
MAC/65
 (HTML conversion by SysOp Fox-1, November 1999)

Note from Fox-1:
This manual is based on the DISK-version of the MAC/65
assembler. Text printed on a YELLOW background is

additional information taken from the CARTRIDGE-version (Rev
1.2) of the manual of the MAC/65, and is typed up by an

anonymous user who feels that this info is useful (like I do) for the
ATARI community.

The original programs, disks, and manuals comprising MAC/65
are Copyright (c) 1982, 1983 by Optimized Systems Software,

Inc. and Stephen D. Lawrow, 1221-B Kentwood Ave. San Jose,
CA 95129 USA, Telephone (408) 446-3099

Programming Info Index To Main-Index

TABLE OF CONTENTS

Preface

Trademarks

Introduction
 Start Up
 Warm Start
 Back up Copy
 Syntax

Chapter 1 -- The Editor
 1.1 General Editor Usage
 1.2 TEXT Mode
 1.3 EDIT Mode

Chapter 2 -- Editor Commands

 2.1 ASM
 2.2 BLOAD
 2.3 BSAVE
 2.4 BYE
 2.5 C (Change Memory)
 2.6 D (Display Memory)
 2.x DDT
 2.7 DEL
 2.8 DOS
 2.9 ENTER
 2.10 FIND
 2.11 LIST
 2.12 LOAD
 2.13 LOMEM
 2.14 NEW
 2.15 NUM
 2.16 PRINT
 2.17 REN
 2.18 REP
 2.19 SAVE
 2.20 SIZE
 2.21 TEXT
 2.22 ? (hex/dec convert)

Chapter 3 -- The Macro Assembler
 3.1 Assembler Input
 3.2 Instruction Format
 3.3 Labels
 3.4 Operands
 3.5 Operators
 3.6 Assembler Expressions
 3.7 Operator Precedence
 3.8 Numeric Constants
 3.9 Strings

Chapter 4 -- Directives
 4.1 *=
 4.2 =
 4.3 .=
 4.4 .BYTE (and .SBYTE)
 4.5 .CBYTE
 4.6 .DBYTE
 4.x .DS

 4.7 .ELSE
 4.8 .END
 4.9 .ENDIF
 4.10 .ERROR
 4.11 .FLOAT
 4.12 .IF
 4.13 .INCLUDE
 4.14 .LOCAL
 4.15 .OPT
 4.16 .PAGE
 4.17 .SBYTE (see also .BYTE)
 4.18 .SET
 4.19 .TAB
 4.20 .TITLE
 4.21 .WORD

Chapter 5 -- Macro Facility
 5.1 .ENDM
 5.2 .MACRO
 5.3 Macro Expansion, part 1
 5.4 Macro Parameters
 5.5 Macro Expansion, part 2
 5.6 Macro Strings
 5.7 Some Macro Hints
 5.8 A complex Macro Example

Chapter 6 -- Compatibility
 6.1 Atari's Cartridge

Chapter 7 -- Added 65C02 Instructions
 7.1 A Major Added Addressing Mode
 7.2 Minor Variations on 6502 Instructions
 7.3 ALL-NEW 65C02 Instructions

Chapter 8 -- Programming Techniques with
MAC/65
 8.1 Memory Usage by MAC/65 and DDT
 8.2 Assembling With An Offset: .SET 6
 8.2 Making MAC/65 Even Faster

Chapter 9 -- Error Descriptions

Appendix -- A

Programming Info Index Top of Page

PREFACE

MAC/65 is a logical upgrade from the OSS product EASMD (Edit/ASseMble/Debug)
which was itself an outgrowth of the Atari Assembler/Editor cartridge. Users of either
of these latter two products will find that MAC/65 has a very familiar "feel". Those
who have never experienced previous OSS products in this line should nevertheless
find MAC/65 to be an easy-to-use, powerful and adaptable programming environment.
While speed was not necessarily the primary goal in the production of this product, we
nevertheless feel that the user will be hard pressed to find a faster assembler system in
any home computer market. MAC/65 is an excellent match for the size and features of
the machines it is intended for.

MAC/65 was conceived by and completely executed by Stephen D. Lawrow. The
current version of MAC/65 is only the latest in a series of increasingly more complex
and faster assemblers written by Mr. Lawrow following the lead and style of EASMD.
As a measure of our confidence in this assembler, it is entrusted with assembling itself,
probably a more difficult task than that to which most users will put it.

Table of Contents

TRADEMARKS

The following trademarked names are used in various places with this manual, and
credit is hereby given:

DOS XL, BASIC XL, MAC/65, and C/65 are trademarks of Optimized Systems
Software, Inc.

Atari, Atari 400, Atari 800, Atari Home Computers, and Atari 850 Interface Module
are trademarks of Atari, Inc., Sunnyvale, CA.

Table of Contents

INTRODUCTION

This manual assumes the user is familiar with assembly language. It is not intended to
teach assembly language. This manual is a reference for commands, statements,
functions, and syntax conventions of MAC65. It is also assumed that the user is
familiar with the screen editor of the Atari or Apple II computer, as appropriate.
Consult Atari's or Apple's Reference Manuals if you are not familiar with the screen
editor.

If you need a tutorial level manual, we would recommend that you ask your local dealer
or bookstore for suggestions. Two books that have worked well for many of our
customers are "Machine Language for Beginners" by Richard Mansfield from
COMPUTE! books and "Programming the 6502" by Rodney Zaks.

This manual is divided into two major sections; the first two chapters cover the Editor
commands and syntax, source line entry, and executing source program assembly. The
next three chapters then cover instruction format, assembler directives, functions and
expressions, Macros, and conditional assembly.

MAC65 is a fast and powerful machine language development tool. Programs larger
than memory can be assembled. MAC65 also contains directives specifically designed
for screen format development. With MAC65's line entry syntax feature, less time is
spent re-assembling programs due to assembly syntax errors, allowing more time for
actual program development.

Table of Contents

START UP

Power up the disk drive(s) and monitor, leave the computer off. Insert MAC65 disk in
drive #1 and boot system by turning the computer on. This will load and execute DOS
XL. Now enter MAC65 (return). This loads and executes MAC65, the Editor/Macro
Assembler. Refer to the DOS XL Manual for other capabilities.

introduction Table of Contents

WARM START

The user can exit to DOSXL by entering the MAC65 command CP (return) or by
pressing the System Reset key. To return to MAC65, the user can use the DOSXL
command RUN (return). This "warm starts" MAC65 and does not clear out any source
lines in memory.

startup Table of Contents

BACK-UP COPY

Please do not work with your master disk! Make a back-up copy with DOSXL. Consult
the DOSXL reference manual for specific instructions. Keep your master copy in a safe
place.

warmstart Table of Contents

SYNTAX

The following conventions are used in the syntax descriptions in this manual:

1. Capital letters designate commands, instruction, functions, etc., which must be
entered exactly as shown (e.g. ENTER, .INCLUDE, .NOT).

 MAC/65 in EDIT mode is NOT case sensitive.
 Inverse video characters are uninverted.
 Lower case letters are converted to upper case.

EXCEPTIONS: characters between double quotes, following a single quote, or in the
comment field of a MAC/65 source line will remain unchanged. Text entered in TEXT
mode, though, will not be changed.

2. Lower case letters specify items which may be used. The various types are as
follows:

 1no - Line number between 0-65535, inclusive.

 hxnum - A hex number. It can be address or data.
 Hex numbers are treated as unsigned integers.

 dcnum - A positive number. Decimal numbers are
 rounded to the nearest two byte unsigned
 integer; 3.5 to 3.9 is rounded to 4 and
 100.1 to 100.4 is rounded to 100.

 exp - An assembler expression.

 string - A string of ASCII characters enclosed by
 double quotes (eg. "THIS IS A STRING").

 strvar - A string representation. Can be a string
 as above, or a string variable within
 a Macro call (eg. %$1).

 fspec
 or
 filespec - A string of ASCII characters
 that refers to OR refers to a
 particular device. See device
 file reference manual for more
 specific explanation.
 Might be #D1:SOURCE.M65 or #E: or #P:

3. Items in square brackets denote an optional part of syntax (eg. [,1no]). When an
optional item is followed by (...) the item(s) may be repeated as many times as needed.

 Example: .WORD exp [,exp ...]

4. Items in parentheses indicate that any one of the items may be used, eg. (,Q) (,A).

back-up copy Table of Contents

CHAPTER 1: THE EDITOR

The Editor allows the user to enter and edit MAC/65 source code or ordinary ASCII
text files.

To the Editor, there is a real distinction between the two types of files; so much that
there are actually two modes accessible to the user, EDIT mode and TEXTMODE.
However, for either mode, source code/text must begin with a line number between 0
and 65535 inclusive, followed by one space.

 Examples: 10 LABEL LDA #$32
 3020 This is valid in TEXT MODE

The first example would be valid in either EDIT or TEXTMODE, while the second
example would only be valid in TEXTMODE.

The user chooses which mode he/she wishes to use for editing by selecting NEW
(which allows general text entry). There is more discussion of the impact of these two
modes below; but, first, there are several points in common to the two modes.

Table of Contents

1.1 GENERAL EDITOR USAGE

The source file is manipulated by Editor commands. Since the Editor recognizes a
command by the absence of a line number, a line beginning with a line number is
assumed to be a valid source/text line. As such, it is merged with, added to, or inserted
into the source/text lines already in memory in accordance with its line number. An
entered line which has the same line number as one already in memory will replace the
line in memory.

Also, as a special case of the above, a source line can be deleted from memory by
entering its line number only. (And also see DEL command for deleting a group of
lines.)

Any line that does not start with a line number is assumed to be command line. The
Editor will examine the line to determine what function is to be performed. If the line is
a valid command, the Editor will execute the command. The Editor will prompt the
user each time a command has been executed or terminated by printing:

 EDIT for syntax (MAC/65 source) mode
TEXTMODE for text mode

The cursor will appear on the following line. Since some commands may take a while
to execute, the prompt signals the user that more input is allowed. The user can
terminate a command before completion by hitting the break key (escape key on Apple
II).

And one last point: If the line is neither a source line or a valid command. The Editor
will print:

 What?

chapter 1 Table of Contents

1.2 TEXT MODE

The Editor supports a text mode. The text mode is entered with the command TEXT.
This mode will NOT syntax check lines entered, allowing the user to enter and edit
non-assembly language files. All Editor commands function in text mode.

Remember, though, that all text lines must begin with a line number; and, even in
TEXTMODE, the space following the line number is necessary.

chapter 1 Table of Contents

1.3 EDIT MODE

MAC/65 is nearly unique among assembler/editor systems in that it allows the
assembly language user to enter source code and have it IMMEDIATELY checked for
syntax validity. Of course, since assembly language syntax is fairly flexible (especially
when macros are allowable, as they are with MAC/65), syntax checking will by no
means catch all errors in user source code. For example, the existence of and validity of
labels and/or zero page locations is not and can not be checked until assembly time.
However, we still feel that this syntax checking will be a boon to the beginner and
experienced programmer alike.

Again, remember that source lines must begin with a line number which must, in turn,
be followed by one space. Then, the second space after the line number is the label
column. The label must start in this column. The third space after the line number is the
instruction column. Instructions may either start in at least the third column after the
line number or at least one space after the label. The operand may begin any where
after the instruction, and comments may begin any where after the operand or
instruction. Refer to Assembler Section for specific instruction syntax.

As noted, the Editor syntax checks each source line at entry. If the syntax of a line is in
error, the Editor will list the line with a cursor turned on (i.e., by using an inverse or
blinking character) at the point of error.

The source lines are tokenized and stored in memory, starting at an address in low
memory and building towards high memory. The resultant tokenized file is 60% to 80%
smaller than its ASCII counterpart, thus allowing larger programs to be entered and
edited in memory.

SPECIAL NOTE: If, upon entry, a source line contains a syntax error and is so flagged
by the Editor, the line is entered into Editor memory anyway. This feature allows raw
ASCII text files (possibly from other assemblers and possibly containing one or several
syntax errors as far as MAC/65 is concerned) to be ENTERed into the Editor without
losing any lines. The user can note the lines with errors and then edit them later.

chapter 1 Table of Contents

CHAPTER 2: EDITOR COMMANDS

This chapter lists all the valid Editor- level commands, in alphabetical order, along with
a short description of the purpose and function of each.

Again, remember that when the "TEXTMODE" or "EDIT" prompt is present any input
line not preceded by a line number is presumed to be an Editor command.

If in the process of executing a command any error is encountered, the Editor will abort
execution and return to the user, displaying the error number and descriptive message
of the error before re-prompting the user. Refer to Appendix for possible causes of
errors.

chapter 1 Table of Contents

Section 2.1 (ASM)

 edit command: ASM

 purpose: ASseMble MAC/65 source files

 usage: ASM [#file1],[#file2],[#file3],[#file4]

 usage: ASM [#fspec1],[#fspec2],[#fspec3],[#fspec4]

ASM will assemble the specified source file and will produce a listing and object code
output; the listing may include a full cross reference of all non- local labels. File1 is the
source device, file2 is the list device, file3 is the object device, and file4 is a temporary
file used to help generate the cross reference listing.

