator: .REF

This unary operator tests whether the following label has been
referenced by any instruction or directive in the assembly yet; and, in
conjuction with the .IF directive, produces the effect of returning a
TRUE or FALSE value.

Obviously, the same cautions about .DEF being used before the label
definition apply to .REF also, but here we can obtain some advantage
from the situation.

EXAMPLE: .IF .REF PRINTMSG
 PRINTMSG
 ...(code to implement the PRINTMSG routine)
 .ENDIF

In this example, the code implementing PRINTMSG will ONLY be assembled
if
something preceding this point in the assembly has referred to the
label
PRINTMSG! This is a very powerful way to build an assembly language
library
and assemble only the needed routines. Of course, this implies that
the
library must be .INCLUDEd as the last part of the assembly, but this
seems like
a not too onerous restriction. In fact, OSS has used this technique in
writing
the libraries for the C/65 compiler.

CAUTION: note that in the description above it was implied that .REF
only
worked properly with a .IF directive. Not only is this restriction
imposed,
but attempts to use.REF in any other way can produce bizarre results.
ALSO,
.REF can not effectively be used in combination with any other
operators.
Thus, for example,

 .IF .REF ZAM .OR .REF BLOOP is ILLEGAL!

The only operator which can legally combined with .REF is .NOT, as
in .IF .NOT
.REF LABEL.

Note that the illegal line above could be simulated thus:

 EXAMPLE: DOIT . = 0
 .IF .REF ZAM
 DOIT . = 1
 .IF .REF BLOOP
 DOIT . = 1
 .ENDIF
 .IF DOIT
 ...

3.5.9 Operator: []

MAC/65 supports the use of the square brackets as "psuedo parentheses".
Ordinary round parentheses may NOT be used for grouping expressions,
etc., as
they must retain their special meanings with regards to the various
addressing

modes. In general, the square brackets may be used any where in a
MAC/65
expression to clarify or change the order of evaluation of the
expression.

 EXAMPLES:
 LDA GEORGE+5*3 ;This is legal, but
 it multiplies 3*5
 and adds the 15 to
 GEORGE...probably
 not what you wanted.
 LDA (GEORGE+5)*3 ;Syntax Error!!!
 LDA [GEORGE+5]*3 ;OK...the addition
 is performed before
 the multiplication
 LDA ([GEORGE+5]*3),Y ;See the need
 for both kinds of
 "parentheses"?

REMEMBER: Operators in MAC/65 expressions follow precedence rules.
The square
brackets may be used to override these rules.

3.6 ASSEMBLER EXPRESSIONS

An expression is any valid combination of operands and operators which
the
assembler will evaluate to a 16-bit unsigned number with any overflow
ignored.
Expressions can be arithmetic or logical. The following are examples
of valid
expressions:

10 .WORD TABLEBASE+LINE+COLUMN
55 .IF .DEF INTEGER .AND [VER=1 .OR VER >=3]
200 .BYTE >EXPLOT-1, >EXDRAW-1, >EXFILL-1
300 LDA # < ADDRESS^-1] +1
305 CMP # -1
400 CPX # 'A
440 INC #1+1

3.7 OPERATOR PRECEDENCE

The following are the precedence levels (high to low) used in
evaluating
assembler expressions:

[] (psuedo parenthesis)
 > (high byte), < (low byte), .DEF, .REF, - (unary)
.NOT
*, /
+, -
&, !, ^
=, >. <=, >=, <> (comparison operators)
.AND
.OR

Operators grouped on the same line have equal precedence and will be
executed
in left-to-right order unless higher precedence operator(s) intervene.

3.8 NUMERIC CONSTANTS

MAC/65 accepts three types of numeric constants: decimal, hexadecimal,
and
characters.

A decimal constant is simply a decimal number in the range 0 through
65535; an
attempt to use a decimal number beyond these bounds may or may not work
and
will certainly produce unexpected and undesired results.

 EXAMPLES: 1 234 65200 32767
 (as used:) .BYTE 2,4,8,16,32,64
 LDA #1

A hexadecimal constant consists of a dollar sign followed by one to
four legal
hexadecimal digits (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Again, usage of
more
than four digits may produce unwanted results.

 EXAMPLES: $1 $EA $FF00 $7FFF
 (as used:) .WORD $100,$200,$400,$800,$1000
 AND #$7F

A character constant is an apostrophe followed by any printable or
displayable
character. The value of a character constant is the ASCII (or ATASCII)
value
of the character following the apostrophe.

