
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perihelion of poSTmortem 
edited by bp 



 
 

 

 

 

 

 

 

 

 

1st Edition (v0.84) 

August 28th 2004 



 Table of Contents 

 i 

Table of Contents 
0 Foreword................................................................................................................1 
1 On The Theory Behind Programming ........................................................................2 
2 Of The Workings Of Devpac 3 And The Realisation Of Some Code...............................7 
3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding 
Digits And Performing Traps........................................................................................... 10 
4 Of The Ways Of Addressing Memory....................................................................... 16 
5 Of The Workings Of The Graphics Memory And Minor Skills In Branching................... 21 
6 Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files .......... 29 
7 On Scrollers .......................................................................................................... 34 
8 Of Scrolling 8 Pixels Per VBL Using Double Buffer..................................................... 41 
9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal 
Drugs........................................................................................................................... 49 
10 Of Lighting A Candle (And Casting A Shadow).......................................................... 59 
11 Of Making The Mountain Move To Mohammed......................................................... 67 
12 Of Controlling The Puppets .................................................................................... 84 
13 Of Hearing That Which Is Spoken ........................................................................... 94 
14 Of Using The Gramophone................................................................................... 101 
15 On Fading To Black ............................................................................................. 107 
Appendix A MC68000 Instruction Set ............................................................................ 112 
Appendix B Hardware Register Listing, by Dan Hollis ...................................................... 132 
Appendix C ASCII Table, by Stephen McNabb................................................................ 148 
Appendix D List of VT-52 Escape sequences .................................................................. 149 
Appendix E Initlib.s ..................................................................................................... 151 
Appendix F MC68000 Instruction Execution Times.......................................................... 153 
Appendix G Pixel Timings, by Jim Boulton ..................................................................... 157 
Appendix H Intelligent Keyboard (IKBD) Protocol ........................................................... 158 
 



 0 Foreword 

 1 

0 Foreword 
This document is a compilation and formatting of a set of tutorials created by perihelion with 
the intention to start people in the “art and science” of coding the Atari ST series of 
computers in assembly, one of the more popular programming languages especially for 
games, demos and other hardware-intensive applications. He welcomes any and all feedback 
at andreaswahlin@bredband.net . 

For the sake of convenience, some very useful texts were added as appendixes, and due 
credit was given where possible. There are still some authors lacking for a few, so please, if 
you know who has written any of the un-credited appendixes, send an e-mail to 
bruno@atari.st . 

While many people contributed with comments, suggestions, criticism and general incentive, 
some have been of special help, so perihelion would like to thank: 

• Lars Lindblad, for suggesting it in the first place. 

• Bruno Padinha (bp, http://stgameslist.atari.org), for critique and assistance 
extraordinaire. 

• Marten Maartens (ST Graveyard, http://www.atarilegend.com/), for nice words and 
providing me with a canvas. 

• Torsten Keltsch (mOdmate/Checkpoint, http://membres.lycos.fr/abrobecker/ 
STart/mOd/mOd.html), for support in my early times. 

http://stgameslist.atari.org
http://www.atarilegend.com/
http://membres.lycos.fr/abrobecker/
http://membres.lycos.fr/abrobecker/


 1 On The Theory Behind Programming 

 2 

1 On The Theory Behind Programming 
“Conan, what is best in life?” 

“To crush your enemies, see them driven before you, and to hear 
the lamentations of their women.” 

- Conan the Barbarian 

 

Hi everybody! This is perihelion of poSTmortem (aka Andreas Wahlin) writing. Me and 
Aldebaran (aka Lars Lindblad) have just started this little project of ours: the demo group 
poSTmortem. As a first step towards actually doing something with the ST, we thought that 
writing a tutorial might be good. In this way, we can teach ourselves and you (whoever is 
listening). 

This tutorial is aimed at people who, like ourselves, want to learn to code assembler for the 
Atari ST. What? You say, this is the year 2002, why on earth would you want to learn how to 
code, for one thing, assembler, and assembler for the Atari? You must be crazy. Well, you 
might think the Atari is dead, but we say it survived itself, it has risen again, it is: 
poSTmortem (totally lame, right?). You don’t need any programming skills, although it might 
help since learning to code from assembly language is probably quite suicidal in a 
pedagogical view. I’ll try to cover the basics of general programming and setting you up in 
this tutorial, and in part two we will do some rather simple program to get things started. I 
will however, assume that you have some basic skills in Atari management, like file copying 
and so on. Also, I will assume you have a real Atari, emulating might work fine, but nothing 
beats the real thing. 

What is programming? Programming is the art and science of making the computer do what 
you want it to do. BTW, programming is also known as coding, I will use these two terms 
somewhat mixed probably. So, how do we do that? By telling the computer what to do, and 
then do it. Since you don’t have shit for brains, you will know that when you double click on a 
.prg file (known as .exe files on a PC), the computer will do stuff, like running a game. So, 
what if we could create our own .prg files… Yes, we can do that, this is where you’ll learn 
how! 

Every computer has a memory, this is where the number on your Atari is derived from, 520 
have half a Meg (short for Mega Byte) of ram, and 1040’s have one Meg. Your usual PC these 
days have about 256 megs of ram, Bill Gates once said “nobody needs more than 640 K ram 
(about the memory amount of an Atari 520). If these numbers confuse you, do not worry, 
they aren’t important right now. The memory is very temporary; it gets wiped out every time 
you turn off your Atari, unlike diskettes (thank God). When you run a program, the computer 
loads the program into memory, and then executes (follows the instructions given by the 
program). 

Every area of the memory has an address, so you know where you are. You can think of 
these addresses as normal street addresses, but perhaps it would be better if you thought of 
them more as page indexes in a book. Every page is filled with information on how to act. So, 
let’s assume that we have a monitor capable of displaying one of two colours, either black or 
white. The memory address $20 holds this colour. 1 means black, 0 white. If memory looks 
like this, we get a black screen. 



 1 On The Theory Behind Programming 

 3 

Address Value
…  

$19 12 
$20 1 
$21 67 
…  

(each address can hold a 
number between 0 and 255) 

 

To understand a bit better about memory, because this is very important, we expand our 
little example. There is an area in the memory reserved for the user. This area is just for 
information storage, and does not affect the hardware. Let’s say that the monitor is capable 
of displaying text as well, the text is also either black or white as previously stated, and the 
information on the text colour is to be found at $21. Further, the address $22 holds a pointer 
to the text to be displayed. Pointer? Argh! Well, it’s really quite easy, a pointer is a reference 
to another part of the memory. Show first, talk later. 

Memory Value 
...  

$19 12 
$20 1 
$21 0 
$22 101 
…  

$101 Hello World! 
$200 DOH! 

…  
 

In this example, the “user memory” begins after position $100. All address positions $0 - 
$100 do something with the hardware in some way, but after that, it’s just storage space. 
With the above values, and given our premise, the text “Hello World!”, will be displayed in 
white text on black background. Let’s say we were to change the values to this instead. 

Memory Value 
...  

$19 12 
$20 1 
$21 1 
$22 200 
…  

$101 Hello World! 
$200 DOH! 

…  
(changed values at $21 

and $22) 
 

We would get the text “DOH!” written in black text on black background, not too clever. 
Therefore, a pointer is a reference to another place. Because $22 only can hold numbers 0 - 
255, the text “Hello World!” would never fit, so instead we point to an area in the user 
memory, which can hold much more than just a number between 0 - 255. Are you beginning 
to grasp how computers work? 



 1 On The Theory Behind Programming 

 4 

If you have an enquiring mind, and I hope you do, you’ll probably wonder why the addresses 
$0 - $100 only hold numbers, while it seems that addresses $101 - … can hold letters. The 
answer is, they actually can’t hold any letters. In addition, it doesn’t quite look like I’ve shown 
you either. This might get somewhat complicated, hold your hat and don’t cry if you don’t get 
it. Just read it, let it go, meditate a bit and you’ll reach enlightenment. 

The addresses $101 and $200 actually only hold numbers, but the computer has a decode 
key so that each number can be decoded to a letter. Let’s say that 
! = 0 

A = 1 

B = 2 
C = 3 

D = 4 

… 

 

and so on, then it really looks like this 

Memory Value Meaning
$200 3 D 
$201 14 O 
$202 7 H 
$203 0 ! 

…   
 

So you see, there are just numbers, also, as I said, each address can only hold a number 
between 0 - 255, meaning that each letter is held in one address. But but but but, why 
doesn’t more stuff get displayed as text? Why does it stop at $203? The memory must 
continue after that surely. Let’s look at this memory setup. 

Memory Value Meaning
$200 4 D 
$201 15 O 
$202 8 H 
$203 0 ! 
$204 15 O 
$205 4 D 

…   
 

The text on the screen would display as “DOH!OD” and probably much more (the rest of the 
memory in fact). Well, here we use a control number, let’s say that the computer knows that 
when in reaches the number 255 the text ends there. If memory looks like this: 



 1 On The Theory Behind Programming 

 5 

Memory Value Meaning 
...   

$19 12 something 
$20 1 background colour 
$21 0 text colour 
$22 200 pointer to text on screen 
…   

$200 4 D 
$201 15 O 
$202 8 H 
$203 0 ! 
$204 255 end of text 
$205 4 D 

 

the text “DOH!” would be displayed in white on black background. When the computer 
reaches $204, it sees the number 255, which means stop displaying text, so the letter (or 
rather, value) at $205 and following addresses will not be displayed. Like I said, this may be 
a bit advanced, don’t panic. We will get much more concrete in tutorial 2. I just want you to 
have a theoretical basis so you know what’s what and so you can refer back to this. Just let 
this sink into your unconscious, when the time is right and you have correct understanding, it 
will surface and you will get it. 

Now, for the last theory lesson: how do you actually make something happen? As we know, 
there are .prg files that make stuff happen. With our above knowledge, we know that they 
affect memory. We can write down simple commands in a text file, and then have that text 
file translated into the .prg format, so that the computer will understand what we say. A 
program that can pull this off is known as a compiler, a compiler usually comes with a text 
editor, suited for programming needs. The text file you use to create a .prg file, is known as 
the source code. Let’s take another example, this time let’s assume we wrote this source 
code. 
 Put #1 at $20 

 Put #0 at $21 

 Put #200 at $22 

 Put #4 at $200 

 Put #15 at $201 
 Put #8 at $202 

 Put #0 at $203 

 Put #255 at $204 
 Initialise monitor 

 

Now, as you can guess, # stands for value, a numerical value in our case, and $ stands for 
address. Now, if we compile this source code, that is, translate it to a format the computer 
understands, we will get a .prg file. When we double click on that file, the computer will do 
what it says above: the different values will be loaded into the different addresses, creating 
the memory profile given above. The last line “Initialize monitor” is for engaging the monitor. 
When the monitor is engaged, the Atari knows that it should look at $20, $21 and $22 to 
gather the data needed. So instead of “Initialize monitor”, perhaps we could’ve written 
 Activate $20 

 Activate $21 

 Activate $22 

 

Because what we really want to do is to make the information on these addresses happen; 
we want the computer to process the information given. This is long and clumsy however, 
and the line “Initialize monitor”, or whatever you might call it, is far simpler. 



 1 On The Theory Behind Programming 

 6 

The computer, internally, understands nothing but 1’s and 0’s, all text and numbers I have 
given above is for human understanding (more on binary understanding later). Also, none of 
the commands or memory addresses have any significance for the Atari, they are examples 
only. 

OK, theory lesson over. Hope I haven’t scared you away. In the next tutorial we will get into 
how to actually make a .prg file. It won’t do much, but at least you will get to see your code 
in action. 



 2 Of The Workings Of Devpac 3 And The Realisation Of Some Code 

 7 

2 Of The Workings Of Devpac 3 And 
The Realisation Of Some Code 

“No immovable roots, no stirring of dust, only the tao; the way of 
nature. This is called tai chi.” 

- Tai Chi Master 

 

Hello again. It’s only been some days since the last tutorial, but I’m bored right now and I 
don’t have any computer game I feel like playing. This weekend went great, as it was 
GothCon (game convention here in Göteborg, Sweden) which meant games were afoot. I met 
Aldebaran for the first time IRL and he demonstrated the game Illuminati, which I plan to 
play later on this evening. But you don’t really want to listen to that, do you? 

In the last tutorial, we went through some basic theory behind programming, and now we 
are going to put that theory into practice. We want to do something so awfully cool as to 
change the background colour to something else. First, we need to gather and learn how to 
use the tools. The tools in this case are only one; Devpac 3.00 by HiSoft. It can be acquired 
from Pompey Pirates CD #114, other places, or perhaps you can even buy it :) 

Once we start up Devpac, we want to change some settings to make our lives easier. Go into 
options – control, under the setting format, select ST RAM, depending on your memory size, 
you may also wish to change the memory buffer. The only two interesting settings here are 
ST RAM and Atari Executable. If you choose Atari Executable, you will get a .prg file every 
time you assemble (also known as compile) your source code, so in order to test your source 
code, you will have to quit Devpac, and run the .prg file, then start Devpac again; 
enormously clumsy. Instead, we put the .prg file directly into the ST RAM (memory, RAM 
stands for Random Access Memory), from where it can be executed directly. So for now, set 
the setting to ST RAM. It’s only when you are done coding something, that you will want to 
change this setting to Atari Executable in order to get a normal .prg file. Go into options – 
options, and uncheck the “Check absolutes for missing #”. This eliminates lots of error 
reports than usually aren’t error reports. In the options – environment you can set the 
environment variables, if you run from diskette, they should probably be something like 
PATH=a:\bin, INCDIR=a:\incdir. Go into options – resident and make sure both Assembler 
and Debugger are checked, this will also save you lots of time if you have the memory (since 
I run on 4 megs, I don’t have to worry). That’s about it I think, you can play around with 
settings on your own if you like, but these are essentials in my opinion. 

OK, we have our environment (Devpac) correctly configured, now we want to do something. 
Remembering the past lesson, we soon realize that to change the background colour, we will 
have to know what controls the background colour. On Appendix B – Hardware Register 
Listing, by Dan Hollis, on page 132 – you’ll find a listing of the ST’s memory, great for 
reference, in it we find the following lines: 
 

$FF8240|word |Video palette register 0                    |R/W 

    :  |  :  |  :      :       :     :                    | : 
$FF825E|word |Video palette register 15                   |R/W 

 

As you may know, the ST is capable of displaying 16 colours at once, with a palette of 512 
colours. Having a palette means that you don’t have to stay with 16 fixed colours, by 
changing the palette you can, say have 16 hues of red, and then 16 hues of blue on the next 
screen. Imagine an artist that can only have 16 colours on each of his paintings, however, he 



 2 Of The Workings Of Devpac 3 And The Realisation Of Some Code 

 8 

doesn’t have to stick with the same 16 colours each time. OK, it seems that the first colour 
starts at $ff8240, this is indeed colour 0 and it’s the background colour, so by merely 
changing the value here, we should change the background colour. 

I talked about palettes just now, the ST is built on what you call RGB, Red Green Blue, 
colour. Every colour is made up of 8 levels of Red, Green and Blue, because the computer 
always counts from 0, the range is between 0 – 7. 8 * 8 * 8 = 512. So, the colour $700 
would mean as red as you can get (maximum value of Red, zero value of Green and Blue). 
$770 would be yellow, $777 would be white and $000 would be black. Equipped with this 
knowledge we enter this single line as our source code 
 move.w #$700,$ffff8240 red background color 

 

Move is the command used for moving values around other values, in this case, we move the 
value #$700 into memory position $ffff8240. The # indicates that what comes after is an 
absolute value, and the $ means that the value is hexadecimal, instead of decimal (more on 
this later, accept for now). The .w after the move instruction means that the move instruction 
should move a word, indicating the size of the thing you want moved (more on this later also, 
accept for now). So, the line above means in clear (?) English; move a value of word size, an 
absolute value expressed as a hexadecimal value 700 into the memory address $ffff8240. 
This should be enough to change the background colour to red. 

Now we want to assemble the source code, and get our executable. Short command for this 
in Devpac is alt + a. Now, a window will pop up, displaying some statistics, what we want to 
search for is especially the line “0 errors found”. If there are errors found, the pointer will 
automatically move to the error so that you can correct it. By pressing alt + number, you can 
cycle through the available windows. So, if you do get an error, but you don’t understand it, 
press for example alt + 2, which will take you to the second window, where the error report 
probably is, try to understand something, then hit alt + 1 to go back and edit your source 
code. ctrl + w will close a window. Okie dokie, the source code has compiled successfully, 
now we need to run it; hit alt + x (eXecute). Now you will be asked to pass parameters to 
the program, don’t, just hit enter. Oh, the expectation, will the background change to red? 

NO! We get two fucking bombs for all our effort. What the fuck? Is there anything wrong 
with the source code, no, it seems not. Is there anything wrong with the address? Double-
checking the address value, no, $ffff8240 means colour 0, which is the background colour. 
Well, the ST can operate in two modes, user and super mode. In the user mode, we aren’t 
allowed to access certain things in memory, for example the palette, the result if we try to do 
this is two bombs. So we need to go into super mode. Referring to a list of the so called trap 
functions of GEMDOS, ideally the ST Internals, we find out how to enter super mode, the 
code looks like this: 
 clr.l -(a7) clear stack 

 move.w #32,-(a7) prepare for super mode 
 trap #1 call gemdos 

 addq.l #6,a7 clear up stack 

 move.l d0,old_stack backup old stack pointer 

 

(ok, so the code looks somewhat different than in ST Internals, a good lesson for you that 
you can write differently, but still achieve the same) 

Perhaps I shouldn’t go too deeply into this, it will come in the next tutorial where I’ll take up 
the different registers and talk about traps and so on. For now, you’ll just have to accept it, 
but for you curious types, here’s a short one. The GEMDOS has several special functions, 
which are accessed by the trap #1 command (calling trap #13 calls BIOS functions). The 
controlling value is put on the stack, which is address register a7 (you can also type sp, short 
for stack pointer, instead of a7). The move.l d0, old_stack is for backing up the old user 
stack, which gets replaced when we go into super mode. 

This code obviously goes at the top of our source code, the first thing we want is to go into 
super mode, then we put red colour in palette register 0, lastly, we want to go back into user 



 2 Of The Workings Of Devpac 3 And The Realisation Of Some Code 

 9 

mode and also add another two lines of “accept now, understand later” code, which will make 
a clean exit of the program. The total code looks like this: 
 clr.l -(a7) clear stack 

 move.w #32,-(a7) prepare for super mode 

 trap #1 call gemdos 

 addq.l #6,a7 clear up stack 

 move.l d0,old_stack backup old stack pointer 

 
 move.w #$700,$ffff8240 red background color 

 

 move.l old_stack,-(a7) restore old stack pointer 
 move.w #32,-(a7) back to user mode 

 trap #1 call gemdos 

 addq.l #6,a7 clear stack 
 

 clr.l -(a7) clean exit 

 trap #1 call gemdos 
 

old_stack dc.l 0 

 

Running this program will successfully change the background colour to red, and then make a 
nice and clean exit, restoring the Atari to user mode once again. Problem is, we now have a 
red background. Not to good you might think. This can be easily remedied however, we have 
made a program that changes background colour, let’s use it! Change the value #$700 to 
#$777 and run the program again. The background colour will now be white as snow, like 
we’re used to. 

In the next tutorial, I plan to cover hexadecimal, binary and decimal numbers, program flow 
and talk some about traps and registers. 



 3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps 

 10 

3 Of Various Things Mystic And 
Important, Mainly Concerning The Art 
Of Understanding Digits And 
Performing Traps 

“With your ability, if you learn to be fluid; to adapt. You’ll always 
be unbeatable.” 

- Fist of Legend 

 

Hello again! I’ve gotten some positive feedback on the first two tutorials, so I’m glad to begin 
writing this third one. As promised, I’ll try to explain how computers think when it comes to 
numbers, the layout of the Atari hardware which will guide us to the workings of traps. I bet 
a very few understood anything about that. 

So, now I’ll try to explain what may have been a bit lofty in the previous two parts of the 
tutorial: how we express numbers. When you see three rocks, you count them, one, two, and 
three. We have speech in order to communicate our thoughts and emotions to other people, 
and we have writing in order to communicate speech in written form. We use numbers to 
communicate “counting”. We have chosen the symbol ‘3’ to express the amount you reach 
when counting one, two and three. However, this value, this “there are three things of 
something”, can of course be written in different ways. 

Our number system is based on base 10, meaning that we have ten different symbols to 
express values, one of them being no values (also known as zero), which leave us with the 
ability to count to nine. Once the number nine has been reached, we need to start using 
numbers over again, we don’t have a symbol for the value ten, so we have to combine the 
numbers we have in some way in order to express this. What we do is to say that different 
positions are “worth” different. For example, in the expression 23, the number 2 is worth ten 
times as much as three. Do we see a connection here? We use base 10, each number is 
worth ten times as much as its predecessor. In the expression 123, 1 is worth ten times as 
much as 2, and one hundred times as much as 3. To calculate the value of the expression 
123, we really use this formula: 

( ) ( ) ( )012 103102101 ×+×+×  

the generic formula looks like this 

∑ × positionbasevalue  

OK, you say hesitantly, perhaps I understand something of what you’re trying to say; now 
what about computers? Computers use base 2, they are binary and can only count 1’s and 
0’s. There is either current through a circuit, or there isn’t. They only use two symbols to 
express values. As you can imagine, the result is very long expressions, like 
101010101011101000101010. For presenting the value three, the computer uses the symbols 
11. Using our generic formula above, we translate this to 

( ) ( ) 32121 01 =×+×  

For expressing the number five, we would get 101: 



 3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps 

 11 

1 0 1 

1 x 22 + 0 x 21 + 1 x 20 = 5 

4 + 0 + 1 = 5 

Think of it as tumblers, when we have base 10, the tumbler starts at zero, makes nine 
“ticks”, then the tumbler directly to the left makes one tick displaying one, the first tumbler 
reaches zero again, makes nine ticks, the left tumbler makes one tick, reaching two, the first 
tumbler starts at zero again. When the second tumbler is at nine, and the first tumbler is also 
at nine, the next tick will take both tumblers back to zero, and a third tumbler, the one 
directly to the left of the second tumbler, will go from zero to one, and so forth. If we have 
base 2, there are only two numbers on the tumblers, 1 and 0. 

In order to facilitate things, we also have base 16, or hexadecimal numbers. The reason for 
this is that conversion between decimal (base 10) and binary (base 2) numbers are 
somewhat cumbersome, while conversion between hexadecimal, or hex for short (base 16) 
and binary is fairly easy. We use binary because the computer thinks in binary, we use hex 
because it’s easier to convert binary into hex rather than decimal, and hex is much more 
manageable (less symbols required to express the same value), and of course we use decimal 
because we think in decimal. 

If you’ve understood what I said above, you’ll wonder how on Earth we use hexadecimal 
values, since we would need six more symbols for expressing the values ten, eleven, twelve, 
thirteen, fourteen and fifteen. We simply use letters from our alphabet. A = ten, B = eleven, 
C = twelve, D = thirteen, E = fourteen and F = fifteen. So to express the value fifteen in hex, 
we simply use ‘F’. To express sixteen, we get 10 (1 x 161 + 0 x 160). Seventeen is 11 (1 x 161 
+ 1 x 160. AF would mean one hundred and seventy five (10 x 161 + 15 x 160) and finally 
F5A would be three thousand nine hundred and thirty (15 x 162 + 5 x 161 + 10 x 160). If you 
don’t get all this, this topic will probably be covered by every beginner's book and tutorial out 
there, go find an additional source of information. 

In Devpac, values are expressed by putting ‘#’ in front of a number, then further using ‘$’ or 
‘%’ before numbers to indicate hexadecimal or binary numbers. Thus, ‘#’ means decimal, ‘#$’ 
means hexadecimal value and ‘#%’ means binary value. So, as you see, it’s customary to 
express memory addresses in hexadecimal. ‘$’ (without ‘#’) means value at memory address. 

Huh, that was that, now onto the architecture of the Atari! Every computer comes with a 
processor of different (or similar) brands, the Atari has a M68000 processor, so does the 
Amiga 500. The PC has an 8086 and so on. The processor comes with a different set of 
instructions and ways of working. This is the real challenge of assembly programming, you 
must know how the processor behaves that you are trying to program. In high level 
languages, such as Pascal and C, the programming language usually handles the processor 
dependent parts, and the code is much more portable between different platforms 
(computers). Assembly programming however, deals with processor level instruction, which 
makes it much more powerful and controllable. What the high level languages do, is to take 
the source code and “translate” it into low level (assembly) language, which of course brings 
waste, since we can tailor make our programs in assembly, while high level languages have 
to be more generic (since they weren’t tailor made for a specific processor). 

This is a good time to take a look at Appendix A – MC68000 Instruction Set, on page 112 – 
which contains a set of M68000 instructions, you will need to refer to these, also a good 
guide to the ST’s hardware would be most useful, the ST Internals for example (as a 
somewhat more basic alternative, you’ll find such a list in Appendix B – Hardware Register 
Listing, by Dan Hollis, on page 132). In order to explain the GEMDOS trap routine we used in 
the last tutorial, I’ll have to explain registers. The M68K (K here stands for kilo, meaning 
1000, thus M68K and M68000 are synonyms) has 16 registers plus one extra: eight data 
registers and eight address registers plus a program counter. The program counter is really 
an address register that points on the next instruction to be performed, simply put, it keeps 
track of the program execution so that the Atari knows where it’s at. 



 3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps 

 12 

The eight data registers work as eight variables that can store data. The eight address 
registers are used to store addresses, addresses work like pointers to larger chunks of data, 
as explained in tutorial one. Here is a usage example of the data register. 
 move.w #10,d0 put value 10 into data register zero 
 move.w #5,d1 put value 5 into data register 1 

 add d1,d0 adds d1 to d0 and stores value in d0 

 * d0 now holds value 15 

 

The address register seven (a7) is worth special mention, this is the so called stack. The 
stack is a lovely pile of data that is used in many ways, for example by the trap instructions. 
It’s of special importance to the PC programmer, since the 8086 has very few registers, the 
stack is used as a temporary variable, the M68K however is equipped with many registers 
making the usage of the stack as a temporary variable a bit unnecessary (I hope that no 
super smart programmer reads this and thinks; what an idiot). 

OK, on to the traps. There are three parts of the Atari that can perform traps; the GEMDOS, 
the BIOS and the XBIOS. The GEMDOS is the hardware independent part of the operating 
system, this means that the GEMDOS will work on different set of hardware on the Atari. The 
BIOS is concerned with input and output, like keyboard input and so on, it works between the 
GEMDOS and the hardware. The XBIOS handles the extended features of the Atari hardware, 
whatever that means. 

You call traps by putting the correct information on the stack, and then calling the correct 
trap number and then cleaning up the stack. First, we need a special number, called a 
function number, indicating what function we want, for example, going into super mode is 
number 32 of the GEMDOS, meaning that we have to put the number 32 on the stack, and 
then call trap #1 (which is the trap number associated with GEMDOS). Usually, you also need 
to pass additional information to the Atari, this information is put on the stack before the trap 
number, and then you call the trap. Thus, put any information associated with the function 
on the stack, then put the function code on the stack and then call the trap number that 
corresponds to the handler of the function.  
 

It feels a bit confusing with traps and trap numbers, I’ll try to sort it out. The BIOS, XBIOS 
and GEMDOS each have several special instructions, that aren’t in the processor, and do 
special things. Since they all three have several functions, all three will have the function 
numbered 1. In the BIOS, function 1 is a function for returning the input device status, in the 
GEMDOS, function 1 gets a single character from the keyboard, and in XBIOS, function 1 will 
save memory space. This information must be gathered by referring to a list of all traps 
available. In the ST Internals, there is a list of all the traps available, and instructions on how 
to use them. 

What you do is to specify what trap function you want by putting information on the stack, 
then you call either BIOS, XBIOS or GEMDOS, and let them do something with the 
information. As an example, I give you this alternative way of changing the background 
colour. The “-(a7)” means put on stack, we’ll cover that in the next tutorial. 
 move.w #$700,-(a7) colour red 

 move.w #0,-(a7) in colour 0, background colour 

 move.w #7,-(a7) function 7; Setcolor 
 trap #14 call XBIOS 

 addq.l #6,a7 clean up the stack 

 

The first two move instructions put information regarding the call on the stack, first the 
colour is passed, next the palette number to be changed. Then, the trap instruction number 
(opcode) must be put on the stack, next we call the XBIOS to process the information. Lastly, 
the stack needs to be cleaned up so that none of the information we entered will be left, 
cluttering the system. The code above does the same as 
 move.w #$700,$ffff8240 red background color 

 



 3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps 

 13 

The difference is that we take the way around the XBIOS instead of just smacking in the 
value directly to the memory, which as you can see is much easier to write. Really, since 
every action taken by the computer only changes the contents in memory, what the traps do 
is only to change the memory. This we can, in most cases, do ourselves, but in some cases, 
to call a trap may be easier, clearer and perhaps more also more safe (stable). 

Now we are going to expand upon the program in tutorial two. It gets tedious to run the 
program, and then change the background back by running the program again. Good 
programs save all the data they change, in order to restore it once the program is complete. 
Also, it would be nice to be able to store the code for going in and out of super mode, since 
we will use this in every program. 

It’s a good idea to have your own libraries of code, which you can cut and paste or include as 
you will in your code. Create a file called initlib.s (for initialisation library) and in it put the 
code for the super mode. This file is for storing only, when you need the “go into super 
mode” instruction, you know where you have it. The file initlib.s should have the following 
content. 
iinitialise 
* set supervisor 

 clr.l -(a7) 

 move.w #32,-(a7) 
 trap #1 

 addq.l #6,a7 

 move.l d0,old_stack 

* end set supervisor 

 rts 

 
restore 

* set user mode again 

 move.l old_stack,-(a7) 
 move.w #32,-(a7) 

 trap #1 

 addq.l #6,a7 
* end set user 

 rts 

 
 section data 

old_stack dc.l 0 

 

Well, actually, it can hold any content you want, since this is your personal file, where you 
store what you find important. I have different libraries to store different things that I need, 
for example graphlib.s and iolib.s. Your libraries are for storing general purpose programming 
instructions, like the code for entering super mode. 

There are two ways of using your libraries, you can either refer to your library, or you can 
just include your entire library in the source code you are writing. Including your entire library 
into your source is somewhat unprofessional, since you then get your libraries splashed all 
over the place, and any changes or additions that you want to do to the library later on will 
have to be implemented in all of your programs. The libraries should ideally be kept in one 
place, to make it tidy and neat. So, in order to include your library, use the include command, 
followed by the path to your library, like so 
include \libraries\initlib.s 

 

However, there is a drawback to the method described above; every time you assemble your 
code, you will have to load all your include files into memory from disk, which takes time. 
Only the source code you are currently working on is in memory, and any includes will have 
to be loaded every time. So, in order to speed things up, I usually include my libraries (or 
rather, the subroutines I need) into the source code I’m working at. This can be done with 
the file – insert file command, which will append a file at the cursor’s position. Or you can 
just copy and paste from your library into your source code as you see fit 



 3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps 

 14 

 jsr iinitialise jump to iinitialise 

 
 move.w $ffff8240,d7 save background color 

 move.w #$700,$ffff8240 red background color 

 

 move.w #7,-(a7) wait for a keypress 

 trap #1 call gemdos 

 addq.l #2,a7 clear up stack 
 

 move.w d7,$ffff8240 move back old color 

 
 jsr restore jump to restore 

 

 clr.l -(a7) clean exit 
 trap #1 call gemdos 

 

 
iinitialise 

* set supervisor 

 clr.l -(a7) clear stack 

 move.w #32,-(a7) prepare for user mode 

 trap #1 call gemdos 

 addq.l #6,a7 clean up stack 
 move.l d0,old_stack backup old stack pointer 

* end set supervisor 

 
 rts 

 

restore 
* set user mode again 

 move.l old_stack,-(a7) restore old stack pointer 

 move.w #32,-(a7) back to user mode 
 trap #1 call gemdos 

 addq.l #6,a7 clear stack 

* end set user 
 

 rts 

 
 section data 

old_stack dc.l 0 

 

Soooo, what’s different? Our routines for getting into and out of super mode have been 
neatly packed down the bottom of the code, the command jsr (Jump to SubRoutine) will take 
us where we want. Then, we put the value of the background colour in d7, saving it. Smack 
in the red colour. Here comes another fine trap, when executed, it will wait for a key to be 
pressed before continuing with execution. This trap will give the user a chance to see the 
lovely red background colour, and then hit a key in order to progress. Again, I looked after 
what I wanted in the ST Internals; something that would allow the program to pause and 
wait for a key to be pressed, lo and behold! I found it, and just copied the information. After 
this, the value from d7 is put into colour 0, effectively restoring the old background colour. 
Lastly, a jump to the restore subroutine and a clean system exit. 

Now we have begun to forcefully control the program flow, the code isn’t executed “top 
down”, but with commands such as jsr and rts (Return from SubRoutine) we can jump 
around. Usually, programs are built up of some initialisation routine, and then a loop more or 
less, which only consists of calling other sub-routines. A game of asteroids would for example 
look something like this. 
 Go into low resolution 

 Set up player 

 Set up asteroids 

 Main loop 

 Move asteroids 

 Check for collisions 
 Check for player input 

 If no asteroids left 



 3 Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps 

 15 

 Set up asteroids 

 Loop 

 

In the next tutorial, we will have to go through addressing modes, that is, the way you can 
use addresses. This is really important since everything is dependent on what information is 
where, so a thorough knowledge of how to handle addresses is important. That’s all for now. 
Happy coding! 



 4 Of The Ways Of Addressing Memory 

 16 

4 Of The Ways Of Addressing Memory 
“Target that explosion and fire.” 

- Star Trek VI, the Undiscovered Country 

 

So, finally; addressing! Before writing this, I read the first two chapters in Steve William’s 
“Programming the 68000”, and it was very good reading. He explained some things that I did 
not really go into, and above all, he has extensive explanations of addressing, before going 
into any code. Well, well, all I can say is that I have an a bit more pragmatic approach, this is 
after all a tutorial, and the aim is for you to learn through doing. Theory will usually only be 
covered in connection with practice. With this in mind, I urge you to get your hands on some 
M68K book and study it, because it goes through things more in theory than I do. You will 
probably find some of these books on some dusty bookshelf in your local library. 

You should have a pretty good idea what memory is, and also what the memory registers do. 
Memory is simply put the computers warehouse for storing numbers. Numbers are stored in 
binary format, that is, only 1’s and 0’s (refer to Chapter 2 for information on this). There are 
also standard formats for how many 1’s and 0’s are stored. The M68K has three; byte, word 
and longword. A byte is 8 1’s and 0’s, a word is 16 and a longword is 32. So the quantities 
have the following storage capacities. 

Name 1’s and 0’s Capacity 
byte 8 28 = 256 
word 16 216 = 65536 

longword 32 232 = 4294967296 
 

So, move.w means move a value, with word size. If we move a value that is bigger than 
word size (value > 65536), the value will be truncated (cut off), since we tell the computer to 
only move 16 1’s and 0’s. The term “1’s and 0’s” is called a bit. So, a byte contains 8 bits, 
never ever never confuse bits with bytes. The capacity is also somewhat of a misnomer. 
Since computer start counting at 0, the maximum value containable in a byte is 255. Also, in 
order to have negative numbers, the range of a byte is usually -128 to +127. Arithmetic that 
does not deal with negative numbers is called unsigned, and when negative numbers are 
involved, it’s called signed arithmetic. 

Now, we can move on to addressing modes I think. Each address is a reference or pointer to 
a place in memory. An address does not point to specific bits, but rather to bytes, meaning 
that address $2 does not point to the second bit in memory, but rather points to the second 
byte, which begins with the 9th bit in memory. 

Address 
register 

Contains 

A0 $2 
Memory Contains 

$1 %10101010
$2 %01010101
$3 %10101010

 



 4 Of The Ways Of Addressing Memory 

 17 

If we moved the byte that address register a0 pointed to, we would get %01010101, but if 
we moved the word that a0 pointed to, we would get %0101010110101010. If we simply 
moved the value of a0, we would get $2. There is a great difference to getting the value an 
address register points to, and the value in the address register. When we want something 
the register points to, we use parentheses around the address register, like this (a0). So, (a0) 
means the value of the memory place that a0 points to, in this case 01010101, and simply a0 
(without parentheses) means the value in a0 itself, in this case $2. 

You can also put ‘+’ and ‘-‘ characters before or after the address, meaning that you wish to 
increase or decrease the address registers value, either before or after the operation has 
been performed (called post or pre increment or decrement). Therefore, move.b (a0)-,d0 
means put the value of byte size that a0 points to in d0, then decrease a0 with one. The 
value that the address will be manipulated with, is dependent on the memory chunk size, if 
it’s byte, then 1, if word 2 and longword 4, in order to keep up with the changes. This is ideal 
for moving large areas of memory, you put your move instruction with post increment in a 
big loop. Christ, it feels like I’ve explained this very poorly, but don’t worry, it will become 
clear with time I think, and especially after this example. 

Memory Contains 
$1 %00000001
$2 %00000010
$3 %00000011
$4 %00000100
$5 %00000101
$6 %00000110
$7 %00000111
$8 %00001000
a1 $1 
a2 $2 
a3 $3 
a4 $4 

 

Command Effect 
move.b (a1),d0 d0 = %00000001 
move.w (a1),d1 d1 = %0000000100000010 
move.b (a3)+,d2 d2 = %00000011, a3 = $4 
move.b (a3),d2 d2 = %00000100 
move.l #$3,a3 a3 = 3, make a3 point to $3 
move.b $1,d0 d0 = %00000001, put the value of $1 in d0 
move.w -(a3),d3 a3 = 1, d3 = %0000000100000010 
move.l #$1,a1 a1 = 1 
move.l #$5,a2 a2 = 5 
loop 4 times 
move.b (a1)+,(a2)+ 
end loop 

$1 00000001 
$2 00000010 
$3 00000011 
$4 00000100 
$5 00000001 
$6 00000010 
$7 00000011 
$8 00000100 

 



 4 Of The Ways Of Addressing Memory 

 18 

As you might have noticed, if you studied the example thoroughly, when you want an 
address register to point to a place, you use # when giving the address, but when you want 
the content of the address of a memory location, you don’t use #. Thus, if you want a0 to 
point to $100, you use move.l #$100,a0. But if you want the value of memory address $100 
to be put into d0, you use move.l $100,d0. So, with a ‘#’, you have a value, but without ‘#’, 
you have a pointer. 

I think that should cover it nicely. These memory addressing modes are our main concern, 
however, there are some more. You can use two address registers in order to get index 
(place of pointer), or you can add either a data register or a fixed value to an address. These 
are pretty self explanatory and you’ll see when they come by. For example move.b (a0,a1),d0 
means move the memory value pointed to by a0 + a1 into d0. 

Now, in order to get an even firmer grip on traps, which seem to be hard to grasp, I’ll explain 
a bit more about the stack pointer. The trap part is the one I’ve had to edit the most because 
it was unclear. The stack pointer works like any other address register, the only difference is 
that some functions have the stack pointer as default address pointer, for example, traps. 
The idea of the stack is something that you can put data in, the last data entered is the first 
data that comes out, like spring loaded platforms for plates in cafeterias. When you put data 
on the stack, it’s called push, and when you retrieve it again, you pop. So if you push the 
numbers one and two onto the stack, and then pop two items, you will get two and one (last 
in, first out; LIFO). 

When pushing (putting items on the stack), you address it using pre-decrement addressing 
mode, and when popping, post-increment. This means that if the stack from the beginning 
points to $100, it will point to lesser and lesser values as you push data, and will increase in 
value as you pop. 
 (a7 = $100) 

 move.w #10,-(a7) push 10 onto the stack 
 (a7 = $98) 

 move.w #8,-(a7) push 8 onto the stack 

 (a7 = $96) 
 move.b #1,-(a7) push 1 onto the stack 

 (a7 = $95, uneven address, be careful) 

 move.b (a7)+,d0 pop stack into d0 

 (a7 = $96) 

 move.w (a7)+,d1 pop stack into d1 

 (a7 = $98) 

 

As you see, the stack clears itself up when using push and pop instructions. However, when 
we use traps, the BIOS, XBIOS or GEMDOS won’t clear up the stack for us, so in order for the 
stack to keep the correct address, we have to add a certain number at the end of the trap 
call. If we don’t do this, the stack will not point to the correct address, and when you start 
pushing and popping, everything will be out of alignment. Also, of interest to note, is that 
when you go into super mode, the user stack is replaced by the super stack, so it needs to be 
backed up in order to be restored later, when we switch back into user mode again. 

When we already are into talking about memory and addressing, I thought I’d cover how to 
make your own variables and what the text to the leftmost bit really is. As you must have 
noted, all instructions are one tab in, so to speak, while the name of subroutines and 
variables are at the leftmost in the text, well, there you have it :) What happens when you 
put text to the leftmost in your source code, is that you tell the assembler that that memory 
position, is also known as the text you entered. Every line of source code has its memory 
value, which of course is some hex value, so instead of trying to figure out that hex value, 
you tell the assembler that “henceforth, this line shall be known as [whatever you write]”. 
Also, any text written after the instruction, is treated as comments and are passed over by 
the assembler. You may also use a ‘*’ to denote comments. Comments beginning with a ‘*’ 
can be inserted everywhere. 

Disclaimer: the “actual memory position” values are purely for example and have nothing to 
do with real life (or computers). 



 4 Of The Ways Of Addressing Memory 

 19 

Actual memory 
position 

Label Commands Comments 

$0 first_line move.w #10,d0 easy as pie 

$2  move.w #$0,a0 

$4  bra a0 moves to $0 

$4  bra first_line moves to $0 

$8  

$A * a nice comment 

$C exit clr -(a7) never reached 

$E  trap #1 clean exit 

 

The command bra, for Branch, is used to jump to different memory positions, what it does 
then is to alter the value of the program counter (PC). You remember, the address register 
that holds the position of the next instruction to be executed (branching will be covered 
extensively in the next tutorial). Since variables are just chunks of data at a certain memory 
position, they are defined in almost the same way. You have a name for the variable, and 
then you say either dc.N, where N is either b, w or l for byte, word or longword, or ds.N. DC 
stands for Define Constant, and DS is Define Storage. 

DC is a variable, while DS is a large storage of memory. The number after DC is the initial 
value of the variable, and the number after DS is how many variables of the same type you 
want. DS is used for creating big memory spaces that you want to put stuff into later, like a 
bitmap or so, more on this in another tutorial. The DC area should be denoted by a “section 
data”, and the DS section should be denoted by a “section bss” (Block Storage Segment). 
Section data comes first, and section bss next, these areas are to be put last in the code. 
 section data 
temp dc.l 0 a longword sized chunk of memory, 

   given value 0 

 
 section bss 

storage ds.w 4 four words after one-another 

storage2 ds.l 2 two longwords after one-another, 

   since one longword is two words, 

   storage and storage2 have the 
   same size 

 

I didn’t come up with any creative way to use our new-found knowledge of addressing 
modes, so I just made some changes to the program we already have. For example, an 
unnecessary putting of the background colour memory in a0 instead of just accessing it 
directly, and moving the temp storage from d0 to the stack instead. 
 

 jsr initialise  jump to initialise 

 
 move.w $ffff8240,-(a7) push old colour to stack 

 move.l #$ffff8240,a0 a0 points to colour 0 

 move.w #$700,(a0)  put $700 where a0 points 

 

 move.w #7,-(a7)  wait for a keypress 

 trap #1  call gemdos 
 addq.l #2,a7  clear up stack 

 

 move.w (a7)+,(a0)  pop from stack 
 

 jsr restore  jump to restore 

 
 clr.l -(a7)  clean exit 

 trap #1  call gemdos 



 4 Of The Ways Of Addressing Memory 

 20 

 

 
initialise 

* set supervisor 

 clr.l -(a7)  clear stack 

 move.w #32,-(a7)  prepare for user mode 

 trap #1  call gemdos 

 addq.l #6,a7  clean up stack 
 move.l d0,old_stack  backup old stack pointer 

* end set supervisor 

 
 rts 

 

restore 
* set user mode again 

 move.l old_stack,-(a7) restore old stack pointer 

 move.w #32,-(a7)  back to user mode 
 trap #1  call gemdos 

 addq.l #6,a7  clear stack 

* end set user 

 

 rts 

 
 

 section data 

 
old_stack dc.l 0 

 

That was that, I hope you know enough about addressing now to push on. In the next 
tutorial we will probably cover the graphics memory a bit, and what you can do with it. This 
means we’ll finally get some action people! I’m starting to get bored of only changing the 
colour of the background, aren’t you? We have covered most of the basic theory I think, 
which means that in the future there will be more practical coding, like techniques for 
scrollers, moving sprites, making rasters and stuff like that. 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 21 

5 Of The Workings Of The Graphics 
Memory And Minor Skills In 
Branching 

“She doth teach the torches to burn bright” 

- Romeo and Juliet 

 

It’s 10:13 in the morning, school will start at 1 o’clock so I have some spare time before I’m 
at it. I’ve hooked Direct Connect up on some downloads; one Bruce Lee movie and one Yun 
Fat Chow movie, I’ve loaded over 70 minutes worth of Atari chip music in Winamp, time to do 
some serious writing. 

As promised in the title, this tutorial will be all about the graphics memory, which really is all 
you need to manipulate graphics on the Atari. So, if you really try hard, you should be able to 
do scrollers after reading this tutorial, but don’t overextend; I plan to cover scrollers in the 
next tutorial anyways, because they are so good to practice your skills. First though, I 
thought I’d take a quick repetition and just go over a few basic things. 

Symbol Meaning 
# decimal value 

#% binary value 
#$ hexadecimal value 
$ memory address, expressed in hexadecimal 
.b Byte 
.w Word 
.l Longword 

 

One bit is either a 1 or a 0. There are 8 bits to a byte, two bytes to a word and 2 words to a 
longword, meaning there are four bytes to a longword. BTW, four bits are called a nibble, 
which is half a byte. The smallest addressable memory block is a byte, meaning that every 
count of an address is a byte. This means that if a0 points to $100, and you do a move.w 
#10,-(a0), a0 will point to $98. A0 will decrement by two, because a word is two bytes. If a0 
points at $100, and you do a move.l #10,(a0)+, the value in a0 will be $104, since a 
longword is four bytes. The value at memory address $100 will be 10, also, in the previous 
example with post decrementation, the value at $98 will be 10, we don’t know the value of 
$100. 

I find it easiest to organize my files on the PC, and then transfer what I need to the Atari. 
You can booo all you want, I don’t care! It’s really easy to transfer stuff to the Atari, all you 
need is a diskette formatted in the correct way, you can even use a PC diskette. If you look 
at an old Atari disk, and a new PC disk, you will see one big difference; there is a hole on the 
left side of the PC disk, on the same spot that the write protection hole is at on the right side, 
on the Atari disk, there is no hole. Default size for Atari disks is 720 k, whereas on the PC, it’s 
1.44 megs (twice 720 k). 

Sometimes, you can use PC disks for the Atari without any modifications, just format it to 720 
k, the default if you format it in GEM on the Atari. If this doesn’t work, just put some tape 
over the hole, this way, the PC disk will look like an Atari disk. Great huh? Now you can 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 22 

organize your files on the PC, and have loads of stuff, then, when you need it on the Atari, 
just put the files you want over on a disk and use it. This disk will work fine on both systems. 
Only restriction is that you must have it in 720 k format. This can also be done on the PC by 
formatting in this way “format a: /f:720”. If you didn’t know this, you’ll probably kick my ass 
for not telling you earlier, hehe, suffer. 

Now, on to coding again. As you may have guessed, what you see on the monitor (or TV) is 
controlled by memory in the Atari. Before explaining that, however, I shall go into the 
different resolutions. There are low, medium and high, easy as pie. High resolution is that 
which we find only on monochrome monitors, it’s 640*400 pixels, and uses only two colours. 
Medium resolution is 640*200 pixels and uses four colours. Finally, the most interesting 
resolution is low, featuring 320*200 pixels with 16 colours. A pixel, btw, is a dot on the 
screen, if you look closer in a game or so, you’ll se that the spaceship/dude/whatever is build 
up of small dots, those are pixels. The upper left corner is considered 0,0 in a coordination 
system, and the bottom right corner is the maximum. Thus, in low resolution, the pixel at 0 x 
and 0 y is in the left uppermost corner, and the pixel at 319 x and 199 y is at the bottommost 
right position. 

How, then, is this represented in memory? For high resolution, it’s very simple, each pixel is 
represented by a bit, either 1 (black) or 0 (white). Thus, if you change the first bit in the 
graphics memory (sometimes also called screen memory), you will change the bit in the left 
uppermost corner, the pixel at 0,0. If you change the last bit in the screen memory, you’ll 
change the pixel at 639,399. Since one pixel is represented by one bit, it’s easy to calculate 
how much memory is used, 8 pixels are one byte. 16 pixels one word and a longword will 
hold data for 32 pixels. 640*400 = 256000, the number of pixels total. If we divide this by 8, 
we will get how many bytes the screen memory will have to be, this is 32000 bytes. 

In medium resolution, we have four colours. Hmm, four colours, how do we represent a value 
between 0 and 3? Well, we can use two bits, since %11 (binary 11) is 3. So now, we need 
two bits to represent each pixel. Also, the number of possible lines has dropped by half to 
200 instead of 400, meaning that medium and high resolution both use 32000 bytes of 
memory. You might think that the two bits for each pixel are right next to each other, not so, 
they are spread over what you call bit planes, but that will come in just a little sec, since it’s 
extremely complicated. 

Low resolution has 16 colours. %1111 is 15, so we need 4 bits to represent each pixel in low 
resolution. The number of pixels per line is reduced by half, and the number of bits per pixel 
is doubled, meaning that we still have 32000 bytes of screen memory. If you don’t believe 
me, we’ll do the math again. 320*200 is 64000 pixels, each pixel needs 4 bits to represent it, 
meaning 256000 bits, at eight bits to a byte, we again get 32000 bytes. 

On to the bitplanes, I will go through how it works in low resolution, since that is the most 
interesting mode and the exact same technique is used in medium resolution, but with only 
two bit planes instead of four. OK, here goes. The pixels are stored in words, in groups of 16 
(remember, 16 bits in a word). The first 16 pixels are thus stored in 4 words, that come after 
one another. Thus, the first 4 words of the screen memory are used to store the first 16 
pixels. I’m feeling I’m loosing it here, this is damn hard to explain, and it took me weeks 
before I got it myself. 

The bit in the first word is the least significant bit in the colour number. Least significant 
means the rightmost bit, since this is the one that affect the value the least (it either adds 
one or zero to the final value), while the most significant bit is the leftmost bit. The bit in the 
fourth word is the most significant bit in the colour number. The first bits in the first four 
words control the first pixel. Are you confused yet? An example perhaps. 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 23 

Graphics memory, expressed in 
binary 

%1000000000000000 first word 
%0000000000000000 second word 
%0000000000000000 third word 
%0000000000000000 fourth word 

 

Colour number of pixels, expressed 
in hex for ease of reading 

$1000000000000000 
 

The only bit that is set, is the least significant bit of the first word in the series. The term 
“set” means that a bit has the value 1, and not 0. This means that the first pixel will be colour 
1. 

Graphics memory, expressed in 
binary 

%1100000000000000 first word 
%1100000000000101 second word 
%0100000000000110 third word 
%0110000000000000 fourth word 

 

Colour number of pixels 
$3F80000000000642 

 

As you can see, just read top down, and you’ll have it. 

So, in order to address the 17th pixel, you’d first have to “jump over” the first four words of 
graphics memory, then manipulate the first bit in the next four words. This makes pixel 
manipulation a pain in the ass, since not only do you have to change values in four different 
places, but you also have to work with bit manipulation. All in all, very tedious and time 
consuming work. Just for comparison, there is a graphics mode on the PC, the MCGA mode, 
which is extremely user friendly. It also has 320*200 pixels, but 256 colours instead. Does 
this value ring a bell? It’s a byte! So, each pixel is represented by a byte, making it a wonder 
of ease of use. In order to change the pixel, you just have to address the correct byte, which 
is dead simple. It would be done like this, move.b #255,(a0) where a0 points to address 
memory. This would change the first pixel to colour 255. Or to change the third pixel, move.b 
#255,3(a0). But to change the first pixel on the Atari, in low resolution, we instead have to 
do something like this. 
 a0 points to screen memory 

 move.w #%1000000000000000,(a0) 
 move.w #%0000000000000000,2(a0) 

 move.w #%0000000000000000,4(a0) 

 move.w #%0000000000000000,6(a0) 

 

This sets the first pixel to colour 1. The numbers before “(a0)” are, as you might recall, 
indexes to memory, so “2(a0)” means where a0 points plus two. Since we constantly want to 
point to the next word, we must increase the pointer by two bytes each time. We could also 
have used a “(a0)+” in order to increment the pointer, but then a0 would not have pointed to 
the beginning of the screen memory anymore. It all depends on what you want to be doing. 
Also note, that since we move information in, any information previously there, will be lost. 
If, for example, pixel three and four already had values of some kind, and we executed the 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 24 

commands above, they would become colour zero, since information regarding them would 
be overwritten with all zeros as shown above. 

