

Atari ST System-on-Chip in VHDL

Individual Project

UFEEJ4-40-3

Author: Lyndon Amsdon

Student Number: 05500164

Word Count

15116

Table of Contents

Paragraph Number Title Page Number

 Chapter 1 - Introduction

1.1 Preface 1-1

1.2 Introduction 1-1

1.2.1 TV Boy 1-1

1.2.2 Flashback 2 1-2

1.2.3 NOAC 1-2

1.2.4 MSX Bazix 1-3

1.2.5 Minimig 1-3

1.2.6 C-One/C64DTV 1-4

 Chapter 2 - In Depth Introduction

2.1 Atari History 2-1

2.1.1 Atari ST Models 2-1

2.2 Atari ST Hardware 2-2

2.2.1 MC68000 CPU 2-4

2.2.2 GLUE custom semiconductor 2-4

2.2.3 MMU custom semiconductor 2-5

2.2.4 SHIFTER custom semiconductor 2-5

2.2.5 DMA custom semiconductor 2-5

2.2.6 MFP MC68901 2-6

2.2.7 Yamaha YM2149 2-6

2.2.8 ACIA MC6850 2-6

2.2.9 FDC WD1772 2-6

2.3 Atari ST Operating System 2-8

Paragraph Number Title Page Number

2.3.1 Atari ST Boot Up Operation 2-8

 Chapter 3 – Research

3.1 FPGA 3-1

3.2 Base Hardware 3-2

3.3 IP Cores 3-3

3.4 Software Suite 3-3

3.5 Processor 3-3

3.6 Books and literature 3-4

3.7 Debugging 3-5

3.8 Operating System Versions 3-6

3.9 System Memory 3-7

3.10 Serial Port 3-8

3.11 Video Output 3-9

 Chapter 4 – Design

4.1 Components 4-1

4.1.1 Base Hardware 4-1

4.1.2 MC68SEC000 CPU 4-2

4.1.3 Static RAM 4-3

4.1.4 Debugging 4-3

4.1.5 OS and Flash Memory 4-4

4.1.6 5v PCI I/O 4-5

4.1.7 VGA 4-5

4.1.8 Floppy Disk Drive 4-6

4.1.9 RS232 Serial 4-7

4.1.10 Keyboard and Mouse 4-8

Paragraph Number Title Page Number

4.2 Design Differences 4-8

4.3 Process of Implementation 4-11

 Chapter 5 – Implementation

5.1 Flashing LED 5-1

5.2 VGA Colour pattern 5-1

5.3 Writing bytes to Flash Memory 5-2

5.4 Writing file to Flash Memory 5-5

5.5 CPU 5-5

5.6 Reset 5-6

5.7 Clock 5-6

5.8 Synchronous Bus interface 5-7

5.9 Flash data bus resizing 5-8

5.10 7 Segment Display 5-9

5.11 Single Step 5-10

5.12 Glue IP core 5-10

5.13 MMU IP core 5-13

5.14 Hardware Breakpoint 5-16

5.15 Shifter IP Core 5-17

5.16 MFP IP Core 5-17

5.17 ACIA IP Core 5-19

5.18 YM2149 IP Core 5-20

5.19 DMA IP Core 5-21

5.20 FDC IP Core 5-22

5.21 Eiffel PS/2 Conversion 5-24

5.22 IDE Compact Flash 5-26

Paragraph Number Title Page Number

 Chapter 6 – Testing and verification

6.1 Benchmarking 6-z

6.2 Colour Palette 6-z

6.3 Sound Techniques 6-z

6.4 Software Over Scan 6-z

 Chapter 7 – Future ideas

7.1 Floppy Drive Emulation 7-1

7.2 MIDI 7-1

7.3 IDE 7-2

7.4 Unification of mass storage 7-2

7.5 Reconfigurable systems 7-3

7.6 Commercial viability 7-3

 Chapter 8 – Summary

8.1 Summary 8-1

List of Illustrations

Figure Number Title Page Number

1 TV Boy 1-1

2 Flashback 2 PCB 1-2

3 NOAC SOC 1-2

4 MSX Bazix Unit 1-3

5 Minimig PCB 1-3

6 C64DTV 1-4

7 Atari ST CPU Prototype 2-2

8 Atari STfm Motherboard 2-3

9 Atari ST boot up sequence 2-7

10 Xilinx FPGA block layout 3-1

11 Flash memory organisation 3-6

12 DAC using resistor ladders 3-9

13 Specialised video DAC 3-10

14 Enterpoint Raggedstone 4-1

15 VGA video timing 4-5

16 RS232 to TTL level translator 4-7

17 ATX pin description 4-9

18 Design Block diagram 4-10

19 Architecture for LED Flash 5-1

20 Colour test display 5-2

21 Flash Programmer menu 5-2

22 MCS file format 5-5

23 Synchronous bus interface 5-8

24 Flash state machine 5-8

25 7 segment display 5-9

26 Address decoding in Glue 5-11

27 MC68000 start up sequence 5-11

Figure Number Title Page Number

28 SRAM and adapter PCB 5-13

29 Refresh Address removal 5-13

30 Refresh RAS removal 5-14

31 SRAM signal creation 5-14

32 Single Step DTACK creation 5-16

33 Photo of Desktop 5-18

34 Xilinx ISE DLL error 5-18

35 PWM Sound 5-20

36 Excerpt from OS 5-22

37 FDCSn from wf25913ip_ctrl.vhd 5-22

38 T1_VERIFY_CRC state 5-23

39 WD1772 delay state 5-24

40 Playstaion controller protocol 5-25

41 Degas Elite 6-1

42 Change to Shifter 6-2

43 SND Player 6-3

44 Envelope Shapes 6-3

45 Old enveloper generator 6-4

46 New enveloper generator 6-4

47 Screen borders 6-4

List of Tables

Table Number Title Page Number

1 Atari ST models 2-2

2 Xilinx development boards 3-2

3 MC68000 family processors 3-4

4 TOS versions 3-6

5 Serial port pin description 4-7

6 Flash memory commands 5-4

7 FPGA connections to 7 segment display 5-9

8 Start of Operating System 5-11

9 Memory Configuration register 5-16

10 IPL Encoding 5-18

11 Playstation controller packet 5-24

12 Colour palette error 6-2

Chapter 1

Preface

1.1

Within this personal project is a complete guide to the research, development,

implementation and conclusions to creating a System on Chip, based on the Atari ST

series of home microcomputer which spanned a production date of 1985-1993 [1]. The

project is designed to be left open to continual work and extensions beyond the original

Atari ST design.

This document assumes prior knowledge of Microsystems design and the Motorola

MC68000 CPU, and going in depth into these topics is beyond the scope of this

document.

Introduction and Overview

1.2

This project is inspired by other enthusiast’s attempts at creating systems on chip that

faithfully reproduce early home microcomputers and arcade machines. The development

in the last few years in programmable logic devices, with increased logic elements and

low development costs, has meant it is possible to fit entire computers into one

semiconductor.

1.2.1

TV Boy

One of the first commercially available products has to

be the ‘TV Boy’, which was an unlicensed reverse

engineered copy of the Atari 2600. It first went on sale

around the mid 1990s. The original Atari 2600 used

4Kbyte game cartridges whereas the TV Boy used a
Figure 1 - TV Boy

Figure 2 - Flashback 2 Main PCB

Figure 3 - NOAC SOC

512Kbyte ROM as storage for the 127 internal games [2]. A spare 4Kbyte slot was used

as the game menu selection. As it was unlicensed by Atari the games had different

names and some had very small changes to the graphical details. All the digital

electronics were designed into a single ASIC, intended for mass production and low cost.

1.2.2

Flashback 2

There have been some official

licensed Atari consoles recreated

in modern silicon. The Flashback

2 is another Atari 2600 with 40

games included. The design of the

case is reminiscent of the original

Atari 2600, but being somewhat

smaller and lighter. The Flashback

2 was designed by Curt Vendel and Legacy Engineering, and in an interview Curt Vendel

remarked that the "Flashback 2 did exceptionally well with 860,000 sold in the

U.S./domestic" [3].

1.2.3

NOAC

Another unlicensed reversed engineered copy of a console

exists, based on Nintendo’s NES (Nintendo Entertainment

System). These are known as NOAC (Nintendo On A Chip)

and originate from a variety of manufactures in China and are

inaccurate in many ways to an original NES [4]. The Integrated

Circuit is supplied without a real physical package, instead being

covered with an epoxy glue material.

Figure 4 - MSX Bazix Unit

Figure 5 - Minimig PCB

A brief look on the internet at current and past projects in this particular field has shown

the following popular home computers being implemented into FPGAs.

� Msx Bazix – MSX (Japanese home computer)

� Minimig – Amiga A500

� Suska – Atari ST/STE

� C-One – Reconfigurable Commodore 64 & Commodore VIC-20

1.2.4

MSX Bazix

The MSX Bazix [5] was a project led to create

primarily a clone of the technically advanced MSX

home computer, which was very popular in Japan in

the 1980s. The MSX Bazix was also designed to

pave the way for other developers to create projects

on, with the design of the hardware being open

source and an array of I/O ports to cater for most

needs. It’s future and success is unknown with no

news on their website for over 2 years.

1.2.5

Minimig

The Minimig (short for Mini Amiga) is based around

a Xilinx FPGA and MC68SEC000 CPU. It has some

key changes from the original Amiga 500, including

support for a PS/2 mouse and keyboard and games

that load from a removable MMC Flash memory

device [6]. The source code for both the FPGA and

PIC microcontroller became available to download

on 24/07/2007 and the hardware is available to buy

through online resellers.

1.2.6

C-One/C64DTV

Many other exist, at various stages of completion. What are more interesting are the

results of some of these projects. The best example of this is the C-One. The C-one was

designed by Jeri Ellsworth in 2002, to replicate a Commodore 64 using an Altera FPGA

[7]. By 2004 a marketing company had approached Jeri Ellsworth to use the design in a

low cost hand held console to plug directly into a TV, the result being the C64DTV.

The C64DTV hardware is all based on an ASIC, or

Application Specific Integrated Circuit, which is like a

fixed design FPGA. These are commonly used in mass

produced products. The software comprised of 30

games, originally produced for the Commodore 64 in

the mid to late eighties and licensed to be used. The

C64DTV was very successful on release, selling

70,000 units in a single day via a TV shopping channel

priced around £20[8].

Figure 6 - C64DTV

Chapter 2

In Depth Introduction

2.1

Atari was founded in 1972 by Nolan Bushnell and Ted Dabney firstly creating arcade

games, and then moving onto home computers and home video game consoles. Atari at

the time had created groundbreaking games like Pong, and also designed an affordable 8

bit home video game console, called the 2600 based around the Motorola 6502 CPU.

By 1976 Atari was sold to Time-Warner and work had started on a replacement for the

2600 video game console. A shift towards people wanting to do more than play games

meant the next computers, the Atari 800 & 400, had keyboards and the term ‘home

computers’ arrived.

In the early eights there was the crash of the US Video Games industry, where many

companies producing video game consoles and home computers in North America either

went bankrupt or lost a lot of money. Some of the reasons for this were too much

competition, a flood of poor software titles and not enough compatibility between

consoles, even ones made by the same manufactures.

It was then in 1984 Atari was sold by Time Warner to Jack Tramiel, who was the founder

of Commodore. Atari was restructured selling off old stock at reduced prices to fund a

new home computer, which would be called the Atari ST and was released in 1985

[9],[10].

2.1.1

Atari ST Models

The Atari ST was particularly strong in the music industry, with MIDI (Musical

Instrument Digital Interface) ports being built in. One of the video modes, being

monochrome high resolution (for the time) also meant the Atari ST found its way in DTP

(Desktop Publishing) and CAD (Computer Aided Design).

The Atari ST stands for Sixteen/Thirty-two, as it was based around the powerful

Motorola MC68000 which had a 16bit external data bus, but internal 32bit registers.

The Atari ST range came in quite a few different flavours [10].

ST Original

STM RF modulator for TV output

STF Internal floppy drive

STFM RF Modulator for TV output, internal floppy drive

STE DMA Sound, Blitter chip, enhanced graphics, RF Modulator, internal

floppy drive

Mega ST Detachable keyboard, Blitter Chip, internal floppy drive, internal expansion

bus

Mega STE Detachable keyboard, Blitter Chip, internal floppy drive, internal VME

expansion bus, optional FPU, 16 MHz CPU with L2 Cache

Stacy Portable Laptop version, internal floppy drive, monochrome 9” LCD

screen

Table 1. List of different models Atari produced based around the original ST hardware

Atari ST Hardware

2.2

The original prototype of the Atari ST was

built by hand using discrete TTL logic

devices using wire wrapping and prototyping

printed circuit boards. These were then

integrated into four custom ASICs on the

production models [11].

Figure 7 - Atari ST CPU Board Prototype

Figure 8 - Atari STfm Motherboard

1. Reset circuitry consisting of NE555 monostable

2. FPM DRAM, consisting of two banks of 512kbytes

3. RF Modulator to convert composite video and audio to RF

4. Custom DMA chip

5. Western Digital WD1772 Floppy Disk Controller

6. Yamaha YM2149 Sound Chip

7. Motorola MC68901 MFP

8. Motorola MC6850 ACIA one for keyboard interface and another for MIDI

9. Custom SHIFTER Video chip inside shielded enclosure

10. Bus transceivers to bridge between Data Bus and RAM Data Bus

11. Custom GLUE chip

12. Motorola MC68000 CPU

13. Custom MMU chip

14. EPROM’s containing TOS (The Operating System)

15. Cartridge Port for additional EPROM’s

2.2.1

MC68000 CPU

The Atari ST was built around the Motorola 68000 CPU. Some of the MC68000 features

are listed below.

� 16 bit data bus

� 24 bit address bus

� Asynchronous bus cycles (to allow for wait states)

� Synchronous bus cycles to interface to older 8 bit 6800 peripherals

� 32 bit internal registers

� 7 Interrupt levels

� Byte, Word and Long data transfers

Listed below are the four custom integrated circuits, which are all closely linked together,

and to operate rely on each other.

2.2.2

GLUE

As the name suggests, this IC glues the system together. It is responsible for address

decoding and providing chip select lines. It also handles the control of interrupt lines to

the CPU, and bus arbitration between CPU and DMA. It also creates the video timing

signals.

2.2.3

MMU

This integrated circuit controls the Dynamic RAM signals. It is not as powerful as the

name suggests, it doesn’t do any memory protection, translation from virtual to physical

address or paging. This would be better called a Memory Controller Unit. It multiplexes

the CPU address lines to Column and Rows. It also contains a counter for sending video

data from RAM to the SHIFTER and also a counter for DMA transfers.

2.2.4

SHIFTER

This integrated circuit takes the data supplied by the MMU and uses a lookup table to

display the colour from a palette. All the Atari ST video modes are based on bit planes.

There are 3 video modes, 320x200 16 colours (4 bit planes), 320x400 4 colours (2 bit

planes) and 640x400 (1 bit plane). The reason for using this method was because the

memory bandwidth is not enough to support “chunky” graphic modes where each byte

represents a pixel on the screen.

2.2.5

DMA

The DMA (Direct Memory Access) controller is responsible for transferring chunks of

data between the RAM and DMA port, which is used for connection of hard drives. It

also resizes the 16 bit data bus to the external 8 bit bus featured on the DMA port. It is

also used to carry out DMA transfers to and from the Western Digital WD1772 FDC

(Floppy disk controller).

2.2.6

MFP

The MFP is a MC68901 manufactured by Motorola and is an abbreviation for Multi

Function Peripheral Chip. In the Atari ST it is used to provide a RS232 serial port. It

also serves as an interrupt controller, allowing more interrupt sources than the Motorola

MC68000 CPU provides. It also contains four universal timers.

2.2.7

YM2149

The YM2149 is manufactured by Yamaha and is primarily the sound generator. It

contains 3 independent tone generators. It also has two general purpose 8 bit data ports.

In the Atari ST these are used for the Centronics printer interface and the other is used to

help control the floppy disk and RS232 hardware flow control.

2.2.8

ACIA

The ACIA is an abbreviation for Asynchronous Communications Interface Adapter. The

Atari ST contains two MC6850. Their task is to serialize data to communicate with the

Keyboard and MIDI devices. They were designed as a peripheral chip to the MC6800

processor, and so they only feature an 8 bit wide bus and use the legacy synchronous bus

that the MC68000 CPU can offer.

2.2.9

FDC

The FDC is an abbreviation for Floppy Disk Controller. It is a WD1772 made by

Western Digital. It is connected to the DMA chip so that all transfers are via DMA

relieving the CPU from disk transfers. It contains the logic for precise timing of the

floppy disk drive heads and motors and sterilization of data.

Atari ST Operating System

2.3

After the hardware came close to being completed an operating system was needed.

Atari decided to use a new operating system with a GUI (Graphical User Interface) from

Digital Research, providing a WIMP (Windows, Icons, Menu, Pointing Device)

environment, much like the Apple Macintosh. This was essentially a port from the Intel

8088 version they had developed for the IBM compatible machines. The operating

system was called TOS (The Operating System), and provided the programmer with

many system calls by using the TRAP software exception calls. In TOS there are three

layers, called the BIOS, XBIOS and GEMDOS. The BIOS and XBIOS are hardware

dependant, while the GEMDOS layer is hardware independent. The operating system on

very early Atari ST models came on floppy disk, but the more common later versions

placed this operating system on PROM memory devices [12].

With this project being mainly hardware based only the low level parts of the operating

system, and particularly how the operating system starts up and boot straps.

2.3.1

Atari ST Boot Up Operation

The Motorola 68000 on boot up requires initial

values to load into its supervisor stack pointer

and reset vector address. These come in the

form of two long words at address 0x000000 to

0x000007.

Figure 9 shows the path the operating system

takes on boot up. It was drawn from the

reverse engineered commented source code

[13],[14].

Boot up sequence

Figure 9 - Atari ST boot up sequence

(1)

� Load SSP with long word value from 0xFC0000.

� Load PC with long word value from 0xFC0004 (Garbage value, memory not yet

sized).

� CPU Supervisor Mode Interrupts disabled (IPL=7).

� RESET instruction to reset all peripheral chips.

� Check for magic number 0xFA52235F on cartridge port, if present jump to

diagnostic cartridge.

(2).

