MAC/ 65

TABLE OF CONTENTS

I nt roducti on

Start Up
Warm St art
Back up Copy
Synt ax
Chapter 1 -- The Editor
1.1 General Editor Usage
1.2 TEXT Mode
1.3 EDI T Mbde
Chapter 2 -- Editor Conmands
2.1 ASM
2.2 BLOAD
2.3 BSAVE
2.4 BYE
2.5 C (Change Menory)
2.6 D (Display Menory)
2.7 DEL
2.8 DCs
2.9 ENTER
2.10 FIND
2.11 LIST
2.12 LOAD
2.13 LOVEM
2.14 NEW
2.15 NuM
2.16 PRINT
2.17 REN
2.18 REP
2.19 SAVE
2.20 SIZE
2.21 TEXT
2.22 7 (hex/ dec convert)
Chapter 3 -- The Macro Assenbl er
3.1 Assenbl er | nput
3.2 I nstruction Format
3.3 Label s
3.4 Oper ands
3.5 Operators
3.6 Assenbl er Expressions
3.7 Oper ator Precedence
3.8 Nuneric Constants
3.9 Strings
Chapter 4 -- Directives
4.1 *=
4.2 =
4.3 =

4.4 . BYTE (and . SBYTE)
4.5 . CBYTE

4.6 . DBYTE

4.7 . ELSE

4.8 . END

4.9 . ENDI F

4.10 .ERROR

4.11 . FLOAT

4.12 . IF

4.13 .1 NCLUDE

4.14 . LOCAL

4.15 .OPT

4.16 . PAGE

4.17 .SBYTE (see also .BYTE)
4.18 .SET

4.19 .TAB

4.20 .TITLE

4.21 . VORD

Chapter 5 -- Macro Facility

. ENDM

. MACRO

Macro Expansion, part 1
Macro Paraneters

Macro Expansion, part 2
Macro Strings

Sone Macro Hints

A compl ex Macro Exanpl e

aoaooaoo
O~NO U WN R

Chapter 6 -- Conpatibility
6.1 Atari's Cartridge

Chapter 7 -- Error Descriptions

| NTRODUCTI ON

Thi s manual assumes the user is famliar with assenbly |anguage. It is
not

i ntended to teach assenbly | anguage. This manual is a reference for
conmands,

statements, functions, and syntax conventions of MAC65. It is also
assuned

that the user is familiar with the screen editor of the Atari or Apple
Il

computer, as appropriate. Consult Atari's or Apple's Reference Manual s
if you

are not fanmiliar with the screen editor

If you need a tutorial |evel nanual, we would reconmend that you ask
your |oca

deal er or bookstore for suggestions. Two books that have worked wel
for many

of our custoners are "Machi ne Language for Beginners" by Richard
Mansfield from

COWPUTE! books and "Programm ng the 6502" by Rodney Zaks.

This manual is divided into two major sections; the first two chapters
cover

the Editor commands and syntax, source |line entry, and executing source
program

assenbly. The next three chapters then cover instruction format,
assenbl er

directives, functions and expressions, Macros, and conditional assenbly.

MACE5 is a fast and powerful machi ne | anguage devel opnent t ool

Pr ogr anms

| arger than nmenory can be assenbled. MAC65 al so contains directives
specifically designed for screen format devel opnent. Wth MAC65's |ine
entry

syntax feature, less tine is spent re-assenbling prograns due to
assenbl y

syntax errors, allowing nore tine for actual program devel opnent.

START UP

Power up the disk drive(s) and nonitor, |eave the conputer off. Insert
MAC65

disk in drive #1 and boot system by turning the conputer on. This wll
| oad

and execute DOS XL. Now enter MAC65 (return). This |oads and executes
MACG65,

the Editor/Macro Assenbler. Refer to the DOS XL Manual for other
capabilities.

WARM START

The user can exit to DOSXL by entering the MAC65 conmand CP (return) or
by

pressing the System Reset key. To return to MAC65, the user can use

t he DOSXL

command RUN (return). This "warm starts" MAC65 and does not clear out
any

source lines in nmenory.

BACK- UP COPY

Pl ease do not work with your master disk! Make a back-up copy with
DOSXL.

Consult the DOSXL reference manual for specific instructions. Keep
your naster

copy in a safe place

SYNTAX

The foll owi ng conventions are used in the syntax descriptions in this
manual

1. Capital letters designate commands, instruction, functions, etc.
whi ch
nmust be entered exactly as shown (e.g. ENTER, .1 NCLUDE, .NOT).