 EXAMPLES: 'A '* '" '=
 (as used:) CMP #'=
 CMP #'Z+1 ; same as #$5B

3.9 STRINGS

Strings are of two types. String literals (example: "This is a string
literal"), and string variables for Macros (example: %$5).

 Example: 10 .BYTE "A STRING OF CHARACTERS"
 or
 Example: 20 .SBYTE %$1

CHAPTER 4: DIRECTIVES

As noted in Section 3.1, the instruction field of an assembled line may
contain
an assembler directive (instead of a valid 6502 instruction). This
chapter
will list and describe, in roughly alphabetical order, all the
directives legal

under MAC/65 (excepting directives specific to macros, which will be
discussed
separately in Chapter 5).

Directives may be classified into three types: (1) those which produce
object
code for use by the assembled program (e.g., .BYTE, .WORD, etc.); (2)
those
which direct the assembler to perform some task, such as changing where
in
memory the object code should go or giving a value to a label (e.g., *=,
=,
etc.); and (3) those which are provided for the convenience of the
programmer,
giving him/her control over listing format, location of source, etc.
(e.g.,
.TITLE, .OPT, .INCLUDE).

Obviously, we could in theory do without the type 3 directives; but, as
you
read the descriptions that follow, you will soon discover that in
practice
these directives are most useful in helping your 6502 assembly language
production. Incidentally, all the macro-specific directives could
presumably
be classified as type 3.

Three of the directives which follow (.PAGE, .TITLE, and .ERROR) allow
the user
to specify a string (enclosed in quotes) which will be printed out.
For these
three directives, the user is limited to a maximum string length of 70
characters. Strings longer than 70 characters will be truncated.

Section 4.1

directive: *=

purpose: change current origin of the assembler's
 location counter

usage: [label] *= expression

The *= directive will assign the value of the expression to the
location
counter. The expression cannot be forward referenced. *= must be
written with
no intervening spaces.

 Example: 50 *= $1234 ;sets the location
 counter to $1234

Another common usage of *= is to reserve space for data to be filled in
or used
at run time. Since the single character "*" may be treated as a label
referencing the current location counter value, the form "*= *+exp" is
thus the

most common way to reserve "exp" bytes for later use.

 Example: 70 LOC *= *+1 ;assigns the current
 value of the location
 counter to LOC and
 then advances the
 counter by one.

(Thus LOC may be thought of as a one byte reserved memory cell.)

CAUTION: Because any label associated with this directive is assigned
the
value of the location counter BEFORE the directive is executed, it is
NOT
advisable to give a label to "*=" unless, indeed, it is being used as
in the
second example (i.e., as a memory reserver).

NOTE: Some assemblers use "ORG" instead of "*=" and may also have a
separate
directive (such as "DS" or "RMB") for "defining storage" or "reserving
memory
bytes". Use caution when converting from and to such assemblers; pay
special
attention to label usage. When in doubt, move the label to the next
preceding
or next following line, as appropriate.

Section 4.2

directive: =

purpose: assigns a value to a label

usage: label = expression

The = directive will equate "label" with the value of the expression.
A
"label" can be equated via "=" only once within a program.

 Example: 10 PLAYER0 = PMBASE + $200

Note: If a "label" is equated more than once, "label" will contain the
value
of the most recent equate. This process, however, will result in an
assembly
error.

Section 4.3

directive: .=

purpose: assign a possibly transitory value to a label

usage: label .= expression

The .= directive will SET "label" with the value of the expression.
Using this
directive, a "label" may be set to one or more values as many times as
needed
in the same program.

 EXAMPLE:

 10 LBL .= 5
 20 LDA #LBL ;same as LDA #5
 30 LBL .= 3+'A
 40 LDA #LBL ;same as LDA #68

CAUTION: A label which has been equated (via the "=" directive) or
assigned a
value through usage as an instruction label may not then be set to
another
value by ".=".

Section 4.4

directive: .BYTE [and .SBYTE]

purpose: specifies the contents of individual
 bytes in the output object

usage:
[label] .BYTE [+exp,] (exp)(strvar)[,(exp)(strvar) ...]
[label] .SBYTE [+exp,](exp)(strvar)[,(exp)(strvar) ...]

The .BYTE and .SBYTE directives allow the user to generate individual
bytes of
memory image in the output object. Expressions must evaluate to an 8-
bit
arithmetic result. A strvar will generate as many bytes as the length
of the
string. .BYTE simply assembles the bytes as entered, while .SBYTE will
convert
the bytes to Atari screen codes (on the Atari) or to characters with
their most
significant bit on (on the Apple II).