� Test for warm start, if memvalid (0x000420) and memval2 (0x00043A) contain

the Magic numbers 0x7520191F3 and 0x237698AA respectively, then load the

memconf (0xFF8001) contents with data from memctrl (0x000424).

(3)

� If the resvalid (0x000426) contains the Magic number 0x31415926, jump to reset

vector taken from Resvector (0x00042A).

(4)

� YM2149 sound chip initialized (Floppy deselected).

� The vertical synchronization frequency in syncmode (0xFF820A) is adjusted to

50Hz or 60Hz depending on region.

� Shifter palette initialized.

� Shifter Base register (0xFF8201 and 0xFF8203) are initialized to 0x010000.

� The following steps 5 to 8 are only done on a coldstart to initialize memory.

(5)

� Write 0x000a (2 Mbyte & 2 Mbyte) to the MMU Memory Configuration Register

0xff8001).

(6)

� Write Pattern to 0x000000 - 0x000lff.

� Read Pattern from 0x000200 - 0x0003ff.

� If Match then Bank0 contains 128 Kbyte; goto step 7.

� Read Pattern from 0x000400 - 0x0005ff.

� If Match then Bank0 contains 512 Kbyte; goto step 7.

� Read Pattern from 0x000000 - 0x0001ff.

� If Match then Bank0 contains 2 Mbyte; goto step 7.

� panic: RAM error in Bank0.

(7)

� Write Pattern to 0x200000 - 0x200lff.

� Read Pattern from 0x200200 - 0x2003ff.

� If Match then Bank1 contains 128 Kbyte; goto step 8.

� Read Pattern from 0x200400 - 0x2005ff.

� If Match then Bank1 contains 512 Kbyte; goto step 8.

� Read Pattern from 0x200000 - 0x2001ff.

� If Match then Bank1 contains 2 Mbyte; goto step 8.

� note: Bank1 not fitted.

(8)

� Write Configuration to MMU Memory Configuration Register (0xff8001).

� Note Total Memory Size (Top of RAM) for future reference in phystop

(0x00042E).

� Set magic values in memvalid (0x000420) and memval2 (0x00043A).

(9)

� Clear the first 64 Kbytes of RAM from top of operating system variables

(0x00093A) to Shifter base address (0x010000).

� Initialize operating system variables.

� Change and locate Shifter Base register to 32768 bytes from top of physical ram.

� Initialize interrupt CPU vector table.

� Initialize BIOS.

� Initialize MFP.

(10)

� Cartridge port checked, if software with bit 2 set in CA_INIT then start.

(11)

� Identify type of monitor attached for mode of operation for the Shifter video chip

and initialize.

(12)

� Cartridge port checked, if software with CA_INIT clear (execute prior to display

memory and interrupt vector initialization) then start.

(13)

� CPU Interrupt level (IPL) lowered to 3 (HBlank interrupts remain masked).

(14)

� Cartridge port checked, if software with bit 1 set in CA_INIT (Execute prior to

GEMDOS initialization) then start.

(15)

� The GEMDOS Initialization routines are completed.

(16)

� Attempt boot from floppy disk if operating system variable _bootdev (0x000446)

smaller than 2 (for floppy disks) is. Before a boot attempt is made bit 3 in

CA_INIT (Execute prior to boot disk) checked, if set, start cartridge.

� The ACSI Bus is examined for devices, if successful search and load boot sector.

� If system variable _cmdload (0x000482) is 0x0000, skip step 17.

(17)

� Turn screen cursor on

� Start any program in AUTO folder of boot device

� Start COMMAND.PRG for a shell

(18)

� Start any program in AUTO folder of boot device

� AES (in the ROM) starts.

Chapter 3

Research

3.1

FPGA

An FPGA is a programmable logic device, with the configuration being volatile. The

FPGA contains many complex logic blocks that have interconnects running between

them in a grid like fashion. There are also dedicated interconnects like global clock lines.

The configuration is often programmed in a high level HDL (Hardware descriptive

Language) like Verilog or VHDL, or sometimes as a schematic. The majority of modern

FPGAs contain embedded functions, such as adders, multipliers, memory, digital PLLs

and even DSP cores. There has been a recent trend in pushing soft core processors into

designs for FPGA creating complete systems on chip that can be fine tuned for specific

tasks [15].

Figure 10 –Xilinx FPGA block layout

3.2

Base Hardware

The design is to be based around a Xilinx FPGAs, as there are special free versions of the

IDE (Integrated Development Environment) which are only slightly limited from the

commercial versions. The type of Xilinx fitted to the board needs to be large enough (in

terms of logic elements) to fit the whole project, which is not something that can be

estimated easily. The Atari ST is based on a 5 volt logic platform, and so having some 5

volt capabilities on the chosen development board will be a real bonus.

Board FPGA I/O’s Notes Price

Xilinx Spartan-3

Starter Kit

XC3S200 100 Programming

Cable, PS/2

ports, VGA

£80 plus

shipping and

customs

Enterpoint

Raggedstone

XC3S1500 120 plus 50

5v tolerant

on PCI

header

Programming

Cable, 7

segment display

£120 inc

shipping

(special student

price)

Inrevium TB-3S-

1400A-IMG

XC3S1400A 128 4Mbyte DDR

SDRAM,

RS232

£650 plus

shipping and

customs

Philips PXPDKSP3 XC3S1000 80 PCI Express

Bridge,

Prototype Area.

£700 plus

shipping and

customs

Digilent Inc. Nexys-

2

XC3S500E 59 Programming

Cable, ps2

ports, vga,

SDRAM

£50 plus

shipping and

customs

Table 2 - Comparison of some of the available Xilinx development boards

3.3

IP Cores

IP Core stands for Intellectual Property Core. They are a block of logic as an element to

design reuse, a trend towards repeated use of previously designed components. IP cores

may be licensed to another party or can also be owned and used by a single party alone.

Some cores are only offered as netlists, to protect the vendor against reverse-engineering.

Others are offered as synthesizable cores in hardware descriptive languages like Verilog

or VHDL [16].

There are already a couple of projects for putting an Atari ST inside an FPGA, thankfully

both in the VHDL language. There is MikeJ’s project, although only the source to his

YM2149 Sound Chip is available. There is also Wolfgang Forester’s project, which

includes an IP Core of every Atari ST semiconductor.

3.4

Software Suite

The Xilinx IDE comes in two flavours, ISE Foundation and ISE Webpack where the

latter is a free version. The free ISE WebPack is only restricted in the devices it supports,

and that is generally the newest or largest devices like the Virtex 5 SXT family [17].

There are a range of tools included like Simulators, Timing Analysers and Power

Analysis. There are additional options that can be bought for some of the more advanced

features like ChipScope (FPGA probe) and Modelsim (Powerful Simulator).

3.5

Processor

The processor can either be an IP Core or real genuine Motorola (now Freescale) 68000.

At the time of writing no free 68000 IP Core is available that has been tested and verified.

There are a few different incarnations of the 68000 to help keep it up to date as

production has spanned almost 30 years now [18].

Model Technology Voltage Details Manufactured

68000 NMOS 5v Original No

68HC000 CMOS 5v Low Power Yes

68HC001 CMOS 5v Low Power, 8/16bit data

bus

Yes

68EC000 CMOS 5v Embedded version, 8/16bit

data bus

No

68SEC000 CMOS 3.3v Embedded version, 8/16bit

data bus, static clock

Yes

68008 NMOS 5v 8bit data bus, 20/22bit

address bus

No

68010 NMOS 5v Virtual machine & virtual

memory instructions

No

Table 3 - Comparison of 68000 family processors

3.6

Books and literature

• Atari ST Internals ISBN : 0-916439-46-1

• Atari ST Profibuch ISBN : 3-88745-563-0

• 68000 Microsystems Design ISBN : 0-534-94822-7

• MC68000 Hardware Datasheet

• MC68000 Programmers Reference Manual

3.7

Debugging

There are many ways to debug and fault find hardware. These range from the very basic

up to monitoring registers in a CPU and data flow.

A set of LEDs can be used to check that an FPGA has been programmed correctly. By

using a clock signal and diving it down to a signal of a one or two Hz this can be used to

drive an LED and make it flash. Another use of LEDs is to show the status of signals,

like a reset line or processor state. They are very often the first thing to get working

when starting on a new development board.

A 7 segment display can be used much in the same way as a single LED but allowing

display of whole bytes, words of even long words if enough segments are available. A

bit more functionality is need in an FPGA to achieve this as quite often 7 segment

displays need to be scanned one segment at a time at a fast enough rate for the eye not to

see any flicker.

Single Stepping is a way of stepping through the boot up code of a board, one instruction

at a time. It will usually be used in combination with a method to display bus signals to

verify or diagnose a problem with the board. Using this method needs hardware than can

support halting the system.

Xilinx Chipscope and Altera SignalTap are pieces of software to view any internal signal

of an FPGA. They manage this by using the JTAG interface and modifying the FPGA

bitstream with some additional logic.

A Monitor program is a utility that is loaded from ROM into an available processor. It is

designed to use little or no resources so it can run when some hardware isn’t fully

functioning. It usually communicates over a simple RS232 implementation and allows

the user to write small assembling programs. These can be used to test various parts of a

system.

3.8

Operating System Versions and storage

The operating system for the Atari ST went through various versions from TOS 1.00 to

TOS 2.06 [19].

Version Date Computer Details

1.00 20
th
 November 1985 ST Original Version

1.02 22
nd
 April 1987 ST, Mega ST Mega ST Blitter & RTC support

1.04 6
th
 April 1989 ST, Mega ST,

Stacy

Bug Fixes, faster disk I/O

1.60 Unknown STE Support for STE hardware

1.62 1
st
 January 1990 STE Bug Fixes

2.05 Unknown Mega STE Support for Mega STE hardware

2.06 14
th
 November 1991 Mega STE Features added to GUI, support

for all ST range

Table 4 - Comparison of different TOS versions

The Operating System on the Atari ST

is stored in PROMs which are rather

out dated these days and not ideal for

early stages of design. Non Volatile

Flash memory is now the norm and is

being used as a replacement to

PROM, many of the FPGA

development boards contain some

Flash memory.

Figure 11 – Flash memory organisation

Reading from Flash is the same as a PROM, but writing to Flash takes a little more work.

Before writing to Flash memory command sequences need to be issued. Also the data in

the flash is organised into Blocks as shown in figure x.

From the Atmel data sheet for the AT49BV040A 4-megabit flash memory chip it’s also

worth noting that it is not possible to write bits that are currently 0s back to 1s, only erase

commands can do that. Below is the list of commands that the Atmel Flash memory

uses.

� Read

� Full Chip erase

� Sector erase (block erase)

� Byte program (Write byte)

� Boot block lockout

� Product ID entry

� Product ID Exit

3.9

System memory

There are many types of RAM available, but they can be split into two types depending

on the technology used to store the data. Dynamic RAM uses capacitance to store a

charge representing a bit of data, therefore it needs to be refreshed periodically. Static

RAM uses flip flops, and thus need more logic per data bit of storage [20].

Fast Page Mode (FPM) DRAM is the type of memory fitted to the Atari ST. A row

address only needs to be sent once, for many accesses to adjacent memory locations.

They are only commonly available in 5v and usually come in a package called a SIMM

with either 30 or 72 pins providing 8 bits or 32 bits respectively.

EDO DRAM is essentially the same as FPM, except that the timing has altered slightly

for a small access time improvement. They are available in 5v and 3.3v and usually

come packaged in a 32 bit wide 72 pin SIMM.

Synchronous Dynamic RAM (SDRAM) was the first type of synchronous ram, spawning

many newer types like Double Data Rate (DDR) SDRAM. Data transfers are

synchronised to the system clock. To access the SDRAM commands are issued to be

executed. Due to their command structure and high clock speed (66Mhz and above) they

are inherently more difficult to interface to. They are available in 5v and more commonly

3.3v and usually come packaged in a 64 bit wide 168 pin DIMM.

Static RAM (SRAM) is quite different from dynamic memory. Rather than using

capacitors to hold a charge to represent a state of a bit it uses flip flops. This also means

that it does not need the usual periodic refresh that dynamic RAM needs. It is also

addressed by its full address width in one transaction, the column and row decoding is

done internally. The disadvantage of static RAM is the cost. It is generally faster than

dynamic RAM and so is often used for cache memory.

3.10

Serial Port

An RS232 serial port can have many uses from debugging, transferring data from a host

computer and communications. In the Atari ST it was primarily used for

communications with Modem’s. Interfacing a serial port to an FPGA is quite simple, the

voltage levels of RS232 swing from -12 to +12v so a voltage level translator is needed

like a Maxim MAX232. The software overheads are very small which is why serial is

still favoured over USB and other communication buses. Serial Ports can be

implemented by only three wires, ground, transmit and receive.

3.11

Video Output

Conversions for video from digital to analogue are usually done by one of two methods, a

specialist Video DAC or an inexpensive resistor ladder. An example of the resistor

ladder was found in the schematics of the Xilinx Spartan 3A start kit.

The resistor ladder is easy to implement and is inexpensive but suffers from bad picture

quality especially when used at higher resolutions, requiring higher video bandwidth.

The resistors used in the schematic above are non standard values that appear in the E48

and onwards range of resistor values. They need to be of good quality and high degree of

tolerance, but are still susceptible to drifting in value with temperature. The video

intensity will also change depending on the load that the resistor ladders are driving into.

An example of a Video DAC was found in the schematics of the Xilinx Spartan-3 PCI

Express Starter Kit. It uses a Philips TDA8777 Video DAC and although requires little

external circuitry, it does cost more than the resistor ladder. It has a maximum

conversion frequency of 330 MHz. It also helps to protect the FPGA from possible

electrical damage, as it is bad practice to use non buffered FPGA signals onto external

ports or connectors.

Figure 12 – Digital to Analogue using resistor ladders

Figure 13 – Digital to Analogue using specialised DAC

Chapter 4

Design

4.1

Components

This section describes the components chosen and how they will interconnect with each

other. The components chosen have been based on the previous research and on

availability.

4.1.1

Base Hardware

It has been decided to use the Enterpoint RaggedStone development board. Their

reduced student price, large FPGA, and plentiful I/O including optional 5v I/O header

will be ideal. The RaggedStone was also designed to accept plug in daughterboard

modules, one on each end of the board.

Figure 14 – Enterpoint RaggedStone FPGA development board

The board has the following features:

� 4 Digit 7 Segment Display

� 4Mbit Flash memory (524288 x 8) Atmel AT49BV040A

� 16k Serial EEPROM

� Temperature Sensor

� Oscillator Socket

� 4 LED’s and 2 momentary push switches

� Voltage selectors for modules and associated FPGA bank (3.3v and 2.5v)

� Self resetting Poly fuses

4.1.2

Processor

The CPU chosen is the MC68SEC000, purely because it is the only version that is 3.3v.

It is object-code compatible with the MC68000 but not entirely hardware compatible.

Bus Arbitration (a method for allowing other devices on the system bus to take control) is

handled with a 2 wire protocol, instead of the original overly complex 3 wire protocol.

The differences are covered in depth in the MC68000 datasheet.

The MODE pin selects 8 or 16 bit data bus operation, and is sampled at reset.

Support for legacy MC6800 synchronous peripherals has been completely removed. The

missing signals are the E Clock, VPA (Valid Peripheral Address) and VMA (Valid

Memory Address). A VHDL component will replicate these signals, creating a

synchronous bus from the more commonly used asynchronous MC68000 bus [21].

The processor will fit onto a daughterboard installed on the RHS (Right Hand Side) I/O

pins. One of the momentary push switches will act as the system reset.

4.1.3

System memory

The memory chosen is SRAM (Static RAM), because it simplifies a design and is

available in a variety of voltages. The ability to use it without refreshing means it is great

for prototypes or in debugging situations, as the whole design can be halted without

loosing the contents of the memory.

The memory will fit onto a daughterboard installed on the LHS (Left Hand Side) I/O

pins.

Using SRAM for the memory will be transparent to the user and all software, and will not

create any problems.

4.1.4

Debugging

The following features will aid in debugging the system

A 7 segment display will show the current status of the CPU data and address bus. As

the display can only show a maximum of 4 hexadecimal characters, the display will

scroll.

One of the onboard switches will be used to step through the operating system. This will

be achieved by intercepting DTACK and BERR bus cycle termination signals. This is

an interpretation of the design from Microprocessor Systems Design by Alan Clements.

The four onboard LED’s will be used to show the status of the CPU or other parts of the

design. One useful signal is HALT which the CPU drives when it has encountered a

situation from which it can’t recover. In this state it drives all its pins to high impedance.

A set of 5 header pins will be dedicated as points to connect a dual channel oscilloscope.

This will assist in finding timings errors, phase and cycle time of clock signals and

general verification.

4.1.5

Operating System Versions and storage

TOS 1.00 has been chosen as the initial Operating System to use. Although is suffers

from many bugs, the BIOS has been listed and fully commented in the book “Atari ST

Internals” by Data Becker. Combined with the ability to single step through each

instruction will undoubtedly help finding any problems in the design.

The operating system will be stored in the Flash memory that is part of the RaggedStone

development board. The Flash memory data bus is only 8 bits wide, therefore it will be

necessary to design a VHDL component to wrap around the Flash memory and resize the

data bus to 16 bit that the Atari ST uses.

There also needs to be a way to load the Operating System into the Flash memory. As

the Flash memory is non-volatile once this has been programmed, the contents remain

even after power is removed. Xilinx have created for their own Spartan development

board an FPGA design that uses the RS232 serial port to receive data from a host

computer and load into the Flash memory. Their design is based around the PicoBlaze

system on chip and using the ST Microelectronics M29DW323DT Flash memory chip

[22].

4.1.6

5v PCI I/O

The 5v tolerant I/O will be attached to a custom PCB at the rear of the enclosure for the

following use:

� VGA interface port

� Floppy Disk Drive port

� RS232 Serial port

� Keyboard/Mouse interface

4.1.7

VGA

VGA is a mix of analogue and digital. The colour intensity is carried over three analogue

signals for Red Green and Blue. The horizontal and vertical synchronisation signals are

digital 5v.

Figure 15 – VGA video timing

The Atari ST can display colours from a palette of 4096 different colours. Therefore

each colour component can have 2^4 levels of intensity. To convert from the digital

output from an FPGA to the analogue input of a VGA monitor, a DAC (Digital to

Analogue) converter will be used.

