THE CONCISE ATARI ST 68000

PROGRAMMER'S REFERENCE GUIDE

Katherine Peel

About the Atari ST Series

The Atari ST is one of the most significant new computers to be
launched in recent years. Its performance and technical specifications
are outstanding and comparable to machines several times the price.
Moreover, it is a machine which appeals to the hobbyist and business
user alike and the large amount of software available allows it to be used

extensively in the home or office.

This series of books provides Atari ST owners with practical, down-
to-earth information about their computers — from the introductory
level through to advanced programming techniques and professional

business uses.

About this book

The aim of this book is to provide the Atari ST user with a complete
reference manual to the machine. It is designed to be used both as a
quick reference manual and as a source of detailed technical material.
Topics covered include machine code programming, details of GEM and
the operating system. Much of the material included in the book has
been taken directly from official Atari technical documentation and is
unlikely to be found from any other source. The book will be an
essential reference manual for every Atari ST owner.

About the author

Katherine Peel was formerly a senior systems analyst in industry, and
now works as a freelance author. She has been a major contributor of
reviews and technical articles to the “Your Computer” magazine for a
number of years, providing in-depth authoritative reviews of the latest

hardware.

Other titles in the series
Introducing the Atari ST

Business Applications with the Atari ST

Using ST BASIC on the Atari ST Using Graphics on the Atari ST
Using GEM on the Atari ST Using LOGO on the Atari ST
Using Databases on the Atari ST Practical LOGO on the Atari ST

PUBLISHERS B LIMITED

Glentop Publishers Ltd
Standfast House

Bath Place

High Street Barnet
Herts EN5 5XE

ISBN 1-85181-017-X

£1 95
II1I$I| “

81851781

t

L

nﬂ
""-m-
L

Series Editor: Robin Bradbeer
Foreword by Jack Tramiel

THE CONCISE
ATARI ST 68000
PROGRAMMER'’S
REFERENCE GUIDE

Katherine Peel

GLENTOP]

Concise Atari 68000
Programmer’s Reference Guide

by
K.D. Peel

ﬂgﬁiaaisﬂ_ggﬂ;gaqﬂ.gj
..lllr.lll.ll — — —] D—

rllrl — Inﬂxﬂmﬁnﬂnml .

ttot tt %EEEEE

AWM M M W

mm md mommnm

)

Concise

ATARI 68000
PROGRAMMER’S
REFERENCE GUIDE

by

K.D. Peel

Glentop Publishers Ltd

AUGUST 1986

All programs in this book have been written expressly to illustrate specific
teaching points. They are not warranted as being suitable for any particular
application. Every care has been taken in the writing and presentation of
this book but no responsibility is assumed by the author or publishers for
any errors or omissions contained herein.

COPYRIGHT © Glentop Publishers Ltd 1986
World rights reserved

No part of this publication may be copied, transmitted or stored in a
retrieval system or reproduced in any way including but not limited to
photography, photocopy, magnetic or other recording means, without prior
permission from the publishers, with the exception of material entered and
executed on a computer system for the reader’s own use

ISBN 1 85181 017 X

Glentop Publishers Ltd
Standfast House

Bath Place

High Street

Barnet

Herts EN55XE

Tel: 01-441-4130

Published by:

Originated directly from the publisher’s w-p disks by
NWIL. Editorial Services, Langport, Somerset, TA10 9DG

\\

W owl o W o

ITQI"1 m m m

-;ﬂﬂﬂﬂ’;’m)ﬂmmm

a
:
:
:
3
i
,
:
:
:
.

Contents

Chapter 1 - Atari ST hardware

Atari ST Block diagram
General hardware description

Atari ST console expansion connections overview
Monitor/TV output
Monitor output
Parallel printer interface
RS232 modem interface
Floppy Disk interface
Direct memory access port
Musical instrument interface (MIDI)
Plug-in cartridge port

Intelligent keyboard (ikbd)
Mouse/joystick interface
Power supply

Processor device outlines
Motorola MC681-21 microprocessor
WD1772A floppy disk controller
MC68901 multi-function processor
MC6850 asynchronous communications interface adaptor
YM2149 Yamaha programmable sound generator

Custom Designed Devices
Direct memory access controller (DMA)
Memory management unit (MMU)
Video controller (shifter)
General housekeeping (glue)

Chapter 2 - The operating system (70S) overview

Operating system overview
Basic input/output system (BIOS)
Basic disk operating system (BDOS)

Memory allocations
Atari Memory map
System tables
Configuration registers

Resource mangement overview

2-3
2-4
2-5

2-6
2-6
2-7
2-8

2-9

i

Graphics concept overview
Overview of Screens
Colour changing

Sound
Sound concept overview
Sound configuration registers

GEMDOS disk operating system overview
Atari ST file system
Atari ST disk system
Atari ST BIOS comparisons

System initialization
Cartridge software
Boot sectors
Boot loader
Boot ROM

Atari ST peripheral device communications
Communications overview
RS232 interface
Parallel port interface
Midi interface
Intelligent keyboard interface
Floppy disk interface
Formatting a floppy disk
WD 1772A DMA channel interface
DMA interface
DMA bus boot code
Hard disk partitioning

Chapter 3 — Atari ST traps and utilities

General

Traps

GEM BIOS calls (trap #13)
Extended BIOS calls (trap #14)
GEM BDOS function calls (trap #1)
Supervisor/user toggle
Extended BDOS calls (trap #2)

VDI calls
AES calls
Urtilities
IKBD commands

A-line routines

Interrupt Handler

2-10
2-12
2-15

2-16
2-16
2-18

2=20
2-25
2-26
2-27

2-28
2-31
2-32
2-34
2-35

2-36
2-36
2-37
2-38
2-39
2-41
2-43
2-44
2-45
2-47
2-48
2-50

3-2

3-3

3-4

3-6
3-14
3-21
3-22
3-23
3-58

3-92
3-97

3-106

ppe——
woow

\\

@
mmwmmm

g i E=————

=
e
&
e
»
=
=
e
&
| <3

|
|
|
|
|

w oo

v

%waw-ﬂwm

CUVRVY

Appendices

A System variables
B Configuration registers

C Printer and terminal escape codes
Typical Epson printer codes
VT 52 terminal escape codes

D Keycode definitions
ASCII codes
GSX compatible keyscan codes
VDI standard keyboard codes

E Callable functions

GEM BIOS calls
Extended ST BIOS calls
GEM BDOS calls
Extended ST BDOS calls
GEM VDI functions
GEM AES function calls

IKBD command set

A-line routines

F Parameter blocks

System start-up block

Device drivers

Device state block

Program parameter blocks
GEM parameter block
VDI parameter block
AES parameter block

A-line tables

Sprite definition block

Header blocks
Cartridge header block
Application header block

G MC68000 instruction summary
Address mode
Allowable address mode types
Address modes encoding
Data storage
Data types
Instruction summary

V11

F-10
F-13
F-14
F-14
F-14

G-1

R

G-12

VIl X

= 3
H MC68000 instruction codes H-1 -l ‘i‘ L Example programs L-1
Instruction codes H-4 ' 1 i 2
Bit manipulation, move peripheral immediate instruction H-4 = GEM i 5 L-3
Move byte instruction H-5 A‘pphcanon and a?cessory header file L--9
Move longword instruction H-5 EII | giﬁ jcmunstraqon pmgral‘jnl"l' L-11
R i Hes o v emonstration assembly program
Miscellaneous instructions H-6 | TOS
Add Quick, subtract quick, set conditionally H-7 E“ 3 Display demonstration program L-21
and decrement instructions = TOS header file L-23
Branch conditionally instructions H-8 Character printing program L-24
Conditional tests H-8 [— Sound demonstration program L-27
Move quick instructions H-9 = | A-LINE
Or, divide and Subtract Decimal instructions H-9 g | %)
Subtract and Subtract Extended instructions H-10 .l__ . ‘ A—L:me paramctcr‘tablc 11,;;1
Emulation instructions H-10 "’E[Sprite demonstration
Compare, exclusive or instructions H-10 i M Giossary M-1
And, multiply, add decimal, exchange instructions H-11 a
Add, add extended instructions H-11 - . o e s
Shift/rotate instructions H-12 El; B SehEmasic Qg e
Emulation instruction, type 15 H-13 ‘ 0 nNoTes
I Error codes -1 E-' $T4Tus ACalsTen . o-%|
BIOS error codes -2 mngmoly AlechTio~ u~IeR FAST 8431 € O-<
BDOS error codes I-3

s B

q
3
=

3

3
5
3

3

1
3

3

Miscellaneous error codes

J BASICGEM J-1
GEMSYS J-2 :r
VDISYS J-2
SYSTAB J-3
BASIC assembler J-5 E.
Hand coding J-6 |
K Program development tools K-1
Atari MC68000 assemblers K-2 ﬁ
Seka K-2
Hisoft K-3
GST K~4 -
Metacomco K-4
Digital Research K-5
General assembler compatibility K-7 E
Assembler directives compatibility K-8
Assembler conversions K-9
Calling procedures K-12 é
C compilers K-14

Wil il o W o adl wd

wal

ul el

il

3

-y

(U S ¥

X1

Preface

This book is intended as a compact reference guide to the Atari ST range of
computers, it provides detailed information on the Atari ST hardware, an overview
of the operating systems and the operating system calls.

The majority of the book has been prepared in both decimal and hexadecimal
notation to make reading and data entry less complicated for the beginner, and those
who wish to use the VDI and AES tables from BASIC. I hope the use of decimal
will not be too distressful to the purists, but most assemblers will accept either
format as an input. The diagramatic presentation of data in memory and of stacks
follows the Motorola MC68000 user’s manual format of low memory towards the
top of the page; presentation of memory maps follows the convention of high
memory towards the top of the page. All memory representations are annotated to
avoid confusion.

The Atari ST range of computers contain the largest ROM (192K) of all the current
home/low cost business computers available. This offers an enormous wealth of data
and routines that the user may wish to access; about six times that of most other
computers, this information is presented in a condensed group tabular form to
provide association. General descriptions of all the facilities available (disk, file,
interfaces etc) are provided to present the reader with at least an outline understand-
ing of their operation.

The book covers the programming of an Atari ST 16-bit computer in three parts:

Chapter 1 gives an overview of the Atari ST hardware and expansion ports, also
included is a short description of the peripheral interface circuits.

Chapter 2 presents an overview of the operating systems, the management of
memory and resources, control of serial 1/O, screen functions and file handling.

Chapter 3 provides the operating system calls for both GEM and TOS, the A-line
graphic functions and the intelligent keyboard command instructions.

Appendices contain the system variables, configuration registers and a summary of
the MC68000 instruction set.

xit

Acknowledgements

The author wishes to thank Atari Corp. (UK) Limited for its assistance in the
preparation of this book by providing much of the tuevchpicai data, which is
reproduced with the kind permission of Atari Corp. (UK) Limited.
The contents of the Atari ST ROM are the copyright of Atari Corp.
Atari ST and TOS are the trademarks of Atari Corp.
CP/M and CP/M 68K are the registered trademarks of Digital Research Inc.
GEM and GEM Desktop are trademarks of Digital Research Inc.
MS is a trademark of Microsoft Corporation.
IBM is a registered trademark of International Business Machines Corporation.
Epson is a trademark of Epson Corporation.
Motorola is a registered trademark of Motorola Inc.
Metacomco is a trademark of Tenchstar Ltd.
GST is a trademark of GST Holdings Ltd.

Kseka is a trademark of Andelos Software 1985.

Devpak is a trademark of Hisoft Ltd.

Disclaimer

Neither Atari nor the author make any representation or warranty with respect to
the contents hereof and specifically disclaims any implied warranties of merchant-
ability or fitness for any particular purpose. No responsibility for the use of the
information contained hereto, nor for any infringements of patents or other rights of
third parties which result from such use shall be assumed.

\
_=

\

L\

Ll

Wl Wl W Wl W W oW W b

L

L1

°®

mmmmm

m_m_m 4" m_n

m

all

X

Foreword
by Jack Tramiel

When we introduced the ST series of computers at Atari, we coined the phrase
‘Power without the Price’. This sums up all that had been in our minds when we
decided to design a range of powerful but low-cost machines that could be used for

all applications ranging from sophisticated games to complex business and scientific
uses.

During the past few years, ever since I was responsible for bringing the first mass-
produced electronic calculators and then the first true computers to the public at an
affordable price, my whole aim has been to bring the benefits of technology to those
of average income. We have to get high technology out of the hands of the few into
the hands of the many. As I have said before we want ‘classes for the masses’. If you
give somebody some sophisticated machinery then you’ll be surprised what they can
do with it. Time and again we have been amazed at what users have done with the
technology when it is made freely available at an affordable price.

And that brings me on to this series of books, edited by my old acquaintance Robin
Bradbeer. It is impossible to give all the information necessary to completely cover
all the uses of a computer in the instruction manual. Also, if more than one person
explains something they bring out differing strengths of the system. This series of
books should help all users of the ST to get to know the machine better and
therefore use it more productively. Who knows, we at Atari may yet again be

surprised by what you, the user, can do with the affordable technology that we have
provided.

Jack Tramiel
1986

Chapter 1
Atari ST hardware

~
= .3 e e e g 3 m e LA e e s e e - " —~-

o

1-2
ATARI ST BLOCK DIAGRAM
Video
MMU ULA RAM controller
Memory ULA e
management Video
unit Video out
shifter I
Buf Buf
Data bus
Glue ULA
ROM Processor
. ROM
DMA ULA e,xpanswn
port
Direct Address bus
memory
access
Data bus
e
ACIA
6850
WD 17724 | | PSG 2149 MK 68901 ACIA
6850
[{ HD 6301
Keyboard
/
Hard Disk Audio RS232 Midi
\y [
Floppy Disk Parallel

-
-
all

A\

=

'.
5

=
1
.ii!l 3
CER
| =
=
3
=
.
=
=
| =
ﬁ?
]

(v 4

u] b

General hardware description

The Atari ST computer system consists of a console unit featuring an integral
keyboard, a display screen, sound subsystem, peripheral input/output and an
operating system. Expansion ports are provided for the connection of a variety of
peripheral devices i.e. a mouse, joystick, printer, modem, floppy disk, ROM
cartridge application program etc.

The Atari ST console contains an 8MHz MC68000 16 bit microprocessor, at least
512K of resident RAM and a 192K ROM operating system. A Mostek MK 68901
multi function peripheral (MFP) device provides the general purpose interrupt
control and timers and a single direct main memory access channel, giving both high
and low speed access support, through a 32-bit FIFO to the 8 bit device controllers.

User input is via the integral intelligent keyboard, an external mechanical and or
optical mouse, or a switch type joystick. The keyboard communicates bidirectionally
at 7 Kbits/s with the main unit via a IMHz HD6301 8-bit microprocessor in the
keyboard unit, and a MC6850 asynchronous communications interface adapter
(ACIA) in the ST console.

The display may be either a monitor, high resolution black and white or colour (The
Atari STM also caters for a standard television display unit). The console
interrogates the display device to determine the type attatched, ensuring the high
frequency sync signals are not sent to low frequency monitors. There are three
display resolutions, 320 % 200 16 colour low resolution, 640 % 200 4 colour medium
resolution and 640 x 400 high resolution monochrome. The display memory is part
of the main memory and provides a matching bit-pixel relationship to the physical
screen in high resolution mode, with the screen origin at 0.0 in the top left hand
corner being bit 15 of word 0. The monochrome monitor (SM124) is capable of a
high quality display of the high resolution 640 x 400 ST graphics.

The music system sound effects and audio feedback output are created through the
monitor or television speaker, at frequencies in the range of 30Hz to 128Khz, via
three independant voice channels. The programmable sound generator outputs may
consist of a noise and a tone mixed at a fixed or variable amplitude defined by the
envelope generator.

The musical instruments digital interface (MIDI) enables the ST to integrate with
music synthesisers, sequencers, drum boxes etc. which incorporate the MIDI
interface; enabling OMNI, POLY and MONO networking.

Printer output is achieved via the parallel and RS232 interfaces, the latter also being
available for modem and general communication.

The floppy and hard disk interfaces provide the off-line data and program mass
storage facilities. The hard disk drive interface is accessed through the DMA
controller but the hard disk controller itself is off board. An on-board Western
Digital WD1772A supplies the floppy disk drive controller which interfaces the
Atari ST 3.5 disk drives (SF354 or SF314).

1-4 i 1=5

Main system surrounded by device subsystems

n .
B
The operating system may be either in 192K of ROM, or an image file on disk
MONITOR PLUG-IN CARTRIDGE FLOPPY DISK E: = ‘3 loaded by the disks boot sector, featuring the GEM operating environment of
Applications 349 Kbytes windows, icons, pull down menus. The ST is also supplied with two language
RGB composite languages formatted _ = implementations, an interpreted BASIC and Atari LOGO.
'
128K ROM max ﬁ o The ST can accept other operating systems loaded via the boot sector or brought up
by a driver in an ‘AUTO" folder.
B3
DMAPORT FLOPPY DISK
Direct INTERFACE ?’_' -ﬁ
memory MAIN SYSTEM Supports ')
HOCESS two drives .)
8 MHz 68000 processor [3
10 Mbyte — 1
Hard dji; sk 16 Mbyte addressing range WD 1772A ﬁ j
interface Graphi b
raphics subsystem ,
P B3
32k bit map
320 % 200 16 colours ﬁ 3
640 % 200 4 colours = 1
PARALLEL 640 x 400 monochrome RS232 I/F .
PRINTER rts/dtr/cts/dcd/ring
INTERFACE Sound subsystem ﬁ 5 3
L] 50-19200 baud
Centronics Programmable sound
v generator (PSG) YM 2149 MC 68901
8 bit port E. a
bi-directional [| 3 independant voices
MC 68901 ROM 192K
RAM >= 512K MOUSE/JOSTICK F' ‘i
PORT
Packages J
MIDI I/F GEM Two-button w;. E
! Desktop mouse
Omm—dPo]y Applications
an .
"
Mono MC 6850 i: 3
network =
MC 6850 i ';. i
input/output JOYSTICK PORT
)
INTELLIGENT KEYBOARD I- i ' 1
HD 6301 I
==

)

Atari ST console expansion

Power

7 way DIN 7P plug
(if external)

Midi out
5 way DIN 58 socket

Midi in
5 way DIN 58 socket

Video
RCA pin jack (if fitted)

Monitor output
Composite & RGB

13 way DIN 138 socket

@ OO O

Parallel 8-bit bidirectional -’“}KO 000000000 O0O0 O?
\-:;\J

printerport| () \ 4 5606000000000

25 way DB 258 socket

m B B W

Y

wil

L& ¥] Las

()

.

ak) an) dm) Ww)

connections overview

o
' alocoooooo0o0000000)
Iﬁ>@oooooooooooo O

Floppy Disk Controller
(Up to 2 drives)

14 way DIN 148 socket

C\; 0C000000000 ’
Q\OOOOOOOOOO @

ENHMHMMHMMHmhMHmE
DAL REN g npapepnquujopngngnge

O0O00O0 Joystick
0000 PR
9 way DB 9P plug
Joystick

O0O00O0
O00O0

9 way DB 9P plug

RS232C Modem port
25 way DB 25P plug

Hard disk port (DMA)
19 way DB 198 socket

ROM expansion port

40 way socket

(configured as a mouse)

MONITOR | TVOUTPUT MONITOR OUTPUT

Television (where fitted) @

The monitor output supports either a high resolution black and white monitor

Monochrome Monitor
(Atari SM124) or a medium resolution colour monitor (Atari SC1224). Sound is

Atari SM124 RCA pin jack > - :
71.25 Hz scan rate Core: RF modulated video m! - ": reproduced through the display device speaker.
Shield: Ground : g
Colous Monitor - Any suitable monitor may be attached, typical performance:
-5
Atari SC1224 RGB & 5
50/60 Hz scan rate '
i ‘;l- Low Medium High
4 ¥ Resolution Resolution Resolution
13 way DIN 138 socket 'Y |]
4 1 Sonc BV s b . Rffsolutmn 452 x 585 pixels | 653 x 585 pixels | 895 x 585 pixels
8 5 y : - Video Bandwidth | 10 Mh
3 . Audio 1V pk-pk 10 Kohm | b 187 oo 2 g 18 Mhz
Video 1V pk-pk 75 ohm i 0.41mm 0.31mm
13 o Vertical scan 50/60 Hz 50/60 Hz 71.2Hz
= Input video 1 VDC pk-pk
audio 1 VDC pk-pk
- Sync 5 VDC acti
ST signal processing device ¥ - i IO‘T