Any or all of the four filespec's may be omitted, in which case MAC/65 assumes the
following default filespec(s) are to be used:

 file1 - user source memory
 file2 - screen editor.
 file3 - memory (CAUTION: see below)
 file4 - none, therefore no cross reference

A filespec (#file1, #file3, etc.) can be omitted by substituting a comma in which case
the respective default will be used.

 Example: ASM #D2:SOURCE,#D:LIST,#D2:OBJECT

In this example, the source will come from D:SOURCE, the assembler will list to
D:LIST, and the object code will be written to D:OBJECT.

 Example: ASM #D:SOURCE,,#D:OBJECT

In this example, the source will be read from D:SOURCE and the object will be written
to D:OBJECT. The assembly listing will be written to the screen.

 Example: ASM,#P:,,#D:TEMP

In this example, the source will be read from memory, the object will be written to
memory (but ONLY if the ".OPT OBJ" directive is in the source), and the assembly
listing will be written to the printer along with the complete label cross reference. The
file TEMP on disk drive 1 will be created and used as a temporary file for the cross
reference.

 Example: ASM #D:SOURCE,#P:

In this example, the source will be read from D:SOURCE and the assembly listing will
be written to the printer. If the ".OPT OBJ" directive has been selected in the source,
the object code will be placed in memory.

 Example: ASM,#-

This produces what is probably the fastest possible MAC/65 assembly. Source code is
read from memory and no listing is produced (because of the "#-"). If your program
does not contain an ".OPT OBJ" line, this becomes what is essentially simply an error
checking assembly. (Though even if you ARE producing object code, the assembly
speed is extremely fast.)

Note: If assembling from a "filespec", the source MUST have been a SAVEd file.

Note: Refer to the .OPT directive for specific information on assembler listing and
object output.

Note: The object code file will have the format of compound files created by the
DOSXL SAVE command. See the DOSXL manual for a discussion of LOAD and
SAVE file formats.

NOTE: You may use #C: as a device for the listing or object files. You may NOT use
#C: for the source or cross-reference files (you will not get a cross-reference unless you
use a disk drive). HOWEVER, we do not recommend using the cassette as the object
file device, since you may get an excessively long leader tone (which will be difficult to
re-BLOAD later). Instead, we suggest using BSAVE (after assembling directly to
memory) whenever practicable.

chapter 2 Table of Contents

Section 2.2 (BLOAD)

 edit command: BLOAD

 purpose: allows user to LOAD Binary (memory image)
 files from disk into memory

 usage: BLOAD #filespec

The BLOAD command will load a previously BSAVEd binary file, an assembled
object file, or a binary file created with DOSXL SAVe command.

 Example: BLOAD #D:OBJECT

This example will load the binary file "OBJECT" to memory at the address where it
was previously saved from or assembled for.

CAUTION: it is suggested that the user only BLOAD files which were assembled into
MAC/65's free area (as shown by the SIZE command) or which will load into known
safe areas of memory.

chapter 2 Table of Contents

Section 2.3 (BSAVE)

 edit command: BSAVE

 purpose: SAVE a Binary image of a portion of
 memory. Same as DOSXL SAVE command

 usage: BSAVE #filespec < hxnum1 ,hxnum2

The BSAVE command will save the memory addresses from hxnum1 through hxnum2
to the specified device. The binary file created is compatible with the DOSXL SAVe
command.

 Example: BSAVE #D:OBJECT<5000,5100

This example will save the memory addresses from $5000 through $5100 to the file
"OBJECT".

chapter 2 Table of Contents

Section 2.4 (BYE)

 edit command: BYE

 purpose: exit to system monitor level

 usage: BYE

BYE will put the user to the Atari Memo Pad or Apple II monitor, as appropriate.

chapter 2 Table of Contents

Section 2.5 (Change Memory)

 edit command: C

 purpose: Change memory contents

 usage: c hxnum1 < (,)(hxnum) [(,)(,hxnum) ...]

Although MAC/65 does not included a debug capability, there are a few machine level
commands included for the convenience of the user who would, for example, like to
change system registers and the like (screen color, margins, etc.). The C command is
provided for this purpose.

C allows the user to modify memory. Hxnum1 is the change start address. The
remaining hxnum(s) are the change bytes. The comma will skip an address.

 Example: C 50000<20,00,D8,,5

The example will change the memory addresses as follows: 5000 to 20, 5001 to 00,
5002 to D8, skip 5003, and change 5004 to 5.

chapter 2 Table of Contents

Section 2.6 (Display Memory)

 edit command: D

 purpose: Display contents of memory location(s)

 usage: D hxnum1 [,hxnum2]

D allows the user to examine memory. If hxnum2 is specified, the memory locations
between hxnum1 and hxnum2 will be displayed, else only hxnum1 through hxnum1 +8
will be displayed.

chapter 2 Table of Contents

Section 2.x (DDT)

 edit command: DDT

 purpose: enter the DDT debug package, which
 is part of the MAC/65 cartridge.

 usage: DDT

Once you have entered this command, DDT is entered and has control of the system.
However, DDT saves enough of MAC/65's vital memory that, if you follow certain
simple rules, you may return to MAC/65 from DDT with your source program still
intact. The DDT manual gives more information on this subject, but as a general guide
you must avoid locations $80 through $AF (in zero page) and the memory location
located within the bounds displayed by the SIZE command. See the DDT manual
 (which is bound with but after this MAC/65 manual) for many, many more details.

chapter 2 Table of Contents

Section 2.7 (DEL)

 edit command: DEL

 purpose: DELetes a line or group of lines from
 the source/text in memory.

 usage: DEL 1nol [,1no2]

DEL deletes source lines from memory. If only one 1no is entered, only the line will be
deleted. If two 1nos are entered, all lines between and including 1no1 and 1no2 will be

deleted.

Note: 1no1 must be present in memory for DEL to execute.

chapter 2 Table of Contents

Section 2.8 (DOS)

 edit command: DOS [or, equivalently, CP]

 purpose: exit from MAC/65 to the CP of DOS XL.

 usage: DOS
 or
 CP

Either DOS or CP returns the user to DOSXL.

chapter 2 Table of Contents

Section 2.9 (ENTER)

 edit command: ENTER

 purpose: allow entry of ASCII (or ATASCII)
 text files into MAC/65 editor memory

 usage: ENTER #filespec [(,M) (,A)]

ENTER will cause the Editor to get ASCII text from the specified device. ENTER will
clear the text area before entering from the filespec. That is any user program is
memory at the time the ENTER command is given will be erased.

The parameter "M" (MERGE) will cause MAC/65 to NOT clear the text area before
entering from the file, text entered will be merged with the text in memory. If a line is
entered which has the same line number of a line in memory, the line from the device
will overwrite the line in memory.

The parameter "A" allows the user to enter un-numbered text from the specified device.
The Editor will number the incoming text starting at line 10, in increments of 10.

CAUTION: The "A" option will always clear the text area before entering from the
filespec.

chapter 2 Table of Contents

Section 2.10 (FIND)

 edit command: FIND

 purpose: to FIND a string of characters some where
 in MAC/65's editor buffer.

 usage: FIND / string/ [1no1 [,1no2]] [,A]

The FIND command will search all lines in memory or the specified line(s) (1no1
through 1no2) for the "string" given between the matching delimiter. The delimiter may
be any character except a space. If a match is found, the line containing the match will
be listed to the screen.

Note: do NOT enclose a string in double quotes.

 Example: FIND/LDX/

This example will search for the first occurance of "LDX".

 Example: FIND\Label\25,80

This example will search for the first occurance of "Label" in lines 25 through 80.

If the option "A" is specified, all matches within the specified line range will be listed
to the screen. Remember, if no line numbers are given, the range is the entire program.

chapter 2 Table of Contents

Section 2.11 (LIST)

 edit command: LIST

 purpose: to LIST the contents of all or part of
 MAC/65's editor buffer in ASCII (ATASCII)
 form to a disk or device.

 usage: LIST [#filespec,] [1no1 [,1no2]]

LIST lists the source file to the screen, or device when "#filespec" is specified. If no
1nos are specified, listing will begin at the first line in memory and end with the last
line in memory.

If only 1no1 is specified, that line will be listed if it is in memory. If 1no1 and 1no2 are
specified, all lines between and including 1no1 and 1no2 will be listed. When 1no1 and
1no2 are specified, neither one has to be in memory as LIST will search for the first line
in memory greater than or equal to 1no1, and will stop listing when the line in memory
is greater than 1no2.

 EXAMPLE: LIST #P:
 will list the current contents
 of the editor memory to the P:
 (printer) device.

 EXAMPLE: LIST #D2:TEMP, 1030, 1000
 lists only those lines lying
 in the line number range from
 1030 to 1800, inclusive, to the
 disk file named "TEMP" on disk
 drive 2.

NOTE: The second example points out a method of moving or duplicating large
portions of text or source via the use of temporary disk files. By suitably RENumbering
the in-memory text before and after the LIST, and by then using ENTER with the
Merge option, quite complex movements are possible.

chapter 2 Table of Contents

Section 2.12 (LOAD)

 edit command: LOAD

 purpose: to reLOAD a previously SAVEd MAC/65 token
 file from disk to editor memory.

 usage: LOAD #filespec [,A]

LOAD will reload a previously SAVEd tokenized file into memory. LOAD will clear
the user memory before loading from the specified device unless the ",A" parameter is

appended.

The parameter "A" (for APPEND) causes the Editor to NOT clear the text area before
loading from the file. Instead, the load file will be appended with the current file in
memory.

Note: The Append option will NOT renumber the file after loading. It is possible to
have DUPLICATE LINE NUMBERS. Use the REN command if there are duplicate
line numbers.

chapter 2 Table of Contents

Section 2.13 (LOMEM)

 edit command: LOMEM

 purpose: change the lower bound of editor memory
 usable by MAC/65.

 usage: LOMEM hxnum

LOMEM allows the user to select the address where the source program begins.
Executing LOMEM clears out any source currently in memory; as if the user had typed
"NEW".

chapter 2 Table of Contents

Section 2.14 (NEW)

 edit command: NEW

 purpose: clears out all editor memory, sets
 syntax checking mode.

 usage: NEW

NEW will clear all user source code from memory and reset the Editor to syntax mode.
The "EDIT" prompt appears, reminding the user that syntax checking is now active. If
the user needs to defeat the syntax checking, he/she must use the TEXT command.

chapter 2 Table of Contents

Section 2.15 (NUM)

 edit command: NUM

 purpose: initiates automatic line NUMbering mode

 usage: NUM [dcnum1 [,dcnum2]]

NUM will cause the Editor to auto-number the incoming text from the Screen Ed itor
(E:). A space is automatically printed after the line number. If no dcnums are specified,
NUM will start at the last line number plus 10. NUM dcnum1 will start at the last line
number plus "dcnum1" in increments of "dcnum1". NUM dcnum1". NUM dcnum1,
dcnum2 will start at "dcnum1" in increments of "dcnum2".

 EXAMPLE: NUM 1000,20
 will cause the Editor to prompt the user with
 the number "1000" followed by a space. When
 the user has entered a line, the next prompt
 will be "1020", etc.

The NUM mode will terminate if the line number which would be next in sequence is
present in memory.

The user may terminate NUM mode on the Atari by pressing the BREAK key or by
typing a CONTROL-3. On the Apple, the user may terminate the NUM mode by
pressing CONTROL-C followed by RETURN.

chapter 2 Table of Contents

Section 2.16 (PRINT)

 edit command: PRINT

 purpose: to PRINT all or part of the Editor text
 or source to a disk file or a device.

 usage: PRINT [#filespec,] [1no1 [,1no2]]

Print is exactly like LIST except that the line numbers are not listed. If a file is
PRINTed to a disk, it may be reENTERed into the MAC/65 memory using the ENTER

command with the Append line number option.

chapter 2 Table of Contents

Section 2.17 (REN)

 edit command: REN

 purpose: RENumber all lines in Editor memory.

 usage: REN [dcnum1 [,dcnum2]]

REN renumbers the source lines in memory. If no dcnums are specified, REN will
renumber the program stating at line 10 in increments of 10. REN dcnum1 will
renumber the lines starting at line 10 in increments of dcnum1. REN dcnum1, dcnum2
will renumber starting at dcnum1 in increments of dcnum2.

chapter 2 Table of Contents

Section 2.18 (REP)

 edit command: REP

 purpose: REPlaces occurrence(s) of a given string
 with another given string.

 usage:
 REP/old string/new string/ [1no1 [,1no2]] [(,A)(,Q)]

The REP command will search the specified lines (all or 1no1 through 1no2) for the
"old string".

The "A" option will cause all occurrences of "old string" to be replaced with "new
string". The "Q" option will list the line containing the match and prompt the user for
the change (Y followed by RETURN for change, RETURN for skip this occurance.) If
neither "A" or "Q" is specified, only the first occurrence of "old String" will be replaced
with "new string". Each time a change is made, the line is listed.

 Example: REP/LDY/LDA/100,250,Q

This example will search for the string "LDY" between the lines 200 and 250,

inclusive, and prompt the user at each occurrence to change or skip.