4.1.8

Floppy Disk Drive

The floppy drive requires a minimum of 11 signals to function. In the Atari ST these

were the following, with reference to the pin number on the 34 pin 0.1” pitch IDC header

[23].

To Floppy Drive

• 10: Drive Select

• 16: Motor On

• 18: Step Direction When you step the head, this line must tell the drive whether to

step in or out.

• 20: Step. This line is briefly signaled to step the drive one track in the direction

step direction specifies (in or out).

• 22: Write Data. This is a bit stream data for the disk track at around 100,000 baud.

• 24: Read/Write. When +5, the drive is reading. When +0, the drive is writing.

• 32: Side Select. Pull to +0 volts to write to back side of diskette.

From Floppy Drive

• 8: Index Pulse. Goes to ground briefly each rotation, five times per second (300

RPM). Otherwise +5.

• 26: Track 0. +5 unless drive is at track 0, when this pin goes to +0 volts. This is

how the drive tells the FDC to stop stepping it towards track 0.

• 28: Write Protect. +0 volts if the write protect tab is set on the diskette; +5 volts if

it is okay to write to the diskette.

• 30: Read Data: This is the bit stream data from the track, at 100,000 baud,

complete with wow and flutter.

The floppy drive used in the Atari ST was in fact the same as used in many IBM Clone

PCs. The Atari ST from TOS v1.02 onwards even uses the FAT12 filing system,

compatible with a PC formatted disk.

4.1.9

RS232 Serial

The RS232 will serve two purposes. Firstly it is used as

an interface to a host computer to transfer the operating

system into the Flash Memory. Secondly, it will be used

for the Atari ST serial port. The more common 9 pin

female D-Type connector will be used, instead of the

Atari ST 25pin D-Type connector. Flow control and

specialist MODEM only signals will be omitted to reduce

the number of FPGA I/Os needed from 9 down to only 2.

Figure 16 – RS232 to TTL level translator

Table 5 – Serial port pin

description

4.1.10

Keyboard and Mouse

The Atari ST communicates to the keyboard via a simple serial interface. The original

keyboard contains a small Hitachi microcontroller that scans the keyboard matrix and the

status of the mouse and joysticks. It then creates packets of data to be sent over the serial

connection to the MC6850 UART on the Atari ST motherboard. The Atari keyboard and

mouse contain mechanical components, and are one of the first parts to break or become

faulty. For this reason it has been decided to implement a conversion from PC PS2

keyboard and mouse protocol. A project called ‘Eiffel’ by Laurent Favard, and later

Didier Méquignon does just that, using an inexpensive PIC Microcontroller [24].

4.2

Other differences between the original Atari ST and the design

The Atari ST as mentioned previously has 3 different resolutions. The monochrome high

resolution has vertical and horizontal timings that are close to the VGA specification.

The Low and Medium colour resolutions, which were designed to be displayed on a

television, do not meet the VGA timing specification. The problem arises from the slow

pixel clock, resulting in a horizontal synchronisation frequency of 15 KHz, which is half

of VGA timing. To use the Atari ST in all three resolutions it meant you either need to

have both a television and high resolution monitor, or a very expensive ‘Multisync’

monitor. To overcome this, a device known as a ‘scan doubler’ will be designed to buffer

the RGB data and resynchronise it to a higher pixel clock.

The Atari ST didn’t have the facility for an internal hard drive, to keep the costs low.

However, a DMA port was available for connecting to external hard drives. The Atari

ST was designed just before the SCSI (Small Computer System Interface) command

protocol was finalised, and thus Atari used the ACSI (Atari Computer System Interface)

command protocol.

As the IDE (Integrated Disk Electronics) hard drives became popular on IBM PC Clones,

their price dropped compared to the SCSI equivalent. Atari realized that and on their last

home computers, the Falcon and Stacy, they added IDE support.

The design will use a simple IDE interface, to use a Compact Flash card in IDE mode as

they are 3.3v tolerant which enables direct linking to the Xilinx FPGA. As an IDE

interface is to be designed, the original ACSI port will be left out of the design [25].

The Atari ST featured a port for a cartridge, sometimes known as the ROM port. As the

name suggests this is a read only direct connection to the CPU data and address bus. The

design will not include this, as although easy to implement in logic, the required 2mm

pitch edge connector is not available. It is also not needed for the Atari ST to function, it

rarely used for software protection dongles and most recently Ethernet and USB

interfaces.

The MIDI ports are only use by music sequencing software and are not an essential part

of the Atari ST design. They are based around the same UART that the keyboard uses.

MIDI uses a current loop, where the current, not the voltage level defines the logic state.

Therefore, MIDI ports require quite a bit of additional external circuitry.

The external 2
nd
 floppy drive port will not be

implemented as no software requires two

drives. The only case where one may be

useful is duplicating floppy disks, but the

majority of floppy disk copying software use

the system RAM as temporary storage of

files.

The design will be built into a standard Micro

ATX enclosure. This will provide physical

protection for the delicate electronics and Figure 17 – ATX pin description

allow use of an ATX power supply. The ATX power supply provides a wide range of

voltages. One in particular, the +5v Standby can be used to provide power to additional

circuitry on a motherboard. This is used to support soft-off or standby and can be used for

remote wake up through Wake-on-Ring or Wake-on-LAN. It has been chosen that the

‘Eiffel’ Keyboard and Mouse microcontroller will be powered from this +5v standby

voltage and use modified firmware to control the ATX power supply. This allows the

Power On key on many extended PS2 keyboards to turn on the computer.

To summarise, the design will follow the original Atari ST, but make use of more

common and readily available components from IBM PC Clones.

Figure 18 – Design Block diagram

4.3

Process of Implementation

The implementation will be created in stages, logically from a small system with minimal

IP Cores to the final version. Below is a brief proposal of stages involved. The order

may change during implementation due to certain stages requiring later parts of the

design.

� A simple LED Flash

� Verify Video Digital to Analogue works

� A project to transfer Operating System into Flash memory

� Test reading from Flash memory

� A new project with support logic, reset and clock generation

� A debug control and display

� Add Glue IP Core and verify

� Add MMU IP Core, SRAM memory and verify

� Add Shifter IP Core and verify

� Add MFP IP Core and verify

� Add Yamaha IP Core and verify

� Add Keyboard/Mouse ACIA IP Core

� Add Eiffel interface and verify

� Add DMA IP Core and verify

� Add FDC IP Core and verify

architecture Behavioral of main was

signal counter : std_logic_vector(24 downto 0);

begin

 process(clock) was
 begin
 if rising_edge(clock) then
 counter <= counter + '1';
 end if;
 end process;

LED2 <= counter(24);

end Behavioral;

Chapter 5

Implementation

5.1

Flashing LED

The first task was to make sure that the oscillator clock works and that the JTAG

programming works. To do this a simple LED flash routine was written. However,

before this was done, constraints for the I/O pin mapping and a top level component

needed to be written. This was done by looking at the schematics of the RaggedStone

development board and laboriously assigning names for each I/O pin. Appendix A lists

the constraints file and component file.

Shown right was the VHDL

architecture for flashing an

LED at approximately 1Hz

using a 32MHz oscillator

clock.

5.2

VGA Colour pattern

The next step was to implement a Digital to Analogue Converter (DAC) for the Red,

Green and Blue signals to drive the VGA port. The converter being used was an ST

Microelectronics STV8438, which is capable of 3 x 8bit colour. As the Atari ST can only

produce 3 x 4bit colour, the MSB (Most Significant Bits) are used and the rest are tied

low. Appendix B shows the schematic.

To drive the VGA monitor a colour pattern generator was discovered written by MikeJ

[26]. The colour pattern generator was designed for the Xilinx Spartan-3E Starter Kit

Figure 19 – Architecture for LED Flash

development board, so using the project on the Raggedstone will not work as the pin

constraints are wrong. To rectify this, the top level of the project was instantiated as a

component using the same constraints from the previous LED Flasher stage.

Another change that needed to be made

was to exchange the 32 MHz oscillator

for a 50 MHz oscillator as mentioned in

the comments in the colour pattern

generator project. If this isn’t changed the

signals will not adhere to the VGA

specification and a monitor will unlikely

be able to ‘sync’ to the reduced

frequencies.

Once the project was built a colourful test pattern was displayed on an attached VGA

monitor. This verifies that the video DAC was functioning correctly and the conversion

from 3.3v to 5v works well, even for high speed digital signals.

5.3

Writing bytes to Flash Memory

Next on the list was to load data into the

RaggedStone onboard Flash memory.

A design was found on the Xilinx

website for the Spartan-3A/3AN

Development Starter Kit. This design

was intended to be used with the ST

Microelectronics M29DW323DT Flash

memory that was featured on the Xilinx

Spartan-3A/3AN development board. It uses

the Xilinx Picoblaze embedded

Figure 20 – Colour test display

Figure 20 –Flash Programmer menu

microcontroller, and by using a simple terminal program over an RS232 serial connection

you can manually program individual bytes, download complete files, erase the flash,

read the memory to verify contents, and display the Flash memory device identifier and

64-bit unique device numbers.

An RS232 serial port was added as mentioned in the Design. (Paragraph 4.1.9)

After building the project for the RaggedStone board, it became apparent that it didn’t

work. The menu choices were available proving the serial connection worked fine but

programming a single byte didn’t work, let alone the entire Flash memory space. The

only real difference between the Xilinx Spartan-3A/3AN development board and the

RaggedStone was the type of Flash memory device. The RaggedStone uses an Atmel

AT49BV040A and the Xilinx board uses an ST Microelectronics M29DW323DT, both

configured as 8 bit wide data bus. The difference becomes quite clear when reading the

data sheets provided by the manufacturers.

Table 6 – Comparison of different Flash memory commands

Flash Memory works with commands that are passed on the address bus, and it can be

seen that the commands vary from different manufacturers. However, as the project uses

a PicoBlaze microcontroller it was quite easy to change the software that it runs to use

different commands. Luckily, the assembler source code for the PicoBlaze was provided

and was commented and structured cleanly. The commands with ‘AAA’ are changed to

‘555’ and the commands with ‘555’ are changed to ‘AAA’. The assembler source was

then assembled with the PicoBlaze assembler which generates a VHDL ROM file.

: [Address] [Data] [CR] [LF]

After these changes were made the individual bytes of the Flash memory could be

programmed and read back. However, the Atari ST operating system was 192K bytes, so

there needs to be a method of programming an entire file to the Flash memory.

5.4

Writing file to Flash Memory

The programmer menu does accept entire files, but of the MCS type. MCS was a file

format by Xilinx for storing the FPGA configuration inside a PROM. It’s formatted as an

ASCII file with each line following the format below.

The PicoBlaze project expects this file format, so the project was changed with a new

choice in the menu to read raw bytes from the serial port and program the Flash memory,

incrementing the address on each byte. A test was then done after each byte programmed

to see if the address had reached 196608. This way a raw binary file can be transferred

and programmed. Appendix C shows the assembler source code for this part of the

program.

It’s important to use a terminal program that is capable of sending raw binary data. It

was found Microsoft’s HyperTerminal interprets some of the raw data as terminal control

codes and these won’t get sent out over the serial port. A rather good freeware program

called Realterm which has a vast array of options was used instead of HyperTerminal.

After these changes were made the Flash memory was successfully programmed with the

Atari ST operating system, version 1.00.

Figure 22 – MCS file format

5.5

CPU

Now it was time for the CPU to be connected to the FPGA. A daughter board was

created to be used on the RaggedStones right hand I/O bank. The MC68EC000 and

MC68SEC000 feature a MODE pin which selects the data bus, and as the Atari ST uses

a 16 bit data bus this was tied to VCC. Any bidirectional signals, like the CPU data bus

are terminated with Xilinx internal pull-ups that were added as constraints into the

design.

5.6

Reset

Next was to provide the new CPU with a clock and reset. The Atari ST uses an NE555

timer chip to produce the reset signal. This is activated on power up and whenever the

reset button is pressed. A VHDL component was created with a couple of counters, one

for a power up reset signal and the other to produce a reset signal when the reset button is

pressed.

It is important to have these two different reset signals, as some parts of the design only

need to be reset on power up to known states. One of these components was the clock

signal component. It was important for the CPU that the clock was running while a reset

is issued, and that the reset was active for at least 132 clock cycles [27].

Appendix D lists the VHDL reset component with the RaggedStone switch S1 used as the

reset button.

5.7

Clock

The clock component was necessary for generation of clock signals from the master

clock, which in the Atari ST was 32 MHz. Below, was the clock frequencies that each

component of the Atari ST needs.

• CPU – 8 MHz

• GLUE – 8 MHz

• MMU – 16 MHz

• SHIFTER – 32MHz

• MFP – 4 MHz and 2.4576 MHz

• YM2149 – 2 MHz

• ACIA – E Clock and 0.5 MHz

• FDC – 8 MHz

• DMA – 8 MHz

It was found that it’s very important to use the dedicated DCM (Digital Clock

Management) PLLs (Phase Locked Loops) that are provided inside the Xilinx Spartan.

Using these reduces clock skew and jitter, and also use dedicated global clock routes

inside the FPGA. This was to help prevent the clock edges arriving at different times to

various components in the FPGA. The DCM can divide a clock from the master

frequency and/or multiply it. Without using DCMs the Xilinx ISE software was

producing warnings about non dedicated clock routing, and building the project with only

small changes was resulting in very significant changes in system stability. As a result of

using DCM and dedicated clock routing there was a twofold increase in maximum clock

frequency [28], [29], [30].

The MFP in the Atari ST used a dedicated crystal to achieve the 2.4576 MHz frequency.

This was used by the MFP for the serial port baud rate. In the FPGA it was possible to

use a DCM to create this frequency. The most accurate was to synthesize a 27 MHz

clock from the 32 MHz master clock and then divide by 11 to get 2.4545 MHz.

5.8

Synchronous Bus interface

The ACIA uses the E Clock, which unfortunately the MC68SEC000 CPU doesn’t

provide. The E Clock was at one tenth of the CPU frequency with a 60/40 duty cycle.

The 68SEC000 also doesn’t have connections for the VPA or VMA signals.

The E Clock was created by

a counter that counts from 0

to 9 and then rolls over. If

the value of the counter was

0 to 5 then the E clock was

0, otherwise it will be 1. The

Glue component of the Atari

ST then asserts the VPA

signal to tell the CPU an

access to a 6800 synchronous

device has been made, which

in the Atari ST was an access to the Keyboard or Midi ACIA MC6850. The VPA

signal was checked when the E Clock counter was 2, and if it was active then VMA was

asserted. DTACK was then asserted later when the E Clock counter was 8 or 9 to end

the bus cycle. By asserting DTACK late, the CPU automatically inserts wait states.

Appendix E shows the Clock VHDL component.

5.9

Flash data bus resizing

Now that the clock and reset was provided to the CPU, next was to make the connection

between CPU and Flash memory

where the operating system was

located. As previously

mentioned, the Atari ST had 16

bit wide ROM, but the

Raggedstone Flash memory was

only 8 bit wide.

Figure 23 – Synchronous bus interface

Figure 24 – Flash State machine

As the MC68000 completes a bus cycle in 4 cycles (500ns at 8 MHz), and the Atmel

AT49BV040A has an access time of 70ns it’s quite possible to fit two 8 bit accesses to

the Flash to make it appear 16 bit wide to the CPU. To achieve this, a wrapper VHDL

component was created with a FSM (Finite State Machine) controlling latching of data

and the LSB of the address. Appendix F shows the VHDL component.

5.10

7 Segment Display

As part of debugging, a VHDL component was created to use the RaggedStone onboard

7 segment display. The RaggedStone has four of these 7 segment displays, enabling 4

hex characters (or 16 bits) to be displayed. This was perfect for displaying the 16 bit data

bus, but not the 24 bit address bus. To overcome this limitation, the display will

sequence through the upper portion of the address bus, then the lower portion of the

address bus and lastly the data bus.

The VHDL component will also be responsible

for changing the 4 bit hex value into a value to

drive the 7 segment display. The 7 segment

displays on the RaggedStone, are just a set of

LEDs with no intelligence. Another part it will

cater for was scanning the digits of the 7

segment display. Only one digit can be displayed at one time, and thus it needs to scan

through the digits quick enough for the human eye not to see any flicker. Appendix G

shows this VHDL component. One problem encountered was that the mapping for the

digits to FPGA pins listed in the RaggedStone user manual appears to be wrong. The

table below shows the correct pin mapping.

Digit 1 Digit 2 Digit 3 Digit 5

FPGA U14 FPGA AA17 FPGA U17 FPGA U16

Table 7 – FPGA connections for 7 segment display

Figure 25 – 7 segment display

5.11

Single Step

Having the address and data bus displayed was only good if there was a way to slow the

system down, or even single step through each instruction. A solution was available,

with the idea taken from ‘Microprocessors System Design’ by Alan Clements. Alan

Clements design was for a single board computer based on the MC68000, where one can

pause the CPU and by pressing a push button, single step through instructions. His

design was based on four TTL logic flip flops. Appendix H shows the schematic design.

Quite simply there was a switch to bypass and let the system run normally. In single step

mode the DTACK signal was intercepted. When the MC68000 starts a bus cycle it will

insert wait states until it receives the DTACK signal. A momentary push switch

controls the assertion of DTACK , with flip flops used to de-bounce the push button and

insure only one bus cycle was executed no matter how long or short the button was held

down for.

The VHDL component in Appendix I for single step works on the same principles.

However, the BERR signal was also intercepted as this signal was also used to terminate

a bus cycle in the event of a bus cycle error, e.g. no device at address specified. One of

the RaggedStone buttons, S2 was used as the single step button. The Run/Stop was

implemented as a ‘jumper’ across two spare I/O pins on the RaggedStone.

5.12

Glue IP core

Before trying the system the Glue VHDL IP Core had to be added. It was at this point

that I noticed the IP Cores at the top level used bit and bit_vector signal types and all the

other components that I had written used std_logic and std_logic_vector. It is possible to

convert between the two types, but this can become untidy because it is no possible to do

the conversion within the component port maps. A decision was made to alter the

ROM_2n <= '0' when ST_RD = '1' and ADR_HI >= x"FC" and ADR_HI < x"FD" else
-- ST TOS ROM LOW.

 '0' when READx = '1' and ADR_INT < x"000008" else '1';
-- TOS mirroring.