Pin Function

1 Audioout b

2 Composite video ¥ -

3 General purpose output TTL PSGI/OA

4 Monochrome detect TTL MFP |

active low, 1K pull up to 5V

5 Audioin

6 Green =

7 Red L -

8 Ground :

9 Horizontal sync | 4 J
10 Blue)

11 Monochrome
12 Vertical sync
13 Ground

"8 ._-J ami

]

el

* 1-10 g I 1-11
" a
PARALLEL PRINTER INTERFACE - : RS232 MODEM INTERFACE
Bi:
i‘; 1 _i @] 23 {"VIx transmit
o 1 Strobe = c— O 3 Rx receive
MFP
- MFP — O 5 1CTS clear to send
55 D [€ 2 3 «—4 O 8 DCD data carrier detect
= — ata
PSGLIOportB O «—~ O 22 RI ring indicator
/O port A 5 @] 11 Busy i} 3 i PSGwrteonly
110 Py,) I/O port A 3 - O 4 RTS ready tosend
; t
Main console {C por o = Bitnoud 3 O 20 DTR dataterminal ready
The parallel port interface provides an 8-bit data communication channel controlled E 1 j FF8802
by a strobe signal generated by the ST, indicating that data‘bits are available on the ()
data lines for transfer to the peripheral, and a busy signal generated by the = Main console I]O port
; s iahaaie ol it is busy, has a faul ibl % ; :
peripheral (usually a printer) indicating either that it 1s busy, has & ault or possibly = 3 The RS232 interface is controlled via the PSG I/O port A (RTS and DTR) and the
out of paper if a printer. MFP (CTS, DCD and RI) transmitting and receiving data within the range 50 to
) 192K baud, the timing synchronization is generated by the multi-function processor
= -_— :
25 way DB 258 socket mis '3 (MFP) timer D.
: : The interface supports hardware handshake control:
Pin Function
ﬁ . ': Transmit PSG I/O port A Receive MFP inputs Software
1110 1 Strobe - RTS CTS Ring control is through
Ao 8 14 2. Damil DTR DCD Xon/off protocol.
© 5 3 Data2 B 3 25 way DB 25P plug
5 4 Data3 7
o e 5 Data4d Data generated at a typical Pt
O (o) 6 Data5 rate of 4kbytes/s by the ﬁ . 3
8 o) 7 Datab PSGI/O port B ' 0 et s | Protective ground
(o) 8 Data7 \] B2 Transmit data
8 (@] 9 Data8] "E‘" =-"’ % 3 Rx Receive data
8 O 10 n.c Acknowledge is not supported 3 j 8 0o 44 RTS Ready to send
o (0] 11 Busy o (@] 51 WETS Clear to send
o (0] 12-17 n.c @'i 3 0 o 6 nfc
OJ|2s 18-25 Ground o 7 Gnd Signal ground
130~ o :
(0] ®) 8 DCD Data carrier detect
@ E'" 3 0o @ 9-19 n/c
o 8 20 DTR Data terminal ready
. [: : 21 nfc
ted by the PSG 1/O port A (pin 1), supplies the (o)
The parallel port strobe signal generated by 1Op - o (o] — Ringindicton
data transfer synchronization. I] o (o) oe i
- : o i
The busy signal (pin 11) is read by the console MFP and provides the handshake 4 3—9)
control. . 3 o RS8232 signal levels
) . . - Z, + +
The strobe signal is active low, the busy signal active high, with a 1Kohm pull up j @ O::: _33:;0_12‘1;2‘;
resistor to +5V. All signals are at TTL levels. = 3

low- (250 to 500 Kbit/s) speed 8-bit device controllers.

E' " !?
NTERFACE
FLOPPYDISKINTE S DIRECT MEMORY ACCESS PORT
This port can be use to provide access to a hard disk or a compact disk. The hard
(@) 4 index pulse — disk controller, not supplied with the basic ST system, communicates through a
0o 8 motor on u! - 1 sequence of six bytes which provide format, read and write facilities etc. The
WD1772A o 9 direction in command protocol used is referred to as ANSI X3T9.2, a SCSI-like small computer
1% 10 step = ? systems interface, of which the ST supports a small subset.
(o] 12 write gate i
O 2 select side = The Atari hard disk descriptor block consists of a six byte command packet
PSG (0] 5 drive 0 conforming to the following:
0] 6 drive 1 i'| ' 3
 — Six byte command packet
Main console I/O port ‘] D
- Byt Bir
srie ; E_! 2 .] f\v:: N;. Function Range
The floppy disk interface is based on an on-board Western Digital WD1772A dlsk{
i ives. There is no hardware sensing o
C(fmtmller ih sup{:iOI:tS . mam’f:lmgs(:zz:::; der l::csi rctrf::;fof data and programi on -r = 0 0-4 Operation code 031
disk reml?val. 'I:ha r‘wes g % e 3 5-7 Controller number 0-7
3.5” flexible micro disks.
14 way DIN 148 socket = 1 1 (_)—4 HEfld number 0-31
%; 5-7 Drive number 0-7
. : 2 0-5 Sector number 0-63
Pin Function E_‘ ! _a = i ‘
1 ylinder number high
1 read data TTL active low, 1K pull up :
2 selectside0 TTL active high (high system reset) b — 3 0-7 Cylinder number low
3 logic ground pair with read data E‘: : :
4 index pulse TTL active low, 1K pull up 4 0-7 Sector count
5 selectdrive 0 TTL active low (high system reset) =
6 selectdrivel TTL active low (high system reset) E(-j i 5 0-7 | Control byte
7 logic ground pair with write data
8 motoron TTL active low ‘\? = ,,.,J
: 1
9 ydigecivaiin TTL active Jow : 1 Hard disk command code summary
10 step TTL active low (inverted)
11 write data TTL active low . — Op code
12 write gate TTL active low = 3 Dec Hex Command
13 track 00 TTL active low, 1K pull up
14 write protect TTL active low, 1K pull up & 3 5 05 Verify track Multi-sector
; s 6 06 Format track transfer
i ted on the ST side.
The shield must not be connected on X 5 <6 Ay with imolied
ﬁ-" ? 10 0A Write sector seek
a 11 0B Seek
Data is written to 512 byte sectors. 13 oD Correction pattern
Ei' 3 26 1A Mode sense
3
There is only one DMA channel which is shared by both high- (up to 8 Mbit/s) and

1-14

DMA interface port socket

19 way DB 198 socket

10 1

00000000000 @
@ 0O000000000

19 11

Pin Function Signal type
1 data0
2 datal \
3 data2
4 data3
5 data4 T
6 data5
7 data6
8 data?7 /
9 chip select TTL active low
10 interrupt request TTL active low, 1K pull up
11 ground
12 reset TTL active low (system reset)
13 ground
14 acknowledge TTL active low
15 ground
16 Al TTL
17 ground
18 read/write TTL

19 datarequest

TTL active low, 1K pull up

B8
L e

&5

wil

wul

ACIA

1-15

MUSICAL INSTRUMENT INTERFACE (MIDI)

ad)

wal

Rx receive data

return

The MIDI interface functions through an MC6850 asynchronous communications

-

interface adaptor (ACIA) whose control/status register is located at $FFC04

’ (16776196); data is passed in the register at offset 2 from the control/status register.

(T8

the protocol:

One start bit
Eight data bits
One stop bit
No parity
31.25 Kbaud.

w

)

connector.

Data is transmitted serially via the MIDI ports through 2 pins asynchronously using

The MIDI ports operate in

Signal levels:

RS232 current loop mode, that is:

Zero 5mA
One no current

The MIDI OUT port also supports the optional through port which merely
provides the MIDI IN signals through an opto-coupled isolator at the MIDI OUT

Control of the port is available through the ST’s extended BIOS.

MIDI in
Sway DIN 58 socket

Pin Function

)

MIDI out|thru
5 way DIN 58 socket

n.c
n.c
n.c
In receive data

L I R N R S

In loop return

Pin

Function

(S B R S

Through t’mit data
Shield ground
Through loop return
Out transmit data
Out loop return

The MIDI ports may be used to network data between connected computers.

1-16

PLUG-IN CARTRIDGE PORT

This port provides a plug-in cartridge facility that does not sense in hardware the
presence of a cartridge. The cartridge ROM occupies addresses in the range:

$FA0000 (16384000) to $FBFFFF (16515071) - maximum 128 Kbytes

40 way 408 socket
1 39
Em Innononong |!|||l|l|I|I|l|I|§
ppapaL g apopnpupoqupufuiujugojuqe
2 40
Pin Function Pin Function
1 power +5Vdc 21 address 8
2 power +5Vdc 22 address 14
3 datal4 23 address7
4 datal5 24 address 9
5 datal2 25 address 6
6 datal3 26 address 10
7 datal0 27 address5
8 datall 28 address 12
9 data8 29 address 11
10 data9 30 address4
11 data6 31 ROMS3 select
12 data7 32 address 3
13 datad 33 ROM4 select
{ 14 data5 34 address2
15 data2 35 upper data strobe
16 data3 36 address 1
17 data0 37 lower data strobe
18 datal 38 ground
19 address 13 39 ground
20 address 15 40 ground

Only the lower 15 address lines are available to the ROM cartridge which does not
provide a ‘write’ line.

L R
wil

=

:

i

® n

&
—
—

mmf'@mmmmg

_ ,.. _
U W W

Rl R Wl

ak)

-

1-17

Intelligent keyboard (ikbd) interface

The Atari intelligent keyboard performs a variety of functions that include the
decoding of the key switch matrix, decoding mouse, trackerball and joystick data
and providing the time of day. It communicates with the main processor over a high
speed bi-directional serial link providing a convenient mouse/joystick interface.

The keyboard consists of a series of make/break key switches for which the ikbd
generates keyboard scan codes for each key press and release, chosen mainly for
compatibility with the Digital Research graphic system (GSX). The key codes (see
table in appendix D) are defined for the whole range of international keyboards such
that each code has a predefined key press meaning, irrespective of the presence of
the key switch. The break code for each key is signified by bit 7 of the corresponding
make code for the key being set; the codes #8F6 to #$FF are reserved for keyboard
system functions.

The keyboard controller contains a 1 MHz HD6301 8-bit microprocessor that
communicates with the ST’s MC6850 asynchronous communications interface
adaptor (ACIA) at a fixed 7.8 Kbit/s. The keyboard not only transmits the encoded
key scan codes (with a two key rollover), it also enables the programmer to
interrogate the status, define the read rates and sensitivity of the mouse and joysticks
under software control.

The time-of-day clock incorporated in the keyboard controller is held to a resolution
of 1 second and may be read and set from software. The keyboard may be reset,
without affecting the time held by the clock, to its power-up parameters.

When reset, the keyboard controller performs a simple ROM (checksum), a series of
RAM and key (stuck) checks, correct operation is indicated by the return of the
version/release number of the ikbd controller.

1-18

Mouse/joystick interface

The mouse and joysticks work on the basic unit of an ‘event’, this is defined as either
the opening or closing of a switch, or of motion beyond a predefined programmable
threshold level. The mouse is capable of a resolution of 200 events per inch (4
events/mm) and is scanned at such a rate as to permit tracking velocities of up to 10
inches per second (250mmy/s), at a maximum pulse phase error of 50%.

Motion, which produces make then break cursor keycodes, can be reported in three
different ways: relative, absolute and cursor key motion (motion per keystroke is
independently programmable in both axes). The mouse buttons can also be treated
as part of the mouse or as additional keyboard keys.

9 wayv DB 9P plug

123 45 Port 0 is configured
eouts .'} for mouse operation
faad <2 v Port 1 is the second
67 g9 joystick interface
Jovstick Mouse|Foystick 0
Pin Function Function
1™~ 12p XB/Up
2 Down XA/Down
3 Left YA/Left
4 Right YB/Right
5 reserved n.c
6 Fire left button/Fire
7 Power +5v
8 Gnd Ground
9 nc right button/Joystick 1 fire

The mouse unit provides interactive input to programs like the desktop applications,
permitting a convenient method of selecting from a menu of facilities shown
symbolically as icons or simply as text. Port zero is configured for the mouse, but
may also be connected to a joystick.

The joystick is invariably used in games applications; but may also be used instead
of the cursor keys, for fine control of the screen cursor position (one pixel
movement).

The joystick fire and mouse buttons close to ground.

=
4

= =

&
-

mmf'l;_mmmmm@

Wil &l

au

1-19

Power supply

The power supply provides power for the main system board, the keyboard

controller, any connected expansion ROM and expansion RAM.

Ak

current protection.

: 7 way DIN 7P plug

- Power levels:

] 15VDC @ 3A 5%
+12VDC @ 0.03A 109,
-12VDC @ 0.03A 109,

‘.._il

)
i

al/ Ul

The supply is fused, the levels are regulated for over-voltage and incorporate over-

Pin Function

=1 N e W -

+5VDC
n.c
Ground
+12VDC
-12VDC
+5VDC
Ground

The power supply may be integral with the main unit.

1-20

Processor device outlines

MC68000 8 MHz microprocessor
WD1772A floppy disk controller
MK 68901 multi-function processor
MC6850 asynchronous communications interface adaptor

YM2149 programmable sound generator

Custom designed devices (ULAs):
Direct memory access controller (DMA)
Memory management unit (MMU)
Video controller (Shifter)

General housekeeping (Glue)

el

il &l

w ai Wl i

- lus

iR} anl 4R il

1

1-21

MOTOROLA MC68000 MICROPROCESSOR

Signal I|O

The following is a very brief description of the signal I/O of the Motorola
MC68000.

A0
Yog = to Address bus
Ground e A23
CLOCK ==
FCO Do
Processor FC] to Data bus
status FC2 e D15
- g’ Asynchronous
Synchronous ‘ : MC68000 . ’ control
control j—
J B Bus
f—— ’ arbitration
fm— control
System Berr —‘
control RESET ==
HALT
B Interrupt
: {gt; control

A high-density, n-channel, silicon-gate depletion load 16-bit microprocessor in a 64
pin DIL package.

The address bus (A0-A23) enables the MC68000 to address 16 megabyte of data or 8
Megaword of instructions. The address bus provides the level being serviced,
during an interrupt, on address lines A0 to A3 while A4 to A23 are held high.

The data bus (D0-D15) enables the transfer of word and byte-sized chunks of data.
During an interrupt acknowlege, a vector number may be placed on lines DO to D7
by a peripheral device.

Bus arbitration control allows a peripheral device to control the MC68000 bus (bus

master); any external request will be granted on a priority basis between the
competing devices.

Interrupt control provides a priority level from peripherals requesting processor
control enabling selection of multiple interrupts on a priority basis. Zero implies
that there is no interrupt present and 7 is a non maskable interrupt.

1-22 = 1-23
o
Level Autovector E e i WD1772A FLOPPY DISK CONTROLLER
7 (high) Non maskable interrupt
6 MC68901 multi-function processor 5 - 1: $FF8604 Tl = Data
5 cipha - access " | e | access
4 Vertical blanking sync. s:{t; 0] = lines | | l
| 3 i Py - Sector Track Data
| 2 Horizontal blanking sync. ﬁ 3 — 8| - |rw r w reg reg reg
L <] 2 mode 2y == AL Stat Cmd Status Command
E 1 control 1| - |A0 | f€8 reg Register

»>
-
-

System control informs the processor that bus errors have occurred and also resets or

halts the processor. The WD1772A floppy disk controller supports eleven instructions, these should

only be loaded into the data byte register when the status bit (bit 5, $FFFA01) is
off. The instructions enable head location, reading and writing sectors, tracks and
the forced interrupt of a disk operation:

Processor status: each time a memory or I/O call is made the processor provides the
following information on the processor status lines to a peripheral device: whether
the processor is accessing data or program memory space or servicing an interrupt;
and whether the processor is in user or supervisor mode.

Instruction byte ($SFF8604)

@ -

The Motorola MC68000’s separate parallel address and data buses are used to

transfer data using an asynchronous bus structure controlled by the processor, Restore #300 Seek rate (ms)
internal or external, which has current bus control. E‘ Seek #8$10 +#$00 2
Interfacing with the 8-bit M6800 and 6500 family of synchronous peripheral devices Step #%20 Update track +#801 3 Verify Spin-up

is catered for through the use of memory-mapped I/O and a modified bus cycle. - Step in #840 register +#802 5 +#84 disable
E' b Step out #8360 + #8$10 +#803 6 +#808
Read sector #8%80 Multiple sec
Er] Write sector * #8A0 + #810
_J Read address #8C0 Add 30 ms delay
. 1 Read track H#SEO + #804
Write track * #$FO
iu- q Force interrupt #$D0 +#$00 End with no interrupt

+#$04 Interrupt on index pulse
+#$08 Immediate interrupt

* May contain + #$02: Write precompensation disabled.

L Write sector may also contain + #8$01: Write deleted data mark.

1-24]‘ 1-25
Po——
A
Commands are passed to the EDC (and an exter'na] HDC), by selecting the = B MC68901 MULTI-FUNCTION PROCESSOR
appropriate FDC or HDC function (Read status/write command, sector, track or pin :
data) through the configuration register (§FF8606) and sending instructions or data o
via the access byte (§FF8604).
. i ~ Reset Clock Timer | . 1CO
Select FDC/HDC function ($FF8606) - * __ > C&D b 1po
Write FDC DMA #80 Read status/Write command 5 . 3 Internal
#8100 #$80 #810 #81 Track e control logic —
el L L]
0SC
Read HDC 1772 #8$2 Sector P — PN -y — Xtal 2
#$00 #$00 #800 #$3 Data v ’ Data —sps
)) 8) —»{ CPU —— 140
-._7.| ‘j "Iimer = TAT
o RS1 =] 5isg A&B b=TRO
RS5 = A = TBI
s K—
CS . Serial in
Rg’g -1 10 e Tx clock
T X = Serial out
B - DTACK =~ Ly :>USART i ol
Interrupt > Rx ready
ﬁl : control [Tx ready
GP
E,- - I RO Q /0 [=10-17
3 IEO IACK
Bit I/O
: Daisy Interrupts
- chain Modem control
‘J The MC68901 contains a single channel USART capable of operating in full

duplex, at a rate of 62.5Kb/s asynchronous, 1Mb/s synchronous from an internal or
external Baud rate generator. The USART also supports DMA handshake signals
and modem control.

L& 8

L8

There are four timers with independant operation and vectored interrupts, the
timers have the following preferred timer uses:

L8

Timer A: Stand alone applications and independent software vendor.
Timer B: Primarily Screen Graphics (hblank, sync etc.)
Timer C: System timing (GSX, GEM, Desktop, etc). Suitable for delays and
3 general timing applications (200Hz).
Timer D: RS 232 port baud rate control.

Eight individually programmable I/O pins with interrupt capabilities are also
available.