Note: Hitting BREAK (ESCape on Apple Ii) will terminate the REP mode and return to
the Editor.

Note: If a change causes a syntax error in the line, the REP mode will be terminated and
control will return to the Editor. Of course, if TEXTMODE is selected, there can be no
syntax errors.

chapter 2 Table of Contents

Section 2.19 (SAVE)

 edit command: SAVE

 purpose: SAVEs the internal (tokenized) form
 of the user's in-memory text/source
 to a disk file.

 usage: SAVE #filespec

SAVE will save the tokenized user source file to the specified device. The format of a
tokenized file is as follows:

File Header
 Two byte number (LSB,MSB) specifies the
 size of the file in bytes.

For each line in the file:
 Two byte line number (LSB,MSB)
 followed by
 One byte length of line (actually offset to next line)
 followed by
 The tokenized line

chapter 2 Table of Contents

Section 2.20 (SIZE)

edit command: SIZE

 purpose: determines and displays the SIZE of
 various portions of memory used by
 the MAC/65 Editor.

 usage: SIZE

SIZE will print the user LOMEM address, the highest used memory address, and the
highest usable memory address, in that order, using hexadecimal notation for the
addresses.

chapter 2 Table of Contents

Section 2.21 (TEXT)

 edit command: TEXT

 purpose: allow entry of arbitrary ASCII (ATASCII)
 text without syntax checking.

 usage: TEXT

TEXT will clear all user source code from memory and put the Editor in the textmode.
After this command is used, the Editor will prompt the user for new commands and text
with the word "TEXTMODE" (instead of "EDIT"), indicating that no syntax checking
is taking place.

TEXTMODE may be terminated by the NEW command. CAUTION: there is no way
to go back and forth between syntax (EDIT) mode and TEXTMODE without clearing
the Editor's memory each time.

chapter 2 Table of Contents

Section 2.22 (HEX/DEC Convert)

 edit command: ?

 purpose: makes hexadecimal/decimal conversions

 usage: ? ($hxnum) (dcnum)

? is the resident hex/decimal decimal/hex converter. Numbers in the range 0 - 65535
decimal (0000 to FFFF hex) may be converted.

 Example: ? $1200 will print =4600
 ? 8190 will print =$1FFE

chapter 2 Table of Contents

CHAPTER 3: THE MACRO ASSEMBLER

Usually, the Assembler is entered from MAC/65 with the command ASM. For ASM
command syntax, refer to section 2.1 (in the Editor commands). Assembly may be
terminated by hitting the BREAK key (ESCape key on the Apple II).
However, MAC/65 also offers the DOSXL command line level an optional ability to
bypass the Editor phase entirely. This is especially useful when doing assemblies
during the processing of an EXeCution file. To invoke the assembler directly, simply
include one or more file names on the same DOSXL command line as the "MAC65"
command. The formal usage is as follows:

 MAC65 [file1 [file2 [file3 [file4]]] [-A][-D]]

where "file1", "file2", "file3" and "file4" are legal DOSXL file or device names and "-
A" and "-D" are option specifiers. Thus the arguments are an optional set of one to four
filenames, construed to be the source, listing, object, and cross-reference files
(respectively) of a MAC/65 assembly.

And the options avaliable are:

 -A source file is Ascii
 -D assembly must be Disk-to-Disk

Remember, if no filenames are given, MAC/65 will be invoked in it's interactive
(Editor) mode. But, if one or more files are specified, MAC/65 will be invoked in its
"batch" mode. That is, it will perform a single assembly and then return to DOSXL.
Generally, this command line will perform the assembly in a manner equivalent to
giving the "ASM" command from the MAC/65 Editor. That is, if only one filename is
given, it is assumed to be the source file, implying that the listing will go to the screen
and the object code will be placed in memory (but only if requested by the .OPT OBJ
directive). If a second filename is given, it is assumed to be the name of the listing file.
Only if three or four filenames are given will the object code be directed to the file
specified. And, finally, if the fourth filename is given it must be a disk filename and
will be used as a temporary file for the cross reference listing.

Note: if an assembly needs no listing but does need an object file, the user may specify

"-" as the listing file.

And some notes on the options:

The -A option is used to specify that the source file is not a standard MAC/65 SAVEd
file but is instead an Ascii (or Atascii) file. This is equivalent to using the interactive
Editor mode of MAC/65 to use the sequence of commands "ENTER #D..." and "ASM
,...".

The -D option is used to specify that the assembly MUST proceed from disk to disk. If
this option is not given, the source file is LOADed (or ENTERed) before the assembly,
and then the assembly proceeds with the source in memory (generally producing
improved speed of assembly). If, however, the source file is too large to be assembled
in memory, the user may use this option to allow assembly of even very large
programs. (And remember, even if the source fits, the macro and symbol tables must
reside in memory during assembly also.)

NOTE: the -D option can NOT be used in conjunction with the -A option. The source
file assembled under the -D option MUST be a properly SAVEd (tokenized) file.

EXAMPLES:

 MAC65 JUNK.M65 - JUNK.COM
 will assemble JUNK.M65, producing no
 listing but sending the object code
 to the file JUNK.COM

 MAC65 TEST.LIS P: TEST.OBJ TEST.XRF
 will assemble TEST,LIS, which is an
 ASCII file, sending the listing to
 the printer (P:) and the object to
 the file TEST.OBJ. A cross reference
 of all labels will be appended to the
 printer listing, and the file TEST.XRF
 will be used by MAC/65 as a temporary
 file for this purpose.

chapter 2 Table of Contents

Section 3.1 (Assembler Input)

The Assembler will get a line at a time from the specified device or from memory. If
assembling from a device, the file must have been previously SAVEd by the Editor. All

discussions of source lines and syntax will be at the Editor line entry level. The
tokenized (SAVEd) form is discussed in general terms under the SAVE command,
section 2.19

Source lines are in the forms:

 line number + mandatory space + source statement

The source statement may be in one of the following forms:

[label] [(6502 instruction) (directive)] [comment]

The following examples are valid source lines:

 100 LABEL
 120 ;Comment line
 140 LDA #5 and then any comment at all
 150 DEY
 160 ASL A double number in accumulator
 170 GETNUM LDA (ADDRESS),Y
 180 .PAGE "directives are legal, too"

In general, the format is as specified in the MOS Technology 6502 Programming
Manual. We recommend that the user unfamiliar with 6502 assembly language
programming should purchase:

 "Machine Language for Beginners" by R. Mansfield
or
 "Programming the 6502" by Rodney Zake
or
 any other book which seems compatible with the
 users current knowledge of assembly language.

Special Note:
The assembler of MAC/65 understands only upper case labels, op codes, etc.
HOWEVER, the editor (see especially section 1.3) will convert all lower case to
upper case (except in comments and quoted strings), so the user may feel free to type
and edit in which ever case he/she feels most comfortable with.

chapter 3 Table of Contents

Section 3.2 (Instruction Format)

A) Instruction mnemonics are as described in the MOS Technology Programming
Manual.

B) Immediate operands begin with "#".

C) "(operand,X)" and "(operand),Y" designate indirect addressing.

D) "operand,X" and "operand,Y" designate indexed addressing.

E) Zero page operands cannot be forward referenced. Attempting to do so will usually
result in a "PHASE ERROR" message.

F) Forward equates are evaluated within the limits of a two pass assembler.

G) "*" designates the current location counter.

H) Comment lines may begin with ";" or "*".

I) Hex constants begin with "$".

J) The "A" operand is reserved for accumulator addressing.

K) A semicolon ";" anywhere in a line indicates the beginning of the comment field for
that line.

L) The addressing formats available are extended to allow the new addressing modes
available with the NCR 65C02 microprocessor. See Chapter 7 for the descriptions of
65C02 instructions not included in the standard 6502 set. The extensions include:

1: "(operand)", indicating indirect addressing, is now legal with ADC, AND, CMP,
EOR, LDA, ORA, SBC, and STA. The operand must be in zero page.

2: "(operand,X)" is now legal when used with JMP. The operand here may be any
absolute address.

3: The BIT instruction is allowed the addressing mode "operand,X". The operand may
be either a zero page or absolute address.

4: The mnemonics BRA, DEA, INA, PHX, PHY, PLX, PLY, STZ, TRB, and TSB are
now recognized.

chapter 3 Table of Contents

Section 3.3 (LABELS)

Labels must begin with an Alpha character, "@". or "?". The remaining characters may
be as the first or may be "0" to "9" or ".". The characters must be uppercase and cannot
be broken by a space. The maximum number of characters in a label is 127, and ALL
are significant.

Labels beginning with a question mark ("?") are assumed to be "LOCAL" labels. Such
labels are "visible" only to code encountered within the current local region. Local
regions are delimited by successive occurrences of the .LOCAL directive, with the first
region assumed to start at the beginning of the assembly source, whether or not a
.LOCAL is coded there or not. There are a maximum of 62 local regions in any one
assembly. Of course, if a .LOCAL is not encountered any where in the assembly, then
all labels are accessible at all times. In any case, labels beginning with a question mark
will NOT be listed in the symbol table.

The following are examples of valid labels:

 TEST1 @.INC LOCATION LOC22A WHAT?
 ADDRESS1.1 EXP.. SINE45TAB.

chapter 3 Table of Contents

Section 3.4 (OPERANDS)

An operand can be a label, a Macro parameter, a numeric constant, the current program
counter (*), "A" for accumulator addressing, an expression, or an ASCII character. The
following are examples of the various types of operands:

 10 LDA #VALUE ; label
 15 ROR A ; accumulator addressing
 20 .BYTE 123,$45 ; numeric constants
 25 .IF %0 ; Macro parameter
 30 CMP #'A ; ASCII character
 35 THISLOC = * ; current PC
 40 .WORD PMBASE+[PLNO+4]*256 ; expression

chapter 3 Table of Contents

Section 3.5 (OPERATORS)

The following are the operators currently supported by MAC/65:

3.5.1 + - * /

3.5.2 & ! ^

3.5.3 = > < <> >=
<=

3.5.4 .OR .AND
.NOT

3.5.5 -
(unary)

3.5.6 < > (unary)

3.5.7 .DEF

3.5.8 .REF

3.5.9 []

 [] psuedo parentheses
 + addition
 - subtraction
 / division
 * multiplication
 & binary AND
 ! binary OR
 ^ binary EOR
 = equality, logical
 > greater than, logical
 < less than, logical
 < > inequality, logical
 >= greater or equal, logical
 <= less or equal, logical
 .OR logical OR
 .AND logical AND
 - unary minus
 .NOT unary logical. Returns true (1) if expression is
 zero. Returns false (0) it expression is non-zero.
 .DEF unary logical label definition. Returns true
 if label is defined.
 .REF unary logical label reference. Returns true if
 label has been referenced.
 > unary. Returns the high byte of the expression.
 < unary. Returns the low byte of the expression.

Logical operators will always return either TRUE (1) OR FALSE (0). However, any
non-zero value is considered true when making a conditional test.

Some of these operators perhaps need some explanation as to their usage and purpose.
The operators are thus described in groups in the following subsections.

chapter 3 Table of Contents

Section 3.5.1 (Operators: + - * /)

These are the familiar arithmetic operators. Remember, though, that they perform 16-bit
signed arithmetic and ignore any overflows. Thus, for example, the value of
$FF00+4096 is $0F00, and no error is generated.

section 3.5 Table of Contents

Section 3.5.2 (Operators: & ! ^)

These are the binary or "bitwise" operators. They operate on values as 16 bit words,
performing bit-by-bit ANDs, ORs, or EXCLUSIVE ORs. They are 16 bit equivalents of
the 6502 opcodes AND, ORA, and EOR.

EXAMPLES: $FF00 & $0FF is $0000
 $03 ! $0A is $000B
 $003F ^ $011F is $0120

section 3.5 Table of Contents

Section 3.5.3 (Operators: = > < <> >= <=)

These are the familiar comparison operators. They perform 16 bit unsigned compares
on pairs of operands and return a TRUE (1) or FALSE (0) value.

EXAMPLES: 3 < 5 returns 1
 5 < 5 returns 0
 5 <= 5 returns 1

CAUTION: Remember, these operators always work on PAIRS of operands. The
operators ">" and "<" have quite different meanings when used as unary operators.

section 3.5 Table of Contents

Section 3.5.4 (Operators: .OR .AND .NOT)

These operators also perform logical operations and should not be confused with their
bitwise companions. Remember, these operators always return only TRUE or FALSE.

EXAMPLES: 3 .OR 0 returns 1

 3 .AND 2 returns 1
 6 .AND 0 returns 0
 .NOT 7 returns 0

section 3.5 Table of Contents

Section 3.5.5 (Operator: - (unary))

The minus sign may be used as an unary operator. It's effect is the same as if a minus
sign had been used in a binary operation where the first operator is zero.

EXAMPLE: -2 is $FFFE (same as 0-2)

section 3.5 Table of Contents

Section 3.5.6 (Operators: < > (unary))

These UNARY operators are extremely useful when it is desired to extract just the high
order or low order byte of an expression or label. Probably their most common use will
be that of supplying the high and low order bytes of an address to be used in a LDA #"
or similar instruction.