Now you hopefully possess the knowledge necessary for understanding my short little 
program. Let me just stress that really getting the workings of the graphics memory is very 
difficult. What bit goes where, what bit does what, and so forth, so don’t despair when you 
don’t get it right away; you have a long way ahead of you. Oh, I realized, I have some more 
things to tell you. 

A scan line is a row of pixels, there are 200 scan lines in low resolution. That’s easy enough. 
The other thing I have to tell you is about the VBL, or Vertical BLank. The Atari operates in 
either PAL (Phase Alternating Line) or NTSC (National Television Standards Committee): 
NTSC is the American standard and PAL the European. Since I’m from Europe and it also 
seems that most Atari related stuff is from Europe, NTSC will be given little support, take that 
Yankees. The PAL or NTSC has to do with how many times per second the screen is updated, 
in NTSC, it’s 60 times per second, and in PAL it’s 50. Thus, the so called refresh rate, is either 
50 or 60 Hz. On game menus, you can often change between these modes. When I was 
little, and only played games, I never got what the 50/60 selection on the game menu was 
about, now I do. Since we use PAL, the refresh rate on our stuff will be 50 Hz, meaning that 
the monitor is updated 50 times per second. 

The screen is painted by an electron beam, that starts in the upper left corner, and then 
works its way down, doing a scan line, and then moving on to the next. This happens 50 (or 
60) times every second. It’s good practice to synch your graphics with this beam, this will be 
further expanded in the next tutorial. There is a trap, that will put the system in pause until 
the next VBL, that is, the next time the electron beam is about to paint the screen. This is an 
excellent timer, and will allow you to know exactly how much time everything takes. Just 
think about it, if you put the wait for VBL trap in the beginning of your main loop, you’ll know 
that the loop will perform 50 times per second. This is ideal for making games or demos not 
run to fast. The trap function number is 37, it’s called by XBIOS and looks like this: 
 move.w #37,-(a7) wait vbl 
 trap #14 call XBIOS 

 addq.l #2,a7 clean up stack 

 

This is a good thing to include in your graphics library if you have one, if you don’t, you might 
think about making one. 

I realize when looking over the source code again, that there are some more things to 
explain. Hehe, well, at least I explain them sometime, and I don’t just dump the source code 
on you and let you browse through those instruction sets and figure things out for yourself. 
Of course, it’s a good thing to know where the graphics memory is, unlike some other 
computers that has a fixed location for the screen memory, the Atari can use any part of the 
memory. This simple trap will put the address of the graphics memory in d0, which you then 
can move into the address register of your choice. 
 move.w #2,-(a7) get physbase 

 trap #14 call XBIOS 

 addq.l #2,a7 clean up stack 
 move.l d0,a0 a0 points to screen 

 

Actually, it might be somewhat of a bad habit to use registers d0-d2 and a0-a2 unless you 
have to, since those registers can be destroyed by, for example, calling traps, and other 
similar things handled by parts you don’t have full control over. Physbase here stands for 
physical base, and means the physical base of the graphics memory. Note also, that when 
moving addresses, like the last command above, you should always use longword size. This is 
so because the Atari uses 24-bit addresses, each address is 24-bits long, and if you only 
move a word, or heavens, a byte, information will be lost. 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 25 

What more, oh yes, the dbf and clr commands. We’ll start with the easy one, clr. CLeaR 
clears all bits in the effective address operand. In clear English, this means “make something 
zero”. For example: 
 move.l #$100,a0 
 move.l #10,d0 

 move.l d0,(a0) 

 clr.l d0 
 clr.l (a0) 

 

Now both d0 and $100 will contain zero. 

The dbf command is a bit special. Instead of dbf, you can also use dbra. It is used for making 
a loop a certain amount of times, it’s the equivalent to a for-loop in high level languages. 
When using the command, you give a controlling data register, and the address to loop. Each 
time, the data register will get decremented by one, and then it will be tested to see if it’s -1, 
if it’s not, the execution will jump to the given address. 
 move.l #$100,a0 

 move.w #4,d0 execute loop 5 times 
 loop 

 move.l d0,(a0)+ 

 dbf d0,loop 

 

So, can you figure out what the memory configuration will be for this? 

Memory Value
$100 4 
$104 3 
$108 2 
$10C 1 
$110 0 

(some hex counting training 
as well, aren’t I nice?) 

 

Since the value gets decremented right before it’s tested for -1, the loop is never looped 
through with the value -1. So, if you want a loop to loop five times, put four in the controlling 
data register. Remember that on the last loop, the data register will contain zero. That should 
be it, finally, we can get to my training program. You should be able to figure it out yourself, 
but I hate it when people say that and I still have many questions, so I’ll walk you through it. 

The program fills the first 60 scan lines with colour 1, the next 60 with colour 2 and the next 
60 with colour 3. Then it sets the colour values for these three colours to the maximum level 
of the three “main colours”, RGB, or red, green and blue. When this set up is done, it 
decrements the value for each colour by one every half second, when the values reach zero 
(black) the program terminates itself. The countdown itself is achieved by first waiting 25 
VBLs, and then running through 7 such waits. 
 jsr initialise 

 

 move.w #2,-(a7) get physbase 
 trap #14 

 addq.l #2,a7 

 
 move.l d0,a0 a0 points to screen 

 

* clears the screen to colour 0, background 

 move.l #7999,d1 size of screen memory 

clrscr 

 clr.l (a0)+ all 0 means colour 0 :) 
 dbf d1,clrscr 

 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 26 

 move.l d0,a0 a0 points to screen 

 
* fills screen with colours, ok 180 scanlines :) 

 move.l #1199,d0 60 scanlines 

fill1 

 move.w #%1111111111111111,(a0)+ 

 move.w #%0000000000000000,(a0)+ 

 move.w #%0000000000000000,(a0)+ 
 move.w #%0000000000000000,(a0)+ 

 dbf d0,fill1 filled with colour 1 

 
 move.l #1199,d0 60 scanlines 

fill2 

 move.w #%0000000000000000,(a0)+ 
 move.w #%1111111111111111,(a0)+ 

 move.w #%0000000000000000,(a0)+ 

 move.w #%0000000000000000,(a0)+ 
 dbf d0,fill2 filled with colour 2 

 

 move.l #1199,d0 60 scanlines 

fill3 

 move.w #%1111111111111111,(a0)+ 

 move.w #%1111111111111111,(a0)+ 
 move.w #%0000000000000000,(a0)+ 

 move.w #%0000000000000000,(a0)+ 

 dbf d0,fill3 filled with colour 3 
 

 move.w #$000,$ff8240 black background 

 move.w #$700,$ff8242 red colour 1 
 move.w #$070,$ff8244 green colour 2 

 move.w #$007,$ff8246 blue colour 3 

 
 move.l #24,d5 25 VBLs per loop 

 move.w #6,d6 make 7 loops 

main 
 move.w #37,-(a7) wait VBL 

 trap #14 

 addq.l #2,a7 
 

 dbf d5,main loop VBLs 

 

 add.w #-$100,$ff8242 subtract one from red 

 add.w #-$010,$ff8244 subtract one from green 

 add.w #-$001,$ff8246 subtract one from blue 
 

 move.l #24,d5 reset VBL counter 

 
 dbf d6,main end of main loop 

 

 
 jsr restore 

 

 clr -(a7) 
 trap #1 

 

initialise 

* set supervisor 

 clr.l -(a7) clear stack 

 move.w #32,-(a7) prepare for user mode 
 trap #1 call gemdos 

 addq.l #6,a7 clean up stack 

 move.l d0,old_stack backup old stack pointer 
* end set supervisor 

 

* save the old palette; old_palette 
 move.l #old_palette,a0 put backup address in a0 

 movem.l $ffff8240,d0-d7 all palettes in d0-d7 

 movem.l d0-d7,(a0) move data into old_palette 
* end palette save 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 27 

 

* saves the old screen adress 
 move.w #2,-(a7) get physbase 

 trap #14 

 addq.l #2,a7 

 move.l d0,old_screen save old screen address 

* end screen save 

 
* save the old resolution into old_resolution 

* and change resolution to low (0) 

 move.w #4,-(a7) get resolution 
 trap #14 

 addq.l #2,a7 

 move.w d0,old_resolution save resolution 
 

 move.w #0,-(a7) low resolution 

 move.l #-1,-(a7) keep physbase 
 move.l #-1,-(a7) keep logbase 

 move.w #5,-(a7) change screen 

 trap #14 

 add.l #12,a7 

* end resolution save 

 
 rts 

 

 
restore 

* restores the old resolution and screen adress 

 move.w old_resolution,d0 res in d0 
 move.w d0,-(a7) push resolution 

 move.l old_screen,d0 screen in d0 

 move.l d0,-(a7) push physbase 
 move.l d0,-(a7) push logbase 

 move.w #5,-(a7) change screen 

 trap #14 
 add.l #12,a7 

* end resolution and screen adress restore 

 
* restores the old palette 

 move.l #old_palette,a0 palette pointer in a0 

 movem.l (a0),d0-d7 move palette data 

 movem.l d0-d7,$ffff8240 smack palette in 

* end palette restore 

 
* set user mode again 

 move.l old_stack,-(a7) restore old stack pointer 

 move.w #32,-(a7) back to user mode 
 trap #1 call gemdos 

 addq.l #6,a7 clear stack 

* end set user 
 

 rts 

 
 

 section data 

 

old_palette ds.l 8 

 

old_resolution dc.w 0 
 

old_stack dc.l 0 

 
 

 section dss 

 
old_screen dc.l 0 

 



 5 Of The Workings Of The Graphics Memory And Minor Skills In Branching 

 28 

Oh, naughty me, I added a bunch of stuff to my initlib without telling you about it. Well, right 
now, you’ll just have to accept it, any problems with that private!? The thing it does is to save 
all information regarding resolution, screen setup and so on, then change to low resolution. 
When the restore subroutine is called, it restores everything as it was. While time goes by, I 
probably won’t dump all my source code into my tutorials, for example, an include initlib.s will 
probably be the way in the future. I’m also thinking about sticking to just give out the 
separate .s file with the source code, and only comment it here in the main tutorial so you 
won’t have the same code in two places. How does that sound? You curious types can go 
through the initlib code, and try to figure it out, I have commented it quite well just so you 
can do that. 

There might be some problems with the math here, in the clear routine, 8000 is given as the 
screen size. Yes, 8000 longwords, 8000*4 = 32000 bytes. 1199, or rather 1200 should equal 
60 scan lines? Yes, every pass through the fill-loop moves 4 words. 4 words contain 
information for 16 pixels, meaning that for every loop, 16 pixels will be set. 320*60=19200 
pixels total (320 pixels per scan line), and since we set 16 pixels per loop, we divide this 
value by 16 to get the total number of loops, which, incidentally, is 1200. That should clear 
any trouble with the numbers. 

I hope there’s no trouble with the main loop part, the first little loop is all about making 25 
VBLs, in other words, waiting for 0.5 seconds. Then, the colour values are changed, making 
the colours 1,2 and 3 go towards black. Lastly, another loop controller that makes sure the 
main loop is looped through seven times. 

Now that you are equipped with basic knowledge of the graphics memory, I think we’ll be 
able to handle a scroller in the next part. It depends, I’ll have to write one and see if it’s not 
too complex. If it is too complex, you’ll probably be looking at a theory tutorial again. 



 6 Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files 

 29 

6 Of Seeing Behind The Curtain Of An 
Execution And Getting Intimate With 
Files 

“Great! I love fighting.” 

- Fong Sai-Yuk 

 

Hiya’all, it’s been a little while since the last tutorial. Mainly because I wanted to code a little 
bit for myself and not only write stuff. This tutorial will NOT be about scrolling, unfortunately, 
but it will cover the theoretical base which you’ll need to be able to do the scrolling as will be 
covered in the next tutorial. However, after this tutorial, you may figure it out by yourself. Of 
course, the thing you have to do to scroll, is to just move the correct screen memory bytes to 
the correct place. This will be covered in depth in the next tutorial, promise. 

We’re now beginning to get past the most fundamental theory, and so our code is getting to 
be more and more advanced. This in turn means that often, a program will assemble without 
errors, but it still won’t work the way we want it to. Something somewhere is not as we 
thought it would be, a variable might not be assigned the correct value, a mathematical 
equation might not produce what we thought and so on; endless possibilities. This is where 
the debugger comes in. Debugger? says you. To illustrate, let me tell you this fairy tale. 

In the olden days, there was a big computer. So big it was that two men could not put their 
arms around it. The computer stood in the big country that lies west of here, and all day long 
it crunched numbers. It was very happy. Then, one day, it could not crunch numbers any 
more, something was wrong and the computer fell sick. All the people in white robes, that 
saw to the computers every need, were greatly distressed. No one knew what was wrong. 
So, in a last desperate effort, they opened up the poor computer to have a look inside. They 
found that a little bug had flown in, and that was the root to the sickness. So, the people in 
the white robes removed the bug, and the computer was again healthy. It was all smiles and 
could once again crunch numbers all day long. Thus endeth the tale. (since this is a fairy tale, 
I make no claims that the exact facts are true, but like all legends, it contain a grain of truth) 

Debugging, is the art of removing errors from source code. This is actually very hard, and 
one can probably be as skilled in debugging as writing code in the first place. Debugging 
usually takes at least half the time of developing a program, so good planning and lots of 
time in the debugger is a good thing indeed. Nowadays, bugs are errors in the source code, 
rather than actually physical bugs. Debugging is getting rid of bugs, creating error free code, 
and a debugger is a tool that helps you with this process. Devpac comes with a debugger, 
called MonST, I guess it stands for MONitor ST. 

After you’ve assembled to memory, instead of pressing alt+x and run the program, you can 
press alt+m and run the MonST, henceforth referred to as the debugger. Lots of information 
will pop at you, and after you’ve come over the shock, you’ll start to make quick sense of it. 
There are three “windows”, areas rather, registers, disassembly pc and the memory. The 
disassembly pc area is your actual source code, the other two should speak for themselves. 
When you are in debugger mode, instructions will be executed one at a time, this allows you 
to see how each instructions change the content of memory and registers. I’ll go through 
each area and what you do with it. 

Registers, here you have the content of all data registers, all address registers, the status 
register and the program counter. All values are given in hex, which makes every two digits 



 6 Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files 

 30 

one byte, and each digit one nibble. As you can see, there are eight digits for each data 
register, which makes sense since you can store a longword in a data register. When data 
registers are beginning to get filled with values, there will pop up some symbols, sometimes 
strange, to the right of the register. These symbols are the ASCII equivalents for each byte in 
the data register. We haven’t talked about ASCII I think, but it’s the way to represent 
characters with numbers I mentioned back in tutorial one. For example, the number $41 is 
the letter ‘A’. 

The address registers are to the right of the data registers, and work pretty much the same. 
To the right of the address registers, are the memory content that the address register points 
to. Since there are four digits to every group, each group is a word. Thus, to the right of each 
address register, is the memory content of the first five words that the address register points 
to. To the right of the memory content, you’ll also see ASCII representations of the content, 
just as with the data registers. 

Below the data registers, are the status register and the program counter. The status register 
haven’t been mentioned much either, but it takes note of several statuses of the ST, for now, 
it will probably be 0300 and you’ll se a ‘U’ to the right of it. The U means User mode, and 
that’s what we’re in now until we change it to Super visor. The status register will also keep 
track if a mathematical operation results in a overflow and so on. An overflow is when the 
number generated is bigger than can be stored, for example, adding two data registers with 
very big values will generate a value to big to store in one data register, so data loss will 
occur. Below the status register is the program counter, and to the right of the program 
counter you’ll see the instruction that it points to. 

The disassembly area is the code you’re currently debugging. It will look just like your source 
code. You can scroll up and down the code, and a little arrow will indicate your current 
position. To execute a line of code, press alt+z, to skip a line of code, press alt+s. Usually, 
you’ll want to skip jumping into the initialise subroutine, because this takes some time and 
might also put the ST in low resolution, making it hard to see anything. You’ll usually want to 
go to the mathematical equations directly, to see what happens. There’s also a very nice way 
to jump straight to a position of your choosing. You can put “flags” in your source code, by 
entering the command “illegal”, then, when in debugger mode, hit ctrl+r. This will execute all 
commands from your current position to the next illegal position, you’ll have to skip past the 
illegal instruction to continue, using alt+s. A great way for executing an entire loop without 
stepping through it all. 

The memory area is most interesting, this is where the entire content of the memory is listed. 
By pressing m, you can type in the name of any memory tag (variable) that you are using, 
and see what the memory that it points to contains. If you’re smart, you’ll immediately type 
in ff8240, which will take you directly to the palette. Unfortunately, that will get you little, 
since this is protected memory, you’ll only see *’s. 

You can change between these areas by pressing tab, and you can only issue commands in 
the active area. When you are done debugging, you don’t have to wait for the whole program 
to execute and terminate, just hit ctrl+c, twice. Now this is useful, right? The best way to get 
to the workings of the debugger is, like always in programming, to get to it; debug some 
simple piece of code and see what happens to the registers and memory. Oh, yes, in the 
memory area, you can also type in aN (where n is 0-7) to get directly to the memory area 
pointed to by an address register. 

Now, onto file formats! A file is simply a collection of data. There really is no such thing as a 
.pi1 (Degas Elite) file, or an .mp3 file. A file contains data, so, this data is interpreted. 
Different things will happen depending on how you interpret the data. Let’s say, for example, 
that we have a file containing only a byte, and it holds this data 
 %01000001 

Easy, says some paint program, these are the first eight pixels in monochrome mode. Pixel 
number 2 and 8 is supposed to be black, the rest are white. No, says the text editor, 
%01000001 is $41, which corresponds to ASCII character ‘A’. This is the letter A. Nonsense, 
says the home taxation program, %01000001 is a control code in my program that says this 



 6 Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files 

 31 

file represents a terminated account… and so on. Programs interpret files, and do something 
with the information. Since programs are also files themselves, interpreted by the operation 
system, which is itself also files more or less, the whole shit is built on subjective opinions on 
what to do with the data presented. 

Given the information above, one might think that it’s a good way to know how different 
programs interpret data, this is the knowledge of file formats. In order to understand this, we 
will examine a very simple file format, the Degas Elite .pi1 file format. It’s almost too simple 
really, but it’s useful and we’re going to use it in our next tutorial. Usually, files have so called 
file headers, which give some information about the file. For example, a Windows BMP file, 
starts with the ASCII codes for ‘B’ and ‘M’, which makes sense and gives a signal of what kind 
of file it is. It’s of a little nerdy interest to know that each .exe file on the PC, starts with the 
ASCII codes for the letters ‘MZ’, which was some hot shot in Microsoft back when they 
defined the file format (and perhaps still). A good example of a file header could perhaps be 
the resolution of an image, or the font type in a word processor file. 

In order to examine files correctly, we need a so called hex editor. A normal text editor will 
not do, since the text editor would interpret data as ASCII code, we want a program that just 
presents the data in the file, and does not interpret it in any way. With this hex editor, you 
can “hack” files yourself. Say, for example, that you want a program that converts one 
graphic file format to another; you’d need knowledge of both file formats. Sit down with a 
paint program, and a hex editor. Do some small changes in the paint program, and watch 
what’s changing in the file with the hex editor. This is tedious work, at best, and you’re 
probably better off trying to locate the information somewhere. So, in order for you to begin 
and try out your efforts, I will tell you how the .pi1 files look like. 

First, there are two bytes giving the resolution, in low resolution, it’s just 0, in medium, 1, 
and in high resolution, 2. Then comes 32 bytes containing the palette data for the picture. 
After that comes the pixel information, looking exactly the way it does in the screen memory. 
And that is that. Very simple file format indeed. So, how big is a .pi1 file then, only knowing 
the above? 32034 bytes. 32000 bytes for the pixel information, 32 bytes for the palette, and 
two extra bytes in the beginning of the file. Here’s a little program that will display a .pi1 file 
(a little note: in Degas Elite, there are 32 bytes in the end containing information on 
animation and stuff, uninteresting in our case). 
 jsr initialise 

 

 movem.l picture+2,d0-d7 put picture palette in d0-d7 

 movem.l d0-d7,$ff8240 move palette from d0-d7 

 

 move.w #2,-(a7) get physbase 
 trap #14 

 addq.l #2,a7 

 
 move.l d0,a0 a0 points to screen memory 

 move.l #picture+34,a1 a1 points to picture 

 
 move.l #7999,d0 8000 longwords to a screen 

loop 

 move.l (a1)+,(a0)+ move one longword to screen 
 dbf d0,loop 

 

 move.w #7,-(a7) wait keypress 
 trap #1 

 addq.l #2,a7 

 
 jsr restore 

 

 clr.l -(a7) 

 trap #1 

 

 include initlib.s 
 

 section data 

picture incbin jet_li.pi1 



 6 Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files 

 32 

 

There are three new instructions here, movem, incbin and include. Include is the easy one, 
just consider it as though you had pasted the entire contents of the initlib.s file on the include 
line. As you will see, when you assemble the code, this takes a while since the Atari needs to 
read the file each time. Therefore, I strongly suggest you actually do paste the file in, instead 
of just including it. Your choice. 

Incbin, as you may have guessed, is the way to include files, they fall under the section data. 
This puts the entire contents of the file in memory. In this particular case, I put the entire 
contents of the .pi1 file called jet_li.pi1 at the memory position I choose to call picture. You 
can achieve the same result by hand copying the content of jet_li.pi1. Something like 
picture dc.b 0,0,0,0,$07,$11 …(this is the beginning of the file) 

 

Movem MOVEs Multiple data from memory to registers or the other way around. It can only 
move words and longwords. As you can see, I move the memory from picture+2 into the 
data registers. This is great since all eight data registers can hold all in all 32 bytes of data, 
since each colour is 2 bytes of data, this means that the entire palette of 16*2 bytes of data 
fits precisely into the eight data registers. The reason for picture+2 is that we want to skip 
the first two bytes, since they only contain resolution information. After filling the data 
registers with the palette, we just smack it in at the correct starting address. 

Then, it’s a question of putting the screen memory pointer in a0, and the start of the pixel 
part of the picture in a1. The picture+34 is because this is where the pixel part starts, 2 
resolution bytes plus 32 palette bytes is 34 bytes that should be skipped in order to reach the 
pixel part. As shown in the previous tutorial, the screen size is 8000 longwords. I just loop 
through that amount, copying the content from the picture into the screen memory. Easy? 
This is a small loader for .pi1 files. If you assemble this piece of code as a .prg file (or just 
take my pre-assembled file), you’ll notice that the program size will be 32494. Most of this is 
the .pi1 file itself, our added code is only 32494 – 32034 = 460 bytes. We now have a self-
loading .pi1 image, nice. 

If you think it would be amusing, you can add this little loader to all your .pi1 files, in this 
way, you’ll never have to go through Degas to watch them, they load themselves. Of course, 
you’ll get a .prg file instead of a .pi1 file, meaning that you can’t edit it with Degas. But then 
you could write your own program for extracting the image information and turn it into a .pi1 
file again. Fun, right? Note; you don’t have to keep the original .pi1 file for this “loader” to 
work, since the .prg file contains the data it needs for the image. 

While we’re on the topic, I will mention, briefly, compression. You must know what file 
compression is, it’s making a file smaller, but usually useless, until you decompress, or 
unpack, it again. How does this work? The file can’t just shrink, can it? Well, more or less, it 
actually can. Consider this information. 
 %00000000 

 %11111111 

 

The first byte is all 0’s, and the second one all 1’s. Suppose we replace the information given 
with 
 08 

 18 

 

and tell the program that after each 1’s or 0’s, there will be a number that tells how many 1’s 
or 0’s there will be. If we have a file with big areas of similar data, for example 50 bytes of 
0’s and then 70 bytes of 1’s, this so called compression algorithm would compress this 
information into four bytes. It would look like this 
 050 

 170 

 



 6 Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files 

 33 

or, just to give you some bit mathematics, we say that the high bit of each byte controls 
whether it should be 1’s or 0’s, and the next seven bits tell how many of each kind should 
follow, it would look like this. 

%00110010 50 0’s 
%11000110 70 1’s 

 

That was that on compression. The above is a very simple compression algorithm and if you 
use it, you may end up with files bigger than they were from the beginning. I know file 
compression was a bit sketchy, but if you get the part of how files work, the compression 
part shouldn’t be that hard. Also, file compression might be covered more extensively later. 
So far, I know very little myself since I haven’t used it for anything. I have no idea how good 
file compression algorithms look or anything, so don’t ask. This is just the theoretical base. 
Study carefully, since I’m going to use a .pi1 file for the font in the upcoming scroller. 



 7 On Scrollers 

 34 

7 On Scrollers 
“My grandfather taught, me the energy of life goes in a circle, in a 
perfect flow; balanced. He said, until I find my centre, my circle 
will never be whole” 

- The One 

 

Huh, so finally, as promised; the tutorial on scrollers. BTW, all my “huh” sounds aren’t like 
American huh, as in a question or as in a “oh yeah?”, but rather phew, like a sigh. Have you 
been waiting for this one? I hope you have, because it was a damn pain in the ass to write 
the scroller program, even though it’s simple. It began with me reaching too high, also, 
forgetting about the bitplane layout of the graphics memory. When I put a little lower 
ambition level, for the sake of keeping it simple, things went smoother. Now, Luca Turilli 
playing in Winamp, the mood is set, time to write. The people who already know how to do 
scrollers will probably laugh their ass off at this clumsy scroller, which really is bad in every 
way except learning the basic stuff, I’ll probably do a more advanced one later on; I’ve heard 
that building on knowledge is good. 

A few happy news first. I’ve gotten mail from three different people, excluding Maarten 
Martens. Thanks guys, you know who you are! One mail from FrEd highlighted a few misses I 
made, concerning the compatibility with Devpac 2. My initlib had a little bug. It works fine in 
Devpac 3, but not in 2. Two lines had d0-7 in them, it really should read d0-d7, but it’s fixed 
now. I know some other things may also be difficult with other assemblers than Devpac 3, so 
if the code doesn’t work for you, just use Devpac 3. I have tested every piece of code with 
that on an original Atari ST(e), so there should be no problem. Thanks go out to FrEd for 
pointing this out, and also to mOdmate of Checkpoint for telling me a little about the 
workings of $fffc02. 

Yep, a scroller. I’m a bit unsure of where to start, but I guess I’ll just work from the top 
down. What does a scroller do? Letters go from the right of the screen, to the left of the 
screen (usually). New letters are brought in from the right, “outside” of the screen. How can 
this be achieved? The screen memory needs to be moved “to the left”, and then we need 
information to bring in the new characters from the right. OK, this seems to build on an idea 
to have letters stored as graphics. Hum, yes, we have a font collection in a degas file. In that 
way, we’ll have letters in graphics format, we can take the information from the font file and 
put it on the screen. Then, we move the screen memory to the left. Easy? No, damn hard for 
a first timer at least. 

Included in this tutorial should be a file called FONT.PI1, this is the font file, I stole it from 
James Ingram’s demo tutorials, so I wouldn’t have to make my own. Immediately load this 
up and look at it, either using Degas, the program from Chapter 6 or any other method. 
Lucky lucky, lots of characters to choose from. Each character is 32 * 32 pixels big, resulting 
in 10 characters per line. This is all well and fine, the next step is to actually know how to 
point to the beginning of, for example, letter ‘C’. If we know where this letter begins, we can 
put it on our screen simply by moving the data into the screen memory. Just as we did when 
displaying a whole picture. 



 7 On Scrollers 

 35 

 
Figure 1 - FONT.PI1 

The font picture is aligned with the ASCII table, meaning that it looks like the ASCII table 
does. In Appendix C – ASCII Table, by Stephen McNabb, on page 148 – you’ll find an ASCII 
table, in which you can look up the number for each character. As you can see, space (the 
first character in the font), begins at $20, then comes ‘!’ at $21 and so on. This means, that if 
we take the ASCII value for a character, and subtract by $20, we’ll have the corresponding 
number in the font. Hum, a test perhaps. ‘C’ is at $43 in ASCII, subtract $20 makes $23, 
which is 35 (decimal). There are 10 characters per line, so we skip to the fourth line, begin 
counting; 0 (>), 1(?), 2(@), 3(A), 4(B), 5(C), yay, right on! (remember to start counting from 
0). 

Now we need to know what address this is at. The way to do this is to put the beginning of 
the font picture address in an address register, and increment by a number. Think of the font 
as a coordinate system, then ‘C’ would be at 3,5. We need to increment the pointer by a 
certain value for each coordinate, this shouldn’t be to hard. 

Each line is 160 bytes, and each character is 32 lines. This means that for every Y coordinate, 
we need to increment the pointer by 32 * 160 bytes, right? Think about it, if we want ‘*’ 
which is on the second line (1,0), we need to point to the font address + 32 lines down. Each 
character is 32 pixels wide, 16 pixels are 4 words, taking up 8 bytes, we need twice this. So 
for each X coordinate, we need to increment the pointer by 16 bytes. 

Does this seem right? Let’s try. We want letter ‘C’, at 3,5. Thus we should increment by 
3*32*160 + 5*16 = 15440 bytes. ‘C’ is about the middle of the screen and 15440 is about 
half of 32000, so it seems safe to assume that the formula above is working. Question is, 
how do we get the X and Y coordinates? We had a value for C, right, that was 35. The first 
digit seems to be the Y coordinate, and the second the X coordinate. If we divide 35 by 10 
we get 3.5. 3 is the quotient and 5 the remainder. The instruction divu (DIVide Unsigned) 
puts the quotient in the lower word of a data register, and the remainder in the higher word. 
Swap is an instruction that swaps the low and high word in a data register. Great! We now 
have what we need. The code looks like this: 
 move.l #character,a0 points to character 

 move.l #font+34,a1 points to pixel start 

 

 move.b (a0),d0 put letter ascii value in d0 
 

 add.b #-$20,d0 align asciin with font number 

 divu #10,d0 10 letters per row 
 

 move.w d0,d1 d1 contains y value 

 swap d0 
 move.w d0,d2 d2 contains x value 

 

 mulu #16,d2 16 bytes for each letter 
 mulu #32,d1 32 lines per row 

 mulu #160,d1 160 bytes per row 

 
 move.l #font+34,a0 put font screen start in a0 

 

 add.l d2,d1 add x and y value together 
 add.l d1,a0 a0 points to correct letter 

 



 7 On Scrollers 

 36 

 section data 

font incbin font.pi1 
character dc.b “C” 

 

Since each character is an ASCII value, we only use a byte to represent it. If we put things 
inside “”, that means we want the ASCII value. So the message dc.b “C”, means that 
message is a byte containing the ASCII value for C. We could just as well have written 
message dc.b $43, but this is more difficult to understand. Hopefully, the code will speak for 
itself with the comments and the theory given above. This is not a complete program, but 
just a code snippet to show the font part. More will follow. 

We know how to point to the font, now we need to know how to shift the screen memory, in 
order to achieve the scrolling effect. One would think that all it took was a big loop moving 
bytes. Like so (a0 and a1 contain the address of the screen memory) 
 add.l #1,a1 put a1 8 pixels ahead of a0 

 move.l #159,d0 scroll a line 

loop 

 move.b (a1)+,(a0)+ 

 

For each loop we take the byte one byte ahead, and move it one byte to the left. This should 
move 8 pixels each loop, right? Wrong! Totally wrong! The screen is made of 16 pixel 
clusters, each cluster being 8 bytes long. So when you just barge in and move single bytes 
like that, you’ll misalign the whole shit. Not only will the colours be misaligned, the pixels will 
be as well. Consider this memory configuration. 

First byte Second byte  
%11000000 %00000000 first word 
%11000000 %00000101 second word 
%01000000 %00000110 third word 
%01100000 %00000000 fourth word 
%00000000 ... fifth word 

   
$3F800000 $00000642 pixels 

 

If we use the move loop from above, the first byte will drop out, the second byte will be 
moved into the first byte, the first byte of the second word will go into the second byte of the 
first word and so on, in the end, we get this. 

First byte Second byte  
%00000000 %11000000 first word 
%00000101 %01000000 second word 
%00000110 %01100000 third word 
%00000000 %00000000 fourth word 

   
$00000542 $17400000 pixels 

 

Not really, the pixels we had before. So, in order to overcome this in an easy way we move 
16 pixels each time. This will produce a very fast scroller, but an easy one to code for. If we 
move 16 pixels, we won’t have to worry about getting misaligned bitplanes, since the 16 pixel 
clusters will never be broken up, like they were above. a0 and a1 contains the screen 
address, while a2 points to the character in the font. 
 add.l #8,a1 put a1 16 pixels ahead of a0 

 move.l #31,d1 32 lines to scroll 

 move.l #18,d0 19 16 pixel clusters + font part 
 scroll 



 7 On Scrollers 

 37 

 move.w (a1)+,(a0)+ 

 move.w (a1)+,(a0)+ 
 move.w (a1)+,(a0)+ 

 move.w (a1)+,(a0)+ 16 pixels moved 

 dbf d0,scroll keep moving 16 pixel clusters 

 move.l #18,d0 reset loop counter 

 move.w (a2),(a0)+ 

 move.w 2(a2),(a0)+ 
 move.w 4(a2),(a0)+ 16 pixels of the font 

 move.w 6(a2),(a0)+ character moved in 

 add.l #8,a1 increment screen pointer, align with 
a0 

 add.l #160,a2 next line of font 

 dbf d1,scroll do another line 

 

This is all just a bunch of move words, and some adds to keep everything aligned. The first 
move section will move 4 words from a1, which points one 16 bit cluster ahead of a0, to a0. 
This is repeated 19 times. After this loop, a0 points to the beginning of the last 16 pixel 
cluster, and a0 points to the beginning of the second line. For the last 16 pixel cluster, we 
want information from the font, not from the screen. So here we move information from a2 
into a0. Instead of post incrementing a2, I use indexes. After the font data is moved onto the 
screen, I add 8 to a1, so that it will again be 16 pixels ahead of a0. Since a0 was incremented 
during the font move part, and a1 was not. 160 is added to a2, so that the font pointer will 
now point to the next line in the font. Repeat for 32 lines. 

Now the two most important techniques have been covered, how to know where the 
character is in the font, and how to scroll. Now we mix and match. In order to synchronize 
the entire scroller to the VBL, I put a wait VBL trap in the beginning of the main loop. Then I 
do my stuff, and in the end of the main loop, I check if the space bar is pressed, if it is, just 
drop out of the loop. If space bar is not pressed, then the main loop will begin again, with a 
VBL wait, making sure that the main loop is looped through at 50 times a second. You’ll 
probably be wondering exactly how I determine whether the space bar is pressed. 

This little piece will do the trick: cmp.b #$39,$fffc02. Uh, says you, looking at the ASCII table 
(hopefully) and wondering how $39 can be space, when it should be $20. The $fffc02 part 
can be easily guessed, this is probably where the last key press end up, but why $39? ASCII 
deals with characters, and special characters like line feed and so. There’s also something 
called scan codes. Every key on the keyboard has its value, its scan code, so you’ll be able to 
determine what key was pressed. Look at the picture below: 

 

 
Figure 2  Keyboard Scan Codes 

 

While we’re still on the topic, I might as well give you the full detail. You can also check when 
a key is released, not just pressed. When the key is released, the high bit of $fffc02 is set, 
meaning you get a whole different value. Consider this. 

%00111001 $39 space pressed 
%10111001 $b9 space released 

 



 7 On Scrollers 

 38 

So, if you cmp.b #$b9, then you check if space is released. This can be used in many fun 
ways, like changing the background to red when space is pressed, then checking to see when 
space is released and then restore background. Or accelerate a car in a car game until the 
button is released, at which time you begin deceleration. I don’t know how often this is 
updated or how fast you can really press keys. Say for example that you check $fffc02 every 
VBL to see what key is pressed and released, suppose this dude is like Flash, and manage to 
press a button, then release it and press another within 1/50 of a second, then you’d loose 
the check for the release of the key, but I doubt you’ll have to worry about this. Back to 
reality, here’s the scroller. 
 jsr initialise 
 

 movem.l font+2,d0-d7 

 movem.l d0-d7,$ff8240 
 

 move.w #2,-(a7) get physbase 

 trap #14 
 addq.l #2,a7 

 move.l d0,screen store screen memory 

 
main 

 move.w #37,-(sp) wait vbl 

 trap #14 

 addq.l #2,sp 

 

 cmp #0,font_counter check if new character in message 
 bne has_character if not, skip get new character 

 

 move.w #2,font_counter reset font_counter 
* we need to point to a new character in the font 

 

 move.l message_pointer,a0 pointer into the message 
 clr.l d0 clear, just to be sure 

 move.b (a0),d0 put letter ascii value in d0 

 
 cmp #0,d0 end of message? 

 bne not_end if not, branch 

 
 move.l #message,message_pointer reset message_pointer 

 move.l message_pointer,a0 

 clr.l d0 clear, just to be sure 
 move.b (a0),d0 put letter ascii value in d0 

 

not_end 

* now we have a character in d0 for sure 

 add.l #1,message_pointer point to next character 

 
 add.b #-$20,d0 align ascii with font number 

 divu #10,d0 10 letters per row 

 
 move.w d0,d1 d1 contains y value 

 swap d0 

 move.w d0,d2 d2 contains x value 
 

 mulu #16,d2 16 bytes for each letter 

 mulu #32,d1 32 lines per row 
 mulu #160,d1 160 bytes per row 

 

 move.l #font+34,a0 put font screen start in a0 

 

 add.l d2,d1 add x and y value together 

 add.l d1,a0 a0 points to correct letter 
 

 move.l a0,font_address store calculated pointer 

 
has_character 

 add.w #-1,font_counter 

 



 7 On Scrollers 

 39 

 move.l screen,a0 

 move.l screen,a1 
 move.l font_address,a2 

 add.l #8,a1 put a1 16 pixels ahead of a0 

 

 move.l #31,d1 32 lines to scroll 

 move.l #18,d0 19 16 pixel clusters + font part 

scroll 
 move.w (a1)+,(a0)+ 

 move.w (a1)+,(a0)+ 

 move.w (a1)+,(a0)+ 
 move.w (a1)+,(a0)+ 16 pixels moved 

 dbf d0,scroll keep moving 16 pixel clusters 

 
 move.l #18,d0 reset loop counter 

 

 move.w (a2),(a0)+ 
 move.w 2(a2),(a0)+ 

 move.w 4(a2),(a0)+ 16 pixels of the font 

 move.w 6(a2),(a0)+ character moved in 

 add.l #8,a1 increment screen pointer, align with 
a0 

 add.l #160,a2 next line of font 

 

 dbf d1,scroll do another line 
 

 add.l #8,font_address move 16 pixels forward in font 

 
 cmp.b #$39,$fffc02 space pressed? 

 bne main if not, repeat main 

 
 

 jsr restore 

 

 clr.l -(a7) 

 trap #1 

 
 include initlib.s 

 

 
 section data 

 

font incbin font.pi1 
 

screen dc.l 0 

 
font_address dc.l 0 

 

font_counter dc.w 0 

 

message dc.b "A  COOL  SCROLLER!    BUT  A  BIT  FAST," 

 dc.b "  SCROLLING  16  PIXELS  EACH  VBL." 
 dc.b "    THAT'S 2.5 SCREENS EACH SECOND!" 

 dc.b "             ",0 

 
message_pointer dc.l message 

 

There are really only two more small things that are new; the font counter and the message 
pointer. Also take note how I put in the scrolling message, by just using lots of dc.b, and a ‘0’ 
as an end control character. By changing the text here, you can obviously change the scroller 
message. Perhaps to the well known “Hello World!”, which I most deliberately avoided. 

So what’s the font counter and message address? Well, the font counter keeps track of when 
it’s time to calculate a new address for a new character. This is set to 2, because every 
second loop, a whole character has been moved to the screen and the address for the next 
character in the message will have to be calculated. Had we scrolled 8 pixels each VBL, the 
font counter would have been set to 4 instead. 



 7 On Scrollers 

 40 

The message pointer is an index into the message. In order to know which character to get 
next time, we must have some pointer into the message. The message pointer begins by 
pointing to the message, which is good, since that’s where the first character is. The first 
time through the main loop, the font counter will announce that an address for a new 
character will have to be calculated. That address is calculated and stored. The message 
pointer will then point to the next character in the scroller message, which is space, and so 
on. When the whole message has been scrolled through, the value 0 (not character ‘0’) will 
be moved from the message. This is a signal that the message is at an end, and the message 
pointer will be reset, once again pointing to the start of the message. I hope it’s 
understandable, the one tricky part is all the tests and branches, just walk through them a 
couple of times, slowly. You can use pen and paper for this, or the MonST. 

We’ve begun to get somewhere. If you’ve paid attention so far, you’ll have acquired quite 
some programming skills. There are still some basic things to cover, in order to be really self 
sufficient (mainly timers, double buffering, sprites and bit manipulation) but you’re on a good 
way. Now might be the time to look at alternative sources and learn something from there. 
For example, you could begin to look at James Ingram’s demo coding tutorials. That was 
where I began, I found them quite hard but now we’ve gotten more or less to the level 
where he begins his stuff. That is that from me right now. Upon request from mOdmate of 
Checkpoint, the next tutorial will probably be on timers, I think. This means we’ll be able to 
remove the bottom and top borders, cool stuff! 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 41 

8 Of Scrolling 8 Pixels Per VBL Using 
Double Buffer 

“Be formless, shapeless, like water. Now you put water into a cup; 
it becomes the cup. You put water into a bottle; it becomes the 
bottle. You put it into a tea pot; it becomes the tea pot. Now water 
can flow, or it can crash. Be water my friend.” 

- Bruce Lee 

 

In the last few days, I’ve had the great opportunity to get lots of introduction to the Atari 
scene. mOdmate of Checkpoint told me about #atariscne, and since then he’s guided me 
through the stuff, giving me links to good sites and generally telling me what I need to know 
to orient myself. I’ve met some great people that have helped me understand things and 
being a better coder. Also, let’s not forget the importance of Maarten Martens for converting 
this text file to html and banging me on the head whenever I take a wrong step. I could not 
write this stuff alone, lots of thanks to all of you who make this text possible. I also want to 
thank God, for giving me the luck and opportunity to be where I am, my mother for giving 
birth to me and always being there and all … (end of Hollywood speech) 

In order to get an even better understanding of the bit planes, I’ve done an 8 pixel scroller. 
The thing with this is that you must be careful not to misalign the bit planes, which we didn’t 
have to worry about when scrolling 16 pixels per VBL. Since not to much have changed since 
the 16 pixel scroller, I thought I’d cover some other stuff as well. 

First, I need to cover the shift command in order to be able to tell you about double buffering 
(there are more than one shift command, but they’ll be covered later). The shift command 
will shift bits either left or right, as many “slots” as you want to. The command for shifting 
left is lsl, meaning Logical Shift Left, and right is lsr for Logical Shift Right. If you have a 
number in d0 and right shift, like so 
 move.l #%10110001,d0 d0 = 177 

 lsr.l #2,d0 

 

then d0 will contain 
  %00101100 44 

 

all bits will jump two spaces to the right, and 0’s have moved in from the left. Also note that 
this was the same as dividing 177 by 4 and throwing away the remainder. Left shifting will 
move bits to the left, and move 0’s in from the right. Right shifting one is the same as 
dividing by 2. Thus a lsr.l #2 is the same as divu.l #4, and a lsl.l #2 is the same as a mulu.l 
#4. Only thing is that a shift is soooo much faster than a mulu or divu, but more on that 
later. It’s very important to note how big the shift area is, if you have a data register filled 
with bits, but only shift a word, lsr.b, only the first 8 pixels will be affected. Like so 

 Upper byte Lower byte 
d0 = %10101010 %10101010 

 
 lsr.b #4,d0 

 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 42 

 Upper byte Lower byte 
d0 = %1010101 %000001010 

 

Note how the upper byte of the word was completely unchanged by the shift operation, since 
we used a lsr.b operation. 

Now we can go on with double buffering. This is an extremely important technique. The 
screen is painted by an electron beam that goes from upper left, and then sweeps one 
horizontal line, down to the bottom right, just as the screen coordinates. Now, what happens 
if you start to make changes to the screen where the electron beam is painting? You will 
experience flicker or a distorted line or any other horrible thing. In short, when you write to 
screen memory, you’ll most likely interrupt the electron beam in its work. 

It is possible to change the area of memory that is the screen memory, any area of memory 
can be the screen memory actually. So for every VBL (or even often), we can change what 
area of memory is the screen memory. A solution begins to crystallize. We have to screen 
area sized areas of memory, one which is the actual screen memory (being shown on the 
monitor) and the other works as a buffer. 

What we do is to update the buffer, while leaving the other screen alone, in this way, nothing 
will happen to the screen memory while the electron beam is painting. Then, just in the 
beginning of the next VBL, we make the buffer the screen memory and the screen memory 
the buffer. In this way, we will never paint to the actual screen memory. One can also all the 
memory that is being displayed for the physical base, and the area of memory not being 
displayed for the logical base. So far, we’ve gotten the address to the physical base by calling 
trap #2 of the XBIOS, if you call trap #3, you’ll get the logical base. Usually, both of these 
point to the same memory area. 

Instead of getting the physical address from the Atari, we will now define our own area of 
memory and input that address directly into memory. There’s only one important thing to 
know about the screen memory; it must be on a 256 byte boundary (unless you have a Ste). 
What this means is that the start address of the screen memory must be a multiple of 256. 
This can be achieved by clearing the lower byte of the address, meaning that you’ll need 256 
bytes extra memory for your screen memory, so you can clear the lower byte. Why? Because 
clearing away the byte will clear away anything not multipliable by 256, the size of a byte. 

So, how do we make a memory area the screen memory? Smack up the memory.txt file, and 
search for something appropriate, like “screen”. We see this. 

$FF8201 byte Video screen memory position (high Byte)  R/W 
$FF8203 byte Video screen memory position (mid Byte) R/W 
$FF820D byte Video screen memory position (low Byte) R/W (Ste) 

 

Sure, ok, seems to be what we need. The low byte in $ff820d is for STe’s only, and should be 
cleared at all times to avoid trouble. Then the middle byte of the screen address goes into 
$ff8203 and the high byte goes into $ff8201. In order to get the middle and high byte of the 
screen address, we need to shift the address. By shifting down the eight bits constituting the 
byte, we can easily move out bytes from the screen address by move.b commands. 

 High byte Middle byte Low byte  
screen %00010111 %01001101 %10111110 $174dbe 

 

first we clear the low byte in order to put it on a 256 boundary. 
 move.l #screen,d0 

 clr.b d0 

 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 43 

 High byte Middle byte Low byte 
screen %00010111 %01001101 %00000000

 

now we need to move the middle byte into $ff8203 
 lsr.l #8,d0 

 

 High byte Middle byte Low byte 
screen %00000000 %00010111 %01001101

 

 move.b d0,$ff8203 

 

As you see, the middle byte gets shifted into the lower byte. With a move.b command the 
only thing we move is the lowest byte of d0. Thus, we have isolated the middle byte by 
shifting it into a more convenient position. Now for the last one. 
 lsr.w #8,d0 

 

 High byte  Middle byte Low byte 
screen %00000000 %00000000 %00010111

 

 move.b d0,$ff8201 

 

And that’s it. We have now cleared the lowest byte of the screen address, and moved the 
middle and high bytes of it into the correct memory position. screen is now the screen 
memory. The compact code snippet looks like this. 
 move.l #screen1,d0 put screen1 address in d0 

 clr.b d0 put on 256 byte boundary 
 

 clr.b $ffff820d clear STe extra bit 

 lsr.l #8,d0 

 move.b d0,$ffff8203 put in mid screen address byte 

 lsr.w #8,d0 

 move.b d0,$ffff8201 put in high screen address byte 
 

 section bss 

 ds.b 256 256 byte clear buffer 
screen ds.b 32000 the screen 

 

Now, this doesn’t make for any double buffer at all, since we’re only using one screen. In 
order to achieve double buffering, we need two screen areas, and two pointers to point to 
each area. In each VBL, one screen is made into screen memory, and then the pointers are 
flipped so that the other screen is made screen memory for next VBL. This really makes what 
you see on the screen appear 1/50th of a second slower than what you draw. 
 prepare addresses 

 make next and last point to screen1 and screen2 

main 

 wait VBL 

 
 move.l next,d0 

 make address in d0 screen address 

 
 move.l last,a0 

 move.l next,a1 load screens 

 move.l a1,last and flip them for next time around 
 move.l a0,next double buffering :) 

* loads the screen addresses and flips them around 

 do your stuff, like putting graphics to the address in a1 
 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 44 

 repeat main loop 

 
last dc.l 0 

next dc.l 0 

 

 ds.b 512 

screen1 ds.b 32000 

screen2 ds.b 32000 

 

I also thought we might mention timing as well. This is quite the issue really, as you must 
have understood, you can’t perform an infinite number of instructions. Important information 
is in two appendixes. Appendix F – MC68000 Instruction Execution Times, on page 153 – 
explains how much time it takes to do each instruction. This can vary greatly, for example, a 
division takes way over 100 clock cycles, and a shift takes under 10, so you see, it’s a good 
thing to replace your divu’s with lsl’s if possible. Also, when you can, work with byte or word 
size, instead of long, since this saves some time also. Clock cycle is the quantity in which 
“time” is measured. Each instruction takes a certain amount of clock cycles. 

Appendix G – Pixel Timings, by Jim Boulton, on page 157, was extracted by me from the ST 
Internals text file by Jim Boulton. One interesting thing to note there is the amount of clock 
cycles per VBL; 160256. This is a very exact number, and if your main loop ever takes more 
time than that, you’re screwed (if you work with VBL main loops as we’ve done so far that is). 
One way to get a graphical pointer of how much time your main routine does take, is to 
change the background colour just at the start of the routine, then change it back in the end. 

Let’s say we have a routine that takes 80000 clock cycles, our original background is black, 
but in the beginning of our main loop, we set it to red. What will happen is that the electron 
beam will paint red background, but when our 80000 clock cycles worth of instructions have 
taken place, the background is switched back to black, which means that for the time it takes 
to wait for the next VBL, the electron beam will paint black. So, in this case, the screen would 
be half red background and half black background. If we use this technique, we’ll see exactly 
how much time our main routine takes. The example program in this tutorial takes up most 
of the processor, which leaves little time for other stuff to be done. Granted, the scroller is 
completely un-optimized. 

Phew, now we have covered lots of small things of big importance. Finally, now comes the 8 
pixel scroller part. Just look at the source code, it’s well commented. Nah, I’m just kidding 
with you, of course I’ll explain. Since we now want to scroll 8 pixels, this means for starters 
that we need to move bytes. The first byte represents the first 8 pixels, and the second the 
coming 8 pixels. Then, the third word again has to do with the first 8 pixels, and the fourth 
word has to do with the 8 coming pixels and so on. Thus, we cannot simply barge in and do 
some scroll loop. We need to move every second byte. 

Index First byte Index Second byte  
0 %11000000 1 %00000000 first word 
2 %11000000 3 %00000101 second word 
4 %01000000 5 %00000110 third word 
6 %01100000 7 %00000000 fourth word 

0-7 $3F800000 8-15 $00000642 pixels 
 

Index First byte Index Second byte  
8 %00000110 9 %00100000 first word 
10 %00000010 11 %00100100 second word 
12 %00000000 13 %10000010 third word 
14 %00100010 15 %00010000 fourth word 

16-23 $008001B0 24-31 $40380240 pixels 
 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 45 

It is tempting to read the memory top down, but this is not so, it is to be read from left to 
right. So index 5 for example is the second byte in the third word, and affects pixels 8 – 15. 
The memory without comments look like this, split into bytes for ease of reading. 