Ly

g
b
'
J
:

ke v ’r s 27
e =
-
MC68901 interrupt control 5_ . The MC68901 usart registers are accessible from Extended BIOS.
MFP hardware bound interrupts a
SYNCHRONOUS CHARACTER REGISTER
Priority Function .
ﬁ[j |?lﬁ|5|4]3]).Il'n](scr:&‘.Fsz?:.
15 high Monochrome monitor detect GPI(7) 7 Used to synchronize incoming received data acting as the matching character
14 RS8232 ring indicator GPI (6) o _
13 Timer A Timer A S - 3
12 RS232 receive buffer full 4 USART CONTROL REGISTER
(ERA 1y,
| 11 RS232 receive error 3 ﬂ L i b l § I g | 4 | 2 J - I 1 I 0 I (ucr = SFFFA29)
10 RS232 transmit buffer empty 2 & ‘ CLK I
9 RS232 transmit error { 4 (])-udd
8 Horizontal blanking counter Timer B o E I i 0-off i<
1- enable
- . 1 1 - async Start -+1 2
7 Disk drive controller GPI(5) w 4 y L 1 0 - async and -1 ¥ (used by div 16)
6 Keyboard and MIDI * GPI (4). é B s | 0 1 - async stop -1 1
5 Timer C (system clock) Timer C RS 0 0-8 bits p(a)er R
4 RS232 baud rata generator Timer D {4 0 {1)‘ g Eils per word
1 1 - 6 bits per word
: rr“ ’éﬁ‘@ E' 1 1 1 - 5 bits per word
3 GPU operation done GPI (3) |3 0- normal
2 RS232 clear to send GPI (2) |2 ‘ b=Div.l6
} :
1 RS232 data carrier detect GPI(1) /! ‘- - 3
0 low Parallel port busy GPI (0) W | o
o TRANSMIT STATUS REGISTER
* Test MC6850 status bit to differentiate between keyboard t" '] :
and MIDI interrupts. [7] 6 I 5 I 4 | 3 I 2 I 1 l 0] (1sr = SFFFAZD)
MFP configuration registers located at address §FFFAO01 (16775681) ﬁ: . —] e UE 4l END B E L iR
; - 0 - disable Tx and clear fl:
Offset Function Offset Function 3 1- e::b}: notriil :pi:ti;xgl
Dec Hex Dec Hex d—t — ,J 0 0-highimp Configure Tx
. 0 1-low o/p when
l 1 0-high dejsabled.
1 01 General purpose I/O 25 19 Timer A control 1 1 - loopback (connect o/p 10 ifp)
3 03 Activeedge 27 1B Timer B control m (1)];2_:2&: E:‘eak S
5 05 Datadirection 29 1D Timers C & D control ﬁ- R ? 0-Txenabled . . R T)
7 07 Interruptenable A 31 1F TimerA data P AL char sent
‘ 9 09 Interrupt enable B 33 21 Timer B data - 1 - Enable Rx when Tx disabled after last char sent
I 11 OB Interrupt pending A 35 23 Timer C data ﬁ :r'd' ‘l] E&Zﬁiﬁ:ﬁiﬁ ;::ide .buffcr empty G
| 13 0D Interrupt pending B 37 25 TimerD data 0-Txbufferread . . e e R RS
15 OF Interruptin-service A 39 27 Sync character 1- Tx word transferred to Tx shit egister
17 11 Interrupt in-service B 41 29 Usart control ﬁ !
19 13 Interrupt mask A 43 2B Receiver status
21 15 Interrupt mask B 45 2D Transmitter status .
23 17 Vector base address 47 2F Usartdata ‘ x j
E - E

1-28

ﬂ

1-29

Q1

RECEIVE STATUS REGISTER

MC6850 ASYNCHRONOUS COMMUNICATIONS

7] 6 I 5] 4 I 3 _I 2 l 1 [0 l (rsr = $FFFA2B) INTERFACE ADAPTOR
BF OE PE FE F/S M S8 RE I
0 - disable Rx and clear flag o) LDxclpck |
1 - enable normal operation " -:
0 - strip sync character (sync) :
1 - send sync character Generates S——— N 0k b
0 - stop bit Rx (async) Interupt data shift }—— Txdata
1 - word being Rx c— | v i i
0 - no char match(sync), no break(async) . 11 EL : i e
1-word match, break Rx
0 - no frame error in word in Rx buffer (async)
1 - Frame error in Rx buffer word
0-noparityerrorinwordinRxbuffer 11 EL | - CIs
1 - parity error in Rx buffer word j | ’ - Status
0 - Rx starus register read L is
1 - word received and Rx buffer full = 5 - it v BCP
0- Rx buffer read T AN Y Sk IR (S R B 1 &
1-Rx word transferred to Rx buffer only ﬁL 3
] Data
D0-D7 ¢ bus
—'3 - buffer G]
ontro >
- : = RTS
- register
-] 4
¥ {
— Rx Rx
- data shift | g Rxdata
register register
: Rx clock

The MC6850 ACIA provides data formatting and control of a serial interface to an
8-bit bidirectional data bus. At the bus interface, the four ACIA registers, the status
and receive data (read only) and the control and transmit data (write only) registers,
appear as two addressable memory locations.

an
-

The programmable ACIA control register, which sets the format of the serial link, is
located at $FFFCO00 (16776192) for the intelligent keyboard serial communications
link, and at §FFFC04 (16776196) for the MIDI interface.

am)

The ACIA supports peripheral/modem control through:

m_m o ml omomom omom

RTS request to send,
CTS clear to send, and
DCD data carrier detect.

an)

=
| Protocols for 8 and 9 bit transmission using an optional odd or even parity, and one
or two stop bits, are available through the programmable control register.

The MIDI port may be configured for a second serial port, but the intelligent
keyboard interface is not accessible.

1-30
4 1-31

s
L

ARHUAONTRORISTATUS BEGISTER YM2149 YAMAHA PROGRAMMABLE SOUND

o
-
ol

GENERATOR
Interrupt request @]I X : Channel @* Amp D/ l Sound
Parity error ‘READ’ A W7 y o/p
Rx overrun (characters lost) RECEIV Mixer port
Framing error leSTATI:IS ﬁ - 'i Channel Tonel Amp D/A
o GISTER l B —
DCD Channel | Toucl Amp D/A
Tx data register empty Cs " c - I
‘ Rx data register full)ﬁ e S |—]Nmse Envelope | | BLOCK DIAGRAM
lelsTsTsT21 o] ‘ '
7 6 5 4 3 2 1 0 $FFFC00 - $FFFC04
T T 3 ﬁ Ty CPU /0 8-bit /O
0 0 normal Divide bus REGISTER pO‘l't A
0 1 div 16 select CEU; 2ol | Elue | o | sovid Lo EBRIO
bees (0§ dives bits N i bus REGISTER port B
1 1 Master reset
. , =k The programmable sound generator control registers are located as follows:
0 0 0 --» 7-bits even 2 stop bits E 1 1
g {1:. {1) s ;-Exs odd 2lsmp b;;s o RAM offset Function Bits used
--» 7-bits even 1 stop bit
| & L1 Les7bimeddlaonbic CERE reg _ addr | BaseaddrSFF8800-16746596 76543210
' 1 0 0--» 8-bits 2 stop bits 0 0 | Channel A fine tune X X X X X X X X
! 0 1 8-b}ts 1 stop bit i 1 1 Channel A coarse tune X XX X
1 1 0--» 8-bits even 1 stop bit E - 2 2 | Channel B fine tune X X ¥ X X X X X
I) 1+ 8 bits.odd 1 stop bit 3 3 Channel B coarse tune X 2 X x
. : “WRITE’ 4 4 Channel C fine tune XoEAE X ¥ KX X
0 ORTS low Tx interrupt disable TRANSMIT CONTROL _ 5 5 | Channel Ccoarse tune X X X X
0 1 RTS low Tx interrupt enabled REGISTER E v - -
1 ORTS high Tx interrupt disable l 6 6 | Noise period X X X X X
1 1 RTS low Tx abreak onto data output. Tx interrupt disable. J 7 7 Mizer conrol-1/O cpable I/O noise tone
- ;----“1 Fixed amplitude
0_Rx interrupt disable B ;
1_Rx interrupt enable (Rx data register full overrun. DCD low-to-high transition) 8 8 Channel A ampl}tude Mzx x x x
L 9 9 Channel B amplitude Mzx x x x
E "1 10 A Channel Camplitude M x x x x
Variable amplitude
Ej_‘ ? 11 B Envelope period fine XM X X ¥ X X
' 12 & Envelope period coarse XX X X XX ¥ X
13 D Envelope shape CRAH
E 14 E I/O port A (output only)
| ! 15 F I/O port B (centronics) data
E i M = mode fixed/variable. C=cycle. A=alternate. x=Dbits used. R = ramp. H=hold
13
-
=

1-32 ; 1-33
=
DIRECT MEMORY ACCESS CONTROLLER (DMA) g - VIDEO CONTROLLER (SHIFTER)
av
R/W] 40 | +5v - XTLO 1 40 | +5v
Al 2 39 | clk8Mhz 32Mhz XTL1] 2 39 | clk 16Mhz
FCS 3 38 | RDY - DO 3 38 | cs
DO 4 37 | ACK SF“ 3 DI 4 37 | DE
D1 5 36 CcDo : D2 5 36 Al
D2 6 35 | CDI1 D3 6 35 | A2
D3 7 34 | CD2 B D4 7 34 | A3
D4 8 33 | CD3 EL - : D5 8 33 | A4
D5 9 32 | CD4 D6 9 32 wa
D6 10 31 | CDs D7 10 31
D7 11 30 | CD6 load 11 30 | Mono
DS 12 29 | CD7 @Eﬁ' "' D3 12 gg 11:(11
D9 13 28 | gnd ' ' D9 13
D10 14 27 | caz J) D10 14 27 | R2
D11 15 26 CAl D11 15 26 GO
D12 16 25 | CRW ﬁh ' : D12 16 25 | Gl
D13 17 24 | HDCS D13 17 24 | G2
D14 18 23 | HDRQ D14 18 23 | Bo
D15 19 22 | FDCS . D15 19 22 | Bl
gnd 20 21 | FDRQ il- - gnd 20 21 | B2
D4 1 68 | D3 [+5v 1 68 | A13
D5 2 67 | D2 Ef_;., - Al4 2 67 | A12
D6 3 66 | DIl - AlS 3 66 | All
D7 4 65 | DO Al6 4 65 | AlO
16Mhz clk 5 64 | MAD9 | A17 5 64 | A9
CASOM 6 63 | MADS F = Al8 6 63 | A8
CASOL 7 62 | MAD7 I : A19 7 62 | A7
RASO 8 61 | gndB A20 8 61 | A6
latch 9 60 | MAD6 A21 9 60 | As
+5v | 10 59 | MADO i!. - A22 10 59 | A4
Al6 11 58 | MADI ¥ A23 11 58 | A3
Al7 12 57 | MAD2 AS 12 57 | A2
Al8 13 56 | MAD3 FC2 13 56 | Al
Al9 14 55 | MAD4 = -,9 FCl 14 5 | RRW
A20 15 54 | MADS 1 FCO 15 54 | clk2Mhz
A21 16 53 | drack _i VMA 16 53 | SNDCS
LDS 17 52 | DE ROM4 17 52 | gnd
RASI 18 51 vsync g Pl ROM3 18 51 MFPCS
4Mhzclk 19 50 | Al =~y ROM2 19 50 | IACK
8Mhzclk 20 49 | A2 J ROM1 20 49 | DI
CASIL 21 48 | A3 ROMO 21 48 | DO
o | 2 | o 3 5|5 % | i3
W/E 23 5 . .
DMA 24 45 | A6 DMA 24 45 | BGO
WDAT 25 44 | +5v DEV 25 44 | MFPINT
UDS 26 43 | A7 - FCS 26 43 | clk500Khz
gnd A 27 42 | A8 : ! BGI 27 42 | 6850CS
CPMCS 28 41 | A9 RDY 28 41 | BGACK
DCYC 29 40 | Al10 # VPA 29 ;g 1{3)1{
RDAT 30 39 | All e Berr 30 E
DEV 31 38 Al2 1 : dtack 31 38 Vsync
AS 32 37 | Al3 | IPL1 32 37 | hsyne
RAM 33 36 | Al4 | IPL2 33 36 | blank
R/W 34 35 | Al5 = 8Mhz clk 34 35 | gnd

1
(B |

<i

=R as
dul

2
-

Chapter 2

The operating system
>) (TOS) overview

il W m oW = W
i i o W oay W

u w W
W

m oM oM o
=114 R - 11 B 1+

-

¥

e
".

i

!?

@
e

W mwwe e =

-

-

-

ws]

k)

LT

=

-

Operating system overview

The Atari ST operating system is in many ways functionally similar to CP/M 68K,
with extensions for handling a mouse, sound, the midi interface, an intelligent
keyboard and joysticks. A graphics environment manager (GEM) provides ad-
ditional single-user support for windows and communications via VDI and AES
extensions, which accomodate graphics and an applications environment. Program
transportability is maintained by splitting the operating systems into machine
independant (BDOS, VDI and AES) and machine dependant basic input/output
utilities (BIOS and A-line routines).

The ST programmer is given access to the VDI primitives via the A-line routines
for much greater graphic application speed.

The disk operating system (DOS) enables routines to access the disc drives with
support for existing single user programs, file locking to ensure safe updating, read
only and unlock facilities. The access manager improves the file handling with a
library of routines that permit indexed files through a tree structure to ensure high
operational efficiency. Other functions available are; both data and indexed file
system initialization update, duplicate keys and an index file search. Runtime errors
may be handled internally, or there is the option to stop and correct the error.

Machine BIOS A-line
dependant routines
input/ouput
routines
BDOS GEM VDI
General Virtual device
operating Basic interface
systems disk
operating GEM
system AES

Programmable segments of TOS

The application environment (AES) multitasks using a timeslicing technique and
supports a database file management system, real time data aquisition, communi-
cations and process control.

The virtual device interface (VDI) allows the use of peripheral independant device
drivers and provides a high degree of assistance for advanced user interfaces.

BASIC INPUT/OUTPUT SYSTEM (BIOS)

The BIOS consists of all the machine dependent I/O routines of Digital Research’s
GEM and additionally provides access to the A-line routines for fast graphics. The
I/O functions can be categorized as follows:

GEM BIOS:
System I/O:
Parameter block initialization
Console I/O: Data I/O & query
Disk I/O: Memory/disk transfers

Atari ST extended BIOS:
Port I/O: Configure RS8232, mouse, midi & sound port
Screen I/O: Get screen parameters
Disk I/O: Memory/disk transfers
Keyboard I/O: Keyboard communications

A-line routines:
Pixel graphics
Line graphics
Sprite graphics
Bit block transfer
Mouse handler

an

-am

BASIC DISK OPERATING SYSTEM (BDOS)

The disk operating systems permits the machine independent routines to access the
disk drives and handle file management through the following functions:

Set/get time and date

Tree directory management

File attribute management
Create/open/close files and disk transfers.

Virtual device interface

The VDI provides a set of graphic function calls that allow portability across
physical hardware. Not all the standard VDI calls are implemented on the ST, the
VDI tables Chapter 3 are annotated to show those that are missing.

Control I/O:
Graphics I/0O:
Attribute I/O:
Raster 1/O:
Input I/O:
Inquire I/O:
Special I/O:

Initialize graphics & set defaults.

Primitives, lines, polygons, bars, arcs & pies.
Set colour and style.

Bit block transfers, fill, font and cursor forms.
Keyboard/mouse interaction with console.
Get attributes, resolution, style etc.

Permits specialized functions to be performed.

The AES (application environment services) are a series of utilities that handle
graphic based inputs to the user application. For example, instead of asking for
INPUT - the screen displays graphically a menu of options which may include a
clock, a file and perhaps a disk, these items being given a pictorial representation
that is called generically an ‘Icon’. To select one, the user simply moves the cursor,
which may look remarkably like an arrow, and places it on the required icon using
the mouse and presses the trigger button. The AES routines are put into groups
called libraries as follows:

AES Libraries:
Application: Provide access to AES routines.
Event: React to user inputs.
Menu: Translate defined text to menu format.

Object: Substitute graphic icon for its label.

Form: Handle text inpug automatically when needed.
Graphic: Primitive graphic functions.

Clipboard: Management of cut and paste.

File Selector: Creation/display of user selected file.

Window: Handle windowing of queried input responses.
Resource: Interface device dependant drivers to applications.

Application programs

The desktop application provides the support for windowing, control and synch-
ronization of asynchronous events, interprocess communications, loadable device
drivers and device independant graphics support. The clock application date stamps
each file on creation or modification.

MEMORY ALLOCATIONS

FFFFFF

FF8800

FA0000

100000

080000

000800

000400

000000

ATARI MEMORY MAP
16777215 FFFFFF 16777215
Mo MC6850
rapper FFFCO00 16776192
St MK68901
Gt FFFA00 16775680
SOUND
16746596 FF8800 16746596
DMA/Disk
iOM FF8600 16746084
rea
Reserved
16384000 FF8400 16745572
Display
FF8200 16745060
Memory
1048576 FF8000 16744448
1024K
RAM Memory mapped I/O
Configuration Registers
524288
512K
RAM
FF0000 16711680
2048 T 192K
OSBSS System
user RAM ROM
variables FC0000 16515072
Supervisor 128K
1024 access only Cartridge
Supervisor ROM
RAM FA0000 16384000
variables
0 - ROM configuration
in memory

References to the bottom 2K of memory and the I/O space are classed as supervisor
references and attempted access from user mode will cause an error exception trap.

THE

Schce ~ LA

T ed

THe 7o 324k oF

RAm

3

—

3

ol Wl dl

(3]
=

-
U =

:

u

-
=y
-

L)

121

m w1

=

$800

$400
$200
$100

$0BC
$0B8
$0B4

$08C
$088
$084
$080

$070
$06C
$068
$064
$060

$03C

$02C
$028
$024
$020
$01C
$018
$014
$010
$00C
$008

$000

2-7
SYSTEM TABLES
Operating system block
storage segment
Supervisor
< space

b o e . s i | o (il

Trap #15 vector

Trap #14 vector

Trap #13 vector

Trap #12 vector

Trap #3 vector

Trap #2 vector

Trap #1 vector

Trap #0 vector

Intlevel 7

Int level 6

Int level 5

Int level 4

Int level 3

Int level 2

Int level 1

Spurious Int

Uninit int vector

Emulation 1111

Emulation 1010

Trace

Privilege violation

Trap instruction

CHK instruction

Zero divide

Illegal instruction

Address error

Bus error

Initialise PC

Reset init SSP

512
256
192
188
184

180
176

140
136
132
128
124
120
116
112
108
104
100
96

60
48
40
36
32
28
24
20

16
12

System parameters and

11024 | variables

reserved for OEMs

MFP vectored interrupts

Atari ST BIOS extensions
GEMBIOS

BDOS
GEMDOS interface

Non maskable interrupt (44D wake Rerey)
MK68901 MFP

Vertical blank sync
Normal interrupt level
Horizontal blank sync

Unused vectors point to
system critical error handler.

Used by some AES functions
A-line routines entry

The system variables are in
the supervisor space and can
be accessed only in supervisor
mode.

2-8
2-9

-k

CONFIGURATION REGISTERS .
Resource management overview

law
-
. j

i Functions controlled
I The pseudo multitasking kernal can support one primary application and one of

FFFFFF 16777215 o
Keyboard and i L “"' three desk accessory programs.
ACIA MIDII/O
FFFC00 16776192 The main application may be GEM or DOS such as GEM desktop application or a
System clocks E . _i word processing package etc.
MFP System interrupts
FFFA00 16775680
PSG 3 channel sound, noise i ' [Screen Environmem]
tone, amplitude and envelope) - : DI
Sound RS232 Primary Desk esk Desk
Parallel port i 3 j ' Application Accl Acc2 Acc3
Disk write
FF8800 16746596 A minimum space
Floppy/hard disk E i allocation of 128K.
DMA/disk DMA -
FF8600 16746084 A desk accessory is an application that does not take over the entire display screen,
- Reserved running in a specially designed window. The calculator is a typical accessory.
8400 16745572 |
Video address : Only one desk accessory program may be active at a time, and will only load if at
Display Field rate least 128K of RAM is left for the primary application.
Video mode & pallette (L —
FF8200 16745060 B
Memory Memory size CPU resources
PESN 16744448 The dispatcher divides CPU time between primary applications and background

"

processes. These jobs are put into lists; ‘Ready for processing’ and ‘Not ready’, and
are serviced on a round robin schedule with the current process at the head of the list
running. Not ready processes may be waiting for a key press, mouse movement or
trigger, time lapse etc.

IE'n
-
-y
-

l"l_l i Wi ' l’lf
S W
w

35

2-10

Graphics Concept Overview

The Atari ST graphics is supported at a primitive level through the A-line routines
and at a higher level through a limited version of the Digital Research graphic
system extension (GSX), which is based on the ANSI virtual device interface
(VDI). VDI provides a set of graphic primitives (GDOS) and a library of device
drivers (GIOS) for the preparation of transportable software. The whole of GDOS
does not form part of the ST operating system and there is no support for
‘normalized device coordinates’ based on a 32K x 32K screen, or a small number of
the VDI functions.

The VDI interface provides output primitives of lines, arcs, polygons etc. and input
primitives to point symbolically, get co-ordinates of joystick/mouse or keyboard
input etc. It also supports the control of multiple output devices using raster

screens.

The A-line routines give very fast access to the primitive pixel, line, sprite and bit
block transfer graphic functions at the expense of portability

The Raster co-ordinate graphics are based on screen pixels:

0,0

640,400

GEM programs are portable but must take into account two possible problem areas:

Screen aspect ratio: Different hardware systems and displays (screen, printer, plotter
or another computer) may have different aspect ratios. Producing similar screen
designs requires the programmer to scale the data sent to the display device using
the aspect ratio returned from the open workstation call.

Language implementations: Different language implementations of a program will
require different length text strings to be fitted into windows. The inquire character
cell width call in conjunction with the window size returned by the wind_get call will
enable the programmer to determine the number of characters acceptable.

Alert and Dialog boxes have predetermined responses set up using the resource
construction set and therefore do not present a language problem.

The missing part of GDOS is available as part of the code supplied in certain Digital
Research products and may at a later date become more generally available for the
ST. On this premise, the details of the missing parts are given coupled to a rider that
theyt are not available on the basic system.

2l

N
r

L |

y

!

F

-
k!

al

t)

|

2=-11

GEM usually provides two graphic coordinate systems to the programmer, raster
and normalized.

Raster is based on the computer’s screen resolution, in the case of the Atari ST
600 x 400 pixels.

Normalized is based on a notional screen of 32767 x 32767 points, the points being
translated to the actual screen of the target system by one of the GIOS device
drivers. The idea behind this is to write software independant of specific screen
resolutions.

Normalized device co-ordinates are based on a screen of 32767 x 32767 pixel
dimensions.