EXAMPLE: FLEEP = $3456
 LDA #<FLEEP (same as LDA #$56)
 LDA #>FLEEP (same as LDA #$34)

section 3.5 Table of Contents

Section 3.5.7 (Operator: .DEF)

This unary operator tests whether the following label has been defined yet, returning
TRUE or FALSE as appropriate.

CAUTION: Defining a label AFTER the use of a .DEF which references it can be
dangerous, particularly if the .DEF is used in a .IF directive.

EXAMPLE .IF .DEF ZILK
 .BYTE "generates some bytes"

 ZILK = $3000

In this example, the .BYTE string will NOT be generated in the first pass but WILL be
generated in the second pass. Thus, any following code will almost undoubtedly
generate a PHASE ERROR.

section 3.5 Table of Contents

Section 3.5.8 (Operator: .REF)

This unary operator tests whether the following label has been referenced by any
instruction or directive in the assembly yet; and, in conjunction with the .IF directive,
produces the effect of returning a TRUE or FALSE value.

Obviously, the same cautions about .DEF being used before the label definition apply
to .REF also, but here we can obtain some advantage from the situation.

EXAMPLE: .IF .REF PRINTMSG
 PRINTMSG
 ...(code to implement the PRINTMSG routine)
 .ENDIF

In this example, the code implementing PRINTMSG will ONLY be assembled if
something preceding this point in the assembly has referred to the label PRINTMSG!
This is a very powerful way to build an assembly language library and assemble only
the needed routines. Of course, this implies that the library must be .INCLUDEd as the
last part of the assembly, but this seems like a not too onerous restriction. In fact, OSS
has used this technique in writing the libraries for the C/65 compiler.

CAUTION: note that in the description above it was implied that .REF only worked
properly with a .IF directive. Not only is this restriction imposed, but attempts to use.
REF in any other way can produce bizarre results. ALSO, .REF can not effectively be
used in combination with any other operators. Thus, for example,

 .IF .REF ZAM .OR .REF BLOOP is ILLEGAL!

The only operator which can legally combined with .REF is .NOT, as in .IF .NOT .REF
LABEL.

Note that the illegal line above could be simulated thus:

EXAMPLE: DOIT . = 0
 .IF .REF ZAM

 DOIT . = 1
 .IF .REF BLOOP
 DOIT . = 1
 .ENDIF
 .IF DOIT
 ...

section 3.5 Table of Contents

Section 3.5.9 (Operator: [])

MAC/65 supports the use of the square brackets as "psuedo parentheses". Ordinary
round parentheses may NOT be used for grouping expressions, etc., as they must retain
their special meanings with regards to the various addressing modes. In general, the
square brackets may be used any where in a MAC/65 expression to clarify or change
the order of evaluation of the expression.

EXAMPLES:
 LDA GEORGE+5*3 ;This is legal, but
 it multiplies 3*5
 and adds the 15 to
 GEORGE...probably
 not what you wanted.
 LDA (GEORGE+5)*3 ;Syntax Error!!!
 LDA [GEORGE+5]*3 ;OK...the addition
 is performed before
 the multiplication
 LDA ([GEORGE+5]*3),Y ;See the need
 for both kinds of
 "parentheses"?

REMEMBER: Operators in MAC/65 expressions follow precedence rules. The square
brackets may be used to override these rules.

section 3.5 Table of Contents

Section 3.6 (ASSEMBLER EXPRESSIONS)

An expression is any valid combination of operands and operators which the assembler
will evaluate to a 16-bit unsigned number with any overflow ignored. Expressions can
be arithmetic or logical. The following are examples of valid expressions:

 10 .WORD TABLEBASE+LINE+COLUMN
 55 .IF .DEF INTEGER .AND [VER=1 .OR VER >=3]
 200 .BYTE >EXPLOT-1, >EXDRAW-1, >EXFILL-1
 300 LDA # <[< ADDRESS^-1] +1
 305 CMP # -1
 400 CPX # 'A
 440 INC #1+1

chapter 3 Table of Contents

Section 3.7 (OPERATOR PRECEDENCE)

The following are the precedence levels (high to low) used in evaluating assembler
expressions:

 [] (psuedo parenthesis)
 > (high byte), < (low byte), .DEF, .REF, - (unary)
 .NOT
 *, /
 +, -
 &, !, ^
 =, >. <, <=, >=, <> (comparison operators)
 .AND
 .OR

Operators grouped on the same line have equal precedence and will be executed in left-
to-right order unless higher precedence operator(s) intervene.

chapter 3 Table of Contents

Section 3.8 (NUMERIC CONSTANTS)

MAC/65 accepts three types of numeric constants: decimal, hexadecimal, and
characters.

A decimal constant is simply a decimal number in the range 0 through 65535; an
attempt to use a decimal number beyond these bounds may or may not work and will
certainly produce unexpected and undesired results.

 EXAMPLES: 1 234 65200 32767

(as used:) .BYTE 2,4,8,16,32,64
 LDA #1

A hexadecimal constant consists of a dollar sign followed by one to four legal
hexadecimal digits (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Again, usage of more than four
digits may produce unwanted results.

 EXAMPLES: $1 $EA $FF00 $7FFF
(as used:) .WORD $100,$200,$400,$800,$1000
 AND #$7F

A character constant is an apostrophe followed by any printable or displayable
character. The value of a character constant is the ASCII (or ATASCII) value of the
character following the apostrophe.

 EXAMPLES: 'A '* '" '=
(as used:) CMP #'=
 CMP #'Z+1 ; same as #$5B

chapter 3 Table of Contents

Section 3.9 (STRINGS)

Strings are of two types. String literals
(example: "This is a string literal"),
and string variables for Macros
(example: %$5).

 Example: 10 .BYTE "A STRING OF CHARACTERS"
 or
 Example: 20 .SBYTE %$1

chapter 3 Table of Contents

CHAPTER 4: DIRECTIVES

As noted in section 3.1 , the instruction field of an assembled line may contain an
assembler directive (instead of a valid 6502 instruction). This chapter will list and
describe, in roughly alphabetical order, all the directives legal under MAC/65
(excepting directives specific to macros, which will be discussed separately in Chapter
5).

Directives may be classified into three types: (1) those which produce object code for
use by the assembled program (e.g., .BYTE, .WORD, etc.); (2) those which direct the
assembler to perform some task, such as changing where in memory the object code
should go or giving a value to a label (e.g., *=, =, etc.); and (3) those which are
provided for the convenience of the programmer, giving him/her control over listing
format, location of source, etc. (e.g., .TITLE, .OPT, .INCLUDE).

Obviously, we could in theory do without the type 3 directives; but, as you read the
descriptions that follow, you will soon discover that in practice these directives are
most useful in helping your 6502 assembly language production. Incidentally, all the
macro-specific directives could presumably be classified as type 3.

Three of the directives which follow (.PAGE, .TITLE, and .ERROR) allow the user to
specify a string (enclosed in quotes) which will be printed out. For these three
directives, the user is limited to a maximum string length of 70 characters. Strings
longer than 70 characters will be truncated.

chapter 3 Table of Contents

Section 4.1 (directive: *=)

purpose: change current origin of the assembler's location counter

usage: [label] *= expression

The *= directive will assign the value of the expression to the location counter. The
expression cannot be forward referenced. *= must be written with no intervening
spaces.

Example: 50 *= $1234 ;sets the location counter to $1234

Another common usage of *= is to reserve space for data to be filled in or used at run
time. Since the single character "*" may be treated as a label referencing the current
location counter value, the form "*= *+exp" is thus the most common way to reserve
"exp" bytes for later use.

Example: 70 LOC *= *+1 ;assigns the current value of the
 location counter to LOC and then
 advances the counter by one.

(Thus LOC may be thought of as a one byte reserved memory cell.)

CAUTION: Because any label associated with this directive is assigned the value of the
location counter BEFORE the directive is executed, it is NOT advisable to give a label
to "=" unless, indeed, it is being used as in the second example (i.e., as a memory
reserver).

NOTE: Some assemblers use "ORG" instead of "*=" and may also have a separate
directive (such as "DS" or "RMB") for "defining storage" or "reserving memory bytes".
Use caution when converting from and to such assemblers; pay special attention to
label usage. When in doubt, move the label to the next preceding or next following line,
as appropriate.

chapter 4 Table of Contents

Section 4.2 (directive: =)

purpose: assigns a value to a label

usage: label = expression

The = directive will equate "label" with the value of the expression. A "label" can be
equated via "=" only once within a program.

Example: 10 PLAYER0 = PMBASE + $200

Note: If a "label" is equated more than once, "label" will contain the value of the most
recent equate. This process, however, will result in an assembly error.

chapter 4 Table of Contents

Section 4.3 (directive: .=)

purpose: assign a possibly transitory value to a label

usage: label .= expression

The .= directive will SET "label" with the value of the expression. Using this directive,
a "label" may be set to one or more values as many times as needed in the same
program.

EXAMPLE:

 10 LBL .= 5
 20 LDA #LBL ;same as LDA #5
 30 LBL .= 3+'A
 40 LDA #LBL ;same as LDA #68

CAUTION: A label which has been equated (via the "=" directive) or assigned a value
through usage as an instruction label may not then be set to another value by ".=".

chapter 4 Table of Contents

Section 4.4 (directive: .BYTE [and .SBYTE])

purpose: specifies the contents of individual bytes in the output object

usage:
[label] .BYTE [+exp,] (exp)(strvar)[,(exp)(strvar) ...]
[label] .SBYTE [+exp,](exp)(strvar)[,(exp)(strvar) ...]

The .BYTE and .SBYTE directives allow the user to generate individual bytes of
memory image in the output object. Expressions must evaluate to an 8-bit arithmetic
result. A strvar will generate as many bytes as the length of the string. .BYTE simply
assembles the bytes as entered, while .SBYTE will convert the bytes to Atari screen
codes (on the Atari) or to characters with their most significant bit on (on the Apple II).

Example: 100 .BYTE "ABC" , 3, -1

This example will produce the following output bytes:
 41 42 43 03 FF.

Note that the negative expression was truncated to a single byte value.

Example: 50 .SBYTE "Hello!"

On the Atari, this example will produce the following screen codes:
 28 65 6C 6C 6F 01.

On the Apple II, the same example would produce the following bytes:
 C8 E5 EC EC DF A1.

SPECIAL NOTE: Both .BYTE and .SBYTE allow an additive Modifier. A Modifier is
an expression which will be added to all of bytes assembled. The assembler recognizes
the Modifier expression by the presence of the "+" character. The Modifier expression
will not itself be generated as part of the output.

Example: 5 .BYTE +$80 , "ABC" , -1

This example will produce the following bytes:
 C1 C2 C3 7F

Example: 100 .BYTE +$80,"DEF",'G+$80

This example will produce: C4 C5 C6 47.

(Note especially the effect of adding $80 via the modifier and also adding it to the
particular byte. The result is an unchanged byte, since we have added a total of 256
($100), which does not change the lower byte of a 16 bit result.)

Example: 55 .SBYTE +$40 , "A12"

This example will produce:
 61 51 52 Atari
 01 F1 F2 Apple II.

Example: 80 .SBYTE +$C0,"G-$C0,"REEN"

This example will produce:
 27 F2 E5 E5 EE Atari
 C7 92 85 85 8E Apple II.

Note: .SBYTE performs its conversions according to a numerical algorithm and does
NOT special case any control characters, including BELL, TAB, etc.--these characters
ARE converted.

chapter 4 Table of Contents

Section 4.5 (directive: .CBYTE)

purpose: same as .BYTE except that the most
 significant bit of the last byte of
 a string argument is inverted

usage: [label] .CBYTE [+exp,](exp)(strvar) [,(exp)(strvar)...]

The .CBYTE directive may often be used to advantage when building tables of strings,
etc., where it is desirable to indicate the end of a string by some method other than, for
example, storing a following zero byte. By inverting the sense of the upper bit of that

last character of the string, a routine reading the strings from the table could easily do a
BMI or BPL as it reads each character.

Example: ERRORS .CBYTE 1,"SYSTEM"

The line shown would produce these object bytes:
 01 53 59 53 54 45 CE

And a subroutine might access the characters thus:
 LDY #1
 LOOP LDA ERRORS,Y
 BMI ENDOFSTRING
 INY
 BNE LOOP
 ...
 ENDOFSTRING
 ...

chapter 4 Table of Contents

Section 4.6 (directive: .DBYTE)

Directive: DBYTE [see also .WORD]

purpose: specifies Dual BYTE values to be placed in the output object.

usage: [label] .DBYTE exp [,exp ...]

Both the .WORD and .DBYTE directives will put the value of each expression into the
object code as two bytes. However, while .WORD will assemble the expression(s) in
6502 address order (least significant byte, most significant byte), .DBYTE will
assemble the expression(s) in the reverse order (i.e., most significant byte, least
significant byte).

.DBYTE has limited usage in a 6502 environment, and it would most probably be used
in building tables where its reversed order might be more desirable.