%11000000, %00000000, %11000000, %00000101, %01000000, %00000110, %01100000, 
%00000000, %00000110, %00100000, %00000010, %00100100, %00000000, %10000010, 
%00100010, %00010000, … 

So in order to scroll 8 pixels, index 0, 2, 4 and 6 will de dropped, because they represent the 
first 8 pixels. Then index 1, 3, 5 and 7 will be moved into index 0, 2, 4 and 6. Then index 8, 
10, 12 and 14 will be moved into index 1, 3, 5 and 7. Then index 9, 11, 13 and 15 will be 
moved into index 8, 10, 12 and 14. This will make pixels 0-7 to drop, 8-15 to be moved into 
0-7, 16-23 will be moved into 8-15 and 24-31 will move into 16-23. After these move 
instructions, the memory will look like this 

Index First byte Index Second byte  
0 %00000000 1 %00000110 first word 
2 %00000101 3 %00000010 second word 
4 %00000110 5 %00000000 third word 
6 %00000000 7 %00100010 fourth word 

0-7 $00000642 8-15 $008001B0 pixels 
 

Index First byte Index Second byte  
8 %00100000 9 … first word 
10 %00100100 11 … second word 
12 %10000010 13 … third word 
14 %00010000 15 … fourth word 

16-23 $40380240 24-31 … pixels 
 

It is of the utmost importance that you realize why this is so. If you do not, set yourself down 
and work it out until you get it and understand it 100%. Without understanding this, you’ll 
not understand bit planes, without understanding bit planes, you can’t understand how the 
graphics on the Atari works. Expressed in code, this will be (a0 points to screen memory) 
 move.b 1(a0),(a0) 
 move.b 3(a0),2(a0) 

 move.b 5(a0),4(a0) 

 move.b 7(a0),6(a0)  8 pixels moved 
 move.b 8(a0),1(a0)  watch carefully! 

 move.b 10(a0),3(a0) 

 move.b 12(a0),5(a0) 

 move.b 14(a0),7(a0)  first 4 word area filled 

 move.b 9(a0),8(a0)  start of second 4 word area 

 move.b 11(a0),10(a0) 
 … 

and so on. So first, four bytes are moved just one step to the left, but then you need to go 
into the next 4 word area, to fetch the bytes that go into the second area of the first 4 word 
area and so on. This is the theory behind 8 pixel scrolling, I don’t think I can explain it better 
than that. This is the source code for the scroller. 

 
 jsr initialise 

 
 move.l #screen1,d0 put screen1 address in d0 

 clr.b d0 put on 256 byte boundary 

 move.l d0,next store address 

 add.l #32000,d0 next screen area 

 move.l d0,last store address 

 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 46 

 movem.l font+2,d0-d7 

 movem.l d0-d7,$ff8240 palette moved in 
 

main 

 move.w #37,-(sp) wait vbl 

 trap #14 

 addq.l #2,sp 

 
 move.l next,d0 

 

 clr.b $ffff820d clear STe extra bit 
 lsr.l #8,d0 

 move.b d0,$ffff8203 put in mid screen address byte 

 lsr.w #8,d0 
 move.b d0,$ffff8201 put in high screen address byte 

 

 move.w #$707,$ff8240 to see clock cycles 
 

 cmp #0,font_counter check if new character in message 

 bne has_character if not, skip get new character 

 

 move.w #4,font_counter reset font_counter 

* we need to point to a new character in the font 
 

 move.l message_pointer,a0 pointer into the message 

 clr.l d0 clear, just to be sure 
 move.b (a0),d0 put letter ascii value in d0 

 

 cmp #0,d0 end of message? 
 bne not_end if not, branch 

 

 move.l #message,message_pointer reset message_pointer 
 move.l message_pointer,a0 

 clr.l d0 clear, just to be sure 

 move.b (a0),d0 put letter ascii value in d0 
 

not_end 

* now we have a character in d0 for sure 
 add.l #1,message_pointer point to next character 

 

 add.b #-$20,d0 align ascii with font number 

 divu #10,d0 10 letters per row 

 

 move.w d0,d1 d1 contains y value 
 swap d0 

 move.w d0,d2 d2 contains x value 

 
 mulu #16,d2 16 bytes for each letter 

 mulu #32,d1 32 lines per row 

 mulu #160,d1 160 bytes per row 
 

 move.l #font+34,a0 put font screen start in a0 

 
 add.l d2,d1 add x and y value together 

 add.l d1,a0 a0 points to correct letter 

 

 move.l a0,font_address store calculated pointer 

 

has_character 
 add.w #-1,font_counter 

 

 move.l last,a0 
 move.l next,a1 load screens 

 move.l a1,last and flip them for next time around 

 move.l a0,next doubble buffering :) 
 move.l font_address,a2 font address 

 

 move.l #31,d1 32 lines to scroll 
 move.l #18,d0 19 16 pixel clusters + font part 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 47 

scroll 

 move.b 1(a0),(a1) 
 move.b 3(a0),2(a1) 

 move.b 5(a0),4(a1) 

 move.b 7(a0),6(a1) 8 pixels moved 

 move.b 8(a0),1(a1) watch carefully! 

 move.b 10(a0),3(a1) 

 move.b 12(a0),5(a1) 
 move.b 14(a0),7(a1) first 4 word area filled 

 

 add.l #8,a0 jump to next 4 word area 
 add.l #8,a1 jump to next 4 word area 

 dbf d0,scroll keep moving 16 pixel clusters 

 
 move.l #18,d0 reset loop counter 

 

 move.b 1(a0),(a1) 
 move.b 3(a0),2(a1) 

 move.b 5(a0),4(a1) 

 move.b 7(a0),6(a1) 152 pixels scrolled 

 

 move.b (a2),1(a1) now last 8 pixels from font 

 move.b 2(a2),3(a1) 
 move.b 4(a2),5(a1) 

 move.b 6(a2),7(a1) 8 pixels from font 

 
 add.l #8,a0 point to beginning of next line 

 add.l #8,a1 point to beginning of next line 

 add.l #160,a2 next line of font 
 dbf d1,scroll do another line 

 

 add.l #1,font_address next byte in font 
 cmp #2,font_counter see if it's time to change 

 bne font_increment 

 add.l #6,font_address align to next 16 pixels 
font_increment 

 

 move.w #$0,$ff8240 black background again 
 

 cmp.b #$39,$fffc02 space pressed? 

 bne main if not, repeat main 

 

 jsr restore 

 
 clr.l -(a7) 

 trap #1 

 
 include initlib.s 

 

 
 section data 

 

font incbin font.pi1 
 

screen dc.l 0 

 

font_address dc.l 0 

 

font_counter dc.w 0 
 

message dc.b "A COOL SCROLLER!   MOVING 8 PIXELS PER VBL " 

 dc.b "AND USING DOUBBLE BUFFERING    ",0 
 

message_pointer dc.l message 

 
next dc.l 0 

last dc.l 0 

 
 



 8 Of Scrolling 8 Pixels Per VBL Using Double Buffer 

 48 

 section bss 

 
 ds.b 256 

screen1 ds.b 32000 

screen2 ds.b 32000 

 

Not too much has been changed since the 16 pixel scroller. In the beginning, there’s the code 
for setting up two screen areas. Then, in the main routine, we put one screen address in. 
Notice also how the font_counter is now 4 instead of 2, because we only need new font data 
every fourth VBL. The scroller part however is completely new, not surprising is it? It begins 
with loading both screen areas into a0 and a1, and then flips them for next time around. Data 
is moved as described above for 19 loops, this means 304 pixels are moved, the last 16 need 
special care though. 

First 8 pixels scrolled as usual, but the last 8 must come from the font. This is also not to 
strange, since every second byte is moved into the second bytes of the words on the screen. 
Then 1 is added to the font address, to point to the second bytes in the words. However, this 
won’t quite do, as you may know. The step from the second byte of the first 16 pixels to the 
first byte of the coming 16 pixels is a bigger jump than 1, as described above. 

In order to make this bigger step, I test the font_counter, to see if it’s time, and then add 
another extra 6 to the font, making it point to the right place. If we don’t do this extra 
addition, 16 pixels will be moved in from the font ok, but when pixels 16 – 24 are about to be 
moved, the font address will point to index 2 (meaning the first 8 pixels again) instead of 
index 8 into the font memory. Just scroll up to the memory example, then work through the 
scroll loop on a piece of paper or in your head and it will hopefully become obvious. If it 
doesn’t, mail me. 

That, I think, was that. The big problem here is the understanding and alignment of bytes in 
the bit plane. What to keep in mind really is that first, take every second byte, then jump a 
bit to get on the next 16 pixel boundary, then continue in that way. Indexing goes like 0, 1, 
8, 9, so to speak. Thus, every second time there’s a little gap. Since I didn’t do any timers 
this tutorial, maybe we’ll do them next time. 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 49 

9 Of Revealing The Unseen And 
Expanding Our Consciousness 
Without The Use Of Illegal Drugs 

“In strategy it is important to see distant things as if they were 
close and to take a distanced view of close things. It is important 
in strategy to know the enemy’s sword and not to be distracted by 
insignificant movements of his sword. You must study this. The 
gaze is the same for single combat and for large-scale strategy.” 

- Book of Five Rings, by Miyamoto Musashi 

 

It’s been a while since the last tutorial, almost a month actually, sorry for that. I’ve had a 
rough class in school, but that’s no excuse since I found lots of time to play computer games. 
I just haven’t felt up to it. Now, summer holidays are on and I plan on coding some for 
myself, besides the tutorials, but since I need the knowledge myself, you can look forward to 
a tutorial on sprites and how to handle the joystick (with that, one could make a nice shoot-
em-up game, yay). This tutorial however, will, as promised some while back, cover timings. 
To have some practical example to work with, I’ll show you how to do the neat trick of killing 
the upper and lower border. 

But now for something completely different: Boolean algebra. Boolean algebra states that the 
world is neatly and nicely built up of true or false, black or white, good or evil, 1 or 0. The 
last bit there applies to us as computer programmers. Boolean algebra is all about bit 
manipulation. There are a few so called logical operands, that you can use to compare two 
bits to each other, and get the result true or false (1 or 0) from the equation. The ones I will 
cover here are AND, OR and EOR (exclusive or). In each case, there are two bits involved, 
resulting in four different combinations of those bits, this is to hard to put in words, see 
below for how it works. 

 

AND 
bit 1 bit 2 result 

1 1 1 
0 0 0 
1 0 0 
0 1 0 

 

OR 
bit 1 bit 2 result 

1 1 1 
0 0 0 
1 0 1 
0 1 1 

 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 50 

EOR 
bit 1 bit 2 result 

1 1 0 
0 0 0 
1 0 1 
0 1 1 

 

For an AND operation to be true, both operands need to be true (in programming lingo, that 
means that the result of an and operation is 1 if both bits are 1). For an OR operation to be 
true, either one or both of the operands must be true. For an EOR operation to be true, 
either one, but not both, of the operands must be true. 

These kinds of operations become extremely important when doing stuff to the screen 
memory later on. For example, imagine you have a screen filled with colour (all 1’s in the 
screen memory), and you want to clear out just that one bit in a certain place. You then 
prepare a so called mask, and AND it in. A mask really is a quantity, that is to be applied in a 
logical operation on another quantity, in order to produce the result you want, that is one 
hard and stupid way of explaining it. Example again, in this example, we want to clear the 
most significant bit and keep the others intact. 

 

Mask %01111111 

Memory %11111111 

and mask, memory %01111111 

 

When performing AND here, you just compare bits one after another, in the most significant 
bit, the and operation becomes false, thus the result is 0, and in all other cases, it’s true. So 
by having this mask, and ANDing it with the screen memory, we have a good way of clearing 
away bits, we could create a raster by using a %10101010 mask. 

Each operation, that is AND, OR and EOR, is good for different things. As we have seen, AND 
is good for clearing bits. EOR is good for many things, but the most obvious one is flipping 
bits, if you EOR a bit with 1, that bit will always “flip” (go from 1 to 0, or 0 to 1). OR is good 
when you want to set some bits, no matter what value they had before, it’s called setting a 
bit when you make it 1, or true. So AND clears, OR sets and EOR flips, that really covers 
most things that need to be done. Of course, you can most likely come up with devious plots 
to do different things than the ones we’ve gone through here. 

Now, onto timings! When an exception occurs, normal program execution halts and the ST 
looks at a certain vector (memory position) depending on the kind of exception, and then 
executes what it finds there. What this means is that when an exception occurs (exceptions 
are “special events”) the Atari looks for an address pointer at a given address, and jumps 
there. For example, when an address error occurs, there is an address error exception. The 
address at $00c is the address error exception address, so every time there is an address 
error, the ST will jump to the address found at $00c. This address, we can change ourselves. 
 into supervisor mode 

 

 move.l $00c,-(a7) backup address error vector 
 move.l #address_error,$00c put our own routine there 

 make address error occur for example, an uneven address call 

 move.l (a7)+,$00c restore address error vector 

 

 into user mode 

 
 exit 

 

address_error 
* our own address error routine, replacing the normal address error routine 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 51 

 output error text, or do something else, freedom of choice 

 rte  return from exception 
 

 In normal cases, when there is an address error, there will be three bombs on the 
screen, but with the little program above, we can change what happens when an address 
error occurs. We could make the address error routine do anything, like changing background 
colour; quite fun, every time there is an address error, instead of three bombs, the 
background colour changes. The program above won’t really work, some things are missing, 
you will replace the bombs with some effect of yours, but the ST will probably hang in all 
sorts of ways, it’s just provided as a demonstration. As a side note, whenever an exception 
occurs, the status of the ST is also saved at $384 and a bit forward, you can read exactly 
about that in “ST Internals” pp. 235-237. The “ST Internals” is a great book by Abacus 
Software, that describes much of the hardware of the ST 

The ST has several timing pulses, that generate exceptions, this means that we can control 
these timing pulses and make them work for us. I’ll explain the simplest one, the $70 vector. 
Every VBL, an exception occurs and the ST jumps to the address stored at $70. So instead of 
using the old way we’ve been using with doing a VBL check at the start of our main routine, 
we can put our main routine in the $70 vector, because it will start every VBL! All exceptions 
must end with a rte command, ReTurnException, compare this to the rts command. Here’s a 
little pseudo code on the usage of the $70 vector. 

 
 into super mode 

 move.l $70,old_70  backup $70 

 move.l #main,$70 

 wait key press 

 move.l old_70,$70  restore $70 
 out of super mode 

 end program 

 
 main 

 do stuff 

 rte 
 

 dc.l old_70 

 

The thing here which might seem a bit strange is the wait key press and then just a clean 
exit. Well, the thing is that once we hook up the $70 vector, the main routine will be 
executed every VBL, so while the ST waits for a key to be pressed, the main routine will 
execute. In a bigger program, you can start off by hooking up, say a music routine on the 
$70 vector, then load in lots of stuff from disk, meanwhile, the music will play, then after 
loading is finished, you change the $70 vector to the real program so to speak. Endless 
possibilities :) 

Oh, btw, the routine may not take more than 1/50th of a second to perform, because if it 
does, the ST will call the routine again, while you are still executing it and that won’t work. 
Use the background colouring method from the last tutorial to see how much time your 
routine takes. Also, you must backup all your registers and restore them at start and finish of 
the $70 routine, otherwise your computer might crash for some strange reasons. Here’s how 
to do that really simple, by pushing and popping them on and off the stack. 

 
vbl 

 movem.l d0-d7/a0-a6,-(a7) backup registers 

 …  do stuff 
 movem.l (a7)+,d0-d7/a0-a6 restore registers 

 rte  exit vbl routine 

 

Btw, using the $70 vector for your main instruction is slightly faster than the technique we 
used before. There is a little chip in the ST that is called MFP, for Multi Functional Peripheral, 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 52 

it can do lots of cool stuff, but right now we’re interested in its timers, there are four timers 
that control timing pulses, and we will be interested in looking at one of them; Timer B. This 
is the complete list of the MFP registers, all are 8 bits. 

 

address register 
$fffa01 parallel port 
$fffa03 Active Edge register 
$fffa05 Data direction 
$fffa07 Interrupt enable A 
$fffa09 Interrupt enable B 
$fffa0b Interrupt pending A 
$fffa0d Interrupt pending B 
$fffa0f Interrupt in-service A 
$fffa11 Interrupt in-service B 
$fffa13 Interrupt mask A 
$fffa15 Interrupt mask B 
$fffa17 Vector register 
$fffa19 Timer A control 
$fffa1b Timer B control 
$fffa1d Timer C & D control 
$fffa1f Timer A data 
$fffa21 Timer B data 
$fffa23 Timer C data 
$fffa25 Timer D data 
$fffa27 Sync character 
$fffa29 USART character 
$fffa2b Receiver status 
$fffa2d Transmitter status 
$fffa2f USART data 

 

these are the vectors 

$134 Timer A vector 
$120 Timer B vector 

 

To make things difficult fore some strange reason, Atari decided that the names given to the 
MFP registers would be misnomers, at least I think they are. As I said, there are four timers. 
The timers share some registers, here’s how that’s broken down. 

 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 53 

Timer A 
all of 
$fffa19 Timer A control 
$fffa1f Timer A data 
bit 5 of 
$fffa07 Interrupt enable A 
$fffa0f Interrupt in-service A 
$fffa13 Interrupt mask A 

 

Timer B 
all of 
$fffa1b Timer B control 
$fffa21 Timer B data 
bit 0 of 
$fffa07 Interrupt enable A 
$fffa0f Interrupt in-service A 
$fffa13 Interrupt mask A 

 

Timer C 
bit 5 of 
$fffa09 Interrupt enable B 
$fffa11 Interrupt in-service B 
$fffa15 Interrupt mask B 

 

So you see, timer A and B share some registers, and only use one bit in those shared 
registers. OK, that’s a long list, but we don’t have to worry about to many of those addresses. 
We’ll only be using enable A, mask A, mask B, Timer B control, Timer B data and two vectors; 
$70 and $120, if that’s of any comfort. Right now, you are probably wondering your ass off, 
that’s ok, I did too the first time I read this. 

If you wonder about the MFP, and exactly where it is physically in the ST, it’s not necessary 
to know. You access the timer addresses just as you would any other address. The ST has 
many small chips that do stuff, like controlling the joystick, the sound and so on. The only 
thing you need to know to handle them is where they are in memory, every device is 
“mapped” to memory, so just think about the ST as one big list of memory positions, by 
changing the memory, you change the way the chips inside the ST work. 

It really is due time to do something practical with all of this. Timers A and B can be in one of 
many modes, controlled by Control A and Control B respectively. For Timer B, the most 
interesting one is #8, event count mode. When Timer B is in event count mode, it will 
interrupt for every Nth scan line , where N is the number put in Timer B data (thus 2 means 
every second scan line, 1 means every scan line). So if we put Timer B in event count mode, 
put number 1 in Timer B data, then the instructions found at $120 will be executed on every 
scan line, very much like $70 will be executed every VBL. For this reason, Timer B is also 
called HBL, Horizontal BLank. 

Now this is interesting and useful, finally. In order to turn timer B on, we must set bit 5 in 
both Enable A and Mask A. To manipulate certain bits we use the commands bset, for Bit SET 
and bclr for Bit CLeaR. Here’s how we actually do to make the ST jump to a certain address 
every scan line. 
 clr.b $fffffa1b disable timer b 

 move.l #timer_b,$120 move in my timer b address 
 bset #0,$fffffa07 turn on timer b in enable a 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 54 

 bset #0,$fffffa13 turn on timer b in mask a 

 move.b #1,$fffffa21 number of counts, every scan line 
 move.b #8,$fffffa1b set timer b to event count mode 

 

Now the address at #timer_b will be jumped to every scan line. What really fires away Timer 
B is the activation of the Timer B Control ($fffffa1b) when we put it in event count mode. 
Whenever we exit a Timer B exception, we must tell the ST a bit more specifically than when 
we exit from a $70 exception. We have to clear the 0 bit in in-service A, like this. 
 bclr #0,$fffffa0f tell ST interrupt is done 

 rte  return from exception 

 

You must also back up all registers you plan to use in the interrupt, or you’ll once again get a 
crash. So finally, we know how to use Timer B at least, and we have the power to know 
exactly at what scan line we’re at (do we really understand this?). It might be very frustrating 
with all those addresses and how they work and so, actually, it’s not so much to understand, 
rather just accept. When we put certain values into these registers, stuff will happen, 
memorize the addresses to make life easier, and just go about your work. 

So how do we kill borders? This also is somewhat “just do it and realize it works”. In order to 
kill the top and bottom border, you change from PAL (Phase Alternating Line) to NTFS 
(National Television Standards Committee) exactly on the correct scan line, then wait some 
for the effect to kick in and then back again. For killing the top border, it’s the first scan line, 
for killing the bottom border, it’s the last scan line. 

For killing the top border, you just wait some, about 15000 clock cycles, which will put the 
electron beam on the first scan line and then toggle PAL/NTFS, for killing the bottom border 
we check when we’re on the last scan line, and toggle PAL/NTFS. 

Did someone say toggle and check for scan line? Yes someone did (that was me), and 
haven’t we just learned how to do just these things; an exclusive or and Timer B will do the 
trick! Now we just need one more thing; how to change between PAL and NTFS, it’s probably 
in memory somewhere, so whip out Appendix B – Hardware Register Listing, by Dan Hollis, 
on page 132 – and do a search. 

The synchronization mode is controlled by bit 1 at address $ff820a. If this bit is 1, the system 
is in PAL (50Hz) mode, and if it’s 0 the system is in NTFS (60Hz) mode. Even though this will 
work and kill the borders, there will be lots of flickering due to Timer C and other interrupts 
interfering. The reason for the flicker is that the interrupts will interfere with our time critical 
calculations. To disable Timer C, just clear bit 5 of Mask B, to disable all interrupts, we have 
to mess around some with the status register. 

The status register is made up of 16 bits, the first 8 bits being the user bits and the next 8 
the system bits. The user bits are so called flags, and record the result of the latest 
operation. The system bits control interrupts, a trace bit and the supervisor bit. 

 

Bit Name 
0 Carry flag 
1 Overflow flag 
2 Zero flag 
3 Negative flag 
4 eXtended flag 
8 Interrupt 
9 Interrupt 
10 Interrupt 
13 Supervisor bit 
15 Trace bit 

 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 55 

The carry flag is set when the result of an arithmetic operation is too big to fit, this is the 
same as the little memory tag used by humans when adding or multiplying with pen and 
paper. Say we want to add a number and put it in d0.b, and the result is %100000000 = 
256, 9 bits won’t fit in d0.b, so d0.b will contain all zeros and the carry flag will be set. Also 
set when a borrow occurs in a subtraction. The overflow flag is set when the result of an 
arithmetic operation is too high to fit in the destination, like the add example above. The zero 
flag is set when the result of an operation is zero. The negative flag is set when the result is 
negative. The extended flag is as the carry flag in arithmetic operations, otherwise it can 
serve special functions given for each instruction. 

Note in all the flags the difference between arithmetic operations and other operations. The 
trace flag is set when the computer is in trace mode, as it is when debugging, performing 
only one instruction at a time. 

Depending on how the interrupt bits are set, the ST will accept different interrupt levels. In 
our case, the only interesting interrupt level is when all bits are set, because then all 
interrupts are disabled. So, we want to set bit 8, 9 and 10, but not touch any of the other 
bits. An OR operation has the power to set some bits, and leave all other alone. By ORing the 
status register with %0000011100000000, we make sure that bits 8 – 10 are set, and that all 
other bits are left as they were. In order not to have to write that cumbersome number each 
time, we instead use $0700, which is the same number. Of course, the status register must 
also be backed up. I’m tired of all theory, so I’ll just drop all source code in your face right 
now and go through it. 
 

 jsr initialise 
 

 movem.l picture+2,d0-d7 put picture palette in d0-d7 

 movem.l d0-d7,$ff8240 move palette from d0-d7 

 

 move.l #screen,d0 put screen1 address in d0 

 clr.b d0 put on 256 byte boundary 
 move.l d0,a0 a0 points to screen memory 

 

 clr.b $ff820d clear STe extra bit 
 lsr.l #8,d0 

 move.b d0,$ff8203 put in mid screen address byte 

 lsr.w #8,d0 
 move.b d0,$ff8201 put in high screen address byte 

 

 move.l #picture+34,a1 a1 points to picture 
 

 move.l #11199,d0 320*280 / 8 - 1 

loop 

 move.l (a1)+,(a0)+ move one longword to screen 

 dbf d0,loop 

 
 move.l #backup,a0 get ready with backup space 

 move.b $fffa07,(a0)+ backup enable a 

 move.b $fffa13,(a0)+ backup mask a 
 move.b $fffa15,(a0)+ backup mask b 

 move.b $fffa1b,(a0)+ backup timer b control 

 move.b $fffa21,(a0)+ backup timer b data 
 add.l #1,a0 make address even 

 move.l $120,(a0)+ backup vector $120 (timer b) 

 move.l $70,(a0)+ backup vector $70 (vbl) 
 

 bclr #5,$fffa15 disable timer c 

 clr.b $fffa1b disable timer b 
 move.l #timer_b,$120 move in my timer b address 

 bset #0,$fffa07 turn on timer b in enable a 

 bset #0,$fffa13 turn on timer b in mask a 
 

 move.l #vbl,$70 

 

 move.w #7,-(a7) wait keypress 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 56 

 trap #1 

 addq.w #2,a7 
 

 move.l #backup,a0 

 move.b (a0)+,$fffa07 restore enable a 

 move.b (a0)+,$fffa13 restore mask a 

 move.b (a0)+,$fffa15 restore mask b 

 move.b (a0)+,$fffa1b restore timer b control 
 move.b (a0)+,$fffa21 restore timer b data 

 add.l #1,a0 make address even 

 move.l (a0)+,$120 restore vector $120 (timer b) 
 move.l (a0)+,$70 restore vector $70 (vbl) 

 

 jsr restore 
 

 clr.l -(a7) 

 trap #1 
 

vbl 

 move.w sr,-(a7) backup status register 

 or.w #$0700,sr disable interrupts 

 movem.l d0-d7/a0-a6,-(a7) backup registers 

 
 move.w #1064,d0 

pause 

 nop 
 dbf d0,pause about 15000 cycles pause 

 

 eor.b #2,$ff820a toggle PAL/NTSF 
 rept 8 

 nop wait a bit ... 

 endr ... for effect to kick in 
 eor.b #2,$ff820a toggle PAL/NTFS back again 

 

 clr.b $fffa1b disable timer b 
 move.b #228,$fffa21 number of counts 

 move.b #8,$fffa1b set timer b to event count mode 

 
 movem.l (a7)+,d0-d7/a0-a6 restore registers 

 move.w (a7)+,sr restore status register 

 rte finnished interrupt 

 

 

timer_b 
 movem.l d0/a0,-(a7) backup registers 

 move.l #$fffa21,a0 timer b counter address 

 move.b (a0),d0 get timer b count value 
pause_b 

 cmp.b (a0),d0 wait for it to change 

 beq pause_b EXACTLY on next line now! 
 

 eor.b #2,$ff820a toggle PAL/NTSF 

 rept 8 
 nop wait a bit ... 

 endr ... for effect to kick in 

 eor.b #2,$ff820a toggle PAL/NTFS back again 

 

 movem.l (a7)+,d0/a0 restore registers 

 bclr #0,$fffa0f tell ST interrupt is done 
 rte exit interrupt 

 

 
 include initlib.s 

 

 
 section data 

 

picture incbin kenshin.pi1 
 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 57 

 

 section bss 
 

 ds.b 256 

screen ds.l 11200 

 

backup ds.b 14 

 

Phew, that was some. Nice and gentle walkthrough. First, just as usual, just initialise screen 
and so on. The picture is 320*280 pixels, instead of the normal 320*200. For compatibility 
reasons, I did it in Degas format, so you’ll have no problem looking at it in Degas, but you’ll 
not see the last 80 scan lines. With the borders killed, my guess is that we’ll se about 270 or 
so scan lines, a bit depending on monitor, perhaps a bit less. 

After the picture is loaded into the screen, I back up all the registers used, it’s essential to 
return to the state before the program was run. As you see, the backup is a little storage 
area of 14 bytes that is loaded into a0, and then data is moved in. It only backs up 13 bytes 
of data, but it starts off by backing up 5 bytes of data, putting it on an uneven address, that 
means that the two addresses which are then backed up, will be on uneven addresses, which 
is bad. So after the five bytes, I add one to a0 in order to put it on an even address, so the 
storage area needs to be 14 bytes in order to handle the extra empty byte. 

Then, disable Timer C, and Timer B. I only disable Timer C and do nothing more with it, with 
Timer C on, there would be disturbances due to the critical timing of the border killing. Put 
the correct address in the Timer B vector, and then enable Timer B by setting the correct bits 
in Enable A and Mask A. Next, kickstart the main routine (here called vbl) and just wait for a 
key press. After the key press, everything is restored and a clean exit performed. 

The VBL routine starts off by backing up the status register and disabling all interrupts, then 
it continues by waiting. By my calculation, we are waiting for exactly 15074 clock cycles. Nop, 
NoOPeration, is a command that does exactly nothing but take 4 clock cycles. Backing up the 
status register is a move instruction, that takes 12 clock cycles, and an or instruction on 
memory takes 8 clock cycles if it’s word sized. A movem from registers to a pre-decremented 
memory position takes 8 clock cycles, plus 10 per register moved since we use long-word 
size, and each dbf takes 10 clock cycles. This should add up to 12 + 8 + 8 + 10 * 15 + (10 + 
4) * 1064 = 15074 clock cycles. Since I just took this method from James Ingram’s tutorials, 
I haven’t really experimented with it and don’t know exactly how far you can stretch it (that 
is, what happens if you delay by say 15070 clock cycles instead). 

Now comes the part that actually does anything, first I toggle the second bit at $ff820a, by 
an exclusive or operation, then wait a bit and toggle back. The rept, endr commands is a way 
to tell the assembler that the lines between these two commands should be repeated for so 
many times. This has no effect on the program when actually running, it’s as though I’d 
written nop eight times in a row, but this is easier to read. Thus, I wait for 8 * 4 = 32 clock 
cycles between the synchronization changes. 

After the top border has been killed, it’s time to prepare to kill the bottom border. First it 
should be disabled, so it’s not jumped to while I set it up, then the number of counts, in this 
case 228. If I’d only been interested in killing the bottom border, and not the top, this value 
would’ve been 199. Lastly, Timer B is started by putting the value 8 in $fffffa1b, meaning that 
Timer B goes into event count mode. Now, the value in $fffffa21 will decrement by one for 
each scan line. The vbl routine is then finished by restoring the registers and status register. 

On to Timer B, first off, backup the registers that are used in the routine, to avoid bombs and 
other unpleasantries. I arrive in Timer B somewhere on 228:th scan line, and I want to be on 
the 229th line when I kill the border. Timer B data changes exactly on the start of every scan 
line, so by checking for a change in that register, I’ll know exactly when the change comes 
and I’m exactly at the beginning on the 229th scan line and kill off the border; khazam! (note: 
if the top border is not killed, the numbers are 199th and 200th respectively) 

The check for change in the register might be a bit tricky at first glance; I put the value of 
the register in d0, then I compare d0 with the value of the register, if those are equal, I 



 9 Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs 

 58 

branch back a step and do the process over. This is repeated until the value in Timer B 
changes, and d0 and Timer B will no longer hold the same value. Neat. Arriving on the 229th 
scan line now, I just do as before; toggle PAL/NTFS, and finish off that border as well. I 
restore the backed up registers, tell the ST the interrupt is over and make a clean exit. All 
done; no top or bottom border. 

It feels like this tutorial has been a lot of fact blurping, and painfully little understanding. 
Well, I guess you have to endure some things. Now that the borders are gone, we have 
gained some more pixels to work with obviously. From my gazing-hard-at-the-monitor-trying-
to-see technique, I assume that the top border is 29 scan lines, and that the total visual 
spectra goes up to 320*270 pixels, meaning the bottom border is 41 scan lines. 

There are lots of good ways to make use of Timer B, for instance, one can change the palette 
on every scan line, this means that you aren’t limited to 16 colours a screen, but can with 
ease have 16 colours per scan line. In a game, it would be nice to have a status bar in the 
lower border, or upper for that matter, to leave the 320*200 “main area” uncluttered with 
such stuff. It would also be possible to have that status bar in a different palette, making it 
very smooth. Another thing is the possibility to change resolution mid-screen, by doing this, 
you can have a medium resolution star filed in the upper part of the screen (star fields 
require few colours), and then change resolution to low and have, say a nice mountain 
formation on the bottom, which require more colours. Creativity is up to you! 

Again, thanks to all people who support and encourage me. I got a mail from Bruno Padinha, 
who sent me the entire tutorial formatted very nicely. I’ve received mail from more people 
than I could have dreamed of, thank you all! Also, big thanks go out to all good people at 
#atariscne on IRC, who help me with various coding stuff. 



 10 Of Lighting A Candle (And Casting A Shadow) 

 59 

10 Of Lighting A Candle (And Casting A 
Shadow) 

“I fear I will never find anyone 

I know my greatest pain is yet to come 

Will we find each other in the dark 

My long lost love” 

- Nightwish, Beauty of the Beast 

 

Hello again! I just got four Jaguar games from Aldebaran, he’s away over the midsummer 
feast so he was kind enough to leave me four Jaguar titles, since I own a Jaguar but have no 
games, heh … I thought I’d wait until tomorrow before knocking myself out though, and do 
some good right now (or perhaps it’s because the TV is blocked). Ahh, I’ve gotten hold of the 
new Nightwish CD; Century Child, if you don’t own it already, make sure to do so! They play 
Finnish metal combined with real cute songs and the main singer is schooled in classic opera, 
so they have a real cool sound and are probably my favourite musical artists. 

We’re up to tutorial number 10; which makes me very glad and proud over the work 
achieved. This had not been possible without the support of readers and other VIP’s. To 
celebrate the tenth “anniversary”, I’m going to give you something special; a putpixel routine. 
Actually, that statement was almost meant as a kind of ironic, funny statement. I mean, not 
until tutorial number 10 do we learn how to code a putpixel routine, in the PC’s MCGA mode 
for example, this is something you hardly have to learn, it’s implied. However, as anyone who 
knows this much about programming the ST will know, coding putpixel for the ST is a pain in 
the butt. 

The putpixel will hopefully be a prequel to a tutorial on sprites. Sprites, by the way, are 
anything that moves on the screen, such as a little spaceship, a funny rabbit or just a 
bouncing ball. A putpixel routine is a routine designed to put a single pixel on the screen, so 
on the ST, it lights a single dot in one of 16 colours. To achieve this, four bits have to be 
changed in four different places in memory, and nothing else must be changed in the screen 
memory, else too much will be changed. 

Let’s first see how we will know which pixel to change. We want to be able to provide 
information in coordinates, like pixel 160,100, which is about the middle of the screen. The 
ST would treat any such coordinates with a big question mark, so we have to find a way to 
translate the coordinates. All pixels come after one another in the screen memory, starting 
with the top left one, and ending with the bottom right. 

This means that X value is of course worth 1 position, since pixel 2,0 is the third pixel on 
screen. Each Y value is worth as much as the number of X coordinates on one scan line, in 
the case of ST low resolution; 320. So if we have the coordinate 160,100, that would be the 
160 + 100 * 320 = 32161th pixel on screen (one extra is added to the value since we start 
counting from 0). The total number of pixels on screen is 320 * 200 = 64000 pixels, which is 
about twice as much as 32160, so the formula seems to work. However, this won’t work on a 
ST, because we can’t simply count pixels that easily. 

The information for a single pixel is contained in four bits in four consecutive words, one bit 
in each word. So, instead what we need to know is at what word the first bit is, and which bit 
exactly it is we want to deal with. There are 16 bits in each word, by dividing our X value with 



 10 Of Lighting A Candle (And Casting A Shadow) 

 60 

16, we will get the number of word clusters to count in the result, and the exact bit in the 
remainder. 

Here’s why: suppose we want the 19th pixel, this would mean jumping over the first word 
cluster, which contains information for 16 pixels, and then manipulate the third most 
significant bit in the next word cluster. 19 / 16 = 1.1875, which means we get the result 1 
and the remainder 16 * 0.1875 = 3, it works! So, given the ST’s screen memory 
configuration, how exactly will we treat coordinate 160,100? 

We assume the screen memory points to the start of the screen memory. First, the Y 
coordinate, which is the simplest; each scan line is 160 bytes, so multiply the Y coordinate 
with 160 and add it to the screen address. Then divide the X value with 16, multiply the 
result with 8 and add to the screen memory. Why 8? Because each word cluster that we are 
to jump over is 8 bytes; two bytes to a word and four consecutive words. Now, the screen 
memory points to the first word of the four consecutive words we need to alter, in each word 
we want to alter one bit. The exact bit is obtained from the remainder of the X division. There 
may be other intricate methods, but this one is robust, straightforward and good for learning. 
Supposing a0 points to the beginning of screen memory, d0 holds the X-coordinate and d1 
holds the Y-coordinate, this is how it’s done. 
 mulu.w #160,d1 160 bytes to a scan line 

 add.l d1,a0 add y value to screen memory 
 divu.w #16,d0 number of clusters in low, bit in 

high 
 clr.l d1 clear d1 

 move.w d0,d1 move cluster part to d1 

 mulu.w #8,d1 8 bytes to a cluster 
 add.l d1,a0 add the cluster part to screen memory 

 clr.w d0 clear out the cluster value 

 swap d0 put the bit to alter in low part of 
d0 

 

There is some magic worked here with high and low parts of the data registers. With high 
and low part, we mean the two first, and two last bytes of the register, thus the high part is 
the first 16 bits, and the low part the last 16 bits (reading from left to right). By performing 
instructions with word size, you only affect the lower part of a register, and leave the higher 
part unchanged. 

The divu instruction, leaves the result in the low part and the remainder in the high part of 
the register. After the divu, the move.w will only move out the lower part, the cluster part, of 
d0. Following is a multiplication on the cluster value, and an addition to screen memory. 
Finally, clear out the cluster part of d0, and a swap instruction. The swap instructions flips the 
high and low part of a register, so now d0 neatly holds only the value for the bit to be 
changed, and a0 points to the correct place. 

So, now that we know where to change, how do we know what to change? We will have a 
value between 0 and 15, that is supposed to be put in those four bits in the screen memory 
(the colour of the pixel). We can’t just move in the data, we could devise some plan with bset 
and bclr instructions, but that may be clumsy and will probably involve branches for testing, 
which is slow. Instead, we will use our knowledge of masks and Boolean algebra to solve the 
problem. 

By putting the colour data in the high part of a register, we can then rotate the least 
significant bit of the colour into the lower part, and then do a shift on only the lower part of 
the register, to put the colour bit in the correct place; mask prepared! Suppose we have the 
colour value in d2, and the number of bits to change in d0, obtained from the example 
above, this is how it works. 
 swap d2 put colour value in high part 

 lsr.l #1,d2 put one bit of colour in shiftable 
position 

 lsr.w d0,d2 shift by number in d0 
 

Memory will perhaps look something like this, d1 = 5. 



 10 Of Lighting A Candle (And Casting A Shadow) 

 61 

 High part Low part 
d2 %0000000000000000 %0000000000001011 

 

 swap d2 
 

 High part Low part 
d2 %0000000000001011 %0000000000000000 

 

 lsr.l #1,d2 
 

 High part Low part 
d2 %0000000000000101 %1000000000000000 

 

 lsr.w d0,d2 
 

 High part Low part 
d2 %0000000000000101 %0000010000000000 

 

Ah, now the lower part of d2 will hold a terrific mask, we have one bit set, the one bit that 
we want to alter in screen memory, a simple ORing of the mask will make sure that the bit is 
set in screen memory, then we just add two to the screen pointer, and repeat the process. 
Wrong! Problem is, depending on our value, we want to either clear or set the bit, as you can 
see, on the third run through, the bit should be cleared, not set (the third bit counting from 
the left in the colour value is 0). If we just OR in the mask, and the bit we want to clear in 
the screen memory, is set to begin with, we will end up with a set bit where we want a 
cleared bit. Buh, that sounded awful, example! This is how it will look the third run through 

 

 High part Low part 
d2 %0000000000000001 %0000000000000000 

 

note how the fifth most significant bit in the lower part is not set. 

 

Screen memory %1111111111111111 
 

By ORing d2 with the screen memory, we won’t be clearing out the fifth most significant bit in 
the screen memory, although we need it to be cleared in order for the pixel to have the 
correct value. So, before ORing in our mask, we need to make sure the bit is cleared. This is 
done by ANDing in a mask with all bits set except the one bit we want to change. Mask 
preparation looks like this. 
 move.w #%0111111111111111,d1 
 ror.w d0,d1 

 

d1 %11111011111111111
 

The ror instruction, for ROtateRight, will rotate the register, making sure that whatever goes 
out the right (or left) will then come in to the left. Thus, if the least significant bit is 0, a 0 will 
me moved in the most significant bit, if it’s a 1, a 1 will be moved in. The difference between 
a logical shift and a rotate, is that a logical shift will move in 0’s, while rotate will move in 
whatever went out. Examine Appendix F – MC68000 Instruction Execution Times, on page 
153 – if you wish to further your knowledge on this, there are also arithmetic shifts, but I 



 10 Of Lighting A Candle (And Casting A Shadow) 

 62 

don’t use them here. Now, by first ANDing in the clear mask, we can then safely or in our 
pixel mask, like so. 
 swap d2  colour in the high part of d2 
 move.w #%0111111111111111,d1 

 ror.w d0,d1  clear mask prepared 

 
 lsr.l #1,d2  shift in the next colour bit 

 ror.w d0,d2  shift colour bit into position 

 and.w d1,(a0)  prepare with mask (bclr) 
 or.w d2,(a0)+  or in the colour 

 clr.w d2  clear the old used bit 

 

Then just repeat that over and over, or rather, three times more. The only thing not covered 
before is the last line, clearing out the old used bit, without this, remnants might be left on 
the next time around. This is one way of putting a pixel to screen. Bit planes make a putpixel 
routine so incredibly slow and clumsy. This though, is just a generic putpixel routine, a pixel 
routine designed for a specific purpose might be much faster, involving only one bit plane 
perhaps. You don’t have to mess around with all four bit planes every time, say you only 
want to use four colours for your stuff, then just leave two bit planes alone, since they aren’t 
needed, this will speed up things. This is the entire putpixel routine. 
putpixel: 
* a0 screen address 

* d0 X coordinate 

* d1Y coordinate 

* d2 colour 

 

 mulu.w #160,d1 160 bytes to a scan line 
 add.l d1,a0 add y value to screen memory 

 divu.w #16,d0 number of clusters in low, bit in 
high 

 clr.l d1 clear d1 

 move.w d0,d1 move cluster part to d1 
 mulu.w #8,d1 8 bytes to a cluster 

 add.l d1,a0 add the cluster part to screen memory 

 clr.w d0 clear out the cluster value 
 swap d0 put the bit to alter in low part of 

d0 
 

* now a0 points to the first word of the bitplane to use 

* d0.w holds the bit number to be manipulated in the word 
 

 swap d2 colour in the high part of d2 

 move.w #%0111111111111111,d1 
 ror.w d0,d1 clear mask prepared 

 

 rept 4 do this 4 times 

 lsr.l #1,d2 shift in the next colour bit 

 ror.w d0,d2 shift colour bit into position 

 and.w d1,(a0) prepare with mask (bclr) 
 or.w d2,(a0)+ or in the colour 

 clr.w d2 clear the old used bit 

 endr 

 

 rte  return form putpixel 

* end putpixel 
 

That was that. A nice putpixel routine to use for our convenience, slow as hell because of two 
multiplications and one division. Because this is a tutorial, and I want to push against 
practical use, I’ve also written a stupid little program that puts 50 pixels a second on the 
screen, like a screen saver. However, that program also includes some nice tricks so read on! 

The ST has a number of system variables, they are found at very low addresses, starting at 
$400 and ending at $516. Like the name suggests, these variables contain lots of special 
information on the system, and they can provide quite the shortcut to finding out some 
information. For example, $44e, called _v_bas_ad, is a long word containing a pointer to the 



 10 Of Lighting A Candle (And Casting A Shadow) 

 63 

screen memory (the logical screen memory). If you just want a quick and dirty program, like 
this one, and want to find out the screen address without traps, or hooking it up yourself, 
simply read the value here. 
 move.l $44e,a0 a0 points to screen memory 
 

There are some other useful system variables, which will be presented when the need arises. 
If we want to have a screen saver like program, we want to be able to output random pixels, 
right? So we need a way to generate a random number. Random numbers are usually 
obtained from reading the system clock, and then applying some algorithm to the obtained 
value. We don’t want to mess with that, especially not when there is a very nice trap that will 
do the job nicely for us. Trap number 17 in XBIOS will generate a 24-bit random number and 
put it in d0. 
 move.w #17,-(a7) trap number 17, random 

 trap #14 call XBIOS 

 addq.l #2,a7 clean up stack 

* random number in d0 

 

Well, a random number of 24-bits is a number between 0 and 16777216. We want values in 
the range of 0 to a maximum of 319; 0-15 for the colour, 0-319 for the X coordinate and 0-
199 for the Y coordinate. So how can we get the random number “down to our level”, so to 
speak? We could put the random call in a loop, and in the end of each loop check the random 
value, and if it is to big, just repeat the loop. While this would work, it would be so incredibly 
slow because the odds of the value falling within parameters are extremely small. However, 
by first lessening the value, we gain tremendous time. 

As we so well know, the colour value consists of 4 bits. By ANDing the random value with 
%1111, we effectively set all bits to 0 except the first four (which may be 0 or 1, depending 
on the initial value). Thus, our initial random value of 24-bits has been reduced to a 4-bit 
value, making it perfect for our needs. The X and Y coordinates however, are a bit different, 
since their representation does not consist of a complete set of bits (numbers that do so are 
the ones immediately before the powers of 2, i.e. 1, 3, 7, 15, 31, 63, 127, 255, etc). We can’t 
simply mask off the X co-ordinate’s unnecessary bits like we did the colour, rather we have to 
keep one bit more than what is needed. 

The value 319 uses 9 bits, so we will have to AND the X coordinate with %111111111, but 
%111111111 = 511, so after masking off the bits in our random value, we’ll have a number 
between 0 and 511. Now, we must use a loop to check the value, and make a new random 
number if it should prove to be over 319. The odds for the value of being within parameters 
are greatly increased though. 
get_x 

 move.w #17,-(a7) 

 trap #14 
 addq.l #2,a7 get random number 

 and.l #%111111111,d0 make it maximum 511 

 cmp #319,d0 
 bgt get_x loop until d0 < 320 

 

The instruction bgt will branch if the value compared is greater than. This loop then, will loop 
until the value in d0 is not greater than 319. The Y coordinate is obtained by doing much the 
same thing, but we only need to AND with 8 bits, because the Y coordinate should be < 200, 
and 8 bits make up 255. There, all the theory we need, this is the complete source of the 
program. 
 jsr initialise 
 

 move.l $44e,a0 a0 poins to screen memory 

 move.w #0,$ff8240 black background 

 move.l #7999,d0 

 clear 

 clr.l (a0) 
 dbf d0,clear clears screen to colour 0 

 



 10 Of Lighting A Candle (And Casting A Shadow) 

 64 

main 

 move.w #37,-(a7) 
 trap #14 

 addq.l #2,a7 wait retrace 

 

 get_x 

 move.w #17,-(a7) 

 trap #14 
 addq.l #2,a7 get random number 

 and.l #%111111111,d0 make it maximum 511 

 cmp #319,d0 
 bgt get_x loop until d0 < 320 

 move.l d0,d7 store x coordinate 

 
 get_y 

 move.w #17,-(a7) 

 trap #14 
 addq.l #2,a7 get random number 

 and.l #%11111111,d0 make it maximum 255 

 cmp #199,d0 loop until d0 < 200 

 bgt get_y 

 move.l d0,d6 store y coordinate 

 
 move.w #17,-(a7) 

 trap #14 

 addq.l #2,a7 get random number 
 and.l #%1111,d0 make it maximum 15 

 move.b d0,d2 put colour number in d2 

 
 move.l d7,d0 put x coordinate in d0 

 move.l d6,d1 put y coordinate in d1 

 
 move.l $44e,a0 a0 points to screen memory 

 jsr putpixel put pixel on screen 

 
 cmp.b #$39,$fffc02 space pressed? 

 bne main if not, repeat main 

 
 jsr restore 

 

 clr.l -(a7) clean 

 trap #1 exit 

 

 
putpixel: 

* putpixel routine 

* a0 screen adress 
* d0 x-coordinate 

* d1 y-coordinate 

* d2 colour 
 

 mulu.w #160,d1 160 bytes to a scan line 

 add.l d1,a0 add y value to screen memory 
 divu.w #16,d0 number of clusters in low, bit in 

 high 
 clr.l d1 clear d1 

 move.w d0,d1 move cluster part to d1 

 mulu.w #8,d1 8 bytes to a cluster 
 add.l d1,a0 add cluster part to screen memory 

 clr.w d0 clear out the cluster value 

 swap d0 bit to alter in low part of d0 
 

* now a0 points to the first word of the bitplane to use 

* d0.w holds the bit number to be manipulated in the word 
 

 swap d2 colour in the high part of d2 

 move.w #%0111111111111111,d1 
 ror.w d0,d1 clear mask prepared 

 

 rept 4 do this 4 times 



 10 Of Lighting A Candle (And Casting A Shadow) 

 65 

 lsr.l #1,d2 shift in the next colour bit 

 ror.w d0,d2 shift colour bit into position 
 and.w d1,(a0) prepare with mask (bclr) 

 or.w d2,(a0)+ or in the colour 

  clr.w d2 clear the old used bit 

 endr 

 

 rts 
* end putpixel 

 

 
 include initlib.s 

 

Yes, first a normal initialisation, then the neat trick of putting the screen address in a0, 
followed up by putting the background black and clearing the screen. Then, a main routine, 
the question here is why I didn’t I use the $70 as described in tutorial 9. The reason is a bit 
farfetched, but valid. Because of the random loops, there is a theoretical possibility of the 
main routine taking longer than 1/50th of a second, it’s virtually impossible, but it could 
happen. If this were to happen, the $70 vector would be called while the previous one were 
still being executed, resulting in a crash. With the method I use here, however, there is no 
danger of a crash. 

Obtaining the X coordinate, as described above, only new thing is storing the coordinate in 
d7. This is because the coming random trap for the Y coordinate will destroy everything in 
register d0, and then some, register d7 however, is safe. Same goes for the Y coordinate. 
Finally, the colour value is obtained, and moved over to d2, then the X and Y coordinates are 
moved into their respective registers. These registers could be anything, or a variable or 
whatever storage possibility, but the putpixel routine is designed to have the X coordinate in 
d0 and the Y coordinate in d1, so this is how it’s supposed to be. After the screen address 
has been put in a0, all is set for the putpixel call. 

The putpixel routine is exactly as described above, so nothing new there. Signing off with a 
check for a pressed spacebar, and that concludes the program. Note how I put the putpixel 
routine in its’ own subroutine, instead of including it in the main program, which could also 
have been done. This results in tidier code, the downside being that it takes more time to 
execute, but time is no issue here. 

Speaking of time, I actually think that I’ll fill up some space here with a bit on optimisation, 
something that will have to come one day or another anyway. There are two multiplications 
and one division in the putpixel routine, horrible. These can be replaced with shift 
instructions, but it’s a bit tricky. Each shift either doubles or halves the value in the register. 
So how do we do a multiplication of 160 and a division by 16, where we also keep the 
remainder? 

First, the Y part; here, we want to have a result equalling d1 * 160. 160 is not a value you 
may shift by, since all shift will produce multiplication results of 2, 4, 8, 16, 32, 64, 128, 256 
and so on. However, 128 + 32 = 160, the value we want to multiply with, and when things 
come to multiplication, we are allowed to split the multiplication in two and add the result; 
d1*160 = d1*32 + d2*128. All we have to do is copy our Y coordinate into another register, 
shift one register with 5 (multiplication of 32), shift the other with 7 (multiplication of 128) 
and add the results together. 
 move.w d1,d3 copy Y coordinate 
 lsl.w #7,d1 mulu #128,d1 

 lsl.w #5,d3 mulu #32,d3 

 add.w d3,d1 add results together 
 add.l d1,a0 add result to screen address 

 

Note the word size used in all operations. There may still be garbage in the upper part of d3, 
but this is never touched in any of the operations. Since the maximum value we will handle is 
199 * 160 = 31840 is less than the maximum for a word size, which is 216 = 65536, it’s ok to 
only use word size instructions, it also saves time. Our mulu instruction would take a 
maximum of 70 clock cycles, but in this case I think it’s 42. The technique of shifting takes 



 10 Of Lighting A Candle (And Casting A Shadow) 

 66 

58852672612 =+×++×++  

Heh, seems we wasted time rather than saving. Let that be an important lesson, sometimes 
the job’s just not worth doing. :-) 

So now the X part, first, put the thing in the upper part of d0 with a swap. Now, with a right 
shift of 4, we will effectively divide the number by 16, which is what we want to achieve, the 
result will be in the upper part, and the remainder will be in the highest bits in the lower part.
 Now, what we need to do is simply to put the remainder down in the lowest bits in 
d0, so we right shift by 12. The reason for right shifting by 12 is that the remainder takes up 
a maximum of 4 bits (remainder maximum is 15, %1111), and 12 + 4 = 16 which is the 
number of bits in the lower part of a data register. Unfortunately though, you can’t shift by 
12 when shifting with a number, so we’ll just have to divide the shift in one 8 and one 4 part, 
8 being the highest number you may shift by. 