2. Lower case letters specify itens which may be used. The various
types are
as follows:

1no - Line nunber between 0-65535, inclusive.
hxnum - A hex nunmber. It can be address or data.
Hex numbers are treated as unsigned
i nt egers.
dcnum - A positive nunber. Decimal nunbers are

rounded to the nearest two byte unsigned
integer; 3.5 to 3.9 is rounded to 4 and
100.1 to 100.4 is rounded to 100.

exp - An assenbl er expression

string - Astring of ASCII characters encl osed by
doubl e quotes (eg. "THIS IS A STRING").

strvar - Astring representation. Can be a string
as above, or a string variable within a
Macro call (eg. %1)

filespec - A string of ASCII characters that refers to
oR refers to a particular device. See device
file reference manual for nore specific
expl anati on.

3. Itens in square brackets denote an optional part of syntax (eg.
[,1no]).
When an optional itemis followed by (...) the iten(s) may be repeated
as many

ti mes as needed.
Exanple: .WORD exp [,exp ...]

4. Items in parentheses indicate that any one of the itens may be used,

eg.
(.Q (A,
CHAPTER 1: THE EDI TOR

The Editor allows the user to enter and edit MAC/ 65 source code or
ordi nary
ASCI | text files.

To the Editor, there is a real distinction between the two types of
files; so

much that there are actually two nodes accessible to the user, EDIT
node and

TEXTMODE. However, for either nopde, source code/text nust begin with a
line

nunber between 0 and 65535 inclusive, followed by one space.

Exanples: 10 LABEL LDA #$32
3020 This is valid in TEXT MODE

The first exanple would be valid in either EDIT or TEXTMODE, while the
second
exanpl e woul d only be valid in TEXTMODE

The user chooses which nobde he/she wi shes to use for editing by

sel ecting NEW

(which allows general text entry). There is nore discussion of the

i mpact of

these two nodes below, but, first, there are several points in comon
to the

two nodes.

1.1 GENERAL EDI TOR USAGE

The source file is manipul ated by Editor commnds. Since the Editor
recogni zes

a command by the absence of a line nunber, a |ine beginning with a line
nunber

is assumed to be a valid source/text line. As such, it is nerged wth,
added

to, or inserted into the source/text lines already in menory in
accordance with

its line nunmber. An entered |ine which has the sane |ine nunber as one
al ready

in menmory will replace the line in menory.

Al so, as a special case of the above, a source line can be deleted from
menory

by entering its Iine nunber only. (And also see DEL conmand for
deleting a

group of lines.)

Any |line that does not start with a line nunber is assuned to be
command | i ne.

The Editor will examine the |line to determ ne what function is to be
per f or med.

If the line is a valid command, the Editor will execute the command.
The

Editor will pronpt the user each tinme a conmand has been executed or
t erm nat ed
by printing:

EDI T for syntax (MAC/ 65 source) node

TEXTMODE for text node

The cursor will appear on the following line. Since some commuands may
take a

while to execute, the pronpt signals the user that nore input is

al l owed. The

user can termnate a conmand before conpletion by hitting the break key
(escape

key on Apple I1).

And one last point: |If the line is neither a source line or a valid
conmand. The Editor will print:

What ?
1.2 TEXT MODE

The Editor supports a text node. The text node is entered with the
conmand

TEXT. This node will NOT syntax check |ines entered, allow ng the user
to

enter and edit non-assenbly | anguage files. All Editor commands
function in

t ext node.

Renmenber, though, that all text lines nust begin with a |ine nunber;
and, even
in TEXTMODE, the space following the |line nunber is necessary.

1.3 EDI T MODE

MAC/ 65 is nearly unique anong assenbl er/editor systenms in that it

all ows the

assenbly | anguage user to enter source code and have it | MMEDI ATELY
checked for

syntax validity. O course, since assenbly |anguage syntax is fairly
flexible

(especially when macros are allowable, as they are with MAC/ 65), syntax
checking will by no neans catch all errors in user source code. For
exanpl e,

the exi stence of and validity of |abels and/or zero page locations is
not and

can not be checked until assenbly tinme. However, we still feel that
this

syntax checking will be a boon to the begi nner and experienced
programrer

ali ke.