0,0

32767,32767
Graphic Co-ordinate Computation
32767,32767
Full NDC mapped to
full RC space.
0,0
0,0 AY
\
\
640,400

2-12 2113

-
=

LA

"nr—

OVERVIEW OF SCREENS E;L 3 Colour Pallette Table
'
The Atari ST screen may be operated in three different resolution modes, the , Pallette colour
colours may be chosen from a pallette of 512 colours: e Pallette colour zero, bit zero
=
High: 640 x 400 pixel, black and white display E : 15 12 11 87 4 3 0 ,
Medium: 640 x 200 pixel, 4 colour display 0 [o
Low: 320 x 200 pixel, 16 colour display - 1 1 { Medium
E : 3 2 2 resolution
n .) 3 3 palette
High Resolution 640 x 400 pixels 4
(]
origin E . 3 } 2
)] 3 6 MSB LSB
single ﬂ 1 3 2 e
plane N.o colour, inverse video is available deter- g REIIEL L
mined by the condition of bit zero of pallette e
DRI Ao '. 10 8 levels of colour
Eg E 'l 3 11 X = bit not used
Black border 12
13
Medium Resolution 640 x 200 pixels E- E 3 }:
origin l Not used Blue Green Red
Colour nibbles
B 3
two Physical to logical screen transposition
planes
Only first 4 pallette table look i E l 3
f > p ¢ table lookup entries are Physical Screen High Resolution
available. g Mode 640 x 400
Border pallette colour zero. E : 3 1 2 3 [| 16 I =]
‘ 641 | 642 |pixels
Low Resolution 320 x 200 pixels .T v Lo‘;:ri; Tory
origin | =) j worgg
: =/ wor
=] . B j bit 15 bit 0
, B MSBword 1LSB | MSBword2LSB | high low
16 word look llett
-_ ookup pallette table 9 bits per entry. MSB word 41 LSB
3 red, 3 green and 3 blue on low nibble -
planes ! - | a
boundaries, giving 8 x 8 x 8 possible colours. E ' - i word 1,959
(512) 40 words word 16000
= o | MSB word 16000 LSB
Border pallette colour zero. B 5
Border always Screen in memory
vy set black
It is not possible to change resolution while using GEM | a Bit zero of the colour pallette
High Resolution Screen provides inverse video.
= -
| ol

2-14

Physical Screen

1 2 3| l 3 I 9 | Medium Resolution
2
=
pixels &~ Low Memory
1 word 1
Plane 1 f word2
MSB word 1 LSB | MSB word 3 2
< ~ Pl :
s s ane 2 High Low
MSB word 2 LSB | MSB word 4 =
" word 15999
200 words word 16000
€ — - 80words — — - = _H Screen in
| ' Memory
1
Y | MSB word 16000 LSB |
Border Set by colour pallette zero Planc Pallette
15 13 21 0 12 colour
: : -_- ‘: : Plane 1 word g [l} ?
_____ Plane 2 word 10 2
Colours generated by I | 3
interleaved bits of words
Low Resolution
Mode 320x 200
Physical Screen Birx’ Pallette
1 2 3 I [8] i plane colour
321 | 322 pixels Planel |1 2 3 4 | No.
MSBword]l LSB| MSBword5 0000 0
= [N Plane2 |0 0 0 1 | 1
MSB word 2 LSB | MSB word 6 0010(2
< N Plane3 |0 0 1 1 3
N — 0100 4
MSBword3 _ LSB|MSB _ pineglo 10 1| 5
N N 0110 6
MSB word 4 LSB| MSB i S | (i
1000 8
200 words 1 001 9
1
(€ — 80words — — — £ .21 01 0{.10
| Y)) | 11
IS0 O 12
000 LSB
| [MSBword 16 T A, i
I 1 t O 14
Border Set by pallette colour zero By U VR | 15

P

was

l-.

(19

L8

L&

2-15

Colour generation

A word from each plane is taken from the video display file and placed in the video
shift register from where the bits are collectively used to index into the colour
pallette table. The colour code generated is supplied to a 3-bit digital to analogue
convertor to produce the RGB signals.

Video display Colour pallette
Logical bit-map memory Video and 3-bit
planes shift register DAC’s

0 0123 0 16 % 9 R
1 1

—_ lookup G

Jl Mt table B
3 e

Mono

In high resolution monochrome mode, the video shift register passes its data to the
inverter and not the pallette lookup table.

COLOUR CHANGING

To prevent jitter when changing colors using the Hblank ($068) and Hsync ($120)
interrupt vectors, programmers should use the following procedure:

1 Revector keyboard/MIDI interrupt to a routine that lowers the IPL to 5 and
then jumps through the original vector.

2 During the critical section of screen, revector the system 200Hz clock interrupt
vector to a routine that increments a counter and then RTEs.

3 After the critical section, block interrupts (at IPL 6) and call a system clock
handler that jumps through the interrupt vector with a fake SR and return
address on the stack, the number of times indicated by the counter.

Animation

Animation is most easily achieved by switching alternately between two screens; one
on display, the other being updated in the background. Initially write two identical
screens and display one while modifying the other, swap the screens over and
display the modified screen while updating the one previously on display. The
technique will produce a very stable display with quite slow switching rates.

2-16

Sound

SOUND CONCEPT OVERVIEW

Sound is generated via a Yamaha YM2149 programmable sound generator. The
PSG contains three tone generators that produce the basic square wave tone
frequencies for the A, B and C channels and a noise generator, that produces a
frequency modulated pseudo random pulse width square wave, which may be
combined with the tone generator outputs using the channel mixer. The output level
can be fixed via the channel amplitude control using one of the three sixteen level
D/A converters or varied by using the output of the envelope generator, which may
be used to amplitude modulate the output of each mixer,

Sound control registers

The frequency of each tone generator (30Hz to 125KHz) is obtained by counting-
down the 12-bit value of the tone registers (the coarse register sets the upper 4 bits
and the fine register sets the lower 8 bits, range 001H to FFFH (1 to 4095). The
standard PSG format is to produce a lower note for a higher count whenever a
register count-down is performed.

The noise generator frequency is controlled by a 5-bit noise period register, value
01H to 1FH (1 to 31), producing a frequency range of 4Khz to 125Khz.

The mixer control register is a multi-function register that mixes the noise channels
(defined by bits 3 to 5) and the tone channels (defined by bits 0 to 2) in all possible
combinations to the input/output ports (bit 6 I/O, bit 7 port A or B).

The amplitude of a channel is controlled to one of sixteen fixed levels by the channel
DJ/A converter register (lower 4 bits of the register) and only by setting the register
to zero can the channel be turned off. The fifth bit of the amplitude control register
is set to select the variable level outpur defined by the envelope generator.

The envelope generator comprises three registers, two provide the frequency
variation and the third the format of the envelope. The frequency is determined by
counting down the 16-bit value of the coarse and fine envelope registers range
0001H to FFFFH (1 to 65535). The shape and cyclic pattern of the envelope is
defined by the lower 4 bits of the shape register (the amplitude register setting the
level), the four bits provide for combinations of hold/cycle, reverse cycle on/off,
ramp up/down and cycle hold pattern/reset to zero.

Parallel data I|O

The I/O register in the PSG is not associated with sound production, it provides a
register to transfer 8-bit parallel data to and from the CPU bus to the I/O port A,
there is no affect on any of the PSG’s other functions.

.
- - m @ W @

mz

»
=
B
E
E
E
=
E
i
-
S

11] hj TR TR TRt

Vi 7] ull W (§ i L lﬂ

V-0

Ws Ws Wa

2-17

Data is written to a peripheral device from the bus using the following steps:

Select enable register (mixer register)

Setbit 6 to ‘1’ (set I/O port A to output)

Select I/O port A data store (I/O port A register)
Write data to PSG (write data to I/O port A register)

Once data has been loaded into the register, the data remains until further data
is loaded, the system is reset, or

the register is switched to input mode.
) Data is read from a peripheral device 1o the bus with the following steps:

Select enable register (mixer register)

Set bit 6 to ‘0’ (set I/O port A to input)

Select I/O port A data store (I/O port A register)
Read data from PSG (read data in I/O port A register)

The register follows signals applied to the port, only by reading will the data
be transferred to the bus.

|
2-18 " 2-19
B
SOUND CONFIGURATION REGISTERS] The mixer control-I/O enable The channel amplitude
'!t: - 3 (register 7) bit functions (registers 8-10) bits have
Access to the PSG should be in supervisor mode as the SR register is modified. The ' take the following format: the following function:
PSG registers are located for write at address(8FF8800 — 16746596) as follows:
B 3 oT(lmez sN-zms 6m7 [-T-T- Tl Ix I [|
o !
channels channels port M= 0: Fixed amplitude level
Offset y AllB € A B C A B 0-low to 15-high (xxxx)
Hex Dec E.‘ -] If the bit is zero Ifbit 0
the channel is on. porti/p M=1: Amplitude determined
0 $0 Channel A fine tune (8 bit) ::; - by envelope shape
1 $1 Channel A coarse tune (4 bit) !’: .3
2 $2 Channel B fine tune (8 bit)) 4 Envelope shapes
3 $3 Channel B coarse tune (4 bir) The envelope period (registers 11 & 12) of the shape is based on the 16-bit register
4 $4 Channel C fine tune (8 bit) o g value:
5 $5 Channel C coarse tune (4 bit) pnci)
6 $6 Noise generator control (5 bit)) € —_.__E_c'“‘k 3 ,
7 $7 Mixer control, I/O enable (8 bit) E: . 3 230X Ep where pr : ?HVCIOP;E ie;md
8 $8 Channel A amplitude (5 bit) clock: == MIPNECIOCK HEQUERCY,
9 $9 Channel B amplitude (5 bit) E; : 3 The envelope shape/cycle control (register 13) bit settings produce the following
10 $A Channel C amplitude (5 bit) range of sound envelopes:
11 $B Envelope period fine tune (8 bit)
12 $C Envelope period coarse tune (8 bit) =, 3 Bits Bits
13 $D Envelope shape (4 bit) . (B 53 Function (0 (155 Function
14 $E I/OportA
I z _-—
| - x x 00 T Y e
x x1 0| A 001 1| AMWmmawviy
Tone frequency calculations (registers 0 to 5) e ' Lot 1| —mm
The tone frequency is in the range 30.5Hz to 125Khz and may be calculated from j 100 1]° 011 11 AAANAAS
the formula: e e P ok =
F= 2% 108
16 x (256 x CT + FT) = Bit 0 = Hold/cycle Bit 2 = Ramp up/down
Bit 1 = Reverse on/off Bit 3 = Cycle hold/reset zero
where CT = coarse tone period j
FT = fine tone period 1 = bit set
0 = bit clear

x = don’t care

Lis

Noise frequency calculations (register 6)
The noise frequency is in the range 4Khz to 125Khz and may be calculated from the
formula:

F= 2x10°
16 x Np

where Np = noise period

§‘
=
1
Y557
m
—
gl |
E
=
3
=
LL

1B U e

2-20
pi ,q’ 2-21
= |
[] L .
GEM disk operating system overview
B GEMDOS Memory model
For those systems supplied with the operating system on disk; the system disk
contains on the first two tracks, a cold start loader that loads the operating system o ;
image file (T0S.IMG) into high memory and then block loads it down into RAM E‘F’r; Low memory -
memory at address $5000. 0 Exception System
vectors
The TOS image file contains both the GEM and Atari ST extended operating ﬁ;(.—3 Base page)
systems, including: o | ;ext ..
ata
CCP Console command processor: User interface to parse command line @’ — BSS loaded
Free transient
BDOS Basic disk operating system: Access functions to the file system ') LR) GEMDOS memory program
BIOS Basic I|O system: Functions that interface peripheral device drivers application t

User stack |/

The operating system is always in memory above $400 and all modules reside ST OS
permanently in memory, even those of disk based systems (unless the power is BIOS System
removed). After TOS is loaded, the remaining contiguous address space is called the BDOS
transient program area (TPA) where TOS loads executable (command) files. The CCP
command files (programs) should not access absolute addresses or default TOS
variables but use the BIOS and BDOS function calls.

=)
1:

4]

s

High memory

=
i

‘ _ : Command file
Each transient program loaded into memory consists of the program segments (text,

data and bss), a user stack and a base page. The 256 byte base page contains the
direct memory address (DMA) buffer, at base page offset $80; the buffer contains
the command tail, typically the input typed to an application installed as a TOS
Takes Parameters program. Before the loaded program takes control, the address of
the transient programs base page and a return address are pushed onto the user
stack, 4(A7) and (A7) respectively.

The format of a command file is that of a header, two program segments (text and
initialized data segments) and optionally a symbol table and relocation information.
After the program is linked and loaded into memory, it contains additionally a
zeroed uninitialized data (BSS) program segment and starts execution at the
beginning of the text segment.

m_m m
il W

Not all assemblers provide for an uninitialised data section within the source code,

i s this results in an executable program file on disk that i h 1 ;
Although the CCP can only load one program; the transient program itself can load e =i S Taneh lavges thanmeed by

further programs using GEMDOS function $4B, but must specifically supply the The operating system holds information on the data segments in a descriptor block
base (256 byte base page data structure) at the bottom of the TPA. The base page does

not reside at a fixed address, its position is determined when it is created by the load
a process function (GEMDOS function #$4B) and held in register D0.L.

W

"

A return from a transient program may be achieved by:

An RTS as the last statement, returning via the return pushed onto the stack by

The base page contents are initialized by the GEMDOS load function:
the load function.

Executing a warm boot by calling extended BDOS function 0.

Base page format initialized by GEMDOS

Typing crrL ¢ from the console during the execution of console output, printing

a string or reading from the console buffer (functions 2, 9 and 10). $00 0 Baseaddress of TPA
$04 4 End address of TPA + 1
808 8 Base address of text (code)
$0C 12 Length of text (code)
$10 16 Base address of initialized data
= $14 20 Length of data
$18 24 Base address of BSS uninirialized data
$1C 28 Length of BSS uninitialized data

—
=
i
B
E-S
£ =

2-22

There are slight differences between small sections of the original CP/M 68K and
GEMDOS base page formats as follows:

CP|M 68K format

$20 32 Length of free memory after BSS

$24 36 Drive from which program loaded

$25 37 Reserved by BDOS

$38 56 2nd parsed FCB from command line Set

$5C 92 st parsed FCB from command line by

$80 128 Command tail and default DMA buffery CCP

GEMDOS format

$20 32 DTA address pointer

$24 36 Parent’s base page pointer

$28 40 Reserved

$2C 44 Pointer to environmental string

$80 128 Command line image (typically the entry to a
L dialog box for a TTP application)

File header format

GEMDOS file header and program segments take the format:

File header

$00 0 Dataand BSS contiguous 601AH else 601BH
$02 2 Number of bytes in text segment

$06 6 Number of bytes in data segment

$0A 10 Number of bytes in BSS

$0E 14 Number of bytes in symbol table

$12 18 Reserved (zero)

$16 22 Start of text segment and prog execution

$1A 26 Zero if no relocation bits

If data and BSS are not contiguous (first field equals 601BH)

$1C 28 Start address of data segment
$20 32 Start address of BSS

Note: 601AH is a BRA. S instruction that bypasses the file header data segment.

The Atari OS does not support segmented files.

(7] i (1 il

-ﬂ‘ ld-‘

)

aa

(-0 .

im» im*

iam

The symbol table consists of fourteen bytes that specify a null padded 8-character
name, the type of symbol and the symbol value (address etc).

Hex | Symbol type

$o [Asc _

100 | BSS name ____ |
200 | Text relocatable 1
400 | Data $7 null padded
800 | External reference ;g Type.W_'
1000 | Equated register $A
2000 | Global Vilieiba |
4000 | Equated $E

8000 | Defined

Relocation table

The linker optionally produces a relocatable executable file and places the relocation
information in the GEM file header.

Type Sort of address referenced (File header offset $1a)
00 No relocation data required, absolute references
01 References relative to data segment base address
02 References relative to text segment base address
03 References relative to bss base address
04 References an undefined symbol
05 References the upper word of a longword, the next relocation word
determines ‘absolute’ or ‘relative’
06 16-bit PC-relative reference
07 First word of an instruction not to be relocated

Relocation word format

o|l1]2|3|4]|5]|6|7|8]|9[10[11|12|13]|14 |15
Reioc'atjon Index value to a‘: symbol in the
word symbol table (starting at zero)

2-24

If the offset byte is 1, then a multiple byte offset based on the following table is used
to determine the actual offset:

ATARI ST FILE SYSTEM

" e
il

GEM contains a fairly comprehensive set of file manipulation facilities, they enable
the programmer to write software that provides multiple access file sharing and file
protection, periodic file updates and selective backups. The file facilities are:

=
ull

Offset

byte value Relocation data

$00 End of relocation data
$01 Add 254 from current location and decode next byte
$02 .. $FF Add byte value from current location

Code
Dec Hex GEMDOS function Comments

60 3C Createfile
) 61 3D Openfile Invoked by filling a parameter block

&

] g . 62 3E Closefile with the number of the function, the
When the program is loaded into memory at a location other than where it was 1 63 3F Readafile parameters and any other relevant
linked, BDOS computes an offset and adds the offset to the address of the relocation 64 40 Writeafil data
rite a file i

words in the text and or data segments.
65 41 Deletefile

66 42 Seekfile pointer
67 43 Get/set attributes

Returns are in DO0.L.
A zero indicates ok.

W W v W

GEMDOS function $4B (75 decimal) loads or executes a program.

b 3 69 45 Duplicate file handle Where data is returned, D0 contains
70 46 Force file handle the address of the data return block.
78 4E Search for first
79) 4RI Searsh for nEgt GEM uses the stack as the
96 56 Rename file parameter block.

97 57 Get/set date/time stamp

mmmm!fmnmmmm
18 W W &7
&

(-4

m
L&

il

ATARI ST DISK SYSTEM ATARI ST BIOS COMPARISONS

Lah

The ST contains device dependant input/output utilities that handle the interface
between the device independant routines and the hardware, the ST BIOS and GEM
BIOS utilities are supplemented by the A-line primitives which provide rapid
screen control.

The Atari ST 3.5 disk uses soft sectored disks of the following format:

il

Bytes/sector 512
Sectors/track 9

Tracks/side 80
Sides/media 1 2
Unformatted 360K 720K

The GEM type BIOS handles the input/output to the peripheral devices: parallel
port, RS232 port, console, midi interface and intelligent keyboard. There is also a
basic disk read/write to sector and a facility to check that the disk has not been

removed or replaced.

The GEM BIOS interfaces (Basic input/output systems) make the hardware
dependent interface to the floppy disk drives. These communicate with the drives as

follows: k‘]

Tl
E
=
=
=
i
® o7
fa
=
n
&
-

-
u

-

The ST extended BIOS also controls the input/output to the midi interface,
intelligent keyboard, console and disk read/write, but additionally includes the
control of a mouse, joysticks, sound and of the screen colours; the disk facility is
augmented by format.

TEH R m ®
i

)
—

Select the drive, the side, the track and then the number of sectors from the track
that will be read to a buffer or written from the buffer to the disk.

The A-line routines are the VDI graphic primitives which are not program
transportable and therefore included here, they enable control of the mouse and
pixel-line-sprite-screen graphics.

GEM BDOS is fairly basic in terms of disk operations but has extensions to handle
tree type directories.

H

Code ~GEMDOS function Interrupt handler overview

Dec Hex

The operating system provides the machine code programmer with access to the
interrupt handler.

1

14 OE Setdefault drive

25 19 Get default drive

54 36 Getdrive free space
57 39 Create a subdirectory
58 3A Delete a subdirectory
59 3B Setcurrent directory
71 47 Get current directory

Every fiftieth of a second control is transferred from the operating system to a
routine at the address designated in the system variables at $68 (104 decimal), the
system interrupt handler (vertical blank interrupts). The handler provides a timing
facility, sets the screen parameters and current device driver installation and entry

points.

W

A file does not use consecutive disk sectors as there is insufficient time to identify,
read and or write a record via software, and to locate a specific track via hardware.
The record spacing (skew) is usually 6 sectors between adjacent file segments.

|l

i
——

T

2-28 pr :a 2-29
3
LI L * = lea $D50,A7 point and supervisor stack.
SyStem Inltlallzatlon & ' _j Run type '0' cartridge applications.
Point A3 and A4 at RTE and RTS
The ST in general follows a predefined initialization sequence on power-up, with resply Test diagnostic cartridge.
slight variations for the different operating systems. El ﬁ Initialise exception vectors to
» : : terminate process handler except for
System reset move.] rte,$14 divide by zero which is RTE'd.
The supervisor stack pointer (SSP) & F i a move.l #5FC0324,570(Ab) Set vblank handler entry address.
ssp --> $60xxxxxx program counter (PC) are set from $0 " move.l rte,$68(A5) Kill hblank handler entry address.