Swap down the result in the lower part, and shift it left by 3 in order to multiply with 8. We 
make sure to keep the operation word size in order not to affect the remainder in the upper 
part. Then, add the result to the address register, but only use a move with word size, in 
order to only add the multiplied result, and leave the remainder well alone. Lastly, a clear out 
of the result part and a swap to put everything right for the next part of the putpixel. 
 swap d0 put in upper part 

 lsr.l #4,d0 divide by 16 

 lsr.w #8,d0 shift down remainder … 
 lsr.w #4,d0 … by 12 bits total 

 swap d0 result in lower part 

 lsl.w #3,d0 multiply with 8 
 add.w d0,a0 add result to screen address 

 clr.w d0 clear out result 

 swap d0 put remainder in lower part 
 

That was that, now let’s see if this optimisation did us some good. Unoptimized takes about 

21044124046140 =++++++  

The division is an approximation. Also, I don’t think we really need to move some data to d1 
to manipulate it, so the unoptimized could do some optimization too, but that’s not too 
important. Now let’s see what the shift-optimized part will take 

8844823642862484 =+++×+++×++×++  

Even though I’m a bit unsure of some values here, it’s obviously quite a save in any case. 
That was a little taste on how to optimize easy, just replace multiplications and divisions with 
shifts, sometimes quite a saving, but not always. 



 13 Of Hearing That Which Is Spoken  

 67 

11 Of Making The Mountain Move To 
Mohammed 

“Is it possible that we two, you and I, have grown so old and 
inflexible that we have outlived our usefulness? Would that 
constitute … a joke?” 

- Star Trek VI, the Undiscovered Country 

Well well, finally, as promised, we will delve into the technique of sprites; the essence of a 
platform or shoot-em-up game, and lots of other stuff. In fact, anything that needs 
something moving that is not 3D or real time rendered (that is, it’s being drawn while the 
program runs, and not stored previously as a picture). It was really challenging and great fun 
to code this one, and it’s probably the most satisfying coding experience ever, I hope I can 
convey the knowledge it brought me. 

In the last tutorial, we learned something on pixels, in order to be able to address a single 
pixel anywhere, the data must be shifted into a correct position. Why is this? Because, each 
instruction except the bit instructions, deal with at least byte size. What it means is that if we 
use instructions with byte size, all pixels “snap” at 8 pixels, because that’s the minimum 
addressable size. However, by shifting the data before using it in graphic instructions, we can 
in a way address any pixel we want to. 

 
Figure 3 – AUTUMN.PI1 

I actually suggest you load up the pre-assembled program, and both the picture files that 
comes with the tutorials, the pictures being AUTUMN.PI1 and SPRITE.PI1. A little note on the 
pictures, they are in STe palette, meaning that they will look a bit ugly on a ST, but STeem 
should handle this nicely. Yes, the character seen is the same one as in TUT9: Kenshin. He’s 
the main character in a Japanimation, a former assassin for the government who now tries to 
atone by living a quiet life and helping people. This series is awesome and has given me 
much inspiration, the first Kenshin OVA series is one of the most beautiful pieces of art I’ve 
ever seen. 

 
Figure 4 - SPRITE.PI1 



 13 Of Hearing That Which Is Spoken  

 68 

So, after you’ve been impressed by the Tai Ji symbol (a.k.a. Yin and Yang symbol, Yin and Yo 
in Japanese) bouncing around the screen, you are eager to learn for yourself, right? As you 
can see, the background is provided in the AUTUMN.PI1, and the bouncing ball, which is the 
sprite, is in SPRITE.PI1. Actually, only 14 colours are used for the background, the last two 
being reserved for the sprite, this isn’t necessary and the sprite may well share colours with 
the background. The sprite seems to appear twice, in the SPRITE.PI1, there are two balls, 
one of them is the sprite mask, if confusion occurs, just read on. 

Painting the background is easy, just smack in the pixel data and set the palette, bouncing 
will be dealt with later, what we need to focus on now is getting the sprite nicely on the 
screen, and being able to put it anywhere on the screen, preferably expressing the location in 
X and Y coordinates for human compatibility. How exactly to put the sprite data on screen, 
the most obvious choice is a move instruction. This won’t do at all though, check this out. 

Screen memory 
%00000000 %00001110 first word 
%00000000 %00000000 second word 
%00000000 %00001011 third word 
%00000000 %01010101 fourth word 

Pixel colours 
$00000000 $0808595C  

 

Sprite data 
%00000000 %00000001 first word 
%00000000 %00100000 second word 
%00000000 %00000000 third word 
%00000000 %00001010 fourth word 

Pixel colours 
$00000000 $00208081  

 

Now, if we move the sprite data onto the graphics memory, we get 

Screen memory 
%00000000 %00000001 first word 
%00000000 %00100000 second word 
%00000000 %00000000 third word 
%00000000 %00001010 fourth word 

Pixel colours 
$00000000 $00208081  

 

Move instructions destroy all data and replace it with new, in other words, the background is 
completely lost and the sprite has taken over completely. Doing it like this will also create an 
ugly squared looking sprite, since the sprite background will not be transparent (actually 
rectangular, but more on this below), as you can see on Figure 5. This will not do. 



 13 Of Hearing That Which Is Spoken  

 69 

    
Figure 5 – Result of simply MOVE’ing the sprite data 

OR instructions, on the other hand, will not overwrite the original data, we try an OR 
instruction with the above configuration. 

 

Screen memory 
%00000000 %00001111 first word 
%00000000 %00100000 second word 
%00000000 %00001011 third word 
%00000000 %01011111 fourth word 

Pixel colours 
$00000000 $0828D9DD  

 

 

Dang! By ORing in the sprite, we mixed the sprite with the background, this is also bad since 
the sprite will not look as it should, although it will create quite a nice effect and is good if 
you simply want a “colour distortion” effect, but we don’t want that now (check Figure 6 to 
see the effect). An EOR would only flip the colours around in strange ways (Figure 7), and an 
AND instruction clears data (Figure 8). 

 
Figure 6 – Using an OR instead. 

 
Figure 7 – An EOR is also no good… 

 
Figure 8 – ...as it isn't an AND either. 

 

But wait, if we clear out the sprite data, with an AND, leaving the background intact, and 
then OR in the sprite, it would all work. The sprite mask has the same look as the sprite, but 
is only two colours. Colour 15 where the background is, making sure all bits there are set, 
and colour 0 where the real sprite form is, making sure all bits are cleared. Have a look at 
SPRITE.PI1 (Figure 4, on page 67), and you will see clearly (well, ok, in the picture, the mask 
is colour 15 and the background is colour 0, but it will get inverted later, read on … ). 

 



 13 Of Hearing That Which Is Spoken  

 70 

Sprite mask 
%11111111 %11010100 first word 
%11111111 %11010100 second word 
%11111111 %11010100 third word 
%11111111 %11010100 fourth word 

Pixel colours 
$FFFFFFFF $FF0F0F00  

 

All pixels that were colour 0 (background) in the sprite, are now colour 15 (F), and all pixels 
that had one colour or another in the sprite are now colour 0. By ANDing the sprite mask with 
the background, we will make sure to clear out all sprite pixels (since they get ANDed with 0) 
and keeping the status of all other bits (since they are ANDed with 1). It is imperative that 
you understand this step, if you don’t, reread the Boolean algebra part in Chapter 9 (on page 
49) check some external sources and think again, or send me an e-mail :). After applying the 
mask, the screen memory will look like this: 

 

Screen memory 
%00000000 %00000100 first word 
%00000000 %00000000 second word 
%00000000 %00000000 third word 
%00000000 %01010100 fourth word 

Pixel colours 
$00000000 $08080900  
#bbbbbbbb #bbsbsbss b=background, s=sprite 

 

 
Figure 9 – What the screen looks like, after the mask is applied. 

As you can see (also in Figure 9), the background has been preserved, while everything 
concerning the sprite is wiped out. Now is the time to OR in the sprite data: this instruction 
will in no way affect the background (since the background colour in the sprite is 0). This is 
what it will look like after the OR operation: 

 



 13 Of Hearing That Which Is Spoken  

 71 

Screen memory 
%00000000 %00000101 first word 
%00000000 %00100000 second word 
%00000000 %00000000 third word 
%00000000 %01011110 fourth word 

Pixel colours 
$00000000 $08288981  
#bbbbbbbb #bbsbsbss b=background, s = sprite 

 

To summarise: first we take an inverted version of our sprite with only two colours, and AND 
that with the background. This clears all pixels that are concerned with the sprite and leaves 
the background intact. After the mask is applied, it is safe to OR in the sprite data, since after 
the previous clearing of the sprite pixels, there is no risk of mixing the sprite with the 
background. The background in the sprite is colour 0, thus the OR instruction will have no 
effect on the background, the background part in the mask is colour 15 (all 1’s) and thus the 
AND instruction will not affect the background. 

OK, now we know how to put the sprite on screen, but we are still faced with the problem of 
not being able to put it anywhere. To solve this, the sprite and mask data must be shifted. 
Like with the putpixel, in order to put the sprite at say 0,2, we need to shift the sprite data 
right two bits. With the putpixel, we shifted “real time”, but there is much more data involved 
in a sprite, so we’ll be pre-shifting the sprite instead. When using the pre-shifted method, we 
assign a storage area that is 16 times larger than the sprite data, and store the sprite in that 
area shifted in all possible sixteen combinations we need. 

I see a big ? in your face right now. Think about it, in the putpixel routine, we could end up 
shifting the pixel 15 bits to the right, at most, so what we do here with the sprite is to store 
all those possibilities after one another. When the time comes to put the sprite out, instead of 
shifting the original sprite data, all we have to do is access the storage area with the correct 
offset. An offset is the value added to the starting address of something. For example, the 
middle of the screen is the screen address with an offset of 100*160+80=16080 bytes. 

Sprite data 
$00001111  … 

Sprite storage area 
$00001111 … first position, offset 0 
$00000111 … second position, offset 1 
$00000011 … third position, offset 2 
$00000001 … fourth position, offset 3 
(the offset number is completely fictional, it’s 

not even an even number) 
 

Let’s say we want to put the sprite at 0,2, we know what that means, it means point to the 
start of the screen memory, shift the sprite data right by 2, and put it in place. Say a0 points 
to the screen memory, and a1 to the sprite storage area, then we just need to add offset 2 to 
a1, and a1 will point to correctly shifted sprite data. Pre-shifting is way faster than loading up 
the sprite data in a1, and then shifting it, especially since the sprite data consists of several 
words that all need to be shifted. The downside of course is loss of memory. 

Now, there is a problem here, if we have a 32*32 pixel sprite, like in the sample program, the 
data for the sprite is 16*32 bytes, arranged like this: 

 



 13 Of Hearing That Which Is Spoken  

 72 

Sprite data (W = word) 
First 16 pixels Last 16 pixels  

WWWW WWWW first line 
WWWW WWWW second line 
WWWW WWWW third line 

… and so on for a total of 32 lines 

 

When we begin to shift, we want the last bit that go out the first word, to be shifted in as the 
first bit in the fifth word. This is comparable to the tutorials on scrolling. The last bit that goes 
out the fifth word, should not go into the first bit of the ninth word, because then a pixel 
from the first line would go into the second line, but there is no room to shift it out right on 
the first line. So, we have to add a buffer to every line so that no data will be lost in the shift. 
In the last shift, the first four words will be all but empty, and the buffer will be all but full. So 
the sprite storage area will have to look like this. 

 

Sprite storage area (B=buffer, word size) 
First 16 pixels Middle 16 pixels Last 16 pixels  

WWWW WWWW BBBB first line 
WWWW WWWW BBBB second line 
WWWW WWWW BBBB third line 

… and so on for a total of 32 lines and 16 such blocks to cover all 
possible shifts 

 

Even though the sprite storage area covers a total of 48 pixels, 16 of these will be 0, thus not 
affecting the background. See the sprite as a 48 pixel wide block, with only 32 pixels 
coloured. Within this 48 pixel block, the 32 colour pixels will be shifted more and more to the 
right as X coordinates increase, then when it becomes critical, the block will move 16 pixels to 
the right in one sweep, and the 32 pixel colour area will be reset, starting the procedure all 
over again. Run the TUT11BLK.PRG, to see this clear. 

Alright, theory part on pre-shifting done, now we need it in direct coding practice as well. 
First off, we’ll need a good instruction with which to shift. Sure, LSR seems a good choice, 
but we need to be able to preserve the bit that gets shifted out, and LSR doesn’t preserve 
anything. The instruction ROXR, for ROtate eXtended Right, is good in this case. The 
extended bit is rotated in from the left, and the bit rotated out the right is saved in the carry 
and extended flag. So, by ROXRing with one each time, we will save what we shift out, and 
shift it in the next time around (btw, when speaking about the user bits in the status register, 
flags and bits are used synonymous). Looki looki: 

  

 d0 X (extended bit) 
 %00001101 0 

roxr #1,d0 %00000110 1 
roxr #1,d0 %10000011 0 
roxr #1,d0 %01000001 1 

 

What we do is to first copy the sprite data to the sprite storage area, then we take the data 
from the storage area, rotate extended right with one, and save that data into the next 
position of the storage area. What we have to think about when coding this is that the data 
from the first word, goes into the fifth word and so on. In code, it looks like this 
 move.l #spr_dat,a0  original sprite data 
 add.l #34,a0  skip palette 



 13 Of Hearing That Which Is Spoken  

 73 

 move.l #sprite,a1  storage of pre-shifted sprite 

 
 move.l #32-1,d0  32 scan lines per sprite 

first_sprite 

 move.l (a0)+,(a1)+  move from original to pre-shifted 

 move.l (a0)+,(a1)+ 

 move.l (a0)+,(a1)+ 

 move.l (a0)+,(a1)+  32 pixels moved 
 add.l #8,a1  jump over end words 

 add.l #144,a0  jump to next scan line 

 dbf d0,first_sprite 
 

First, point to the sprite data, jump over the palette and load up the sprite storage area, 
which is a DS.L 3072: 16 bytes per line, plus 8 for the buffer, totalling 24 bytes per scan 
line. The sprite is 32 lines and there should be 16 such blocks. This adds up to 24*32*16 = 
12288 bytes, which is 3072 long words. In the loop, just copy data from the sprite picture to 
the storage area, the buffer word area is skipped since it contains nothing at this time. Now 
comes the challenging part, writing the generic pre-shift. 
 

 move.l #sprite,a0 point to beginning of storage area 

 move.l #sprite,a1 point to beginning of storage area 
 add.l #768,a1 point to next sprite position 

 

 move.l #15-1,d1 15 sprite positions left 
positions 

 move.l #32-1,d2 32 scan lines per sprite 

line 
 move.l #4-1,d3 4 bit planes 

plane 

 move.w (a0),d0 move one word 

 roxr #1,d0 pre-shift 

 move.w d0,(a1) put it in place 

 move.w 8(a0),d0 move one word 
 roxr #1,d0 pre-shift 

 move.w d0,8(a1) put it in place 

 
 move.w 16(a0),d0 move one word 

 roxr #1,d0 pre-shift 

 move.w d0,16(a1) put it in place 
 

 add.l #2,a0 next bit plane, also clears X flag 

 add.l #2,a1 next bit plane 
 

 dbf d3,plane 

 

 add.l #16,a1 next scan line 

 add.l #16,a0 next scan line 

 
 dbf d2,line 

 

 dbf d1,positions 

 

First off, load up the storage area in a0 and a1, and make a1 point to the next storage area. 
This one is empty and should contain the sprite data shifted one bit to the right. Since we 
have already filled the first position in the storage area, 15 positions are left. 32 lines to each 
sprite and 4 bit planes to each line. Since all these are treated the same way, we only need 
one big loop so to speak. 

Now comes the fun part, put the first word in d0, this word comes from the previous storage 
position. Rotate it, and put it in at the next storage position. Now the extended flag holds the 
bit that was shifted out the right, and this one needs to be shifted in on the left in the first 
word in the next word cluster. So, a byte offset of 8 (4 words) is added when fetching and 
storing the next word. The buffer must also come into play, so the last word will get a byte 
offset of 16. Now, we have pre-shifted three words. 



 13 Of Hearing That Which Is Spoken  

 74 

By adding 2 to both a1 and a0 we will be at the next bit plane. It will also clear the extended 
flag, which is good because otherwise a bit from the last word might come over to the first 
word on the next bit plane, which is undesirable. Repeat for all four bit planes. We have now 
moved a line of the sprite. After the four bit planes have been rotated, a0 and a1 will point to 
the first word in the second 16 pixel cluster, or 8 bytes from the beginning of the data. By 
adding 16, we will point to the next scan line (16+8 = 24). Repeat for 15 positions. Pretty 
compact explanation, yes? A graphical representation follows. 

Storage area with data, beginning at $0 
16 16 16 pixels  

W  W  W  W W  W  W  W  W  W  W  W  
… for 32 lines  
0  2  4  6 8 10 12 14 16 18 20 22 byte offset 

Storage area without data, beginning at $768 
16 16 16 pixels  

0  0  0  0 0  0  0  0  0  0  0  0 (each 0 is word size) 
… for 32 lines  
0  2  4  6 8 10 12 14 16 18 20 22 byte offset 

 
 * a0 = $0 

 * a1 = $768 
 

 move.w (a0),d0 

 roxr d0 C = leftmost bit from W offset 0 
 move.w d0,(a1) put rotation in 0 at offset 0 

 

 move.w 8(a0),d0 as you see, first word of second 
cluster 

 roxr d0 bit preserved and shifted from offset 
0 

 move.w d0,8(a1) put it at offset 8 
 

 move.w 16(a0),d0 first word last cluster 

 roxr d0 rotate, carry bit may now be set 

 move.w d0,16(a1) at offset 16 

 

 add.l #2,a0 next bit plane, watch offset 
 add.l #2,a1 also clears X flag 

 

Finally, a0 and a1 will both be at offset 8, the first word of the first bit plane, by adding 16 to 
this, the offset will be 24, the value for a whole line, effectively putting us at the beginning of 
the next line. That concludes the pre-shift of the sprite. 

The mask data has to be pre-shifted a bit differently. Where the sprite colour is, we need the 
mask to be 0, and where the background is, the mask must be 1, as explained above. A look 
at the sprite picture will show that the sprite colour area is colour 15, all 1’s, and the 
background is colour 0, all 0’s. For the mask to be correctly pre-shifted, we need to invert it, 
making the background all 1’s and the sprite colour area all 0’s. When shifting, we must also 
always be shifting in 1’s, not 0’s as the case was with the sprite data. 

The instruction NOT, for NOT :), will take any value and invert it, this means changing all 1’s 
to 0’s and all 0’s to 1’s. In order to have all bits except those concerning the sprite colour 
area set, we must make sure to put 1’s in the buffer area. Also, at the beginning of each 
plane loop, we must also make sure that the highest bit of d0 is set, so that 1’s are shifted in. 
Other than that, the sprite and mask pre-shift share ideas. The mask area is as big as the 
sprite area. Even though this isn’t necessary since all bit planes in the sprite look alike, we 
could have reduced the size by ¾, but for ease of understanding, this was not done. 
 
 move.l #spr_dat,a0 

 add.l #34+160*32,a0 skip palette and sprite 



 13 Of Hearing That Which Is Spoken  

 75 

 move.l #mask,a1 load up mask part 

 
 move.l #32-1,d0 32 scan lines per sprite 

first_mask 

 move.l (a0)+,(a1) move from original to pre-shifted 

 not.l (a1)+ invert the mask data 

 move.l (a0)+,(a1) 

 not.l (a1)+ invert the mask data 
 move.l (a0)+,(a1) 

 not.l (a1)+ invert the mask data 

 move.l (a0)+,(a1) 
 not.l (a1)+ invert the mask data 

 move.l #$ffffffff,(a1)+ fill last two words... 

 move.l #$ffffffff,(a1)+ ... with all 1's 
 

 add.l #144,a0 jump to next scan line 

 dbf d0,first_mask 
* the picture mask has been copied to first position in pre-shift 

 

 move.l #mask,a0 point to beginning of storage area 

 move.l #mask,a1 point to beginning of storage area 

 add.l #768,a1 point to next mask position 

 
 move.l #15-1,d1 15 sprite positions left 

positions_mask 

 move.l #32-1,d2 32 scan lines per sprite 
line_mask 

 move.l #4-1,d3 4 bit planes 

plane_mask 
 move.w (a0),d0 move one word 

 roxr #1,d0 pre-shift 

 or.w #%1000000000000000,d0 make sure most significant bit 
set 

 move.w d0,(a1) put it in place 

 

 move.w 8(a0),d0 move one word 

 roxr #1,d0 pre-shift 
 move.w d0,8(a1) put it in place 

 

 move.w 16(a0),d0 move one word 
 roxr #1,d0 pre-shift 

 move.w d0,16(a1) put it in place 

 
 add.l #2,a1 next bit plane 

 add.l #2,a0 next plane, clears X flag (bad) 

 
 dbf d3,plane_mask 

 

 add.l #16,a1 next scan line 

 add.l #16,a0 next scan line 

 

 dbf d2,line_mask 
 

 dbf d1,positions_mask 

 

Unlike the sprite pre-shift where we could set up the storage area with direct memory moves 
from the sprite picture to the storage area, here we move data, and then perform the NOT 
instruction to invert the data. Also, instead of just skipping the buffer area like in the sprite, 
here we fill it with 1’s. The bit plane loop is almost identical, with the one exception that the 
first shift must be guaranteed to shift in a 1, not a 0. A simple OR instruction will make sure 
the most significant bit is set. That was that, all pre-shifting done. 

The method which we use to get the coordinates is the exact one found in Chapter 10. So 
when we send in our coordinates, we will be provided with a pointer to the screen address, 
and the number of shifts to be done in d0. The number in d0 is an offset for the sprite data 
and mask data. By putting the address to the sprite data in an address register, multiplying 



 13 Of Hearing That Which Is Spoken  

 76 

d0 with 768 and adding that to the address register, we will get a pointer to correctly shifted 
sprite data. The reason for the number being 768 is that it is the size of a sprite block. 

OK, now comes the problem of actually moving the sprite. We can put a sprite at any 
coordinate we want, but we can’t move it yet. A simple bounce routine here, the sprite will 
move with a certain X speed and a certain Y speed, and change direction when it hits “walls” 
(edges of the screen). What we need is a heading, and a speed. For simplicity, we express 
the heading as either 1 or 0 for both X and Y respectively. 1 is towards bottom right and 0 is 
towards upper left. X heading is either right or left, and Y heading either up or down. The X 
and Y speed is how many pixels to move the sprite in desired direction each VBL. So with an 
X heading of 1, and an X speed of 2, the sprite would move 2 pixels right each VBL. 

What the move routine needs to do is to add X and Y coordinates in accordance with heading 
and speed, as well as checking for wall hits. When a wall hit occurs, the sprite must change 
direction. A change in direction simply means flipping between 1 or 0 in heading. This might 
be a good time to tell about the EQU, for EQUals method. Any label can have an EQU applied 
to it, meaning that whenever one uses the label, it is replaced by the EQU. Easy huh? 

 
number equ 2 

 move.l #number,d0  same as move.l #2,d0 

 

One can say that EQU’s, are constants. It’s good practice to have as many EQU’s as possible, 
because if you realize you have to change a constant, you only need to change it in one place 
instead of every place the constant appears. X speed and Y speed is a good example (unless 
you want variable speed), X coordinate is a terrible thing, since it needs to change all the 
time. Actually, I think it’s best to express the move routine in pseudo code first. 
 

 If (x_coord > 319 – 32 – x_speed + 1) Then 

  x_heading = 0 
 If (x_coord < 0) Then 

  x_heading = 1 

 If (y_coord > 199 – 32 – y_speed + 1) Then 
  y_heading = 0 

 If (y_coord < 0) Then 

  y_heading = 1 
 

First we check to see if the heading needs change, as long as the sprite is in any way outside 
the screen coordinates, we need to change the heading. Since we check the heading before 
we move the sprite, and move the sprite before drawing it, the sprite will never be drawn off 
screen. The only trouble here is where all numbers come from. Think of it first without 
x_speed added, every VBL the sprite just moves one pixel. Then the formula is x_coord > 
319 – 32. This is easy to grasp, the X coordinate must not be more than the screen can hold, 
which is 319, minus the width of the sprite itself of course, which is 32. 

The so called “hot spot” of the sprite is the upper left corner. This is the point against which 
all sprite coordinates are measured. We say that the sprite is at coordinates 13,13, but this 
really means that the sprite hot spot is at 13,13. Exactly what pixels the sprite inhabits is 
unknown to us, since the sprite can have any form, but for simplicity, we think of the sprite 
as a square, with the coordinates in the upper left corner. Thus, when seeing if the sprite hits 
the right wall, we take the coordinates of the upper left corner, the hot spot, and add the 
width of the sprite. 

The x_speed is also to be taken into account. Imagine the sprite moving with 100 pixels per 
VBL, then the sprite will be way outside the screen if it’s anywhere over the right half of the 
screen, so the sprite is only ok if it’s on the left half of the screen, obviously, the speed must 
be taken into account. Think of the speed as just enlargement to the sprite. The Y check 
works exactly the same way, but with a different max coordinate for obvious reasons. It looks 
a bit different in assembly though. 
 

 cmp #319-32-x_speed+1,x_coord 



 13 Of Hearing That Which Is Spoken  

 77 

 blt x_right_ok see if x is < 319-32 for width 

 move.w #0,x_heading if x >=319, change heading 
x_right_ok 

 

 cmp #0,x_coord 

 bgt x_left_ok see if x is > 0 

 move.w #1,x_heading if x <=0, change heading 

x_left_ok 
 

 cmp #199-32-y_speed+1,y_coord 

 blt y_low_ok see if y is < 199-32 for lines 
 move.w #0,y_heading if y >=199, change heading 

y_low_ok 

 
 cmp #0,y_coord 

 bgt y_high_ok see if y is > 0 

 move.w #1,y_heading if y <=0, change heading 
y_high_ok 

 

We check if the X coordinate is lesser than the number, and if it is, it’s ok and a little branch 
will skip the changing of the X heading. Whereas the pseudo code’s IF statements took place 
if the check was true, our checks affect if the statements are false. This may look messy, but 
it’s really quite simple, just take a second look at it. We also need to update the coordinates, 
here’s some more pseudo code. 

 
 If (x_heading = 0) Then 

  x_coordinate = x_coordinate – x_speed 
 Else 

  x_coordinate = x_coordinate + x_speed 

 If (y_heading = 0) Then 

  y_coordinate = y_coordinate – y_speed 

 Else 

  y_coordinate = y_coordinate + y_speed 
 

No problem there, just change the coordinates according to speed and heading. In assembly 
it becomes more troublesome though. 
 

 cmp #0,x_heading check x heading 

 bne x_move_right if 1, move right, otherwise left 
 sub.w #x_speed,x_coord move sprite left 

 bra x_move_done done moving sprite in x 

x_move_right 
 add.w #x_speed,x_coord move sprite right 

x_move_done 

 
 cmp #0,y_heading check y heading 

 bne y_move_down if 1, move down, otherwise up 

 sub.w #y_speed,y_coord move sprite up 
 bra y_move_done done moving sprite in y 

y_move_down 

 add.w #y_speed,y_coord move sprite down 

y_move_done 

 

First, a check to see if X heading is 0, if it is, move to the left, otherwise move to the right. If 
we move to the left, we subtract the X coordinate by the X speed, and we must also make 
sure to jump past the move to the right. The Y part is exactly as the X part. Again, just look 
one more time at the code and if it seems confusing, write it down on paper if you must and 
go through the different possible branches, it’s not too complex once you structuralize it. 

Hoah, this takes time to explain, hope you’re still with me ‘cus we are almost done. Now we 
know how to pre-shift, apply the sprite and move it. One would think that we have all we 
need, there is just one more thing to take into account. If we would apply the things we 
know and fire away, we would have a sprite that moves over the screen and leaves a trail. 



 13 Of Hearing That Which Is Spoken  

 78 

The damn thing will never go away, making it most ugly. Why? Because the background must 
be restored when the sprite has passed it. 

So, on every VBL, the background must first be restored, then it must be saved after the 
sprite coordinates are updated, since the save and restore routine is dependent on the sprite 
coordinates. Then we can paint the sprite. The save routine just copies a sprite sized block 
from the screen memory into a save buffer, and the restore routine copies the data from the 
buffer onto the screen. 

What we have now is a main routine that restores background, moves the sprite (rather 
updates the sprite coordinates), saves the background, applies the mask and lastly paints the 
sprite. All of this is so fast, that we don’t even have to bother with double buffering, so we 
pull a fast one and just skip that. Here comes the entire source code, don’t panic, most of the 
stuff will be familiar. 
 

x_speed equ 2 how many x coord to move each VBL 

y_speed equ 1 how many y coord to move each VBL 

 

 jsr initialise 
 

* pre-shifting sprite 

 move.l #spr_dat,a0 original sprite data 
 add.l #34,a0 skip palette 

 move.l #sprite,a1 storage of pre-shifted sprite 

 
 move.l #32-1,d0 32 scan lines per sprite 

first_sprite 

 move.l (a0)+,(a1)+ move from original to pre-shifted 
 move.l (a0)+,(a1)+ 

 move.l (a0)+,(a1)+ 

 move.l (a0)+,(a1)+ 32 pixels moved 

 add.l #8,a1 jump over end words 

 add.l #144,a0 jump to next scan line 

 dbf d0,first_sprite 
* the picture sprite has been copied to first position in pre-shift 

 

 move.l #sprite,a0 point to beginning of storage area 
 move.l #sprite,a1 point to beginning of storage area 

 add.l #768,a1 point to next sprite position 

 
 move.l #15-1,d1 15 sprite positions left 

positions 

 move.l #32-1,d2 32 scan lines per sprite 
line 

 move.l #4-1,d3 4 bit planes 

plane 
 move.w (a0),d0 move one word 

roxr #1,d0 pre-shift 

 move.w d0,(a1) put it in place 
 

 move.w 8(a0),d0 move one word 

 roxr #1,d0 pre-shift 

 move.w d0,8(a1) put it in place 

 

 move.w 16(a0),d0 move one word 
 roxr #1,d0 pre-shift 

 move.w d0,16(a1) put it in place 

 
 add.l #2,a0 next bit plane, also clears X flag 

 add.l #2,a1 next bit plane 

 
 dbf d3,plane 

 

 add.l #16,a0 next scan line 
 add.l #16,a1 next scan line 

 

 dbf d2,line 



 13 Of Hearing That Which Is Spoken  

 79 

 

 dbf d1,positions 
* pre-shift of sprite done, all 16 sprite positions saved in sprite 

 

 

* pre-shifting mask 

 move.l #spr_dat,a0 

 add.l #34+160*32,a0 skip palette and sprite 
 move.l #mask,a1 load up mask part 

 

 move.l #32-1,d0 32 scan lines per sprite 
first_mask 

 move.l (a0)+,(a1) move from original to pre-shifted 

 not.l (a1)+ invert the mask data 
 move.l (a0)+,(a1) 

 not.l (a1)+ invert the mask data 

 move.l (a0)+,(a1) 
 not.l (a1)+ invert the mask data 

 move.l (a0)+,(a1) 

 not.l (a1)+ invert the mask data 

 move.l #$ffffffff,(a1)+ fill last two words... 

 move.l #$ffffffff,(a1)+ ... with all 1's 

 
 add.l #144,a0 jump to next scan line 

 dbf d0,first_mask 

* the picture mask has been copied to first position in pre-shift 
 

 move.l #mask,a0 point to beginning of storage area 

 move.l #mask,a1 point to beginning of storage area 
 add.l #768,a1 point to next mask position 

 

 move.l #15-1,d1 15 sprite positions left 
positions_mask 

 move.l #32-1,d2 32 scan lines per sprite 

line_mask 
 move.l #4-1,d3 4 bit planes 

plane_mask 

 move.w (a0),d0 move one word 
 roxr #1,d0 pre-shift 

 or.w #%1000000000000000,d0 make sure most significant bit 
set 

 move.w d0,(a1) put it in place 

 move.w 8(a0),d0 move one word 
 roxr #1,d0 pre-shift 

 move.w d0,8(a1) put it in place 

 
 move.w 16(a0),d0 move one word 

 roxr #1,d0 pre-shift 

 move.w d0,16(a1) put it in place 

 

 add.l #2,a0 next bit plane, clears X flag (bad) 

 add.l #2,a1 next bit plane 
 dbf d3,plane_mask 

 

 add.l #16,a0 next scan line 
 add.l #16,a1 next scan line 

 

 dbf d2,line_mask 
 

 dbf d1,positions_mask 

* pre-shift of mask done, all 16 sprite possitions saved in mask 
 

 

 movem.l bg+2,d0-d7 
 movem.l d0-d7,$ff8240 

 

 move.l #bg+34,a0 pixel part of background 
 move.l $44e,a1 put screen memory in a1 

 move.l #7999,d0 8000 longwords to a screen 

pic_loop 



 13 Of Hearing That Which Is Spoken  

 80 

 move.l (a0)+,(a1)+ move one longword to screen 

 dbf d0,pic_loop background painted 
 

 jsr save_background something in restore buffer 

 

 move.l $70,old_70 backup $70 

 move.l #main,$70 put in main routine 

 
 move.w #7,-(a7) 

 trap #1 

 addq.l #2,a7 wait keypress 
 

 move.l old_70,$70 restore old $70 

 
 jsr restore 

 

 clr.l -(a7) 
 trap #1 exit 

 

main 

 movem.l d0-d7/a0-a6,-(a7) backup registers 

 

 jsr restore_background 
 jsr move_sprite 

 jsr save_background 

 jsr apply_mask 
 jsr put_sprite 

 

 movem.l (a7)+,d0-d7/a0-a6 restore registers 
 

 rte 

 
 

move_sprite 

* moves the sprite one pixel in x and y 
* see if any headings need to be changed 

 cmp #319-32-x_speed+1,x_coord 

 blt x_right_ok see if x is < 319-32 for width 
 move.w #0,x_heading if x >=319, change heading 

x_right_ok 

 

 cmp #0,x_coord 

 bgt x_left_ok see if x is > 0 

 move.w #1,x_heading if x <=0, change heading 
x_left_ok 

 

 cmp #199-32-y_speed+1,y_coord 
 blt y_low_ok see if y is < 199-32 for lines 

 move.w #0,y_heading if y >=199, change heading 

y_low_ok 
 

 cmp #0,y_coord 

 bgt y_high_ok see if y is > 0 
 move.w #1,y_heading if y <=0, change heading 

y_high_ok 

* all eventual heading changes now made 

 

* move sprite coordinates (change coordinates) 

 cmp #0,x_heading check x heading 
 bne x_move_right if 1, move right, otherwise left 

 sub.w #x_speed,x_coord move sprite left 

 bra x_move_done done moving sprite in x 
x_move_right 

 add.w #x_speed,x_coord move sprite right 

x_move_done 
 

 cmp #0,y_heading check y heading 

 bne y_move_down if 1, move down, otherwise up 
 sub.w #y_speed,y_coord move sprite up 



 13 Of Hearing That Which Is Spoken  

 81 

 bra y_move_done done moving sprite in y 

y_move_down 
 add.w #y_speed,y_coord move sprite down 

y_move_done 

* finnished moving sprite 

 

 rts 

 
 

apply_mask 

* applies the mask to the background 
 jsr get_coordinates 

 move.l #mask,a0 

 mulu #768,d0 multiply position with size 
 add.l d0,a0 add value to mask pointer 

 

 move.l #32-1,d7 mask is 32 scan lines 
maskloop 

 rept 6 mask is 6*4 bytes width 

 move.l (a0)+,d0 mask data in d0 

 move.l (a1),d1 background data in d1 

 and.l d0,d1 and mask and picture data 

 move.l d1,(a1)+ move masked data to background 
 endr 

 add.l #136,a1 next scan line 

 dbf d7,maskloop 
 

 rts 

 
 

put_sprite 

* paints the sprite to the screen 
 jsr get_coordinates 

 move.l #sprite,a0 

 mulu #768,d0 multiply position with size 
 add.l d0,a0 add value to sprite pointer 

 

 move.l #32-1,d7 sprite is 32 scan lines 
bgloop 

 rept 6 sprite is 6*4 bytes width 

 move.l (a0)+,d0 sprite data in d0 

 move.l (a1),d1 background data in d1 

 or.l d0,d1 or sprite and background data 

 move.l d1,(a1)+ move ored sprite data to background 
 endr 

 add.l #136,a1 

 dbf d7,bgloop 
 

 rts 

 
 

save_background 

* saves the background into bgsave 
 jsr get_coordinates 

 move.l #bgsave,a0 

 

 move.l #32-1,d7 sprite is 32 scan lines 

bgsaveloop 

 rept 6 sprite is 6*4 bytes width 
 move.l (a1)+,(a0)+ copy background to save buffer 

 endr 

 add.l #136,a1 next scan line 
 dbf d7,bgsaveloop 

 

 rts 
 

 

restore_background 
* restores the background using data from bgsave 



 13 Of Hearing That Which Is Spoken  

 82 

 jsr get_coordinates 

 move.l #bgsave,a0 
 

 move.l #32-1,d7 sprite is 32 scan lines 

bgrestoreloop 

 rept 6 sprite is 6*4 bytes width 

 move.l (a0)+,(a1)+ copy save buffer to background 

 endr 
 add.l #136,a1 next scan line 

 dbf d7,bgrestoreloop 

 
 rts 

 

 
get_coordinates 

* makes a1 point to correct place on screen 

* sprite position in d0.b 
 move.l $44e,a1 screen memory in a1 

 move.w y_coord,d0 put y coordinate in d0 

 mulu #160,d0 160 bytes to a scan line 

 add.l d0,a1 add to screen pointer 

 move.w x_coord,d0 put x coordinate in d0 

 divu.w #16,d0 number of clusters in low, bit in 
high 

 clr.l d1  clear d1 
 move.w d0,d1 move cluster part to d1 

 mulu.w #8,d1 8 bytes to a cluster 

 add.l d1,a1 add cluster part to screen memory 
 clr.w d0 clear out the cluster value 

 swap d0 bit to alter in low part of d0 

 
 rts 

 

 

 include initlib.s 

 

 section data 
x_coord dc.w 0 

y_coord dc.w 0 

x_heading dc.w 1 
y_heading dc.w 1 

 

spr_dat incbin SPRITE.PI1 
bg incbin AUTUMN.PI1 

old_70 dc.l 0 

 
 

 section bss 

sprite ds.l 3072 32/2+8*32 bytes * 16 positions / 4 
for long 

mask ds.l 3072 same as above 
bgsave ds.l 192 32/2+8*32 bytes / 4 for long 

 

The longest source to date, I’m truly starting to doubt the wisdom of putting the source code 
here as well as in a separate file. Anyways, starting from beginning going down, this is what 
it’s all about. The first two lines are the X and Y speed, you may play around with these 
values to your hearts content, of course, setting them both to the same value will make the 
sprite move in 45 degrees, while any other values will make the sprite move differently. 

Then, the pre-shifting of the sprite and the mask, this has been dealt with extensively and 
there is nothing more to add. After this, the background is also prepared, it’s just another 
put-degas-file-in-screen-memory. Note here, that there is a background save, this is to make 
sure something is in the save buffer before starting the main routine, otherwise the main 
routine would start off by “restoring” a blank area, effectively deleting a sprite sized block of 
the screen. 

All preparations are done, just install the main routine, as described in Chapter 9. Put our 
main routine in the $70 vector, to have it executed every VBL. Wait for a key press, during 



 13 Of Hearing That Which Is Spoken  

 83 

which the main routine will execute continuously, and make a clean exit. Now, take note of 
how nice and tidy the main routine is, it just consists of subroutine calls, making the structure 
of the program very easy to read, and isolating each major part of the program for ease of 
reading. 

Each subroutine in turn relies upon the get_coordinates routine, which translates the x_coord 
and y_coord into data intelligible to the program. As you can see in the comments at the start 
of the get_coordinates subroutine, what the routine does is to put a pointer to the screen 
memory in a0 and the sprite position (offset) in d0.b (meaning the least significant 8 bits of 
the d0 register). Since each subroutine relies upon the get_coordinates routine, if a bug is 
detected in the coordinate routine, it will only have to be dealt with in one place. 

The save/restore background routines are short and simple and do little. They begin by 
calling the get_coordinates routine in order to get a screen pointer, the sprite position is 
uninteresting since they both deal with the entire sprite block. 

The sprite and mask routines are very similar. Both begin by calling the get_coordinates 
routine, in order to get a screen pointer and a sprite position. Then either the sprite or mask 
area is loaded as appropriate, and the sprite position applied as an offset. Then comes a loop 
of moving data from the background and sprite or mask. Then this data is either ANDed or 
ORed as appropriate. The result is put back in the screen memory. 

Well, that is that. I haven’t gone into everything in minute detail, but by now you shouldn’t 
have to be baby nursed through every operation. The source code has many fun things you 
can do with it yourself, so test around some in the critical areas. The obvious change is the 
speed change, then, you can try commenting out some things in the main routine, and 
change an OR to a MOVE in the sprite routine for example. I think it’s a good idea to play 
around some with the source code, and try to predict the changes, in this way, you’ll really 
understand the underlying mechanics. 

The next tutorial will probably be a very small one, I’m even considering of calling it tutorial 
11 part B, and might cover the well known “infinite trail” of sprites, since it’s ridiculously easy. 
Somewhere soon I suppose I’ll do one on joystick and perhaps also mouse operation. I won’t 
promise anything though. Big thanks again go out to Bruno Padinha, for providing valuable 
feedback and hitting me on the head. Damn, now I have to think of a good quote as well, 
this part is the hardest. :) 



 13 Of Hearing That Which Is Spoken  

 84 

12 Of Controlling The Puppets 
"I love the smell of napalm in the morning… it smells like victory" 

- Apocalypse Now 

Yep, here we go again, this time I think we’ll have a nice little tutorial on our hands, not that 
big. It only concerns the workings of the joystick. It could’ve involved the mouse as well, but 
to be honest I haven’t gotten the workings of the mouse down yet. The code will build 
heavily on the previous tutorial, since we are going to move a sprite around with the joystick, 
but you don’t need to understand the sprite parts of the code to understand the workings of 
the joystick. If you don’t know what a joystick is, or if you don’t recognise the little sprite ship 
used in the sample source, you are not allowed to read further. Please stop this instant and 
browse the web for more generally related Atari information. 

A while back, I thought the ST was so much cooler than your average PC, because with the 
ST, you just have to plug in a joystick and it works. With a PC, you have to install drivers and 
shit, and configure the exact joystick and generally mess around lots and perhaps even then 
it won’t work or the program you want to run doesn’t support your joystick. All in all inferior 
construction, or so I thought. Actually, with the ST, you also need to set up your own joystick 
driver. In fact, since you usually don’t have a hard drive and the OS (operating system) 
doesn’t have drivers for the joystick, every program needs it’s own drivers for the joystick. 
Writing the joystick driver isn’t at all difficult, but you have to have some working knowledge 
to do it. 

There is a little 6301 processor inside the Atari ST, which takes care of the keyboard, the 
mouse and the joystick. It even has a real time clock. This cute little chip is sometimes 
referred to as the IKBD, for Intelligent KeyBoarD. It might be fun to know that the IKBD has 
4K (4096 bytes) of ROM memory, and 128 bytes of RAM. ROM stands for Read Only Memory, 
and as it says, it’s memory that can’t be altered, RAM is Random Access Memory and it is that 
which we usually mean by memory. The 128 bytes of RAM on the IKBD are only used as a 
temporal storage area. The reason for having a separate chip altogether taking care of the 
keyboard, mouse and joystick is that those actions won’t burden the main processor (the 
68000, the one we’ve been programming so far in these tutorials). Instead, we can poll the 
IKBD as we choose, or tell it to report stuff in any way we choose, and just let the IKBD 
worry about the details. 

Our mission therefore is clear: we must find a way to make the IKBD report the status of the 
joystick, and also find a way to read that status in some way. When that is accomplished, we 
can use the sprite routine from the previous tutorial as it is, with only a change in the 
move_sprite subroutine. The new subroutine will update the X and Y coordinates in 
accordance with the joystick status instead of just moving it about. 

Trap function 25 of the XBIOS will allow us to send commands to the IKBD. However, unlike 
other trap calls, the input data is a pointer to a string of data. Appendix H (on page 158) may 
seem very sketchy and difficult to understand, but it does contain a list of all the possible 
commands that you can send to the IKBD, taking a look inside it, we see function $14. IKBD 
command $14 will report joystick status every time the joystick is changed. All well and good, 
this is how we set it up. 
 
 move.l #joy_on,-(a7) pointer to IKBD instructions 

 move.w #0,-(a7) instruction length - 1 

 move.w #25,-(a7) send instruction to IKBD 
 trap #14 

 addq.l #8,a7 

 



 13 Of Hearing That Which Is Spoken  

 85 

 joy_on dc.b $14 

 

The first parameter is a pointer to the address which contains the commands, the second 
parameter is the length in bytes of the command list minus one, in this case zero. Then the 
function number, a trap calling XBIOS and a normal stack clean up. Sure, so now the joystick 
reports information, but where does the information go? Well, actually we need to write our 
own routine to read the joystick information. 

Every time the joystick sends information, there is a jump to an address with instructions of 
what to do with this data, compare this with the timers from tutorial 9. Also, as with the 
timers, we will hook up our own routine to read the joystick. With trap function 34 of the 
XBIOS, the IKBD returns a list of all its vectors. The address of the IKBD vectors is put in d0. 
The joystick report vector is at offset 24, so by putting our own joystick routine at the 
address pointed to by d0 +24, we have effectively hooked up our own joystick routine. 
 

 move.w #34,-(a7) 

 trap #14 
 addq.l #2,a7 return IKBD vector table 

  

 move.l d0,ikbd_vec store IKBD vectors address 
 move.l d0,a0 a0 points to IKBD vectors 

 move.l 24(a0),old_joy backup old joystick vector 

 move.l #read_joy,24(a0) input our joystick vector 

  

read_joy 

 nop  so far, we don’t know what to do 
 rts  note, rts, not rte 

  

 dc.l ikbd_vec old IKBD vector storage 
 dc.l old_joy old joy vector storage 

 

Straightforward, first get the address of the IKBD vectors. Store it for future restoration. Then 
put the address in a0 so that a0 points to the IKBD vectors, backup the old joystick vector 
which is found at offset 24, and input our own joystick routine. By the way, the mouse vector 
is at offset 16. With the help of this and the information given on the other IKBD commands 
on Appendix H – Intelligent Keyboard (IKBD) Protocol – on page 158, you should be able to 
setup your own mouse routine as well. 

The joystick routine ends with an rts, nothing else, and may not take more than 1/100 of a 
second (half a VBL, more than enough time really). What happens now is that each time the 
joystick status is changed, the ST will jump to our joystick routine. Once there, a0 will point 
to three bytes in memory which contain the status of the joysticks. 

The first of these bytes is a header telling us which joystick it was that did something. The 
byte will contain $FE if joystick 0 did something, and $FF if it was joystick 1 (meaning the last 
bit represents either joystick 0 or joystick 1). Remember, joystick 0 is the joystick port shared 
with the mouse, and joystick 1 is the port exclusively for joysticks. The next two bytes 
contain the actual information for the joysticks. The first one holds status for joystick 0, and 
the other one for joystick 1. The data has this structure 

 

F 0 0 0 R L D U 
7 6 5 4 3 2 1 0 

(F = fire, R = right, L = left, D = down, U = up) 
 

So if bit 7 is set, the fire button was pressed, if bit 0 is set, the joystick is moved up, if bit 0, 
2 and 7 are set, the joystick is moved up-right while the fire button is being pressed. Real 
simple. Here’s a joystick routine that will simply store the joystick data in memory, two 
different variables could have been used instead of course (but this is good practice on 
addressing modes). 