ROM_1n <= '0' when ST_RD = '1' and ADR_HI >= x"FD" and ADR_HI < x"FE" else
 -- ST TOS ROM MID.

ROM_0n <= '0' when ST_RD = '1' and ADR_HI >= x"FE" and ADR_HI < x"FF" else
 '1'; -- ST TOS ROM HI.

previous components to use bit and bit_vector which creates a cleaner implementation.

The only parts to use std_logic and std_logic_vector are when the signals leave the FPGA

and need to be bi-directional or tri-state.

The Glue is needed for address decoding, and it is responsible for generating the chip

select for the Atari ST ROM space. An excerpt from the Glue component

wf25915ip_adrdec.vhd is shown in figure 24.

The Atari ST used 6 small 8 bit wide 32KB PROMs to make up the 192KB size of the

operating system. With the ROM being accessed as 16 bit, this requires the three chip

select lines shown in the above VHDL code. The ROM space was located from

0xFC0000 to 0xFEFFFF. A special mirror, or sometimes known as shadow was created

for the first 8 bytes of the operating system, located at address 0x000000 to 0x000007.

The purpose of this was explained in the 9
th
 Edition of the MC68000 User Manual

Inspecting the start of the Operating System with a hexadecimal editor shows the values

that get loaded into the SSP (Supervisor Stack Pointer) and PC (Program Counter). After

Figure 26 – Address decoding in Glue

Figure 27 – MC68000 Start up sequence

the CPU has fetched these two long words, it continues execution from the address in the

PC. The address was 0xFC0020 which was a jump into the ROM space. It can be seen

that absolute addresses are 32 bit, even though the external address bus was only 24 bit.

The RaggedStone has four onboard LEDs. These

are assigned to the following signals, BERR ,

DTACK , RESET and HALT . The system

was then powered up and the start up sequence of

the RESET and HALT remaining active for 1 second was observed. The 7 segment

display then shows the address as 0x000000 and data as 0x601E. Pressing the single step

button showed the address change to 0x000002 and the data as 0x0100.

The components verified as working are the CPU, GLUE address decoding, 7 segment

debug display, Flash memory and the single step component. At this stage other sub

components of the GLUE, like the interrupt controller and video timing generation are

left unconnected, or in VHDL terms ‘open’ in the port map.

When building the project with the Glue added to the project, the Xilinx ISE software

would crash with an exception error and consequently exit. After a lot of trial and error it

was found that upgrading from Xilinx ISE v8.2 to Xilinx ISE v9.2 solved this problem!

The system can now be stepped through, up until the address 0xFC05DA. At this point a

BERR (bus error) is signalled for the bus cycle. Looking through the commented

assembler source code of the Operating System it can be seen that a read was attempted

from RAM. Without the MMU implemented to generate a DTACK response, the

GLUE time out counter issues a BERR response.

Table 8 – Start of Operating System

M_ADR <= ADR when MCU_PHASE = RAM and DMAn = '1' else
 DMA_ADR when MCU_PHASE = RAM and DMAn = '0' else
 VIDEO_ADR when MCU_PHASE = VIDEO else
 SOUND_ADR when MCU_PHASE = SOUND else
 -- Lyndon Amsdon Removed refresh
 --"00000000000" & REF_ADR; -- Refresh cycles.
 (others => '0');

5.13

MMU IP core

Next to implement was the MMU to

enable the system to run further through

the operating system. The SRAM main

memory chosen was the BS616LV8017

512K by 16 bit SRAM used in

conjunction with a Roth Elektronik

TSOP to DIL adapter. This was

mounted onto the RaggedStones left

hand I/O bank.

One of the MMUs tasks was to keep the Atari ST DRAM memory refreshed. As the

design was using SRAM this refreshing must be disabled. This also makes debugging far

easier as the only accesses to RAM will be memory accesses, not refresh cycles as well.

To remove the refreshing the refresh address counter was removed from the multiplexer

in wf25912ip_ram_adrmux.vhd.

Figure 28 – SRAM and adapter PCB

Figure 29 – Removed refresh address generation

--RAS0n <='0'when(RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK0)else
--'0' when (MCU_PHASE_I = REFRESH and RAS_Pn = '0' and RAS_Nn = '0') else '1';

--RAS1n <='0'when(RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK1) else
--'0' when (MCU_PHASE_I = REFRESH and RAS_Pn = '0' and RAS_Nn = '0') else '1';

RAS0n <= '0' when (RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK0) else
 '1';

RAS1n <= '0' when (RAS_Pn = '0' and RAS_Nn = '0' and BANK_SWITCH = BANK1) else
 '1';

--MMU section
SRAM_OEn <= '0';
SRAM_CEn <= '0';
SRAM_UBn <= dram_cas0hn AND dram_cas1hn;
SRAM_LBn <= dram_cas0ln AND dram_cas1ln;
SRAM_ADDR <= bank_bit & dram_madh(8 downto 0) & dram_madl(8 downto
0);
SRAM_WEN <= dram_wen;

Also, when in the MCU_PHASE = REFRESH state the assertion of RAS was removed in

wf25912ip_ctrl.vhd.

As the Atari ST used DRAM memory with multiplexed address into rows and columns it

was necessary to take the address from the MMU prior to this multiplexing. The CAS

lines are now used as byte selection for the SRAM. The WE (Write Enable) was used to

control the SRAM Write Enable. The address for the SRAM was constructed from the

non multiplexed address and the top address bit was taken from the bank selection inside

the MMU.

Now the MMU and SRAM was implemented another run of the system was made. This

time when the MPU makes an access to the RAM, the MMU generates a DTACK

response. This allows the system to progress further into booting the Operating System,

by doing an initial RAM test to figure out the size of RAM installed in each bank. It

achieves this by a loop of writing data to RAM and reading back the data from RAM

with a comparison. At the end of the test it programs the MMU with the RAM

Figure 30 - Removed refresh RAS generation

Figure 31 – 1MB SRAM signal creation

configuration. It does this many times; therefore single stepping through this section

would be laborious.

A problem was found in the RAM test however which took a great deal of time to figure

out. The CPU has its Stack Pointer loaded right at the start upon reset, and with TOS 1.00

that is 0x601E0100 (paragraph 5.12). In TOS 1.00 there is a complex RAM test that

follows from 0xFC014A onwards. It first modifies the bus error vector to point to a

hander routine (0xFC0188). It starts at 128k and increments by 128k reading and writing

checking if the RAM is there. When it reaches 1MB or more it goes out of the RAM

range and a BERR is signalled to the CPU from the MMU.

The CPU then goes to save the program counter and copy the status register onto the

stack, before it fetches the vector address from address 0x000008. The problem is that

the stack pointer is still 0x601E0100 and that creates another bus error. Two bus errors

in close succession create what Motorola call a double bus fault happens, and the CPU

signal it has halted [27].

To mitigate this issue the MMU was fixed to generate a DTACK for a small address

region from 0x1E0100 to 0x1E00F0.

At this stage it was also evident that the SRAM memory can hold its contents for a few

seconds after power has been removed. On the original Atari ST a ‘cold reset’ can be

performed by powering on and off the power supply, and with the refreshing of the

DRAM not being performed, the contents are lost. With the SRAM memory and the fact

that the design takes less power than the original Atari ST powering on and off the power

supply may not be enough to force a cold reset.

CPU_DTACK <=
 '0' when system_dtackn = '0' and (CPU_ADDR & '0' < x"FC01AA"

and CPU_ADDR & '0' >= x"FC0200")
else
'0' when ss_dtack = '0'
else

 '1';

5.14

Hardware Breakpoint

A change was made to the single step unit, adding in address ranges to qualify for the

single step mode. In other words, some portions of the Operating System can run at

normal speed and when a certain address was encountered a break was made into Single

Step mode. To enable this, the following code was entered into the top level of the

project.

With this modification in place the system was once again tested. After a brief flicker on

the 7 segment display the breakpoint was hit at address 0xFC01AA after the memory test,

but before the Operating System programs the MMU with the RAM configuration. It’s

now possible to single step and view the value written to the MMU register at address

0xFF8001. The value was 0x05 which according to the memory map from ‘ST Internals’

is a total of 1MB, arranged as two banks of 512KB.

Figure 32 – Single Step DTACK generation

Table 9 – Memory Configuration register

Single stepping further through the Operating System shows the system variables

MEMTOP and PHYSTOP being correctly set to 0x0F8000 and 0x100000 respectively.

The 32KB gap between the top of available RAM and the physical top of RAM is due to

reserved space for the graphics screen buffer.

A bug was discovered in the 7 segment display at this point, where it doesn’t display the

odd addresses. This is because the MC68000 CPU doesn’t have A0, but instead two data

strobes (UDS and LDS). The Upper Data Strobe (UDS) can be used to identify an

odd address bus cycle.

5.15

Shifter IP Core

Now the RAM test was passed it was time to implement the Shifter graphics chip. The

Shifter takes the data directly from RAM bypassing the data bridge transceiver. It was

important at this stage to recognise that the FPGA can not have internal tri state logic

states. All the data buses are driven by multiple internal components and external

devices, and for this a large multiplexer was used. Tri-state buffers are used when the

data bus leaves the FPGA to become an external data bus for the CPU and SRAM.

Testing the Shifter at this stage was not possible, as the Operating System sets up the

screen late in the boot up sequence. The next point where the Operating System fails was

at address 0xFC21B4 where it attempts to initialise the currently unimplemented MFP.

5.16

MFP IP Core

Implementing the MFP allowed the Operating System to boot further, but a continuous

loop was occurring at address 0xFC0CE4 to 0xFC0D1E. Inspecting the commented

source code shows the MFP internal Timer B was loaded with the value of 240 and is

polled to ensure the value has changed. The Timer was not running due to an error in the

IP Core. It was found the strobe signal that was responsible for decrementing the timer

was not running. This was verified by taking the strobe signal out to an external FPGA

I/O pin and using an oscilloscope to view the signal, which clearly identifies the signal

was always at logic level ‘0’.

The strobe goes to ‘1’ when the counter value was “00”. However, at the point of being

less than “01”, it was immediately loaded with the prescale value. Therefore the MFP

implementation requires a small change to the IP Core as listed in Appendix J. The same

change was made to all four instances of the Timer strobe signal generation. The result

was verified with an oscilloscope in relation to the master clock.

Now the system was restarted and the MFP test passes fine. Removing the breakpoint for

debugging the MFP allows the Operating System to start and load the AES (Application

Environment System). The AES was the graphical environment that the Atari ST uses.

At this point it was worth noting that the design has managed to boot up to a desktop

environment without the following components.

• Keyboard/Mouse ACIA

• Yamaha YM2149 sound chip

• Midi ACIA

• DMA

• WD1772 floppy controller

• Interrupts still disabled

In the middle of implementing the MFP, the Xilinx ISE software began to report an error.

Figure 33 – Photo of Desktop

Figure 34 – Xilinx ISE DLL error

FATAL_ERROR:Portability:PortDynamicLib.c:358:1.27 - dll open of library
 <C:/Xilinx92i\bin\nt\libGenParTask.dll> failed due to an unknown
reason.
 Process will terminate. For more information on this error, please
consult
 the Answers Database or open a WebCase with this project attached at
 http://www.xilinx.com/support.

Even reverting back to a previous build version this error kept on appearing when trying

to build the project. The Xilinx ISE software was reinstalled, but this didn’t fix the

problem. It was found that the AVG antivirus software had miss detected one of the

Xilinx DLLs as a Trojan horse virus and stored it in the AVG virus vault. Marking the

DLL as safe and restoring it to its previous location prevented the error.

5.17

ACIA IP Core

At this stage the keyboard ACIA was added to the project. Interrupts are required for this

component to work, so the relevant connections between the Glue (which contains a

simple interrupt priority encoder) and the CPU IPL(2..0) signals are made. Only three of

the CPU interrupt levels are used in the Atari ST as shown in the table below. The MFP

acts as an additional cascaded interrupt controller.

Level Source CPU IPL(2..0)

2 Horizontal Blank 101

4 Vertical Blank 011

6 MFP 001

Now the ACIA was built into the project and an original Atari ST keyboard was

connected, the keyboard and mouse worked but screen redraws were not occurring

properly. Screen redraws are part of the VBL ISR (Interrupt Service Routine) and an

error was found in the Glue component wf25915ip_interrupts.vhd. The error was that the

HBL and VBL encoding was the wrong way around. Appendix K shows the fix for the

Glue subcomponent.

Table 10 – IPL encoding

5.18

YM2149 IP Core

Next to implement was the Yamaha YM2149 sound

generator. This IP core differs in the fact that the

original semiconductor has an analogue output stage,

but in a Xilinx Spartan FPGA (and the vast majority of

other FPGAs) are not mixed signal. Instead the IP core

uses a fast PWM (Pulse Width Modulation) and an

external low pass discrete filter to create the ‘shape’.

In the implementation the 3 channels of sound are

externally mixed with resistors and then into a simple

RC low pass filter.

The first test of the sound chip didn’t work very well with a lot of background noise. It

later turned out that the Glue address decoded chip select had not been connected to the

YM2149 chip select, so the YM2149 was enabled all the time and acting on all the

random data bus signals.

After fixing the previous issue, and powering up the system, each time a key was pressed

a ‘bell’ sound was clearly heard as per the original Atari ST but this wasn’t testing all the

different envelope shapes. Further testing can only be achieved by using a program, and

without a floppy drive implemented to load a program in, further testing had to wait.

While adding the YM2149 IP Core more problems crept up with the internal FPGA clock

routing. Small insignificant changes were making the system refuse to boot up. While

looking at differences in a previous working version, and a non working new version it

became apparent that the placement tool was moving a lot of the global clock routes and

DCM usage around the FPGA. A test was made by reverting back to a previous version

and locking the usage of DCMs and global clock routes as a constraint to the project.

This fixed the issues, but only warns of the importance of fixed and dedicated clock

Figure 35 – PWM sound

signals within the FPGA and how difficult it could be in very high speed FPGA designs

[31].

5.19

DMA IP Core

At this point the DMA IP Core was added. The requirement for the DMA to take over

and master the system bus required quite a large change to the way the components were

connected together at the top level. Instead of just the CPU driving the control signals for

bus cycles (AS , R/ W , UDS and LDS) the Glue also needs to be able to drive these

signals. Even on a DMA bus cycle, it is the Glue that drives the control signals and does

the bus arbitration with the CPU. The MMU also helps out by providing the address and

DMA counter. It’s at this point that you realise how closely linked all the custom

semiconductors in the Atari ST are. The control signals from the CPU and Glue are now

fed through a multiplexer.

The DMA IP core is implemented and the signals for bus arbitration between the CPU

and Glue are joined, with a test made to make sure the system still functions as it did

before. Without anything currently connected to the ACSI DMA bus, no further tests

can be done.

Just after adding this component IP core the RaggedStone board developed a fault.

While trying to identify devices on the JTAG boundary scan, the RaggedStone kept on

reporting an infinite number of ‘unknown devices’. The three devices in the chain

(Xilinx Spartan, XCF02 configuration PROM and XCF04 configuration PROM) were

separated and scanned individually. The fault was identified as the XCF02 configuration

PROM and luckily it was not the FPGA. The faulty XCF02 was simply removed and a

new one soldered in place.

5.20

FDC IP Core

The Floppy Drive Controller (FDC) IP Core was added to the project, along with the

physical port for the floppy disk drive to attach to. In the project the FDC connects

directly to the ACSI DMA bus as in the design there is no external ACSI bus, unlike the

original Atari ST.

After adding the FDC IP Core to the project the system now failed to boot to a desktop

environment. The interrupts to the CPU had to be disabled, and breakpoints set up in

hardware to start debugging the operating system at the point it initialises the floppy disk

drive controller. After a lot of time tracing through pages of the operating system

assembly code it appeared the CPU could not read from the FDC status register. The

read is attempted at address 0xFC1CA6 as shown in figure 36.

With the help of an attached oscilloscope it was found the timing of the chip select

(FDCSn) in relation to the window of valid data was wrong and this was changed as

shown below. The CTRL_MASK signal is essentially a counter to synthesise signal

timings for the DMA ACSI bus. The alteration makes the FDCSn signal active for

longer.

Figure 36 – Excerpt from OS

-- with CTRL_MASK select FDCSn <= FDCSn_I when "110" | "101",
-- Phases 6, 5.
-- '1' when others;

with CTRL_MASK select FDCSn <= FDCSn_I when "111" | "110" | "101" | "100",
-- Phases 7,6,5,4.
 '1' when others;

Figure 37 – FDCSn from wf25913ip_ctrl.vhd

Upon powering up the system the floppy drive was detected and the desktop appeared

with the floppy drive icons. Trying to read a floppy disk still failed however, with the

floppy drive light remaining on and the system locking up by not responding to mouse of

keyboard actions.

The FDC IP Core was examined and the main control is implemented as a very large

state machine with 73 possible states in a file called wf1772ip_control.vhd. A decision

was made to see if it was this state machine that was locking up. The four LEDs on the

RaggedStone were used to show the current state of the state machine, but that only

provide a maximum of 16 different states. The 73 states were split into groups of 16

states and the project re-built each time to test the next group. The offending state was

T1_VERIFY_CRC and the only action that controls the exit from this state are DELAY =

True as shown in figure 38.

To rectify this, in the section for generation of the delay signal (line 747 to 860) the

T1_VERIFY_CRC state was added.

After this the floppy drive works for small files at the start of the disk, nearest track 00.

Anything larger and it reports the disk as unreadable. Two fixes were found that

appeared to help. The operating system in the Flash memory was upgraded to TOS v1.04

that has some important fixes to hard drive and floppy disk drive handling. The other

change made was in the FDC IP Core. In the IP Core there is a settling delay after each

disk drive head step command of 30ms to allow the physical mechanism to move and

Figure 38 – T1_VERIFY_CRC state

when T1_VERIFY_CRC =>
-- The CRC logic starts during T1_SPINDOWN (missing clock transitions).

if DELAY = true then
 if CRC_ERR = '1' then
 NEXT_CMD_STATE <= T1_SPINDOWN; -- CRC error.
 else
 NEXT_CMD_STATE <= IDLE; -- Operation finished.
 end if;
 else
 -- Wait until CRC logic is ready.
 NEXT_CMD_STATE <= T1_VERIFY_CRC;
 end if;

settle in the correct place. After reading the WD1772 data sheet it became clear the 30ms

settling delay is only true for the WD1770 device, for the WD1772 it is 15ms

[23],[32],[33],[34].