]

1

1
pc --> $00FC0020 and $4 respectively, the SSP is move.l rte,$88(Ab) Initially empty trap#? handler.

garbage until system is sized. The move.l #SFCO3C0,$B4(AB) Set up trap#13 handler address.
move.w #$2700,5SR Interrupt priority level (IPL) is & - move.l H#SFCO3BA,$BB(AB) Set up trap#ld handler address.
reset set to seven and a hardware reset m“ ‘) move.l rts, $400(A5) Default timer tick vector to RTS.
cmpi.l #$FAB2235F, executed. Checks for a diagnostic 2 move.1 #SFCO3B6, 5404 (Ab)
$FAO000 cartridge, if present causes | Set up the critical error handler
bne cmpi_nxt a return address to be set in A6 and move. 1 rts,$408(A5) and default the terminate vector.
lea $8(PC),A6 execution of the diagnostic routines move.]l #5550, $4A2(A5) Set up BIOS register save area
jmp $FAQ004 commenced. - suba.l A5, A5 pointer Zero page pointer.
suba.1 Ab, Ab Intialize vblank vector list.

. - move.w $454(A5),D0 8 nvbls into DO
cmpi.] #531415926, A check is made to see if memory has 1s1.w #2.,D0 multiply by four to
$426 previously been sized. If not, move.w DO,D1 create queue length in DI.

s om W owm o mou

bne psgset Jjump past memory sizing routine. If bsr make_spc Routine to create a space of
move.1 $42A,D0 this is a soft reset, the bailout + and.1 #SFFFF, DO 8 longwords in high memory.
tst.b $42A vector may be valid. First check if btst #50,00 make

bne psgset the MSB is zero, secondly that the beq jumpl address

btst #50,D0 vector is to an even address, if not, ' addg.w #351,00 even

bne psgset Jump past the reset handler. movea.l $436,A0 current memory top

movea.l DO, AQ Set A0 to point to the reset handler, suba.1 DO,AQ 'come on down'

lea $4(PC),A6 set A6 to the return address and . move.l AQ,$436 reset memory top

jmp (AQ) jump to reset handler. move.1 AO,DO and put in D0

lea SFFFFB800,A0 Set A0 to PSG configuration register rts

move.b #57, (AQ)
move.b #$C0,$2(A0)
move.b #SE, (AQ)
move.b #37,$2(A0)

move.b #30,SFFFF820A

lea SFFFF8240,A1
move.w #S$F, D0

lea $28A(PC),AQ
move.w (AD)+, (A1)+
dbf DO, Toop

base and set porta & portb to output,

activate general purpose output and
through output porta deselect the
disks.

Set sync mode to external 50Hz and
Al to base of pallette table.

Set up a count Tn DO to shift the
default hardware pallette colors to
A0 which points to the default color
table.

Size both memory banks and perform a

W

move.l AQ,$456(A5)
subg #51.01

clr.b (AQ)+

dbf D1,clr_byte

vblqueue start address
ZEero
the
queue

Initialize screen resolution.

| move. 1 #5752019F3,5420
move.]l #3237698AA, $43A

memory test. Set 'memory sized' and
'memory tested' flags in the system
variables table. Set up screen,

move.l #$8900,9432(A5) vblank queue entries, BIOS entry

i
E
=
E
E
E
e
=
E
=
=

m m oW omwo

2-30

¥
ail

move.w #SF8FF,SR Enable all interrupts except Hblank CARTRIDGE SOFTWARE
by setting IPL to 3.
Run type '1' cartridge applications
Initialize GEMDOS - set up a DOS
disk buffer chain & memory manager.
Run type '3' cartridge applications
Attempt to boot from floppy and
execute 1f successful, if pot poll
devices on DMA bus for logical boot
sector zero, execute if successful.
Any 'returns' continue palling the
devices in sequernce.

U s

There are two types of cartridge which may be plugged into the ST; diagnostic and
program cartridges. The cartridge program header format is as follows:

-
i

Base address
$FA0000 (16384000)

$0 C-FLAG | 0 Only the first header contains a flag which denotes the presence
of a cartridge.
flag: #$FA52255F = diagnostics

#$ABCDEF42 = program/data

BB s om
el Wi

Turn on the cursor. 3 :
Execute file COMMAND . PRG? ﬂ)) $4 C-NEXT | 4 Pointertonextapplication header, a null indicates no additional
otherwise construct a default 1 i"‘ applications.
enviroment and execute AFS. -

$8 C-INIT 8 Pointer to application initialization code, if zero there is no

Initiate a RESET on a return.
initialization code. The longword high byte is unused in the 24 bit

address and starts applications as follows:

bit 0—set run before interrupt vectors and memory initialized.
bit 1-set run before GEMDOS initialized.

bit 2 unused

bit 3—set run before disk boot.

bit 4 unused

bit 5-set Application is a desk accessory

bit 6-set Application not a GEM application (no AES calls)

bit 7-set Requires command line parameters before execution.

n

U

$C | C-RUN | 12 Pointer toapplication entry point.

$10 | C-TIME | 16 Time

DOS format time and date stamps.

1t

' $12 | C-DATE | 18 Date

w

$14 C-BSIZ | 20 Thesize of the applications BSS segment allocation. The OS
must allocate the BSS before invoking any run code. Set to zero

if notapplicable.

$18 | C-NAME | 24 The ASCII name (max 12 chars) terminated with a zero
(NNNNNNNN . EEE).

Diagnostic cartridge: The ST hardware will not be initialized and a return address is
held in A6, the stack pointer is trashed. The cartridge software is responsible for
sizing memory and setting the hardware registers as required.

Cartridge software: Application headers are strung together in a linked list, so there
may be any number of applications on one cartridge.

mmwmEmE e e e ®m

momowmour oo

BOOT SECTORS

To write software that will auto run from disk, the programmer must produce a boot
sector that contains a loader program which transfers the program from disk to
memory before bringing up GEM.

The boot sector follows IBM PC format and contains:

The volume serial number
24 bit number generated when the media is formatted

BIOS parameter block (BPB)
Sector size in bytes
Number of sectors/cluster
Cluster size in bytes
Length of root directory in sectors
Size of a File Allocation Table (FAT —in sectors)
Sector# of start of second FAT
Sector# of first data sector
Number of data clusters on disk
Flags

Optional boot code and boot parameters

During initialization the boot sector is loaded into a buffer and the executable boot
sector code tested for a word checksum of #81234. If satisfactory a subroutine jump
is made to the beginning of the position-independent code in the buffer.

When a get BIOS parameter block call is made, the BIOS reads the boot sector
(normally created when the volume is formatted), and returns an error indication if
any critical parameter fields are zero.

The 24-bit volume serial number, written when the media is formartted, is used to
determine whether or not a disk has been changed.

The protobt extended BIOS call (dec 18) is used to create the boot sector (see
chapter 3), which is written to track 0, side 0, sector 1.

BIOS boot parameter block
(normally written when the volume is formatted)

Note: word storage is low byte at the low address (even) as per 8086 and not the
usual 68000 mode.

The BIOS parameter block is compatible with MS-DOS version BPB, but will only
read and write sectors written by another WID1772A disk controller.

PR ERE N

mmmqmn?emmmmmm

I

W W W & W

s L »

(]

tm) e e

L b

$0
$2
$8

$B

$D

$E

$10

$11

$13

$15

$16

$18

$1A

$1C

$1E
$1FE

$200

BRA.S 0
oems—space 2
[Volume serial#] 8
#$000000
BPS 11
$00 #%02
SPC 13
#%02
RES 14
#$01 #3500
NFATS 16
#$02
NDIRS 17
#$70 #%00
NSECTS 19
#$D0 #$02
MEDIA 21
#$F8
SPF 22
#$05 #3500
SPT 24
#$09 #$00
NSIDES 26
#$01 #$00
NHID 28
#300 #3500
boot code 30
The last word 510
512

Branch to boot code
Spacereserved for OEMs use

24-bit volume serial number
(used to determine disk changes)

Number of bytes/sector
Number of sectors/cluster
Number of reserved sectors

(at start of media incl. boot)

Number of file allocation tables
on media.

Number of directory entries
Number of sectors on media
(including reserved)

Media descriptor - notused by ST
Number of sectors/FAT

Number of sectors/track

Number of sides on media

Number of hidden sectors-not used

Start of code, if any

Used for checksum

BOOT LOADER

The boot loader resides in the boot sector and is used during system initialization to
load an image file or a contiguous set of sectors; it is also used to load GEM from
disk on early ST models. The format of the loader is:

$0 boot sector 0 The standard BIOS parameter block

$1E execflg 30 The word copied to cmdload flag

If Imode = 0 load file, if not 0 load sectcnt sectors
beginning at ssect

$20 ldmode 32

$22 ssect 34 If Imode <> 0 load from here

$24 sectent 36 If Imode <> 0 load sectcnt sectors

$26 ldaddr 38 Load address of file or sectors

$2A fatbuf 42 Address for FAT and DIR sectors

$2E fname 46 Filename: 8 character name, 3 character extension

(valid if 1dmode is zero)

$39 (reserved) 57 Reserved

$3A boot code 58 The executable code

Some software tools require the six bytes reserved for OEM:s at offset $2 to contain
the ASCII text ‘loader’.

The loader can load any file from disk regardless of where it appears in the directory
or whether it has the form of contiguous sectors or not.

An image file contains no header or relocation information and is an exact copy of
the program to be executed.

&

@ 8

£
£
)

L)

i
B
=
=
E
=
"=
=
E
=
E:
-

]

d dl

=)

wl

inl Ln‘ -il

(1% Ui Ln_- L L Ly LI°8) LY

L b

L

BOOT ROM

The initialization of the system from the boot ROM follows the predefined pattern
of a RESET with some system variables installed and pretty color screen graphics to
keep the operator from getting bored.

The boot dir and 2nd FAT buffer are read into memory starting at membot. T0S. IMG
is loaded starting at $40000 and an error code produced if the file is not found. The
memory $10000 to $20000 is used for screen buffers and should not be used initially
for any code or data.

The first ST’s sold contained a small 32K boot ROM that loaded the operating
system from disk. The boot ROM contains a small sub-set of the BIOS, just
sufficient to read an 80 track, BPB floppy disk boot sector from either drive into
memory and then execute it.

Trap 13 - GEM BIOS functions implemented

Code Name Function
4 rwabs Read/write sectors (read only)
g/ getbpb Get BIOS parameter block

Trap 14 - extended functions implemented

Code Name Function
1 ssbrk Reserve x bytes from top of memory
8 floprd Read sectors from floppy disk

All other BIOS facilities are not loaded into the system until a later stage. The first
100 bytes of disk TOS relocate TOS.IMG at $5000 from where it takes control.

The first TOS implementation uses the following disk parameters:

80 track, single sided BIOS parameter block

Bytes/sector 512 # sides/media 1
Sectors/cluster 2 # hidden sectors 0
Reserved sectors 1 Load address $40000
#of FATSs 2 FAT /directory buffer $8000
of root dir entries 7 Volume serial number 0
of sectors on media 720 Media descriptor byte F8H
sectors/FAT 5 Filename T0S. IMG
sectors/track 9

Atari ST peripheral device
communications

COMMUNICATIONS OVERVIEW

The ST supports serial and parallel communications through dedicated RS232 and
parallel ports, and permits two further communicaton channels to be opened
through the MIDI and DMA ports.

The serial RS§232 communication port accomodates hardware data control based on
the PSG I/O port A, RTS and DTR outputs, and the MFP MK68901, CTS, DCD
and RI inputs, and Xon/Xoff software data protocol at transmit and receive baud
rates in the range 50 to 19200 baud. The port is generally used to interface with a
printer, modem or another computer. The MFP is located at $FFFA00 (16775680)
and the PSG at §FF8814 (16746610).

The general purpose parallel port interface provides bi-directional 8 bit communi-
cations for printer operation. The port is based on the MFP MK68901 (busy
control), the PSG I/O port A bit 5 (strobe control) and the PSG 1/O port B (data
transfer). The control is limited to a busy signal, acknowledge is not supported and
data transfer is at a typical rate of 4000 bytes/s.

The MIDI interface provides an asynchronous, current loop, serial data (one start
bit, eight data bits and one stop bit) communications channel at 31.25 Kbaud. The
MC6850 port controller may be reconfigured for most forms of RS232 interface via
the control/status register situated at address $FFFC04 (16776196).

The intelligent keyboard interface is also controlled by an MC6850 ACIA, but there
is no external access provided to the port, which is of limited use other than
accessing the ikbd command set; for reading and or writing to the clock, joysticks,
mouse and perhaps reconfiguring the keyboard.

The floppy disk interface is based on the Western Digital WD1772A disk controller
and is limited to supporting two drives.

The DMA interface is provided by an ULA device, access is through the
control/status configuration registers at $FF8600 (16746084) et seq.

&

-

e
a)

m
B
&
&
-
=
“=
=
-
&
S
E

L W @ W W D W

FPEL TP

8) WU W

L’

-

(.

RS232 INTERFACE

General

Data is transmitted and received via an RS232 interface as a sequence of ones and
zeroes (bits) along a three wire link, one wire being ground, one for transmitted data
and the other for the received data. Information is sent as ‘characters’ and each
character is prefixed by a start bit (a one) and terminated with either one or two stop
bits (zeroes). Providing the sending and receiving devices are set to the same speed
(baud), then the stop and start bits act as a timing signal to each ‘character’ sent.
Occassionally error detection is incorporated in the form of a parity bit. If the count
of ones in the character is even, then the eighth bit is a warning of data errors in the
transmission. Providing the transmitting and receiving station agree on the protocol
used, then communications will be reasonably straightforward!

The port is reconfigured using the sequence:

a: Save current MK68901 register contents
b: Disable Rx and Tx enable bits

c: Set flow control mode

d: Set baud rate

e: Set RS232 registers

f: Re-enable Rx and Tx enable bits

The extended BIOS call #80F (15) enables selective reconfiguration of the RS232
port according to a block of parameters pushed onto the stack:

move.w sync_char,-(SP) * Pushing (see chapter 3)
move.w tx_status,-(SP) * -1

move.w rx_status,-(SP) * leaves

move.w usrt_cntl,-(SP) * parameter

move.w flow_cntl,-(SP) * unchanged

move.w baud_rate,-(SP) * Set timer D

move.w #15,-(SP) * push RS232 config

trap #14 * call function

add.w #14 Sp * tidy stack, jump 7 words
tst.w Do * test for error

rts *

Data is passed through the interface using extended BDOS calls to the auxiliary
device, the RS232 port.

PARALLEL PORT INTERFACE

General

Data is transmitted and received via a parallel port interface in blocks of 8
(sometimes 7) data bits, set either as ones or zeroes to form a character byte. The
character is ‘framed’ by a strobe signal enabling the receiving device to read the
character transmitted, which may be printed immediately or saved in a buffer for
subsequent printing. At some stage the printer will not be able to accept further
input and will send a busy signal to stop the transmitter frem sending additional
data. The acknowledge signal is sometimes used to indicate that the printer is no
longer busy, occasionally this signal line is omitted and the busy line also provides
the ‘not busy’ signal.

Data is passed to and from the interface using the following procedures:

Write data:

a: Check the busy line for high
If line low, monitor until high
or time out set CPU DO register to 0

When high

b: Set PSG I/O B port to output, use IPL. 7

c: Place data into the PSG’s B output register

d: Switch strobe line on

e: Switch strobe line off, set CPU DO register to -1

Read data

a: Set PSG I/O B port to input
b: Switch strobe line off
c: Check busy line for high
loop till high
d: Switch strobe on
e: Get data from PSG’s B output register

As the status register is affected, the above procedures should be performed in
supervisor mode.

)
mmmmmrlfmmmmmmmmmmm

—=
W

ool

adl
-

G U W W W b U W Wy
e

Ll

MIDI INTERFACE

General

The MIDI (musical instument digital interface) sequential circuits provide for
integrated operation of music synthesizers, sequencers, drum boxes etc. which have
the MIDI interface. The ST operates as a data store for a large number of
notes/voices which may be sent to different instruments (channels), and played
together in sequence and time as music. The data may be ‘recorded’ from a tune
previously played, edited and/or synthesized by entering new data in step-time-note
format into the store for later retrieval.

The MIDI bus provides 16 channels in one of three networking modes. OMNI, the
default where all units are addressed together and transmit and receive on all
channels. POLY where all the units are individually addressed and receive on one
channel only, data assigned to non-existent channels is ignored. MONO where the
voice of each unit is addressed seperately, providing different channels for indiv-
idual voices within one synthesizer.

The information transmitted is priortised and sent as bytes, the most significant bit
signifying either status (1) or data (0). The priority order is:

System reset Set defaults

System exclusive Manufacturers unique data
Sequential circuits Roland, Yamaha etc.

System real time Synchronization

System common Broadcast

Channel Note selection, program data etc.

The MIDI port supports the optional through port which merely provides the
MIDI in signals at the MIDI out port.

The MIDI interface operates in RS232 current loop mode at 31.25 Kbaud. It may
be reconfigured by resetting the control/status registers.

The Atari ST’s extended BIOS enables the programmer to reconfigure the MIDI
port.

2-40 - 2-41

&
<l

INTELLIGENT KEYBOARD INTERFACE (IKBD)

The intelligent keyboard functions through a MC6850 ACIA device whose
control/status register is located at address $FFFCO00 (16776192), and functions like
the MIDI interface. There is no external access to this port so there is little point in
reconfiguring, but it can be used to transmit and receive data or commands from the
keyboard, mouse, joystick and clock using the following facilities:

MIDI control[status register functions (write only)

wl

Control/status register located at address $FFFC04 16776196
Data register offset §2

Control register functions (write only)

Divide 1
Bit select | Bits Data format | Bit RTS format|Bit Interrupt y Keyboard
- Rerturn keycodes
01 2 3 4 #BitParityStop |5 6 Txon/off | 7 enable 1
Mouse
00 byl |000 7 even 2 |00 off RTS=| Interrupts ﬁ,))
Set mouse button action (keys, on press/on release)
01 byl6|001 7 odd 2 |01 on low| enabled by T :
: : 1 Set mouse position relative (default)
10 by64 |0O10 7 even 1 1 0 off RTS =| bit7=1: - T
G ag'> 5 high| ‘Rx dita Set threshold level per ‘click
(o] 1 X .
Set mouse position absolute
11 Master{100 8 — 2 !11 off RTS =| regfull, : 3 Set scale (‘clicks’ per movement)
. reset {101 8 — 1 low| Overrun, - Read/write mouse position
: 110 8 even 1 Tx break level DCD low to Set mouse to simulate cursor motion codes
111 8 odd 1 on Tx data OJI'p hlgh step — SetY origin toplf'bottom
: 3 Disable/pause/resume mouse operation
Foystick
3
!
I Status register functions (read only) Enable joystick (default)
| Disable, act on request only
Bit Name and Function a Interrogate joystick
| Set monitoring (serial line, joystick and clock)

(serial line, button 1 and clock)
Set keycode mode (variable ‘click’ rate)
Disable joystick

|I 0 Rx data register full
[Received data in register ready for CPU read

e

1 Tx data register empty
Transmitted data sent, load with next character to transmit Clock
: oc
2 Data Carrier Detect a

Set date and time
Read date and time

Indicates modem state — Carrier present
3 Clear to Send
Indicates modem state — Master reset —no change

‘ 4 Frame error
Character synchronization error

Program control

Load data into ikbd memory

Read received data register or write to transmit data register

i ‘ 5 Rx over-run | Read data from ikbd memory
| Characters have been lost from stream - Execute intelligent keyboard (ikbd) program
6 Parity error
Only active if parity selected A status inquiry command returns a null padded 8-byte packet detailing the current
7 Interrupt request mode and parameters of a specific function, the packet may be stored and later used

to restore the status of the keyboard by modifying the header byte and returning the
data as a command.

L]
B
B
B
E
E
o

E
E
B
E
E

s

V Heily I 2-43

The keyboard scancodes do not maintain complete compatibility with IBM PC key
scancodes. Appendix D provides the major differences due to the non-availability of
certain keys on the ST keyboard. The additional ST keys are mapped into unused
crrL_ and aLt_ function scancodes.

FLOPPY DISK INTERFACE

'F

The floppy disk interface is based on an on-board Western Digital WD1772A disk
controller and that can support a maximum of two drives.

dl

To detect crrr_ and aLT_ function key combinations, execute a BDOS or BIOS E
getchar call followed by a BIOS kbshft call (#80B). The floppy disk read|write sequence of events is:

a: select floppy drive 0 or 1 (PSG I/O port A)

|
Fl

b: select floppy side 0 or 1 (PSG 1/O port A)

: load DMA base address and counter register

i
-
-l
]

s'-', . d: toggle read/write to clear status (DMA mode cntrl register)

e: select DMA read or write (DMA mode control register)

f: select DMA sector count register (DMA mode cntrol register)
g: load DMA sector count register (DMA mode trigger)

h: select FDC internal command reg (DMA mode control register)
iz issue FDC read or write command (Disk controller register)

j: DMA active until sector count zero (DMA status register) do not poll during
DMA active.

k: issue FDC force interrupt command on multi-sector transfers except at track
boundaries (Disk control register)

check DMA error status, non destructive (DMA status register)

[

The DMA configuration registers are at the base address $FF8600 (16746084) and
the following offsets:

W
Wl W oW wow

|

| 4 $4 Disk controller data access

4 m* 6 $6 DMA read — mode control, write FIFO

! 5 i 9 $9 DMA base high set last
l 11 $B DMA base medium

| 13 $D DMA base low set first
k

The PSG configuration registers are at base address $FF8800 (16746596) and the
following offset:

2 $2 PSG write port
Bit 0 floppy side
Bit 1 floppy drive 0
Bit 2 floppy drive 1

There is no hardware support for sensing disk removal, therefore this facility must
be performed in software.