 13 Of Hearing That Which Is Spoken  

 86 

 
read_joy 

* executes every time joystick information is changed 

 move.b 1(a0),joy store joy 0 data 
 move.b 2(a0),joy+1 store joy 1 data 

 rts 

  
joy ds.b 2 storage for joystick data 

 

That’s it! Well, almost. We must restore our poor system, for one thing, it would be good to 
turn the mouse back on :) When we turn on the joystick, the mouse is turned off. In order to 
turn it on, we send command $08 to the IKBD, to put the mouse in relative report mode, 
which would probably be the default mode for the mouse then. While we’re at it, might be 
good to restore the joystick vector as well. For the curious lot out there, “mus” is Swedish for 
mouse, and it’s a suitable short form for mouse as well. 
 
 move.l #mus_on,-(a7) pointer to IKBD instruction 

 move.w #0,-(a7) length of instruction - 1 

 move.w #25,-(a7) send instruction to IKBD 
 trap #14 

 addq.l #8,a7 

  
 move.l ikbd_vec,a0 a0 points to old IKBD vectors 

 move.l old_joy,24(a0) restore joystick vector 

  
mus_on dc.b $08 

ikbd_vec ds.l 1 IKBD vector storage 

old_joy ds.l 1 old joy vector storage 

 

Two other commands of the IKBD that might be good to know about are $1A, which turns off 
the joystick, and $12 which turns off the mouse. Let’s say we want to be on the really safe 
side and not only turn on joystick reporting but also turn off mouse reporting, it would look 
thusly 
 
 move.l #joy_on,-(a7) pointer to IKBD instructions 

 move.w #1,-(a7) instruction length - 1 

 move.w #25,-(a7) send instruction to IKBD 
 trap #14 

 addq.l #8,a7 

  
joy_on dc.b $14,$12 

 

Note how the extra parameters are just appended to the command list, and the update of the 
instruction length parameter to reflect the new command list length. Here comes the source 
of the program, hold on! 
 

 jsr initialise 
 

* pre-shifting sprite 

 move.l #spr_dat,a0 original sprite data 

 add.l #34,a0 skip palette 

 move.l #sprite,a1 storage of pre-shifted sprite 

 
 move.l #32-1,d0 32 scan lines per sprite 

first_sprite 

 move.l (a0)+,(a1)+ move from original to pre-shifted 
 move.l (a0)+,(a1)+ 

 move.l (a0)+,(a1)+ 

 move.l (a0)+,(a1)+ 32 pixels moved 
 add.l #8,a1 jump over end words 

 add.l #144,a0 jump to next scan line 

 dbf d0,first_sprite 
* the picture sprite has been copied to first position in pre-shift 

 



 13 Of Hearing That Which Is Spoken  

 87 

 move.l #sprite,a0 point to beginning of storage area 

 move.l #sprite,a1 point to beginning of storage area 
 add.l #768,a1 point to next sprite position 

 

 move.l #15-1,d1 15 sprite positions left 

positions 

 move.l #32-1,d2 32 scan lines per sprite 

line 
 move.l #4-1,d3 4 bit planes 

plane 

 move.w (a0),d0 move one word 
 roxr #1,d0 pre-shift 

 move.w d0,(a1) put it in place 

 
 move.w 8(a0),d0 move one word 

 roxr #1,d0 pre-shift 

 move.w d0,8(a1) put it in place 
 

 move.w 16(a0),d0 move one word 

 roxr #1,d0 pre-shift 

 move.w d0,16(a1) put it in place 

 

 add.l #2,a0 next bit plane, also clears X flag 
 add.l #2,a1 next bit plane 

 

 dbf d3,plane 
 

 add.l #16,a1 next scan line 

 add.l #16,a0 next scan line 
 

 dbf d2,line 

 
 dbf d1,positions 

* pre-shift of sprite done, all 16 sprite possitions saved in sprite 

 
 

* pre-shifting mask 

 move.l #spr_dat,a0 
 add.l #34+160*32,a0 skip palette and sprite 

 move.l #mask,a1 load up mask part 

 

 move.l #32-1,d0 32 scan lines per sprite 

first_mask 

 move.l (a0)+,(a1) move from original to pre-shifted 
 not.l (a1)+ invert the mask data 

 move.l (a0)+,(a1) 

 not.l (a1)+ invert the mask data 
 move.l (a0)+,(a1) 

 not.l (a1)+ invert the mask data 

 move.l (a0)+,(a1) 
 not.l (a1)+ invert the mask data 

 move.l #$ffffffff,(a1)+ fill last two words... 

 move.l #$ffffffff,(a1)+ ... with all 1's 
 

 add.l #144,a0 jump to next scan line 

 dbf d0,first_mask 

* the picture mask has been copied to first position in pre-shift 

 

 move.l #mask,a0 point to beginning of storage area 
 move.l #mask,a1 point to beginning of storage area 

 add.l #768,a1 point to next mask position 

 
 move.l #15-1,d1 15 sprite positions left 

positions_mask 

 move.l #32-1,d2 32 scan lines per sprite 
line_mask 

 move.l #4-1,d3 4 bit planes 

plane_mask 
 move.w (a0),d0 move one word 



 13 Of Hearing That Which Is Spoken  

 88 

 roxr #1,d0 pre-shift 

 or.w #%1000000000000000,d0 make sure most significant bit 
set 

 move.w d0,(a1) put it in place 
 

 move.w 8(a0),d0 move one word 

 roxr #1,d0 pre-shift 
 move.w d0,8(a1) put it in place 

 

 move.w 16(a0),d0 move one word 
 roxr #1,d0 pre-shift 

 move.w d0,16(a1) put it in place 

 

 add.l #2,a1 next bit plane 

 add.l #2,a0 next plane, clears X flag (bad) 

 
 dbf d3,plane_mask 

 

 add.l #16,a1 next scan line 
 add.l #16,a0 next scan line 

 

 dbf d2,line_mask 
 

 dbf d1,positions_mask 

* pre-shift of mask done, all 16 sprite possitions saved in mask 
 

 

 movem.l bg+2,d0-d7 
 movem.l d0-d7,$ff8240 

 

 move.l #bg+34,a0 pixel part of background 
 move.l $44e,a1 put screen memory in a1 

 move.l #7999,d0 8000 longwords to a screen 

 pic_loop 

 move.l (a0)+,(a1)+ move one longword to screen 

 dbf d0,pic_loop background painted 

 
 jsr save_background something in restore buffer 

 

 ** joy code 
 move.w #34,-(a7) 

 trap #14 

 addq.l #2,a7 return IKBD vector table 
 

 move.l d0,ikbd_vec store IKBD vectors address 

 move.l d0,a0 a0 points to IKBD vectors 
 move.l 24(a0),old_joy backup old joystick vector 

 move.l #read_joy,24(a0) input my joystick vector 

 

 move.l #joy_on,-(a7) pointer to IKBD instructions 

 move.w #0,-(a7) instruction length - 1 

 move.w #25,-(a7) send instruction to IKBD 
 trap #14 

 addq.l #8,a7 

 ** end joystick init 
 

 move.l $70,old_70 backup $70 

 move.l #main,$70 put in main routine 
 

 move.w #7,-(a7) 

 trap #1 
 addq.l #2,a7 wait keypress 

 

 move.l old_70,$70 restore old $70 
 

** joy code 

 move.l #mus_on,-(a7) pointer to IKBD instruction 
 move.w #0,-(a7) length of instruction - 1 

 move.w #25,-(a7) send instruction to IKBD 

 trap #14 



 13 Of Hearing That Which Is Spoken  

 89 

 addq.l #8,a7 

 
 move.l ikbd_vec,a0 a0 points to old IKBD vectors 

 move.l old_joy,24(a0) restore joystick vector 

** end shut down 

 

 

 jsr restore 
 

 clr.l -(a7) 

 trap #1 exit 
 

 main 

 movem.l d0-d7/a0-a6,-(a7) backup registers 
 

 jsr restore_background 

 jsr move_sprite 
 jsr save_background 

 jsr apply_mask 

 jsr put_sprite 

 

 movem.l (a7)+,d0-d7/a0-a6 restore registers 

 
 rte 

 

move_sprite 
* updates x and y coordinates according to joystick 1 

* if fire button pressed, add 1 to colour 0 

 move.b joy+1,d0 check joystick 1 
 

 cmp #128,d0 fire 

 blt no_fire 
 add.w #$001,$ff8240 

 and.b #%01111111,d0 clear fire bit 

no_fire 
 

 cmp.b #1,d0 up 

 beq up 
 cmp.b #2,d0 down 

 beq down 

 cmp.b #4,d0 left 

 beq left 

 cmp.b #8,d0 right 

 beq right 
 cmp.b #9,d0 up-right 

 beq up_right 

 cmp.b #10,d0 down-right 
 beq down_right 

 cmp.b #6,d0 down-left 

 beq down_left 
 cmp.b #5,d0 up-left 

 beq up_left 

 bra done 
up 

 sub.w #1,y_coord 

 bra done 

down 

 add.w #1,y_coord 

 bra done 
left 

 sub.w #1,x_coord 

 bra done 
right 

 add.w #1,x_coord 

 bra done 
up_right 

 sub.w #1,y_coord 

 add.w #1,x_coord 
 bra done 



 13 Of Hearing That Which Is Spoken  

 90 

down_right 

 add.w #1,y_coord 
 add.w #1,x_coord 

 bra done 

down_left 

 add.w #1,y_coord 

 sub.w #1,x_coord 

 bra done 
up_left 

 sub.w #1,y_coord 

 sub.w #1,x_coord 
 bra done 

done 

 
 * avoid going outside screen 

 cmp #319-32,x_coord 

 blt x_right_ok 
 move.w #319-32,x_coord 

x_right_ok 

 

 cmp #0,x_coord 

 bgt x_left_ok 

 move.w #0,x_coord 
x_left_ok 

 

 cmp #199-32,y_coord 
 blt y_low_ok 

 move.w #199-32,y_coord 

y_low_ok 
 

 cmp #0,y_coord 

 bgt y_high_ok 
 move.w #0,y_coord 

y_high_ok 

 rts 
 

 

read_joy 
 * executes every time joystick information is changed 

 move.b 1(a0),joy store joy 0 data 

 move.b 2(a0),joy+1 store joy 1 data 

 rts 

 

apply_mask 
 * applies the mask to the background 

 jsr get_coordinates 

 move.l #mask,a0 
 mulu #768,d0 multiply position with size 

 add.l d0,a0 add value to mask pointer 

 
 move.l #32-1,d7 mask is 32 scan lines 

maskloop 

 rept 6 mask is 6*4 bytes width 
 move.l (a0)+,d0 mask data in d0 

 move.l (a1),d1 background data in d1 

 and.l d0,d1 and mask and picture data 

 move.l d1,(a1)+ move masked picture data to 
background 

 endr 

 add.l #136,a1 next scan line 

 dbf d7,maskloop 
 

 rts 

 
 

put_sprite 

* paints the sprite to the screen 
 jsr get_coordinates 

 move.l #sprite,a0 

 mulu #768,d0 multiply position with size 



 13 Of Hearing That Which Is Spoken  

 91 

 add.l d0,a0 add value to sprite pointer 

 
 move.l #32-1,d7 sprite is 32 scan lines 

bgloop 

 rept 6 sprite is 6*4 bytes width 

 move.l (a0)+,d0 sprite data in d0 

 move.l (a1),d1 background data in d1 

 or.l d0,d1 or sprite and background data 
 move.l d1,(a1)+ move ored sprite data to background 

 endr 

 add.l #136,a1 
 dbf d7,bgloop 

 

 rts 
 

 

save_background 
* saves the background into bgsave 

 jsr get_coordinates 

 move.l #bgsave,a0 

 

 move.l #32-1,d7 sprite is 32 scan lines 

bgsaveloop 
 rept 6 sprite is 6*4 bytes width 

 move.l (a1)+,(a0)+ copy background to save buffer 

 endr 
 add.l #136,a1 next scan line 

 dbf d7,bgsaveloop 

 
 rts 

 

 
restore_background 

* restores the background using data from bgsave 

 jsr get_coordinates 
 move.l #bgsave,a0 

 

 move.l #32-1,d7 sprite is 32 scan lines 
bgrestoreloop 

 rept 6 sprite is 6*4 bytes width 

 move.l (a0)+,(a1)+ copy save buffer to background 

 endr 

 add.l #136,a1 next scan line 

 dbf d7,bgrestoreloop 
 

 rts 

 
 

get_coordinates 

* makes a1 point to correct place on screen 
* sprite position in d0.b 

 move.l $44e,a1 screen memory in a1 

 move.w y_coord,d0 put y coordinate in d0 
 mulu #160,d0 160 bytes to a scan line 

 add.l d0,a1 add to screen pointer 

 move.w x_coord,d0 put x coordinate in d0 

 divu.w #16,d0 number of clusters in low, bit in 
high 

 clr.l d1 clear d1 

 move.w d0,d1 move cluster part to d1 

 mulu.w #8,d1 8 bytes to a cluster 
 add.l d1,a1 add cluster part to screen memory 

 clr.w d0 clear out the cluster value 

 swap d0 bit to alter in low part of d0 
 

 rts 

 
 

 include initlib.s 

 



 13 Of Hearing That Which Is Spoken  

 92 

 

 section data 
x_coord dc.w 150 

y_coord dc.w 80 

 

spr_dat incbin SHIP.PI1 

bg incbin XENON.PI1 

old_70 dc.l 0 
 

joy_on dc.b $14 

mus_on dc.b $08 
ikbd_vec dc.l 0 

old_joy dc.l 0 

 
 

 section bss 

sprite ds.l 3072 32/2+8*32 bytes * 16 positions / 4 
for long 

mask ds.l 3072 same as above 
bgsave ds.l 192 32/2+8*32 bytes / 4 for long 

joy ds.b 2 

  

Yup, another long source code. There are big similarities between the sprite tutorial though, 
since we’re basically doing the same thing. The new things are of course the joystick on and 
off, which are located between the “* joy code” comments, after the pre-shiftings. Nothing to 
say there that hasn’t been said before. Same with the joystick routine. The MOVE_SPRITE 
routine is all new and deserves attention. 

It begins by moving the joystick data to d0. In this case, I only check joystick 1. First I begin 
by checking for the fire button, this is done by seeing if d0 contains a number larger than or 
equal to 128. If the fire button is pressed, the 8th bit (bit 7, start counting from 0 and from 
the rightmost bit) in the joystick status byte is set which means that the byte will hold a value 
equal to or higher than 128, since %10000000 = 128. Then I clear out the fire bit so that it 
won’t bother me anymore. 

Next I check for joystick movement. This is done by using the same method as above. For 
example, if the joystick is down-left, then bit 1 and 2 are set, meaning the byte will hold 
value %00000110 = 6. This is the reason for clearing out the fire bit above. If it hadn’t been 
cleared, the number would be either 6 or 128 + 6 = 134 for down-right. So just run through 
all 8 directional checks to see if any bits are set, if they are not, I just branch right away to 
done. If this branch hadn’t been there, the program would just continue and execute the 
code associated with joystick up if the joystick wasn’t moved at all. An early bug that caused 
me some confusion. 

After the coordinates have been changed accordingly, I also check to see that the sprite isn’t 
out of bounds, since this could cause a crash and be generally stupid in all kinds of ways. So 
just check if the coordinates are right, and if they’re not, reset them to the closest correct 
value. If you want a speedier ship, just increase the speed accordingly, adding more than one 
to the coordinates, and also remember to include this in the boundary check, just as the 
sprite. 

Some of you will probably notice that the ship itself is not 32 scan lines, although I treat the 
sprite as such. This has the effect of the ship never reaching all the way down the screen, 
since there is some black space worth of sprite data. This could be easily fixed of course, but 
I didn’t. Also, two ships moving might be nice, at first I considered having both the Xenon 2 
ship and the Xenon 1 ship side by side, controlled by two joysticks, but I decided to keep it 
simple. However, there should be no big trouble incorporating that, and changing the fire 
button perhaps to morph the Xenon 1 ship. 

Having two sprites is no harder than having one sprite, the only thing you have to think about 
is the order of painting the sprites, the ones painted first will be painted over by the ones that 
come next. Yet another cool thing is to change the look of the sprite as you move it, like in 
the real Xenon game, they have the ship tilted sideways and generate rocket fire when it 



 13 Of Hearing That Which Is Spoken  

 93 

moves, all you need is a flag to know which state the ship is in and change the sprite address 
accordingly. 

This means having a sprite picture with not just one ship, but the ship tilted in directions and 
with rocket flames, all in all lots of pictures. All of these sprites will of course fit in one degas 
picture, so all you need is the correct offset into this picture depending on what “mode” the 
sprite is in. Compare this to the way we address the sprite mask, only in this case it’s a 
different sprite (or different look of the sprite, depending on how you see it). 

Now you have the tools needed to create a game, or even a demo for that matter: now go to 
it! Even though there is still much to learn, the basics have been covered, all but one thing: 
music and sound. It is my hope that this will come soon. But you don’t have to worry about 
that for now, code away and the music will be easily incorporated at a later stage. 

Usually, you just hook up the music in your VBL routine. On the Dead Hackers Society page, 
http://dhs.nu, there are two chip editors (at least) with instructions on how to play the 
generated music in assembler: Edsynth and the XLR8. Go take a look at them if you’re 
curious, there should be no trouble understanding the code. 



 13 Of Hearing That Which Is Spoken  

 94 

13 Of Hearing That Which Is Spoken 
“I can kill with a word.” 

- Dune, the Movie 

No demo or game is complete without music. The nice blip-blop tunes known as chip music is 
one of the sweetest forms of music that‘s ever reached my ears. Seems some people don’t 
quite fancy the type of music the ST has to offer, but I think it’s divine. I’m no musician, 
that’s probably why a tutorial on sound has been somewhat delayed, but here it finally is. It’s 
a small tutorial to get down the basics of the sound chip, I intend to follow up with another 
tutorial on playing the .ym file format, created by Arnaud Carré for the ST-sound project. He’s 
got a homepage over at http://leonard.oxg.free.fr. 

The Atari ST comes equipped with a so called PSG: Programmable Sound Generator. This is 
yet another chip in the ST, the Yamaha YM-2149, fondly called “yammy”. According to the ST 
Internals, this cool chip sports lots of features, for example three independently 
programmable sound generators, 15 logarithmically volume levels and 16 registers. Registers, 
yes, just give me the tech specs, register addresses and I’ll start to outdo Mozart! 

Things aren’t that easy though, it would take insanity to hard code the sound chip. By hard 
coding I mean just entering numbers into the registers, rather than using some program to 
make music. There is also a little something here, again according to the ST Internals, it’s not 
possible to directly address the yammy registers. Instead, you have to put the desired 
register number in $ff8800, and then you can put data in $ff8802, or read data from $ff8800. 
Don’t worry, soon comes an explanation of how that applies to real life, but just to be 
complete, here’s a listing of the registers. 

 

Register Effect 
0,1 Period, length and pitch of channel A 
2,3 Period, length and pitch of channel B 
4,5 Period, length and pitch of channel C 
6 Noise generator 
7 Bit 0: channel A tone on/off (0 = on, 1 = off) 

Bit 1: channel B tone on/off (0 = on, 1 = off) 
Bit 2: channel C tone on/off (0 = on, 1 = off) 
Bit 3: channel A noise on/off (0 = on, 1 = off) 
Bit 4: channel B noise on/off (0 = on, 1 = off) 
Bit 5: channel C noise on/off (0 = on, 1 = off) 
Bit 6: port A input/output 
Bit 7: port B input/output  

8 Bit 0-3 channel A volume, if bit 4 set, envelope and bit 0-3 ignored 
9 Bit 0-3 channel B volume, if bit 4 set, envelope and bit 0-3 ignored 
10 Bit 0-3 channel C volume, if bit 4 set, envelope and bit 0-3 ignored 

11,12 Sustain, 11 low byte and 12 high byte 
13 Waveform envelope 

14,15 Port A and Port B, used for output 
 

Like I said, I’m not a musician and I don’t understand too much of this. For me, there are 
only 4 interesting registers: 7-10. Why? Because with register 7, I can turn on and off 



 13 Of Hearing That Which Is Spoken  

 95 

different channels, and with 8-10 I can determine the current volume and also set the 
volume. In other words, registers 8-10 can be used to fade music in and out, as well as 
create cool bars that go up and down to the beat of the music (or you can have three 
pulsating sprites or whatever). Here’s some example code on how to use the yammy. 
 move.b #7,$ff8800 access Yamaha register 7 
 move.b #%101,$ff8802 turn off channel A and C 

 

As the comments say, this will turn off all (tone) sound from channels A and C. Note how 
only a byte is moved in both instances, and note also that setting a bit means turning the 
channel off. Here’s how to read the volume of channel A: 
 move.b #8,$ff8800 channel A volume 

 move.b $ff8800,d0 channel A volume in d0 

 

Yep, when you want to read data, you put the register number in $ff8800 as usual, but then 
you move the data from $ff8800. This obviously means that $ff8800 gets updated between 
the two move instructions in some way. That’s all there is to it actually, but in practice it 
becomes a little harder. 

Sure, we have a basic working of the yammy, well, actually we don’t but we know how to use 
it anyway. Time to play some music perhaps. Most music plays by hooking it up to the VBL, 
and then just jump to some address in the music file. This of course means that the music 
file has it’s own code routines to play the music, and does not only contain raw music data. 
The XLR8 chip composer, which can be found at http://dhs.nu, comes with both some 
example files and the source code for playing them. A good place to start. Here is the code 
the XLR8 chip composer suggests for playing the music: 
 pea 0.w 

 move.w #32,-(sp) 
 trap #1 

 addq.l #6,sp 

 
 moveq #1,d0 ; normal song-play mode 

 bsr music 

 
 move.l #music+2,$4d2 ; music in VBL 

 move.w #7,-(sp) ; wait for a key 

 trap #1 
 addq.l #2,sp 

 

 moveq #0,d0 ; exit music 
 bsr music 

 

 clr.l $4d2 ; clear VBL 
 pea 0.w ; Back to desktop 

 trap #1 

 

music incbin f:\1.xms ; music file to include 

 

Well well, they don’t even go out of supervisor mode, naughty naughty. Fairly straightforward 
and easy, there is only one thing that would trouble us, the $4d2 address. We’re used to 
have the VBL hooked up to $70. At address $4ce there are eight long words that point to VBL 
routines. These VBL routines are executed one after another. So by writing to say $4ce and 
$4ce+4, we can have two different VBL routines that get executed one after the other. 

In the source code above, the author chooses to put the VBL routine in the second of these 
eight VBL routines. Our way of writing to the $70 instead, is a bit rawer. Writing to $70 
disables all VBL routines except the $70. This means that we know that our, and only our VBL 
routine is the one to run. In any way, if we spot a memory address close to $4ce in some 
future source code, we know that it’s a VBL routine. Translated into how we would code it, it 
looks like this: 
 jsr initialise 

 



 13 Of Hearing That Which Is Spoken  

 96 

 moveq #1,d0 normal song play 

 bsr music start music 
 

 move.l $70,-(a7) backup $70 

 move.l #main,$70 main routine on VBL 

 move.w #7,-(a7)  

 trap #1 

 addq.l #2,a7 wait keypress 
 move.l (a7)+,$70 restore $70 

 jsr restore 

 
 moveq #0,d0 

 bsr music stop music 

 
 clr.l -(a7) 

 trap #1 exit 

 
main 

 movem.l d0-d7/a0-a6,-(a7) backup registers 

 

 bsr music+2 play music 

 

 movem.l (a7)+,d0-d7/a0-a6 restore registers 
 rte 

 

 include initlib.s  
 

 section data 

 music incbin 1.xms music file to include 
 

Well, what do you know, ours became longer, but it’s built for more add-ons, and it also has 
some backup feature such as getting out of supervisor mode, and it also has a SECTION 
DATA. Doesn’t really matter, both ways are equally fast really. Speaking of fast, there’s an 
instruction here that I don’t think we’ve encountered before, the moveq instruction. Moveq 
stands for MOVEQuick. It works pretty much as a normal move, but it can only move 
quantities in the range of -128 to +127 (a byte). The data does get sign extended though, 
meaning it will take up a 32-bit quantity (long word). Thus a MOVEQ.L #0,D0 clears d0 
faster than a CLR.L D0. Handy little instruction actually. You will also notice how I put $70 
on the stack instead of saving it to a variable. 

So we have a way of playing music, at least music composed with the XLR8 chip composer. 
This is a little thin, so against our better knowledge, we decide it would be fun to do some 
volume meters as well. In order to do these VU bars, we have to play the music, read 
registers 8-10 (for volume) and then paint the VU bars. Yes, it’s true, the yammy has three 
sound channels, meaning it can play up to three different sounds at once. It also has some 
noise generator I think so it’s able to play four different sounds at once. 

The volume is represented by the four least significant bits, meaning it’s a value between 0 
and 15 (%1111), would be smart to paint one line of VU bar for each volume, right? So at 
volume 15, the VU bar takes up 15 lines, this can be a little small though, so just for fun we 
decide to leave every second line blank (background coloured), thus volume 15 will take up 
30 lines instead. Since we have 15 different VU lines, each line can have it’s own colour and 
we’ll still have one over for the background as well. Seems the ST was made for these things! 
Actually, it wasn’t, it’s just normal for computers to have many things on binary bounders. 
Thus the powers of two (such as 16, or 0-15) show up a lot. 

As we know, the volume data may contain other stuff than just the four volume bits, so in 
order to keep only those bits, we have to and off the other bits. Otherwise the volume data 
might contain a number larger than 15 and that will screw us up big time, making us do 
stupid things like drawing outside of the screen, which will probably result in a crash. 

Now, to decide on how to draw the volume bars. What, should this be a problem? Just do a 
dbf loop according to the volume and paint as many lines as the volume. Yes, that won’t 



 13 Of Hearing That Which Is Spoken  

 97 

work. Say one VBL the volume is 12, then the other VBL it’s 5, but the VU bar will still be 12 
lines high since we don’t delete it. 

So on every VBL, we first delete the VU bar and then paint it. This can be done, but actually 
it’s smarter to first paint the VU bar, then delete it. The delete part is more generic, and thus 
easier to fit into a loop, while the paint part requires colour updates and so on. Thus, the VU 
bar routine will be to first paint all three VU bars to the max, then delete as many lines as the 
inverted volume (volume 15 means delete nothing, volume 0 means delete 15). This will work 
nicely. Actually, theory part over, time for source code: 
 jsr initialise 

  

 moveq #1,d0 normal song play mode 
 bsr music 

 

 move.l #palette,a0 pointer to palette 

 movem.l (a0)+,d0-d7 palette in d0-d7 

 movem.l d0-d7,$ff8240 apply palette 

 
 move.l $70,-(a7) backup $70 

 move.l #main,$70 start main routine 

 
 move.w #7,-(a7) 

 trap #1 

 addq.l #2,a7 wait keypress 
 

 move.l (a7)+,$70 restore old $70 

 
 moveq #0,d0 stop music 

 bsr music 

 
 jsr restore 

 

 clr.l -(a7) 
 trap #1 exit 

 

main 

 movem.l d0-d7/a0-a6,-(a7) 

  

 bsr music+2 play music 
 

* put in VU meters 

 move.l $44e,a0 get screen address 
 add.l #160*199-(15*2)*160,a0 bottom area of screen 

 move.l #meter,a1 point to meter colours 

 
 rept 15 15 max volume 

 movem.l (a1)+,d0-d1 VU meter colour in d1-d2 

 movem.l d0-d1,(a0) first VU meter 
 addq.l #8,a0 next VU meter 

 movem.l d0-d1,(a0) second VU meter 

 addq.l #8,a0 next VU meter 

 movem.l d0-d1,(a0) third VU meter 

 add.w #320-16,a0 two lines down, two meter left 

 endr 
 

* delete VU meters depending on volume 

 move.l $44e,a0 get screen address 
 add.l #160*199-(15*2)*160,a0 bottom area of screen 

 

 moveq.l #0,d0 clear d0 
 move.b #8,$ff8800 chanenl a volume 

 move.b $ff8800,d0 put volume in d0 

 jsr del_meter 
 

 moveq.l #0,d0 clear d0 

 move.b #9,$ff8800 channel b volume 
 move.b $ff8800,d0 put volume in d0 

 add.l #8,a0 next VU meter 



 13 Of Hearing That Which Is Spoken  

 98 

 jsr del_meter 

 
 moveq.l #0,d0 clear d0 

 move.b #10,$ff8800 channel c volume 

 move.b $ff8800,d0 put volume in d0 

 add.l #8,a0 next VU meter 

 jsr del_meter 

 
 movem.l (a7)+,d0-d7/a0-a6 

 rte 

 
 

del_meter 

* screen address of top line in a0 
* volume in d0, gets detroyed 

 move.l a0,-(a7) backup a0 

 move.l a1,-(a7) backup a1 
 and.b #%1111,d0 keep only lowest 4 bits 

 

 move.l #delete,a1 beginning of delete blocks 

 mulu #12,d0 length of one delete block 

 add.l d0,a1 skip some delete instructions 

 jmp (a1) jump to correct delete position 
 

delete 

 rept 15 
 clr.l (a0) clear two bit planes 

 clr.l 4(a0) clear two bit planes 

 add.l #320,a0 hop two lines down 
 endr 

 

 move.l (a7)+,a1 restore a1 
 move.l (a7)+,a0 restore a0  

 rts 

 
 

 include initlib.s 

 
  

 section data 

  

meter 

* colour data for each line of VU meter 

 dc.w $00ff,$00ff,$00ff,$00ff 
 dc.w $0000,$00ff,$00ff,$00ff 

 dc.w $00ff,$0000,$00ff,$00ff 

 dc.w $0000,$0000,$00ff,$00ff 
 dc.w $00ff,$00ff,$0000,$00ff 

 dc.w $0000,$00ff,$0000,$00ff 

 dc.w $00ff,$0000,$0000,$00ff 
 dc.w $0000,$0000,$0000,$00ff 

 dc.w $00ff,$00ff,$00ff,$0000 

 dc.w $0000,$00ff,$00ff,$0000 
 dc.w $00ff,$0000,$00ff,$0000 

 dc.w $0000,$0000,$00ff,$0000 

 dc.w $00ff,$00ff,$0000,$0000 

 dc.w $0000,$00ff,$0000,$0000 

 dc.w $00ff,$0000,$0000,$0000 

 dc.w $00ff,$0000,$0000,$0000 
 

palette 

 dc.w $000,$093,$09b,$094,$09c,$095,$09d,$096 
 dc.w $09e,$097,$29f,$39f,$49f,$59f,$69f,$79f 

 

music incbin instinct.xms music file 

 



 13 Of Hearing That Which Is Spoken  

 99 

Here we go! Setup the music to work, then put in the palette. Backup the old $70 by putting 
it on the stack, put in my own $70 routine, wait for keypress, shut down music, restore and 
exit. All the usual stuff. 

The main routine starts off by playing the music, that one simple command is enough to keep 
the music running. Now comes the interesting part: putting in the VU bars. I get the screen 
address, and go to the bottom area of the screen. This means go to the absolute bottom, line 
199, and then hop 30 lines up. Because I want to paint the entire VU bar, and the VU bar is 
15*2 lines high (max 15 volume and every second line is interlaced). 

The actual painting of the VU bar is a bit tricky. I point to the bar label, which contains colour 
data for the VU bars. Each little four word block here is data for a bit plane, so the first line is 
colour 15. The reason for the two leading 0’s, is that I don’t want the entire bit plane filled, in 
this way, only 8 pixels out of sixteen will be set. 
 dc.w $00ff,$00ff,$00ff,$00ff 

 

is the same as 
 dc.w %0000000011111111 
 dc.w %0000000011111111 

 dc.w %0000000011111111 

 dc.w %0000000011111111 
 

And we know that by putting this into the screen memory, we will have 8 pixels with colour 0, 
and then 8 pixels with colour 15. The next entry is 
 dc.w $0000,$00ff,$00ff,$00ff 

 

which is the same as 
 dc.w %0000000000000000 
 dc.w %0000000011111111 

 dc.w %0000000011111111 

 dc.w %0000000011111111 
 

When we put this into screen memory, we get colour 14 in the last 8 pixels. 

When pointing to the bar label, a1 points to memory that contains this data: 
$00ff00ff00ff00ff. This data I move into d0 and d1 with a movem instruction, then I put that 
data into the screen memory. Adding 8 to the screen memory pointer will put me on the next 
VU bar, 16 pixels to the right, and then I move that same colour data into the screen memory 
there, and repeat one last time. Then I need to correct the screen pointer: by adding 320, I 
move two lines down, and then I need to subtract 16 from that to be on the first VU bar 
position. Repeat all this 15 times to paint in all three VU bars full. 

Now the time has come to delete the VU bars, so that they will reflect the value of the 
volume. Again, get screen memory and go to the bottom area, pointing right at the topmost 
line of the first VU bar. Clear d0 just to be sure there’s no garbage, and read Yamaha register 
8, which is channel A volume. Now the volume is in d0, and the screen address is in a0, jump 
into the del_bar routine to delete the bar. 

The del_bar routine is also a bit tricky, and uses an almost dirty method. Backup the registers 
so that they don’t get destroyed. This is good practice for sub routines, so that other 
programmers can count on calling routines without having data destroyed. And away all bits 
but the first four. Now we have pure volume data in d0. 

It would be tempting to just go through a dbf loop to clear out the lines, but this won’t work. 
A bdf loop always executes once, but in some circumstances, we don’t want the delete loop 
to execute even once. So instead of having a loop, I have 15 blocks of delete data, each 
block deletes one line of VU bar. By jumping into the correct block, I take away the exact 
number of VU bar lines. Each delete block looks like this: 
 clr.l (a0) clear two bit planes 

 clr.l 4(a0) clear two bit planes 

 add.l #320,a0 hop two lines down 



 13 Of Hearing That Which Is Spoken  

 100 

 

This will clear out the four bit planes of a line, and then hop two lines down. This block takes 
12 memory positions. Usually, an instruction takes a long word to store, these three 
instructions are no exceptions. Since all instructions just get loaded into memory, we can 
easily jump to them. Go into MonST mode to see this clear, in the instruction window, you’ll 
see all instructions, and to the left of them you’ll see what memory position they occupy. By 
adding 4 to the program counter, you usually skip one instruction. 

For example, by jumping to the start of the delete blocks+12, we will skip one delete block. 
In the del_bar routine, I have 15 delete blocks, I let a1 point to the beginning of these 
blocks. Then I multiply the volume by 12, since this is the size of each delete block, add that 
value to a1, and jump to the address a1 contains. 

Say that we have volume one, this means execute 14 delete blocks, which will leave only one 
line of VU bar left. 1*12 = 12, thus we will jump to the beginning of the delete blocks+12, 
which will let us skip one delete block, and then we have 14 left. Here’s how it looks: 
Memory position (fictional) 

$0 move.l $10,a1 beginning of delete blocks 
$4 mulu #12,d0 length of one delete block 

 d0 contains 12 

$8 add.l d0,a1 skip some delete instructions 
 a1 now contains $1c 

$c jmp (a1) jump to $1c 

 

$10 clr.l (a0) clear two bit planes 

$14 clr.l 4(a0) clear two bit planes 

$18 add.l #320,a0 hop two lines down 
 

$1c clr.l (a0) clear two bit planes 

$20 clr.l 4(a0) clear two bit planes 
$24 add.l #320,a0 hop two lines down 

 

$28 clr.l (a0) clear two bit planes 
$2c clr.l 4(a0) clear two bit planes 

$30 add.l #320,a0 hop two lines down 

 … 13 more delete blocks 
 

That’s that. In short, the program only runs a VBL routine. This VBL routine plays the music, 
and then paints in VU bars at max. Then the volume is read from yammy registers, for each 
volume read, the del_bar routine is called which deletes as many lines as the inverted 
volume. Then add 8 to the screen memory to point to the next VU bar, read the volume and 
call the del_bar routine. 

With this knowledge of the volume workings, you can have just about any effect tied to the 
volume. I first had the background colour be set by the three channels, channel A for red 
colour, channel B for green and channel C for blue. This created quite the psychedelic 
background I can tell you :) One cool thing would be to have three Xenon 1 ships, that 
morph back and forth between tank and ship, say that volume 15 means complete tank 
morph, and 0 means ship, then volume 7 would be morph in between those. Once again, 
your fantasy can run free! 

In the next tutorial, I hope to cover the .ym file format as described in the beginning. This 
will mean setting up our own routine to write raw data into the sound chip, which should be 
quite easy. Just put register number as usual, then write the data found in the .ym file. Stay 
tuned … 



 14 Of Using The Gramophone 

 

 101 

14 Of Using The Gramophone 
“They fought like warrior poets. They fought like Scotsmen and 
won their freedom forever.” 

- Braveheart 

Wow, it really was a long time since the last tutorial. I’ve had more and more to do in school 
and other things have popped up, maybe I just needed a break too. Now I really feel up to 
writing again, thanks to some encouragement on the Atari forum (http://www.atari-
forum.com). 

This here tutorial will be the follow up of the previous one, in which I promised to tell you 
how to play the .ym files of the ST-sound format from Arnaud Carré. It will be quite easy and 
a bit of a soft start actually. The focus lies not so much on the code, but how to find and 
apply knowledge. 

Like I always say, I am no musician, neither am I an artist, so therefore, I need to rip stuff or 
have it made for me. I have loads of .ym files on my PC, which can be played by using a 
plug-in for Winamp. Wouldn’t it be nice to be able to use this wealth of music? Yes it would, I 
wonder how that can be achieved, here’s how. 

In order to use the files, we need information on the file format. See tutorial 6 for a quick 
refresh on files if that’s needed. Load up a good search engine in the browser, I used Google 
(http://www.google.com). Now we want to find info on the .ym file format, so a search string 
of “ym file format” would seem appropriate. Would you look at that, the first find seems 
good, taking us to http://leonard.oxg.free.fr/ymformat.html. Quickly browsing the side, we 
judge it seems to hold what we need. We also discover the file format is freeware, so there’s 
no need to worry about the cops. 

Hum hum, there seem to be different versions of the file format, didn’t know that … hum 
hum, this information only applies to YM6, the latest version. “So YM6 is just a register dump 
file”, this is an important key, it tells us how the file format works. It seems that an .ym file is 
simply a dump of the data used to play a song, but that’s not enough, we need to know how 
the data is organized. Reading on … Ah, .ym files are packed using LHA, so that’s why they 
are so small. Using the freeware UltimateZip (http://www.ultimatezip.com), an .ym file can 
be unpacked, or any other LHA packer, but UltimateZip is my choice of program. 

Reading ever further down the page … ah, here it comes. The .ym file contains 16 bytes of 
data for each frame, interleaved. Sure, the sound chip has 16 registers, so by just putting the 
data into the registers of the sound chip, music should be played. Lastly, there’s some info on 
the file header. Some files have headers that tell of important information for the rest of the 
file, here for example, it’s nice to know how long a song actually is. There’s some talk about 
digi-drums and so, that will not be covered in this tutorial and you are welcome to explore it 
yourself. 

So, now we have all the information we need, we just have to structure it and go through it. 
Load up the included .ym file JAMBLV1.YM in your favourite hex-editor. It’s also possible to 
put it in an otherwise empty source file, assemble it and go into the debugger like this 
 nop 

 incbin jamblv1.ym 

 

It seems that every program starts with two bytes of data that would overwrite the data in 
jamblv1.ym, that’s what the NOP is there for. By hitting tab once to get into the memory 
window, you can use the arrow keys to scroll up and down in the jamblv1.ym file. Now we’ll 
traverse the file and see if it corresponds to the information we have on what the file should 



 14 Of Using The Gramophone 

 

 102 

look like. It starts with the values $59, $4d and $21, which identifies the file as an YM6 file. 
When interpreted as ASCII (numbers to letters), these numbers become the letters Y, M and 
!. Next follows a test string, “LeOnArD!”, all good so far. 

After the initial check-things comes the interesting information, a long (4 bytes) that tells us 
the number of frames in the file. In this case, it’s a value of $0000bea, which corresponds to 
3050 in decimal. Note that I wrote out the leading two bytes that for now only contain zeros, 
but they are important to count otherwise you’ll get lost. What does this mean exactly? Well, 
frame of music is just like a frame of graphics, the ST usually operates at 50 Hertz which 
equals 50 frames per second. So we divide 3050 by 50 and get the value 61, indicating the 
tune should be 1:01 long. Load it up in Winamp to test, yep, seems to be right. 

Next comes four bytes of song attributes, that I have no idea what it is, but zero seems to be 
a safe value, and two bytes of digi-drums, which are also zero. Some files have a song 
attribute of one, and they seem to work fine to. You’ll have to experiment with this yourself if 
you find songs that should use digi-drums, or mail LeOnArD! Another uninteresting value, 
$001e8480, or 2000000, which seems to indicate this is indeed an Atari tune. Then two 
bytes, telling us the tune is operating at a frequency of 50 Hz. Lastly an additional six bytes 
of zero data. 

Right, you with me so far? It’s just a question of slowly going through the file and check that 
everything is in order and corresponds to the information we have. Of course it is in order, 
otherwise the file wouldn’t work in Winamp, but I want to make sure for myself. Now comes 
some text again, according to Leonard’s page, these are the song name, author name and 
song comment. 

The data is in null terminated string format. This means the strings can be variable in length, 
and ends with the value zero. Quite true, after each little string, we can see zeroes shining 
through. After these strings, the real sound data begins, also of unknown length. However, 
since we know that there are 3050 frames of data, and each frame holds 16 bytes of sound 
data, there are 3050 * 16 = 48800 bytes of data here, this calculation also seems correct 
since this is roughly the file size. At the end, there are also four bytes forming the string 
“End!”. 

So what do we really need here? Two things, the number of frames, to know how long the 
music file is, so we know when to terminate play, or loop the song, and the start address of 
the music data. We know the address of the number of frames, so that’s easy to just store in 
a variable. Getting to the music data is trickier, since we don’t know exactly where it is. Sure, 
we can hexedit the file and then hardcode the address into the program, but a more general 
way of finding the music start data would be nice, so that we easily can play many different 
.ym files without having to check the start address of the sound data for each file. 

What we want is to get to the end of the three text strings, because this is where the sound 
data begins (if you don’t have any digi-drums). To do this, we put ourselves at the beginning 
of the text field, which always start at the same place, and then we check each byte for a 
zero, since this means the end of a string, and do this three times. In so doing, we will have 
passed by all the three text strings, like so 
 move.l #ym_file,a0 start of ym file 

 move.l 12(a0),frames store number of frames 
 add.l #34,a0 beginning of text 

 

song_name 
 cmp.b #0,(a0)+ search for 0 

 bne song_name 

comment 

 cmp.b #0,(a0)+ search for 0 

 bne comment 

song_data 
 cmp.b #0,(a0)+ search for 0 

 bne song_data 

 move.l a0,music skipped 3 zero, store address 

 



 14 Of Using The Gramophone 

 

 103 

Now we have the length of the tune in frames, and the start address for the sound data in 
music. What was that about interleaved data? The thing is, that many registers of the sound 
chip are all zero. In order to compress better, it would be nice to have all these zeros in one 
long row. Therefore, the data is not presented in the order it’s supposed to be inserted in the 
sound chip, rather, the data is presented one full register after another. Thus, in our file, 
there is 3050 bytes of register 0 data, then 3050 bytes of register 1 data and so on. 

When we put the sound data in the yammy, we have to add the number of frames for each 
input. In this way, we will first input data from register 0, and then we skip the number of 
frames to reach the data for the next register and so on. Here’s the entire code, the code for 
the VU bars has already been discussed and is only included here for fun, so there is very 
little new code 
 jsr initialise 

 
 move.l #palette,a0 pointer to palette 

 movem.l (a0)+,d0-d7 palette in d0-d7 

 movem.l d0-d7,$ff8240 apply palette 
 

 move.l #ym_file,a0 start of ym file 

 move.l 12(a0),frames store number of frames 
 

 add.l #34,a0 beginning of text 

 

song_name 

 cmp.b #0,(a0)+ search for 0 

 bne song_name 
comment 

 cmp.b #0,(a0)+ search for 0 

 bne comment 
song_data 

 cmp.b #0,(a0)+ search for 0 

 bne song_data 
 

 move.l a0,music skipped 3 zero, store address 

 
 move.l $70,-(a7) backup $70 

 move.l #main,$70 start main routine 

 move.w #7,-(a7) 
 trap #1 

 addq.l #2,a7 wait keypress 

 move.l (a7)+,$70 restore $70 
 

 jsr restore 

 

 clr.l -(a7) 

 trap #1 exit 

 
 

main 

 movem.l d0-d7/a0-a6,-(a7) backup registers 
 

 move.l music,a0 pointer to current music data 

 moveq.l #0,d0 first yammy register 
play 

 move.b d0,$ff8800 write to register 

 move.b (a0),$ff8802 write music data 
 add.l frames,a0 jump to next register in data 

 addq.b #1,d0 next register 

 cmp.b #16,d0 see if last register 

 bne play if not, write next one 

 

 addq.l #1,music next set of registers 
 addq.l #1,play_time 1/50th second play time 

 

 move.l frames,d0 
 move.l play_time,d1 

 cmp.l d0,d1 see if at end of music file 



 14 Of Using The Gramophone 

 

 104 

 bne no_loop 

 sub.l d0,music beginning of music data 
 move.l #0,play_time reset play time 

no_loop 

 jsr vu_bars paint the vu bars 

 

 movem.l (a7)+,d0-d7/a0-a6 restore registers 

 rte 
 

 

* put in VU bars 
vu_bars 

 move.l $44e,a0 get screen address 

 add.l #160*199-(15*2)*160,a0 bottom area of screen 
 move.l #bar,a1 point to bar colours 

 

 rept 15 15 max volume 
 movem.l (a1)+,d0-d1 VU bar colour in d1-d2 

 movem.l d0-d1,(a0) first VU bar 

 addq.l #8,a0 next VU bar 

 movem.l d0-d1,(a0) second VU bar 

 addq.l #8,a0 next VU bar 

 movem.l d0-d1,(a0) third VU bar 
 add.w #320-16,a0 two lines down, two bars left 

 endr 

 
* delete VU bars depending on volume 

 move.l $44e,a0 get screen address 

 add.l #160*199-(15*2)*160,a0 bottom area of screen 
 

 moveq.l #0,d0 clear d0 

 move.b #8,$ff8800 chanenl a volume 
 move.b $ff8800,d0 put volume in d0 

 jsr del_bar 

 
 moveq.l #0,d0 clear d0 

 move.b #9,$ff8800 channel b volume 

 move.b $ff8800,d0 put volume in d0 
 add.l #8,a0 next VU bar 

 jsr del_bar 

 

 moveq.l #0,d0 clear d0 

 move.b #10,$ff8800 channel c volume 

 move.b $ff8800,d0 put volume in d0 
 add.l #8,a0 next VU bar 

 jsr del_bar 

 
 rts 

 

 
del_bar 

* screen address of top line in a0 

* volume in d0, gets detroyed 
 move.l a0,-(a7) backup a0 

 move.l a1,-(a7) backup a1 

 and.b #%1111,d0 keep only lowest 4 bits 

 

 move.l #delete,a1 beginning of delete blocks 

 mulu #12,d0 length of one delete block 
 add.l d0,a1 skip some delete instructions 

 jmp (a1) jump to correct delete position 

 
delete 

 rept 15 

 clr.l (a0) clear two bit planes 
 clr.l 4(a0) clear two bit planes 

 add.l #320,a0 hop two lines down 

 endr 
 



 14 Of Using The Gramophone 

 

 105 

 move.l (a7)+,a1 restore a1 

 move.l (a7)+,a0 restore a0 
 rts 

 

 

 include initlib.s 

 

 
 section data 

music dc.l 0 address of music data 

frames dc.l 0 how many frames of music data 
play_time dc.l 0 how many VBL's has elapsed 

 

ym_file incbin jamblv1.ym 
 

bar 

* colour data for each line of VU bar 
 dc.w $00ff,$00ff,$00ff,$00ff 

 dc.w $0000,$00ff,$00ff,$00ff 

 dc.w $00ff,$0000,$00ff,$00ff 

 dc.w $0000,$0000,$00ff,$00ff 

 dc.w $00ff,$00ff,$0000,$00ff 

 dc.w $0000,$00ff,$0000,$00ff 
 dc.w $00ff,$0000,$0000,$00ff 

 dc.w $0000,$0000,$0000,$00ff 

 dc.w $00ff,$00ff,$00ff,$0000 
 dc.w $0000,$00ff,$00ff,$0000 

 dc.w $00ff,$0000,$00ff,$0000 

 dc.w $0000,$0000,$00ff,$0000 
 dc.w $00ff,$00ff,$0000,$0000 

 dc.w $0000,$00ff,$0000,$0000 

 dc.w $00ff,$0000,$0000,$0000 
 dc.w $00ff,$0000,$0000,$0000 

 

palette 
 dc.w $000,$023,$023,$024,$024,$025,$026,$026 

 dc.w $027,$027,$227,$327,$427,$527,$627,$727 

 

I start off with a normal setup, then read in the music data as described previously and start 
the main routine. The main routine here has the actual routine for playing the tune, and the 
rest of the code is just VU bars. 

First, make a0 point to the current music data, this is somewhere in the music file (on a 
number of frames boundary), then put the yammy register number in d0. The real routine for 
actually getting the sound data into the yammy is very compact. D0 holds the number of the 
register to manipulate, putting that in $ff8800 lets us manipulate the register in question, 
then I just put in the music data. After that, it’s a question of adding the number of frames to 
the music pointer, in order to point to the next register. Increment d0 to point to the next 
register, and do this 16 times, one time for each register. If you don’t remember about the 
sound chip, recheck tutorial 13. 

Next I increment the music pointer, so that it points to the beginning of the next sound data 
set, and increase the number of played frames by one. The last part of the main routine 
checks to see if the number of played frames equals the number of frames, if this is so, I 
subtract the number of frames from the music pointer. This makes the music pointer point to 
the beginning of the music data again. The play time also needs to be reset of course, finally, 
a jump to the VU routine, just for the visual effect. Not to complex when you think about it, 
actually, I managed to get it right on the first compile … almost, I had a slight offset error. 

The routine should work for any and all YM6 version files without anything fancy (digi-drums 
etc), and perhaps even with some fancy stuff. I don’t really know. Unfortunately it will not 
play any other ym versions, you’ll have to work that out yourself. In order to get any music 
you want from any Atari source, you can use SainT to record the music in .ym format, it’s 
that simple. 



 14 Of Using The Gramophone 

 

 106 

With this routine, you could make yourself an .ym file player for the Atari. As the program is 
now, it’s really crappy, there is no error reporting of any kind for starters. Perhaps some 
tunes really are in 60 Hertz, then they would play wrongly, or perhaps the file is something 
other than YM6 probably resulting in a crash. You should add some error reporting yourself. 

One nice thing to do with this is to just hook up the music to the VBL, then drop out of the 
program (not waiting for a key press nor restoring the VBL). The music will still be playing 
and you can go on coding. This is very unstable though, and doing this in the GEM desktop 
will probably get you an immediate crash, doing this in Devpac will probably get you a crash 
when you compile anything. It’s just an idea to get you going. 



 15 On Fading To Black 

 

 107 

15 On Fading To Black 
“I wish for this night-time 

to last for a lifetime 

The darkness around me 

Shores of a solar sea 

Oh how I wish to go down with the sun 

Sleeping 

Weeping 

With you” 

- Nightwish, Sleeping Sun 

 

It has occurred to me that by striving ever forward, we’ve forgotten to speak about some 
basic things, so for this tutorial and the next one, we’ll be taking a step back and reviewing 
some things. You may have guessed these techniques yourself, but it never hurts to have it 
spelled out. Also, I thought I’d share some new thoughts on development, we’ll take that 
first. 

Most of the source for the tutorials in the past I’ve actually written in Devpac on a real Atari, 
but it has now become clear to me that developing in Windows on an IBM compatible is 
easier and more efficient. I got the tip over at www.atari-forum.com, a discussion forum for 
all topics Atari (where I’m one of the moderators for the coding section, yay). Have one 
“launcher file” with only one line 
include whateveryoursourcename.s 

 

By doing this, you’ll assemble any source files you want, and you can edit those source files 
outside of Devpac, and then assemble them in Devpac. When I wrote this tutorial, I had a file 
named _WRAP.S that had the line “include tut15.s” in it. Then I used Ultraedit (my editor of 
choice) to edit TUT15.S, I also had Devpac running under STEem. Whenever I felt like 
assembling my source, I just saved in Ultraedit, alt-tabbed into STEem and hit alt-a to 
assemble my source; smooth and easy. 

Speaking of Ultraedit, there is a topic going on over at http://www.atari-
forum.com/viewtopic.php?t=946 to try and work out good syntax highlighting for Atari 
assembly in Ultraedit (www.ultraedit.com). Wow, that’s a lot of various things you wouldn’t 
have seen pop up in a tutorial from say 1994. Now onto the serious stuff. 

The palette is an extremely powerful thing when you want to change colours quick and easy. 
Unfortunately it has the obvious limitation of not changing the pixels. Using the palette you 
can black out the screen without erasing the contents (by setting all colours to black), make 
things pulse (by incrementing and decrementing colour intensity) or wait with displaying a 
picture. Say you want to calculate a big fractal, just set the palette to all 0, calculate your 
fractal, then whip in the palette to display the result. The effect will be that no one will see 
you draw the fractal, only the final result will be shown. 

As we’ve been through before, there are 16 colours in the palette, the first one being the 
background colour, located at $ff8240. Each colour is a word long, making the palette end at 
$ff825e. Each word is built up like this 
 00000RRR0GGG0BBB 



 15 On Fading To Black 

 

 108 

 

The first three bits control blue intensity, then there’s a zero bit, the next three bits control 
green intensity, a zero and the final (non-zero) three bits control red intensity. The maximum 
value you can get out of three bits is 8, and since the colour intensities are at 4 bit 
boundaries, they are very easy to access in hex (since each character in hex mode is a 4 bit 
quantity). Thus $700 means max intensity of red and zero intensity for green and blue, $444 
means medium intensity for all three colours. 

When they built the STe, they thought that it would be nice to have more colours in the 
palette, and indeed, it’s easy to just add an additional bit since that would still have the 
palette on a 4 bit boundary, making each colour range from 0-15. However, there was a 
problem, they could not add a bit in the beginning and just shift the other bits to the left, 
since that would mean all old palette values would in effect be shifted left one bit creating an 
entirely different value than was originally intended. 

The solution to this problem is cunning, but unfortunate. They added the least significant bit 
where the zero bit used to be. This maintains backwards compatibility, and adds 8 new 
possible colour intensities. So the STe palette looks like this 
 0000rRRRgGGGbBBB 

 

This means that $700 is still (almost) maximum intensity of red. What in the memory is 
perceived as the most significant bit, is in palette terms the least significant bit. This sounds 
very confusing perhaps, but just picture moving the uppermost bit of each colour intensity 
first. Let’s say then that we want the intensity between $100 and $200, this would be colour 
$900, since that would be 
 0000rRRRgGGGbBBB 

 0000100100000000 

 

Which we can interpret as 
 0000RRRrGGGgBBBb 
 0000001100000000 

 

Thus, when using the STe palette, we must think about the fact that the most significant bit 
for each colour, is in actuality the least significant bit. The number order for intensities, from 
lowest to highest is 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F. So if you use colour $fff, the 
STe will interpret this as intensity 15 for all colours, and the ST will interpret it as colour 
intensity 7, since the ST doesn’t care about whether the fourth bit is set or not. 

That should be all there is to the palette, making full utilization of it will be up to each one. In 
order to do something I thought we’d just do a simple fade in effect. Fading in a picture is so 
much nicer than just whipping it onto screen. Fading out is also much nicer than just zapping 
it away, you can also fade to white and make the screen sort of flash away. 

What we want is to begin with a black palette and pixel data on the screen, then increment 
the colour values of the palette until they reach the values intended for the picture. In order 
to keep things simple, I opted to skip the STe palette since there’s lots of shifting involved 
whenever you want to use it. So the fade will only have a maximum of 7 intensities to work 
with, making it a pretty bad looking fade effect. 