Both these fixes made the floppy drive much better in operation and now programs can

be loaded to further the testing of the system.

5.21

Eiffel PS/2 conversion

A Microchip PIC Microcontroller was finally added to provide an interface for a PS/2

Keyboard and Mouse. The firmware for the PIC, called ‘Eiffel’ which is a GPL project

was also modified to control the ATX power supply. The original project supports a

temperature sensor and control of a CPU Fan, but this was removed to create some spare

I/O pins [24]. Bit 0 of Port A was used for the power switch, and Bit 5 of Port C was

used to drive the ATX power supply on signal. See appendix L for the modified

schematic.

The PIC firmware was altered so that either a transition on the power switch or the

keyboard scan code for the Enter key (0x73) will enable the power supply [35]. Another

change was made to the firmware, which deviates from the originally planned Design. It

was decided that using Sony Playstation controllers would be better than the original

Atari style joysticks. The reasoning behind this is that the original Atari style joysticks

are getting increasingly harder to find, and you certainly can’t buy new ones. The Atari

joysticks are simply a set of five push switches, one for fire and the other four for

direction. The Sony Playstation controllers use a five wire serial communication bus to

when DELAY_30ms | T1_VERIFY_DELAY =>
case DELCNT is

 -- when x"75300" => DELAY <= true; -- 30ms
 when x"3a980" => DELAY <= true; -- 15ms
 -- when x"1d4c0" => DELAY <= true; -- 7.5ms
 when others => DELAY <= false;
 end case;

Figure 39 – WD1772 delay state

send commands to the Playstation controller and receive status data of the controller.

The ATT stands for attention, and this is a signal to define the start of the sequence. The

ACK stands for Acknowledge, and is a confirmation that the controller received the

command byte. The data and commands are sent LSB (Least Significant Bit) first.

The first three bytes of the transmission are used for a handshake protocol. The next two

bytes of the transmission are used to transmit the data representing the button presses.

An extension was made to the protocol when Sony released the dual analogue version of

their controller, and this uses the last four bytes with each byte representing the position

[36].

The digital directional pad was used to emulate the original Atari joystick direction, and

the X button for the original Atari fire button.

Figure 40 – Playstaion controller protocol

Table 11 – Playstation controller packet

5.22

IDE Compact Flash

This was not implemented as there was not an easy way to implement the 40 way header

anywhere on the RaggedStone board. There are just enough I/O pins, but these are

separated across the board and would require a lot of trailing wires running to these

various points. The IDE bus is simply memory mapped into the address space from

0xF00000 to 0xF00039 and used in PIO (Programmed Input Output) Mode [37],[38].

The interrupt request from IDE is made with a logical OR with the original Atari ACSI

hard disk interface.

Chapter 6

Verification and Testing

6.1

Benchmarking

Benchmarking software are useful tools to identify the performance of a computer. By

running benchmark software on the system, it should be possible to identify any errors

either in performance or functionality. The program used is called Gembench written by

Ofir Gal in 1995, along with another program called SysInfo by Thorsten Bergner in

1997. Gembench benchmarks the AES (opening dialog boxes, scrolling text etc), CPU

speed (maths routines) and memory bandwidth. SysInfo reports information on system

variables, memory configuration and size. Appendix M shows the results of these two

tests. The Gembench scored 99% of a real Atari ST, probably due to the real PAL Atari

ST having a 32.08 MHz master clock. The 102% score for VDI Scroll is probably due to

using TOS v1.04 where certain areas of the operating system were optimised slightly.

The SysInfo results are exactly the same as a 1MB Atari ST, and this verifies it has

detected the size of SRAM memory correctly and set up all the associated system

variables and configuration registers.

6.2

Colour Palette

In the colour resolution modes the

colours were incorrect compared to an

Atari ST. At first the connection

between the FPGA and Video DAC

were checked and these were correct.

The connections between the Video

DAC and VGA connector were also

correct. With the floppy drive now

operational, it was possible to load

Figure 41 – Degas Elite

if SH_MOD = "00" then -- Low resolution.
-- SR(3) <= YINT_D(15 - H_SHIFT);
-- SR(2) <= YINT_B(27 - H_SHIFT);
-- SR(1) <= YINT_C(23 - H_SHIFT);
-- SR(0) <= YINT_A(19 - H_SHIFT);
 SR(3) <= YINT_D(15 - H_SHIFT);
 SR(2) <= YINT_A(19 - H_SHIFT);
 SR(1) <= YINT_C(23 - H_SHIFT);
 SR(0) <= YINT_B(27 - H_SHIFT);

programs in. An art drawing program called “Degas Elite” written by Tom Hudson in

1987 was loaded from the floppy drive. With this program it is possible to change the

shade of colour in the palette registers of the Shifter graphics IP Core. It was found that

adjusting certain palettes changed the wrong colour on the screen. A table was made to

figure out what was happening.

Palette changed
Bit pattern

(3..0)
Actual change

Bit pattern

(3..0)
Correct?

0 0000 0 0000 YES

1 0001 4 0100 NO

2 0010 2 0010 YES

3 0011 6 0110 NO

4 0100 1 0001 NO

5 0101 5 0101 YES

6 0110 3 0011 NO

7 0111 7 0111 YES

8 1000 8 1000 YES

9 1001 12 1100 NO

10 1010 10 1010 YES

11 1011 14 1110 NO

12 1100 9 1001 NO

13 1101 13 1101 YES

14 1110 11 1011 NO

15 1111 15 1111 YES

By looking at the bit patterns or

bit planes, it can be seen bits 0

and 2 are around the wrong way.

The Shifter IP Core has a file

Table 12 – Colour palette error

Figure 42 – Change to Shifter

called wf25914ip_cr_shift_reg.vhd and within that is a process called shift_out where the

colour creation is made. This was modified based on the previous findings.

6.3

Sound Techniques

The sound from the YM2149 IP Core is next

tested. The sound generator is very simple,

just 3 channels of square wave, which can be

mixed with white noise and fed into envelope

filters. Many programmers developed new

ways of using the YM2149 to produce better

sounds by carefully timed writes to the

YM2149 registers.

The program used to test it is a freeware program called ‘SND Player’ written by Odd

Skancke and Anders Eriksson in 2006 and comes with a few demo songs to try. After

playing a few of the demo songs and comparing to a real Atari ST, it was apparent some

had problems with some channels not

having the right sound. One of these

songs was ‘Chu Chu Rocket’ by

Malcolm Grant which was chosen as the

problem is evident while only using one

sound channel. The envelope register

was routed to be displayed on the four

LEDs on the RaggedStone board. It was

found the sound was incorrect only on some envelope shapes, namely ‘1010’ which is a

repeating sawtooth.

From looking at the process which generates the envelope shape (in the file

wf2149_wave.vhd) it became apparent what the error was. On the rising slope of the

envelope when it reaches the highest peak (VOL_ENV = “11111”) it should start falling

Figure 43 – SND Player

Figure 44 – Envelope Shapes

when "1110" | "1010" =>
 if ENV_UP_DNn = '0' then
 VOL_ENV <= VOL_ENV - '1';
 else
 VOL_ENV <= VOL_ENV + '1';
 end if;

 if VOL_ENV = "00001" then
 ENV_UP_DNn := '1';
 elsif VOL_ENV = "11110" then
 ENV_UP_DNn := '0';
 end if;

when "1110" | "1010" =>
 if ENV_UP_DNn = '0' then
 VOL_ENV <= VOL_ENV - '1';
 else
 VOL_ENV <= VOL_ENV + '1';
 end if;

 if VOL_ENV = "00000" then
 ENV_UP_DNn := '1';
 elsif VOL_ENV = "11111" then
 ENV_UP_DNn := '0';
 end if;

back down again. The way the VHDL

is structured, the signal to control the

volume decrement occurs too late and

the VOL_ENV rolls over. The effect is

a very fast repeating square wave, rather

than the desired sawtooth wave. The

changes made are shown in figure 46.

Some of the special effect techniques

used to achieve better sounds have been

given names like Sync-Buzzer, Digidrum

and Sid Voice [39].

6.4

Software Over Scan

Although not deemed as necessary, using software

that attempts to use the hardware in ways that were

not specified by Atari is a good test of compatibility.

Just like the special effects for the sound chip, as

mentioned in paragraph 6.2 there were also

techniques to gain special graphics. One of these is

software over scanning. The Atari ST low resolution

mode is 320 x 200 pixels, but in fact displays a lot

more in the form of borders around the working

screen area as shown in figure 47.

Figure 46 – New envelope generator

Figure 45 – Old envelope generator

Figure 47 – Screen borders

It was discovered in 1988 by a team of people called ‘TNT’ that by switching graphics

modes (ST Low/Medium/High or 50/60Hz) on certain line numbers the graphics sub

system can be fooled into displaying graphics within the borders.

A good piece of test software was found called ‘Hallucinations’ released by RG in 2003

(although the over scan technique is much older). The current implementation of the

Atari ST failed trying to run this software, with the screen borders remaining intact.

From looking at the hardware the DE (Display Enable) signal generated by the Glue

informs the Shifter and MMU when to display the graphics, otherwise they will display

the border. Inside the Glue IP Core (file wf25915ip_video_timing.vhd), there are two

main counters, one for the horizontal position and the other for the vertical line number.

The DE signal is controlled by relational operators (less than and greater than) as shown

in Appendix N and this precisely where the problem stems from. In a real Atari ST, if the

software switches to a different screen mode at precisely the right time, the Glue then

misses the qualifier to end the DE signal, and it remains active for longer displaying more

pixels from RAM. Because the IP Core of the Glue uses less than and greater than, this

doesn’t work. After changing all these to simple equality relation operators, and basing

all the timings on a document by Dr Sengan Baring-Gould published in the French ‘ST

Magazine’ in 1991 the system now correctly displayed the over scan technique [40]!

Another point that backs up the use of equality operators is that they require a lot less

transistors, and this would be how the original Atari semiconductors would have been

constructed. As well as changing the generation of the DE signal, the V Sync, H Sync

and video Blanking were changed.

Future Additions and Possibilities

7.1

Floppy Drive Emulation

Nowadays floppy drives are being phased out. Many PC manufactures don’t supply

floppy drives, and Apple Inc scrapped the floppy drive in 1998 with introduction of iMac.

It is quite easy to see why after implementing the floppy drive and reading the Western

Digital WD1772 data sheet. Many commands given to the floppy drive have to be

followed by delays. It is advised to wait for five Index Pulses after the Spin Up

command before reading data. At a disk revolution of 300 rpm, five index pulses are

equal to one second. More delays are needed when stepping the floppy drive head to a

different track, 15ms for the WD1772. 15ms in computer terms is a long time, the

MC68000 can execute up to 30,000 instructions in that time.

There exists a project called hXc (that replaces the physical floppy drive and allows a

host computer to mimic a floppy drive [41]. Going one step further it would be possible

to remove the WD1772 floppy controller altogether, with an image of a floppy disk

stored on a removable media like an SD (Secure Digital) Card communicating directly to

the DMA bus. The delays could be added for possible compatibility problems, or

allowed to run at full speed.

7.2

MIDI

Midi was included as standard from the very first Atari St throughout the entire series and

played an important role in establishing the computer as a serious computer for music

production. In the Atari ST MIDI is implemented with another ACIA MC6850 as used to

communicate with the keyboard. It uses a 31250 baud serial protocol over a current loop

and is optically isolated. The MIDI could be provided with another instance of the

MC6850 IP Core. The game port to MIDI adapters that is commonly available for PCs

could easily be used to provide the electrical specification MIDI needs. The game port is

a 15 way D-Type connector and the panel cut out is provided on many PC cases, unlike

that of the 5 pin DIN connectors MIDI uses.

7.3

IDE

Although there exists a simple IDE interface for the Atari ST that is compatible to the

Atari Falcons IDE port, it only works in programmed I/O mode. This is where the CPU

has to do the work of moving the data to and from the IDE bus to RAM. Although this is

fine for most small chunks of data, large files will inevitably tie up the CPU stopping it

from doing more useful processing. A solution could exist in using the original DMA

component with a bridge layer to IDE protocol. This would provide complete software

compatibility, appearing as a DMA device to the Atari ST but using plentiful and

inexpensive IDE drives. The conversion from Atari’s own protocol of the DMA bus,

ACSI could be converted to IDE internally as a custom IP Core. It also opens up the

possibility for more than one IDE port, as ACSI protocol can support 7 devices.

7.4

Unification of mass storage

In the design there were a lot of areas and different device technologies for storage of

data.

• Floppy drive using 3.5” floppy disks

• Configuration of the FPGA held in custom Xilinx serial PROM

• Operating System held in parallel FLASH memory

• PIC microcontroller firmware held within itself

Each of the above could be contained in one single device like an inexpensive SD Card.

The PIC microcontroller could contain firmware to read a FAT 32 formatted SD Card to

program its self with new firmware, program the FPGA configuration and store the

Operating System in a portion of RAM. The floppy drive image could be retrieved on

request from the Floppy Drive Controller with the PIC acting as a bridge. This greatly

reduces cost and component count at the expensive of development time to guarantee

correct functionality [42], [43].

7.5

Reconfigurable systems

The previous paragraph leads nicely onto the ability for reconfigurable systems. By

allowing the PIC to read from an SD Card, it is possible to store multiple versions for

each part of the system. This could allow the system to change functionality entirely

within seconds. Using an SD Card also removes the need for special programming

hardware for the various parts onboard and simplifies any updates needed to a system. It

would be as simple as inserting the SD Card into a PC to copy new firmware packages on

[44], [45].

7.6

Commercial viability

There is scope for a design like this to be made in to a sellable item. By having a design

that supports many projects needs, and a framework wrapper to ease migration and

porting from other development boards it could attract many designers. From looking at

other FPGA development boards and needs for projects the following specification ahs

been concluded.

• Composite Video/ S Video for connection to domestic Televisions

• VGA connection with high quality DAC for high resolution monitors

• SD Card for storage of data

• One fixed clock, one software programmable for pixel clocks etc

• PS/2 mouse and keyboard ports

• LCD header pins for embedded designs

• Ethernet port

• Audio Codec for sound in and out

• IDE interface port

• CPU expansion slot to allow for different CPU architectures and/or addition IO

• SDRAM main memory

• PIC Microcontroller for standby operation

A design with these features opens the market to many diverse applications, not just an

Atari ST design. The addition of a wrapper for using the inexpensive Analogue and

Digital Sony Playstation controllers could very be useful for the control in robotics.

Even with an Atari ST design, it is possible to run the 68k Debian Linux port, or uClinux

are even Atari’s own UNIX derivative, MultiTOS/MINT.

Chapter 8

Summary

8.1

I personally found implementing an entire computer system in an FPGA highly

challenging and incredibly rewarding. From the overall design blocks to the intricate

details at logic gate level presented many opportunities for problem solving.

Every IP Core (bar the ACIA) of the system had to be studied in great detail to

understand the inner workings and fixing numerous problems. Not every detail that was

changed could be mentioned, as some of them took so long to discover the root of the

problem and the length of detailing the solution. The best example of this is the Floppy

Drive Controller IP Core. Even in its current state it is not fully functional, it has

problems with games that have complex copy protection techniques or formatted with

non standard numbers of sectors per track. Writing to a disk was not even attempted and

was disabled in hardware for fear of ruining many disks. The FDC IP Core is by far the

most complex IP Core in the design, having to deal with a MFM encoded bit stream from

the floppy drive that varies every so slightly in bit rate as the disk drive motor RPM

fluctuates.

One point I found from doing this project is understanding how far computing has come,

the amount of complexities there are in modern computer chipsets, graphics and micro

processors. One thing I feel is that by understanding the past, an insight into the future of

computing can be seen clearer and many ideas will come back around.

A few things that could have helped greatly would be better access to tools. Having

something along the lines of a logic analyser embedded into the design, like Xilinx’s

own ChipScope would have been incredibly useful. A normal logic analyser would help

to some extent, but every time you want to view a different internal signal it requires a

rebuild of the project. On that point, even on my relatively new computer the process of

building the project and programming through the JTAG interface took approximately 20

minutes. In total there were approximately 15000 lines of VHDL code.

I found the internet a great resource of information, as there were very few books

published about the hardware of the Atari ST. Much of the information has come from

archives of past magazines articles and documents written about certain aspects of the

hardware.

Although the design did not feature the CPU as an IP Core, I feel this was a wise decision

as it was the one part of the design that could be trusted as working from the very start.

Trying to debug a CPU IP Core along with everything else would have been incredibly

time consuming.

I’ve learnt a lot about the inner workings of FPGAs, and the VHDL language. Most

importantly is that FPGAs are in some ways like a group of individual integrated circuits.

It is just as important to make sure that the interconnections between these blocks of logic

are constrained to certain paths, distances and delays as it is with a traditional design.

Overall I’ve found systems on chip incredibly interesting and something of real

importance for the future. Their ability is to make designs smaller, consume less power

and most importantly faster.

References

All online references sited 29
th
 April 2008.

[1] Old-Computers.com The Museam. [Online].

Available: http://www.old-computers.com/museum/company.asp?st=1&m=10

[2] Wikipedia. (unknown). TV Boy. [Online].

Available: http://en.wikipedia.org/wiki/TV_Boy

[3] Howard Wen. (2007). Curt Vendel: The Escapist Interview. [Online].

Available: http://www.escapistmagazine.com/articles/view/issues/issue_100/555-Curt-

Vendel-The-Escapist-Interview

[4] Benjamin J Heckendorn. (2006). Still looking for NES on a Chips . [Online].

Available: http://benheck.com/01-05-2006/still-looking-for-nes-on-a-chips-noacs

[5] Rieks Warendorp Torringa/ Sander Zuidema. (2006). Bazix Homepage. [Online]

Available: http://www.bazix.nl

[6] Dennis Van Weeren. (2008). MiniMig Homepage. [Online].

Available: http://home.hetnet.nl/~weeren001/

[7] Old-Computers.com The Museam. [Online].

Available: http://en.wikipedia.org/wiki/Jeri_Ellsworth

[8] JOHN MARKOFF. (2004). The New York Times: A Toy With a Story. [Online].