 Example: 100 .BYTE "ABC" , 3, -1

This example will produce the following output bytes:
 41 42 43 03 FF.

Note that the negative expression was truncated to a single byte value.

 Example: 50 .SBYTE "Hello!"

On the Atari, this example will produce the following screen codes:
 28 65 6C 6C 6F 01.

On the Apple II, the same example would produce the following bytes:
 C8 E5 EC EC DF A1.

SPECIAL NOTE: Both .BYTE and .SBYTE allow an additive Modifier. A
Modifier is
an expression which will be added to all of bytes assembled. The
assembler
recognizes the Modifier expression by the presence of the "+" character.
The
Modifier expression will not itself be generated as part of the output.

 Example: 5 .BYTE +$80 , "ABC" , -1

This example will produce the following bytes:
 C1 C2 C3 7F

 Example: 100 .BYTE +$80,"DEF",'G+$80

This example will produce: C4 C5 C6 47.

(Note especially the effect of adding $80 via the modifier and also
adding it
to the particular byte. The result is an unchanged byte, since we have
added a
total of 256 ($100), which does not change the lower byte of a 16 bit
result.)

 Example: 55 .SBYTE +$40 , "A12"

This example will produce:
 61 51 52 Atari
 01 F1 F2 Apple II.

 Example: 80 .SBYTE +$C0,"G-$C0,"REEN"

This example will produce:
 27 F2 E5 E5 EE Atari
 C7 92 85 85 8E Apple II.

Note: .SBYTE performs its conversions according to a numerical
algorithm and
does NOT special case any control characters, including BELL, TAB,
etc.--these
characters ARE converted.

Section 4.5

directive: .CBYTE

purpose: same as .BYTE except that the most
 significant bit of the last byte of a
 string argument is inverted

usage:
[label] .CBYTE [+exp,](exp)(strvar) [,(exp)(strvar)...]

The .CBYTE directive may often be used to advantage when building
tables of
strings, etc., where it is desirable to indicate the end of a string by
some

method other than, for example, storing a following zero byte. By
inverting
the sense of the upper bit of that last character of the string, a
routine
reading the strings from the table could easily do a BMI or BPL as it
reads
each character.

 Example: ERRORS .CBYTE 1,"SYSTEM"

The line shown would produce these object bytes:
 01 53 59 53 54 45 CE

And a subroutine might access the characters thus:
 LDY #1
LOOP LDA ERRORS,Y
 BMI ENDOFSTRING
 INY
 BNE LOOP
 ...
ENDOFSTRING
 ...

Section 4.6

Directive: DBYTE [see also .WORD]

purpose: specifies Dual BYTE values to be
 placed in the output object.

usage: [label] .DBYTE exp [,exp ...]

Both the .WORD and .DBYTE directives will put the value of each
expression into
the object code as two bytes. However, while .WORD will assemble the
expression(s) in 6502 address order (least significant byte, most
significant
byte), .DBYTE will assemble the expression(s) in the reverse order
(i.e., most
significant byte, least significant byte).

.DBYTE has limited usage in a 6502 environment, and it would most
probably be
used in building tables where its reversed order might be more
desirable.

 EXAMPLE: .DBYTE $1234,1,-1
 produces: 12 34 00 01 FF FF
 .WORD $1234,1,-1
 produces: 34 12 01 00 FF FF

Section 4.7

directive: .ELSE

purpose: SEE description of .IF for purpose nd usage.

Section 4.8

directive: .END

purpose: terminate an in-memory assembly

usage: [label] .END

The .END directive will terminate the assembly ONLY if the source is
being read
from memory. Otherwise, .END will have no effect on assembly.

This "no effect" is handy in that you may thus .INCLUDE file(s)
without•having
to edit out any .END statements they might contain. In truth, .END is
generally not needed at all with MAC/65,

Section 4.9

directive: .ENDIF

purpose: terminate a conditional assembly block

SEE description of .IF for usage and details.

Section 4.10

directive: .ERROR

purpose: force an assembler error and message

usage: [label] .ERROR [string]

The .ERROR directive allows the user to generate a pseudo error. The
string
specified by .ERROR will be sent to the screen as if it were an
assembler-generated error. The error will be included in the count of
errors
given at the end of the assembly.

 Example: 100 .ERROR "MISSING PARAMETER!"