We’ll need a copy of the original palette, and a current palette which we increment until it 
reaches the original. It would be tempting to compare the real palette to the current one and 
add $111 (one intensity of each colour) if they don’t match, but that won’t work. Say one 
colour is supposed to be $100, if we compare our current $000 with that, they don’t match, 
so we add $111 making the current colour $111, which is more than $100. Instead, we must 
compare each red, green and blue value individually. This can easily be done by just masking 
off all bits except the three controlling the intensity for either red, green or blue. 
 and.w #%011100000000,d0 mask off all but red values 

 and.w #%011100000000,d1 mask off all but red values 

 
 cmp.w d1,d0 see if red is correct intensity 



 15 On Fading To Black 

 

 109 

 beq red_fin if not ... 

 add.w #%000100000000,d1 ... add one intensity of red 
red_fin 

 

Let’s assume d0 holds the real colour, and d1 holds the temporary. All bits except the ones 
controlling red are masked off, then values compared. If they do not match, add one to the 
value. The value to add will be different depending on which intensity we check for, since 
different intensities begin at different bit positions. That’s pretty much it, here’s the entire 
source 
 section text 
 

 jsr initialise 

 

 movem.l picture+2,d0-d7 put picture palette in d0-d7 

 movem.l d0-d7,pal copy palette to pal 

 
 movem.l temp_pal,d0-d7 put current palette in d0-d7 

 movem.l d0-d7,$ff8240 apply current palette (all 0) 

 
 move.w #2,-(a7) get physbase 

 trap #14 

 addq.l #2,a7 
 

 move.l d0,a0 a0 points to screen memory 

 move.l #picture+34,a1 a1 points to picture 
 

 move.l #7999,d0 8000 longwords to a screen 

loop 

 move.l (a1)+,(a0)+ move one longword to screen 

 dbf d0,loop 

 
 move.l $70,old_70 backup $70 

 move.l #main,$70 start main routine 

 
 move.w #7,-(a7) wait keypress 

 trap #1 

 addq.l #2,a7 
 

 move.l old_70,$70 restore $70 

 
 jsr restore 

 

 clr.l -(a7) 

 trap #1 

 

 main 
 move.w sr,-(a7) backup status register 

 or.w #$0700,sr disable interrupts 

 movem.l d0-d7/a0-a6,-(a7) backup registers 

 

 add.l #1,counter increment counter variable 

 cmp.l #15,counter only execute main sometimes 
 bne do_nothing skip instructions 

 clr.l counter reset counter 

 
 move.l #pal,a0 a0 points to values to reach 

 move.l #temp_pal,a1 a1 points to current values 

 
 rept 16 do for each color 

 jsr check_red see if red intensity should increase 

 jsr check_green see if green intensity should 
increase 

 jsr check_blue see if blue intensity should increase 
 add.l #2,a0 point to next color 

 add.l #2,a1 point to next color 

 endr 
 

 movem.l temp_pal,d0-d7 put current palette in d0-d7 



 15 On Fading To Black 

 

 110 

 movem.l d0-d7,$ff8240 apply current palette 

 
do_nothing 

 movem.l (a7)+,d0-d7/a0-a6 restore registers 

 move.w (a7)+,sr restore status register 

 rte  finnished interrupt 

 

 
check_red 

 move.w (a0),d0 move one final color into d0 

 move.w (a1),d1 move one temp color into d1 
 

 and.w #%011100000000,d0 mask off all but red values 

 and.w #%011100000000,d1 mask off all but red values 
 

 cmp.w d1,d0 see if red is correct intensity 

 beq red_fin if not ... 
 add.w #%000100000000,(a1) ... add one intensity of red 

red_fin 

 rts 

 

 

check_green 
 move.w (a0),d0 move one final color into d0 

 move.w (a1),d1 move one temp color into d1 

 
 and.w #%000001110000,d0 mask off all but green values 

 and.w #%000001110000,d1 mask off all but green values 

 
 cmp.w d1,d0 see if green at correct intensity 

 beq green_fin if not ... 

 add.w #%000000010000,(a1) ... add one intensity of green 
green_fin 

 rts 

 
 

check_blue 

 move.w (a0),d0 move one final color into d0 
 move.w (a1),d1 move one temp color into d1 

 

 and.w #%000000000111,d0 mask off all but blue values 

 and.w #%000000000111,d1 mask off all but blue values 

 

 cmp.w d1,d0 see if blue at correct intensity 
 beq blue_fin if not ... 

 add.w #%000000000001,(a1) ... add one intensity of blue 

blue_fin 
 rts 

 

 
 

 include initlib.s 

 
 section data 

old_70 dc.l 0 

picture incbin sleepsun.pi1 

counter dc.l 0 

 

 section bss 
pal ds.w 16 

temp_pal ds.w 16 

 

First I save the palette of the picture in a storage space, then I put the temporary palette in, 
since the temporary palette is initialized to all 0’s, this has the effect of blacking out the 
screen. Next I load up the picture as described in tutorial 6 and set up the main routine. 

The counter code is for delay purposes; otherwise the fade effect would hardly be visible. I 
make a0 point to the palette to reach, and point a1 to the temporary one. Then I check the 



 15 On Fading To Black 

 

 111 

individual intensities, and add 2 to each pointer in order to point to the next colour, repeating 
this for the number of colours in the palette, namely 16. 

You will notice that the check sub-routines are a bit different than the one described above, I 
add to the value pointed to by a1, which is the current palette. It may be considered slightly 
bad program habit to just assume that a1 points to the current palette like that, but coding 
demos and assembly in general depends on tight kept code that knows what it’s doing. 
Besides, the tutorials aren’t really for teaching you how to make good code; they are 
intended as basic introductions to various coding techniques. 

That’s that, one easy effect achieved by manipulating the palette. If you want to fade to 
white, just set the temporary palette to the real palette, and increment until you reach $777. 
If you want to experiment, I suggest trying to implement the effect with a STe palette 
instead, the included picture has a STe palette so it’s ready to go. This should involve shifting 
the fourth bit of each colour intensity down as the first when adding to the colour intensity, 
and then shift it back. For the next tutorial, I think we’ll handle full screen scrolling, without 
moving any picture data! 



 Appendixes 

 112 

Appendix A MC68000 Instruction Set 
A.1 ABCD - Add Binary Coded Decimal 
This instruction is a specialized arithmetic instruction that adds together two bytes (and only 
bytes) containing binary-coded decimal numbers. 

The addition can either be done between two data registers or between two memory 
locations. If performed on bytes in memory, only address register indirect with pre-decrement 
addressing can be used. This facilitates easy manipulation of multiple-precision BCD numbers. 
The extend bit is added along with the BCD bytes to allow this multi-precision data 
manipulation. Also note that the Zero flag is only changed if the result becomes non-zero. 

Therefore, both the Extend and Zero bits in the condition code register should be preset 
before the operation is performed. The Extend bit would normally be preset to a zero (to 
prevent extension on the first addition), and the Zero bit to a one (to preset a zero result 
prior to the first addition). A MOVE #4,CCR would setup these flags correctly. 

Syntax: ABCD Dn, Dn 

or ABCD -(An), -(An) 

Flags affected: The Extend, Zero, and Carry flags are affected as per the result of the 
operation. The state of the Negative and Overflow flags is undefined. 

A.2 ADD - Add Binary 
The ADD instruction adds the source to the destination operand with the result appearing in 
the destination. It is possible to add bytes, words, or long words with this opcode. Either the 
source or destination (or both) must be a data register. The source operand can be any 
memory location or data register, and the destination operand can also be any memory 
location or data register. 

Syntax: ADD Dn, Dn 

or ADD address, Dn 

or ADD Dn, address 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all affected as 
per the result of the addition. 

A.3 ADDA - Add Address 
This variant of the ADD instruction only differs from ADD in that an address register is 
specified as the destination. As an address rather than data is being manipulated, the 
condition code flags are left unaltered. Only sign-extended words or long words can be 
added. 

A.4 ADDI - Add Immediate 
This variant of the ADD instruction is used to add a constant value to the destination. The 
immediate operand can be any 8-, 16-, or 32-bit value as specified by the .B, .W, or .L 
opcode suffix. The destination can not be an address register or a program counter relative 
address. 

Syntax: ADDI #imm, Dn 



 Appendixes 

 113 

or ADDI #imm, address (where address is any memory addressing mode 
except program counter relative) 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the 
result of the addition. 

A.5 ADDQ - Add Quick 
This variant of the ADD instruction is used to add a small positive integer between one and 
eight to the destination. The destination can be a memory location, a data register, or an 
address register. If it is an address register, the condition code flags are unaffected and the 
operand length can not be a byte. This operation takes the place of the increment instruction 
found on other processors. 

Syntax: ADDQ #imm, Rn 

or ADDQ #imm, address 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the 
result of the addition unless the destination is an address register. 

A.6 ADDX - Add Extended 
This variant of the ADD instruction adds two numbers plus the Extend bit from the condition 
code register. This allows multiple-precision additions to be performed. For this reason, the 
Zero flag is only affected when a non-zero result is obtained. This means that if multiple 
numbers are added together using ADDX, the Zero flag will stay reset if any of those 
numbers were non-zero. 

Syntax: ADDX Dn, Dn or ADDX -(An), -(An) 

A.7 AND - Logical AND 
This instruction logically ANDs bits in the source operand with the same number of bits in the 
destination operand were the result is left. The number of bits can be 8, 16, or 32 as per the 
.B, .W, or .L opcode suffix. One or both operands must be a data register. 

Syntax: AND Dn, Dn 

or AND Dn, memory 

or AND memory, Dn 

A.8 ANDI - Logical AND Immediate 
This instruction logically ANDs an immediate byte, word, or long word value with the 
destination. The destination can be a data register, memory, or one of two special cases: the 
condition code register, only a byte-length immediate value is allowed. If the destination is 
the status register, only a word-length immediate value is allowed, and the processor must 
be in supervisor mode or a priviledge voilation will occur. 

Syntax: ANDI #imm, Dn 

or ANDI #imm, memory 

or ANDI.B #imm 8-bit value, CCR 

or ANDI.W #imm 16-bit value, SR (Privileged). 

Flags affected: The Overflow and Carry bits are reset, the Negative and Zero bits set as 
per the result, and the Extend bit is unaffected. 

A.9 ASL - Arithmetic Shift Left 
This instruction shifts the destination operand left by a specified number of bits. If you are 
shifting a data register, the number of bits to be shifted can be specified as an immediate 



 Appendixes 

 114 

value or as a value in another data register. The immediate value can be 1 to 8, whereas the 
data register can be 1 to 64 (where zero acts as the 64 count). Data registers may be shifted 
as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted in memory and then only 
by one bit. As shown below zeroes are shifted in at the right hand side of the operand. As 
each bit is shifted out of the left of an operand, it is placed in the Carry and Extend bits of the 
condition code register. If the sign of the operand changes during the shift, the Overflow bit 
is set in the condition code register. 

C < < | <<< ASL <<< | < 0 X < 

Syntax: ASL Dn, Dn 

or ASL #imm 3-bit value, Dn 

or ASL memory (1 bit shift only) 

A.10 ASR - Arithmetic Shift Right 
This instruction shifts the destination operand right by a specified number of bits. If you are 
shifting a data register, the number of bits to be shifted can be specified as an immediate 
value or as a value in another data register. The immediate value can specify a shift of 1 to 8, 
while the data register can specify a shift of 1 to 64 (where zero acts as the 64 count). Data 
registers may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be shifted 
in memory and then only by one bit. Each bit shifted out of the right hand side of an operand 
is placed in the Carry and Extend bits of the condition code register. As shown below the bit 
shifted in at the left hand side is the current sign bit (the most significant bit is therefore 
preserved throughout the shift). 

> C Current MSB > | >>> ASR >>> | > > X 

Syntax: ASR Dn, Dn 

or ASR #imm 3-bit value, Dn 

or ASR memory (1 bit shift only) 

A.11 BRS - Branch Always 
This instruction changes the program counter register so execution continues at a different 
point in the program code. The destination of the jump is specified as a signed displacement 
to the program counter. This signed displacement can be an 8- or 16- bit quantity. With a bit 
8-bit quantities, this allows branches of +126 to -128 bytes; 16-bit quantities can specify 
branches of +32766 to -32768 bytes. The value of the program counter when the 
displacement is added is taken to be the first word after the BRA opcode. This is the actual 
opcode address plus two. Normally an assembler will assume a 16-bit quantity as the 
displacement, but if an opcode suffix of .S is appended th the BRA, a short 8-bit displacement 
will be used instead. 

Syntax: BRA label (16-bit displacement) 

or BRA.S label (8-bit displacement) 

Flags affected: None. 

A.12 Bcc - Branch Conditionally 
Other variants of the BRA instruction allow a branch to be made only if a certain condition is 
met in the condition code register. These Bcc instructions can be divided into three different 
categories. Whether or not this instruction is actually executed depends on the required 
condition, which is verified by means of the flags. A minus sign before a flag indicates that it 
must be cleared to satisfy the condition. Logical operations are indicated with "*" for AND 
and "/" for OR. 



 Appendixes 

 115 

A.12.1 Branches depending on flag status 
BCC - Branch if carry clear –C 

BCS - Branch if carry set C 

BNE - Branch if zero clear –Z 

BEQ - Branch if zero set Z 

BVC - Branch if overflow clear –V 

BVS - Branch if overflow set V 

BPL - Branch if negative clear –N 

BMI - Branch if negative set N 

A.12.2 Branches after unsigned comparison 
BHI - Branch if higher than -C * -Z 

BHS - Branch if higher than or same as 

BLO - Branch if lower than 

BLS - Branch if lower than or same as C / Z 

BEQ - Branch if equal to Z 

BNE - Branch if not equal to -Z 

A.12.3 Branches after signed comparison 
BGT - Branch if greater than N * V * -Z / -N * -V * -Z 

BGE - Branch if greater than or equal to N * V / -N * -V 

BLT - Branch if less than N * -V / -N * V 

BLE - Branch if less than or equal to Z / N * -V / -N * V 

BEQ - Branch if equal to Z 

BNE - Branch if not equal to -Z 

Syntax: Bcc label (16-bit displacement) or Bcc.S label (8-bit displacement). 

Flags affected: None. 

A.13 BSR - Branch to Subroutine 
This instruction causes control to be passed unconditionally to the specified program counter 
displacement as in the BRA opcode. However, before the branch is made, the address of the 
opcode following the BSR is saved on the stack so return can later be made to that address 
to continue processing at that point. This is achieved as follows: 

1. The 24-bit address following the opcode is pushed on the stack as two words. 

2. The program counter is loaded with its new value and processing continues at the 
new address. 

Syntax: BSR label (16-bit displacement) 

or BSR.S label (8-bit displacement). 

Flags affected: None. 



 Appendixes 

 116 

A.14 BCHG, BCLR, BSET, BTST - Bit Test and Change, Clear, 
Set 

These instructions allow the manipulation and testing of single bits. The bits are numbered 
from the right to the left starting with bit no zero. Thus a byte contains bits 0 to 7; a word 
bits 0 to 15; and a long word bits 0 to 31. The number of the bit to be tested is specified in a 
data register or as an immediate value. The value of the bit is reflected in the Zero flag of the 
condition code register. This means that the if the bit tested was zero, the Zero flag will be 
set (Z=1). Therefore the Zero flag is always the opposite of the bit being tested. Once the 
test is made and the Zero flag is set up, the tested bit is manipulated as follows: 

BCHG - The bit is reversed. 

BCLR - The bit is cleared to zero. 

BSET - The bit is set to a one. 

BTST - The bit is unchanged. 

Syntax: Bxxx Dn, address 

or Bxxx #imm, address. 

Flags affected: Zero flag only. 

A.15 CHK - Check Against Bounds 
This instruction checks its first operand against a data register's word contents. If the data 
register contains less than zero or greater than its first operand, a trap to the address 
specified by vector 6 occurs. Thus, CHK can be used to ensure that an element of an array is 
neither below nor above its boundaries. 

Syntax: CHK bounds, Dn (where bounds is anything except an address register) 

Flags affected: All flags are undefined after this operation. 

A.16 CLR - Clear Destination to Zero 
This instruction allows a byte, a word or a long word to be cleared to a zero according to the 
operand suffix .B, .W, or .L. The destination can be either a data register or memory. Address 
registers cannot be cleared with the CLR instruction (Use MOVE.L #0, An). 

Syntax: CLR Dn 

or CLR address. 

Flags affected: Negative, Overflow, and Carry are all set to zero, the Zero flag is set to a 
one, and the Extend flag is unaffected. 

A.17 CMP - Compare 
This instruction compares two operands and sets flags in the condition code register 
according to the result. Except for the Extend flag, the flags are set as if the source operand 
were subtracted from the destination. However, the result of this subtraction is not actually 
retained so the destination remains unchanged. The information about the comparison that is 
stored in the condition flags can then be acted upon by a Bcc-instruction. CMP may be used 
with byte, word, or long word source operands. Note that although any addressing mode can 
be used to specify the source operand, an address register can only be used if a word or long 
word comparison is performed. 

Syntax: CMP address, Dn. 



 Appendixes 

 117 

A.18 CMPA - Compare Address 
This variation of the CMP instruction is used to compare a source operand with an address 
register as destination operand. Only word or long word compares are allowed with CMPA. If 
a word is used as source, if is sign-extended to 32 bits before the comparison is made. 

Syntax: CMPA address, An. 

Flags affected: Same as CMP instruction. 

A.19 CMPI - Compare Immediate 
This variation of the CMP instruction is used to compare a source operand consisting of an 
immediate value with either a data register or memory. The comparison length can be byte, 
word, or long word as specified by the .B, .W, or .L opcode suffix. 

Syntax: CMPI #imm, Dn 

or CMPI #imm, memory. 

A.20 CMPM - Compare Memory 
This variation of the CMP opcode is used to compare sequential memory locations. These 
locations can be of type byte, word, or long word as specified by the .B, .W, or .L opcode 
suffix. To perform the sequencing automatically through memory, both source and 
destination operands must be specified using address register indirect with postincrement. 
Thus, after the compare is made, the address registers of both source and destination 
operands will be incremented by the length of data compared. 

Syntax: CMPM (An)+, (An)+. 

Flags affected: Same as the CMP opcode. 

A.21 DBRA - Decrement and Branch 
This instruction is used to control the program counter register in much the same way as BRA 
instruction is except that this allows greater power and versatility. By using DBRA, a specified 
data register is decremented and the branch made only if that register goes past zero. Thus, 
the count from a positive number will count down until zero and branch one more time. This 
allows loops where an index of zero is the last element. Note that as a result of this, the 
value left in the register will be -1 when an exit is made at the end of the loop. As an 
example, if eight locations were to be accessed, the data register specified in the DBRA 
instruction would be loaded with seven. The countdown, including the final zero, would go 
through eight cycles. The program counter register is modified as in the BRA instruction 
whereby a sign-extended 16-bit displacement is added to the program counter. No short 8 bit 
form is available. only bits 0 to 15 (that is, one word) of the data register is used. The 
destination of the branch is usually supplied as a label from which the assembler 
automatically calculates the displacement needed to that label. 

Syntax: DBRA Dn, label. 

A.22 DBcc - Decrement and Branch Conditionally 
This is a whole series of instruction that resemble the conditional versions of the BRA opcode. 
Conditional decrement and branch instruction work in a similar manner to the DBRA 
instruction except that one step is added to the execution process. Before the decrement is 
performed as in DBRA, the condition specified in the mnemonic is tested (in the opposite 
order to that suggested by the opcode name). If the condition is true, control drops through 
to the next instruction - the branch is not made. This is the opposite to the normal branch 
instruction where the conditional branch is made if the condition is true. Thus this mnemonic 
might more accurately be read as "decrement and branch if the condition is not fulfilled". 
Powerful loops can be constructed using the decrement and branch conditional instruction; 
an exit can be made from the loop either if the data register passes zero or if a pretested 



 Appendixes 

 118 

condition is met. The following list displays the conditions available for testing before the 
decrement and possible branch is made. This list is similar to that for the Bcc opcode with the 
addition of the F (false) and T (true) conditions, which specify an always false or always true 
precondition. Therefore a DBF is always false, so it will never drop through to the following 
opcode. Thus, the branch after the decrement will always be performed. Conversely, a DBT is 
always true, so it will always drop through and never perform the decrement. (This would 
only be likely to be of use during program development.) 

DBEQ - Decrement, branch equal. 

DBF - Decrement, branch false. (Same as DBRA.) 

DBGE - Decrement, branch greater than or equal. 

DBGT - Decrement, branch graeter than. 

DBHI - Decrement, branch higher. 

DBLE - Decrement, branch less than or equal. 

DBLS - Decrement, branch lower than or same. 

DBLT - Decrement, branch less than. 

DBMI - Decrement, branch minus. 

DBNE - Decrement, branch not equal. 

DBPL - Decrement, branch plus. 

DBRA - Decrement, branch unconditionally. 

DBT - Decrement, branch true. (Branch never taken.) 

Syntax: DBcc Dn, label. 

A.23 DIVS, DIVU - Divide Signed, Unsigned 
These instructions allow a 16-bit divisor (n„mnare) to be used as a source and a 32-bit 
destination to be specified as dividend (t„ljare) in a divide operation. DIVS assumes both 
numbers are signed, whereas DIVU assumes both to be unsigned. The destination must be a 
data register. The source can be a memory location or another data register. The result is 
stored in the low word of the destination data register and the remainder in the high word of 
the same register. If the result will not fit in the 16 bits of the low half, the Overflow flag is 
set in the condition code register. It is possible that the overflow condition can occur during 
the internal processing of the divide, in which case the Negative and Zero flags will be 
undefined as will be the result. Either a conditional branch on overflow or a TRAPV can be 
placed after the divide opcode to act upon the error. 

Another problem occurs if a divisor of zero is specified. In this case a division-by-zero 
exception processing sequence is automatically initiated which causes a trap through vector 
5. 

Syntax: DIVx Dn, Dn 

or DIVx address, Dn. 

Flags affected: The Carry flag is always set to zero. The Zero, Overflow, and Negative 
flags are set as per the result. The Extend flag is unaffected. 

A.24 EOR - Logical Exclusive OR 
This instruction performs a logical exclusive OR of the source operand with the same number 
of bits in the destination operand where the result is left. The number if bits can be 8, 16, or 
32 as specified by the .B, .W, or .L opcode suffix. 

Syntax: EOR Dn, Dn or EOR Dn, address or EOR address, Dn. 



 Appendixes 

 119 

Flags affected: The Overflow and Carry flags are reset. The Negative and Zero flags are 
set as per the result, and the Extend flag is unaffected. 

A.25 EORI - Logical Exclusive OR Immediate 
This instruction performs a logical exclusive OR on a length of byte, word or long word 
between an immediate value and a destination. The destination can be a data register, 
memory or one of two special cases: the condition code register or the status register. If the 
destination is the the condition code register, only a byte-length immediate value is allowed. 
If the destination is the status register, only a word-length immediate value is allowed, and 
the processor must be in supervisor mode or else a priviledge voilation will occur causing a 
trap through vector 8. 

Syntax: EORI #imm, Dn 

or EORI #imm, memory 

or EORI.B #imm 8-bit value, CCR 

or EORI.W #imm 16-bit value, SR (Privileged). 

Flags affected: Same as the EOR instruction. 

A.26 EXG – Exchange Registers 
Exchange the contents of two registers. The size of the instruction is a longword because the 
entire 32-bit contents of two registers are exchanged. The instruction permits the exchange 
of address registers, data registers, and address and data registers. 

One application of EXG is to load an address into a data register and then process it using 
instructions that act on data registers. Then the reverse operation can be used to return the 
result to the address register. Doing this preserves the original contents of the data register. 

Syntax: EXG Xn, Xn. 

A.27 EXT – Extend Register 
This instruction allows the sign bit (the most significant bit) to be extended up to the next 
higher size. Thus if an opcode modifier of .W is used, the bit in position 7 of the lower-order 
byte will be extended into the rest of the word (in bits 8 to 15). If an opcode modifier of .L is 
used, the bit in position 15 of the low-order word will be extended into the rest of the long 
word (bits 16 to 31). If a byte value has to sign-extended to a long word, both an EXT.W and 
an EXT.L have to be performed on the data register. 

Syntax: EXT Dn. 

Flags affected: The Negative and Zero flags are set as per the result. The Overflow and 
Carry are reset to zero, and the Extend flag is unaffected. 

A.28 JMP - Jump 
This instruction allows execution of the program to be transferred anywhere within the entire 
addressing space of the 68000. The jump address can be specified using any memory mode 
except register indirect with postincrement or predecrement. It should be borne in mind that 
an absolute address specified in a jump instruction will load the program counter immediately 
with that value. Because absolute addresses are not position- independent. If the program is 
moved in memory it has to be reassembled if the label is contained within the program. The 
JMP instruction with an absolute address is more properly used for jumps to static locations 
such as ROM routines. To keep the jump position-independent, a program-counter-relative 
address should be specified. 

Syntax: JMP address (where address is any addressing mode except (An)+ and -
(An)) 

Flags affected: None. 



 Appendixes 

 120 

A.29 JSR - Jump to Subroutine 
This instruction allows control to be redirected in a similar manner to the JMP instruction; 
however, before the jump is made, the address of the following opcode is pushed onto the 
stack. (See BSR for a description of the stack save process.) Thus a subroutine can perform a 
task, and when it finishes, it can execute a Return instruction to return to the address saved 
on the stack. As far as the destination address of the JSR instruction is concerned, the same 
caveats apply as for the JMP instruction. Absolute addresses, even as labels inside your 
program, should be avoided where possible to avoid a program which is not position-
independent. Unless using such things as ROM routines or memory-mapped hardware 
locations, which have absolute addresses, use program counter relative or address register 
indirect addressing. 

Syntax: JSR address (where address is any addressing mode except (An)+ and -
(An)) 

Flags affected: None. 

A.30 LEA - Load Effective Address 
This instruction provides a simple way of loading any address register with the address 
resulting from nearly any addressing mode. Only two such modes are excluded from the list 
of possibilities. Due to the fact that address register indirect with postincrement or 
predecrement represent a dynamically increasing or decreasing addresses, these two modes 
cannot be used with LEA. But any other address, no matter how complicated, (including 
address register indirect with displacement and index) can be loaded into the specified 
address register. This saves performing the address arithmetic within the program. The 
processor will automatically take the same value as the calculated address - or in other words 
"the effective address". Only address registers can be used with this instruction, and the 
destination address register is loaded with a 32-bit long value even though the address will 
only be 24 bits long. 

Syntax: LEA address, An (where address is any addressing mode except 
postincrement and predecrement) 

Flags affected: None. 

A.31 LINK - Link Subroutine 
This instruction is a specialized data area allocation opcode for use by subroutines that 
require a temporary work area that will be relinquished after use. Normally, when a 
subroutine has been entered from a JSR or BSR instruction, the return address (that is, the 
address of the instruction after the JSR or BSR) has automatically been saved on the stack by 
the processor before transferring control to the subroutine. This is part of the regular linkage 
for a subroutine call, which is automatically performed by any computer processor. The LINK 
instruction adds another automatic-linkage option after control has been handed to the 
subroutine. 

Assume the subroutine needs ten bytes of temporary storage in order to perform its function. 
The ideal place for this would be on the stack, which is the usual place for dynamic registers 
saves during a program's operation. As the stack pointer saves numbers in a downward 
direction in memory, simply subtracting ten from the stack pointer register A7 would reserve 
ten bytes of the stack space with A7 pointing at it. However, A7 may not point to the ten 
bytes for long, as other items may subsequently be pushed onto the stack changing A7 to 
point lower in memory. So ideally, another address register should be loaded with the 
contents of A7 before it was decremented by ten so we have a firm pointer to the stack 
before it is changed. This is exactly what the LINK instruction does. An address register is 
elected to save the current pointer to the stack in A7; this assigned will become the pointer 
to the temporary reserved stack space. The stack pointer A7 is then decremented by however 
many bytes needed, but before being decremented, the assigned register itself is saved on 
the stack. This way, the called subroutine can perform a LINK to reserve space, knowing that 



 Appendixes 

 121 

it can call yet another subroutine, which can also perform a LINK with no registers being 
corrupted. The diagram shows what happens. 
 LINK A0,#-10 

 

 Before  After 
   
 low memory  low memory 

   
  A7 >
  
  
  

10 bytes 

  A0 > Previous A0 
A7 > Return address Return address 

   
 high memory  high memory 

 

Note that because ten bytes are required on stack going downwards in memory (as per 
normal stack practice), a negative displacement is specified in the LINK instruction. As the 
displacement is a signed 16-bit immediate value, a stack displacement of plus or minus 32K 
can be specified. The address register assigned to point to the top of the reserved space, or 
stack frame, is generally known as a frame pointer when used in this way. Note that as this 
register will be used with predecrement instructions, it initially points to one word above the 
frame. 

Syntax: LINK An, #imm where #imm is plus or minus 32K. 

Flags affected: None. 

A.32 LSL - Logical Shift Left 
This instruction shifts the destination operand left by a specified number of bits. If you are 
shifting a data register, the number of bits to be shifted can be specified as an immediate 
value or as a value in another data register. The immediate value can be 1 to 8, whereas the 
data register value can be 1 to 64 (where zero acts as the 64 count). Data registers may be 
shifted as 8, 16 or 32 bit quantities. Only 16-bit word values can be shifted in memory and 
then only by one bit. Each bit shifted out of the left-hand side of an operand is placed in the 
Carry and Extend bits in the condition code register. As shown below, the bit shifted in at the 
right hand side is always a zero. 

C < < | <<< LSL <<< | < 0 X < 

Syntax: LSL Dn, Dn 

or LSL #imm 3-bit value, Dn 

or LSL memory (1 bit shift only) 

Flags affected: The Carry and Extend bits are set as per the most significant operand bit 
before the shift. The Overflow flag is reset to zero. The Negative and Zero 
flags are set as per result. 

A.33 LSR Logical Shift Right 
This instruction shifts the destination operand right by a specified number of bits. If you are 
shifting a data register, the number of bits to be shifted can be specified as an immediate 
value or as a value in another data register. The immediate value can specify a shift of 1 to 8, 
while the data register value can specify a shift of 1 to 64 (where zero acts as the 64 count). 
Data registers may be shifted as 8, 16, or 32 bit quantities. Only 16-bit word values can be 



 Appendixes 

 122 

shifted in memory and then only by one bit. Each bit shifted out of the right hand side of an 
operand is placed in the Carry and Extend bits of the condition code register. As shown 
below, the bit shifted in at the left hand side is always a zero. 

> C 0 MSB > | >>> ASR >>> | > > X 

Syntax: LSR Dn, Dn 

or LSR #imm 3-bit value, Dn 

or LSR memory (1 bit shift only) 

Flags affected: The Carry and Extend bits are set as per the least significant operand bit 
before the shift. The Overflow flag is reset to zero. The Negative and Zero 
flags are set as per result. 

A.34 MOVE - Move Data 
This is the 68000's general purpose data-transfer instruction. Using one single opcode, data 
can be moved from register to register, register to memory, memory to register and memory 
to memory. The MOVE instruction can also be used to move data to (but not from) the 
condition code register, thus explicitly setting a particular set of conditions. If you are in 
privileged (or supervisor) mode, the MOVE instruction can be used to move data to the status 
register and to or from the user stack pointer. (Privileged mode is not required to move data 
from the status register.) 

With so many potential sources and destinations of data moves, the 68000 makes life easier 
by allowing all addressing modes to be used for the source. For destination, all except 
program counter relative addressing modes may be used. With data transfers involving 
memory and / or data registers, the data transfer can be made using 8, 16, or 32 bit 
quantities and is specified by appending .B, .W, or .L to the MOVE mnemonic. If the high-
order bits of a data register are not involved in the data move, those bits remain unaffected 
by the transfer. Care should be used when mixing length of operands during routines using 
MOVE; if a byte is moved from a location using MOVE.B and then stored back again using 
MOVE.W, it will be stored in a memory location one byte higher than it was fetched from. 
Similarly, storing it back with MOVE.L would store it three bytes higher than its original 
location. 

If the destination operand of the MOVE is the condition code register, the length of the 
source operand can only be eight bits. If the status register is involved as either source or 
destination of the move, only 16-bit transfers allowed. The instruction involving the user 
stack pointer is the only circumstance under which the 68000 allows optional access to either 
the user or the system stack pointer. Normally, the stack pointer is accessed as register A7. 
Whichever of two A7 registers is in effect depends on whether the processor is in supervisor 
or user mode. However, the supervisor mode may have a need to access the user stack 
pointer even though it would normally only access the system stack pointer. This is why the 
privileged mode is required to access a normally unprotected register. 

Syntax: MOVE source, destination (where source can be any addressing mode, and 
destination can be any addressing mode except program counter relative and immediate; 
either of the above can be CCR, SR and USP (privileged mode only)). 

Flags affected: When the MOVE source, destination format is used, the Negative and Zero 
flags are set as per the data moved, the Overflow and Carry flags are reset 
to zero and the Extend flag is unaffected. When the MOVE source, CCR / 
SR formats are used, the flags are set directly from the data. When the 
MOVE is done with the USP as an operand, no flags are affected. 

A.35 MOVEA - Move Address 
This specialized version of the MOVE command is used when the destination is an address 
register. The instruction only allows transfers of 16 or 32 bits in length. Byte transfers are not 



 Appendixes 

 123 

allowed with an address register as the destination. Also note that unlike the normal MOVE 
command, no flag bits are affected. 

Syntax: MOVEA source, An (where source is any addressing mode) 

Flags affected: None. 

A.36 MOVEM - Move Multiple 
This variation of the MOVE instruction allows multiple registers to be saved and restored 
using a single operation. Any of the 16 data or address registers can be moved this way. At 
the source code level, the registers chosen to be saved or restored are specified to the 
assembler in a list separated by slashes. Thus, to save D0, D3 and A1, the register list would 
be specified as D0/D3/A1. If a consecutive number of registers are included in the list, they 
can be idetified as such by a hyphen. So to save D0, D1, D2, D5 and A1, the register list can 
be specified as D5/D0-D2/A1. Notice that the order of register between slashes is 
unimportant; however, when the 68000 saves these registers, it does so in a definite order. It 
also retrives them in a definite (but opposite) order, so that if the registers are saved on the 
stack, they can be pulled off in a typical stack-like fashion (that is, last in first out). The order 
in which the 68000 saves registers is first A7 through A0, and then D7 through D0. Then in 
reverse order, D0 is restored first, and restoration continues all the way through to A7. As the 
registers are most often saved in a stack formation, normally an address register is chosen to 
point to that stack. Then a predecrement addressing mode is used to push the registers down 
onto the stack. Conversely, when registers are being restored, a postincrement addressing 
mode is used. As an example, to save two registers at a memory location pointed to by A3, 
the instruction MOVEM D1/A1, -(A3) might be used. To restore them at another point in 
program, MOVEM (A3)+, D1/A1 would be correct. Note that registers can only be saved as 
words or long words. If they are saved as 16-bit words, then when they are restored, the 
upper half of the register is automtically sign-extended so that bit 15 fills the upper half of 
the register. Although less memory is used to save registers this way, such a loss of control 
of the upper 16 bits of every restored register may present problems unless you remain 
acutely aware of the possible corruption of an upper register half. 

The MOVEM instruction may be used with addressing modes other than predecrement and 
postincrement. By specifying other addressing modes as the source or destination of the 
multiple transfer, registers can be saved and restored in ascending locations in memory. The 
same register order is used, but they will not be stacked in at last in, first out order. Note that 
no flags are affected by this operation. Thus a subroutine can affect the condition code 
register, restore multiple registers with MOVEM, and return with the condition code register 
still intact. 

Syntax: MOVEM register list, destination address 

or MOVEM source address, register list 

or MOVEM register list, -(An) 

or MOVEM (An)+, register list 

Flags affected: None. 

A.37 MOVEP - Move Peripheral Data 
This variation of the MOVE instruction is used to transfer data between the 68000 and certain 
peripherals. As input and output on the 68000 is memory-mapped, certain addresses will not 
actually be memory at all but will instead be external devices. The 68000 has a special design 
to allow it to use the many hardware interfaces that exist for 8-bit microprocessors, in 
particular the 6800. What this means to the programmer is that if a peripheral is interfaced to 
the 68000 and is normally addressed at consecutive address on an 8-bit microprocessor, it 
will be addressed at every other address on the 68000 due to the design of its peripheral 
hardware bus. Thus the MOVEP instruction was included to address such peripherals. A long 



 Appendixes 

 124 

word of data from a data register can be transferred high byte first to every alternate 
memory (pheripheral) address with a single MOVEP to the first address. 

This also works the other way round in that every other word will be addressed starting with 
the source address specified in the MOVEP instruction. Only word or long word transfers are 
allowed. (A normal MOVE would be used for a single byte.) The only addressing mode 
allowed to specify the memory location is address register indirect with displacement, and 
only a data register can be used as the other operand. 

Syntax: MOVEP Dn, disp(An) 

or MOVEP disp(An), Dn (where disp is a 16-bit displacement) 

A.38 MOVEQ - Move Quick 
This variation on the MOVE instruction allows the quick loading of a data register with an 
immediate value. The MOVEQ variant works like a MOVE immediate value to the data register 
except that MOVEQ is much faster and only takes up two bytes in memory. The immediate 
value that is moved into a data register can only be in the range -128 to +127. This value is 
sign- extended into the entire 32 bits of the data register, so it is always of type .L despite 
the small immediate value. As this instruction works so fast, it is quicker to clear a data 
register with a MOVEQ #0, Dn than to use CLR Dn. MOVEQ cannot, however, be used with 
address registers or numbers larger than eight bits. 

Syntax: MOVEQ #imm 8-bit signed value, Dn. 

Flags affected: The Negative and Zero flags are set as per the immediate value; the 
Overflow and Carry flags are reset to zero, and the Extent flag is 
unaffected. 

A.39 MULS, MULU - Multiply Signed, Unsigned 
This instruction allow a multiplication to take place between a 16-bit source operand and the 
low order 16 bits of a data register. MULS assumes both numbers are signed, whereas MULU 
assumes both to be unsigned. The source can be a word from any memory location or the 
low-order 16 bits of a data register. The destination has to be a data register. The result is 
stored as a 32-bit signed or unsigned value in the destination register. The Negative flag in 
the condition code register is affected whether or not the operands are signed, and reflects 
the most significant bit of the result. 

Syntax: MULx Dn, Dn 

or MULx address, Dn where address is any addressing mode. 

Flags affected: The Negative and Zero flags are set as per the result. The Overflow and 
Carry flags are reset to zero. The Extend flag is unaffected. 

A.40 NBCD - Negate Binary Coded Decimal 
This specialized arithmetic instruction allows a single byte containing two binary coded 
decimal digits to be negated. The byte can be contained in the low portion of a data register 
or in memory. If the number is in memory, any memory addressing mode except program 
counter relative may be used. If the number is in data register, bits 8 to 31 are not affected. 

Syntax: NBCD Dn or NBCD address. 

Flags affected: The Negative and Overflow flag is undefined. The Zero flag is set per the 
contents of register. Carry and Extend are set as per the result of 
operation. 

A.41 NEG, NEGX - Negate Binary, Negate with Extend 
This instruction negates its operand. The result is the same as if the operand were subtracted 
from zero. The operand may be 8, 16, or 32 bits long as specified by the .B, .W, or .L 



 Appendixes 

 125 

mnemonic suffix. All flags are affected by this operation. A variation of this instruction exists 
to facilitate the manipulation of multiple-precision quantities where data is handled in 
segments. This is achived by using the Extend flag as set or reset from a previous arithmetic 
operation. The NEGX instruction works by subtracting its operand from zero then subtracting 
the Extend bit. All flags are affected by the result of the NEGX operation, but the Zero flag is 
only changed if the result becomes non-zero thus reflecting the nonzero state of a segmented 
number. For this reason, the Zero flag should be reset before performing code involving 
multiple use of NEGX. 

Syntax: NEG Dn 

or NEG address (where address is any addressing mode except program 
counter relative) 

Flags affected: All. 

A.42 NOP - No Operation 
This instruction is a do-nothing opcode. It is used during program developement to leave 
room in a section of code. This space can be patched with machine-code instruction as 
necessary during debugging to test new routines within a previously written machine code 
level by substituting NOP instruction for the instructions and operands. 

Syntax: NOP. 

Flags affected: None. 

A.43 NOT - Logical NOT 
This instruction takes its operand and simply inverts all of its bits. (Each one-bit becomes zero 
and each zero-bit becomes one.) The operand can either be in a data register or memory and 
can be 8, 16, or 32 bits in length as per the .B, .W, or .L operand suffix. 

Syntax: NOT Dn 

or NOT address (where address is any memory addressing mode except 
program counter relative) 

A.44 OR - Logical OR 
The OR opcode performs a logical OR operation. A number of bits in the source operand are 
ORed with the same number of bits in the destination operand where the result is left. The 
number of bits can be 8, 16, or 32 as the .B, .W, or .L opcode suffix. One or both operands 
must be a data register. 

Syntax: OR Dn, Dn 

or OR Dn, address 

or OR address, Dn (where address is any addressing mode with the proviso 
that program counter relative may not be used as destination) 

A.45 ORI - Logical OR Immediate 
This instruction logically ORs a byte, word, or long word immediate value with the 
destination. The destination address can be a data register, memory, or one of two special 
cases: the condition code register and the status register. If the destination is the condition 
code register, only a byte-length immediate value is allowed. If the destination is the status 
register, only a word-length immediate value is allowed, and the processor must be in 
supervisor mode or else a privilege voilation will occur. 

Syntax: ORI #imm, Dn 

or ORI #imm, address 

or ORI.B #imm 8-bit value, CCR 



 Appendixes 

 126 

or ORI.W #imm 16-bit value, SR (Privileged). 

Flags affected: The Overflow and Carry bits are reset, the Negative and Zero bits set as 
per the result, and the Extend bit is unaffected. 

A.46 PEA - Push Effective Address 
This instruction takes the effective address of its operands and pushes it onto the stack as 
pointed to by the stack pointer A7. The operand can be nearly any addressing mode and is 
represented as a 32-bit long word. Only two addressing modes are excluded from the list of 
possibilities. Due to the fact that address register indirect with postincrement or 
predecrement represent a dynamically increasing or decreasing address, these two modes 
cannot be used with PEA. But any other address, no matter how complicated, (including 
address register indirect with displacement and index) can be pushed onto the stack. This 
saves performing the address arithmetic within the program. The processor will automatically 
push the same value as the calculated address - or in other words "the effective address". 
The destination address on the stack is loaded with a 32-bit long value even though the 
address will only be 24 bits long. No flags are affected by the result of the address 
calculation. 

Syntax: PEA address (where address is any memory addressing mode except 
postincrement and predecrement) 

Flags affected: None. 

A.47 RESET - Reset External Devices 
This instruction sends out a pulse from the RESET pin of the 68000. It is normally used when 
a system is first powered up to reset all devices to a known state. It is only likely to be used 
after that if a hardware fault-condition developes. Because it is such a powerful opcode, it is 
restricted to use in supervisor mode only. 

Syntax: RESET 

Flags affected: None. 

A.48 ROL, ROXL - Rotate Left, Rotate Extended Left 
These two instructions both rotate the destination operand left by a specified number of bits. 
If you are rotating a data register, the number of bits can be specified as an immediate value 
or as a value in another data register. The immediate value can be 1 to 8, whereas the data 
register value can be 1 to 64 (where zero acts as the 64 count). Data registers may be 
rotated as 8, 16, or 32 bit quantities. Only 16-bit word values can be rotated in memory and 
then only by one bit. As shown, each bit rotated out of the left hand side of the operand is 
placed in the Carry bit of the condition code register, and in case of ROXL, also in the Extend 
bit. The bit rotated in at the right is the most significant bit for ROL or the Extend bit for 
ROXL. Thus, one more bit is involved in the ROXL rotate than in the ROL rotate. Note that 
ROL does not affect the Extend flag in the condition code register. 

C < | <<< ROL <<< | < C < > > > > > > > > > < | <<< ROXL <<< | < < X < > > > > 
> > > > > > > > > 

Syntax: ROL Dn, Dn 

or ROL #imm, Dn 

or ROL address. 

Flags affected: The Negative flag is set as per most significant bit before the rotate. The 
Zero flag is set as per resultant operand. The Overflow flag is reset to zero. 
The Extend flag is unaffected by ROL, but contains the previous most 
significant bit for ROXL. 



 Appendixes 

 127 

A.49 ROR, ROXL - Rotate Right, Rotate Extended Right 
These two instructions both rotate the destination operand right by a specified number of 
bits. If you are rotating a data register, the number of bits can be specified as an immediate 
value or as a value in another data register. The immediate value can be 1 to 8, whereas the 
data register value can be 1 to 64 (where zero acts as the 64 count). Data registers may be 
rotated as 8, 16, or 32 bit quantities. Only 16-bit word values can be rotated in memory and 
then only by one bit. 

As shown, each bit rotated out of the right hand side of the operand is placed in the Carry bit 
of the condition code register and in case of ROXR, also in the Extend bit. The bit rotated in 
at the left is the least significant bit for ROR or the Extend bit for ROXR. Thus, one more bit is 
involved in the ROXR rotate than in the ROR rotate. Note that ROR does not affect the 
Extend flag in the condition code register. 

> | >>> ROR >>> | > C > C < < < < < < < < < > | >>> ROXR >>> | > > X > < < < < 
< < < < < < < < < 

Syntax: ROR Dn, Dn 

or ROR #imm, Dn 

or ROR address. 

Flags affected: The Negative flag is set as per most significant bit before the rotate. The 
Zero flag is set as per resultant operand. The Overflow flag is reset to zero. 
The Extend flag is unaffected by ROR, but contains the previous most 
significant bit for ROXR. 

A.50 RTE, RTR, RTS - Return from Exception, Return and 
Restore CCR, Return from Subroutine 

These instructions change program control by loading the program counter with an execution 
address previously saved on the stack. The most common version is RTS, which simply pulls 
the saved address from the stack, increments A7 to allow reuse of the stack space, and 
reloads the program counter. RTE excepts to find a previously saved status register word on 
the stack, which it pulls and restores prior to reloading the program counter. As RTE accesses 
the privileged byte of the status register, it can only be executed in supervisor mode or else a 
privilege voilation trap will occur. RTR expects to find a previously saved condition code 
register word on the stack, which it pulls and restores prior to reloading the program counter. 

Syntax: RTS 

or RTE 

or RTR. 

Flags affected: No flags are affected by RTS. All flags are reloaded by RTE and RTR. 

A.51 SBCD - Subtract Binary Coded Decimal 
This instruction a specialized arithmetic instruction that subtracts one bytes from another 
(only bytes) when each byte containis binary-coded decimal numbers. 

The subtraction can be performed either on two data registers or between two memory 
locations. If performed on bytes in memory, only address register indirect with predecrement 
can be used. This facilitates easy manipulation of multiple-precision BCD numbers. The 
extend bit is subtracted along with the BCD bytes to allow this multiprecision data 
manipulation. Also note that the zero flag is only changed if the result becomes nonzero. 
Therefore, both the Extend and Zero bits in the condition code register should be perset 
before the operation is performed. The Extend bit would normally be preset to a zero (to 
prevent extension on the first subtraction) and the Zero bit to a one (to signify a zero result 
prior to the first subtraction). A MOVE #4, CCR would preset these flags correctly. 



 Appendixes 

 128 

Syntax: SBCD Dn, Dn 

Or SBCD -(An), -(An) 

Flags affected: The Zero flag is cleared if the result becomes nonzero. The Carry and 
Extend flags are set if a decimal borrow is generated. The Negative and 
Overflow bits are undefined. 

A.52 Scc - Set from Conditions Codes 
This instruction sets a single byte specified in the operand to all zeroes or all ones according 
to the condition codes. The condition codes which may be used are the same as for the 
decrement and branch opcode. If the specified condition is true as reflected in the condition 
code register, the destination byte is set to all ones ($FF). If it is not true, the destination 
byte is set to zero. The destination can be the low-order byte of a data register or a byte in 
memory. This instruction is of particular value saving status of a specific condition code. 

EQ - Equal to 

NE - Not equal to 

MI – Minus 

PL – Plus 

CS - Carry set 

CC - Carry clear 

VS - Overflow set 

VC - Overflow clear 

HI – Higher 

LS - Less than or same 

HS - Higher or same 

LO – Lower 

GT – Greater 

GE - Greater than or equal to 

LE - Less than or equal to 

LT - Less than 

F - False Always false => MOVE #$0 

T - True Always true => MOVE #$FF 

Syntax: Scc Dn 

Or Scc address (where address is any addressing mode except program 
counter relative) 

Flags affected: None. 

A.53 STOP - Stop processor and wait 
This is a privileged instruction that first copies its operand (which is an immediate word 
value) into the status register and then halts the processor. The processor will remain in this 
state until it receives an interrupt that is not masked by the interrupt mask into the status 
register. 

Syntax: STOP #imm 16-bit value (Privileged). 

Flags affected: All flags are set as per the immediate value. 



 Appendixes 

 129 

A.54 SUB - Subtract Binary 
The SUB instruction subtracts the source operand from the destination operand with the 
result appearing in the destination. It is possible to subtract bytes, words, or long words with 
this opcode by appending .B, .W, or .L to the mnemonic. Either the source or destination (or 
both) must be a data register. The source operand can be any memory location or data 
register, and the destination operand can also be any memory location or data register. 

Syntax: SUB Dn, Dn 

or SUB address, Dn 

or SUB Dn, address 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all affected as 
per the result of the subtraction. 

A.54.1 SUBA - Subtract Address 
This variant of the SUB instruction only differs in that an address register is specified as the 
destination. As an address rather than data is being manipulated, the condition code flags are 
left unaffected. Only sign-extended words or long words can be subtracted. 

A.54.2 SUBI - Subtract Immediate 
This variant of the SUB instruction is used to subtract a constant value from the destination. 
The immediate operand can be any 8-, 16-, or 32-bit value as specified by the .B, .W, or .L 
opcode suffix. The destination cannot be an address register or a program counter relative 
address. 

Syntax: SUBI #imm, Dn 

or SUBI #imm, address (where address is any memory addressing mode 
except program counter relative) 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the 
result of the subtraction. 

A.54.3 SUBQ - Subtract Quick 
This variant of the SUB instruction is used to subtract a small integer between one and eight 
from the destination. The destination can be a memory location, a data register, or an 
address register. If it is an address register, the condition code flags are unaffected and the 
operand length cannot be a byte. 

This operation takes the place of the decrement instruction found on other processors. 

Syntax: SUBQ #imm, Rn 

or SUBQ #imm, address. 

Flags affected: The Extend, Negative, Zero, Overflow, and Carry flags are all set as per the 
result of the subtraction unless the destination is an address register. 

A.54.4 SUBX - Subtract Extended 
This variant of the SUB instruction subtracts two numbers and the Extend bit of the condition 
code register. This allows multiple-precision subtractions to be performed. For this reason, 
the Zero flag is only affected when a non-zero result is obtained. This means that if multiple 
numbers are subtracted using SUBX, the Zero flag will stay reset if any of those numbers 
were non-zero. 

Syntax: SUBX Dn, Dn 

Or SUBX -(An), -(An). 



 Appendixes 

 130 

A.55 SWAP - Swap Data register halves 
This instruction takes the lower 16 bits of the specified data register and swaps it with the 
upper 16 bits. It can only be used with data registers and only on the fixed word length in 
each half. 

Syntax: SWAP Dn. 

Flags affected: The Negative and Zero flags are set to reflect the 32-bit result. The 
Overflow and Carry flags are reset to zero. The Extend flag is unaffected. 

A.56 TAS - Test and Set 
This is a highly specialized instruction that is used to test a byte in memory or in a data 
register. When the condition codes are set as per the byte's contents, bit 7 (the most 
significant bit) of the byte is set to a one. This operation is achived in an uninterruptible read-
modify-write cycle. It is the only instruction on the 68000 that uses this method. Its 
importance lies in the fact that no interrupt can cause a read of the accessed byte before the 
operation is finished. If the operation were done in two steps, an interrupt could occur before 
the byte was changed, which would allow the interrupting routine to scan the byte and draw 
an erroneous conclution as to its status. 

Syntax: TAS Dn 

or TAS address (where address is any addressing mode except program 
counter relative) 

Flags affected: The Negative and Zero flags are set as per the byte before modification. 
The Overflow and Carry flags are reset to zero. The Extend flag is 
unaffected. 

A.57 TRAP - Software Trap 
This instruction causes a trap to occur in the same manner as if it had been caused by a 
hardware-detected condition. The processor will jump to one of the 16 special addresses set 
up in the first 1024 bytes of memory. The actual address that will be jumped to is determined 
by the operand supplied with the opcode. This will be a number from 0 to 15. The software 
trap vectors are 32-bit addresses stored in memory starting at location #128. Before the 
specified vector is taken, the status register and program counter are pushed onto the stack 
to facilitate a return via an RTE instruction. 