Available: http://www.nytimes.com/2004/12/20/technology/20joystick.html

[9] IGN. (unknown). Atari Inc. (1972-1984). [Online]

Available: http://uk.games.ign.com/objects/764/764953.html

[10] Wikipedia. (2008). Atari ST. [Online].

Available: http://en.wikipedia.org/wiki/Atari_ST

[11] Bob Lash. (2002). ATARI ST Prototype. [Online].

Available: http://www.bambi.net/atari/atari_st_prototype.html

[12] K.Gerits, L.Englisch, R.Bruckmann, “The ST Operating System” in Atari ST

Internals, 3
rd
 ed. , Miami: Abacus Software Inc., May 1988, pp. 105-106

[13] Hans-Dieter Jankowski, Julian F.Reschke,Dietmar Rabich, “Der “Power-UP

Ablaufplan” in Atari ST Profibuch, 2
nd
 ed. , Düsseldorf: Sybex-Verlag, 1989, pp. 917-919

[14] K.Gerits, L.Englisch, R.Bruckmann, “The BIOS Listing” in Atari ST Internals, 3
rd

ed. , Miami: Abacus Software Inc., May 1988, pp. 271-461

[15] Kevin Morris. (2005). World's Best FPGA Article. [Online].

Available: http://www.fpgajournal.com/articles_2005/20050510_worldsbest.htm

[16] Peter Clarke. (1999). Early users of IP cores could gain an edge from design reuse.

[Online].

Available: http://www.eetimes.com/story/OEG19990622S0014

[17] Xilinx, Inc. (unknown). ISE WebPACK 8.2i FAQ. [Online].

Available: http://www.xilinx.com/ise/logic_design_prod/webpack_faq.htm#3a

[18] Gennadiy Shvets. (2007). Motorola 68000 microprocessor family. [Online].

Available: http://www.cpu-world.com/CPUs/68000/

[19] John Townsend/Richard Davey. (unknown). Town's Little Guide to TOS Revisions.

[Online].

Available: http://www.atari.st/content.php?type=t&file=toslist

[20] Micron Technology, Inc. (2000). Migrating from FPM/EDO To SDRAM. [Online].

Available: http://download.micron.com/pdf/technotes/ZT07.pdf

[21] Freescale Semiconductor, Inc. (1997). Addendum to MC68000 User Manual.

[Online].

Available: http://www.freescale.com/files/32bit/doc/ref_manual/M68000UMAD.pdf

[22] Ken Chapman. (2007). M29DW323DT ST Microelectronics FLASH Programmer.

[Online].

Available: http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm

[23] David Small. (1986). Probing the FDC, START Vol.1,No.2,Page 96. [Online].

Available: http://www.atarimagazines.com/startv1n2/ProbingTheFDC.html

[24] Didier Méquignon, Laurent Favard. (2005). Atari Eiffel 3 Interface PS/2. [Online].

Available: http://pagesperso-orange.fr/didierm/eiffel-e.htm

[25] Pera Putnik. (1998). Atari IDE disk interface. [Online].

Available: http://members.tripod.com/~piters/atari/astide.htm

[26] Mike J. (2006). VGA Display Test. [Online].

Available: http://home.freeuk.com/fpgaarcade/displaytest.htm

[27] Freescale Semiconductor, Inc. (2006). MC68000 User Manual. [Online].

Available: http://www.freescale.com/files/32bit/doc/ref_manual/M68000UM.pdf

[28] Sam Duncan. (2003). Article 53214. [Online].

Available: www.fpga-faq.com/archives/53100.htm

[29] Craig Abramson. (unknown). Determining Clock Skew when the Virtex DLL Drives

Multiple Copies of a Clock Off Chip. [Online].

Available:

http://www.nalanda.nitc.ac.in/industry/appnotes/xilinx/documents/xcell/xl32/xl32_53.pdf

[30] Xilinx, Inc. (2000). Using Delay-Locked Loops in Spartan-II FPGAs. [Online].

Available: http://www.xilinx.com/support/documentation/application_notes/xapp174.pdf

[31] Brian Jackson. (2007). Improving FPGA on PCB Integration with PlanAhead

Design and Analysis Tool. [Online].

Available: http://www.fpgajournal.com/whitepapers_2007/q2_xilinx_1.htm

[32] David Gahris. (1995). WD1772 Programming information. [Online].

Available: http://www.buchty.net/ensoniq/files/wd1772.txt

[33] Greg Cook. (2005). Register summary for Western Digital FDC. [Online].

Available: http://homepages.tesco.net/~rainstorm/fdc-combined.htm

[34] Western Digital Corporation. (unknown). WD177X-00 Floppy Disk Controller.

[Online].

Available: http://dev-docs.atariforge.org/files/WD1772.pdf

[35] Andries Brouwer. (2004). Keyboard scancodes. [Online].

Available: http://www.win.tue.nl/~aeb/linux/kbd/scancodes.html

[36] Andrew J McCubbin. (1998). Sony PlayStation Controller Information. [Online].

Available: http://www.gamesx.com/controldata/psxcont/psxcont.htm

[37] Dan Hollis. (1994). Atari ST/STe/MSTe/TT/F030 Hardware Register Listing.

[Online].

Available: http://dev-docs.atariforge.org/files/hardware.zip

[38] CompactFlash Association. (2008). CF and CompactFlash FAQ. [Online].

Available: http://www.compactflash.org/faqs/faq.htm

[39] Arnaud Carré. (unknown). YM2149 Special Effects. [Online].

Available: http://leonard.oxg.free.fr/ymformat.html

[40] Dr Sengan Baring-Gould. (1991). Overscan Techniques. [Online].

Available: http://alive.atari.org/alive9/ovrscn1.php

[41] Jean François. (2008). Emulateur de lecteur de disquette. [Online].

Available: http://jeanfrancoisdelnero.free.fr/floppy_drive_emulator/

[42] Claudi Chiculita. (2007). Tiny PIC bootloader. [Online].

Available: http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm

[43] Philip Freidin. (2003). Configuring an FPGA from a processor. [Online].

Available: http://www.fpga-

faq.com/FAQ_Pages/0038_Config_FPGA_from_a_processor.htm

[44] Lauro Rizzatti. (2002). Hardware emulation for everyone. [Online].

Available:http://www.eetimes.com/news/design/columns/eda/showArticle.jhtml?articleI

D=17407881

[45] Wikipedia. (2008). Hardware emulation. [Online].

Available: http://en.wikipedia.org/wiki/Hardware_emulation

Appendices

A

MAIN.UCF constraints file

MAIN.VHD component file

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments
NET "CLK_PCI" LOC = "A11" ;
NET "EEPROM_SCL" LOC = "U7" ;
NET "EEPROM_SDA" LOC = "U10" ;
NET "EEPROM_WP" LOC = "V7" ;
NET "FLASH_A<0>" LOC = "Y10" ;
NET "FLASH_A<10>" LOC = "U12" ;
NET "FLASH_A<11>" LOC = "AB15" ;
NET "FLASH_A<12>" LOC = "AB9" ;
NET "FLASH_A<13>" LOC = "AB14" ;
NET "FLASH_A<14>" LOC = "AA13" ;
NET "FLASH_A<15>" LOC = "AB10" ;
NET "FLASH_A<16>" LOC = "AB11" ;
NET "FLASH_A<17>" LOC = "AB13" ;
NET "FLASH_A<18>" LOC = "Y12" ;
NET "FLASH_A<1>" LOC = "W10" ;
NET "FLASH_A<2>" LOC = "V10" ;
NET "FLASH_A<3>" LOC = "W9" ;
NET "FLASH_A<4>" LOC = "W8" ;
NET "FLASH_A<5>" LOC = "AB8" ;
NET "FLASH_A<6>" LOC = "AA8" ;
NET "FLASH_A<7>" LOC = "AA9" ;
NET "FLASH_A<8>" LOC = "V9" ;
NET "FLASH_A<9>" LOC = "AA15" ;
NET "FLASH_CE" LOC = "V14" ;
NET "FLASH_IO<0>" LOC = "AA10" ;
NET "FLASH_IO<1>" LOC = "W11" ;
NET "FLASH_IO<2>" LOC = "Y11" ;
NET "FLASH_IO<3>" LOC = "U11" ;
NET "FLASH_IO<4>" LOC = "W13" ;
NET "FLASH_IO<5>" LOC = "V13" ;
NET "FLASH_IO<6>" LOC = "Y13" ;
NET "FLASH_IO<7>" LOC = "W14" ;
NET "FLASH_OE" LOC = "U13" ;
NET "FLASH_WE" LOC = "W12" ;
NET "J01_2" LOC = "AA12" ;
NET "J01_3" LOC = "AB12" ;
NET "J01_4" LOC = "V16" ;
NET "J01_5" LOC = "W16" ;
NET "J02_2" LOC = "V8" ;
NET "J02_3" LOC = "Y6" ;
NET "J02_4" LOC = "AA6" ;
NET "J02_5" LOC = "U6" ;
NET "J2_1" LOC = "B19" ;

NET "J2_10" LOC = "C17" ;
NET "J2_11" LOC = "B17" ;
NET "J2_12" LOC = "E15" ;
NET "J2_13" LOC = "D17" ;
NET "J2_14" LOC = "E13" ;
NET "J2_15" LOC = "D15" ;
NET "J2_16" LOC = "F13" ;
NET "J2_17" LOC = "D14" ;
NET "J2_18" LOC = "A15" ;
NET "J2_19" LOC = "F12" ;
NET "J2_20" LOC = "B14" ;
NET "J2_21" LOC = "B15" ;
NET "J2_22" LOC = "F16" ;
NET "J2_23" LOC = "A14" ;
NET "J2_24" LOC = "D13" ;
NET "J2_25" LOC = "F17" ;
NET "J2_26" LOC = "A13" ;
NET "J2_27" LOC = "C13" ;
NET "J2_28" LOC = "E12" ;
NET "J2_29" LOC = "B13" ;
NET "J2_3" LOC = "A19" ;
NET "J2_31" LOC = "A12" ;
NET "J2_32" LOC = "D12" ;
NET "J2_33" LOC = "A9" ;
NET "J2_34" LOC = "B12" ;
NET "J2_35" LOC = "B10" ;
NET "J2_36" LOC = "C10" ;
NET "J2_37" LOC = "A8" ;
NET "J2_38" LOC = "B9" ;
NET "J2_39" LOC = "F11" ;
NET "J2_4" LOC = "C18" ;
NET "J2_40" LOC = "E10" ;
NET "J2_41" LOC = "F10" ;
NET "J2_42" LOC = "E9" ;
NET "J2_43" LOC = "F9" ;
NET "J2_44" LOC = "B8" ;
NET "J2_45" LOC = "D7" ;
NET "J2_46" LOC = "E7" ;
NET "J2_47" LOC = "C6" ;
NET "J2_48" LOC = "B6" ;
NET "J2_49" LOC = "E6" ;
NET "J2_5" LOC = "D18" ;
NET "J2_50" LOC = "D6" ;
NET "J2_51" LOC = "A5" ;
NET "J2_52" LOC = "B5" ;
NET "J2_6" LOC = "B18" ;
NET "J2_8" LOC = "E17" ;
NET "J2_9" LOC = "A18" ;
NET "JL1_10" LOC = "M21" ;
NET "JL1_11" LOC = "K19" ;
NET "JL1_12" LOC = "K20" ;
NET "JL1_13" LOC = "K22" ;
NET "JL1_14" LOC = "K21" ;
NET "JL1_15" LOC = "G19" ;
NET "JL1_16" LOC = "F19" ;
NET "JL1_17" LOC = "F20" ;
NET "JL1_18" LOC = "F21" ;

NET "JL1_19" LOC = "E21" ;
NET "JL1_2" LOC = "Y21" ;
NET "JL1_20" LOC = "E22" ;
NET "JL1_3" LOC = "T22" ;
NET "JL1_4" LOC = "T21" ;
NET "JL1_5" LOC = "T18" ;
NET "JL1_6" LOC = "R18" ;
NET "JL1_7" LOC = "M17" ;
NET "JL1_8" LOC = "M18" ;
NET "JL1_9" LOC = "M22" ;
NET "JL2_1" LOC = "W21" ;
NET "JL2_10" LOC = "T17" ;
NET "JL2_11" LOC = "M19" ;
NET "JL2_12" LOC = "M20" ;
NET "JL2_13" LOC = "L20" ;
NET "JL2_14" LOC = "L19" ;
NET "JL2_15" LOC = "G18" ;
NET "JL2_16" LOC = "G17" ;
NET "JL2_17" LOC = "F18" ;
NET "JL2_18" LOC = "E18" ;
NET "JL2_19" LOC = "D19" ;
NET "JL2_2" LOC = "W20" ;
NET "JL2_20" LOC = "D20" ;
NET "JL2_3" LOC = "V22" ;
NET "JL2_4" LOC = "V21" ;
NET "JL2_5" LOC = "V19" ;
NET "JL2_6" LOC = "W19" ;
NET "JL2_7" LOC = "V20" ;
NET "JL2_8" LOC = "U19" ;
NET "JL2_9" LOC = "U18" ;
NET "JL3_10" LOC = "L21" ;
NET "JL3_11" LOC = "L22" ;
NET "JL3_12" LOC = "L18" ;
NET "JL3_13" LOC = "L17" ;
NET "JL3_14" LOC = "G21" ;
NET "JL3_15" LOC = "G22" ;
NET "JL3_16" LOC = "E20" ;
NET "JL3_17" LOC = "E19" ;
NET "JL3_18" LOC = "D22" ;
NET "JL3_19" LOC = "D21" ;
NET "JL3_2" LOC = "Y22" ;
NET "JL3_20" LOC = "C22" ;
NET "JL3_3" LOC = "W22" ;
NET "JL3_4" LOC = "U21" ;
NET "JL3_5" LOC = "U20" ;
NET "JL3_6" LOC = "N19" ;
NET "JL3_7" LOC = "N20" ;
NET "JL3_8" LOC = "N21" ;
NET "JL3_9" LOC = "N22" ;
NET "JR1_10" LOC = "L2" ;
NET "JR1_11" LOC = "L1" ;
NET "JR1_12" LOC = "K3" ;
NET "JR1_13" LOC = "K4" ;
NET "JR1_14" LOC = "G1" ;
NET "JR1_15" LOC = "G2" ;
NET "JR1_16" LOC = "D3" ;
NET "JR1_17" LOC = "D2" ;

NET "JR1_18" LOC = "D1" ;
NET "JR1_19" LOC = "C1" ;
NET "JR1_2" LOC = "W4" ;
NET "JR1_20" LOC = "C2" ;
NET "JR1_3" LOC = "W3" ;
NET "JR1_4" LOC = "V3" ;
NET "JR1_5" LOC = "V4" ;
NET "JR1_6" LOC = "N4" ;
NET "JR1_7" LOC = "N3" ;
NET "JR1_8" LOC = "N2" ;
NET "JR1_9" LOC = "N1" ;
NET "JR2_1" LOC = "W1" ;
NET "JR2_10" LOC = "T6" ;
NET "JR2_11" LOC = "M4" ;
NET "JR2_12" LOC = "M3" ;
NET "JR2_13" LOC = "L3" ;
NET "JR2_14" LOC = "L4" ;
NET "JR2_15" LOC = "H5" ;
NET "JR2_16" LOC = "G5" ;
NET "JR2_17" LOC = "G6" ;
NET "JR2_18" LOC = "F5" ;
NET "JR2_19" LOC = "E4" ;
NET "JR2_2" LOC = "W2" ;
NET "JR2_20" LOC = "D4" ;
NET "JR2_3" LOC = "V5" ;
NET "JR2_4" LOC = "U5" ;
NET "JR2_5" LOC = "V2" ;
NET "JR2_6" LOC = "V1" ;
NET "JR2_7" LOC = "U4" ;
NET "JR2_8" LOC = "T4" ;
NET "JR2_9" LOC = "T5" ;
NET "JR3_10" LOC = "M2" ;
NET "JR3_11" LOC = "L5" ;
NET "JR3_12" LOC = "L6" ;
NET "JR3_13" LOC = "K1" ;
NET "JR3_14" LOC = "K2" ;
NET "JR3_15" LOC = "F4" ;
NET "JR3_16" LOC = "E3" ;
NET "JR3_17" LOC = "F2" ;
NET "JR3_18" LOC = "F3" ;
NET "JR3_19" LOC = "E2" ;
NET "JR3_2" LOC = "Y1" ;
NET "JR3_20" LOC = "E1" ;
NET "JR3_3" LOC = "U2" ;
NET "JR3_4" LOC = "U3" ;
NET "JR3_5" LOC = "T1" ;
NET "JR3_6" LOC = "T2" ;
NET "JR3_7" LOC = "M6" ;
NET "JR3_8" LOC = "M5" ;
NET "JR3_9" LOC = "M1" ;
NET "LED1_1" LOC = "AA17" ;
NET "LED1_11" LOC = "AA18" ;
NET "LED1_12" LOC = "Y18" ;
NET "LED1_13" LOC = "V18" ;
NET "LED1_14" LOC = "AB20" ;
NET "LED1_15" LOC = "W18" ;
NET "LED1_16" LOC = "AA20" ;

NET "LED1_2" LOC = "U17" ;
NET "LED1_3" LOC = "Y17" ;
NET "LED1_4" LOC = "V17" ;
NET "LED1_5" LOC = "AB18" ;
NET "LED1_6" LOC = "U16" ;
NET "LED1_7" LOC = "W17" ;
NET "LED1_8" LOC = "U14" ;
NET "LED2" LOC = "AB5" ;
NET "LED3" LOC = "AA5" ;
NET "LED4" LOC = "AA4" ;
NET "LED5" LOC = "AB4" ;
NET "S1" LOC = "AA3" | PULLUP ;
NET "S2" LOC = "Y4" | PULLUP ;
NET "TEMP_A<0>" LOC = "V12" ;
NET "TEMP_A<1>" LOC = "V11" ;
NET "TEMP_A<2>" LOC = "V6" ;
NET "TEMP_INT" LOC = "W5" ;
NET "TEMP_SCL" LOC = "Y5" ;
NET "TEMP_SDA" LOC = "W6" ;
NET "USER_CLK" LOC = "AA11" ;