EXAMPLE: .DBYTE $1234,1,-1
produces: 12 34 00 01 FF FF
 .WORD $1234,1,-1
produces: 34 12 01 00 FF FF

chapter 4 Table of Contents

Section 4.x (directive: .DS)

purpose: reserves space for data without initializing the space to any particular
value(s).

usage: [label] .DS expression

Using ".DS expression" is exactly equivalent of using
"*= *+expression". That is, the label (if it is given) is set equal to the current value of
the location counter. Then the value of the expression is added to the location counter.

Example: BUFFERLEN .DS 1 ;reserve a single byte
 BUFFER .DS 256 ;reserve 256 bytes

chapter 4 Table of Contents

Section 4.7 (directive: .ELSE)

purpose: SEE description of .IF for purpose and usage.

chapter 4 Table of Contents

Section 4.8 (directive: .END)

directive: .END

purpose: terminate an in-memory assembly

usage: [label] .END

The .END directive will terminate the assembly ONLY if the source is being read from
memory. Otherwise, .END will have no effect on assembly.

This "no effect" is handy in that you may thus .INCLUDE file(s) without having to edit
out any .END statements they might contain. In truth, .END is generally not needed at
all with MAC/65,

chapter 4 Table of Contents

Section 4.9 (directive: .ENDIF)

purpose: terminate a conditional assembly block

SEE description of .IF for usage and details.

chapter 4 Table of Contents

Section 4.10 (directive: .ERROR)

purpose: force an assembler error and message

usage: [label] .ERROR [string]

The .ERROR directive allows the user to generate a pseudo error. The string specified
by .ERROR will be sent to the screen as if it were an assembler-generated error. The
error will be included in the count of errors given at the end of the assembly.

Example: 100 .ERROR "MISSING PARAMETER!"

chapter 4 Table of Contents

Section 4.11 (directive: .FLOAT)

purpose: specifies floating point constant values
 to be placed in the output object.

usage:
[label] .FLOAT floating-constant [,flotation-constant...]

This directive would normally only be used by the programmer wishing to access the
built- in floating point routines of the Atari Operating System ROM's (or similar
routines as supplied with the BASIC XL package from OSS for Apple II or equivalent
machines).

Each floating point constant following the .FLOAT directive will produce 6 bytes of
bytes of output object code, in a format consistent with the above-mentioned floating

point routines. In particular, the first byte contains the exponent portion of the number,
in excess-64 notation representing power of 100. The upper bit of the exponent byte
designates the sign of the mantissa portion. The following 5 bytes are the mantissa, in
packed BCD form, normalized on a byte boundary (consistant with the powers-of-100
exponent).

EXAMPLES:
 .FLOAT 3.14156295,-2,718281828

The above example would produce the following bytes in the output object code:

 40 03 14 15 62 95
 C0 27 18 28 18 28

NOTE: Only floating point constants, NOT expressions, are legal as operands to
.FLOAT. Generally, this is not a problem, since the user may perform any constant
arithmetic on a calculator (or in BASIC) before placing the result in his/her MAC/65
program.

chapter 4 Table of Contents

Section 4.12 (directive: .IF)

purpose: choose to perform or not perform some portion of an assembly based on the
"truth" of an expression.

usage: .IF exp
 [.ELSE]
 .ENDIF

usage note: there may be any number of lines of assembly language code or directives
between]IF and .ELSE or .ENDIF and similarly between .ELSE and .ENDIF.

When a .IF is encountered, the following expression is evaluated. If it is non-zero
(TRUE), the source lines following .IF will be assembled, continuing until an .ELSE or
.ENDIF is encountered. If an .ELSE is encountered before an .ENDIF, then all the
source lines between the .ELSE and the corresponding .ENDIF will not be assembled.
If the expression evaluates to zero (false), the source lines fo llowing .IF will not be
assembled. Assembly will resume when a corresponding .ENDIF or an .ELSE is
encountered.

The .IF-.ENDIF and .IF-.ELSE-.ENDIF constructs may be nested to a depth of 14
levels. When nested, the "search" for the "corresponding" .ELSE or .ENDIF skips over

complete .IF-.ENDIF constructs if necessary.

Examples:

 10 .IF 1 ; non-zero, therefore true
 20 LDA # '? ; these two lines will
 30 JSR CHAROUT ; be assembled
 40 .ENDIF

EXAMPLE:

 10 .IF 0 ; expression is false
 11 LDA # >ADDRESS ; these two lines will
 12 LDX # <ADDRESS ; not be assembled
 13 .IF 1
 14 .ERROR "can't get here"
 15 ;likewise, this can't be assembled because it
 16 ;is "nested" within the .IF 0 structure
 17 ;
 18 .ELSE
 19 ;
 20 LDX # <ADDRESS ; these lines will
 21 LDA # >ADDRESS ; be assembled
 22 .ENDIF
 23 JSR PRINTSTRING ; go print the string

Note: The assembler resets the conditional stack at the beginning of each pass. Missing
.ENDIF(s) will NOT be flagged.

chapter 4 Table of Contents

Section 4.13 (directive: .INCLUDE)

purpose: allows one assembly language program to request that
 another program be included and assembled in- line

usage: .INCLUDE #filespec

usage note: this directive should NOT have a label

The .INCLUDE directive causes the assembler to begin reading source lines from the
specified "filespec". When the end of "filespec" is reached, the assembler will resume
reading source from the previous file (or memory).

CAUTION: The .INCLUDEd file MUST be a properly SAVEd MAC/65 tokenized
program. It can NOT be an ASCII file.

Note: A .INCLUDED file cannot itself contain a .INCLUDE directive.

EXAMPLE .INCLUDE #D:SYSEQU.M65

This example line will include the system equates file supplied by OSS.

chapter 4 Table of Contents

Section 4.14 (directive: .LOCAL)

purpose: delimits a local label region

usage: .LOCAL

usage note: this directive should not be associated with a label.

This directive serves to end the previous local region and begin a new local region. It is
assumed that the first local region begins at the beginning of the assembly, and the last
local region ends at the end of the assembly.

Within each local region, any label beginning with a question mark ("?") is assumed to
be a "local label". As such, it is invisible to code, equates, references, etc., outside of its
own local region.

This feature is especially handy when using automatic code generators or when several
people are working on a single project. In both these cases, the coder may use labels
beginning with "7" and be sure that there will be no duplicate label errors produced.

EXAMPLE:

 10 *= $4000
 11 LDX #3 ; establish a counter
 12 ?LOOP
 13 LDA FROM,X ; get a byte
 14 STA TO,X ; put a byte
 15 DEX ; more to do?
 16 BPL ?LOOP ; goes to label on line 12
 17 ;
 18 .LOCAL ; another local region!

 19 ;
 20 ?LOOP=6
 21 ;
 22 LDY #?LOOP ; same as LDY #6
 23 (etc.)

FEATURE: Local labels MAY be forward referenced, just like any other label.
NOTE: Local labels do not appear in the symbol table listing.

chapter 4 Table of Contents

Section 4.15 (directive: .OPT)

purpose: selects various assembly control OPTions

usage: .OPT option
 (or)
 .OPT NO option

usage: .OPT option [,[NO] option...]
 .OPT NO option [,[NO]option...]

usage notes: the valid options are as follows:
 LIST ERR EJECT OBJ
 MLIST CLIST NUM XREF

The .OPT directive allows the user to control certain functions of the assembly.
Generally, coding ".OPT option" will invoke a feature or option, while ".OPT NO
option" will "turn off" that same feature.

You may use any number of options (or NO options) on a single source line. The
following line is therefore legal.

Example: .OPT NO LIST,NO XREF, OBJ,ERR

The following are the descriptions of the individual options:

LIST control the entire assembly listing.
NO LIST turns off all listing except error lines.

ERR will determine if errors are returned to the user in the listing and/or the screen.
NO ERR is thus dangerous.

EJECT controls the title and page listing.
NO EJECT only turns off the automatic page generation; it has no effect on .PAGE
requests.

OBJ determines if the object code is written to the device/memory.
NO OBJ is useful during trial assemblies. OBJ is NECESSARY when the object code
is to placed in memory.

NUM will auto number the assembly listing instead of using the user line numbers.
NUM will begin at 100 and increment by 1. NUM is generally not useful except for
final, "pretty" assemblies.

MLIST controls the listing of Macro expansions.
NO MLIST will list only the lines within a Macro expansion which generate object
code. MLIST will expand the entire Macro. NO MLIST is extraordinarly useful in
producing readable listings.

CLIST controls the listing of conditional assembly.
NO CLIST will not list source lines which are not assembled. CLIST will list all lines
within the conditional construct.

XRef allows the user, when cross reference has been specified in the ASM comland
line, to control which portions of the source program will be cross referenced during the
assembly.
Any lines of source code between an .OPT NO XREF and the next succeeding .OPT
XREF will not be cross-referenced. By combining NO XREF and NO LIST, you can
list and cross reference even extremely large programs in pieces. Or you might use NO
XREF to avoid indexing entries out of an INCLUDEd file. XREF and NO XREF are
useless and inoperative (but do not generate errors) if you have not specified a cross-
reference file name in the ASM command line.

NOTE: unless specified otherwise by the user, all of the options will assume their
default settings. The default settings for ..OPT are:

 ERR errors are reported
 EJECT pages are numbered and ejected
 NO NUM use programmer's line numbers
 MLIST all macro lines are listed
 CLIST all failed conditionals list
 LIST listing IS produced
 XREF continuous cross reference
 NO OBJ l SEE CAUTION !!!!!

CAUTION: The OBJ option is handled in a special way:
 IF assembling to memory the object default is NO OBJ.
 IF assembling to a device the object option is OBJ.

NOTE: Macro expansions with the NO NUM option will not be listed with line
numbers.

chapter 4 Table of Contents

Section 4.16 (directive: .PAGE)

purpose: provides page headings and/or moves
 to top of next page of listing

usage: .PAGE [string]

usage note: no label should be used with .PAGE

The .PAGE directive allows the user to specify a page heading. The page heading will
be printed below the page number and title heading.

.PAGE will eject the next page, and prints the most recent title and page headings.

Example: 300 .PAGE "EXECUTE LABEL SEARCH"

Note: The assembler will automatically eject and print the current title and page
headings after 61 lines have been listed.

chapter 4 Table of Contents

Section 4.17 (directive: .SBYTE)

purpose: produces "screen" bytes in output object

usage: See .BYTE description, section 4.4

chapter 4 Table of Contents

Section 4.18 (directive: .SET)

purpose: controls various assembler functions

usage: .SET dcnum1 , dcnum2

The .SET directive allows the user to change specific variable parameters of the
assembler. The dcnum1 specifies the parameter to change, and dcnum2 is the changed
value. The following table summarizes the various .SET parameters. Defaults for each
parameter are given in parentheses, followed by the allowable range of values.

dcnum1 dcnum2 function

 0 (4) 1-4 sets the .BYTE and .SBYTE listing
 format. 1 to 4 bytes can be printed
 in the object code filed of the listing.

 1 (0) 0-31 sets the assembly listing left margin.
 The specified number is the number of
 spaces which will be printed before
 the assembled source line.

 2 (80) 40-132 set width for listing, adjust for
 your printer.

 3 (12) 0,12 form feed select. 0 implies no form
 feed on printer--use multiple line
 feeds. Any other used as form
 feed char.

 4 (66) any number of lines per page for listing.

 5 (0) 0-255 number of spaces from semi-colon
 in comment field to where remainder
 of comment is printed.

 6 (0) 0-$FFFF an offset, which is added to the
 location counter when an object byte
 is stored or written to disk. You can
 thus assemble code to one address but
 it is written to run at another address.
 See Chapter 8 for a complete discussion
 of .SET 6 capabilities

chapter 4 Table of Contents

Section 4.19 (directive: .TAB)

purpose: sets listing "tab stops" for readability

usage: .TAB dcnum1 .dcnum2 .dcnum3

The .TAB directive allows the user to specify the starting column for the listing of the
instruction field, the operand field, and the comment filed respectively. The defaults are
8,12,20.

Example: 200 .TAB 16,32,50
 ...
 1200 .TAB 8,12,20 ;restores defaults

chapter 4 Table of Contents

Section 4.20 (directive: .TITLE)

purpose: specify assembly listing heading

usage: .TITLE string

The .TITLE directive allows the user to specify a assembly title heading. The title
string will be printed at the top of every page following the page number.

chapter 4 Table of Contents

Section 4.21 (directive: .WORD)

(See also .DBYTE section 4.6)

purpose: place 16 bit word values in output object

usage: [label] .WORD exp [,exp ...]

The .WORD and .DBYTE directives both put the value of each following expression
into the object code as two bytes. But where .WORD will assemble the expression(s) in
6502 address order (least significant byte, most significant byte). .DBYTE will
assemble the expression(s) in reverse order (most significant byte, least significant
byte).

Generally, for 6502 programs, .WORD is the more useful of the two, and is more
compatible with the code produced by assembled 6502 instructions.