Syntax: TRAP #imm (where #imm is an immediate value from 0 to 15) 

Flags affected: None. 

A.58 TRAPV - Trap if Overflow 
This instruction causes a trap to occur to the address in location #28 in low memory if the 
Overflow flag is set in the condition code register. Before the overflow vector is taken, the 
status register and program counter are pushed onto the stack to facilitate a return via an 
RTE instruction. 

Syntax: TRAPV 

Flags affected: None. 

A.59 TST - Test Operand 
This instruction causes the processor to scan the operand and set the condition code flags 
according to the contents. The operand can be 8, 16, or 32 bytes as specified in the .B, .W, 
or .L opcode modifier. No registers other than the condition code register are changed. The 
operand can be either a data register or a memory location. 

Syntax: TST Dn 



 Appendixes 

 131 

or TST address (where address is any addressing mode except program 
counter relative) 

A.60 UNLK - Unlink 
This instruction is the reverse of the LINK opcode. It takes the address in the specified 
address register and loads the stack pointer (A7) with it. This removes any space allocated on 
the stack for temporary storage. The stack pointer then points at the previous contents of the 
address register (the frame pointer). This contents would have been placed there by a 
previous LINK instruction. The frame pointer is automatically reloaded by pulling the value 
from the stack. Both the frame pointer and the stack pointer are therefore returned to their 
values before the last LINK. This entire operation is performed automatically by a single UNLK 
instruction. 

Syntax: UNLK An 

Flags affected: None. 

 



 Appendixes 

 132 

Appendix B Hardware Register Listing, 
by Dan Hollis 

             .---------------------------------------------------. 

             |Atari ST/STe/MSTe/TT/F030 Hardware Register Listing| 

             `---------------------------------------------------' 
 

                              Version 5.81 - 6/15/93 

                                  By Dan Hollis 
                   Copyright (C) 1993 MicroImages Software 

 

------------------------------------------------------------------------------ 

This document may only be copied unmodified, in its entirety. This document 

may only be copied freely, and may not be sold. I make no guarantees as to the 

accuracy of this document. I cannot be responsible for the use or misuse of 
information contained within this document. Use at your own risk! In any case, 

every effort has been taken to ensure this document is as complete and 

accurate as possible. 
------------------------------------------------------------------------------ 

 

Many thanks to the following people for their contributions! 
 

Markus Gutschke, Alexander Herzlinger, Karsten Isakovic, Thomas Binder, 

Julian Reschke, Georges Kesseler, Torbjoern Ose 
 

 

Corrections, additions, or comments should be sent to me. I can be contacted 

at the following addresses: 

 

InterNet : dhollis@zero.cypher.com 
           dhollis@bitsink.gbdata.com 

Snail : Dan Hollis 

        P.O. Box 580448 
        Houston, TX 77258 

 

Address Size  Description                        Bits used Read/Write 
-------+-----+--------------------------------------------+---------- 

##############ADSPEED Configuration registers             ########### 

-------|-----|--------------------------------------------|---------- 
$F00000|byte |Switch to 16 Mhz                            |W 

$F10000|byte |Switch to 8 Mhz                             |W 

$F20000|byte |Turn on high speed ROM option in 16 Mhz     |W 
$F30000|byte |Turn off high speed ROM option              |W 

$F40000|byte |Unknown                                     |W 

$F50000|byte |Turn off cache while in 16 Mhz              |W 
       |     |   >> Write 0 to an address to set it. <<   | 

-------+-----+--------------------------------------------+---------- 

##############IDE Controller (Falcon, ST-Book, IDE cards) ########### 

-------+-----+--------------------------------------------+---------- 

$F00000|long |Data Register                               |R/W 

$F00005|byte |Error Register                              |R 
$F00009|byte |Sector Count Register                       |W 

$F0000D|byte |Sector Number Register                      |W 

$F00011|byte |Cylinder Low Register                       |W 
$F00015|byte |Cylinder High Register                      |W 

$F00019|byte |Drive Head Register                         |W 

$F0001D|byte |Status Register                             |R 
$F0001D|byte |Command Register                            |W 

$F00039|byte |Alternate Status Register                   |R 

$F00039|byte |Data Output Register                        |W 
-------+-----+--------------------------------------------+---------- 



 Appendixes 

 133 

##############ST MMU Controller                           ########### 

-------+-----+--------------------------------------------+---------- 
$FF8001|byte |MMU memory configuration         BIT 3 2 1 0|R/W 

       |     |Bank 0                               | | | || 

       |     |00 - 128k ---------------------------+-+ | || 

       |     |01 - 512k ---------------------------+-+ | || 

       |     |10 - 2m -----------------------------+-+ | || 

       |     |11 - reserved -----------------------+-' | || 
       |     |Bank 1                                   | || 

       |     |00 - 128k -------------------------------+-+| 

       |     |01 - 512k -------------------------------+-+| 
       |     |10 - 2m ---------------------------------+-+| 

       |     |11 - reserved ---------------------------+-'| 

-------+-----+--------------------------------------------+---------- 
##############Falcon030 Processor Control                 ########### 

-------+-----+--------------------------------------------+---------- 

$FF8007|byte |Falcon Bus Control           BIT 5 . . 2 . 0|R/W (F030) 
       |     |STe Bus Emulation (0 - on) ------'     |   || 

       |     |Blitter (0 - 8mhz, 1 - 16mhz) ---------'   || 

       |     |68030 (0 - 8mhz, 1 - 16mhz) ---------------'| 

-------+-----+--------------------------------------------+---------- 

##############SHIFTER Video Controller                    ########### 

-------+-----+--------------------------------------------+---------- 
$FF8201|byte |Video screen memory position (high Byte)    |R/W 

$FF8203|byte |Video screen memory position (mid Byte)     |R/W 

$FF820D|byte |Video screen memory position (low Byte)     |R/W  (STe) 
$FF8205|byte |Video address pointer (high Byte)           |R 

$FF8207|byte |Video address pointer (mid Byte)            |R 

$FF8209|byte |Video address pointer (low Byte)            |R 
$FF820E|word |Offset to next line                         |R/W (F030) 

$FF820F|byte |Width of a scanline (width in words-1)      |R/W  (STe) 

$FF8210|word |Width of a scanline (width in words)        |R/W (F030) 
$FF8265|byte |Horizontal scroll register (0-15)           |R/W  (STe) 

-------+-----+--------------------------------------------+---------- 

$FF820A|byte |Video synchronization mode           BIT 1 0|R/W 
       |     |                     0 - 60hz, 1 - 50hz -' || 

       |     |         0- internal, 1 - external sync ---'| 

       |     +--------------------------------------------+ 
       |     |NOTE: On the TT these bits are reversed, and| 

       |     |50/60hz is inoperative on the TT! Check what| 

       |     |machine  you are running on before twiddling| 

       |     |with these bits.                            | 

-------+-----+--------------------------------------------+---------- 

       |     |                       BIT 11111198 76543210| 
       |     |                           543210           | 

       |     |    ST color value         .....RRR .GGG.BBB| 

       |     |STe/TT Color value         ....rRRR gGGGbBBB| 
$FF8240|word |Video palette register 0                    |R/W 

    :  |  :  |  :      :       :     :                    | : 

$FF825E|word |Video palette register 15                   |R/W 
-------+-----+--------------------------------------------+---------- 

$FF8260|byte |Shifter resolution                   BIT 1 0|R/W 

       |     |00 320x200x4 bitplanes (16 colors) ------+-+| 
       |     |01 640x200x2 bitplanes (4 colors) -------+-+| 

       |     |10 640x400x1 bitplane  (1 colors) -------+-'| 

$FF8262|word |TT Shifter resolution              BIT 2 1 0|R/W   (TT) 

       |     |000  320x200x4 bitplanes (16 colors) --+-+-+| 

       |     |001  640x200x2 bitplanes (4 colors) ---+-+-+| 

       |     |010  640x400x1 bitplane  (2 colors) ---+-+-+| 
       |     |100  640x480x4 bitplanes (16 colors) --+-+-+| 

       |     |110 1280x960x1 bitplane  (1 color) ----+-+-+| 

       |     |111  320x480x8 bitplanes (256 colors) -+-+-'| 
-------+-----+--------------------------------------------+---------- 

$FF827E|???? |STACY Display Driver                        |???(STACY) 

-------+-----+--------------------------------------------+---------- 
$FF8400|word |TT Palette  0                               |R/W   (TT) 

    :  |  :  | :    :     :                               | :      : 

$FF85FE|word |TT Palette 255                              |R/W   (TT) 
-------+-----+--------------------------------------------+---------- 



 Appendixes 

 134 

##############Falcon030 VIDEL Video Controller            ########### 

-------+-----+--------------------------------------------+---------- 
$FF8006|byte |Monitor Type                         BIT 1 0|R   (F030) 

       |     |00 - Monochrome (SM124) -----------------+-+| 

       |     |01 - Color (SC1224) ---------------------+-+| 

       |     |10 - VGA Color --------------------------+-+| 

       |     |11 - Television -------------------------+-'| 

$FF820E|word |Offset to next line                         |R/W (F030) 
$FF8210|word |VWRAP - Linewidth in words                  |R/W (F030) 

$FF8266|word |SPSHIFT           BIT 10 . 8 . 6 5 4 . . . .|R/W (F030) 

       |     |2-colour mode ---------'   |   | | |        | 
       |     |Truecolour mode -----------'   | | |        | 

       |     |Use external hsync ------------' | |        | 

       |     |Use external vsync --------------' |        | 
       |     |Bitplane mode ---------------------'        | 

       |     +--------------------------------------------+ 

       |     |      Horizontal Control Registers    (9bit)| 
$FF8280|word |HHC - Horizontal Hold Counter               |R   (F030) 

$FF8282|word |HHT - Horizontal Hold Timer                 |R/W (F030) 

$FF8284|word |HBB - Horizontal Border Begin               |R/W (F030) 

$FF8286|word |HBE - Horizontal Border End                 |R/W (F030) 

$FF8288|word |HDB - Horizontal Display Begin              |R/W (F030) 

$FF828A|word |HDE - Horizontal Display End                |R/W (F030) 
$FF828C|word |HSS - Horizontal SS                         |R/W (F030) 

$FF828E|word |HFS - Horizontal FS                         |R/W (F030) 

$FF8290|word |HEE - Horizontal EE                         |R/W (F030) 
       |     +--------------------------------------------+ 

       |     |      Vertical Control Registers     (10bit)| 

$FF82A0|word |VFC - Vertcial Frequency Counter            |R   (F030) 
$FF82A2|word |VFT - Vertical Frequency Timer              |R/W (F030) 

$FF82A4|word |VBB - Vertical Border Begin                 |R/W (F030) 

$FF82A6|word |VBE - Vertical Border End  (count 1/2 lines)|R/W (F030) 
$FF82A8|word |VDB - Vertical Display Begin                |R/W (F030) 

$FF82AA|word |VDE - Vertical Display End                  |R/W (F030) 

$FF82AC|word |VSS - Vertical SS                           |R/W (F030) 
       |     +--------------------------------------------+ 

$FF82C2|word |VCO - Video Control              BIT 3 2 1 0|R/W (F030) 

       |     |Quarter pixel width (4x pixels) -----' | | || 
       |     |Half pixel width (double pixels) ------' | || 

       |     |Skip line (interlace) -------------------' || 

       |     |Line doubling -----------------------------'| 

-------+-----+--------------------------------------------+---------- 

##############DMA/WD1772 Disk controller                  ########### 

-------+-----+--------------------------------------------+---------- 
$FF8600|     |Reserved                                    | 

$FF8602|     |Reserved                                    | 

$FF8604|word |FDC access/sector count                     |R/W 
$FF8606|word |DMA mode/status                    BIT 2 1 0|R 

       |     |Condition of FDC DATA REQUEST signal --' | || 

       |     |0 - sector count null,1 - not null ------' || 
       |     |0 - no error, 1 - DMA error ---------------'| 

$FF8606|word |DMA mode/status        BIT 8 7 6 . 4 3 2 1 .|W 

       |     |0 - read FDC/HDC,1 - write ' | | | | | | |  | 
       |     |0 - HDC access,1 - FDC access' | | | | | |  | 

       |     |0 - DMA on,1 - no DMA ---------' | | | | |  | 

       |     |reserved ------------------------' | | | |  | 

       |     |0 - FDC reg,1 - sector count reg --' | | |  | 

       |     |0 - FDC access,1 - HDC access -------' | |  | 

       |     |0 - pin A1 low, 1 - pin A1 high -------' |  | 
       |     |0 - pin A0 low, 1 - pin A0 high ---------'  | 

$FF8609|byte |DMA base and counter (High byte)            |R/W 

$FF860B|byte |DMA base and counter (Mid byte)             |R/W 
$FF860D|byte |DMA base and counter (Low byte)             |R/W 

-------+-----+--------------------------------------------+---------- 

##############TT-SCSI DMA Controller                      ########### 
-------+-----+--------------------------------------------+---------- 

$FF8701|byte |TT-SCSI-DMA Address Pointer (Highest byte)  |R/W   (TT) 

$FF8703|byte |TT-SCSI-DMA Address Pointer (High byte)     |R/W   (TT) 
$FF8705|byte |TT-SCSI-DMA Address Pointer (Low byte)      |R/W   (TT) 



 Appendixes 

 135 

$FF8707|byte |TT-SCSI-DMA Address Pointer (Lowest byte)   |R/W   (TT) 

$FF8709|byte |TT-SCSI-DMA Address Counter (Highest byte)  |???   (TT) 
$FF870B|byte |TT-SCSI-DMA Address Counter (High byte)     |???   (TT) 

$FF870D|byte |TT-SCSI-DMA Address Counter (Low byte)      |???   (TT) 

$FF870F|byte |TT-SCSI-DMA Address Counter (Lowest byte)   |???   (TT) 

$FF8710|???? |TT-SCSI-DMA Continue Data Register High Word|R/W   (TT) 

$FF8712|???? |TT-SCSI-DMA Continue Data Register Low Word |R/W   (TT) 

$FF8714|???? |TT-SCSI-DMA Control register                |R/W   (TT) 
-------+-----+--------------------------------------------+---------- 

##############TT-SCSI Drive Controller 5380               ########### 

-------+-----+--------------------------------------------+---------- 
$FF8781|byte |Contents of SCSI-Data buses                 |R/W   (TT) 

$FF8783|byte |Init-Command Register                       |R/W   (TT) 

$FF8785|byte |Transfer Start Register                     |R/W   (TT) 
$FF8787|byte |Target-Command Register                     |R/W   (TT) 

$FF8789|byte |Bus Status Register                         |R/W   (TT) 

$FF878B|byte |Status Register                             |R/W   (TT) 
$FF878D|byte |Command Data from SCSI-Bus                  |R/W   (TT) 

$FF878F|byte |Reset DMA/Parity error/begin DMA transfer   |R/W   (TT) 

-------+-----+--------------------------------------------+---------- 

##############YM2149 Sound Chip                           ########### 

-------+-----+--------------------------------------------+---------- 

$FF8800|byte |Read data/Register select                   |R/W 
       |     |Port A (register 14)     BIT 7 6 5 4 3 2 1 0| 

       |     |IDE Drive On/OFF ------------' | | | | | | ||    (F030) 

       |     |Monitor jack GPO pin ----------+ | | | | | || 
       |     |Internal Speaker On/Off -------' | | | | | ||    (F030) 

       |     |Centronics strobe ---------------' | | | | || 

       |     |RS-232 DTR output -----------------' | | | || 
       |     |RS-232 RTS output -------------------' | | || 

       |     |Drive select 1 ------------------------' | || 

       |     |Drive select 0 --------------------------' || 
       |     |Drive side select -------------------------'| 

       |     |Port B - (register 15) Parallel port        | 

$FF8802|byte |Write data                                  |W 
       |     +--------------------------------------------+ 

       |     |Note:   PSG Registers are now fixed at these| 

       |     |addresses.  All  other  addresses are masked| 
       |     |out on the Falcon.  Any writes to the shadow| 

       |     |registers $8804-$8900 will cause a bus error| 

-------+-----+--------------------------------------------+---------- 

##############DMA Sound System                            ########### 

-------+-----+--------------------------------------------+---------- 

$FF8900|byte |Buffer interrupts                BIT 3 2 1 0|R/W (F030) 
       |     |TimerA-Int at end of record buffer --' | | || 

       |     |TimerA-Int at end of replay buffer ----' | || 

       |     |MFP-15-Int (I7) at end of record buffer -' || 
       |     |MFP-15-Int (I7) at end of replay buffer ---'| 

-------+-----+--------------------------------------------+---------- 

$FF8901|byte |DMA Control Register     BIT 7 . 5 4 . . 1 0|R/W 
       |     |1 - select record register --+   | |     | ||    (F030) 

       |     |0 - select replay register --'   | |     | ||    (F030) 

       |     |Loop record buffer --------------' |     | ||    (F030) 
       |     |DMA Record on ---------------------'     | ||    (F030) 

       |     |Loop replay buffer ----------------------' ||     (STe) 

       |     |DMA Replay on -----------------------------'|     (STe) 

-------+-----+--------------------------------------------+---------- 

$FF8903|byte |Frame start address (high byte)             |R/W  (STe) 

$FF8905|byte |Frame start address (mid byte)              |R/W  (STe) 
$FF8907|byte |Frame start address (low byte)              |R/W  (STe) 

$FF8909|byte |Frame address counter (high byte)           |R    (STe) 

$FF890B|byte |Frame address counter (mid byte)            |R    (STe) 
$FF890D|byte |Frame address counter (low byte)            |R    (STe) 

$FF890F|byte |Frame end address (high byte)               |R/W  (STe) 

$FF8911|byte |Frame end address (mid byte)                |R/W  (STe) 
$FF8913|byte |Frame end address (low byte)                |R/W  (STe) 

-------+-----+--------------------------------------------+---------- 

$FF8920|byte |DMA Track Control            BIT 5 4 . . 1 0|R/W (F030) 
       |     |00 - Set DAC to Track 0 ---------+-+     | || 



 Appendixes 

 136 

       |     |01 - Set DAC to Track 1 ---------+-+     | || 

       |     |10 - Set DAC to Track 2 ---------+-+     | || 
       |     |11 - Set DAC to Track 3 ---------+-'     | || 

       |     |00 - Play 1 Track -----------------------+-+| 

       |     |01 - Play 2 Tracks ----------------------+-+| 

       |     |10 - Play 3 Tracks ----------------------+-+| 

       |     |11 - Play 4 Tracks ----------------------+-'| 

-------+-----+--------------------------------------------+---------- 
$FF8921|byte |Sound mode control       BIT 7 6 . . . . 1 0|R/W  (STe) 

       |     |0 - Stereo, 1 - Mono --------' |         | || 

       |     |0 - 8bit ----------------------+         | || 
       |     |1 - 16bit (F030 only) ---------'         | ||    (F030) 

       |     |Frequency control bits                   | || 

       |     |00 - Off (F030 only) --------------------+-+|    (F030) 
       |     |00 - 6258hz frequency (STe only) --------+-+| 

       |     |01 - 12517hz frequency ------------------+-+| 

       |     |10 - 25033hz frequency ------------------+-+| 
       |     |11 - 50066hz frequency ------------------+-'| 

       |     |Samples are always signed. In stereo mode,  | 

       |     |data is arranged in pairs with high pair the| 

       |     |left channel, low pair right channel. Sample| 

       |     |length must ALWAYS be even in either mono or| 

       |     |stereo mode.                                | 
       |     |Example: 8 bit Stereo : LRLRLRLRLRLR        | 

       |     |        16 bit Stereo : LLRRLLRRLLRR (F030) | 

       |     |2 track 16 bit stereo : LLRRllrrLLRR (F030) | 
-------+-----+--------------------------------------------+---------- 

##############STe Microwire Controller (STe only!)        ########### 

-------+-----+--------------------------------------------+---------- 
$FF8922|byte |Microwire data register                     |R/W  (STe) 

$FF8924|byte |Microwire mask register                     |R/W  (STe) 

       |     +--------------------------------------------+ 
       |     |Volume/tone controller commands(Address %10)| 

       |     |Master Volume                  10 011 DDDDDD| 

       |     |Left Volume                    10 101 .DDDDD| 
       |     |Right Volume                   10 100 .DDDDD| 

       |     |Treble                         10 010 ..DDDD| 

       |     |Bass                           10 001 ..DDDD| 
       |     |Mixer                          10 000 ....DD| 

       |     +--------------------------------------------+ 

       |     |Volume/tone controller values               | 

       |     |Master Volume     : 0-40   (0 -80dB, 40=0dB)| 

       |     |Left/Right Volume : 0-20    (0 80dB, 20=0dB)| 

       |     |Treble/bass       : 0-12 (0 -12dB, 12 +12dB)| 
       |     |Mixer             : 0-3 (0 -12dB, 1 mix PSG)| 

       |     |                    (2 don't mix,3 reserved)| 

       |     +--------------------------------------------+ 
       |     |Procedure: Set mask register to $7ff. Read  | 

       |     |data register and save original value. Write| 

       |     |data register. Compare data register with   | 
       |     |original value, repeat until data register  | 

       |     |returns to original value to ensure data has| 

       |     |been sent over the interface.               | 
       |     +--------------------------------------------+ 

       |     |Interrupts: Timer A can be set to interrupt | 

       |     |at the end of a frame. Alternatively, the   | 

       |     |GPI7 (MFP mono detect) can be used to       | 

       |     |generate interrupts thereby freeing up Timer| 

       |     |A. In this case, the active edge $FFFA03    | 
       |     |must be set by or-ing the active edge       | 

       |     |$FFFA03 with the contents of $FF8260:       | 

       |     |$FF8260 - 2 (mono)     or.b  #$80 with edge | 
       |     |$FF8260 - 0,1 (colour) and.b #$7F with edge | 

       |     |This will generate an interrupt at the START| 

       |     |of a frame, instead of at the end as with   | 
       |     |Timer A. To generate an interrupt at the END| 

       |     |of a frame, simply reverse the edge values. | 

-------+-----+--------------------------------------------+---------- 
##############Falcon030 DMA/DSP Controllers               ########### 



 Appendixes 

 137 

-------+-----+--------------------------------------------+---------- 

$FF8930|word |Crossbar Source Controller                  |R/W (F030) 
       |     +--------------------------------------------+ 

       |     |Source: External Input           BIT 3 2 1 0| 

       |     |0 - DSP IN, 1 - All others ----------' | | || 

       |     |00 - 25.175Mhz clock ------------------+-+ || 

       |     |01 - External clock -------------------+-+ || 

       |     |10 - 32Mhz clock ----------------------+-' || 
       |     |0 - Handshake on, 1 - Handshake off -------'| 

       |     +--------------------------------------------+ 

       |     |Source: A/D Convertor            BIT 7 6 5 4| 
       |     |1 - Connect, 0 - disconnect ---------' | | || 

       |     |00 - 25.175Mhz clock ------------------+-+ || 

       |     |01 - External clock -------------------+-+ || 
       |     |10 - 32Mhz clock (Don't use) ----------+-' || 

       |     |0 - Handshake on, 1 - Handshake off -------'| 

       |     +--------------------------------------------+ 
       |     |Source: DMA-PLAYBACK           BIT 11 10 9 8| 

       |     |0 - Handshaking on, dest DSP-REC ---+  | | || 

       |     |1 - Destination is not DSP-REC -----'  | | || 

       |     |00 - 25.175Mhz clock ------------------+-+ || 

       |     |01 - External clock -------------------+-+ || 

       |     |10 - 32Mhz clock ----------------------+-' || 
       |     |0 - Handshake on, 1 - Handshake off -------'| 

       |     +--------------------------------------------+ 

       |     |Source: DSP-XMIT             Bit 15 14 13 12| 
       |     |0 - Tristate and disconnect DSP --+  |  |  || 

       |     |    (Only for external SSI use)   |  |  |  || 

       |     |1 - Connect DSP to multiplexer ---'  |  |  || 
       |     |00 - 25.175Mhz clock ----------------+--+  || 

       |     |01 - External clock -----------------+--+  || 

       |     |10 - 32Mhz clock --------------------+--'  || 
       |     |0 - Handshake on, 1 - Handshake off -------'| 

-------+-----+--------------------------------------------+---------- 

$FF8932|word |Crossbar Destination Controller             |R/W (F030) 
       |     +--------------------------------------------+ 

       |     |Destination: External Output     BIT 3 2 1 0| 

       |     |0 - DSP out, 1 - All others ---------' | | || 
       |     |00 - Source DMA-PLAYBACK --------------+-+ || 

       |     |01 - Source DSP-XMIT ------------------+-+ || 

       |     |10 - Source External Input ------------+-+ || 

       |     |11 - Source A/D Convertor -------------+-' || 

       |     |0 - Handshake on, 1 - Handshake off -------'| 

       |     +--------------------------------------------+ 
       |     |Destination: D/A Convertor       BIT 7 6 5 4| 

       |     |1 - Connect, 0 - Disconnect ---------' | | || 

       |     |00 - Source DMA-PLAYBACK --------------+-+ || 
       |     |01 - Source DSP-XMIT ------------------+-+ || 

       |     |10 - Source External Input ------------+-+ || 

       |     |11 - Source A/D Convertor -------------+-' || 
       |     |0 - Handshake on, 1 - Handshake off -------'| 

       |     +--------------------------------------------+ 

       |     |Destination: DMA-RECORD        BIT 11 10 9 8| 
       |     |0 - Handshaking on, src DSP-XMIT ---+  | | || 

       |     |1 - Source is not DSP-XMIT ---------'  | | || 

       |     |00 - Source DMA-PLAYBACK --------------+-+ || 

       |     |01 - Source DSP-XMIT ------------------+-+ || 

       |     |10 - Source External Input ------------+-+ || 

       |     |11 - Source A/D Convertor -------------+-' || 
       |     |0 - Handshake on, 1 - Handshake off -------'| 

       |     +--------------------------------------------+ 

       |     |Destination: DSP-RECORD      BIT 15 14 13 12| 
       |     |0 - Tristate and disconnect DSP --+  |  |  || 

       |     |    (Only for external SSI use)   |  |  |  || 

       |     |1 - Connect DSP to multiplexer ---'  |  |  || 
       |     |00 - Source DMA-PLAYBACK ------------+--+  || 

       |     |01 - Source DSP-XMIT ----------------+--+  || 

       |     |10 - Source External Input ----------+--+  || 
       |     |11 - Source A/D Convertor -----------+--'  || 



 Appendixes 

 138 

       |     |0 - Handshake on, 1 - Handshake off -------'| 

-------+-----+--------------------------------------------+---------- 
$FF8934|byte |Frequency Divider External Clock BIT 3 2 1 0|R/W (F030) 

       |     |0000 - STe-Compatible mode                  | 

       |     |0001 - 1111  Divide by 256 and then number  | 

-------+-----+--------------------------------------------+---------- 

$FF8935|byte |Frequency Divider Internal Sync  BIT 3 2 1 0|R/W (F030) 

       |     |0000 - STe-Compatible mode   1000 - 10927Hz*| 
       |     |0001 - 49170Hz               1001 -  9834Hz | 

       |     |0010 - 32780Hz               1010 -  8940Hz*| 

       |     |0011 - 24585Hz               1011 -  8195Hz | 
       |     |0100 - 19668Hz               1100 -  7565Hz*| 

       |     |0101 - 16390Hz               1101 -  7024Hz*| 

       |     |0110 - 14049Hz*              1110 -  6556Hz*| 
       |     |0111 - 12292Hz               1111 -  6146Hz*| 

       |     |          * - Invalid for CODEC             | 

-------+-----+--------------------------------------------+---------- 
$FF8936|byte |Record Tracks Select                 BIT 1 0|R/W (F030) 

       |     |00 - Record 1 Track ---------------------+-+| 

       |     |01 - Record 2 Tracks --------------------+-+| 

       |     |10 - Record 3 Tracks --------------------+-+| 

       |     |11 - Record 4 Tracks --------------------+-'| 

-------+-----+--------------------------------------------+---------- 
$FF8937|byte |CODEC Input Source from 16bit adder  BIT 1 0|R/W (F030) 

       |     |Source: Multiplexer ---------------------' || 

       |     |Source: A/D Convertor ---------------------'| 
-------+-----+--------------------------------------------+---------- 

$FF8938|byte |CODEC ADC-Input for L+R Channel      BIT 1 0|R/W (F030) 

       |     |0 - Microphone, 1 - Soundchip            L R| 
-------+-----+--------------------------------------------+---------- 

$FF8939|byte |Channel amplification          BIT LLLL RRRR|R/W (F030) 

       |     |      Amplification is in +1.5dB steps      | 
-------+-----+--------------------------------------------+---------- 

$FF893A|word |Channel attenuation       BIT LLLL RRRR ....|R/W (F030) 

       |     |       Attenuation is in -1.5dB steps       | 
-------+-----+--------------------------------------------+---------- 

$FF893C|byte |CODEC-Status                         BIT 1 0|R/W (F030) 

       |     |Left Channel Overflow -------------------' || 
       |     |Right Channel Overflow --------------------'| 

-------+-----+--------------------------------------------+---------- 

$FF8941|byte |GPx Data Direction                 BIT 2 1 0|R/W (F030) 

       |     |0 - In, 1 - Out -----------------------+-+-'| 

       |     | For the GP0-GP2 pins on the DSP connector  | 

-------+-----+--------------------------------------------+---------- 
$FF8943|byte |GPx Data Port                      BIT 2 1 0|R/W (F030) 

-------+-----+--------------------------------------------+---------- 

##############TT Clock Chip                               ########### 
-------+-----+--------------------------------------------+---------- 

$FF8961|byte |Register select                             |????  (TT) 

$FF8963|byte |Data of selected clock chip registers       |????  (TT) 
-------+-----+--------------------------------------------+---------- 

##############Blitter (Not present on a TT!)              ########### 

-------+-----+--------------------------------------------+---------- 
$FF8A00|word |Halftone-RAM, Word 0                        |R/W (Blit) 

    :  |  :  |    :     :     :  :                        | :     : 

$FF8A1E|word |Halftone-RAM, Word 15                       |R/W (Blit) 

$FF8A20|word |Source X Increment             (signed,even)|R/W (Blit) 

$FF8A22|word |Source Y Increment             (signed,even)|R/W (Blit) 

$FF8A24|long |Source Address Register        (24 bit,even)|R/W (Blit) 
$FF8A28|word |Endmask 1            (First write of a line)|R/W (Blit) 

$FF8A2A|word |Endmask 2            (All other line writes)|R/W (Blit) 

$FF8A2C|word |Endmask 3             (Last write of a line)|R/W (Blit) 
$FF8A2E|word |Destination X Increment        (signed,even)|R/W (Blit) 

$FF8A30|word |Destination Y Increment        (signed,even)|R/W (Blit) 

$FF8A32|long |Destination Address Register   (24 bit,even)|R/W (Blit) 
$FF8A36|word |Words per Line in Bit-Block        (0=65536)|R/W (Blit) 

$FF8A38|word |Lines per Bit-Block                (0=65536)|R/W (Blit) 

$FF8A3A|byte |Halftone Operation Register          BIT 1 0|R/W (Blit) 
       |     |00 - All ones ---------------------------+-+| 



 Appendixes 

 139 

       |     |01 - Halftone ---------------------------+-+| 

       |     |10 - Source -----------------------------+-+| 
       |     |11 - Source AND Halftone ----------------+-'| 

$FF8A3B|byte |Logical Operation Register       BIT 3 2 1 0|R/W (Blit) 

       |     |0000 All zeros ----------------------+-+-+-+| 

       |     |0001 Source AND destination ---------+-+-+-+| 

       |     |0010 Source AND NOT destination -----+-+-+-+| 

       |     |0011 Source -------------------------+-+-+-+| 
       |     |0100 NOT source AND destination -----+-+-+-+| 

       |     |0101 Destination --------------------+-+-+-+| 

       |     |0110 Source XOR destination ---------+-+-+-+| 
       |     |0111 Source OR destination ----------+-+-+-+| 

       |     |1000 NOT source AND NOT destination -+-+-+-+| 

       |     |1001 NOT source XOR destination -----+-+-+-+| 
       |     |1010 NOT destination ----------------+-+-+-+| 

       |     |1011 Source OR NOT destination ------+-+-+-+| 

       |     |1100 NOT source ---------------------+-+-+-+| 
       |     |1101 NOT source OR destination ------+-+-+-+| 

       |     |1110 NOT source OR NOT destination --+-+-+-+| 

       |     |1111 All ones -----------------------+-+-+-'| 

$FF8A3C|byte |Line Number Register     BIT 7 6 5 . 3 2 1 0|R/W (Blit) 

       |     |BUSY ------------------------' | |   | | | || 

       |     |0 - Share bus, 1 - Hog bus ----' |   | | | || 
       |     |SMUDGE mode ---------------------'   | | | || 

       |     |Halftone line number ----------------+-+-+-'| 

$FF8A3D|byte |SKEW Register            BIT 7 6 . . 3 2 1 0|R/W (Blit) 
       |     |Force eXtra Source Read -----' |     | | | || 

       |     |No Final Source Read ----------'     | | | || 

       |     |Source skew -------------------------+-+-+-'| 
-------+-----+--------------------------------------------+---------- 

##############SCC-DMA (TT Only!)                          ########### 

-------+-----+--------------------------------------------+---------- 
$FF8C01|byte |DMA-Address Pointer (Highest Byte)          |R/W   (TT) 

$FF8C03|byte |DMA-Address Pointer (High Byte)             |R/W   (TT) 

$FF8C05|byte |DMA-Address Pointer (Low Byte)              |R/W   (TT) 
$FF8C07|byte |DMA-Address Pointer (Lowest Byte)           |R/W   (TT) 

$FF8C09|byte |DMA-Address Counter (Highest-Byte)          |R/W   (TT) 

$FF8C0B|byte |DMA-Address Counter (High-Byte)             |R/W   (TT) 
$FF8C0D|byte |DMA-Address Counter (Low-Byte)              |R/W   (TT) 

$FF8C0F|byte |DMA-Address Counter (Lowest-Byte)           |R/W   (TT) 

$FF8C10|byte |Continue Data Register (High-Word)          |R/W   (TT) 

$FF8C12|byte |Continue Data register (Low-Word)           |R/W   (TT) 

$FF8C14|byte |Control register                            |R/W   (TT) 

-------+-----+--------------------------------------------+---------- 
##############SCC Z8530 SCC (MSTe/TT/F030)                ########### 

-------+-----+--------------------------------------------+---------- 

$FF8C81|byte |Channel A - Control-Register                |R/W  (SCC) 
$FF8C83|byte |Channel A - Data-Register                   |R/W  (SCC) 

$FF8C85|byte |Channel B - Control-Register                |R/W  (SCC) 

$FF8C87|byte |Channel B - Data-Register                   |R/W  (SCC) 
-------+-----+--------------------------------------------+---------- 

##############MSTe/TT VME Bus                             ########### 

-------+-----+--------------------------------------------+---------- 
$FF8E01|byte |VME sys_mask             BIT 7 6 5 4 . 2 1 .|R/W  (VME) 

$FF8E03|byte |VME sys_stat             BIT 7 6 5 4 . 2 1 .|R/W  (VME) 

       |     |_SYSFAIL in VMEBUS ----------' | | |   | |  |program 

       |     |MFP ---------------------------' | |   | |  |autovec 

       |     |SCC -----------------------------' |   | |  |autovec 

       |     |VSYNC -----------------------------'   | |  |program 
       |     |HSYNC ---------------------------------' |  |program 

       |     |System software INT ---------------------'  |program 

       |     +--------------------------------------------+ 
       |     |Reading sys_mask resets pending int-bits in | 

       |     |sys_stat, so read sys_stat first.           | 

-------+-----+--------------------------------------------+---------- 
$FF8E05|byte |VME sys_int                            BIT 0|R/W  (VME) 

       |     |Setting bit 0 to 1 forces an INT of level 1 |Vector $64 

       |     |INT must be enabled in sys_mask to use it   | 
-------+-----+--------------------------------------------+---------- 



 Appendixes 

 140 

$FF8E0D|byte |VME vme_mask             BIT 7 6 5 4 3 2 1 .|R/W  (VME) 

$FF8E0F|byte |VME vme_stat             BIT 7 6 5 4 3 2 1 .|R/W  (VME) 
       |     |_IRQ7 from VMEBUS -----------' | | | | | |  |program 

       |     |_IRQ6 from VMEBUS/MFP ---------' | | | | |  |program 

       |     |_IRQ5 from VMEBUS/SCC -----------' | | | |  |program 

       |     |_IRQ4 from VMEBUS -----------------' | | |  |program 

       |     |_IRQ3 from VMEBUS/soft --------------' | |  |prog/autov 

       |     |_IRQ2 from VMEBUS ---------------------' |  |program 
       |     |_IRQ1 from VMEBUS -----------------------'  |program 

       |     +--------------------------------------------+ 

       |     |MFP-int and SCC-int are hardwired to the    | 
       |     |VME-BUS-ints (or'ed)                        | 

       |     |Reading vme_mask resets pending int-bits in | 

       |     |vme_stat, so read vme_stat first.           | 
-------+-----+--------------------------------------------+---------- 

$FF8E07|byte |VME vme_int                            BIT 0|R/W   (TT) 

       |     |Setting bit 0 to 1 forces an INT of level 3 |Vector $6C 
       |     |INT must be enabled in vme_mask to use it   | 

-------+-----+--------------------------------------------+---------- 

$FF8E09|byte |General purpose register - does nothing     |R/W   (TT) 

$FF8E0B|byte |General purpose register - does nothing     |R/W   (TT) 

-------+-----+--------------------------------------------+---------- 

##############Mega STe Cache/Processor Control            ########### 
-------+-----+--------------------------------------------+---------- 

$FF8E21|byte |Mega STe Cache/Processor Control            |R/W (MSTe) 

-------+-----+--------------------------------------------+---------- 
##############STe Extended Joystick/Lightpen Ports        ########### 

-------+-----+--------------------------------------------+---------- 

$FF9200|???? |Fire buttons 1-4                            |R    (STe) 
$FF9202|???? |Joysticks 1-4                               |R    (STe) 

$FF9210|???? |Paddle 0 Position                           |R    (STe) 

$FF9212|???? |Paddle 1 Position                           |R    (STe) 
$FF9214|???? |Paddle 2 Position                           |R    (STe) 

$FF9216|???? |Paddle 3 Position                           |R    (STe) 

$FF9220|???? |Lightpen X-Position                         |R    (STe) 
$FF9222|???? |Lightpen Y-Position                         |R    (STe) 

-------+-----+--------------------------------------------+---------- 

##############Falcon VIDEL Palette Registers              ########### 
-------+-----+--------------------------------------------+---------- 

       |     |     BIT 33222222 22221111 11111198 76543210| 

       |     |         10987654 32109876 543210           | 

       |     |         RRRRRR.. GGGGGG.. ........ BBBBBB..| 

$FF9800|long |Palette Register  0                         |R/W (F030) 

   :   |  :  |   :        :     :                         | :     : 
$FF98FC|long |Palette Register 255                        |R/W (F030) 

-------+-----+--------------------------------------------+---------- 

##############Falcon DSP Host Interface                   ########### 
-------+-----+--------------------------------------------+---------- 

$FFA200|byte |Interrupt Ctrl Register  BIT 7 6 5 4 3 . 1 0|R/W (F030) 

X:$FFE9|     |INIT bit --------------------' | | | |   | || 
       |     |00 - Interupt mode (DMA off) --+-+ | |   | || 

       |     |01 - 24-bit DMA mode ----------+-+ | |   | || 

       |     |10 - 16-bit DMA mode ----------+-+ | |   | || 
       |     |11 - 8-bit DMA mode -----------+-' | |   | || 

       |     |Host Flag 1 -----------------------' |   | || 

       |     |Host Flag 0 -------------------------'   | || 

       |     |         Host mode Data transfers:       | || 

       |     |              Interrupt mode             | || 

       |     |00 - No interrupts (Polling) ------------+-+| 
       |     |01 - RXDF Request (Interrupt) -----------+-+| 

       |     |10 - TXDE Request (Interrupt) -----------+-+| 

       |     |11 - RXDF and TXDE Request (Interrupts) -+-+| 
       |     |                 DMA Mode                | || 

       |     |00 - No DMA -----------------------------+-+| 

       |     |01 - DSP to Host Request (RX) -----------+-+| 
       |     |10 - Host to DSP Request (TX) -----------+-+| 

       |     |11 - Undefined (Illegal) ----------------+-'| 

$FFA201|byte |Command Vector Register                     |R/W (F030) 
X:$FFE9|     |                         BIT 7 . . 4 3 2 1 0| 



 Appendixes 

 141 

       |     |Host Command Bit (Handshake)-'     | | | | || 

       |     |Host Vector (0-31) ----------------+-+-+-+-'| 
$FFA202|byte |Interrupt Status Reg     BIT 7 6 . 4 3 2 1 0|R   (F030) 

X:$FFE8|     |ISR Host Request ------------' |   | | | | || 

       |     |ISR DMA Status ----------------'   | | | | || 

       |     |Host Flag 3 -----------------------' | | | || 

       |     |Host Flag 2 -------------------------' | | || 

       |     |ISR Transmitter Ready (TRDY) ----------' | || 
       |     |ISR Transmit Data Register Empty (TXDE) -' || 

       |     |ISR Receive Data Register Full (RXDF) -----'| 

$FFA203|byte |Interrupt Vector Register                   |R/W (F030) 
$FFA204|byte |Unused                                      |    (F030) 

$FFA205|byte |DSP-Word High                               |R/W (F030) 

X:$FFEB|     |                                            | 
$FFA206|byte |DSP-Word Mid                                |R/W (F030) 

X:$FFEB|     |                                            | 

$FFA207|byte |DSP-Word Low                                |R/W (F030) 
X:$FFEB|     |                                            | 

-------+-----+--------------------------------------------+---------- 

##############MFP 68901 - Multi Function Peripheral Chip  ########### 

-------+-----+--------------------------------------------+---------- 

       |     |MFP Master Clock is 2,457,600 cycles/second | 

-------+-----+--------------------------------------------+---------- 
$FFFA01|byte |Parallel Port Data Register                 |R/W 

-------+-----+--------------------------------------------+---------- 

$FFFA03|byte |Active Edge Register     BIT 7 6 5 4 . 2 1 0|R/W 
       |     |Monochrome monitor detect ---' | | | | | | || 

       |     |RS-232 Ring indicator ---------' | | | | | || 

       |     |FDC/HDC interrupt ---------------' | | | | || 
       |     |Keyboard/MIDI interrupt -----------' | | | || 

       |     |Reserved ----------------------------' | | || 

       |     |RS-232 CTS (input) --------------------' | || 
       |     |RS-232 DCD (input) ----------------------' || 

       |     |Centronics busy ---------------------------'| 

       |     +--------------------------------------------+ 
       |     |   When port bits are used for input only:  | 

       |     |0 - Interrupt on pin high-low conversion    | 

       |     |1 - Interrupt on pin low-high conversion    | 
-------+-----+--------------------------------------------+---------- 

$FFFA05|byte |Data Direction           BIT 7 6 5 4 3 2 1 0|R/W 

       |     |0 - In, 1 - Out -------------+-+-+-+-+-+-+-'| 

-------+-----+--------------------------------------------+---------- 

$FFFA07|byte |Interrupt Enable A       BIT 7 6 5 4 3 2 1 0|R/W 

$FFFA0B|byte |Interrupt Pending A      BIT 7 6 5 4 3 2 1 0|R/W 
$FFFA0F|byte |Interrupt In-service A   BIT 7 6 5 4 3 2 1 0|R/W 

$FFFA13|byte |Interrupt Mask A         BIT 7 6 5 4 3 2 1 0|R/W 

       |     |MFP Address                  | | | | | | | || 
       |     |$13C GPI7-Monochrome Detect -' | | | | | | || 

       |     |$138   RS-232 Ring Detector ---' | | | | | || 

       |     |$134 (STe sound)    Timer A -----' | | | | || 
       |     |$130    Receive buffer full -------' | | | || 

       |     |$12C          Receive error ---------' | | || 

       |     |$128      Send buffer empty -----------' | || 
       |     |$124             Send error -------------' || 

       |     |$120 (HBL)          Timer B ---------------'| 

       |     |1 - Enable Interrupt   0 - Disable Interrupt| 

-------+-----+--------------------------------------------+---------- 

$FFFA09|byte |Interrupt Enable B       BIT 7 6 5 4 3 2 1 0|R/W 

$FFFA0D|byte |Interrupt Pending B      BIT 7 6 5 4 3 2 1 0|R/W 
$FFFA11|byte |Interrupt In-service B   BIT 7 6 5 4 3 2 1 0|R/W 

$FFFA15|byte |Interrupt Mask B         BIT 7 6 5 4 3 2 1 0|R/W 

       |     |MFP Address                  | | | | | | | || 
       |     |$11C                FDC/HDC -' | | | | | | || 

       |     |$118          Keyboard/MIDI ---' | | | | | || 

       |     |$114 (200hz clock)  Timer C -----' | | | | || 
       |     |$110 (USART timer)  Timer D -------' | | | || 

       |     |$10C           Blitter done ---------' | | || 

       |     |$108     RS-232 CTS - input -----------' | || 
       |     |$104     RS-232 DCD - input -------------' || 



 Appendixes 

 142 

       |     |$100        Centronics Busy ---------------'| 

       |     |1 - Enable Interrupt   0 - Disable Interrupt| 
-------+-----+--------------------------------------------+---------- 

$FFFA17|byte |Vector Register          BIT 7 6 5 4 3 . . .|R/W 

       |     |Vector Base Offset ----------+-+-+-' |      | 

       |     |1 - *Software End-interrupt mode ----+      | 

       |     |0 - Automatic End-interrupt mode ----'      | 

       |     |* - Default operating mode                  | 
-------+-----+--------------------------------------------+---------- 

$FFFA19|byte |Timer A Control                  BIT 3 2 1 0|R/W 

$FFFA1B|byte |Timer B Control                  BIT 3 2 1 0|R/W 
       |     +--------------------------------------------+ 

       |     |0000 - Timer stop, no function executed     | 

       |     |0001 - Delay mode, divide by 4              | 
       |     |0010 -     :           :     10             | 

       |     |0011 -     :           :     16             | 

       |     |0100 -     :           :     50             | 
       |     |0101 -     :           :     64             | 

       |     |0110 -     :           :     100            | 

       |     |0111 - Delay mode, divide by 200            | 

       |     |1000 - Event count mode                     | 

       |     |1xxx - Pulse extension mode, divide as above| 

       |     +--------------------------------------------+ 
$FFFA1F|byte |Timer A Data                                |R/W 

$FFFA21|byte |Timer B Data                                |R/W 

-------+-----+--------------------------------------------+---------- 
$FFFA1D|byte |Timer C & D Control        BIT 6 5 4 . 2 1 0|R/W 

       |     |                               Timer   Timer| 

       |     |                                 C       D  | 
       |     +--------------------------------------------+ 

       |     |000 - Timer stop                            | 

       |     |001 - Delay mode, divide by 4               | 
       |     |010 -      :           :    10              | 

       |     |011 -      :           :    16              | 

       |     |100 -      :           :    50              | 
       |     |101 -      :           :    64              | 

       |     |110 -      :           :    100             | 

       |     |111 - Delay mode, divide by 200             | 
       |     +--------------------------------------------+ 

$FFFA23|byte |Timer C Data                                |R/W 

$FFFA25|byte |Timer D Data                                |R/W 

-------+-----+--------------------------------------------+---------- 

$FFFA27|byte |Sync Character                              |R/W 

$FFFA29|byte |USART Control            BIT 7 6 5 4 3 2 1 .|R/W 
       |     |Clock divide (1 - div by 16) ' | | | | | | || 

       |     |Word Length 00 - 8 bits -------+-+ | | | | || 

       |     |            01 - 7 bits        | | | | | | || 
       |     |            10 - 6 bits        | | | | | | || 

       |     |            11 - 5 bits -------+-' | | | | || 

       |     |Bits Stop Start Format ------------+-+ | | || 
       |     |00     0    0   Synchronous        | | | | || 

       |     |01     1    1   Asynchronous       | | | | || 

       |     |10     1    1.5 Asynchronous       | | | | || 
       |     |11     1    2   Asynchronous ------+-' | | || 

       |     |Parity (0 - ignore parity bit) --------' | || 

       |     |Parity (0 - odd parity,1 - even) --------' || 

       |     |Unused ------------------------------------'| 

$FFFA2B|byte |Receiver Status          BIT 7 6 5 4 3 2 1 0|R/W 

       |     |Buffer full -----------------' | | | | | | || 
       |     |Overrun error -----------------' | | | | | || 

       |     |Parity error --------------------' | | | | || 

       |     |Frame error -----------------------' | | | || 
       |     |Found - Search/Break detected -------' | | || 

       |     |Match/Character in progress -----------' | || 

       |     |Synchronous strip enable ----------------' || 
       |     |Receiver enable bit -----------------------'| 

$FFFA2D|byte |Transmitter Status       BIT 7 6 5 4 3 2 1 0|R/W 

       |     |Buffer empty ----------------' | | | | | | || 
       |     |Underrun error ----------------' | | | | | || 



 Appendixes 

 143 

       |     |Auto turnaround -----------------' | | | | || 

       |     |End of transmission ---------------' | | | || 
       |     |Break -------------------------------' | | || 

       |     |High bit ------------------------------' | || 

       |     |Low bit ---------------------------------' || 

       |     |Transmitter enable ------------------------'| 

$FFFA2F|byte |USART data                                  |R/W 

-------+-----+--------------------------------------------+---------- 
#############Floating Point Coprocessor (in MSTe)         ########### 

-------+-----+--------------------------------------------+---------- 

$FFFA40|???? |FP_Stat    Response-Register                |??? (MSTe) 
$FFFA42|???? |FP_Ctl     Control-Register                 |??? (MSTe) 

$FFFA44|???? |FP_Save    Save-Register                    |??? (MSTe) 

$FFFA46|???? |FP_Restor  Restore-Register                 |??? (MSTe) 
$FFFA4A|???? |FP_Cmd     Command-Register                 |??? (MSTe) 

$FFFA4E|???? |FP_Ccr     Condition-Code-Register          |??? (MSTe) 

$FFFA50|???? |FP_Op      Operanden-Register               |??? (MSTe) 
$FFFA54|???? |FP_Selct   Register Select                  |??? (MSTe) 

$FFFA58|???? |FP_Iadr    Instruction Address              |??? (MSTe) 

-------+-----+--------------------------------------------+---------- 

##############MFP 68901 #2 (MFP2) - TT Only               ########### 

-------+-----+--------------------------------------------+---------- 

$FFFA81|byte |Parallel Port Data Register                 |R/W   (TT) 
-------+-----+--------------------------------------------+---------- 

$FFFA83|byte |Active Edge Register     BIT 7 6 5 4 3 2 1 0|R/W   (TT) 

       |     +--------------------------------------------+ 
       |     |   When port bits are used for input only:  | 

       |     |0 - Interrupt on pin high-low conversion    | 

       |     |1 - Interrupt on pin low-high conversion    | 
-------+-----+--------------------------------------------+---------- 

$FFFA85|byte |Data Direction           BIT 7 6 5 4 3 2 1 0|R/W   (TT) 

       |     |0 - Pin becomes an input                    | 
       |     |1 - Pin becomes an output                   | 

-------+-----+--------------------------------------------+---------- 

$FFFA87|byte |Interrupt Enable A       BIT 7 6 5 4 3 2 1 0|R/W   (TT) 
$FFFA8B|byte |Interrupt Pending A      BIT 7 6 5 4 3 2 1 0|R/W   (TT) 

$FFFA8F|byte |Interrupt In-service A   BIT 7 6 5 4 3 2 1 0|R/W   (TT) 

$FFFA93|byte |Interrupt Mask A         BIT 7 6 5 4 3 2 1 0|R/W   (TT) 
       |     |MFP Address                  | | | | | | | || 

       |     |$17C  General Purpose Input -' | | | | | | || 

       |     |$178  General Purpose Input ---' | | | | | || 

       |     |$174                Timer A -----' | | | | || 

       |     |$170    Receive buffer full -------' | | | || 

       |     |$16C          Receive error ---------' | | || 
       |     |$168      Send buffer empty -----------' | || 

       |     |$164             Send error -------------' || 

       |     |$160                Timer B ---------------'| 
       |     |1 - Enable Interrupt   0 - Disable Interrupt| 

-------+-----+--------------------------------------------+---------- 

$FFFA89|byte |Interrupt Enable B       BIT 7 6 5 4 3 2 1 0|R/W   (TT) 
$FFFA8D|byte |Interrupt Pending B      BIT 7 6 5 4 3 2 1 0|R/W   (TT) 

$FFFA91|byte |Interrupt In-service B   BIT 7 6 5 4 3 2 1 0|R/W   (TT) 

$FFFA95|byte |Interrupt Mask B         BIT 7 6 5 4 3 2 1 0|R/W   (TT) 
       |     |MFP Address                  | | | | | | | || 

       |     |$15C  General Purpose Input -' | | | | | | || 

       |     |$158  General Purpose Input ---' | | | | | || 

       |     |$154                Timer C -----' | | | | || 

       |     |$150                Timer D -------' | | | || 

       |     |$14C  General Purpose Input ---------' | | || 
       |     |$148  General Purpose Input -----------' | || 

       |     |$144  General Purpose Input -------------' || 

       |     |$140  General Purpose Input ---------------'| 
       |     |1 - Enable Interrupt   0 - Disable Interrupt| 

-------+-----+--------------------------------------------+---------- 

$FFFA97|byte |Vector Register          BIT 7 6 5 4 3 . . .|R/W   (TT) 
       |     |Vector Base Offset ----------+-+-+-' |      | 

       |     |1 - *Software End-interrupt mode ----+      | 

       |     |0 - Automatic End-interrupt mode ----'      | 
       |     |* - Default operating mode                  | 



 Appendixes 

 144 

-------+-----+--------------------------------------------+---------- 

$FFFA99|byte |Timer A Control                  BIT 3 2 1 0|R/W   (TT) 
$FFFA9B|byte |Timer B Control                  BIT 3 2 1 0|R/W   (TT) 

       |     +--------------------------------------------+ 

       |     |0000 - Timer stop, no function executed     | 

       |     |0001 - Delay mode, divide by 4              | 

       |     |0010 -     :           :     10             | 

       |     |0011 -     :           :     16             | 
       |     |0100 -     :           :     50             | 

       |     |0101 -     :           :     64             | 

       |     |0110 -     :           :     100            | 
       |     |0111 - Delay mode, divide by 200            | 

       |     |1000 - Event count mode                     | 

       |     |1xxx - Pulse extension mode, divide as above| 
       |     +--------------------------------------------+ 

$FFFA9F|byte |Timer A Data                                |R/W   (TT) 

$FFFAA1|byte |Timer B Data                                |R/W   (TT) 
-------+-----+--------------------------------------------+---------- 

$FFFA9D|byte |Timer C & D Control        BIT 6 5 4 . 2 1 0|R/W   (TT) 

       |     |                               Timer   Timer| 

       |     |                                 C       D  | 

       |     +--------------------------------------------+ 

       |     |000 - Timer stop                            | 
       |     |001 - Delay mode, divide by 4               | 

       |     |010 -      :           :    10              | 

       |     |011 -      :           :    16              | 
       |     |100 -      :           :    50              | 

       |     |101 -      :           :    64              | 

       |     |110 -      :           :    100             | 
       |     |111 - Delay mode, divide by 200             | 

       |     +--------------------------------------------+ 

$FFFAA3|byte |Timer C Data                                |R/W   (TT) 
$FFFAA5|byte |Timer D Data                                |R/W   (TT) 

-------+-----+--------------------------------------------+---------- 

$FFFAA7|byte |Sync Character                              |R/W   (TT) 
$FFFAA9|byte |USART Control            BIT 7 6 5 4 3 2 1 .|R/W   (TT) 

       |     |Clock divide (1 - div by 16) ' | | | | | | || 

       |     |Word Length 00 - 8 bits -------+-+ | | | | || 
       |     |            01 - 7 bits        | | | | | | || 

       |     |            10 - 6 bits        | | | | | | || 

       |     |            11 - 5 bits -------+-' | | | | || 

       |     |Bits Stop Start Format ------------+-+ | | || 

       |     |00     0    0   Synchronous        | | | | || 

       |     |01     1    1   Asynchronous       | | | | || 
       |     |10     1    1.5 Asynchronous       | | | | || 

       |     |11     1    2   Asynchronous ------+-' | | || 

       |     |Parity (0 - ignore parity bit) --------' | || 
       |     |Parity (0 - odd parity,1 - even) --------' || 

       |     |Unused ------------------------------------'| 

$FFFAAB|byte |Receiver Status          BIT 7 6 5 4 3 2 1 0|R/W   (TT) 
       |     |Buffer full -----------------' | | | | | | || 

       |     |Overrun error -----------------' | | | | | || 

       |     |Parity error --------------------' | | | | || 
       |     |Frame error -----------------------' | | | || 

       |     |Found - Search/Break detected -------' | | || 

       |     |Match/Character in progress -----------' | || 

       |     |Synchronous strip enable ----------------' || 

       |     |Receiver enable bit -----------------------'| 

$FFFAAD|byte |Transmitter Status       BIT 7 6 5 4 3 2 1 0|R/W   (TT) 
       |     |Buffer empty ----------------' | | | | | | || 

       |     |Underrun error ----------------' | | | | | || 

       |     |Auto turnaround -----------------' | | | | || 
       |     |End of transmission ---------------' | | | || 

       |     |Break -------------------------------' | | || 

       |     |High bit ------------------------------' | || 
       |     |Low bit ---------------------------------' || 

       |     |Transmitter enable ------------------------'| 

$FFFAAF|byte |USART data                                  |R/W   (TT) 
-------+-----+--------------------------------------------+---------- 



 Appendixes 

 145 

##############6850 ACIA I/O Chips                         ########### 

-------+-----+--------------------------------------------+---------- 
$FFFC00|byte |Keyboard ACIA control                       |R/W 

$FFFC02|byte |Keyboard ACIA data                          |R/W 

$FFFC04|byte |MIDI ACIA control                           |R/W 

$FFFC06|byte |MIDI ACIA data                              |R/W 

-------+-----+--------------------------------------------+---------- 

##############Realtime Clock                              ########### 
-------+-----+--------------------------------------------+---------- 

$FFFC21|byte |S_Units                                     |??? 