Agai n, remenber that source lines nust begin with a |ine nunmber which
must, in

turn, be followed by one space. Then, the second space after the line
nunber

is the | abel colum. The |abel nust start in this colum. The third
space

after the line nunber is the instruction colum. |Instructions may
either start

in at least the third columm after the Iine nunber or at |east one
space after

the I abel. The operand may begin any where after the instruction, and
conment s

may begin any where after the operand or instruction. Refer to
Assenbl er

Section for specific instruction syntax.

As noted, the Editor syntax checks each source line at entry. |[If the
synt ax of

alineis inerror, the Editor will list the line with a cursor turned
on

(i.e., by using an inverse or blinking character) at the point of error.

The source lines are tokenized and stored in nenory, starting at an
address in

| ow nmenory and buil di ng towards high nmenory. The resultant tokenized
fileis

60% to 80% smaller than its ASCI|I counterpart, thus allow ng | arger
progranms to

be entered and edited in nmenory.

SPECI AL NOTE: If, upon entry, a source line contains a syntax error
and is so

flagged by the Editor, the line is entered into Editor nmenory anyway.
Thi s

feature allows raw ASCI1 text files (possibly from other assenblers and
possi bly containing one or several syntax errors as far as MAC/65 is
concer ned)

to be ENTERed into the Editor without |losing any lines. The user can
note the

lines with errors and then edit them| ater

CHAPTER 2: EDI TOR COMVANDS

This chapter lists all the valid Editor-1level commands, in al phabetica
order,
along with a short description of the purpose and function of each

Agai n, renmenber that when the "TEXTMODE" or "EDI T" pronpt is present
any i nput
line not preceded by a line nunber is presunmed to be an Editor conmand.

If in the process of executing a command any error is encountered, the
Edi t or

wi |l abort execution and return to the user, displaying the error
number and

descriptive nmessage of the error before re-pronpting the user. Refer
to

Appendi x for possible causes of errors.

Section 2.1

edit command: ASM

pur pose: ASseMdl e MAC/ 65 source files

usage: ASM [#filel],[#file2],[#file3],[#fil ed]

ASM wi I | assenble the specified source file and will produce a listing
and

obj ect code output; the listing may include a full cross reference of

al

non-local labels. Filel is the source device, file2 is the list device
file3

is the object device, and file4 is a tenporary file used to help
generate the

cross reference |listing.

Any or all of the four filespec's may be onmtted, in which case MAC/ 65
assunes

the following default fil espec(s) are to be used:

filel - user source nenory

file2 - screen editor.

file3 - nmenory (CAUTION: see bel ow)

file4 - none, therefore no cross reference

A filespec (#filel, #file3, etc.) can be omtted by substituting a
conma in
whi ch case the respective default will be used.

Exanmpl e: ASM #D2: SOURCE, #D: LI ST, #D2: OBJECT

In this exanple, the source will come from D'": SOURCE, the assenbl er
will [Iist
to D:LIST, and the object code will be witten to D': OBJECT.

Exanpl e: ASM #D: SOURCE , , #D: OBJECT

In this exanple, the source will be read from D: SOURCE and the obj ect
will be

witten to D: OBJECT. The assenbly listing will be witten to the
screen.

Exanmpl e: ASM, #P:. ,, #D: TEWP

In this exanple, the source will be read from nenory, the object wll
be

witten to nenory (but ONLY if the ".OPT OBJ" directive is in the
source), and

the assenbly listing will be witten to the printer along with the
conpl ete

| abel cross reference. The file TEMP on disk drive 1 will be created
and used

as a tenporary file for the cross reference.
Exanpl e: ASM #D: SOURCE . #P

In this exanple, the source will be read from D: SOURCE and the assenbly
listing

will be witten to the printer. If the ".OPT OBJ" directive has been
sel ected
in the source, the object code will be placed in nmenory.

Note: If assenbling froma "filespec", the source MJST have been a
SAVEd file.

Note: Refer to the .OPT directive for specific informtion on
assemnbl er
listing and obj ect output.

Note: The object code file will have the format of conpound files
created by

t he DOSXL SAVE command. See the DOSXL nmamnual for a discussion of LOAD
and SAVE

file formats.

Section 2.2
edit command: BLOAD

pur pose: al l ows user to LOAD Binary (nenory inage)
files fromdisk into nmenory

usage: BLOAD #fi | espec
The BLOAD command will |oad a previously BSAVEd binary file, an
assenbl ed

object file, or a binary file created with DOSXL SAVe commuand.
Exanpl e: BLOAD #D: OBJECT

This exanple will load the binary file "OBJECT" to nenory at the
address where
it was previously saved fromor assenbler for

CAUTION: it is suggested that the user only BLOAD fil es which were
assenbl ed

into MAC/65's free area (as shown by the SIZE command) or which will
load into

known safe areas of nenory.