EXAMPLE:
 .DBYTE $1234,1,-1
 produces: 12 34 00 01 FF FF
 .WORD $1234,1,-1
 produces: 34 12 01 00 FF FF

chapter 4 Table of Contents

CHAPTER 5: MACRO FACILITY

A MACRO DEFINITION is a series of source lines grouped together, given a name,
and stored in memory. When the assembler encounters the corresponding name in the
instruction (opcode, directive) column, the saved lines will be substituted for the Macro
name and assembled. Effectively, this allows the user to define and then use new
assembler instructions. Depending upon the code stored in its definition, a macro might
be thought of as either an "extra" directive or a "new" opcode.

The process of finding of a macro in the table when its name is used, and then
assembling the code it was defined with, is called a MACRO EXPANSION. The
unique facility of Macro Expansions is that they may have PARAMETERS passed to
them. These parameters will be substituted for the "formal parameters" during the
expansion of the Macro.

The use (expansion) of a Macro in a program required that the Macro first be defined.
To the set of directives already discussed in chapter 4 then, must be added two new
directives used for defining new macros:

 .MACRO
 .ENDM

This chapter will first discuss these two directives, show how to invoke a macro (cause
its expansion) and then examine the use of formal and calling parameters, including
string parameters.

chapter 4 Table of Contents

Section 5.1 (directive: .ENDM)

purpose: end the definition of a macro

usage: .ENDM

usage note: generally, the .ENDM directive should not be labelled.

This directive is used solely to terminate the definition of a macro. When invoking a
macro, do NOT use this directive. Basically, the concept of macros requires that all
source lines between the .MACRO directive and the .ENDM directive be stored in a
special section of memory (the macro table). Thus, encountering an improperly paired
.ENDM directive is considered a severe assembly error. See the description of
.MACRO (section 5.2) for further information.

chapter 5 Table of Contents

Section 5.2 (directive: .MACRO)

purpose: initiates a macro definition

usage: .MACRO macroname

usage note: "macroname" may be any valid MAC/65 label. It MAY be the same name
as a program label (without conflict).

The .MACRO directive all cause the lines following to be read and stored under the
Macro name of "macroname". The definition is terminated with the .ENDM directive.

All instructions except another .MACRO directive are valid Macro source lines. A
Macro definition can NOT contain another Macro definition.

A simple example of a MACRO DEFINITION:

 10 .MACRO PUSHXY ; The name of this Macro is "PUSHXY"
 11 ; When this Macro is used (expanded), the following
 12 ; instructions will be substituted for "PUSHXY"
 13 ; and then assembled.
 14 TXA
 15 PHA
 16 TYA
 18 PHA
 19 .ENDM ; The terminator for "PUSHXY"

SPECIAL NOTE: ALL labels used within a macro are assumed to be local to that
macro. MAC/65 accomplishes this by performing a "third pass" of the assembly during
macro expansions. Thus, a label defined within a macro expansion is ava liable to code
which follows the macro; but another expansion of the same macro with the same label
will reset the labels value. The action is similar to the ".=" directive, except that forward
references to internal macro labels ARE legal.

EXAMPLE:

 20 .MACRO MOVE6
 21 LDX #5
 22 LOOP
 23 LDA FROM,X
 24 STA TO,X
 25 DEX
 26 BPL LOOP
 27 .ENDM

The label "LOOP" is local to this macro usage, and yet it may (if needed) be referenced
outside the macro expansion (although not in another macro expansion). (note that if a
macro label is only defined once by a single macro usage, the effect is the same as if the
label were defined outside any macro.) Although the .LOCAL-produced local regions
may be used by and with macros, the user is limited to a maximum of 62 local regions.
No such restriction applies to the number of possible local usages of a label in a macro
expansion.

chapter 5 Table of Contents

Section 5.3 (Macro Expansion, Part 1)

As stated above, a macro is expanded when it is used. And the "use" of a macro is
simplicity itself.

To invoke (use, expand--all equivalent words) a macro, simply place its name in the
opcode/directive field of an assembler line. Remember, though, that macros MUST be
defined before they can be used.

For example, to invoke the two macros defined in examples in the previous section 5.2
, one could simple type them in as shown and then enter and assemble:

EXAMPLE:

 2000 ALABEL PUSHXY

 2010 ; and pushxy generates the code
 2020 ; TXA PHA TYA PHA
 2030 ;
 2040 MOVE6
 2050 ; similarly, MOVE6 is used
 2060 JMP LOOP
 2070 ; and LOOP refers to the label
 2080 ; defined in the MOVE6 macro
 ...

Note that the use of a label on the macro invocation is optional. The label is assigned
the current value of the location counter and is not dependent upon the contents of the
macro at all.

There are many more "tricks" and features usable with macros, but we will continue
this discussion after an examination of macro parameters as used in a macro definition.

chapter 5 Table of Contents

Section 5.4 (Macro Parameters)

Macro parameters can be of two types: expressions (which are evaluated as 16 bit
words) or strings. The parameters are passed via the macro expansion (invocation, use,
etc.) and are stacked in memory in the order of occurance. A maximum of 63
parameters can be stacked by a macro expansion, including expansions within
expansions.

However, before a parameter can be used in an expansion, there must be a way of
accessing it in the MACRO DEFINITION. Parameters are referenced in a macro
definition by the character "%" for expressions and the characters "%$" for strings. The
value following the character refers to the actual parameter number.

SPECIAL NOTE: The parameter number can be represented by a decimal number (e.g.,
%2) or may be a label enclosed by parentheses (e.g., %$(LABEL)). Of course, strings
may be similarly referenced, as in %$(INDEX) or %$1.

Examples:

 10 LDA #>%1 ; get the high byte of parameter 1.
 15 CMP (%11,X) ;yes, that really is number 11.
 20 .BYTE %2-1 ;value of parameter 2 less 1.

NOTE: the above is NOT equivalent to using parameter %1. Parameter substitution has

highest precedence!

 25 SYMBOL .= SYMBOL + 1
 30 LDX # -%(SYMBOL) ; see the power available?
 40 .BYTE %$1,%$2,0 ; string parameters, ending 0.

Remember, in theory the parameters are numbered from 1 to 63. In reality, the TOTAL
number of parameters in use by all active (nested) macro expansions cannot exceed 63.
This does NOT mean that you can have only 63 parameter references in your macro
DEFINITIONS. The limit only applies at invocation time, and even then only to nested
(not sequential) macro usages.

SPECIAL NOTE: In addition to the "conventional" parameters, referred to by number,
parameter zero (%0) has a special meaning to MAC/65. Parameter zero allows the user
to access the actual NUMBER of real parameters passed to a macro EXPANSION.

This feature allows the user to set default parameters within the Macro expansion, or
test for the proper number of parameters in an expansion, or more. The following
example illustrates a possible use of %0 and shows usage of ordinary parameters as
well.

EXAMPLE:

 10 .MACRO BUMP
 11 ;
 12 ; This macro will increment the specified word
 13 ;
 14 ; The calling format is:
 15 ; BUMP address [,increment].
 16 ; If increment is not given, 1 is assumed
 17 ;
 18 .IF%0=0 .OR %0>2
 19 .ERROR "BUMP": Wrong number of parameters"
 20 .ELSE
 21 ;
 22 ; this is only done if 1 or 2 parameters
 23 ;
 24 .IF $0>1 ; did user specify "increment" ?
 25 ; this is assembled if user gave two parameters
 26 LDA %1 ; add "increment" to "address".
 27 CLC
 28 ADC # <%2 ; low byte of the increment
 29 STA %1 ; low byte of result
 30 LDA %1 +1 ; high byte of location
 31 ADC # >%2 ; add in high byte of increment
 32 STA %1 +1 ; and store rest of result

 33 ;
 34 .ELSE
 35 ; this is assembled if only one parameter given
 36 INC %1 ; just increment by 1.
 37 BNE SKIPHI ; implicitly local label
 38 INC %1 +1 ; must also increment high byte
 39 SKIPHI
 40 .ENDIF ; matches the .IF %0>1 (line 24)
 41 .ENDIF ; matches the .IF of line 18
 42 .ENDM ; terminator.

chapter 5 Table of Contents

Section 5.5 (Macro Expansion, Part 2)

We have shown how macro definitions may include specifications of particular
parameters (the specifications might also be called "formal parameters"). This section
will show how to pass actual parameters (equivalently "value parameters", "calling
parameters", etc.) to the definition.

The concept is simple: on the same line as the macro invocation (by use of its name, of
course) and following the macro's name, the user may place expressions (or strings, see
section 5.6). MAC/65 simply assigns each of these values a number, from 1 to 63,
and then, during the macro expansion, replaces the formal parameters (%1, %2,
%(label), etc.) with the corresponding values.

Does that sound too complicated? Internally, it is. Externally, it is an easy as this:

EXAMPLE:

Assume that the BUMP macro has been defined (as above, section 5.4), then the user
may invoke it as needed, thus:

 100 ALABEL BUMP A.LOCATION
 110 INCR .= 7
 120 BUMP A.LOCATION,3
 130 BUMP A.LOCATION-2
 140 BUMP
 150 BUMP A.LOCATION,INCR,7
 160 A.LOCATION .WORD 0

note: lines 140 and 150 will each cause the BUMP error to be invoked and printed

 170 BUMP INCR,A.LOCATION
 will try to increment address 7 by something
 180 BUMP PORT5
 assuming the PORT5 is some hardware port,
 strange and wonderful things could happen

chapter 5 Table of Contents

Section 5.6 (Macro Strings)

String parameters are represented in a macro definition by the character "%$". All
numeric parameters have a string counterpart, not all of which are useful. All string
parameters have a numeric counterpart (their length).

As a special case, %$0 always returns the macro NAME]

The following table shows the various string and numeric values returned for a given
parameter:

As appears in string returned numeric value
Macro call: (in quotes): returned:

"A String 1 2 3" "A String 1 2 3" length of string
NUMERICSYMBOL "NUMERICSYMBOL" value of label
SYMBOL+1 "SYMBOL" value of expr
%$4 the string of parameter 4 value of original
 (above would be used by a macro calling another macro)
-LABEL "LABEL" value of expr
GEORGE*HARRY+PETE undefined value of expr
.DEF CIO "CIO" value of expr
2 + 2 * 65 undefined value of expr

A Macro string example:

 10 .MACRO PRINT
 11 ;
 12 ; This Macro will print the specified string.
 13 ; parameter 1, but if no parameter string is
 14 ; passed, only an EOL will be printed.
 15 ;

 16 ; The calling format is: PRINT [string]
 17 ;
 18 .IF %0 = 1 ; is there a string to print?
 19 JMP PASTSTR ; yes, jump over string storage
 20 STRING .BYTE %$1,EOL ; put string here.
 21 ;
 22 PASTSTR
 23 LDX #>STRING ; get string address into X&Y
 24 LDY #<string ; for JSR to 'print string'
 25 JSR STRINGOUT
 26 .ELSE
 27 ; no string...just print an EOL
 28 LDA #EOL
 29 JSR CHAROUT
 30 ;
 31 .ENDIF
 32 .ENDM ; terminator.

To invoke this macro, then, the following calls would be appropriate:

 100 PRINT "this is a string"
 110 PRINT
 120 PRINT message
 ...
 999 message .BYTE "another string", EOL
note that, in line 120, only a single word (label, actually) is allowed.

chapter 5 Table of Contents

Section 5.7 (Some Macro Hints)

Each person will soon develop his/her own style of writing macros, but these are certain
common sense rules that we all should heed.

A. When a macro is defined, its entire definition must be stored in memory (in a macro
table). Since memory space is obviously finite, it is a good idea to keep macros as short
as possible. One way to do this is to avoid putting comments (remarks) within the body
of the macro. If you do document your macros (and we hope you do), place the
comments in the file BEFORE the .MACRO directive. The assembler will then do
nothing at all with them and they will occupy no additional space.

B. Don't use a caller's macro parameter unless you are sure that it is there. Using a
parameter that the caller left out will produce a MACRO PARAMETER error.

Depending upon the macro definition, this may or may not also produce undesired
results. An example of unsafe coding:

 .If %0>1 .OR %2=0
 .WORD %1
 .ENDIF

The danger here occurs if the caller invokes the macro with only one parameter. Since
%2 is non-existent (and hence undefined), the sub-expression "%2=0" is indeed true
and the effect of "%0>1" is nullified. Of course, the lack of parameter 2 will produce a
"PARAMETER ERROR", but it will already be too late. A better coding of the above
would be:

 .IF %0>1
 .IF %2<>0
 .WORD %1
 .ENDIF
 .ENDIF

C. Even though labels defined within macros are local to each invocation, they are still
"visible" outside the macro(s). Thus, it might be a good idea to have a special form for
labels defined in macros and avoid that form outside macros. The macro library
supplied with MAC/65 uses labels beginning with "@" as local labels to macros.

chapter 5 Table of Contents

Section 5.8 (A Complex Macro Example)

The following set of macros is designed to demonstrate several of the points made in
the preceding sections. Aside from that, though, it is a good, usable macro set. Study it
carefully, please. (The line numbers are omitted for the sake of brevity. Any numbers
will do, of course.)

;
; the first macro, "@CH", is designed to load an
; IOCB pointer into the X register. If passed a
; value from 0 to 7, it assumes it to be a constant
; (immediate) channel number. If passed any other
; value, it assumes it to be a memory location which
; contains the channel number.
;
; NOTE that these comments are outside the body of
; the macro, thus saving valuable table space.