$FFFC23|byte |S_Tens                                      |??? 
$FFFC25|byte |M_Units                                     |??? 

$FFFC27|byte |M_Tens                                      |??? 

$FFFC29|byte |H_Units                                     |??? 
$FFFC2B|byte |H_Tens                                      |??? 

$FFFC2D|byte |Weekday                                     |??? 

$FFFC2F|byte |Day_Units                                   |??? 
$FFFC31|byte |Day_Tens                                    |??? 

$FFFC33|byte |Mon_Units                                   |??? 

$FFFC35|byte |Mon_Tens                                    |??? 

$FFFC37|byte |Yr_Units                                    |??? 

$FFFC39|byte |Yr_Tens                                     |??? 

$FFFC3B|byte |Cl_Mod                                      |??? 
$FFFC3D|byte |Cl_Test                                     |??? 

$FFFC3F|byte |Cl_Reset                                    |??? 

-------+-----+--------------------------------------------+---------- 
$FA0000|     |                                            | 

    :  |     |128K ROM expansion cartridge port           |R 

$FBFFFF|     |                                            | 
-------+-----+--------------------------------------------+---------- 

$FC0000|     |                                            | 

    :  |     |192K System ROM                             |R 
$FEFFFF|     |                                            | 

-------+-----+--------------------------------------------+---------- 

 
 

                            Cookie Jar 

                     Atari "Official" Cookies 
 

This section is preliminary. I can't think of a better format yet for 

this section, so it will be ugly for a while. 

 

Cookie  Description 

-------+------------------------------------------------------------- 
_CPU   | CPU Type 

       | Processor type is represented in decimal in the lowest 

       | byte. (0 - 68000, 40 - 68040) 
_VDO   | Video Yype 

       | Shifter Type                                       BIT 17 16 

       | 0 - ST    1 - STe    2 - TT    3 - Falcon030 
_FDC   | Floppy Drive Controller 

       | Floppy Format                                      Bit 25 24 

       | 0 - DD (Normal floppy interface) 
       | 1 - HD (1.44 MB with 3.5") 

       | 2 - ED (2.88 MB with 3.5") 

       | Controller ID                                       BIT 23-0 

       | 0 - No information available 

       | 'ATC' - Fully compatible interface built in a way that it 

       |         behaves like part of the system. 
       | 'DP1' - "DreamPark Development", all other ID's beginning with 

       |         "DP" are reserved for Dreampark. 

_FLK   | File Locking 
       | If present, GEMDOS supports file locking. Value represents the 

       | version number of the expansion. 

_NET   | Network Type 
       | If present, there is GEMDOS network support. Points to 2 longs 

       | - The first is the ID of the producer, and the second is the 

       | version number. 
_SLM   | SLM Driver 



 Appendixes 

 146 

       | Diablo-driver for the SLM laser printer. Value points to a 

       | non-documented structure. 
_INF   | .INF Patch 

       | When present, STEFIX (patch program for TOS 1.06) is active. 

_SND   | Sound Type 

       | Sound Hardware    BIT 4 3 2 1 0 

       | Connection Matrix ----' | | | | 

       | DSP56001 ---------------' | | | 
       | 16 Bit DMA Sound ---------' | | 

       | 8 Bit DMA Sound ------------' | 

       | YM2149 -----------------------' 
_MCH   | Machine Type 

       | Hardware Description High Word + Low word 

       | $00000000 - ST/Mega ST 
       | $0001xxxx - STe compatible machines 

       |      0000 - STe 

       |      0001 - ST Book 
       |      0010 - Mega STe 

       | $00020000 - TT 

       | $00030000 - Falcon 030 

_SWI   | Configuration Switches 

       | State of configuration switches (MSTe/TT only) 

_FRB   | Fast Ram Buffer 
       | (TT specific) 64k buffer for ACSI DMA 

       | 0 - no buffers assigned       >0 - address of FastRam buffer 

_FPU   | FPU Type 
       |          High word - hardware    Low word - software 

       |  0 - No FPU 

       |  1 - SFP004 or compatible 68881 
       |  2 - 68881 or 68882 unsure which one    3 - plus SFP004 

       |  4 - 68881 for sure                     5 - plus SFP004 

       |  6 - 68882 for sure                     7 - plus SFP004 
       |  8 - 68040's internal FPU               9 - plus SFP004 

_OOL   | PoolFix 

       | Value corresponds to PoolFix version 
_AKP   | Keyboard/Language Configuration 

       | Keyboard Configuration                              Low byte 

       | 1 - German       2 - French       4 - Spanish    5 - Italian 
       | 7 - Swiss French    8 - Swiss German 

       | All others - English 

       | Language Configuration                           Lowest byte 

       | 1,8 - German     2,7 - French     4 - Spanish    5 - Italian 

       | All others - English 

_IDT   | International Date/Time Format 
       | Time Format                                           BIT 12 

       | 0 - AM/PM   1 - 24 hours 

       | Date Format                                          BIT 9 8 
       | 0 - MMDDYY  1 - DDMMYY  2 - YYMMDD  3 - YYDDMM 

       | Separator for date                               Lowest Byte 

       | ASCII Value (i.e. "." or "/") 
MiNT   | MiNT 

       | Present if MiNT/MultiTOS is active. Value represents the 

       | version number of the MiNT kernel in hex (0x104 = 1.04) 
-------+------------------------------------------------------------- 

 

                  68000 Exception Vector Assignments 

 

Vector Number   Address   Space   Assignment 

---------------+---------+-------+-------------------------------- 
0              |0/$0     |SP     |Reset:Initial SSP 

1              |4/$4     |SP     |Reset:Initial PC 

Reset vector (0) requires four words, unlike other vectors which only 
require two words, and is located in the supervisor program space. 

---------------+---------+-------+-------------------------------- 

2              |8/$8     |SD     |Bus Error 
3              |12/$C    |SD     |Address Error 

4              |16/$10   |SD     |Illegal Instruction 

5              |20/$14   |SD     |Zero Divide 
6              |24/$18   |SD     |CHK, CHK2 Instruction 



 Appendixes 

 147 

7              |28/$1C   |SD     |cpTRAPcc, TRAPcc, TRAPV Instruction 

8              |32/$20   |SD     |Privilege Violation 
9              |36/$24   |SD     |Trace 

10             |40/$28   |SD     |Line 1010 Emulator (LineA) 

11             |44/$2C   |SD     |Line 1111 Emulator (LineF) 

12             |48/$30   |SD     |(Unassigned, Reserved) 

13      (68030)|52/$34   |SD     |Coprocessor Protocol Violation 

14      (68010)|56/$38   |SD     |Format Error 
15             |60/$3C   |SD     |Uniinitialised Interrupt Vector 

16-23          |64/$40   |SD     |(Unassigned, Reserved) 

               |95/$5F   |SD     |- 
24             |96/$60   |SD     |Spurious Interrupt 

Spurious interrupt vector is taken when there is a bus error 

during interrupt processing. 
---------------+---------+-------+-------------------------------- 

                68000 Auto-Vector Interrupt Table 

---------------+---------+-------+-------------------------------- 
25             |100/$64  |SD     |Level 1 Int Autovector (TT VME) 

26             |104/$68  |SD     |Level 2 Int Autovector (HBL) 

27             |108/$6C  |SD     |Level 3 Int Autovector (TT VME) 

28             |112/$70  |SD     |Level 4 Int Autovector (VBL) 

29             |116/$74  |SD     |Level 5 Int Autovector 

30             |120/$78  |SD     |Level 6 Int Autovector (MFP) 
31             |124/$7C  |SD     |Level 7 Int Autovector 

---------------+---------+-------+-------------------------------- 

32-47          |128/$80  |SD     |Trap Instruction Vectors 
               |191/$BF  |SD     |(Trap #n = vector number 32+n) 

---------------+---------+-------+-------------------------------- 

                Math Coprocessor Vectors (68020 and higher) 
---------------+---------+-------+-------------------------------- 

48             |192/$C0  |SD     |FFCP Branch or Set 

               |         |       |          on Unordered Condition 
49             |196/$C4  |SD     |FFCP Inexact Result 

50             |200/$C8  |SD     |FFCP Divide by Zero 

51             |204/$CC  |SD     |FFCP Underflow 
52             |208/$D0  |SD     |FFCP Operand Error 

53             |212/$D4  |SD     |FFCP Overflow 

54             |216/$D8  |SD     |FFCP Signaling NAN 
55             |220/$DC  |SD     |(Unassigned, Reserved) 

---------------+---------+-------+-------------------------------- 

56             |224/$E0  |SD     |MMU Configuration Error 

57             |228/$E4  |SD     |MC68851, not used by MC68030 

58             |232/$E8  |SD     |MC68851, not used by MC68030 

---------------+---------+-------+-------------------------------- 
59-63          |236/$EC  |SD     |(Unassigned, Reserved) 

               |255/$FF  |SD     |- 

---------------+---------+-------+-------------------------------- 
64-254         |256/$100 |SD     |User Defined Interrupt Vectors 

               |1019/$3FB|SD     |- 

255            |1020/$3FC|SD     |DSP-IRQ Vector            (F030) 
---------------+---------+-------+-------------------------------- 



 Appendixes 

 148 

Appendix C ASCII Table, by Stephen 
McNabb 

Below is a table of all the standard ASCII characters and their hexadecimal values, originally 
by Stephen McNabb. 

ASCII = American Standard Code for Information Interchange 

Least significant  
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO ST 

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 

2 SPC ! " # $ % & ' ( ) * + , - . / 

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 

4 @ A B C D E F G H I J K L M N O 

5 P Q R S T U V W X Y Z [ \ ] ^ _ 

6 ` a b c d e f g h i j k l m n o M
os

t 
si

gn
if

ic
an

t 

7 p q r s t u v w x y z { | } ~ DEL 



 Appendixes 

 149 

Appendix D List of VT-52 Escape 
sequences 

Below is a table of all the VT-52 Escape sequences, originally by Stephen McNabb. 

 

This is a list of the available escape sequences that can be accessed using Cconout(). To use 
these sequences you must first output and escape character using Cconout() and then the 
appropriate characters. 

D.1 Example 
To clear the screen the following code would be used: 
 
 move.w #27,-(sp) escape character 

 move.w #$2,-(sp) use Cconout() function 

 trap #1 use gemdos 
 addq.l #4,sp tidy up stack 

  

 move.w #'E',-(sp) use Clear screen sequences 

 move.w #$2,-(sp) use Cconout() function 

 trap #1 use gemdos 

 addq.l #4,sp tidy up stack 
 

D.2 List 
 

Char. Action 
A Moves cursor up one line. If already at the top of the screen then it has no effect. 
B Moves cursor down one line. If already at the bottom of the screen then it has no 

effect. 
C Moves cursor one character to the right. If already at the right hand side of the 

screen then it has no effect. 
D Moves cursor one character to the left. If already at the left hand side of the screen 

then it has no effect. 
E Clears the screen and places the cursor at the top-left hand corner of the screen. 
H Places cursor at the top-left hand corner of the screen without clearing the screen. 
I Moves cursor up one line. If at the top of the screen then all other lines are scrolled 

down one line. 
J Erases all text from current cursor position to the end of the screen. 
K Erases all text from current cursor position to the end of the current line. 
L Inserts a new line, by scrolling all lines, below and including the current line the 

cursor is on, down one line. The cursor is positioned at the start of the new blank 
line. 

M Deletes the current line the cursor is on, scrolls all lines below it up one and inserts 
a blank line at the bottom. The cursor is positioned at the start of the current line.  

Y Positions cursor on screen. The following two values from Cconout() specify the row 
and column of the cursor. Values are single byte binary numbers and begin at 1. 



 Appendixes 

 150 

Char. Action 
b Sets the foreground colour index of the text to be displayed. The following value 

from Cconout() specifies the colour index to be used. The four least significant bits 
of the value are used.  

c Sets the background colour index of the text to be displayed. The following value 
from Cconout() specifies the colour index to be used. The four least significant bits 
of the value are used.  

d Erases all text from the screen from the beginning of the screen to the current 
cursor position.  

e Makes the cursor visible, usually after using ESC 'f'. 
f Makes the cursor invisible. It can still be moved about the screen.  
j Saves the current cursor position. To be used with ESC 'k'.  
k Restores the cursor position that was saved using ESC 'j'. If the cursor position has 

not been saved then the cursor is placed at the top-left hand corner of the screen.  
l Erases the current line that the cursor is on. The lines below it are not scrolled up. 

The cursor is positioned at the start of the line.  
o Erase all the text from the start of the current line to the current cursor position on 

that line.  
p Enables reverse video text. The background and foreground colours are swapped.  
q Disables reverse video text. 
v Switches text wrap on. Characters written past the end of the line is displayed on 

the next line.  
w Switches text wrap off. Characters written past the end of the line are written over 

each other at the right hand side of the screen. 
 



 Appendixes 

 151 

Appendix E Initlib.s 
initialise 
* set supervisor 

 clr.l -(a7) clear stack 

 move.w #32,-(a7) prepare for user mode 
 trap #1 call gemdos 

 addq.l #6,a7 clean up stack 

 move.l d0,old_stack backup old stack pointer 
* end set supervisor 

 

* save the old palette; old_palette 

 move.l #old_palette,a0 put backup address in a0 

 movem.l $ffff8240,d0-7 all palettes in d0-d7 

 movem.l d0-7,(a0) move data into old_palette 
* end palette save 

 

* saves the old screen adress 
 move.w #2,-(a7) get physbase 

 trap #14 

 addq.l #2,a7 
 move.l d0,old_screen save old screen address 

* end screen save 

 
* save the old resolution into old_resolution 

* and change resolution to low (0) 

 move.w #4,-(a7) get resolution 
 trap #14 

 addq.l #2,a7 

 move.w d0,old_resolution save resolution 
 

 move.w #0,-(a7) low resolution 

 move.l #-1,-(a7) keep physbase 

 move.l #-1,-(a7) keep logbase 

 move.w #5,-(a7) change screen 

 trap #14 
 add.l #12,a7 

* end resolution save 

 
 rts 

 

 
restore 

* restores the old resolution and screen adress 

 move.w old_resolution,d0 res in d0 
 move.w d0,-(a7) push resolution 

 move.l old_screen,d0 screen in d0 

 move.l d0,-(a7) push physbase 

 move.l d0,-(a7) push logbase 

 move.w #5,-(a7) change screen 

 trap #14 
 add.l #12,a7 

* end resolution and screen adress restore 

 
* restores the old palette 

 move.l #old_palette,a0 palette pointer in a0 

 movem.l (a0),d0-d7 move palette data 
 movem.l d0-d7,$ffff8240 smack palette in 

* end palette restore 

 
* set user mode again 

 move.l old_stack,-(a7) restore old stack pointer 

 move.w #32,-(a7) back to user mode 



 Appendixes 

 152 

 trap #1 call gemdos 

 addq.l #6,a7 clear stack 
* end set user 

 

 rts 

 

 

old_palette ds.l 8 
 

old_resolution dc.w 0 

 
old_stack dc.l 0 

 

old_screen dc.l 0 



 Appendixes 

 153 

Appendix F MC68000 Instruction 
Execution Times 

These are the times for instructions, most of it is self explanatory. On the ST at 8 Mhz you 
need to round all times to multiples of four. i.e 10 becomes 12. Please note that execution 
instruction times are generally irrelevant when you have a instruction cache, ie a greater than 
68000 processor and i doubt that these numbers will hold true for anything except a 68000 
even if you turn the cache off. Also note that it isn't usually worth spending ages trying to 
optimise your code by using faster instructions. If your code is too slow, then you will 
probably need to use a different method to achieve you're aims. 

F.1 MOVE Instructions 
 

.b.w/.l dn an (an) (an)+ -(an) d(an) d(an.Ri) abs.s abs.l 
dn 4/4 4/4 8/12 8/12 8/14 12/16 14/18 12/16 16/20 
an 4/4 4/4 8/12 8/12 8/14 12/16 14/18 12/16 16/20 

(an) 8/12 8/12 12/20 12/20 12/20 16/24 18/26 16/24 20/28 
(an)+ 8/12 8/12 12/20 12/20 12/20 16/24 18/26 16/24 20/28 
-(an) 10/14 10/14 14/22 14/22 14/22 18/26 20/28 18/26 22/30 
d(an) 12/16 12/16 16/24 16/24 16/24 20/28 22/30 20/28 24/32 

d(an,Ri) 14/18 14/18 18/26 18/26 18/26 22/30 24/32 22/30 26/34 
abs.s 12/16 12/16 16/24 16/24 16/24 20/28 22/30 20/28 24/32 
abs.l 16/20 16/20 20/28 20/28 20/28 24/32 26/34 24/32 28/36 
d(pc) 12/16 12/16 16/24 16/24 16/24 20/28 22/30 20/28 24/32 

d(pc,Ri) 14/18 14/18 18/26 18/26 18/26 22/30 24/32 22/30 26/34 
Immediate 8/12 8/12 12/20 12/20 12/20 16/24 18/26 16/24 20/28 

F.1.1 Time to calculate effective addresses. 
 (an) (an)+ -(an) d(an) d(an.Ri) abs.s abs.l d(pc) d(pc.ri) Imm 

.b.w/.l 4/8 4/8 6/10 8/12 10/14 8/12 12/16 8/12 10/14 4/8 
 

The time taken to calculate the effective address must be added to instructions that affect a 
memory address. 

F.2 Standard Instructions 
 



 Appendixes 

 154 

.b.w/.l ea,an ea,dn dn,mem  
add 8/6(8) 4/6(8) 8/12 (8) time if effective address 
and - 4/6(8) 8/12 is direct. 
cmp 6/6 4/6 -  
divs - 158max - Add effective address times 
divu - 140max - from above for memory 
eor - 4/8 8/12 addresses. 

muls - 70max -  
mulu - 70max -  

or - 4/6(8) 8/12  
sub 8/6(8) 4/6(8) 8/12  

F.3 Immediate Instructions 
.b.w/.l #,dn #,an #,mem  

addi 8/16 - 12/20  
addq 4/8 8/8 8/12 moveq.l only 
andi 8/16 - 12/20 nbcd+tas.b only 
cmpi 8/14 8/14 8/12  
eori 8/16 - 12/20 scc false/true 

moveq 4 - -  
ori 8/16 - 12/20 add effective address 

subi 8/16 - 12/20 times from above 
subq 4/8 8/8 8/12 for mem addresses 
clr 4/6 4/6 8/12 single operand 

nbcd 6 6 8 instructions 
neg 4/6 4/6 8/12  

negx 4/6 4/6 8/12  
not 4/6 4/6 8/12  
scc 4/6 4/6 8/8  
tas 4 4 10  
tst 4/4 4/4 4/4  

F.4 Shift/rotate instructions. 
.b.w/.l dn an mem  
asr,asl 6/8 6/8 8 memory is byte only 
lsr,lsl 6/8 6/8 8 register add 2x 
ror,rol 6/8 6/8 8 shift count 

roxr,roxl 6/8 6/8 8  
 



 Appendixes 

 155 

 (an) (an)+ -(an) d(an) d(an.ri) abs.s abs.l d(pc) d(pc.ri) 
jmp 8 - - 10 14 10 12 10 14 
jsr 16 - - 18 22 18 20 18 22 
lea 4 - - 8 12 8 12 8 12 
pea 12 - - 16 20 16 20 16 20 

movem 
m>r 

(t=4)* 

12 12 - 16 18 16 20 16 18 

movem 
r>m 

(t=5)* 

8 - 8 12 14 12 16 - - 

* add t x number of registers for .w, 2t x number of registers for .l 

F.5 Bit Instructions 
.b/.l register .l only memory .b only 
bchg 8/12 8/12 
bclr 10/14 8/12 
bset 8/12 8/12 
btst 6/10 4/8 

F.6 Exception Periods 
Address Error 50 
Bus Error 50 
Interrupt 44 
Illegal Instr. 34 
Privilege Viol. 34 
Trace 34 

F.7 Other Instructions 
Add effective address times from above for memory addresses 

.b.w/.l dn,dn m,m  
addx 4/8 18/30  

cmpm - 12/20  
subx 4/8 18/30  
abcd 6 18 .b only 
sbcd 6 18 .b only 
Bcc .b/.w 10/10 8/12 
bra .b/.w 10/10 - 
bsr .b/.w 18/18 - 

DBcc t/f 10 12/14 
chk - 40 max 8 
trap - 34 - 
trapv - 34 4 

 

  reg<>mem 
movep .w/.l 16/24 
 



 Appendixes 

 156 

 Reg Mem  Reg 
andi to ccr 20 - move from usp 4 
andi to sr 20 - nop 4 
eori to ccr 20 - ori to ccr 20 
eori to sr 20 - ori to sr 20 
exg 6 - reset 132 
ext 4 - rte 20 
link 18 - rtr 20 
move to ccr 12 12 rts 16 
move to sr 12 12 stop 4 
move from sr 6 8 swap 4 
move to usp 4 - unlk 12 



 Appendixes 

 157 

Appendix G Pixel Timings, by Jim 
Boulton 

[Extracted from Jim Boulton’s “ST Internals”] 

All the following processor timings are based on a bog standard 8MHz MC68000 as found in 
all standard ST's. 

 50Hz 60Hz
Clock cycles per line 512 508 
NOPs per scan line 128 127 
Scan lines per VBL 313 315 
Clock cycles per VBL 160256 
NOPs per VBL 40064 
Pixels per clock cycle (low res) 1 
Pixels per clock cycle (med res) 2 
Pixels per clock cycle (high res) 4 
Pixels per NOP (low res) 4 
Pixels per NOP (med res) 8 
Pixels per NOP (high res) 16 



 Appendixes 

 158 

Appendix H Intelligent Keyboard (IKBD) 
Protocol 

H.1 Introduction 
The Atari Corp. Intelligent Keyboard (ikbd) is a general purpose keyboard controller that is 
flexible enough that it can be used in a variety of products without modification. The 
keyboard, with its microcontroller, provides a convenient connection point for a mouse and 
switch-type joysticks. 

The ikbd processor also maintains a time-of-day clock with one second resolution. 

The ikbd has been designed to be general enough that it can be used with a variety of new 
computer products. Product variations in a number of keyswitches, mouse resolution, etc. can 
be accommodated. 

The ikbd communicates with the main processor over a high speed bi-directional serial 
interface. It can function in a variety of modes to facilitate different applications of the 
keyboard, joysticks, or mouse. Limited use of the controller is possible in applications in 
which only a unidirectional communications medium is available by carefully designing the 
default modes. 

H.2 Keyboard 
The keyboard always returns key make/break scan codes. The ikbd generates keyboard scan 
codes for each key press and release. The key scan make (key closure) codes start at 1, and 
are defined in Chapter H.9 Scan Codes (on page 168). For example, the ISO key position in 
the scan code table should exist even if no keyswitch exists in that position on a particular 
keyboard. The break code for each key is obtained by ORing 0x80 with the make code. 

The special codes 0xF6 through 0xFF are reserved for use as follows: 

0xF6 status report 
0xF7 absolute mouse position record 
0xF8-0xFB relative mouse position records (lsbs determined by mouse button states) 
0xFC time-of-day 
0xFD joystick report (both sticks) 
0xFE joystick 0 event 
0xFF joystick 1 event 

 

The two shift keys return different scan codes in this mode. The ENTER key and the RETurn 
key are also distinct. 

H.3 Mouse 
The mouse port should be capable of supporting a mouse with resolution of approximately 
200 counts (phase changes or 'clicks') per inch of travel. The mouse should be scanned at a 
rate that will permit accurate tracking at velocities up to 10 inches per second. 

The ikbd can report mouse motion in three distinctly different ways. It can report relative 
motion, absolute motion in a coordinate system maintained within the ikbd, or by converting 
mouse motion into keyboard cursor control key equivalents. 



 Appendixes 

 159 

The mouse buttons can be treated as part of the mouse or as additional keyboard keys. 

H.3.1 Relative Position Reporting 
In relative position mode, the ikbd will return relative mouse position records whenever a 
mouse event occurs. A mouse event consists of a mouse button being pressed or released, or 
motion in either axis exceeding a settable threshold of motion. Regardless of the threshold, 
all bits of resolution are returned to the host computer. 

Note that the ikbd may return mouse relative position reports with significantly more than the 
threshold delta x or y. This may happen since no relative mouse motion events will be 
generated: 

(a) while the keyboard has been 'paused' (the event will be stored until keyboard 
communications is resumed) 

(b) while any event is being transmitted. 

The relative mouse position record is a three byte record of the form (regardless of keyboard 
mode): 
  %111110xy ; mouse position record flag 

   ; where y is the right button state 

   ; and x is the left button state 
  X ; delta x as twos complement integer 

  Y ; delta y as twos complement integer 

 

Note that the value of the button state bits should be valid even if the MOUSE BUTTON 
ACTION has set the buttons to act like part of the keyboard. If the accumulated motion 
before the report packet is generated exceeds the +127...-128 range, the motion is broken 
into multiple packets. 

Note that the sign of the delta y reported is a function of the Y origin selected. 

H.3.2 Absolute Position reporting 
The ikbd can also maintain absolute mouse position. Commands exist for reseting the mouse 
position, setting X/Y scaling, and interrogating the current mouse position. 

H.3.3 Mouse Cursor Key Mode 
The ikbd can translate mouse motion into the equivalent cursor keystrokes. The number of 
mouse clicks per keystroke is independently programmable in each axis. The ikbd internally 
maintains mouse motion information to the highest resolution available, and merely 
generates a pair of cursor key events for each multiple of the scale factor. 

Mouse motion produces the cursor key make code immediately followed by the break code 
for the appropriate cursor key. The mouse buttons produce scan codes above those normally 
assigned for the largest envisioned keyboard (i.e. LEFT=0x74 & RIGHT=0x75). 

H.4 Joystick 

H.4.1 Joystick Event Reporting 
In this mode, the ikbd generates a record whenever the joystick position is changed (i.e. for 
each opening or closing of a joystick switch or trigger). 

The joystick event record is two bytes of the form: 
  1111111x ; Joystick event marker 

   ; where x is Joystick 0 or 1 
  %x000yyyy ; where yyyy is the stick position 

   ; and x is the trigger 

 



 Appendixes 

 160 

H.4.2 Joystick Interrogation 
The current state of the joystick ports may be interrogated at any time in this mode by 
sending an 'Interrogate Joystick' command to the ikbd. 

The ikbd response to joystick interrogation is a three byte report of the form 
  0xFD ; joystick report header 
  %x000yyyy ; Joystick 0 

  %x000yyyy ; Joystick 1 

   ; where x is the trigger 
   ; and yyy is the stick position 

H.4.3 Joystick Monitoring 
A mode is available that devotes nearly all of the keyboard communications time to reporting 
the state of the joystick ports at a user specifiable rate. 

It remains in this mode until reset or commanded into another mode. The PAUSE command 
in this mode not only stop the output but also temporarily stops scanning the joysticks 
(samples are not queued). 

H.4.4 Fire Button Monitoring 
A mode is provided to permit monitoring a single input bit at a high rate. In this mode the 
ikbd monitors the state of the Joystick 1 fire button at the maximum rate permitted by the 
serial communication channel. The data is packed 8 bits per byte for transmission to the host. 
The ikbd remains in this mode until reset or commanded into another mode. The PAUSE 
command in this mode not only stops the output but also temporarily stops scanning the 
button (samples are not queued). 

H.4.5 Joystick Key Code Mode 
The ikbd may be commanded to translate the use of either joystick into the equivalent cursor 
control keystroke(s). The ikbd provides a single breakpoint velocity joystick cursor. 

Joystick events produce the make code, immediately followed by the break code for the 
appropriate cursor motion keys. The trigger or fire buttons of the joysticks produce pseudo 
key scan codes above those used by the largest key matrix envisioned (i.e. JOYSTICK0=0x74, 
JOYSTICK1=0x75). 

H.5 Time-of-Day Clock 
The ikbd also maintains a time-of-day clock for the system. Commands are available to set 
and interrogate the timer-of-day clock. Time-keeping is maintained down to a resolution of 
one second. 

H.6 Status Inquiries 
The current state of ikbd modes and parameters may be found by sending status inquiry 
commands that correspond to the ikbd set commands. 

H.7 Power-Up Mode 
The keyboard controller will perform a simple self-test on power-up to detect major controller 
faults (ROM checksum and RAM test) and such things as stuck keys. Any keys down at 
power-up are presumed to be stuck, and their BREAK (sic) code is returned (which without 
the preceding MAKE code is a flag for a keyboard error). If the controller self-test completes 
without error, the code 0xF0 is returned. (This code will be used to indicate the version/rlease 
of the ikbd controller. The first release of the ikbd is version 0xF0, should there be a second 
release it will be 0xF1, and so on.) The ikbd defaults to a mouse position reporting with 
threshold of 1 unit in either axis and the Y=0 origin at the top of the screen, and joystick 
event reporting mode for joystick 1, with both buttons being logically assigned to the mouse. 
After any joystick command, the ikbd assumes that joysticks are connected to both Joystick0 



 Appendixes 

 161 

and Joystick1. Any mouse command (except MOUSE DISABLE) then causes port 0 to again 
be scanned as if it were a mouse, and both buttons are logically connected to it. If a mouse 
disable command is received while port 0 is presumed to be a mouse, the button is logically 
assigned to Joystick1 ( until the mouse is reenabled by another mouse command). 

H.8 ikbd Command Set 
This section contains a list of commands that can be sent to the ikbd. Command codes (such 
as 0x00) which are not specified should perform no operation (NOPs). 

H.8.1 Reset 
 0x80 

 0x01 

 

N.B. The RESET command is the only two byte command understood by the ikbd. 

Any byte following an 0x80 command byte other than 0x01 is ignored (and causes the 0x80 
to be ignored). 

A reset may also be caused by sending a break lasting at least 200ms to the ikbd. 

Executing the RESET command returns the keyboard to its default (power-up) mode and 
parameter settings. It does not affect the time-of-day clock. 

The RESET command or function causes the ikbd to perform a simple self-test. 

If the test is successful, the ikbd will send the code of 0xF0 within 300mS of receipt of the 
RESET command (or the end of the break, or power-up). The ikbd will then scan the key 
matrix for any stuck (closed) keys. Any keys found closed will cause the break scan code to 
be generated (the break code arriving without being preceded by the make code is a flag for 
a key matrix error). 

H.8.2 Set Mouse Button Action 
 0x07 
 %00000mss ; mouse button action 

  ;   (m is presumed = 1 when in MOUSE KEYCODE mode) 

  ; mss=0xy, mouse button press or release causes mouse 
  ;   position report 

  ;   where y=1, mouse key press causes absolute report 

  ;   and x=1, mouse key release causes absolute report 

  ; mss=100, mouse buttons act like keys 

 

This command sets how the ikbd should treat the buttons on the mouse. The default mouse 
button action mode is %00000000, the buttons are treated as part of the mouse logically. 

When buttons act like keys, LEFT=0x74 & RIGHT=0x75. 

H.8.3 Set Relative Mouse Position Reporting 
 0x08 

Set relative mouse position reporting. (DEFAULT) Mouse position packets are generated 
asynchronously by the ikbd whenever motion exceeds the setable threshold in either axis 
(see SET MOUSE THRESHOLD). Depending upon the mouse key mode, mouse position 
reports may also be generated when either mouse button is pressed or released. Otherwise 
the mouse buttons behave as if they were keyboard keys. 

H.8.4 Set Absolute Mouse Positioning 
 0x09 

 XMSB ; X maximum (in scaled mouse clicks) 
 XLSB 

 YMSB ; Y maximum (in scaled mouse clicks) 

 YLSB 



 Appendixes 

 162 

Set absolute mouse position maintenance. Resets the ikbd maintained X and Y coordinates. 
In this mode, the value of the internally maintained coordinates does NOT wrap between 0 
and large positive numbers. Excess motion below 0 is ignored. The command sets the 
maximum positive value that can be attained in the scaled coordinate system. Motion beyond 
that value is also ignored. 

H.8.5 Set Mouse Keycode Mode 
  0x0A 

  deltax ; distance in X clicks to return 
(LEFT) or (RIGHT) 

  deltay ; distance in Y clicks to return (UP) 
or (DOWN) 

Set mouse monitoring routines to return cursor motion keycodes instead of either RELATIVE 
or ABSOLUTE motion records. The ikbd returns the appropriate cursor keycode after mouse 
travel exceeding the user specified deltas in either axis. When the keyboard is in key scan 
code mode, mouse motion will cause the make code immediately followed by the break code. 
Note that this command is not affected by the mouse motion origin. 

H.8.6 Set Mouse Threshold 
  0x0B 

  X ; x threshold in mouse ticks 
(positive integers) 

  Y ; y threshold in mouse ticks 
(positive integers) 

This command sets the threshold before a mouse event is generated. Note that it does NOT 
affect the resolution of the data returned to the host. This command is valid only in 
RELATIVE MOUSE POSITIONING mode. The thresholds default to 1 at RESET (or power-up). 

H.8.7 Set Mouse Scale 
  0x0C 

  X ; horizontal mouse ticks per internel 
X 

  Y ; vertical mouse ticks per internel Y 
 

This command sets the scale factor for the ABSOLUTE MOUSE POSITIONING mode. 

In this mode, the specified number of mouse phase changes ('clicks') must occur before the 
internally maintained coordinate is changed by one (independently scaled for each axis). 
Remember that the mouse position information is available only by interrogating the ikbd in 
the ABSOLUTE MOUSE POSITIONING mode unless the ikbd has been commanded to report 
on button press or release (see SET MOSE BUTTON ACTION). 

H.8.8 Interrogate Mouse Position 
 0x0D 

 Returns: 

  0xF7 ; absolute mouse position header 
 BUTTONS 

  0000dcba ; where a is right sbutton down since 
last interrogation 

   ; b is right button up since last 

   ; c is left button down since last 

   ; d is left button up since last 

  XMSB ; X coordinate 

  XLSB 
  YMSB ; Y coordinate 

  YLSB 

 

The INTERROGATE MOUSE POSITION command is valid when in the ABSOLUTE MOUSE 
POSITIONING mode, regardless of the setting of the MOUSE BUTTON ACTION. 

H.8.9 Load Mouse Position 
  0x0E 



 Appendixes 

 163 

  0x00 ; filler 

  XMSB ; X coordinate 
  XLSB ; (in scaled coordinate system) 

  YMSB ; Y coordinate 

  YLSB 

 

This command allows the user to preset the internally maintained absolute mouse position. 

H.8.10 Set Y=0 At Bottom 
  0x0F 

 

This command makes the origin of the Y axis to be at the bottom of the logical coordinate 
system internel to the ikbd for all relative or absolute mouse motion. This causes mouse 
motion toward the user to be negative in sign and away from the user to be positive. 

H.8.11 Set Y=0 At Top 
  0x10 

 

Makes the origin of the Y axis to be at the top of the logical coordinate system within the ikbd 
for all relative or absolute mouse motion. (DEFAULT) This causes mouse motion toward the 
user to be positive in sign and away from the user to be negative. 

H.8.12 Resume 
  0x11 

 

Resume sending data to the host. Since any command received by the ikbd after its output 
has been paused also causes an implicit RESUME this command can be thought of as a NO 
OPERATION command. If this command is received by the ikbd and it is not PAUSED, it is 
simply ignored. 

H.8.13 Disable Mouse 
  0x12 

 

All mouse event reporting is disabled (and scanning may be internally disabled). Any valid 
mouse mode command resumes mouse motion monitoring. (The valid mouse mode 
commands are SET RELATIVE MOUSE POSITION REPORTING, SET ABSOLUTE MOUSE 
POSITIONING, and SET MOUSE KEYCODE MODE. ) N.B. If the mouse buttons have been 
commanded to act like keyboard keys, this command DOES affect their actions. 

H.8.14 Pause Output 
  0x13 
 

Stop sending data to the host until another valid command is received. Key matrix activity is 
still monitored and scan codes or ASCII characters enqueued (up to the maximum supported 
by the microcontroller) to be sent when the host allows the output to be resumed. If in the 
JOYSTICK EVENT REPORTING mode, joystick events are also queued. 

Mouse motion should be accumulated while the output is paused. If the ikbd is in RELATIVE 
MOUSE POSITIONING REPORTING mode, motion is accumulated beyond the normal 
threshold limits to produce the minimum number of packets necessary for transmission when 
output is resumed. Pressing or releasing either mouse button causes any accumulated motion 
to be immediately queued as packets, if the mouse is in RELATIVE MOUSE POSITION 
REPORTING mode. 

Because of the limitations of the microcontroller memory this command should be used 
sparingly, and the output should not be shut of for more than <tbd> milliseconds at a time. 



 Appendixes 

 164 

The output is stopped only at the end of the current 'even'. If the PAUSE OUTPUT command 
is received in the middle of a multiple byte report, the packet will still be transmitted to 
conclusion and then the PAUSE will take effect. 

When the ikbd is in either the JOYSTICK MONITORING mode or the FIRE BUTTON 
MONITORING mode, the PAUSE OUTPUT command also temporarily stops the monitoring 
process (i.e. the samples are not enqueued for transmission). 

H.8.15 Set Joystick Event Reporting 
  0x14 

 

Enter JOYSTICK EVENT REPORTING mode (DEFAULT). Each opening or closure of a joystick 
switch or trigger causes a joystick event record to be generated. 

H.8.16 Set Joystick Interrogation Mode 
  0x15 

 

Disables JOYSTICK EVENT REPORTING. Host must send individual JOYSTICK INTERROGATE 
commands to sense joystick state. 

H.8.17 Joystick Interrogate 
  0x16 
 

Return a record indicating the current state of the joysticks. This command is valid in either 
the JOYSTICK EVENT REPORTING mode or the JOYSTICK INTERROGATION MODE. 

H.8.18 Set Joystick Monitoring 
 0x17 
 rate  ; time between samples in hundreths 

of a second 
 Returns: (in packets of two as long as in mode) 

  %000000xy ; where y is JOYSTICK1 Fire button 

   ; and x is JOYSTICK0 Fire button 

  %nnnnmmmm ; where m is JOYSTICK1 state 

   ; and n is JOYSTICK0 state 

 

Sets the ikbd to do nothing but monitor the serial command lne, maintain the time-of-day 
clock, and monitor the joystick. The rate sets the interval between joystick samples. 

N.B. The user should not set the rate higher than the serial communications channel will 
allow the 2 bytes packets to be transmitted. 

H.8.19 Set Fire Button Monitoring 
 0x18 

 Returns: (as long as in mode) 
  %bbbbbbbb ; state of the JOYSTICK1 fire button 

packed 
   ; 8 bits per byte, the first sample 

if the MSB 
 

Set the ikbd to do nothing but monitor the serial command line, maintain the time-of-day 
clock, and monitor the fire button on Joystick 1. The fire button is scanned at a rate that 
causes 8 samples to be made in the time it takes for the previous byte to be sent to the host 
(i.e. scan rate = 8/10 * baud rate). 

The sample interval should be as constant as possible. 

H.8.20 Set Joystick Keycode Mode 
 0x19 

 RX ; length of time (in tenths of seconds) until 
  ; horizontal velocity breakpoint is reached 



 Appendixes 

 165 

 RY ; length of time (in tenths of seconds) until 

  ; vertical velocity breakpoint is reached 
 TX ; length (in tenths of seconds) of joystick closure 

  ; until horizontal cursor key is generated before RX 

  ; has elapsed 

 TY ; length (in tenths of seconds) of joystick closure 

  ; until vertical cursor key is generated before RY 

  ; has elapsed 
 VX ; length (in tenths of seconds) of joystick closure 

  ; until horizontal cursor keystokes are generated 

  ; after RX has elapsed 
 VY ; length (in tenths of seconds) of joystick closure 

  ; until vertical cursor keystokes are generated 

  ; after RY has elapsed 
 

In this mode, joystick 0 is scanned in a way that simulates cursor keystrokes. 

On initial closure, a keystroke pair (make/break) is generated. Then up to Rn tenths of 
seconds later, keystroke pairs are generated every Tn tenths of seconds. After the Rn 
breakpoint is reached, keystroke pairs are generated every Vn tenths of seconds. This 
provides a velocity (auto-repeat) breakpoint feature. 

Note that by setting RX and/or Ry to zero, the velocity feature can be disabled. The values of 
TX and TY then become meaningless, and the generation of cursor 'keystrokes' is set by VX 
and VY. 

H.8.21 Disable Joysticks 
  0x1A 
 

Disable the generation of any joystick events (and scanning may be internally disabled). Any 
valid joystick mode command resumes joystick monitoring. (The joystick mode commands 
are SET JOYSTICK EVENT REPORTING, SET JOYSTICK INTERROGATION MODE, SET 
JOYSTICK MONITORING, SET FIRE BUTTON MONITORING, and SET JOYSTICK KEYCODE 
MODE.) 

H.8.22 Time-Of-Day Clock Set 
  0x1B 

  YY ; year (2 least significant digits) 
  MM ; month 

  DD ; day 

  hh ; hour 
  mm ; minute 

  ss ; second 

 

All time-of-day data should be sent to the ikbd in packed BCD format. 

Any digit that is not a valid BCD digit should be treated as a 'don't care' and not alter that 
particular field of the date or time. This permits setting only some subfields of the time-of-day 
clock. 

H.8.23 Interrogate Time-Of-Day Clock 
 0x1C 

 Returns: 
  0xFC ; time-of-day event header 

  YY ; year (2 least significant digits) 

  MM ; month 
  DD ; day 

  hh ; hour 

  mm ; minute 
  ss ; second 

 

All time-of-day is sent in packed BCD format. 



 Appendixes 

 166 

H.8.24 Memory Load 
  0x20 

  ADRMSB ; address in controller 
  ADRLSB ; memory to be loaded 

  NUM ; number of bytes (0-128) 

  { data } 
 

This command permits the host to load arbitrary values into the ikbd controller memory. The 
time between data bytes must be less than 20ms. 

H.8.25 Memory Read 
 0x21 
 ADRMSB  ; address in controller 

 ADRLSB  ; memory to be read 

 Returns: 
  0xF6 ; status header 

  0x20 ; memory access 

  { data } ; 6 data bytes starting at ADR 

 

This comand permits the host to read from the ikbd controller memory. 

H.8.26 Controller Execute 
  0x22 

  ADRMSB ; address of subroutine in 

  ADRLSB ; controller memory to be called 
 

This command allows the host to command the execution of a subroutine in the ikbd 
controller memory. 

H.8.27 Status Inquiries 
Status commands are formed by inclusively ORing 0x80 with the relevant SET command. 

Example: 
 0x88 (or 0x89 or 0x8A) ; request mouse mode 

 Returns: 
  0xF6 ; status response header 

  mode ; 0x08 is RELATIVE 

   ; 0x09 is ABSOLUTE 
   ; 0x0A is KEYCODE 

  param1 ; 0 is RELATIVE 

   ; XMSB maximum if ABSOLUTE 
   ; DELTA X is KEYCODE 

  param2 ; 0 is RELATIVE 

   ; YMSB maximum if ABSOLUTE 
   ; DELTA Y is KEYCODE 

  param3 ; 0 if RELATIVE 

   ; or KEYCODE 

   ; YMSB is ABSOLUTE 

  param4 ; 0 if RELATIVE 

   ; or KEYCODE 
   ; YLSB is ABSOLUTE 

  0 ; pad 

  0 
 

The STATUS INQUIRY commands request the ikbd to return either the current mode or the 
parameters associated with a given command. All status reports are padded to form 8 byte 
long return packets. The responses to the status requests are designed so that the host may 
store them away (after stripping off the status report header byte) and later send them back 
as commands to ikbd to restore its state. The 0 pad bytes will be treated as NOPs by the 
ikbd. 

Valid STATUS INQUIRY commands are: 



 Appendixes 

 167 

 0x87 mouse button action 

 0x88 mouse mode 
 0x89 

 0x8A 

 0x8B mouse threshold 

 0x8C mouse scale 

 0x8F mouse vertical coordinates 

 0x90 (returns 0x0F Y=0 at bottom 
   0x10 Y=0 at top) 

 0x92 mouse enable/disable 

  (returns 0x00 enabled) 
   0x12 disabled) 

 0x94 joystick mode 

 0x95 
 0x96 

 0x9A joystick enable/disable 

  (returns 0x00 enabled 
   0x1A disabled) 

 

It is the (host) programmer's responsibility to have only one unanswered inquiry in process at 
a time. 

STATUS INQUIRY commands are not valid if the ikbd is in JOYSTICK MONITORING mode or 
FIRE BUTTON MONITORING mode. 



 Appendixes 

 168 

H.9 Scan Codes 
The key scan codes return by the ikbd are chosen to simplify the implementation of GSX. 

H.9.1 GSX Standard Keyboard Mapping 
Hex Keytop 
01 Esc 
02 1 
03 2 
04 3 
05 4 
06 5 
07 6 
08 7 
09 8 
0A 9 
0B 0 
0C - 
0D == 
0E BS 
0F TAB 
10 Q 
11 W 
12 E 
13 R 
14 T 
15 Y 
16 U 
17 I 
18 O 
19 P 
1A [ 
1B ] 
1C RET 
1D CTRL 
1E A 
1F S 
20 D 
21 F 
22 G 
23 H 
24 J 
25 K 
26 L 
27 ; 
28 ' 
29 ` 
2A (LEFT) SHIFT 



 Appendixes 

 169 

2B \ 
2C Z 
2D X 
2E C 
2F V 
30 B 
31 N 
32 M 
33 , 
34 . 
35 / 
36 (RIGHT) SHIFT 
37 { NOT USED } 
38 ALT 
39 SPACE BAR 
3A CAPS LOCK 
3B F1 
3C F2 
3D F3 
3E F4 
3F F5 
40 F6 
41 F7 
42 F8 
43 F9 
44 F10 
45 { NOT USED } 
46 { NOT USED } 
47 HOME 
48 UP ARROW 
49 { NOT USED } 
4A KEYPAD - 
4B LEFT ARROW 
4C { NOT USED } 
4D RIGHT ARROW 
4E KEYPAD + 
4F { NOT USED } 
50 DOWN ARROW 
51 { NOT USED } 
52 INSERT 
53 DEL 
54 { NOT USED } 
5F { NOT USED } 
60 ISO KEY 
61 UNDO 
62 HELP 
63 KEYPAD ( 



 Appendixes 

 170 

64 KEYPAD / 
65 KEYPAD * 
66 KEYPAD * 
67 KEYPAD 7 
68 KEYPAD 8 
69 KEYPAD 9 
6A KEYPAD 4 
6B KEYPAD 5 
6C KEYPAD 6 
6D KEYPAD 1 
6E KEYPAD 2 
6F KEYPAD 3 
70 KEYPAD 0 
71 KEYPAD . 
72 KEYPAD ENTER 

 


	Index List