Section 2.3
edit commmand: BSAVE

pur pose: SAVE a Binary inmge of a portion of
menory. Sanme as DOSXL SAVE conmmand

usage: BSAVE #fil espec < hxnuml , hxnun®
The BSAVE conmmand will save the nmenory addresses from hxnunil through
hxnunm2 to

the specified device. The binary file created is conpatible with the
DOSXL
SAVe conmand.

Exanmpl e: BSAVE #D:. OBJECT< (,) (hxnum [(,)(, hxnum) ...]

Al t hough MAC/ 65 does not included a debug capability, there are a few
machi ne

| evel conmands included for the conveni ence of the user who would, for
exanpl e,

like to change systemregisters and the |ike (screen color, margins,
etc.).

The C conmand is provided for this purpose.

C allows the user to nmodify menmory. Hxnuml is the change start address.
The

remai ni ng hxnum(s) are the change bytes. The comm will skip an

addr ess.

Exanpl e: C 50000" and "<" have quite different neani ngs when used
as unary

operators.
3.5.4 Operators: .OR .AND .NOT

These operators also performlogical operations and should not be
confused with their bitw se conpani ons. Renenber, these operators
al ways return only TRUE or FALSE

EXAMPLES: 3 .0RO0 returns 1
3 .AND 2 returns 1
6 .AND O returns O

.NOT 7 returns O
3.5.5 Operator: - (unary)

The m nus sign may be used as a unary operator. Its effect is the sanme
as if a mnus sign had been used in a binary operation where the first
operator is zero.

EXANMPLE: -2 is $FFFE (sane as 0-2)
3.5.6 Operators: < > (unary)

These UNARY operators are extrenely useful when it is desired to
extract just the high order or |ow order byte of an expression | abel
Probably their nbst comon use will be that of supplying the high and
| ow order bytes of an address to be used in a "LDA #" or sinilar

i medi ate instruction.

EXAMPLE: FLEEP = $3456
LDA #FLEEP (same as LDA #$34)

3.5.7 Operator: .DEF

This unary operator tests whether the follow ng | abel has been defined
yet, returning TRUE or FALSE as appropriate.

CAUTI ON: Defining a | abel AFTER the use of a .DEF which references it
can be dangerous, particularly if the .DEF is used in a .IF directive.

EXAMPLE: .1 F .DEF ZI LK
. BYTE "generate sonme bytes"
. ENDI F
ZI LK = $3000

In this exanple, the .BYTE string will NOT be generated in the first
pass but WLL be generated in the second pass. Thus, any follow ng code
wi || al nost undoubtedly generate a PHASE ERROR

3.5.8 Operator: . REF

This unary operator tests whether the follow ng | abel has been
referenced by any instruction or directive in the assenbly yet; and, in
conjuction with the .IF directive, produces the effect of returning a
TRUE or FALSE val ue.

Qbvi ously, the sane cautions about .DEF being used before the | abe
definition apply to . REF al so, but here we can obtain sone advant age
fromthe situation.

EXAMPLE: . I F . REF PRI NTMSG
PRI NTMSG
...(code to inplement the PRI NTMSG routine)
. ENDI F

In this exanple, the code inplementing PRINTMSG will ONLY be assenbl ed
i f

sonmet hing preceding this point in the assenbly has referred to the

| abel

PRINTMSG@ This is a very powerful way to build an assenbly | anguage
library

and assenble only the needed routines. O course, this inplies that

t he

library must be .INCLUDEd as the | ast part of the assenbly, but this
seenms |ike

a not too onerous restriction. |In fact, OSS has used this technique in
writing

the libraries for the C/ 65 conpiler.

CAUTION: note that in the description above it was inplied that .REF
only

wor ked properly with a .IF directive. Not only is this restriction

i mposed,

but attenpts to use.REF in any other way can produce bizarre results.
ALSO,

. REF can not effectively be used in conbination with any other
operators.

Thus, for exanple,

.IF .REF ZAM . OR . REF BLOOP is | LLEGAL!