2-44

Formatting a floppy disk

The following procedure illustrates the technique used in formatting a floppy disk:

Extended BIOS calls

The standard ST format is:

Sides: 1 or 2

Sectors per track: 9

Tracks: 80
No interleave and the first two tracks zeroed (to 0 FAT
and directory sectors, either sector bad and the media is
unusable).

flopfmt #10

Use disk type parameter 2 or 3

[protobt #18 Serial # param, random or #$1000000

Execute flag usually zero, non zero if it contains loader code
etc. that is to execute when the disk is booted.

Werite boot sector (prototyped in buffer to track 0, side 0,

flopwr #9 sector 1 of the disk.

Do not use rwabs call.

The WD1772 ‘write track’ codes used to format a track are:

Double density format: issue a “write track’ command and load
the following values into the data register. There is a data
request for every byte written.

ID field

Bytes 60 12 3 1D
data #$4E | #$00 | #$F5

Trck | Side | Sect | Len | CRC | CRC
#$FE | # # 3 # 1 2

0-$4F 0-1 1-9

Bytes 22 12 3 1D 256 |CRC| CRC| 40 1401
data #$4E | #$00 | #$F5 | #$FB | data 1 2 | #$4E #$4E

L) End of

Data field track

Length = #512 bytes/sector (usually 2)

mom
)

»

MMMMM;M

Ele i H

1

WD1772 DMA channel interface
The WD1772 is interfaced through the DMA channel via the following procedure:

To initialize the WD1772:

move.w #5190, $FF8606
move.w #590, SFFB606
move.b #xx, dmalow
move.b #xx,dmamid
move.b #xx,dmahigh

;Clear the fifo by toggling r/w
;and leave in the write state.
;Set up dma address pointer in
:low to high order

;$FFB60D, SFFB60B & $FFB609
respectively

The following addresses are used by the WD1772

$80 128 command/status register
$82 130 rrack register

§84 132 sector register

$86 134 data register

To address the WD1772:

move.w #Syy, SFF8606
move.w #5zz D7

;The FDC rguires two writes to
;access the registers, the first

delay write selects the FDC register
move.w D7, SFF8604 ;and the second write modifies
delay ithe register

rts

To transfer from memory to floppy the values must be ORed with #8100 and #$FF
written to $43E to prevent T'OS from changing the value in address §FF8606. When
the operation is complete the byte in $43E, the floppy lock variable, must
immediately be zeroed.

To seek to a track:

move.w #5386, SFFB606
move.w #$4F, SFFB604
move.w #3580, SFF8606
delay

move.w #517, $FF8604

;Select the data register

‘Write seek track ($4F last track)
;Select command register

:Wait for drives

:Seek with verify.

The FDC will generate an interrupt when the seek is finished, it can be polled at
$FFFAO01 where bit 5 is zeroed. Errors are read from $FF8604, the read clearing the
interrupt bit.

1
)

To transfer data:
/i DMA INTERFACE
/e.b #5xx.ds ;set up dna address - clear fif _ v
:2?{: w ﬁs:;Gd?EFSﬁDB Lt e RO il SR ‘ There is only one direct memory access (DMA) channel which is shared by both low
move.w #$1,$FF8604 :512 byte size limit of transfer ‘ and high speed 8-bit device controllers. The configuration registers hold the 3 byte

base address of the DMA operation which is performed through a 32-bit FIFO

write sector# (1..9) : ;
i | ' programmed by the DMA mode control register.

‘write track# (#500.#327) use #5A6
write track# (#528 #54F) use #35A4
cread track#, use #584

The hard disk read[write sequence of events is:

TR R

a: load DMA base address

ol

o

: toggle read/write to clear status (DMA mode control register)

-

: select DMA sector count register (DMA mode control register)

Do not use read/write multiple sector commands as they require a force interrupt

command which is slower than re-executing a read or write. - :
g select DMA read or write (DMA mode control register)

To formart a track:

e: load DMA sector count register (DMA mode trigger)

write track# (#300.#527) :use #5F6

write track#f (#328.#84F) juse #5F4 f: select HDC internal command reg (DMA mode control register)

FIRR TRt

issue HDC read or write command (Disk controller register).
1st command AO set to 0, set to 1 for remaining commands.
Each byte command is acknowledged with an interrupt.
After last command byte set hard disk sector count bit 1.

Write data to the drive beginning and ending with the index pulse.
It takes about #$1A00 bytes to fill a drive running at 3%,.

L

The existing format command produces 9 sectors of 512 bytes per track.
: DMA active until sector count zero (DMA status register) — do not poll during
DMA active.

i

IR T

Do not change the id-field, the fourth byte is used to count the number of bytes to
transfer, and to locate the CRC data field. It may produce incompatibilities with
TOS if changed. The side number can be read by making a read address command
three times without clearing the dma fifo or changing the dma pointer.

| i: check DMA error status, non destructive (DMA status register)

check HDC status byte and if necessary perform an ECC correction following a
verify track or read sector command.

s

To write an entire track:

The DMA configuration registers are at the base address $FF8600 (16746084) and
the following offsets:

The entire track can be written as one long sector and then read back, without any
error checking, using the read track command if the following format is used:

L5

4(%$4) Disk controller data access

6($6) DMA read_mode control, write FIFO
9($9) DMA base high

11 ($B) DMA base medium

13 (§D) DMA base low

“

Index pulse followed by:

#$00 a minimum of 12 bytes for lock-on
#8F5 3 bytes for synchronization

The #8F5s generate $A1s with a missing clock pulse to allow for alignment.
The DMA registers are used to perform the floppy disk data transfers but may also

be used for hard disk and other high speed data interfaces, bearing in mind the
restriction of one DMA operation at a time.

lam s lms

The port is used for both high speed (upto 8 Mbit/s) and low speed (250 to 500
Kbit/s) DMA operations.

Any modification of the DMA base address or counter register requires that they be
set in low—mid-high order.

"
-

mmnmmm’mmmmmmammmmm

2-48
——
e
move.w #1,(AD) * write sector count reg = 1
DMA bus boot code ‘ move.w #5088, (A6) * DMA bus select (not SCR ?)
The following code, which is typical of the ST’s BIOS, attempts to load boot sectors move.b D7,D0 * D0.1 to device# + command
from devices on the DMA bus. The code shows typically how the DMA bus is used or.b #508,D0 i
and provides the timeout and the command characteristics expected from bootable swap DO * DO T=xxxxxxxxDDD01000

DMA bus devices. move.w #5088,00 ¥ xxxxxxx010001010
bsr wchyte * write cmd and wait for IRQ

gpip equ SFFFFFAOT * .B 68901 input register bne dmr_g * error exit on timeout

dskct] equ $FFFFB604 * W controller data access ' moveq #3,06 * write cmd $00

fifo equ $FFFFB606 * .W DMA mode control r move.l #500008A,D0 * cnt] $8A

dmahigh equ SFFFFB609 * B DMA base high dmr_1p bsr wchyte 4 four times

dmamid equ SFFFF860B * B DMA base mid bne dmr_q ¥ error exit on timeout

dmalow equ S$FFFFBBOD * B DMA base low dbra D6,.dmr_1p $

flock equ $43E * W DMA chip lock variable move. 1 #S00000A, (AB) * write final byte

dskbuf equ $4C6 * .L 1K disk buffer move.w #400,D1 * 2s timeout limit

Hz_200 equ $4BA * L 200 Hz counter bsr wwait :

bootmg equ #51234 * W boot checksum bne dmr_g * error exit on timeout

Try to boot from DMA device

dmaboot moveq #0,D7

dmb_1 bsr dmaread
bne dmb_2
move.] dskbuf,AQ
move.w #S00FF, D1
moveg #0,00

dmb_3 add.w (AO)+,D0
dbra D1.dmb_3
cmp.w #bootmg, DO

bne dmb_2

move.l dskbuf,KAQ

jsr (AD)
dmb_2 add.b #820,07

bne dmb_1

rts

* # devices to try (eight)
try to read boot sector
failed -- next device

* disk buffer pointer in AD
* checksum #5100 words

* initialize checksum

add a word

* until #5100 counted

* Is it a boot sector

No -- next device

* disk buffer pointer in AQ
run the code.

next device

-

Try to read DM A bus device boot sector

dmaread lea fifo,Ab

lea dskctl1,Ab

st flock
dskbuf,-(SP)

move.

3(SP),dmalow

* DMA control register
* DMA data register
* DMA lock against vblank

¥

* set up DMA pointer

=

¥

move.w #S08A, (A6)
move.w (Ab),DO
and.w #S00FF,DO
beq dmr_r
dmr_g moveq #-1.,00
dmr_r move.w #5080, (A6)

tst.b DO
sf flock
rts

*

"

select status register
get DMA return code

mask for error code only
return if ok

set error return (-1)
reset DMA chip for drivr
test for error return
unlock DMA chip

Write ASCII command byte and wait for IRQ

wchyte move. 1 DO, (AB)
moveq #10,01
wwait add.1 Hz_200,D1

ww_1 btst.b #5,gpip
beq WW_W
cmp.1 Hz_200,D1
bne ww_1
moveq #-1,D1
WW_W rts

write disk controller data
wait 0.0bs

set D1 to timeout

disk finished

ok return

timeout yet?

no -- try again

set error return (-1)

1

b
move.b 2(SP),dmamid *
move.b 1(SP),dmahigh *
addg #4,sp *
move.w #5098, (A6) * toggle r/w, leave at read
move.w #5198, (A6) %
move.w #3098, (A6) x

i *
mmmmm mmmEEREDE R R B @
ﬂEjr. i B.r= . 5

=3

2-50

|
wl

Hard disk partitioning

Logical sector #0 contains information on the four possible hard disk partitions:

T
4

Offset

hd_siz $1C2 Total size of the disk in sectors Chapte r 3
p0_flg $1C6 Non zero to show partition exists, . S TR A

bit 7 set for BIOS boot partition A ST d 1
pO_id. $1C7 3-byte field identifier. ‘GEM’ for GEMDOS E -E tarl traps an Utl ltles
pO_st $1CA Partition start logical sector number

L) ¥

pl_siz $1CE Size of partition in logical sectors f i

Three further optional partitions -
px_flg $1D2 $1DE $1EA
px_id $1D3 $1DF $1EB - ;
px_st $1D6 } 2nd g1E2 } 3rd 4th =
pX_Siz $1DA $1E6 $1F2 : [_j
bs1_st $1F6 Staring sector of the bad sector list
bsl_cnt $1FA Number of bad sectors
reserved $200 U

L
E=
E
E
E
E
Q\E :J.))
E
E
E
E
E-

An ST disk may contain up to four partitions, the first sector of each partition is a
boot sector and contains a BIOS parameter block.

The partitions are described by the 12 byte structure above.

Root
boot

(.
L

Partition 0

Partition 1

If

Optional partitions
Partition 2

5 -

Partition 3 =
Optional ‘
bad.sec_tr The bad sector list is usually held at the end of the device. .
list If the parameter bs1_cnt is zero, there are no bad sectors. [

o

w
I
(¥}
A
w
I
w

al

General Traps

li_J

The operating system (TOS) is a mixture of GEM and an Atari OS, both can
completely control the system but the programmer is advised to use the GEM host
facilities, although calls to the various types of utilities can be mixed. There are
many reasons for using a consistent set of calls, not the least being that the
programmer can write programs which are portable to other computers that contain
the same operating systems. Although the writers present intention may not be to
provide the program on an alternative computer system, it is wise to adhere
preferably to GEM calls if possible. Those who have programs generated on older 8-
bit machines, and now find that they cannot be used, will understand the need for

al

GEM BIOS CALLS

To access the GEM BIOS functions, push the parameters in the order given onto
the stack and then call Trap#13. Reply or status is returned in register DO and the
data placed on the stack trashed.

Typical use might be:

Wowowow oW oW oo

ortability. ;
P Y) move.w driveA,-(sp) * push device code
- ¥
The BIOS and BDOS use and preserve registers in a rather haphazard manner, the [22:2 : ;Eﬁiid = EEE; * ﬁl:z: ;zco;? chizi;t
following may be used as a guide: ' ' :
g may g move.l addrss,-(sp) * push buffer address
$13 BIOS calls preserve d3-d7/a3-a7 woyE. ¥ #0, -(sp) > push read dota
= * :
$14 Extended BIOS calls preserve d3-d7/a3-a7 Ll #4, ~(sp) 2 Dlof Gubs fun;tmn g2l
$ 1BDOS calls use d0-d4/a0-a4 e #3 i :f‘;] ::e f”"ci"m
add.w ,Sp * tidy the stac
The A-line routines provide access to the graphic primitives; they will not produce I tst.w DO * test for error
rts *

portable code but will give very rapid execution of graphic functions.

Lastly a word of warning. GEM was developed for use on the IBM PC, and as such
ran on the Intel 8086 processor, which stores addresses in memory low byte first.
Atari GEM uses the same convention in some of the tables and parameter blocks, it
is a point programmers should be aware of, as a mixture of conventions of this kind
is likely to cause problems.

It is the programmers responsibility to tidy the stack after the call. The BIOS,
accessible from user mode, is re-entrant to three levels of calls, users are advised that
this non-standard feature should be used wisely where program portability is

required.

o

mmmmq;mn@nnm%mmmmm
w o owowm oW

']I'J

1
3-4
Gem BIOS calls Gem BIOS calls - continued
Tinition Parameters to push onto stack Notas !:t j Function Parameters to push onto stack Notes
pmpb.L: Pointer to empty B driv.W: devicecode 0 i floppy A . 0 ret ok
memory parameter MPB structure: p20 Init val ‘:' : 1= foppydiivel NERSEOL
: nit vals: :
; 2+ = disks, networks etc.
block to be M v_free_1i A : ~ 3
e Mnemmoﬂr' X—a]rl GE?C ']118 tL OMD in BSS) recn.W: logical sector number to start at rd/wr mode
PR o oFg A B secn.W: number of sectors to transfer 2 & 3 allow
Roving_pointer — MD in BSS
seaA o buf.L.: buffer address (very slow if odd) formatter
ppendix F MD structure: — . .
Next_1ink_MD 0 rwfl.W: rd/wrflag Oread to read & write
MD = memory Start_addr_block — mbottom E‘ e Liwriie and allow
descriptor Nobytesshlioek 7 b m’) 2 read do not affect BIOS to
bytes — mtop-mbot : : i
i ' 3 write media-change recognize
Owner_description — 0] : !
GETMPB O Gt eibEy paratster block E 1 G RWABS 4: ‘ rd/wr logical sectors on a device formfatted disk
(#800) Trap#l3 (Tidy #6) b St (#804) Trap#l3 (Tidy #14) (D0.L) media change
r " L 3
dev.W: dev code range 0 printer — parallel Operations t - ‘;j VCC'L: vestorlot address‘ (-1L POEhAge) Gty R
range 1 aux—RS232 0.and 4 vecn.W: vector number to set/get to $1FF GEM
N range 7 : ol ‘are SETEXC 5: setexception vector (see below) to $FFEF
1ge error 2 con — screen illegal in = i
checking 3 — midi thismode t. ;j (#8$05) Trap#l3 (Tidy#8) (DO.L) OEMs
4-k . 3
BCONSTAT . 5 Ieyboard Return DO.L TICKCAL 6: return system elapsed time mS
1: return char_device input status #80000 none :j (#806) Trap#l3 (Tidy#2) (DO.L)
(#801) Trap#13 (Tidy #4) #$FFFF yes (DO.L) l:: ' .
; iv.W: devi de (0 + W 446
dev.W: device code 0 to 3 (if dev 2, also Sty i devioeeode (0102 kya FNth). Pagk 02 '
ret IBM-PC ¢ tible code W s GETBPB 7: Get BIOS parameter block pointer DO0.L = add.
in highword) s e :IT o t I L; (#8$07) Trap#13 (Tidy #4) (DO.L) 0 = not found
a character
BCONIN 2: input character from device DO.L re
: ply. dev.W: device code —as per bconstat 0 to 4 = not ready
$02) T i 3 - i :
(1#02) "Lraphls (Tidy#d) (BSGILDON ‘ , 5_; BCOSTAT 8: Return device character output status -1 = ready to
08) T Tidy #4 DO.L d
c;wr.W: character to be sent (see Appendix C Wait until) 08 e Y) b
. -5 - z -
ev.W: devicecode0to4 ; for escape codes) character ﬁ ' = driv.W: device code (0 to 2+, as per rwabs)
ol G s sent. MEDTACH 9: Get media status GEMDOS
(#803) Trap#l13 (Tidy #6) (No return) 0= Media no change will try to
[
‘“ 1 _._a 1 = Media maybe changed read media
2 = Media has changed with a status
a (#809) Trap#l3 (Tidy#4) (D0.L) value of 1
B =
must be updated by installable drives Bits 0-31
DRVMAP 10: Get bitmap of drives 1 = drive in
= o (#80A) Trap#13 (Tidy#2) (DO.L) 0 = driveout
E =
-
E. =

3-6

Gem BIOS calls - continued

Function Parameters to push onto stack Notes
mode.W: Mode bits If mode —ve
7 reserved (zero) get IBM-PC
6 left mouse button (insert) state of
Note: Notall GEMs 5 right mouse button (clr/home) SHIFT keys
read bits 5 & 6 4 capsLock as bit vector
3 avrTkey in DO.L low
2 CONTROL key byte.
1 left suiFr key Critical
0 right sairT key code for
KBSHIFT 11: Set keyboard shift bits portability
(#$0B) Trap#13 (Tidy #4) (old shift bits D0.L)

The extended GEMDOS vectors (Appendix A) may be employed by user programs
but should take note of the following:

$100 etv_timer:

$101 etv_critic:

Word value on stack is number of millisecs since last tick.
Save all registers

Stack word value is error number, save registers used.

To ignore an error set DO.L = 0
To retry an error set D0.L = $10000
To abort an error set DO.L. = sign extend stack parameter.

$102 etv_term: Abort termination by a longword jump back to the top of

the calling application or terminate via an RTS

EXTENDED BIOS CALLS

To access the extended BIOS functions, push the parameters in order given onto the
stack and then call trap#14 from user or supervisor mode. Reply or status is returned
in register DO.

Typical use might be:

move.l vector,-(sp) ¥ push vector address

move.] parblk,-(sp) * push parameter block address
move.w type, -(sp) * push type of mouse action
move.w #0, -(sp) * push initmouse call

trap #14 * call the function

add.w #12,sp * tidy the stack

tst.w DO * test for error

rts

"o R

W oW o m o om m l'l?

—

(- . .
uw d W

H

u a

LZJ.L:J.L.JEJJ&'J._JL,

Extended BIOS calls - continued

Function Parameters to push onto stack Notes
vect.L: vector address (mouse interrupt handler) If mode = 2
para.l.: param 1_y=0top, 0_y=0 bottom then extra

(Block block Mouse button command(#$07) word sized

contains address x param thresh/scale/delta parameters

4 bytes) y param thresh/scale/delta required in

type.W: mode 0 disable mouse param block
1 enable relative mouse Xmax
2 enable absolute mouse ymax
3 unused xinitial
4 enable keycode mouse yinitial

INTTMOUS 0: Initialize mouse packet handler See call 34

(#800) Trap#l4 (Tidy #12) (No return) re vect address

numb.W: Bytes from memory top to be saved MUST call

SSBRK 1: Reserve block of memory at high RAM before OS

(#801) Trap#l4 (Tidy#4) (Return DO.L) initialized

_PHYSBASE 2: Get screen base address (physical) At next

(#$02) Trap#ld (Tidy#2) (Return D0.L) vblank

_LOGBASE 3: Get screen logical base address now Used by GSX

(#803) Trap#l4 (Tidy#2) (Return DO.L) on screen

_GETREZ 4: Get screen resolution Either 0, 1

(#804) Trap#l4 (Tidy#2) (Return D0.W) or2
rez.W: Set screen resolution (0, 1 or 2) Negative

clr scrn, home cursor, reset VT52 parameters
ploc.L: Set screen physical location (next vblank) are ignored
lloc.L.: Set screen logical location (now) s0 a single

_SETSCREEN 5: Setscreen parameters parameter

(#$05) Trap#ld (Tidy #12) (No return) can be set
palp.L: Set pallette pointer (word boundary At next

_SETPALLETE 6: Set pallette hardware register contents vblank

(#$06) Trap#l4 (Tidy #6) (No return)
colr.W: Set colour (format-16 bit color word) If colour

coln.W: Set color number (0 to 15) negative

_SETCOLOR 7: Seta color in hardware pallette ignore.