#PACE: Start of PACE Area Constraints

#PACE: Start of PACE Prohibit Constraints

#PACE: End of Constraints generated by PACE

library IEEE;
use IEEE.std_logic_1164.ALL;
use IEEE.std_logic_ARITH.ALL;
use IEEE.std_logic_UNSIGNED.ALL;

entity main is
 Port(
 -- JL1 Header (pin 1 0v) BANK3&2
 JL1_2 : in std_logic;
 JL1_3 : in std_logic;
 JL1_4 : in std_logic;
 JL1_5 : in std_logic;
 JL1_6 : in std_logic;
 JL1_7 : in std_logic;
 JL1_8 : in std_logic;
 JL1_9 : in std_logic;
 JL1_10 : in std_logic;
 JL1_11 : in std_logic;
 JL1_12 : in std_logic;
 JL1_13 : in std_logic;
 JL1_14 : in std_logic;
 JL1_15 : in std_logic;
 JL1_16 : in std_logic;
 JL1_17 : in std_logic;
 JL1_18 : in std_logic;
 JL1_19 : in std_logic;
 JL1_20 : in std_logic;

 -- JL2 Header BANK3&2
 JL2_1 : in std_logic; -- CCLK with R999
 JL2_2 : in std_logic;
 JL2_3 : in std_logic;
 JL2_4 : in std_logic;
 JL2_5 : in std_logic;
 JL2_6 : in std_logic;
 JL2_7 : in std_logic;
 JL2_8 : in std_logic;
 JL2_9 : in std_logic;
 JL2_10 : in std_logic;
 JL2_11 : in std_logic;
 JL2_12 : in std_logic;
 JL2_13 : in std_logic;
 JL2_14 : in std_logic;
 JL2_15 : in std_logic;
 JL2_16 : in std_logic;
 JL2_17 : in std_logic;
 JL2_18 : in std_logic;
 JL2_19 : in std_logic;
 JL2_20 : in std_logic;

 -- JL3 Header (pin 1 3.3v) BANK3&2
 JL3_2 : in std_logic;
 JL3_3 : in std_logic;
 JL3_4 : in std_logic;
 JL3_5 : in std_logic;
 JL3_6 : in std_logic;
 JL3_7 : in std_logic;
 JL3_8 : in std_logic;
 JL3_9 : in std_logic;
 JL3_10 : in std_logic;
 JL3_11 : in std_logic;
 JL3_12 : in std_logic;
 JL3_13 : in std_logic;
 JL3_14 : in std_logic;
 JL3_15 : in std_logic;
 JL3_16 : in std_logic;
 JL3_17 : in std_logic;
 JL3_18 : in std_logic;
 JL3_19 : in std_logic;
 JL3_20 : in std_logic;

 -- JR1 Header (pin 1 0v) BANK6&7
 JR1_2 : in std_logic;
 JR1_3 : in std_logic;
 JR1_4 : in std_logic;
 JR1_5 : in std_logic;
 JR1_6 : in std_logic;
 JR1_7 : in std_logic;
 JR1_8 : in std_logic;
 JR1_9 : in std_logic;
 JR1_10 : in std_logic;
 JR1_11 : in std_logic;
 JR1_12 : in std_logic;
 JR1_13 : inout std_logic;

 JR1_14 : in std_logic;
 JR1_15 : in std_logic;
 JR1_16 : in std_logic;
 JR1_17 : in std_logic;
 JR1_18 : in std_logic;
 JR1_19 : in std_logic;
 JR1_20 : in std_logic;

 -- JR2 Header BANK6&7
 JR2_1 : in std_logic;
 JR2_2 : in std_logic;
 JR2_3 : in std_logic;
 JR2_4 : in std_logic;
 JR2_5 : in std_logic;
 JR2_6 : in std_logic;
 JR2_7 : in std_logic;
 JR2_8 : in std_logic;
 JR2_9 : in std_logic;
 JR2_10 : in std_logic;
 JR2_11 : in std_logic;
 JR2_12 : in std_logic;
 JR2_13 : in std_logic;
 JR2_14 : in std_logic;
 JR2_15 : in std_logic;
 JR2_16 : in std_logic;
 JR2_17 : in std_logic;
 JR2_18 : in std_logic;
 JR2_19 : in std_logic;
 JR2_20 : in std_logic;

 -- JR3 Header (pin 1 3.3v) BANK6&7
 JR3_2 : in std_logic;
 JR3_3 : in std_logic;
 JR3_4 : in std_logic;
 JR3_5 : in std_logic;
 JR3_6 : in std_logic;
 JR3_7 : in std_logic;
 JR3_8 : in std_logic;
 JR3_9 : in std_logic;
 JR3_10 : in std_logic;
 JR3_11 : in std_logic;
 JR3_12 : in std_logic;
 JR3_13 : in std_logic;
 JR3_14 : in std_logic;
 JR3_15 : in std_logic;
 JR3_16 : out std_logic;
 JR3_17 : out std_logic;
 JR3_18 : out std_logic;
 JR3_19 : inout std_logic;
 JR3_20 : inout std_logic;

 -- J01 (pin 1 0v) R99 links pin2&3
 J01_2 : in std_logic;
 J01_3 : in std_logic;
 J01_4 : in std_logic;
 J01_5 : in std_logic;

 -- J02 (pin 1 3.3v)
 J02_2 : in std_logic;
 J02_3 : in std_logic;
 J02_4 : in std_logic;
 J02_5 : in std_logic;

 -- JB1-4 ????

 ------------ PCI IO -----------------------

 -- J2 (pin 2 is just PCI clock)
 -- last pin is NC
 J2_1 : in std_logic;
 --J2_2 : out std_logic;
 J2_3 : in std_logic;
 J2_4 : in std_logic;
 J2_5 : in std_logic;
 J2_6 : in std_logic;
 --J2_7 : out std_logic; NC
 J2_8 : in std_logic;
 J2_9 : out std_logic;
 J2_10 : out std_logic;
 J2_11 : in std_logic;
 J2_12 : in std_logic;
 J2_13 : in std_logic;
 J2_14 : in std_logic;
 J2_15 : in std_logic;
 J2_16 : in std_logic;
 J2_17 : out std_logic;
 J2_18 : out std_logic;
 J2_19 : in std_logic;
 J2_20 : in std_logic;
 J2_21 : in std_logic;
 J2_22 : in std_logic;
 J2_23 : in std_logic;
 J2_24 : in std_logic;
 J2_25 : out std_logic;
 J2_26 : out std_logic;
 J2_27 : out std_logic;
 J2_28 : out std_logic;
 J2_29 : in std_logic;
 --J2_30 : out std_logic; NC
 J2_31 : in std_logic;
 J2_32 : in std_logic;
 J2_33 : in std_logic;
 J2_34 : in std_logic;
 J2_35 : in std_logic;
 J2_36 : in std_logic;
 J2_37 : in std_logic;
 J2_38 : in std_logic;
 J2_39 : in std_logic;
 J2_40 : in std_logic;
 J2_41 : in std_logic;
 J2_42 : in std_logic;
 J2_43 : in std_logic;
 J2_44 : in std_logic;

 J2_45 : in std_logic;
 J2_46 : in std_logic;
 J2_47 : in std_logic;
 J2_48 : in std_logic;
 J2_49 : in std_logic;
 J2_50 : in std_logic;
 J2_51 : in std_logic;
 J2_52 : in std_logic;
 --J2_53 : out std_logic; NC

 ---------- Stuff onboard ----------------

 -- Clocks
 --CCLK : in std_logic;
 USER_CLK : in std_logic;
 CLK_PCI : in std_logic;

 -- U12 (Flash?)
 FLASH_A : out std_logic_VECTOR(18 DOWNTO 0);
 FLASH_WE : out std_logic;
 FLASH_OE : out std_logic;
 FLASH_CE : out std_logic;
 FLASH_IO : in std_logic_VECTOR(7 DOWNTO 0);

 -- Temp Sensor
 TEMP_SDA : in std_logic;
 TEMP_SCL : in std_logic;
 TEMP_INT : in std_logic;
 TEMP_A : in std_logic_VECTOR(2 DOWNTO 0);

 -- Serial EEPROM
 EEPROM_WP : in std_logic;
 EEPROM_SCL : in std_logic;
 EEPROM_SDA : in std_logic;

 -- On board switchs (active low)
 S1 : in std_logic;
 S2 : in std_logic;

 -- On board LEDs (active high)
 LED2 : out std_logic;
 LED3 : out std_logic;
 LED4 : out std_logic;
 LED5 : out std_logic;

 -- LED display
 LED1_1 : out std_logic; --Active high column 1 select
 LED1_2 : out std_logic; --Active high column 2 select
 LED1_3 : out std_logic; --Active low digit D select
 LED1_4 : out std_logic; --Active high dots select
 LED1_5 : out std_logic; --Active low digit E select
 LED1_6 : out std_logic; --Active high column 3 select
 LED1_7 : out std_logic; --Active low DP select
 LED1_8 : out std_logic; --Active high column 4 select
 LED1_11 : out std_logic; -- Active low digit F select
 LED1_12 : out std_logic; -- NC???!!!
 LED1_13 : out std_logic; -- Active low digit C select

 LED1_14 : out std_logic; -- Active low digit A select
 LED1_15 : out std_logic; -- Active low digit G select
 LED1_16 : out std_logic -- Active low digit B select
);
end main;

architecture rtl of main is

begin

end;

B

Schematic of ST Microelectronics Video DAC for 3 x 4bit colour use

C

An excerpt from the PicoBlaze source code for programming a 192K byte raw binary file

to a parallel Flash memory device.

;**
; Program BIN Command - Program FLASH memory with data defined in an
; BIN file
;**

program_bin_command: CALL send_CR
 CALL send_Waiting_MCS_file
 LOAD s9, 00 ;load start address of programming
 LOAD s8, 00
 LOAD s7, 00
 CALL program_BIN
 CALL send_OK

 JUMP prompt

;**
; Program FLASH memory with data defined in an BIN file
;**
;
; Reads the BIN file from the UART and programs the FLASH device at
; 00000 location.
;
;
; This routine will continue until an end of file record is detected.
; For each line of BIN received, the current address will be output so
; that progress can be monitored.

program_BIN: CALL read_from_UART ;read character

 LOAD sB, UART_data ; load in data

 CALL program_byte

 ADD s7, 01 ;increment address
 ADDCY s8, 00
 ADDCY s9, 00

 COMPARE s9, 03 ; check for 196608 bytes
 ;COMPARE s9, 04 ; check for 262144 bytes

 JUMP NZ, program_BIN

 RETURN ;finnished

D

Startup.vhd, a VHDL component for reset and power up reset generation.

-- Company:
-- Engineer: Lyndon Amsdon
--
-- Create Date: 00:02:39 10/10/2007
-- Design Name:
-- Module Name: startup - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description: Holds reset line low for n clocks on powerup or when -
- reset pressed
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Revision 0.02 - Changed to run from master clock
-- Revision 0.03 - Added an extra reset output that only occurs during
-- powerup
-- Revision 0.03 - Changed powerup reset to be shorter than normal
-- reset
-- Additional Comments:
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity startup is
 Port (
 RESET_IN : in bit;
 CLOCK : in bit;
 POWER_UP_RESET_OUT : out bit;
 RESET_OUT : out bit
);
end startup;

architecture Behavioral of startup is

signal r_counter : std_logic_vector(24 downto 0);
signal pwr_counter : std_logic_vector(25 downto 0);
signal int_resetn : bit;

begin
 process(RESET_IN,CLOCK) is
 begin
 if (RESET_IN = '0' or int_resetn = '0') then -- if reset
switch pushed, reset counter
 r_counter <= (others => '0');
 RESET_OUT <= '0';

 elsif r_counter = '1' & x"ffbeef" then -- timer
 RESET_OUT <= '1';
 elsif CLOCK = '1' and CLOCK' event then
 RESET_OUT <= '0';
 r_counter <= r_counter + 1;
 end if;
 end process;

 process(CLOCK) is
 begin
 if pwr_counter = "11" & x"ffcafe" then -- powerup timer
approx 1sec
 POWER_UP_RESET_OUT <= '1';
 int_resetn <= '1';
 elsif CLOCK = '1' and CLOCK' event then
 int_resetn <= '0';
 POWER_UP_RESET_OUT <= '0';
 pwr_counter <= pwr_counter + 1;
 end if;
 end process;

end Behavioral;

E

Clock.vhd, a VHDL component for clock and synchronous bus cycle generation.

-- Company:
-- Engineer: Lyndon Amsdon
--
-- Create Date: 12:22:03 10/10/2007
-- Design Name:
-- Module Name: clocks - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description: Distributes Clocks of different frequencies from master
-- 32MHZ clock
-- E_CLK is simulated version of old 6800 8bit clock. Frequency 1/10 -
-- of CPU clock,
-- Duty cycle 60% low, 40% high.
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Revision 0.02 - Strange issue in simulation using counter(1) as
-- clock for process
-- Changed to an internal signal
-- Revision 0.03 - Changed the 8, 2 and 0.5 MHz clock to be inverse in
-- relation to master clock
-- Revision 0.04 - Changed to use the DCM/PLL for 8 and 16 MHz clocks
-- Revision 0.04 - Added 27Mhz divide by 11 = 2.45 Mhz clock for MFP
-- Additional Comments:
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity clocks is
 Port (
 RESET : in bit;
 CLOCK_IN : in bit;
 CLOCK32 : out bit;
 CLOCK16 : out bit;
 CLOCK8 : out bit;
 CLOCK4 : out bit;
 CLOCK2 : out bit;
 CLOCK0_5 : out bit;
 CLOCK24576 : out bit;
 CLOCK_E : out bit;
 VPAn : in bit;
 VMAn : out bit;
 DTACKn : out bit
);
end clocks;

architecture Behavioral of clocks is

signal pcounter : std_logic_vector(3 downto 0);
signal e_counter : std_logic_vector(3 downto 0);
signal dcmreset,dcmclock : std_logic;
signal dcm8,dcm16,dcm32 : std_logic;
signal int_vman : bit;
signal dcm27,dcm24576 : std_logic;

component dcm_16
 PORT
 (
 CLKIN_IN : IN STD_LOGIC ;
 RST_IN : IN STD_LOGIC ;
 CLKDV_OUT : OUT STD_LOGIC ;
 CLKFX_OUT : out std_logic;
 --CLKIN_IBUFG_OUT : OUT STD_LOGIC ;
 CLK0_OUT : OUT STD_LOGIC ;
 LOCKED_OUT : OUT STD_LOGIC
);
end component;
component dcm_8
 PORT
 (
 CLKIN_IN : IN STD_LOGIC ;
 RST_IN : IN STD_LOGIC ;
 CLKDV_OUT : OUT STD_LOGIC ;
 --CLKIN_IBUFG_OUT : OUT STD_LOGIC ;
 CLK0_OUT : OUT STD_LOGIC ;
 LOCKED_OUT : OUT STD_LOGIC
);
end component;
component dcm_24576
 PORT
 (
 CLKIN_IN : IN STD_LOGIC ;
 RST_IN : IN STD_LOGIC ;
 CLKDV_OUT : OUT STD_LOGIC ;
 --CLKIN_IBUFG_OUT : OUT STD_LOGIC ;
 CLK0_OUT : OUT STD_LOGIC ;
 LOCKED_OUT : OUT STD_LOGIC
);
end component;

begin

 process(dcm8,RESET) is
 begin
 if RESET = '0' then
 pcounter <= "0000";
 elsif rising_edge(dcm8) then
 pcounter <= pcounter + '1';
 end if;
 end process;

 process(RESET,dcm8) is
 begin
 if RESET = '0' then
 e_counter <= "0000";
 elsif e_counter = "1010" then
 e_counter <= "0000";
 elsif rising_edge(dcm8) then
 e_counter <= e_counter + 1;
 end if;
 end process;

-- DCM PLL clock management
dcmclock <= to_stdulogic(CLOCK_IN);
dcmreset <= not to_stdulogic(RESET);
clock32 <= to_bit(dcm32);
clock16 <= to_bit(dcm16);
clock8 <= to_bit(dcm8);
clock24576 <= to_bit(dcm24576);

I_DCM_16 : dcm_16
 port map
 (
 CLKIN_IN => dcmclock,
 RST_IN => dcmreset,
 CLKDV_OUT => dcm16,
 CLKFX_OUT => dcm27,
 CLK0_OUT => dcm32,
 LOCKED_OUT => open
);

I_DCM_8 : dcm_8
 port map
 (
 CLKIN_IN => dcm32,
 RST_IN => dcmreset,
 CLKDV_OUT => dcm8,
 CLK0_OUT => open,
 LOCKED_OUT => open
);

I_DCM_24576 : dcm_24576
 port map
 (
 CLKIN_IN => dcm27,
 RST_IN => dcmreset,
 CLKDV_OUT => dcm24576,
 CLK0_OUT => open,
 LOCKED_OUT => open
);

--CLOCK16 <= to_bit(pcounter(0));
--CLOCK8 <= to_bit(ncounter(1));
CLOCK4 <= to_bit(pcounter(0));
CLOCK2 <= to_bit(pcounter(1));
CLOCK0_5 <= to_bit(pcounter(3));

-- Produce 60/40 6800 syncronous E clock

CLOCK_E <= '1' when e_counter = "0110" or e_counter = "0111" or
 e_counter = "1000" or e_counter = "1001" else '0';

--SR FlipFlop
process(dcm8,RESET)
begin
 if RESET = '0' then
 int_vman <= '1';
 elsif rising_edge(dcm8) then
 if (e_counter = "0010" and VPAn = '0') then
 int_vman <= '0';
 elsif VPAn = '1' then
 int_vman <= '1';
 end if;
 end if;
end process;

--Generate DTACK to end bus cycle
DTACKn <= '0' when (int_vman ='0' and (e_counter = "1000" or e_counter
="1001")) else '1';

VMAn <= int_vman;

end Behavioral;

F

rom_control.vhd, a VHDL component for resizing 8 bit Flash memory bus to 16 bit.