The only operator which can legally conmbined with .REF is .NOT, as
in .IF .NOT

. REF LABEL.
Note that the illegal |ine above could be sinulated thus:
EXAMPLE: DOT . =0
.1 F . REF ZAM
DOT . =1
.1 F . REF BLOOP
DOT . =1
. ENDI F
JF DAOT

3.5.9 Operator: []

MAC/ 65 supports the use of the square brackets as "psuedo parentheses".
Ordinary round parentheses may NOT be used for grouping expressions,
etc., as

they must retain their special neanings with regards to the various
addr essi ng

nodes. | n general, the square brackets nay be used any where in a
MAC/ 65

expression to clarify or change the order of evaluation of the
expressi on.

EXAMPLES:

LDA GEORGE+5*3 ; This is legal, but
it multiplies 3*5
and adds the 15 to
GEORCE. . . probably
not what you want ed.

LDA (GEORGE+5) *3 ; Syntax Error!!!

LDA [GEORGE+5] *3 ; OK...the addition

is performed before

the nmultiplication
LDA ([GEORGE+5]*3),Y ; See the need

for both kinds of

"par ent heses"?

REMEMBER: Operators in MAC/ 65 expressions follow precedence rul es.
The square
brackets may be used to override these rules.

3.6 ASSEMBLER EXPRESSI ONS

An expression is any valid conbination of operands and operators which
t he

assenbler will evaluate to a 16-bit unsigned nunmber with any overfl ow
i gnor ed.

Expressions can be arithnmetic or logical. The follow ng are exanples
of valid

expressions:

10 .WORD TABLEBASE+L| NE+COLUWN

55 .IF .DEF INTEGER . AND [VER=1 .OR VER >=3]
200 . BYTE >EXPLOT-1, >EXDRAW 1, >EXFILL-1

300 LDA # < ADDRESS"-1] +1

305 CwP # -1

400 CPX # "A

440 INC #1+1

3.7 OPERATOR PRECEDENCE
The following are the precedence |levels (high to I ow) used in
eval uati ng

assenbl er expressions:

[1 (psuedo parenthesis)

> (high byte), < (low byte), .DEF, .REF, - (unary)
. NOT
* /
+, -
& I,
=, >. <=, >= <> (conparison operators)
. AND

.OR

Operators grouped on the same |ine have equal precedence and will be
execut ed
in left-to-right order unless higher precedence operator(s) intervene.

3.8 NUMERI C CONSTANTS

MAC/ 65 accepts three types of nuneric constants: decinmal, hexadeci mal,
and
characters.

A decimal constant is sinply a decimal number in the range 0 through
65535; an

attenpt to use a deci mal nunber beyond these bounds may or may not work
and

will certainly produce unexpected and undesired results.

EXAMPLES: 1 234 65200 32767
(as used:) .BYTE 2,4, 8, 16, 32, 64
LDA #1

A hexadeci mal constant consists of a dollar sign foll owed by one to
four |ega

hexadeci mal digits (0,1,2,3,4,5,6,7,8,9,AB,C,D,E,F). Again, usage of
nor e

than four digits may produce unwanted results.

EXAMPLES: $1 $EA $FF00 $7FFF
(as used:) .WORD $100, $200, $400, $800, $1000
AND #$7F

A character constant is an apostrophe followed by any printable or

di spl ayabl e

character. The value of a character constant is the ASCII (or ATASCII)
val ue

of the character follow ng the apostrophe.

EXAMPLES: AR T
(as used:) CWP #' =
CWP #' Z+1 ; sanme as #$5B

3.9 STRI NGS

Strings are of two types. String literals (exanple: "This is a string
literal"), and string variables for Macros (exanple: %$5).

Exanple: 10 .BYTE "A STRING OF CHARACTERS"
or
Exampl e: 20 .SBYTE %1

CHAPTER 4: DI RECTI VES

As noted in Section 3.1, the instruction field of an assenbled |line may
contain

an assenbler directive (instead of a valid 6502 instruction). This
chapter

will list and describe, in roughly al phabetical order, all the
directives | ega

under MAC/ 65 (excepting directives specific to macros, which will be
di scussed
separately in Chapter 5).

Directives may be classified into three types: (1) those which produce
gghgcﬁor use by the assenbled program (e.g., .BYTE, .WORD, etc.); (2)

;ﬂ?iﬁ direct the assenbler to perform sone task, such as changi ng where
hgnnry the object code should go or giving a value to a label (e.g., *=

etc.); and (3) those which are provided for the conveni ence of the
programrer,

gi ving hinmher control over listing format, |ocation of source, etc.
(e.g.,

.TITLE, .OPT, .INCLUDE).