(#807) Trap#l4 (Tidy #6) Return old

color (D0O.W)

N

3-8 E.’
3 Extended BIOS calls - continued
Extended BIOS calls - continued ﬁ; »] Kpenge
o Function Parameters to push onto stack Notes
Function Parameters to push onto stack Notes
E 1 ‘a vect.L: Address of interrupt routine Old vector
secn.W: number of sectors to be read RetDO.W = 0 ;i intn.W: Interrupt number (0 to 15) 1S Toit.
sidn.W: side number selected for uk. MEPINT 13: Set MFP interrupt
trkn.W: track number to se?k to else failed | _3 (480D) Trap#l4 (Tidy #8) (Naierarn)
stsc.W: sector to start reading from (1t09) error number E
devn.W: floppy device number (0 or 1) devn.W: Serial dev 0: RS232 For RS232
scrt.L: #0, not used at present. 1: Keyboard identical
buff.L: word aligned sized buffer adcilress — must be big E e 3 2: Midi o/p buffer
_FLOPRD 8: Read sectors from a floppy drive enough “v . ' L. pointer to dev buffer follows i/p
(#808) Trap#l4 (Tidy #20) Return a pointer .L W. size of buffer
(T] toaserial devices Yy 1ead index High & low
secn.W: number of sectors to writi‘ .- v input buffer record W. tail index codces e
- i) : . (< = sectors/track) tI”{e-t];)O.W =0 E _; param block (brpb) (W. low-water mark RS232 xon
sidn. W: side number selecte or o 1 . .
f (W. high-watermark xoff if
trknW: “racknumber to ?C_Ck oy Sige filedl I0REC 14: Get pointer to serial device i/p brpb flow control
dstsc.\’\?g: ;ec(or tg st'art ertl;lg t((:)(l—ﬁl); error number E 3 (#$0E) Trap#l4 (Tidy#4) (Return DO.L) enabled.
evn.W: floppy device number (0 or B
scrt.L: #0, not used at present. Writing to et e 68901 iimaais
buff.l.: word aligned buffer address boot 1,0,0 s Wr e statusreg MFP register doas
FLOPWR 9: Write sectors to a floppy drive sets ‘maybe’ ‘ M j rsr,W: Rx statuszeg settings change
(#909) Trap#l4 (Tidy #20) mediachanped usr.W: Usart cntrl reg (Chaprer 1) registers
flow.W: 0 No flow control (default)
fcod.W: $ES5ES5 format code (not 0 or FxFx) RetDO.W = 0 E . 3 1 xon/xofF (AS[AQ)
magc.L: 387654.321 for ok. > RTS/CTS
intl.W: Sector interleave factor (say 1) else failed 3 xon/xoff & RTS/CTS
sidn.W: side number to format (O or 1) error number i . j baud.W: 0 = 19200 6= 1800 12 = 134
trkn.W: track number to format (0 to 79) Buffer holds 1= 9600 7 = 1200 13 = 110
sptk.W: Number of sectors/track to format (say 9) 0 terminatd i 2 = 4800 8= aan 4= 75
devn.W: floppy device number (0 or 1) list of bad “i - J 3= 3600 9 = 300 5= 50
scrt.L: #0, not used at present. sectors. y = 4= 2400 10 = 200
buff.L: word aligned buffer addr (8K, 9track) Formatting s = 2000 11 = 150
_FLOPFMT 10: Format a floppy disk sets i 3 L
e ; be 1 _RSCONF 15: Configure RS232 port
$0A) Trap#ld (Tidy #26 media changed
s : ok Sl g (#80F) Trap#l4 (Tidy #14) (No return)
GETDSB 11: Get device status block pointer Obsolete =
. . = 1.L: Caps lock Set pointers to 128 byte Ret pntr to
$0B) Trap#l4 (Tidy#2 (Return DO.L) function. !‘ - .3 CaL) I
) pH (Tidy #2) shft.L.: Shift Keyboard translation structure:
ptr.L: Pointer to character vector ; unsh.L: Um?hifted table. Un.shlft_tablc
cnt.W: Number of characters to write less one. E 3 KEYTBL 16: Set/get ?ccyboard Shift_table
MIDIWS 12; Write a string to midi port tra.nstlauon table
) O [14 (Tidy #8 No return . POLHLCE
i i ik :) ﬁ 3 (#$10) Trap#ld (Tidy#14) (D0.L) Capslk_table

3-10

Extended BIOS calls - continued

Function Parameters to push onto stack Notes
Bit zero poor distribution
_RANDOM 17: Get 24-bit pseudo random number Bits 24-31
(#811) Trap#l4 (Tidy#2) (DO.L) are zero
exflLW: 1 = boot sector executable —1 retains
0 = non-executable boot sector old values.
dskt.W: 0 = 40 track SS
1 = 40 track DS
2 = 80 track SS
= 80 track DS Image is
sern.L: random boot serial no. if> = #$01000000 written
buf.L.: pointer to any 512-byte buffer to volumes
_PROTOBT 18: Prototype a boot sector image boot sector
(#812) Trap#l4 (Tidy#14) (No return)
secn.W: number of sectors to verify
(< = sectors/track) RetDO.W = 0
sidn.W: side number selected for ok
trkn.W: track number to seek to else failed
stsc.W: sector to start reading from (1to9) error number
devn.W: floppy device number (0 or 1)
scrt.L: #0, not used at present. Buffer holds
buff.L.: word aligned 1024 byte buffer address 0 terminatd
_FLOPVER 19: Verify sectors from a floppy drive list of bad
(#8$13) Trap#l4 (Tidy #20) sectors. W
SCRDMP 20: Dump screen to printer At present
(#%14) Trap#l4 (Tidy#2) (No return) mono only.
rate.W: Rate = 1/2 cycle time-1 retains

ater. W:

CURSCON 21:

(#815)

60/50 Hz color, old values 70 Hz monochrome

0_Hide cursor
1_Show cursor
2_Blink cursor
3_Noblink cursor
Set/get cursor blink
rate & attributes

Trap#l4 (Tidy #6)

4_Set rate
5_Get rate
6_unused
7_unused

(Return DO.W)

Returns

old rate high
old attrib low
word byte.

CI
.‘JIJ

=
s

i
=
=
=
B
E
e
=
.
=
=
=

u'_l_il.n.l

u s W @ w u

BR

ljl

-’

L

3-11
Extended BIOS calls - continued
Function Parameters to push onto stack Notes
date.L: 32-bit DOS format date and time Date Hiword
SETTIME 22: Setikbd time and date Time Loword
(#8$16) Trap#l4 (Tidy #6) (No return)
GETTIME 23: Get ikbd 32-bit format date & time
(#817) Trap#ld (Tidy#2) (DO0.L)
Reset
BIOSKEY 24: Restore power up keyboard setting translation
(#9$18) Trap#ld (Tidy #2) (No return) tables
pntr.L: Pointer to character string vector Send emd
nch.W: Count of characters to send -1 to ikbd
1KBDWS 25: Worite a string to intelligent keyboard
(#$19) Trap#l4 (Tidy#8) (No return)
intn.W: MEK®68901 interrupt number
JDISINT 26: Disable a MK68901 interrupt
(#81A) Trap#l4 (Tidy#4) (No return)
intn.W: MIK68901 interrupt number
JENABIN 27: Enable a MK68901 interrupt
(#81B) Trap#ld (Tidy#4) (No return)
regn.W: PSG register number (00 to 0OFH) regn ORed
data.B: Byte to write to register #800 read
GIACCES 28: Read/write a sound chip register #$80 write

(#81C) Trap#l4 Atomic access only (Return D0.B)

Bit number to be set
Atomically set Port A bit to zero
(Tidy #4) (No return)

bitn.W:
OFFGIBT 29:
(#$1D) Trap#l4

bitn.W: Bit number to be set
ONGIBIT 30: Atomically set PORT A bit to one
(#$1E) Trap#ld (Tidy#4) (No return)

3-12

Extended BIOS calls - continued

Function Parameters to push onto stack Notes
vec.L.: Pointer to an interrupt handler
data.W: Byte placed in timer’s data register
cntl.W: Timers control register setting
timr.W: Timer number allocations are:
0_A Res’d for end-users & applications
1_B Reserved for graphics primarily
2_C System timer (GEM etc)
3_D RS232 baud rate and mere users
XBTIMER 31: Provide control timing facility
(#81F) Trap#ld (Tidy#12) (No return)
ptr.L: Pointer to table of bytes (command data) Usually in
cmd 0 to 15 load reg 0-15 with data twos except
cmd 128 load tempreg with databyte 129 which
cmd 129 reg # to load using tempreg is in sets
twos c value to add to tempreg of 4 bytes.
terminate on tempreg value
cmd 130-255 set delay data (ticks) — 0 = stop
DOSOUND 32: Produce a sound (Appendix L)
(#$20) Trap#l4 (Tidy #6)
conf.W: Bit00 = dotmatrix, 1 = daisy wheel -1 returns
1 0 = colour dev, 1 = monochrome configuration
2 0 = Atari prnt, 1 = Epson prntr byte else
3 0 = draft, 1 = final change and
4 0 = parallel, 1 = RS8232 port return the
50 = formfeed, 1 = single sht old value.
614 reserved
15 must be zero
SETPRT 33: Get/set printer configuration byte
(#$21) Trap#la (Tidy#4) (D0.W)

N B B

-
-
m

w
- ‘ - ! ! M M M
’ ! - 1

Wl

il Lk L il L i)

dmt amd lms

-

Extended BIOS calls — continued

3-13

Funcrion Parameters to push onto stack Notes
Structure MIDI_input (BIOS buffer
longword routine) — DO0.B char
format keybrd_err | Called when over- 68901
MIDI err | run detected or 6850s

ikbd_stat
mouse_pack

Pointer to packet
handlers (pointer to

clock_pack packet received in (mouse vect
joyst_pack A0 & on stack.L) used by
MIDI _vec Call when character GEM & GSX.)
ikbd_vec available on 6850 Return by
KBDVBAS 34: Return pointer to structure base RTS and
(#822) Trap#l4 (Tidy#2) (DO0.L) within 1ms
rept.W: Rate of key-repeats (System ticks) —1 params
init.W: Delay before key-repeat starts no change.
KBRATE 35: Get/set keyboard repeat rate Init hibyte
(#823) Trap#l4d (Tidy #6) (D0.W) rept lobyte
_PRTBLK 36:
(#$24) Trap#l4 (Tidy #2)
VSYNC 37: Wait till next vblank and return Graphics
(#$25) Trap#ld (Tidy #2) (No return) synchronize
Code.L: Pointer to code that ends with RTS
(Hackers’ access to hardware & Must not
protected locations call BIOS
SUPERX 38: Exec code in supervisor mode or GEMDOS
(#%26) Trap#ld (Tidy #2) functions
PNTAES 39: If AES not present then return, else reboot
(#$27) Trap#l4 (Tidy #2)

3-14

Rr—=

3-15
=
|
GEM BDOS FUNCTION CALLS
E - —3 Gem BDOS calls - continued
To access GEM BDOS functions, push the parameters in the order gi 1
s given onto the :
C{;rrcn t stack and then call trapf1. Any byte, word or longword e Function Parameters to push onto stack Notes
of a parameter block will be returned in register DO.

LRSIECERI0 E_ 1 ? C_NECIN 8: Read a character from standard input No echo. AC,
move W driveB,-(SP) * push drive number (2) (#808) Trap#l (Tidy#2) (No return) AQ & AS act
move. W #13,-(SP) * push setdrv function call
trap #1 % nallsthie FOnBEIOn & | 3 addr.L: Address of null terminated string Char bytes
add.W #4, SP * tidy stack C_CONWS 9: Write string to standard output terminated
rts * return with bitmap in DO (#809) Trap#l (Tidy#6) (No return) by a zero.

- ==
[t is the programmer’s responsibility to maintain the stack integrity after the call. addr.L: Address of input buffer On return,
Q)}’ . (First byte data portion length) 2nd len read
Funcrion Parameters to push onto stack Notes E I] C_CONRS 10: Read edited string from standard input 3-n chars
(#80A) Trap#l (Tidy#6) (Buffer returns) n+ 1 zero
P_TERM_OLD 0: End process and return to parent. Return code
(#800) Trap#l (Tidy #2) zero - 3 C_CONIS 11: Check status of standard input character ready
E (#80B) Trap#l (Tidy #2) (D0.L) —-1_Yes, 0_No
C_CONIN 1: Read character from standard i/p & echo
(#801) Trap#l (Tidy#2) (Return DO.L) B driv.W: Drive number:0=A,1=B..15=P Return bitmap
3 D_SETDRV 14: Set default drive of drives
char.W: Character to be printed « The console (#80E) Trap#l (Tidy#4) (Do.L) present
C_CONOUT 2: Write character to standard output scan code is
(#$02) Trap#l (Tidy#4) (No return) returned in the E o 3 C_CONDS 16: Check status of standard output -1 ready to
low byte of the (#810) Trap#l (Tidy#2) (D0.L) Rx.0=not
C_AUXIN 3: Read character from auxiliary port high word.
(#803) Trap#l (Tidy#2) (Return DO.L) The upper E l' —a C_PRNOS 17: .Check status of standard print device -1 ready to
byte of the (#811) Trap#l (Tidy#2) (DO0.L) print, 0=not
char.W: Character to be printed word sent must - s
C_AUXOUT 4: Write character to standard aux device ~ be 0 for future E F: 3 C_AUXTS 18: F:hCCk status of standard aux devicei/fp ~ —1charrx
(#804) Trap#l (Tidy#4) (Noreturn) compatibility. _ (#812) Trap#l (Tidy#2) (DO.L) 0=nochars
char.W: Character to be printed % v 59 C_AUX0S 19: Check status of standard aux deviceo/p -1 ready to
C_PRNOUT 5: Write character to standard print device ((#813) Trap#l (Tidy#2) (Do.L) Rx. 0=not
(#805) Trap#l (Tidy#4) (No return) . :
m' = 3 C_GETDRV 25: Get current drive drive A=0
parm.W: If parm = 255 (00FF) then read else If no char (#819) Trap#l (Tidy#2) (B0EY B=licte:
parm is character to be written then DO.L = 0 4 .
C_RAWIO 6: Raw I/O to standard input/output ‘} 3 s Is?lsl;‘transfer ?ddr(:ss Address
(#806) Trap#l (Tidy #4) (Return DO.L F_SETDTA 26: Set disk transfer address used by
) (#81A) Trap#l (Tidy #6) (No return) f_sfirst (78)
C_RAWCIN 7: Raw input from standard input No echo. E 3
(#807) Trap#l (Tidy #2) (Return DO.L) Phas bty T_GETDATE 42: (?et date (as set date format) Date return
(#$2A) Trap#l (Tidy#2) (DO0.L) in low word

3-16

Gem BDOS calls - continued

Funcrion Parameters to push onto stack Notes
date.W: Date formatdate: bits 0-4, 1 to 31 Error ret’d
T_SETDATE 43: Setdate: month: bits 5-8, 1to 12 if date not

(#$2B) Trap#l (Tidy #4)

year: bits 9-15, 1980-2100 valid

T_GETTIME 44: Get time (as set time format)

Time return

(#$2C) Trap#l (Tidy#2) (D0.L) inlow word
time.W: Time
format secs: bits 0-4, step 2s Error ret
T_SETTIME 45: Setdate: mins: bits 5-10 if date not
(#8$2D) Trap#l (Tidy#4) hour: bits 11-15 (D0.L) valid

F_GETDTA 47:
(#$2F) Trap#l

Get disk transfer address

(Tidy #2) (D0.L)

S_VERSION 48: Get version no. (1.00 lo-hi byte) 0001y for
(#$30) Trap#l (Tidy#2) (DO.W) 1st release
exit.W: Exit code (process return code) total size May cause
of program, base page, text, bss etc problems
keep.L: # bytes to keep in process description for future
P_TERMRES 49: Terminate and stay resident conversions
(#831) Trap#l (Tidy#8) (No return)
driv.W: Drive number: 0=current,1=A,2=B Buffer pb.L

info.L.: Address of drive info buffer
54: Getdrive free space (data in buffer
4 x longwords)
(Tidy #8)

D_FREE

(#8$36) Trap#l (No return)

free clust
#clust—total
#bytes/sect
#sect/clust

path.L.: Address of string containing pathname
D_CREATE 57: Create a subdirectory

(#$39) Trap#l (Tidy#6) (DO0.L)

path.L: Address of string containing pathname
D_DELETE 58: Delete a subdirectory

(#$3A) Trap#l (Tidy #6) (Do.L)

path.L.: Address of string containing pathname
D_SETPAT 59: Set current directory

(#8$3B) Trap#l (Tidy #6) (DO0.L)

Pathname is
terminated
in a null.

O ret ok
neg error

3

&
=

edesnmm

wl wl i Wl (7]) i el wi e

-

3-17
Gem BDOS calls - continued
Function Parameters to push onto stack Notes
attr.W: File attributes: #801 read only Ret file
#802 hidden file, #$04 hidden system file handle if
#%08 File, vol label in 1st 11 bytes ok. Neg if
path.L: Address of string containing pathname error.
F_CREATE 60: Createa file Pathname
(#$3C) Trap#l (Tidy#8) (DO.L) ends in 0
attr.W: File read-write mode Ret file
0 = file open for read only handle if
1 = file open for write only ok. Neg if
2 = file open read and write error.
path.L: Address of string containing pathname
F_OPEN 61: Open file Pathname
(#$3D) Trap#l (Tidy #8) (DO0.L) ends in 0
hndl.W: File handle (errors may crash system) 0 retok
F_CLOSE 62: Close file neg error.
(#$3E) Trap#l (Tidy#4) (DO0.L)

buff.L.: Address of buffer to store bytes
byts.L: Number of bytes to read
hndl.W: File handle (errors may crash system)
F_READ 63: Read file
(#83F) Trap#l (Tidy#12) (D0.L)

DO contains
no. bytes
read.
Negative on
error.

buff.L: Address of buffer storing bytes
byts.L.: Number of bytes to write
hndl.W: File handle (errors may crash system)
F_WRITE 64: Write file

(#840) Trap#l .(Tidy #12) (DO.L)

DO contains
no. bytes
written.
Negative on
error.

path.L: Address of string containing pathname
F_DELETE 65: Delete file

(#841) Trap#l (Tidy #6) (DO.L)

O retok
neg error.

fmod.W: 0: move n bytes from beginning
1: move n bytes from current posn
2: move n bytes from end of file

hndl.W: File handle
nbyt.L: Signed number of bytes argument
F_SEEK 66: Seek file pointer
(#842) Trap#l (Tidy #10) (DO.L)

Pos moves
to end of
file, neg
beginning

DO = Abs. file
pointer loc.

3-18

Gem BDOS calls - continued

Function Parameters to push onto stack Notes
attr.W: File attributes: #8$01 read only Ret file
$02 hidden file, #$04 hidden system file, handle if
$08 File, volume label in 1st 11 bytes, ok. Neg if
$10 File is a subdirectory, error
$20 File has been written & closed, Pathname is
wrt.W: 0_get/1_set file attributes terminated
path.L: Address of string containing pathname in a null.
F_ATTRIB 67: Get/set file attributes
(#8%43) Trap#l (Tidy#10) (D0.L) Getin DO.L
shnd.W: _Standard file handle to duplicate
F_DUP 69: Duplicate file handle Herot rat
(#845) Trap#l (Tidy #4) (D0.L)
shnd.W: Standard file handle to force/0 con i/p -1 con o/p
nhnd.w: Non-standard file handle —2 serial
F_Force 70: Force point file handle to non- -3 parallel
standard handle file or device
(#846) Trap#l (Tidy #6) (DO.L)
driv.W: Drive number: 0 = default, 1 = A...etc. Buffer min
path.L: Address of 64 byte buffer for pathname 64 bytes.

D_GETPATH 71:
(#$47) Trap#l

Get current directory

(Tidy #8) (D0.L)

allocated block may not be on a word boundary

nbyt.L.: Bytes to allocate or —1 ret max available DO0.L = 0if

M_MALLOC 72: Allocate memory (DO0.L start pointer) alloc fails
or Read free memory (D0.L bytes available) or pointer

(#848) Trap#l (Tidy #6) (D0.L) to block.

frad.L.: Address of memory to free O ret ok
M_FREE 73: Free allocated memory neg error
(#849) Trap#l (Tidy #6) (DO.L)

rmem.L: Length of retained memory Reallocates
mmem.L: Start of memory space to modify unused mem.

zero.W: zero for GEMDOS.
M_SHRINK 74: Shrink size of allocated memory 0 ret ok
(#8$4A) Trap#l (Tidy#12) (No return) neg error

L)

ail

e
.