;
 .MACRO @CH
 .IF %1>7
 LDA %1 ; channel # is in memory cell
 ASL A
 ASL A
 ASL A
 ASL A ; times 16
 TAX
 .ELSE
 LDX #%*16
 .ENDIF
 .ENDM
;
; this next macro, "@CV", is designed to load a
; Constant or Value into the A register. If
; passed a value from 0 to 255, it assumes it
; to be a constant (immediate) value. If passed
; any other value, it assumes it to be a memory
; location (non-zero page).
;
 .MACRO @CV
 .IF %1<256
 LDA #%1
 .ELSE
 LDA %1
 .ENDIF
 .ENDM
;
; The third macro is "@FL", designed to establish
; a filespec. If passed a literal string, @FL
; will generate the string in line, jumping around
; it, and place its address in the IOCB pointed to
; by the X register. If passed a non-zero page
; label, @FL assumes it to be the label of a valid
; filespec string and uses it instead.
;
 .MACRO @FL
 .IF %1<256
 JMP *+%1+4
@F .BYTE %$1,0
 LDA #<@F
 STA ICBADR+1,X
 LDA #>@F
 STA ICBADR+1,X
 .ELSE

 LDA #<%1
 STA ICBADR,X
 LDA #>%1
 STA ICBADR+1,X
 .ENDIF
 .ENDM

;
; The main macro here is "XIO", a macro to
; implement a simulation of BASIC's XIO command.
; The general syntax of the usage of this macro is:
; XIO command, channel [,aux1,aux2] [,filespec]
;
; where channel may be a constant from 0 to 7
; or a memory location.
; where command, aux1, and aux2 may be a constant
; from 0 to 255 or a non-zero page location
; where filespec may be a literal string or
; a non-zero page location
; if aux1 and aux2 are omitted, they are assumed
; to be zero (you may not omit aux2 only)
; if the filespec is omitted, it is assumed to
; be "S:"
;
 .MACRO XIO
 .IF %0<2 .OR %0>5
 .ERROR "XIO: wrong number of parameters"
 .ELSE
 @CH %2
 @CV %1
 STA ICCOM,X ; command
 .IF %0>=4
 @CV %3
 STA ICAUX1,X
 @CV %4
 STA ICAUX2,X
 .ELSE
 LDA #0
 STA ICAUX1,X
 STA ICAUX2,X
 .ENDIF
 .IF %0=2 .OR %0=4
 @FL "S:"
 .ELSE
@FPTR .= %0
 @FL %$(@FPTR)

 .ENDIF
 JSR CIO
 .ENDIF
 .ENDM

Did you follow all that? The trick is that, the way "XIO" is specified, it is legal to pass
it 2, 3, 4, or 5 arguments; but each of those numbers represents a unique combination of
parameters, to wit:

 XIO command,channel
 XIO command,channel,filespec
 XIO command,channel,aux1,aux2
 XIO command,channel,aux1,aux2,filespec

This is not a trivial macro example. Perhaps you will not have occasion to write
something to complex. But MAC/65 provides the tools to do many things if you need
them.

chapter 5 Table of Contents

CHAPTER 6: COMPATIBILITY

There are many different 6502 assemblers available, and it seems that each has a few
foibles, bug, or whatever that are uniquely its own (and, or course, they are called
"features" by their promoters). Well, MAC/65 is no different.

This chapter is devoted to telling you of some of the things to watch out for when
converting from another 6502 assembler to MAC/65. We restrict ourselves to such
things as directives and operators. We will NOT go into a discussion of how to convert
the actual 6502 opcodes (equivalently: instructions, mnemonics, etc.). We consider it
mandatory that any good 6502 assembler will follow the MOS Technology standard in
this regard.

Example: We know of some antique 6502 assemblers that specify the various
addressing modes via special opcodes. Thus the conventional "LDA #3" becomes
"LDAIMN 3" and "LDA (ZIP),Y" becomes "LDAIY ZIP". Unfortunately, there was
never any standard established for such distortions, so we shall ignore them as antique
and outmoded. In any case, unless you are entering a program out of an older magazine,
you are unlikely to run into one of these strange beasts.

The rest of this chapter pays homage to our birthright. MAC/65 is a direct descendant
of the Atari assembler/editor cartridge (via EASMD). As much as possible, we have
tried to keep MAC/65 compatible with the cartridge. Unfortunately, in the interest of

providing a more powerful tool, a few things had to be enumerates these changes.

chapter 5 Table of Contents

Section 6.1 (ATARI'S ASSEMBLER/EDITOR CARTRIDGE)

6.1.1 .OPT OBJ / NO
OBJ

6.1.2 Operator
Precedence

6.1.3 the .IF
directive

This section presents all known functional differences between the Atari cartridge and
MAC/65. Obviously, MAC/65 also has many more features not enumerated here, but
they will not impact the transferrance of code originally designed for the cartridge (or,
for that matter, EASMD).

chapter 5 Table of Contents

Section 6.1.1 (.OPT OBJ / NOOBJ)

By default, the Atari cartridge produces object code, even when the destination of the
object is RAM memory. This is a dangerous practice, at best: it is too easy to make a
mistake in a program and write over DOS, the user's source, the screen memory, or
even (horror of horrors) some of the hardware registers.

MAC/65 makes a special case of object in memory: you don't get it unless you ask for
it. You MUST have a ".OPT OBJ" directive before the code to be generated or the code
will not be produced.

section 6.1 Table of Contents

Section 6.1.2 (OPERATOR PRECEDENCE)

The cartridge assigns no precedence to arithmetic operators. MAC/65 uses a precedence
similar to BASIC's. Most of the time, this causes no problems; but watch out for mixed
expressions.

Example: LDA #LABEL-3/256
 seen as LDA #[LABEL-3] / 256 by the cartridge
 seen as LDA #LABEL - [3/256] by MAC/65

section 6.1 Table of Contents

Section 6.1.3 (THE .IF DIRECTIVE)

The implementation of .IF in the cartridge is clumsy and unusable. MAC/65's
implementation is more conventional and much more powerful. Rather than try to offer
a long example here, we will simply refer you to the appropriate sections of the two
manuals.

section 6.1 Table of Contents

CHAPTER 7: ADDED 65C02 INSTRUCTIONS

MAC/65 as originally produced, supported the "standard" 6502 instruction set as well
as the directives and addressing mode designators recommended by MOS Technology
(the originators of the 6502 chip).
This version of MAC/65 supports all features of the original version along with added
support for one of the more popular enhanced versions of the 6502 chip. In particular,
MAC/65 supports all new instructions and addressing modes ava ilable on the 65C02
chip as produced by NCR Corporation. We describe here the primary added
addressing mode, the instruction with variants added, and the completely new
instructions. But before we start, we should note that these instructions would only
work properly on your computer if you have installed an NCR 65C02 in place of the
6502 which came in the machine as purchase. Also, remember that a program using
these instructions may work great in your machine. It will not work properly in your
friend's machine unless he/she also installs a 65C02.

chapter 6 Table of Contents

Section 7.1 (A Major Added Addressing Mode)

The standard 6502 chip supports two forms of indirect addressing for what might be
considered its primary instructions. The forms appear in assembly listings as:

 lda (indirect,X)
 and
 lda (indirect,Y)

(where "lda" is only one of several valid mnemonics that can be used with these
addressing modes).
The latter of these modes, often referred to as the "indirect-Y" mode, is perhaps the
most useful and flexible of all 6502 addressing modes. And, yet, it suffers from one
flaw: it ties up two registers (A and Y). And, as importantly, probably a full 50% or
more of the time the Y-register is loaded with zero before instructions in this mode are
executed.

The NCR 6502 instructions set as supported by MAC/65 provides a help here: You
may code instructions allowing Indirect-Y addressing in "Indirect" mode as well. With
Indirect mode, the assembler format is simply
 lda (indirect)
where, as with Indirect-Y, the indirect location must be in zero page.
Generally, the effect of using this instruction will be the same as coding the sequence:
 LDY #0
 lda (indirect),Y
EXCEPTING that the Y-register remains intact and untouched and may be used for
other purposes. The following, then, are ALL of the 65C02 instructions which allow
and support this new addressing mode:
 ADC (indirect) ;ADd with Carry
 AND (indirect) ;bit wise AND
 CMP (indirect) ;compare with A-reg
 EOR (indirect) ;Exclusive OR
 LDA (indirect) ;LoaD the A-register
 ORA (indirect) ;inclusive OR
 SBC (indirect) ;SuBtract with Carry
 STA (indirect) ;STore the A-register

REMINDER: while the "indirect" location may be any zero page location, you should
probably restrict yourself to the available locations documented in the DDT manual.

chapter 7 Table of Contents

Section 7.2 (Minor Variations on 6502 Instructions)

The "BIT" instruction has added two new addressing modes, and "JMP" has added one
new mode. They are described here individually:

Original allowed forms of 6502 BIT instructions were:
 BIT absolute
 BIT zeropage
New 65C02 forms available are:
 BIT absolute,X
 BIT zeropage,X
The ability to use the X register as an index with the BIT instruction greatly enhances
its power for testing tables, etc. The "indexed-x" address modes function as they do for
other 6502 instructions (eg LDA and CMP).

Original allowed forms of 6502 JMP instructions were:
 JMP absolute
 JMP (indirect)
New 65C02 form available is:
 JMP (indirect,X)

Note that the JMP instruction alone in both the 6502 and 65C02 instructions sets uses
an absolute (ie 16 bit, 2 byte) address for its indirect value. The new "indirect-X" form
is no different: the location specified as the indirect address may be anywhere in
memory. The "indirect-X" address mode is unique and new. Its effect is as follows:
add the contents of the X-register to the ADDRESS (not the contents) specified by the
given indirect address; use the result as the address of the true operand for this
instruction; JuMP to the address contained in the word-sized location accessed via the
true operand.

Example: .WORD SUB1,SUB2,SUB3
 ...
 LDA value ;assume that "value"
 ;contains 0, 1, or 2
 ASL A ;double the value
 TAX ;... to X-register
 JMP (TABLE,X) ;and go to SUB1,SUB2
 ;SUB3 depending of "value"

chapter 7 Table of Contents

Section 7.3 (ALL-NEW 65C02 Instructions)

7.3.1
BRA

7.3.2 DEA,
INA

7.3.3 PHX, PHY, PLX,
PLY

7.3.4
STZ

7.3.5 TRB,
TSB

We detail here, in what we hope are logical groupings, the 65C02 instructions which
are truly "new" to the 6502 world.

chapter 7 Table of Contents

Section 7.3.1 (BRA)

Mnemonic: BRA
Read as: BRanch (Always)
Format: BRA addr
 where addr must be in the range *-126 to *+129
 (* is the current value of the location counter)

BRA joins the Branch family (BNE, BEQ, BMI, etc) and adds the powerful capability
of ALWAYS branching. It thus becomes equivalent to a JMP instruction with the
advantage that it occupies one less byte in memory and is inherently relocatable. Its
address range is restricted in a fashion identical with the other members of the
"branch" family.

Section 7.3 Table of Contents

Section 7.3.2 (DEA and INA)

Mnemonic:DEA
 INA
Read as: DEcrement Accumulator
 Increment Accumulator
Format: DEA
 INA

These simple instructions add a capability long lacking in the 6502. Until now, if you
wished to change the contents of the accumulator by one, you had to either use
TAX/INX/TXA (or something similar) or CLC/ADC (or SEC/SBC), three byte
substitutes for what should (and now is) a simple byte instruction. Processor status
flags (ie N and Z), timing, etc, are all identical to the very similar INX/INY/DEX/DEY
set of instructions.

Section 7.3 Table of Contents

Section 7.3.3 (PHX, PHY, PLX, PLY)

Mnemonic:PHX
 PHY
 PLX
 PLY
Read as: PusH X onto CPU stack
 PusH Y onto CPU stack
 PulL X from CPU stack
 PulL Y from CPU stack
format: PHX
 PHY
 PLX
 PLY

Again, these instructions are provided as short cuts for the cumbersome sequences
necessary on the standard 6502. As an example, PHX can replace a sequence of
instructions as complex as this:
 STA temp
 TXA
 PHA
 LDA temp

By giving you direct access to the stack from the X and Y registers, it is possible and
desirable to write more compact and more relocatable code. Processor status flag
usage, timings, etc, are identical to the very similar PHA and PLA instructions.