Qbviously, we could in theory do without the type 3 directives; but, as
you

read the descriptions that follow, you will soon discover that in
practice

these directives are nost useful in helping your 6502 assenbly | anguage
production. Incidentally, all the macro-specific directives could
presunmabl y

be classified as type 3.

Three of the directives which follow (.PAGE, .TITLE, and .ERROR) all ow
the user

to specify a string (enclosed in quotes) which will be printed out.

For these

three directives, the user is limted to a maxi num string |ength of 70
characters. Strings |Ionger than 70 characters will be truncated.
Section 4.1

directive: *=

pur pose: change current origin of the assenbler's
| ocati on counter

usage: [l abel] *= expression
The *= directive will assign the value of the expression to the
| ocati on

counter. The expression cannot be forward referenced. *= nust be
written with
no intervening spaces.

Exanmple: 50 *= $1234 ;sets the |ocation
counter to $1234

Anot her conmon usage of *= is to reserve space for data to be filled in
or used

at run tinme. Since the single character "*" nay be treated as a | abe
referencing the current |ocation counter value, the form"*= *+exp" is
t hus the

nost commn way to reserve "exp" bytes for later use

Example: 70 LOC *= *+1 ; assigns the current
val ue of the | ocation
counter to LOC and
t hen advances the
counter by one.

(Thus LOC may be thought of as a one byte reserved nenory cell.)

CAUTI ON: Because any | abel associated with this directive is assigned
t he

val ue of the location counter BEFORE the directive is executed, it is
NOT

advisable to give a label to "*=" unless, indeed, it is being used as
in the

second exanple (i.e., as a nenory reserver).

NOTE: Sone assenblers use "ORG' instead of "*=" and may al so have a
separate

directive (such as "DS" or "RMB") for "defining storage" or "reserving
menory

bytes". Use caution when converting fromand to such assenblers; pay
speci a

attention to | abel usage. When in doubt, nove the |abel to the next
precedi ng

or next following line, as appropriate.

Section 4.2

directive: =

pur pose: assigns a value to a | abe
usage: | abel = expression

The = directive will equate "label" with the value of the expression
A
"l abel " can be equated via

only once within a program

Exanpl e: 10 PLAYERO = PMBASE + $200

Note: If a "label" is equated nore than once, "label" will contain the
val ue

of the nbst recent equate. This process, however, will result in an
assenbl y

error.

Section 4.3

directive: =

pur pose: assign a possibly transitory value to a | abe

usage: | abel .= expression

The .= directive will SET "label” with the value of the expression
Using this

directive, a "label"” may be set to one or nore values as many tines as
needed

in the same program

EXAMPLE
10 LBL .= 5
20 LDA #LBL ;sane as LDA #5
30 LBL .= 3+'A
40 LDA #LBL ;sane as LDA #68
CAUTI ON: A | abel which has been equated (via the "=" directive) or

assigned a

val ue t hrough usage as an instruction |abel may not then be set to
anot her

val ue by ".=".

Section 4.4
directive: .BYTE [and . SBYTE]

pur pose: speci fies the contents of individua
bytes in the output object

usage:
[label] .BYTE [+exp,] (exp)(strvar)[, (exp)(strvar) ...]
[l abel] .SBYTE [+exp,](exp)(strvar)[, (exp)(strvar) ...]

The .BYTE and . SBYTE directives allow the user to generate individua
byt es of

menory image in the output object. Expressions nust evaluate to an 8-
bi t

arithnmetic result. A strvar will generate as many bytes as the length
of the

string. .BYTE sinply assenbles the bytes as entered, while . SBYTE will
convert

the bytes to Atari screen codes (on the Atari) or to characters with
their nost

significant bit on (on the Apple I1).

Exanple: 100 .BYTE "ABC' , 3, -1

This exanple will produce the follow ng output bytes:
41 42 43 03 FF.

Note that the negative expression was truncated to a single byte val ue.
Exanpl e: 50 . SBYTE "Hel |l o!'"

On the Atari, this exanple will produce the follow ng screen codes:
28 65 6C 6C 6F 01.

On the Apple I, the same exanple woul d produce the follow ng bytes:
C8 E5 EC EC DF Al.