Section 4.11

directive: .FLOAT

purpose: specifies floating point constant values
 to be placed in the output object.

usage:
[label] .FLOAT floating-constant [,flotation-constant...]

This directive would normally only be used by the programmer wishing to
access
the built-in floating point routines of the Atari Operating System
ROM's (or

similar routines as supplied with the BASIC XL package from OSS for
Apple II or
equivalent machines).

Each floating point constant following the .FLOAT directive will
produce 6
bytes of bytes of output object code, in a format consistent with the
above-mentioned floating point routines. In particular, the first byte
contains the exponent portion of the number, in excess-64 notation
representing
power of 100. The upper bit of the exponent byte designates the sign
of the
mantissa portion. The following 5 bytes are the mantissa, inn packed
BCD form,
normalized on a byte boundary (consistant with the powers-of-100
exponent).

 EXAMPLES:
 .FLOAT 3.14156295,-2,718281828

The above example would produce the following bytes in the output
object code:

 40 03 14 15 62 95
 C0 27 18 28 18 28

NOTE: Only floating point constants, NOT expressions, are legal as
operands to
.FLOAT. Generally, this is not a problem, since the user may perform
any
constant arithmetic on a calculator (or in BASIC) before placing the
result in
his/her MAC/65 program.

Section 4.12

directive: .IF

purpose: choose to perform or not perform some portion of an
assembly based
on the "truth" of an expression.

usage: .IF exp
 [.ELSE]
 .ENDIF

usage note: there may be any number of lines of assembly language code
or
directives between]IF and .ELSE or .ENDIF and similarly between .ELSE
and
.ENDIF.

When a .IF is encountered, the following expression is evaluated. If
it is
non-zero (TRUE), the source lines following .IF will be assembled,
continuing

until an .ELSE or .ENDIF is encountered. If an .ELSE is encountered
before an
.ENDIF, then all the source lines between the .ELSE and the
corresponding
.ENDIF will not be assembled. If the expression evaluates to zero
(false), the
source lines following .IF will not be assembled. Assembly will resume
when a
corresponding .ENDIF or an .ELSE is encountered.

The .IF-.ENDIF and .IF-.ELSE-.ENDIF constructs may be nested to a depth
of 14
levels. When nested, the "search" for the "corresponding" .ELSE
or .ENDIF
skips over complete .IF-.ENDIF constructs if necessary.

Examples:

10 .IF 1 ; non-zero, therefore true
20 LDA # '? ; these two lines will
30 JSR CHAROUT ; be assembled
40 .ENDIF

EXAMPLE:

10 .IF 0 ; expression is false
11 LDA # >ADDRESS ; these two lines will
12 LDX #
%1 ; get the high byte of parameter 1.
15 CMP (%11 ,X) ;yes, that really is number 11.
20 .BYTE %2-1 ;value of parameter 2 less 1.

NOTE: the above is NOT equivalent to using parameter %1. Parameter
substitution has highest precedence!

25 SYMBOL .= SYMBOL + 1
30 LDX # -%(SYMBOL) ; see the power available?
40 .BYTE %$1,%$2,0 ; string parameters, ending 0.

Remember, in theory the parameters are numbered from 1 to 63. In
reality, the
TOTAL number of parameters in use by all active (nested) macro
expansions
cannot exceed 63. This does NOT mean that you can have only 63
parameter
references in your macro DEFINITIONS. The limit only applies at
invocation
time, and even then only to nested (not sequential) macro usages.

SPECIAL NOTE: In addition to the "conventional" parameters, referred
to by
number, parameter zero (%0) has a special meaning to MAC/65. Parameter
zero
allows the user to access the actual NUMBER of real parameters passed
to a
macro EXPANSION.

This feature allows the user to set default parameters within the Macro
expansion, or test for the proper number of parameters in an expansion,
or
more. The following example illustrates a possible use of %0 and shows
usage
of ordinary parameters as well.

EXAMPLE:

10 .MACRO BUMP
11 ;
12 ; This macro will increment the specified word
13 ;
14 ; The calling format is:
15 ; BUMP address [,increment].
16 ; If increment is not given, 1 is assumed
17 ;
18 .IF%0=0 .OR %0>2
19 .ERROR "BUMP": Wrong number of parameters"
20 .ELSE
21 ;
22 ; this is only done if 1 or 2 parameters
23 ;
24 .IF $0>1 ; did user specify "increment" ?
25 ; this is assembled if user gave two parameters
26 LDA %1 ; add "increment" to "address".
27 CLC
28 ADC #