Section 7.3 Table of Contents

Section 7.3.4 (STZ)

Mnemonic:STZ
Read As: STore Zero
Format: STZ absolute
 STZ absolute,X
 STZ zeropage
 STZ zeropage,X

Yet another short cut, STZ simply replaces the sequence
 LDA #0
 STA address

with the difference that it does not affect the contents of the A register. In fact, to
properly simulate this instruction on an ordinary 6502, the following code would be
needed in the general case: PHA
 LDA #0
 STA address
 PLA

Section 7.3 Table of Contents

Section 7.3.5 (TRB and TSB)

Mnemonic:TRB
 TSB
Read As: Test and Rest Bits
 Test and Set Bits

Format: TRB absolute
 TRB zeropage
 TSB absolute
 TSB zeropage

These instructions have many uses, not the least of which would be synchronization of
background and foreground (interrupt-driven) routines. In Boolean terms, the
instructions might be thought of thus: TRB: Memory := (Not A) and Memory
 TSB: Memory := A or Memory
In words, we might describe the operation of these instructions as follows:
For TRB: The complement of the contents of the Accumulator is bit-wise- AND-ed
with the contents of the memory cell addressed by this instruction (either and absolute
or zero-page location). The result of this AND-ing is placed back in the addressed
memory cell.
For TSB: The contents of the Accumulator are bit-wise OR-ed with the contents of the
memory cell addressed by this instruction. The result of this OR-ing is placed back in
the addressed memory cell. If the result of the AND-ing or OR-ing is zero, the Zero
processor status flag is set. The N and V flags are set to the contents of the bits 6 and 7
(similar to the usage and results of the BIT instruction) of the addressed memory cell
as those contents were BEFORE the bit-wise operation took place.
Example: FLAG .BYTE 3
 TEST .BYTE $FF
 ...
 LDA #$FF
 TRB FLAG ;resets all bits!
 ...
 LDA #0
 TSB TEST ;just tests value

Section 7.3 Table of Contents

CHAPTER 8: PROGRAMMING TECHNIQUES
 WITH MAC/65

chapter 7 Table of Contents

Section 8.1 (Memory Usage by MAC/65 and DDT)

The following memory locations are used by MAC/65 and/or DDT for the purposes
shown:

 range of used by
 addresses MAC/65 DDT used for
 --------- ------- --- --------
 $80-$AF yes yes pointers and temporaries
 $B0-$D3 yes no pointers and temporaries
 $D4-$FF yes yes floating point registers, etc
 $100-$1FF yes yes normal 6502 CPU stack
 $3FD-$47F no yes buffers and display area
 $480-$57F yes yes buffers and work area
 $580-$67F yes no input buffers, etc
 "size" yes * programs text, etc

Note that "size" refers to the memory area delineated by the lowest and middle number
displayed when the "SIZE" command is used form the MAC/65 editor. The * in DDT
column indicates that DDT saves MAC/65's zero page memory (and other, related,
locations) in the area actually shown to be part of the "size" memory.
The worst implication of the memory map above (especially for Atari BASIC users) is
that page 6 is NOT completely available to you. Since many magazine articles assume
that page 6 is available, they will not run AS IS under MAC/65 and DDT. But see the
next section for methods to use if you MUST use page 6.

chapter 8 Table of Contents

Section 8.2 (Assembling With An Offset: .SET 6)

In Section 4.18 , we noted that the assembler directive ".SET 6,value" could be used
to specify an additive offset for the storage address vis-a-vis the location counter
address. In this section, we present a method for using this capability in a practical
sense. Let us assume that we wish to assemble a small program which will reside in

page 6 ($600 thru $6FF). The program which we will assemble is presented here:

 10 *= $600
 20 COLOR4 = $2C8
 30 ;
 40 START
 50 PLA ;remove count of parameters
 60 CMP #0 ;any parameters?
 70 BEQ * ;if yes, loop forever
 80 LDA COLOR4 ;get current background color
 90 CLC
 100 ADC #$10 ;change to next hue
 110 STA COLOR4 ;...by changing shadow register
 120 INC COUNT ;and count the number of times
 130 RTS
 140 COUNT .BYTE 0 ;just a simple counter
 150 .END

If you assemble this routine, you should get an error free assembly. And those of you
who are BASIC users will recognize this as a routine callable from Atari BASIC,
thanks to the PLA and check on number of parameters at the beginning. But it is
designed to reside in page 6. What can we do? Answer: simply add the following two
lines to the listing:

 12 .OPT OBJ ;we do want object code
 14 .SET 6,$3000 ;and we will offset

Now, if you assemble this code, you will notice that the addresses shown start at
$3600. And, indeed, the assembly is placing the code in memory at the addresses
shown. But look at line 120. Notice that the object code generated does NOT show
that location $3612 is being incremented! Instead, location $0612 is affected. Also
note that in the symbol table listing START is shown to be at location $0600 and
COUNT at $0612. Now use the "DDT" command to enter DDT. From DDT, enter the
command
 M 360006000080 <RETURN>
which will move $80 (128) bytes from location $3600 to location $0600. Use the
command
 * 0600 <RETURN>
to view the contents of locations $0600 and beyond. Use the up and down arrows
(remember, WITHOUT pushing CTRL) to view the code. Lo and behold, your code
has been successfully deposited where you wanted it, waiting for you to debug. Some
final notes on this subject: MAC/65 will generate this "offset" kind of code either
directly to memory (as we did here) or to an object file (on disk, presumably). When
the file is reloaded (via MAC/65's BLOAD command or via some load command from
the DOS you are using), it will be loaded at the address shown in the listing. It is your
responsibility to then somehow move it to the desired location. The technique is not

necessarily easy, but using these methods you can overwrite DOS or even produce
code designed to run in the cartridge space. In the latter case, you may wish to use a
negative offset with .SET 6. This is perfectly legal and reasonable.

chapter 8 Table of Contents

Section 8.3 (Making MAC/65 Even Faster)

If you .INCLUDE a file consisting ONLY of equates and/or macro definitions (NOT
macro calls!), there is a technique you can use which will speed up assembly
somewhat. In particular, since equates need be made only once and macros need be
only defined once, there is no reason to read such .INCLUDED files on pass two. The
following code shows a workable technique:

 *= 0
 PASS .= PASS+1 ;do this only once per assembly
 .IF PASS=1
 .INCLUDE #D:equatesfile
 .ENDIF
 *= beginning

Why this works: Normally, an undefined label has a value of zero. The ".=" directive,
however, causes a mildly strange thing to happen: an undefined label used on the right
side of ".=" takes on the current value of the location counter. Hence the need for the
"*= 0" line at the beginning of the above example. In any case, thanks to this
mechanism, the first time the second line is assembled (in pass 1); PASS takes on a
value of 1 (of course, the line also generates an "undefined label" error, but such errors
are not printed in pass 1). The next time it is assembled, PASS receives a value of 2.
Simple and neat. Note that if the ".=" used in the second line above is placed ahead of
any "*=" (".ORG") lines, then the first line shown is not needed, since the location
counter is assumed to start at zero unless told otherwise.

chapter 8 Table of Contents

CHAPTER 9: ERROR DESCRIPTIONS

When an error occurs, the system will print

 *** ERROR -

followed by the error number (unless the error was generated with the .ERROR
assembler directive) and, for most errors, a descriptive message about the error.

Note: The assembler will print up to 3 errors per line.

The format used in the listing of descriptions which follows is simply ERROR
NUMBER, ERROR MESSAGE, description and possible causes.

1 - MEMORY FULL

All user memory has been used. If issued by the Editor, no more source lines can be
entered. If issued by the Assembler, no more labels or macros can be defined.
NOTE: If memory full occurs during assembly and the source code is located in
memory, SAVE the source to disk, type NEW, and assemble from the disk instead.
Now the assembler can use all of the space formerly occupied by your source for macro
and symbol tables, etc.

2 - INVALID DELETE

Either the first line number is not present in memory, or the second line number is less
than the first line number.

3 - BRANCH RANGE

A relative instruction references an address displacement greater than 129 or less than
126 from the current address.

4 - NOT Z-PAGE / IMMEDIATE MODE

An expression for indirect addressing or immediate addressing has resolved to a value
greater than 255 ($FF).

5 - UNDEFINED

The Assembler has encountered a undefined label.

6 - EXPRESSION TOO COMPLEX

The Assembler's operator stack has overflowed. If you must use an expression as
complex as the one which generated the error, try breaking it down using temporary
SET labels (i.e., using ".=").

7 - DUPLICATE LABEL

The Assembler has encountered a label in the label column which has already been
defined.

8 - BUFFER OVERFLOW

The Editor syntax buffer has overflowed. Shorten the input line.

9 - CONDITIONAL NESTING

The .IF-.ELSE-.ENDIF construct is not properly nested. Since MAC/65 cannot detect
excess .ENDIFs, the problem must be an EXTRA .ELSE or .ENDIF instead.

10 - VALUE > 255

The result of an expression exceeded 255 when only one byte was needed and allowed.

11 - CONDITIONAL STACK

The .IF-.ELSE-.ENDIF nesting has gone past the number allowed. Conditionals may be
nested a maximum of 14 levels.

12 - NESTED MACRO DEFINITION

The Assembler encountered a second .MACRO directive before the .ENDM directive.
This error will abort assembly.

13 - OUT OF PHASE

The address generated in pass 2 for a label does not match the address generated in pass
1. A common cause of this error are forward referenced addresses. If using conditional
assembly (with or without macros), this error can result from a .IF evaluating true
during one pass and false during the other.

14 - *= EXPRESSION UNDEFINED

The program counter was forward referenced.

15 - SYNTAX OVERFLOW

The Editor is unable to syntax the source line. Simplify complex expressions or break
the line into multiple lines.

16 - DUPLICATE MACRO NAME

An attempt was made to define more than one Macro with the same name. Only the
first definition will be valid.

17 - LINE # >65535

The Editor cannot accept line numbers greater than 65535.

18 - MISSING .ENDM

In a Macro definition, an EOF was reached before the corresponding .ENDM
terminator. Macro definitions cannot cross file boundaries. This error will abort
assembly.

19 - NO ORIGIN

The *= directive is missing from the program.
Note: This error will only occur if the assembler is writing object code.

20 - NUM/REN OVERFLOW

On the REN or NUM command, the line number generated was greater than 65535. If
REN issued the error, entering a valid REN will correct the problem. If NUM issued the
error, the auto-numbering will be aborted.

21 - NESTED .INCLUDE

An included file cannot itself contain an .INCLUDE directive.

22 - LIST OVERFLOW

The list output buffer has exceeded 255 characters. Use smaller numbers in the .TAB
directive.

23 - NOT SAVE FILE

An attempt was made to load or assemble a file not created with the SAVE command.

24 - LOAD TOO BIG

The load file cannot fit into memory.

25 - NOT BINARY SAVE

The file is not in a valid binary (memory image, assembler object, etc.) format.

27 - INVALID .SET

The first dcnum is a .SET specified a non-existant Assembler system parameter.

30 - UNDEFINED MACRO

The Assembler encountered a reference to a Macro which is not defined. Macros must
first be defined before they can be expanded.

31 - MACRO NESTING

The maximum level of Macro nesting has exceeded 14 levels.

32 - BAD PARAMETER

In a Macro expansion, a reference was made to a nonexistent parameter, or the
parameter number specified was greater than 63.

128 -255 [operating system errors]

Error numbers over 127 are generated in operating system. Refer to the DOSXL manual
for detailed descriptions of such errors and their causes.

chapter 8 Table of Contents

APPENDIX A

Actually, the bulk of this appendix is contained on your master MAC/65 diskette in the
form of a system macro file. This appendix is here simply to alert you to the existence
of the file and to give a brief description of macros available. We would suggest that
you use MAC/65 to LOAD and LIST (to a printer or the screen) the file IOMAC.LIB.

May we suggest that you adopt a naming convention for you MAC/65 files, both
SAVEd and LISTed, that does not conflict with anything? We use the following
extensions (though you are obviously free to rename our files to your own preferences):

 .M65 MAC/65 SAVEd files
 .ASM MAC/65 LISTed files
 .LIB MAC/65 SAVEd libraries

(note that C/65 insists on its runtime library being named RUNTIME.LIB, hence this
convention)

In any case, the macros available in IOMAC.LIB are:

OPEN chan,aux1,aux2,filename

Opens the given filename on the given channel using aux1 and aux2 as per DOSXL
specifications.

PRINT chan [,buffer[,length]]

If no buffer given, prints just a CR on chan. If no length given, length assumed to be
255 or position of CR, which ever is smaller. Buffer may be literal string, in which case
length is ignored if given.

INPUT chan,buffer [,length]

If no length given, defaults to 255 bytes.

BGET chan,buffer,length

Binary read, a la BASIC XL, of length number of bytes into the given buffer address.

BPUT chan,buffer,length

Binary write of length number of bytes from the given buffer address.

CLOSE chan

Closes the given file.

XIO command,chan [,aux1,aux2][,filename]

As described in chapter 5

NOTES:

"chan" may be a literal channel number (0 through 7) or a memory location containing
a channel number (0 through 7).

"aux1", "aux2", "length" and "command" may all be either literal numbers (0 to 255) or
memory locations.

"filename" may be either a literal string (e.g., "D:FILE1.DAT") or a memory location,
the latter assumed to be the address of the start of the filename string.

Where memory locations are given instead of literals, they must be non-zero page
locations which are defined BEFORE their usage in the macro(s). The following
example will NOT work properly!! :

 PRINT 3,MESSAGE1 ; WRONG!
 ...
 MESSAGE1 .BYTE "This WON'T WORK !!! "

These macros are useful instruments, but they really are meant only as examples, to

show you what you can do with MAC/65. Please feel free to study them and change
them as you need.

chapter 8 Top of Page