SPECI AL NOTE: Both .BYTE and . SBYTE allow an additive Mdifier. A

Modi fier is

an expression which will be added to all of bytes assenbled. The
assemnbl er

recogni zes the Mdifier expression by the presence of the "+" character
The

Modi fier expression will not itself be generated as part of the output.
Example: 5 .BYTE +$80 , "ABC' , -1

This exanple will produce the follow ng bytes:
Cl C2 C3 7F

Exanpl e: 100 .BYTE +%$80, "DEF", ' G+$80
This exanple will produce: C4 C5 C6 47.

(Note especially the effect of adding $80 via the nodifier and al so
adding it

to the particular byte. The result is an unchanged byte, since we have
added a

total of 256 ($100), which does not change the |lower byte of a 16 bit
result.)

Exanpl e: 55 .SBYTE +$40 , "A12"

This exanple will produce:
61 51 52 Atari
01 F1 F2 Apple 11

Exanmple: 80 .SBYTE +3$C0, "G $CO, " REEN'

This exanple will produce:
27 F2 E5 E5 EE Atari
C7 92 85 85 8E Apple Il

Note: .SBYTE performs its conversions according to a nunerica

al gori thm and

does NOT special case any control characters, including BELL, TAB,
etc.--these

characters ARE converted.

Section 4.5
directive: . CBYTE

pur pose: sanme as .BYTE except that the nost
significant bit of the |Iast byte of a
string argunent is inverted

usage:
[label] .CBYTE [+exp,](exp)(strvar) [, (exp)(strvar)...]

The . CBYTE directive may often be used to advant age when buil di ng

t abl es of

strings, etc., where it is desirable to indicate the end of a string by
sone

nmet hod ot her than, for exanple, storing a followi ng zero byte. By

i nverting

the sense of the upper bit of that |ast character of the string, a
routine

reading the strings fromthe table could easily do a BM or BPL as it
reads

each character.

Exanpl e: ERRORS . CBYTE 1, " SYSTEM

The |ine shown woul d produce these object bytes:
01 53 59 53 54 45 CE

And a subroutine m ght access the characters thus:

LDY #1
LOOP LDA ERRCRS, Y
BM ENDOFSTRI NG
I NY
BNE LOOP
ENDOFSTRI NG
Section 4.6

Directive: DBYTE [see also .WORD]

pur pose: speci fies Dual BYTE values to be
pl aced in the output object.

usage: [label] .DBYTE exp [,exp ...]

Both the . WORD and . DBYTE directives will put the value of each
expression into

the object code as two bytes. However, while .WORD will assenble the
expression(s) in 6502 address order (least significant byte, npst
signi ficant

byte), .DBYTE will assenble the expression(s) in the reverse order
(i.e., nost

significant byte, |east significant byte).

.DBYTE has limted usage in a 6502 environnent, and it woul d nost
probably be

used in building tables where its reversed order m ght be nore
desirabl e.

EXAMPLE: .DBYTE $1234,1,-1
produces: 12 34 00 01 FF FF
. VWORD $1234,1,-1
produces: 34 12 01 00 FF FF
Section 4.7
directive: .ELSE

pur pose: SEE description of .IF for purpose nd usage.

Section 4.8

directive: .END

pur pose: term nate an i n-nenory assenbly

usage: [label] .END

The .END directive will term nate the assenbly ONLY if the source is
bei ng read

frommenory. Otherwise, .END will have no effect on assenbly.

This "no effect” is handy in that you may thus .INCLUDE fil e(s)

wi t hout « havi ng

to edit out any .END statenments they mght contain. 1In truth, .END is
generally not needed at all with MAC/ 65,

Section 4.9

directive: .ENDF

pur pose: term nate a conditional assenbly bl ock

SEE description of .IF for usage and details.

Section 4.10

directive: . ERROR

pur pose: force an assenbler error and nessage

usage: [label] .ERROR [string]

The .ERROR directive allows the user to generate a pseudo error. The
string

specified by .ERROR will be sent to the screen as if it were an
assenbl er-generated error. The error will be included in the count of
errors

given at the end of the assenbly.

Exanple: 100 .ERROR "M SSI NG PARAMETER! "
Section 4.11
directive: .FLOAT

pur pose: speci fies floating point constant val ues
to be placed in the output object.

usage:
[label] .FLOAT floating-constant [,flotation-constant...]

This directive would normally only be used by the programrer wi shing to
access

the built-in floating point routines of the Atari Operating System

ROM s (or

simlar routines as supplied with the BASIC XL package from GCSS for
Apple Il or
equi val ent machi nes) .