-- Company:
-- Engineer: Lyndon Amsdon
--
-- Create Date: 00:34:12 10/12/2007
-- Design Name:
-- Module Name: rom_control - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description: A small state machine to use 8 bit flash ROM on a 16bit
-- bus
-- Stores low byte then increments A0
-- 2x CPU clock needed
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - Changed Endian as file is transferred to target from
-- Intel Host
-- Revision 0.01 - File Created
-- Additional Comments:
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rom_control is
 Port (
 FLASH_DATA : in bit_VECTOR (7 downto 0);
 FLASH_ADDR : out bit_VECTOR (17 downto 0);
 D_BUS : out std_logic_VECTOR (15 downto 0);
 CLOCK : in bit;
 A_BUS : in bit_VECTOR (17 downto 1);
 CS : in bit;
 RESET : in bit
);
end rom_control;

architecture Behavioral of rom_control is

-- define states
type state_type is (idle,botbyte,topbyte,incaddr);
signal state : state_type;

signal a0 : bit;
signal lowbyte : bit_vector(7 downto 0);
signal highbyte : bit_vector(7 downto 0);

begin

process (RESET,CLOCK)
 begin
 if RESET = '0' then state <= idle;
 elsif CLOCK = '1' and CLOCK' event then
 case state is

 when idle =>
 if CS = '0' then -- cycle started
 a0 <= '0';
 state <= botbyte;
 else
 a0 <= '0';
 state <= idle;
 end if;

 when botbyte =>
 highbyte <= FLASH_DATA;
 a0 <= '0';
 state <= incaddr;

 when incaddr =>
 a0 <= '1'; -- increment address
 state <= topbyte;

 when topbyte =>
 a0 <= '1';
 lowbyte <= FLASH_DATA;
 if CS = '0' then -- cycle not finnished yet
 state <= topbyte;
 else
 state <= idle;
 end if;

 when others => null;
 end case;
 end if;
end process;

FLASH_ADDR <= A_BUS & a0; -- add the new A0 to the bus
D_BUS <= to_stdlogicvector(highbyte) & to_stdlogicvector(lowbyte) when
 CS ='0' else (others => '0');

end Behavioral;

G

led_debug.vhd, a VHDL component for driving the value of the CPU address and data

bus onto 7 segment displays. Hex2seg.vhd is a subcomponent.

-- Company:
-- Engineer: Lyndon Amsdon
--
-- Create Date: 16:41:38 10/12/2007
-- Design Name:
-- Module Name: led_debug - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description: Displays current data and address but on a 7 Segment
-- Also provides a flashing led to show clocks are up and running
--
-- Dependencies:
--
-- Revision:
-- Revision 0.09 - Support to show data bus on bus error cycles
-- Revision 0.08 - Data byte enables used to display blank character in
-- byte transfers
-- Revision 0.07 - UDSn used to display missing A0
-- Revision 0.06 - Improved so data is latched one CPU cycle after
-- dtackn low
-- Two clocks needed, one for display (slow ~0.5Mhz) and another for
-- CPU clock speed
-- Revision 0.05 - Added latch for data bus as data from RAM is cyclic
-- Revision 0.04 - Slowed display down a little bit
-- Revision 0.03 - Modified to display full address and data buses
-- Revision 0.02 - Modified to display current address
-- Revision 0.01 - File Created
-- Additional Comments:
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity led_debug is
 Port (
 ADDRESS : in bit_VECTOR (23 downto 1);
 DATA : in std_logic_VECTOR (15 downto 0);
 LEDCOL : out bit_VECTOR (4 downto 0);
 LEDROW : out bit_VECTOR (7 downto 0);
 CLOCK : in bit;
 CLOCK8 : in bit;
 LEDFLASH : out bit;
 UDSn: in bit;
 LDSn: in bit;
 DTACKn: in bit;
 BERRn: in bit;

 RESET : in bit
);
end led_debug;

architecture Behavioral of led_debug is

signal counter : std_logic_vector(20 downto 0);
signal temphex : bit_vector (3 downto 0);
signal tempseg : bit_vector (6 downto 0);
signal blank : bit;
signal temp_latch : bit_vector (15 downto 0);

-- define states
type state_type is (S4,S6,S8);
signal state : state_type;

-- LED Driver
begin
process(RESET,CLOCK) is
 begin
 if (RESET = '0') then -- reset signals
 counter <= (others => '0');
 elsif CLOCK = '1' and CLOCK' event then
 counter <= counter + 1; -- increment counter
 LEDFLASH <= to_bit(counter(18));
 case counter(1 downto 0) is
 when "00" => --DIGIT1
 blank <= '0';
 if counter(20 downto 19) = "00" then
 blank <= '1'; -- display blank char
 elsif counter(20 downto 19) = "01" then
 temphex <= ADDRESS (15 downto 12);
 else
 blank <= UDSn;
 temphex <= temp_latch (15 downto 12);
 end if;
 LEDROW <= '1' & tempseg;
 LEDCOL <= "00001";
 when "01" => --DIGIT2
 blank <= '0';
 if counter(20 downto 19) = "00" then
 blank <= '1'; -- display blank char
 elsif counter(20 downto 19) = "01" then
 temphex <= ADDRESS (11 downto 8);
 else
 blank <= UDSn;
 temphex <= temp_latch (11 downto 8);
 end if;
 LEDROW <= '1' & tempseg;
 LEDCOL <= "00010";
 when "10" => --DIGIT3
 blank <= '0';
 if counter(20 downto 19) = "00" then
 temphex <= ADDRESS (23 downto 20);
 elsif counter(20 downto 19) = "01" then
 temphex <= ADDRESS (7 downto 4);

 else
 blank <= LDSn;
 temphex <= temp_latch (7 downto 4);
 end if;
 LEDROW <= '1' & tempseg;
 LEDCOL <= "00100";
 when "11" => --DIGIT4
 blank <= '0';
 if counter(20 downto 19) = "00" then
 temphex <= ADDRESS (19 downto 16);
 elsif counter(20 downto 19) = "01" then
 temphex <= ADDRESS (3 downto 1) & UDSn;
 else
 blank <= LDSn;
 temphex <= temp_latch (3 downto 0);
 end if;
 LEDROW <= '1' & tempseg;
 LEDCOL <= "01000";

 when others =>
 null;
 end case;
 end if;
 end process;

process (CLOCK8)
 begin
 if CLOCK8 = '0' and CLOCK8' event then
 case state is
 when S4 =>
 if DTACKn = '0' or BERRn = '0' then -- cycle started
 state <= S6;
 else
 state <= S4;
 end if;
 when S6 =>
 temp_latch <= to_bitvector(DATA);
 state <= S8;
 when S8 =>
 state <= S4;
 when others => null;
 end case;
 end if;
end process;

I_HEX2SEG : entity work.hex2seg
 port map
 (
 BLANK => blank,
 HEX => temphex,
 SEG => tempseg
);

end Behavioral;

-- Company:
-- Engineer: Lyndon Amsdon
--
-- Create Date: 21:53:10 10/15/2007
-- Design Name:
-- Module Name: hex2seg - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description: Converts a Hex value to a 7 segment display
-- Dependencies:
-- Revision:
-- Revision 0.02 - Added option to display a '-' character
-- Revision 0.01 - File Created
-- Additional Comments:
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity hex2seg is
 Port (
 BLANK : in bit;
 HEX : in bit_vector (3 downto 0);
 SEG : out bit_vector (6 downto 0)
);
end hex2seg;
architecture Behavioral of hex2seg is
signal conversion : bit_vector (6 downto 0);
begin

SEG <= "1111110" when BLANK = '1' else conversion;
with HEX select
 conversion <= "0000001" when "0000",
 "1001111" when "0001",
 "0010010" when "0010",
 "0000110" when "0011",
 "1001100" when "0100",
 "0100100" when "0101",
 "0100000" when "0110",
 "0001111" when "0111",
 "0000000" when "1000",
 "0000100" when "1001",
 "0001000" when "1010",
 "1100000" when "1011",
 "0110001" when "1100",
 "1000010" when "1101",
 "0110000" when "1110",
 "0111000" when "1111",
 "0111000" when others;

end Behavioral;

H

Schematic from ‘Microprocessor System Design’ by Alan Clements showing single step

control of the Motorola MC68000.

I

Single_step.vhd, a VHDL component for controlling single stepping of the CPU through

bus cycles.

-- Company:
-- Engineer:
--
-- Create Date: 15:09:37 01/15/2008
-- Design Name:
-- Module Name: single_step - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
-- Used to intercept the bus cycle handshaking to the CPU so
-- that a switch can be used to single step the SPU
--
-- Dependencies:
--
-- Revision:
-- Revision 0.04 - Added reset for state machine
-- Revision 0.03 - Modified to work with pulsing dtack in (eg from mmu)
-- Revision 0.02 - Getting stuck in Busend State, changed to delay
-- rather
-- than checking for AS going high.
-- Revision 0.01 - File Created, use state machine
-- Additional Comments:
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity single_step is
 Port (CLK16 : in bit;
 CLK8 : in bit;
 RESET : in bit;
 RAM : in bit;
 AS : in bit;
 DTACK_I : in bit;
 BERR_I : in bit;
 SWITCH : in bit;
 DTACK_O : out bit;
 BERR_O : out bit);
end single_step;

architecture Behavioral of single_step is

signal counter : std_logic_vector(23 downto 0);

-- define states
type state_type is (idle,button,busend,delay,ramaccess);
signal state : state_type;

begin

process (CLK16,RESET)
begin
if reset = '0' then
 state <= idle;
 BERR_O <= '1';
 DTACK_O <= '1';
elsif CLK16 = '1' and CLK16' event then

case state is

when idle =>
 BERR_O <= '1';
 DTACK_O <= '1';
 counter <= "000000000000000000000000"; --reset counter
 if AS = '0' then -- cycle started
 state <= button;
 else
 state <= idle;
 end if;

when button =>
 if switch ='0' and RAM ='0' and CLK8 ='0' and DTACK_I ='1' then
 DTACK_O <= DTACK_I;
 BERR_O <= BERR_I;
 state <= ramaccess;
 elsif switch='0' and RAM='1' and (DTACK_I='0' or BERR_I='0') then
 DTACK_O <= DTACK_I;
 BERR_O <= BERR_I;
 state <= busend;

else
 state <= button;
 end if;

when busend =>

--if AS = '1' then -- cycle ended
 DTACK_O <= DTACK_I;
 BERR_O <= BERR_I;

state <= delay;
 --else
 -- state <= busend;
 --end if;

when delay =>
 if counter = "111111111111111111111111" then -- debounce counter
 state <= idle;
 else
 BERR_O <= '1';
 DTACK_O <= '1';
 counter<=counter+1; --increment for 1 second delay counter
 state <= delay;
 end if;

when ramaccess =>
 DTACK_O <= DTACK_I;
 BERR_O <= BERR_I;
 if RAM = '1' then -- wait for cycle to end
 state <= delay;
 else
 state <= ramaccess;
 end if;

when others => null;
end case;
end if;
end process;

end Behavioral;

J

Change to MFP IP core wf68901ip_timers.vhd for correct generation of x_CNTSTRB

where x is the Timer letter.

Old:

wait until CLK = '1' and CLK' event;
if PRESCALE > x"00" and XTAL_STRB = '1' then
 PRESCALE := PRESCALE - '1';
else
 case TACR(2 downto 0) is
 when "111" => PRESCALE := x"C7"; -- Prescaler = 200.
 when "110" => PRESCALE := x"63"; -- Prescaler = 100.
 when "101" => PRESCALE := x"3F"; -- Prescaler = 64.
 when "100" => PRESCALE := x"31"; -- Prescaler = 50.
 when "011" => PRESCALE := x"0F"; -- Prescaler = 16.
 when "010" => PRESCALE := x"09"; -- Prescaler = 10.
 when "001" => PRESCALE := x"03"; -- Prescaler = 4.
 when "000" => PRESCALE := x"00"; -- Timer stopped or event
 -- count mode.
 end case;
end if;
case PRESCALE is

when x"00" => A_CNTSTRB <= '1';
 when others => A_CNTSTRB <= '0';
end case;

New:

wait until CLK = '1' and CLK' event;
if PRESCALE > x"00" and XTAL_STRB = '1' then
 PRESCALE := PRESCALE - '1';
elsif XTAL_STRB = '1' then
 case TACR(2 downto 0) is
 when "111" => PRESCALE := x"C7"; -- Prescaler = 200.
 when "110" => PRESCALE := x"63"; -- Prescaler = 100.
 when "101" => PRESCALE := x"3F"; -- Prescaler = 64.
 when "100" => PRESCALE := x"31"; -- Prescaler = 50.
 when "011" => PRESCALE := x"0F"; -- Prescaler = 16.
 when "010" => PRESCALE := x"09"; -- Prescaler = 10.
 when "001" => PRESCALE := x"03"; -- Prescaler = 4.
 when "000" => PRESCALE := x"00"; -- Timer stopped or event
 -- count mode.
 end case;
end if;
case PRESCALE is

 when x"00" => A_CNTSTRB <= XTAL_STRB;

 when others => A_CNTSTRB <= '0';

end case;

K

Change to Glue IP core wf25915ip_interrupts.vhd for correct generation of IPL level

from interrupt sources, MFP, HBL and VBL.

Old:

PRIODECODER: process(EINT3n, EINT5n, EINT7n, GI_In)
 begin
 if EINT7n = '0' then -- Highest priority.
 IPLn <= "000";
 elsif GI_In(1) = '0' and GI_In(2) = '0' then -- MFPINT.
 IPLn <= "001";
 elsif EINT5n = '0' then
 IPLn <= "010";
 elsif GI_In(1) = '0' and GI_In(2) = '1' then -- H-Blank.
 IPLn <= "011";
 elsif EINT3n = '0' then
 IPLn <= "100";
 elsif GI_In(1) = '1' and GI_In(2) = '0' then -- V-Blank.
 IPLn <= "101";
 else
 IPLn <= "111";
 end if;
end process PRIODECODER;

New:

PRIODECODER: process(EINT3n, EINT5n, EINT7n, GI_In)
 begin
 if EINT7n = '0' then -- Highest priority.
 IPLn <= "000";
 elsif GI_In(2) = '0' and GI_In(1) = '0' then -- MFPINT.
 IPLn <= "001";
 elsif EINT5n = '0' then
 IPLn <= "010";
 elsif GI_In(2) = '0' and GI_In(1) = '1' then -- V-Blank.
 IPLn <= "011"; -- 011
 elsif EINT3n = '0' then
 IPLn <= "100";
 elsif GI_In(2) = '1' and GI_In(1) = '0' then -- H-Blank.
 IPLn <= "101"; -- 101
 else
 IPLn <= "111";
 end if;
end process PRIODECODER;

L

Schematic of the revised Eiffel project, to support control of an ATX power supply and

use of Sony Playstation controllers.

M

Gembench and SysInfo Results.

N

Two sections from wf25915ip_video_timing.vhd, first is the original and the second is

the revised version with equality relational operators.

DE_CTRL: process(CLK, RESETn)
begin
if RESETn = '0' then
 HDE <= '0'; -- Blanking out.
 VDE <= '0'; -- Blanking out.
elsif CLK = '1' and CLK' event then
 -- Horizontal controls:
 if SHIFTMODE = "10" then -- 35.714 kHz.
 if HTEMP > "000101000" and HTEMP <= "001101000" then
 HDE <= '0'; -- 8us low, 3.0 before and 2.0 after HSYNC.
 else
 HDE <= '1';
 end if;
 else -- 15.625 kHz.
 if HTEMP > "010110100" and HTEMP <= "101110100" then
 HDE <= '0'; -- 24us low,14 before and 5 after HSYNC.
 else
 HDE <= '1';
 end if;
 end if;

 -- Vertical controls:

if SHIFTMODE = "10" then -- 72Hz.
 if VTEMP > "011010001" and VTEMP <= "100110010" then
 VDE <= '0'; -- 97 lines low,47 before and 49 after VSYNC.
 else
 VDE <= '1';
 end if;
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '0' then
 -- 60.00Hz.
 if VTEMP > "000011000" and VTEMP <= "001010111" then
 VDE <= '0'; -- 63 lines low,40 before and 20 after VSYNC.
 else
 VDE <= '1';
 end if;
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '1' then
 -- 50.00Hz.
 if VTEMP > "000000111" and VTEMP <= "001111010" then
 VDE <= '0'; -- 115 lines low,72 before and 40 after VSYNC.
 else
 VDE <= '1';
 end if;
 else
 VDE <= '1';
 end if;
end if;
end process DE_CTRL;

DE_CTRL: process(CLK, RESETn)
begin
if RESETn = '0' then
 HDE <= '0'; -- Blanking out.
 VDE <= '0'; -- Blanking out.
elsif CLK = '1' and CLK' event then
 -- Horizontal controls:
 if SHIFTMODE = "10" then -- 35.714 kHz.
 if HTEMP = "000000100" then --4
 HDE <= '1'; -- 8us low, 3.0 before and 2.0 after HSYNC.
 elsif HTEMP = "010100100" or HTEMP = "010101100" then --164 or 172
 HDE <= '0';
 end if;
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '0' then
 -- 60.00Hz.
 if HTEMP = "000110100" then --52
 HDE <= '1'; -- 24us low,14 before and 5 after HSYNC.
 elsif HTEMP = "101110100" or HTEMP = "111001100" then --372 or 460
 HDE <= '0';
 end if;
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and SYNCMODE(1) = '1' then
 -- 50.00Hz.
 if HTEMP = "000111000" then --56
 HDE <= '1'; -- 24us low,14 before and 5 after HSYNC.
 elsif HTEMP = "101111000" or HTEMP = "111010000" then --376 or 464
 HDE <= '0';
 end if;
 end if;

 -- Vertical controls:
 if SHIFTMODE = "10" and HTEMP = "011010000" then -- 72Hz.
 if VTEMP = "111000000" or VTEMP = "111011001" then -- 448 or 473
 VDE <= '0'; -- 97 lines low,47 before and 49 after VSYNC.
 elsif VTEMP = "000110000" then --48
 VDE <= '1';
 end if;
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and HTEMP = "111101100" and
SYNCMODE(1) = '0' then -- 60.00Hz.
 if (VTEMP = "011101010" or VTEMP = "100000010") then --234 or 258
 VDE <= '0';
 elsif VTEMP = "000100010" then --34
 VDE <= '1';
 end if;
 elsif (SHIFTMODE = "01" or SHIFTMODE = "00") and HTEMP = "111110000" and
SYNCMODE(1) = '1' then -- 50.00Hz.
 if (VTEMP = "100000111" or VTEMP = "100110100") then --263 or 308
 VDE <= '0';
 elsif VTEMP = "000111111" then --63
 VDE <= '1';
 end if;
 end if;
end if;
end process DE_CTRL;