Each floating point constant followi ng the . FLOAT directive wl |

produce 6
byt es of bytes of output object code, in a format consistent with the
above-nentioned floating point routines. |In particular, the first byte

contai ns the exponent portion of the nunber, in excess-64 notation
representing

power of 100. The upper bit of the exponent byte designhates the sign
of the

manti ssa portion. The following 5 bytes are the manti ssa, inn packed
BCD form

normal i zed on a byte boundary (consistant with the powers-of-100
exponent) .

EXAMPLES:
. FLOAT 3. 14156295, -2, 718281828

The above exanpl e woul d produce the follow ng bytes in the output
obj ect code:

40 03 14 15 62 95
CO 27 18 28 18 28

NOTE: Only floating point constants, NOT expressions, are |egal as
operands to

. FLOAT. Cenerally, this is not a problem since the user nay perform
any

constant arithmetic on a calculator (or in BASIC) before placing the
result in

hi s/ her MAC/ 65 program

Section 4.12
directive: .IF

pur pose: choose to performor not perform sone portion of an
assenbly based
on the "truth" of an expression.

usage: I F exp
[. ELSE]
. ENDI F

usage note: there may be any number of |ines of assenmbly | anguage code
or

directives between]I F and .ELSE or .ENDIF and sinmlarly between .ELSE
and

. ENDI F.

When a .IF is encountered, the follow ng expression is evaluated. |If
it is

non-zero (TRUE), the source lines following .IF will be assenbl ed,

conti nui ng

until an .ELSE or .ENDIF is encountered. |If an .ELSE is encountered
bef ore an

.ENDIF, then all the source |lines between the .ELSE and the
correspondi ng

.ENDIF will not be assenbled. |If the expression evaluates to zero
(false), the

source lines following .IF will not be assenbled. Assenbly will resune
when a

corresponding .ENDIF or an .ELSE i s encountered.

The .IF-.ENDIF and .| F-.ELSE-.ENDIF constructs may be nested to a depth
of 14

| evel s. When nested, the "search" for the "correspondi ng" .ELSE

or . ENDIF

ski ps over conplete .IF-.ENDIF constructs if necessary.

Exanpl es:

10 .IF 1 ; non-zero, therefore true
20 LDA # '? ; these two lines wll

30 JSR CHARQUT ; be assenbl ed

40 .ENDIF

EXAMPLE

10 .IF O ; expression is fal se
11 LDA # >ADDRESS ; these two lines wll
12 LDX #

%l ; get the high byte of paranmeter 1.
15 CWP (%1 ,X) ;yes, that really is nunber 11
20 .BYTE %®2-1 ;value of paraneter 2 less 1

NOTE: the above is NOT equival ent to using paraneter %l. Paraneter
substitution has highest precedence!

25 SYMBOL .= SYMBOL + 1
30 LDX # -% SYMBOL) ; see the power avail abl e?
40 .BYTE %1, %$2,0 ; string paraneters, ending O.

Renmenber, in theory the paraneters are nunbered from1 to 63. In
reality, the

TOTAL nunber of paraneters in use by all active (nested) macro
expansi ons

cannot exceed 63. This does NOT nean that you can have only 63
par amet er

references in your nmacro DEFINITIONS. The limt only applies at

i nvocation

time, and even then only to nested (not sequential) macro usages.

SPECI AL NOTE: In addition to the "conventional" paraneters, referred
Lﬁnng, paranmeter zero (%)) has a special neaning to MAC/ 65. Paraneter
;F[gws the user to access the actual NUMBER of real parameters passed
;gc?o EXPANSI ON

This feature allows the user to set default parameters within the Macro
expansion, or test for the proper nunmber of parameters in an expansion

or

nmore. The followi ng exanple illustrates a possible use of % and shows
usage

of ordinary paraneters as well

EXAMPLE

10 . MACRO BUMP

11 ;

12 ; This macro will increnment the specified word
13 ;

14 ; The calling format is:

15 ; BUMP address [,increnent].

16 ; If increnent is not given, 1 is assuned

17 ;

18 .1 F99=0 . OR %0>2
19 . ERROR "BUMP": Wong nunber of paraneters"”

20 . ELSE

21

22 ; this is only done if 1 or 2 paraneters
23 ;

24 . 1F $0>1 ; did user specify "increment" ?

25 ; this is assenbled if user gave two paraneters
26 LDA % ; add "increment" to "address".

27 CLC

28 ADC #