1 Ll

-

ammufgs!!l!!ll!
2] L& UA

=
H

-

-

Gem BDOS calls - continued

3-19

Function Parameters to push onto stack Notes
penv.L: Pointer to environ string, 0 for parent Mode 3 is
pemd.L: Pointer to command tail incl redirection used for
path.L: Address of string containing pathname overlays,
mode.W: 0 = load & exececute ret term child code
3 = load only. ret. D0O.L base page add.
4 = create basepage, 5 = execute only Ret DO.L
P_EXEC 75: Load or execute a process error if
(#84B) Trap#l (Tidy#16) (D0.L) load fails.
set return code positive Lo avoid confusion
with negative system error codes
stat. W: Interrogation code for parent 0 ret ok
P_TERM 76: Terminate process, control to parent non-0 error
(#%4C) Trap#l (Tidy#4) (DO.L)
satt.W: Search attributes Filename
$00 normal files, #801 read only may include
$02 hidden files, #$04 hidden system file “*’ or °?’
$08 volume label file, #$10 subdir files wildcards.
$20 File has been written & closed
path.L: Address of string containing pathname If file not
F_SFIRST 78: Search for 1st occurence filespec found ret
(H#$4E) 44-byte DTA buffer created if found EFILNF code
0-20 o/s reserved 21 file attributes in D0.L

24-25 Date stamp
30—43 Name.ext
(DO.L)

22-23 Time stamp
26-29 Filesize.LL

(#$4E) Trap#l (Tidy #8)

79: Search for next occurence filespec

1st 20 bytes

(Uses 1st 20 bytes of DTA buffer, DTA buffer
F_SNEXT name.ext updated on success) must not be
(#$4F) Trap#l (Tidy #2) (D0.L) altered.
pth2.L: Pointer to ‘new’ file string Rename a
pthl.L: Pointer to ‘old’ file string file
zero.W: zero
F_RENAME 86: Rename a file
(#856) Trap#l (Tidy#12) (D0.L)

| Gem BDOS calls - continued

I Function Parameters to push onto stack Notes
lj I‘ info.W: 0_set/1_get date and time
' hndl.W: File handle
buff.L.: Time and date buffer pointer
I F_DATIME 87: Get/set file date and time stamp
Buffer first word
Bit formar:
| days 0—4, 1 to 31
month 5-8, 1 to 12
year 9-15, 1980 to 2100
Buffer second word
Bit format :
secs 0—4 in 2 second steps
mins 5-10
hour 11-15
(#857) Trap#l (Tidy #10) (No return)
DTA buffer
Offset
‘ $00 0 OS reserved
$15 21 Byte file attributes
1 $16 22 Word file time stamp
I $18 24 Word file date stamp
I $1A 26 Longword longword file size
| $1E 30 i 7 words _| name and ext of file found

Use function #$1A (dec 26) to set DTA buffer address and function #82F (dec

47) to get DTA address.

TR

2
.

&‘i
s

a W

W W W W

W W s

®

V50 T V1 171

Supervisor|User toggle

This special function allows users to get in and out of supervisor mode from GEM

DOS.
Function Parameters to push onto stack Notes
stck.L: —1_get mode: Return 0_user
(D0.L) 1_supervisor
<>-1 switch mode Return
a) User to supervisor mode value of
0_set supervisor stack equal old super
to user stack before call stack in
<>0_set supervisor stack equal Do.L
to stck.L
b) Supervisor to user mode The old
set supervisor stack from value of
stck.LL which must be first super stack
SMODE function call or the MUST be
system will crash. restored on
SMODE 32: Set/get supervisor/user mode process
(#%20) Trap#l (Tidy#6) (D0.L.) termination
Test for mode
move.L #81,-(sp) * Returns DO.L
move.W #32,-(sp) 3 $0 = user mode
trap #1 % $FF = supervisor mode
addg #6,sp 4
User to supervisor mode
clr:L =(sp) ¥ Set supervisor stack equal to
move . W #32,-(sp) % user stack before this call,
trap #1 =
addg #6,sp y
move.L DO,save_stk * Save old supervisor stack value

Supervisor to user mode

move.L save_stk,-(sp)
move.w #32,-(sp)
trap #1

addg #6,sp

* Recover old supervisor stack
¥

* and back into user mode.

*

EXTENDED BDOS FUNCITON CALLS

To access the extended BDOS functions, the DO.W register is loaded with the
function code, an address pointer is placed in D1 (L) and trap #2 called. A return, if
any, is placed in D0.W.

GEM VDI and AES may be accessed by loading the relevant parameter block
address into d1, the function number into d0 and making an extended BDOS call:

GEM VDI

move.1 #contrl, pblock

move.1 #pblock,d1 * address of VDI param block

move.w #573,d0 ¥ set d0 equal to 115 and

trap #2 * execute an extended BDOS call
and GEM AES

move.l #control, _c

move.l #.c,dl * address of AES param block
move.w #5c8,d0 * set d0 equal to 200 and

trap #2 * execute an extended BDOS call

Code# Hex Dec Function Notes

DO.W: #%00 o0
RESET :
Trap #2:
DI1.L: #pblock
DO.W: #$73 115
Trap #2:
DI1.L: #control
DO0.W: #8C8 200
Trap #2:
DO.W: #$C9 201

The function
Terminate current program and does not return
return to CCP level to calling program
VDI param block pointer
VDI function number
GEM VDI access
AES param block pointer
AES function number
GEM AES access

The trap #2 reset call simply calls the GEMDOS trap#1 process terminate
function #$4C.

!_ll 1]

-0

-
Ik

[

—
mi

-l

mmmmmf‘mmmm

Wi W Wi W

mmmu‘.mutu.h.u-m'u'u

U

GEM VDI function calls

The VDI functions are accessed through an extended IBDOS call. and the .VDI
parameter block (five longword pointers to the word tables; cntrl, input att'rzbute
and points, output attribute and points). The parameter and array blocks, which are
usually initialized by an AES call to APPL_INIT, have the following formats:

VDI parameter block
Offset DO
Control
$0 table pointer
I/P attribute intin
%4 table pointer
I/P points ptsin
$8 table pointer
O/P attribute intout
$§ C table pointer
O/P points ptsout
$10 table pointer
$14
Control table
Offset
80 Opcode]
by
$2 Length of input | -
coordinate table Length in
word pairs

$4 Length of output
coordinate table

$6 Length of input
attribute table Length in
$8 Length of output words
attribute table
$A Subfunction
ident number Az
$C Device handle can’t be
opened

($E—) Opcode dependant
informarion

3-24
Attribute table
intin Typical

intout usage
$0 device id
$2 line type
$4 line colour
$6 mark type
§8 mark colour
$A font

Offset

Points table

ptsin Typical

ptsout usage
$0 x coordinate word
$2 y coordinate pair
$4
$6
$8 width word
$A height pair

Offset

Not all the GEM VDI function calls have been implemented on the Atari ST, but
they are listed in this section. It might help a little in translating programs to the ST
that use these function calls. A minimum application stack space of 128 bytes is
required, plus space for the GEM arrays. The VDI function calls have been detailed
in groups as follows:

Workstation control functions:
Define the workstation parameters and defaults; these govern the font and the
window size to be used and the generation of virtual screens.

OQOutput functions:
These functions draw the graphic primitive on the specified output device.

General drawing primitive functions:
Define the basic graphic primitives of line, arc, filled and unfilled ellipse and

rectangle, and of justified text.

Attribute functions:
Define the output style of the graphic primitives; the line, marker, text cell and

polygon for colour, size and fill.

c3
4
=
3
&
L
E
=
=
E
=
“=
]
=
=
=
=

o

qu..-Jc.-..lu.ll.l.l

p®

Raster operations:
Provide the ability to transpose a source block of pixels to a destination location
on the basis of a logical operation between the bits comprising the source and
destination.

Input functions:
Enable the programmer to provide the user with both a ‘request and wait on
event’ and a ‘request, sample and return’ mode of inquiry.

Inquire functions:
Rerturn the status or attributes of a specific device

Escape functions:
Enable the application to access special features applicable to certain graphic
devices.

VDI Parameter block sizes

The numbers of parameters required by the various functions are detailed in the
tabular format:

Control table

Pointpair Integers Dev.
Function Op in our in our GDP name
50 $2 84 $6 $8 §4 $C

Comments

The table contains details of the parameter input and output word sizes; note that
the points value is half the table size (a point is defined by a pair of x and y word-
sized coordinates —a longword).

OPEN WORKSTATION FUNCTION v_opnwk

The major VDI function in terms of size is the ‘open workstation function’, which
sets up a named screen (device handle); the desktop window is identified as device
name zero. The new screen is initialized to graphics mode, cleared and the
parameter table outputs initialized. The v_opnwk (op_1) function is not available
on the Atari ST, programmers should use the virtual workstation function v_opnvwk
(op_100).

q_

b = 3 3=27
The control table ‘ . 3 Attribute output table (intout)
| Semirdl Alrray : Intout Default output parameters Typical b&w
offset Data size B Function ! ! i Offset i
$95, Oleopd Opeode for ‘open workstation : $0 0 Max pixel width 0 to 639) mono $27f 639
fatena ! 0 #ofinput pmqt palI"S LS $2 2 Max pixel height 0 to 3997 values $18f 399
ke S E 2denrOf GHIDHT pomt.palrs BSOU E - i %4 4 Dev coord flag (0 =fine, 1 = coarse) 0
g6 6 11 22 Len ofinput attribute table intin $ 6 6 ¢ Pixel height, tridcons 372
$8 8 45 90 Len of output attribute table intout $ 8 & Pixel width microns 372
$A 10 — Not used [; i} :
$C 12 X Handle for this device (out) 0! i . ; é 1(2) SZ: ;f;il;;;‘;fhts (0= continuous) 2
$§ E 14 No. line widths (0 = continuous) 0
‘ 1] $10 16 No. marker types 6
$12 18 No. marker sizes (0 = continuous) 8
Attribute input table (intin) $14 20 No. faces supported 1
B 1 $16 22 No. patterns $18 24
Intin Initial defaults (style, colour etc.) VDI Op $18 24 No. hatch styles $c 12
Offset code no ; ! $1A 26 No. simultaneous colours (2 =mono) 2
‘ 1 3 §1C 28 No. generalized drawing primitives $a 10
$. 08550 Device driver (screen = 1) List of 1st 10 GDP’s (-1 ends list)
52852 Linetype (solid = 1) 15 $1E-$30 1=Bar 6= Elliptical arc
$4 4 Polyline colour index — ‘ 1 -3 2=Arc 7= Elliptical pie 1to 10
$6 6 Marker type (dot = 1) 18 ™ 30-48 3= Pie slice 8 = Rounded rectangle
$8 8 Polymarker colour index 18 4= Circle 9= Filled 8 above 303
$ A 10 Text face 21 ! ' j 5=Ellipse 10= Justified graphic text 330
€5 12 Text colour index — = Attrib list for GDP’s 303
$E 14 Fill interior style 23 $32-$44 0= Polyline 2
$10 16 Fill style index 24 E ' :3 50-68 1=Polymarker 3=Fill area respectively
$12 18 Fill colour index —_— 2=Text 4=None
$14 20 NDC to RDC transform flag (2 only) $46 70 Colour 0=no, 1=vyes 0
0 map full NDC to full RC “i - J.‘) $48 72 Text rotation Capability 1
1 reserved 2 Use RC coords - $4A 74 Fillarea flags 1
$4C 76 Cell array operation 0
i | a $4E 78 No. colours (2= mono,>2 =no. colours) 2
G $50 80 No. locator devices 1 =keyboard only 2
.)) . . . 2=keyboard + i/p
The m!aut ranges required to open a workstfmon‘ with a specific attribute can be - $52 g2 No. valuator devices {=kesboid 1
found, in the table box for that attribute, later in this chapter. E 5 854 84 No. choice devices -
The procedure names are limited to the maximum of eight unique characters _ _ 2=button device 1
supported by the Atari ST ‘C’ compiler. Note that ‘C’ external names are prefixed E q $56 86 No. SEEE devices 1 =keyboard 1
by an °_’ (underscore) which reduces the uniqueness to seven characters. . $58 88 Workstation type 2
0=o/p only
E a 1=i/p only 3 =reserved
2=input/output 4=metafile output
= 3

3-28

QOutput points table (ptsout)

Prsout Output points table Typical b & w

Offset values

$ 0 0 Mincharacter width 5

$2 2 Min character height 4

$4 4 Max character width 7

$ 6 6 Maxcharacter height $d 13
$8 8 Min line width 1

$ A 10 Zero 0

$ C 12 Maxline width $28 40
8§ E 14 Zero 0

$10 16 Min marker width $f 15
$12 18 Min marker height $b 11
$14 20 Max marker width $78 120
$16 22 Max marker height $58 88

-

=
a4
&
oF
B
o
=
o
-
=
=
=
=
=
=
=

L W W W W W W w uw w w
o

G W W s W W
4

WORKSTATION CONTROL FUNCTIONS
The following functions set the workstation parameters and defaults for use by the

application:
Pointpair Integers Device
Function Op in owr in out GDP name Comments
S0 §2 §4 S$6 §8 $§A4 §C
Close 2 0 0 0 0 — Ret to alpha mode.
workstation Close device and
v_clswk * flush buffers.
Open 100 0 6 11 45 i/p scrn Permits multiple
virtual parameters windows based on
screen as opcode 1 o/p new one screen with
v_opnvwk window different
o.error attributes.
Close 101 0 0 0 0 — Close virtual
virtual screens first.
screen Stop further
v_clsvwk output to screen.
Clear 3 0 0 0 0 — Clear the screen.
workstation New page if poss.
v_clrwk Del buffer data.
Update 4 0 0 0 0 — Execute graphic
workstation commands waiting.
No screen effect.
v_updwk Use to print data.
Load 119 0 0 1 1 — Load additional

font

vst_load_fonts

intin(0) =0, reserved
intout(0) = # fonts loaded
may not be implemented

fonts.
intin(0) reserved
for future use.

Unload 120
font

vst_unload_fonts

0 0 1 0

intin(0) = 0, reserved

may not be implemented

— Unload font from
mem if no other
live users.
intin(0) reserved.

Set 129
clipping a,b
rectangle

vs_clip

2

0 1 0
intin(0)
=0_off

c,d <>0_on

(default)

— Disable/enable
clipping of
output primitive.
ptsin a,b,c,d

* Not available on the Atari ST, programmers should use v_cIsvwk (op_101)

2 |
3 ; 3-31
"PUT FUNCTIO
S : : % : AT : I GENERAL DRAWING PRIMITIVE FUNCTIONS (GDP’s)
The following functions draw the graphic primitives (lines, arc etc.) on the current - The.GDP’ o e Gt hi imiti Fline Al
device using the current attributes. E - j e s provide the basic graphic primitives of line, arc, ellipse etc.
Output functions
p ‘! ﬁ
Pointpair Integers Device : = I?omrpazr f’ﬂregm's P Device
Function Op in out in out GDP name Comments ; Ksmceion Sg ;’; (‘);:; ;’Z ‘;; 3 ’m’(’;‘? Comments
$0 $2 54 $6 38 34 $C E- 1 - $ §
Polyline Guit, .0 10 D — Linejoin l %DP : 1 R R S S < =
v_pline minimum 2 coordinate pairs n pairs of points. E i " i imf:::;
Poly- g 20 Qrendd 3¢ RawnRka » ‘ ’ Bar I 2.0 0 bl — Areaattributes
marker each of n pairs ‘ ™ 3 ; . ULes
Veonarker of DoInLS. I - ptsin(0) = corner x coordinate
¥ (2)= corner y coordinate
Text 8 1 0 n 0 — Write char string ‘ - 3 _ (‘;) i iﬂ;ag 9PP X C00F
intin(0) = text string (Strg len) to device. 0-255 1= v_bar (6)=diag opp y coor
ptsin(0) = x coor] Text start Intin word LLSB Are i 1 3 2 o 5] BT
_gtext 2)=y coor position contains char. o2 1RE attributes
) S t = 1 ptsin((0) = centre x coord%nate
Filled TN S — Outline if device I (2)=centre yEoordinate:
area n X X,y can’t fill. Close i - 3 (9)=0 ptsin(A)=0 intin(0)=startangle] 0to
v_fillarea points area if open. I v.arc Eg;; g (©= f(as)ﬂiso (2)=end angle 3600
Fill 114 2 0 0 0 — Rectangular area
rectangle a,b ptsin(0)=a ptsin(4)=c fill. ‘ a Pie - i gpiteae 0 . 2 0 3 Area attributes
I | 2)=b 6)=d I v_pieslice Parameters as for arc above
vr_recf] c,d ptsina, b, c,d E :
I . i Circle 11 3 0 0 0 4 - Area attributes
Cell 1072 0 n 0 — Draw rectangular ptsin(0) = centre x coordinate ptsin(6)=0
array rect. c,d length cell array. L (2) = centre x coordinate (8)=radius
. ¥ = v_circle 4)=0 (A)=0
array l of colour ptsin a,b,c,d
a,b ind based on color -
s I Ellipse 11 2 0 0 0 5 — Area attributes
Row length Xc¢ Cnrrl §E Colour Xc cells Xcx Yc _ Hnet” =
$ Words/row Cntrl $10 index l —[E - 3 ptsm(2) S MATET x coordfnate
% Rows Xc¢ Cnitrl $12 array ——Yc I E 4; = cez‘tre } co?r R
Writing mode Cntrl §14 =radius X axis
; v_ellipse (6) =radius y axis
v_cellarray E - a 3
Contour 103 1 0 1 0 — Flood fill area I Elliptic “ 1 _2 0 2 2 0] 6 g = Line attributes
sl intin(0) = color index bound by edge or E — ? arc ptmn(z): centre x coord!natc intin(): start angle :I 0to
ptsin(0) = x coor Starting colour. (4} g ce(rjir;rel Ay (2)=end angle 3600
v_contour ptsin(2)=y coor point E iy E()i = radfus) X dx¥s
v_ellarc = radius y axis
=]
S = i

‘-

e
[¥5]
I
b

|\ 3-32
|

. ; < : I E FUNCTIONS
\ General drawing primitive functions - continued E - ‘j ATTRIBUT
I
Pointpair Integers Device The attribf.ltc functions dctc@1ne the output style of all the graphic primitives; that
Function Op in out in out GDP name Comments is colour, line style, character size etc.
S0 $2 $4 S$6 38 $A SC =
GDP 11 n —_ = = X = I Pointpair Integers Device
(General format) E - 3 Function ?g ;; (;: ;r; {;:; (ii[’ n;}(:ze Comments
Elliptic pie 11 2 0 2 0 7 — Area attributes I =
. i v_ellpie Parameters as for elliptic arc above E | j Set 32 0 0 1 1* — Qut of range uses
| : o writing replace mode.
Rounded 11 2 0 0 0 8 —_ Line attributes .)»\ I . mode intin(0) = 1,replace Modes 2,3 and 4
1‘ rectangle ptsin(0) = corner X coord'{natc E 1 j = 2,transparent(mask 1s) based on line or
(2)= corner y coordinate =3,XOR fill pattern mask
"1 (4)= diagonally opposite x coordinate vswr_mode = 4,reverse transparent(mask 0s)
‘; v_rbox (6)= diagonally opposite y coordinate E - 3
Seta 14 0 0 4 0 — Redefine a colour
|l ST
. Filled 11 2 0 0 0 9 — Area attributes colots
rounded E’. 1 3 intin(0) = colour index In mono No action if a
! rectangle Parameters as for rounded rectangle (2)=red colour any colour lookup table is
V. rEbog (4)=green intensity is set to not available or
| X El I a vs_color (6) = blue 0to 1000 white * ‘outof range’.
| Justified 11 2 0 2+ni0 le = Text attributes i 2 :
| graphics ptsin(0)= x alignment intin(0) = interword spacc flag Set 15 010 0 1 18 — All devices
| text (2)= y alignment (2)=interchar spacie flag E — polyline ‘ support at least
(4)= string length 0= don’t mod space . 3 1 y line type intin(0) = line style six line styles.
= 4)=l1st char Null terminate 1=solid 5= dneh
| (6)= zero (} W solid, :
(4 +2n)=Last char string - 2=long dash, 6 = dash—-dot—dot, User defined
v_justified Intinuses least significant byte for character E 3 3=dot, 7= user defined. defaults to solid
vs]_type 4 = dash—dot, { see below) until defined.
900 s —F.
| o & 2
r % Set user 113 0 0 1 0 — User defined
> () defined

pattern for line,

angular specifications: polyline intin(0) = line pattern word MSB is first

Notation used for 1800 == —
27001 vs1_udsty (16 bits) pixel.

i
= Set 16 1 1 0 0 — On error width is
I

polyline set nearest below
width ptsin(0) =line width ptsout(0)=width Use odd numbs
= vs1_width (2)=zero (2)=zero >= three.
E
Set poly— 17 0 0 1 L% — Set colour for
line colour polyline ops.

* denotes intout() is actual value of intin() used.

E,.l 3 vsl_color intin(0) = colour index

3-34

Attribute functions - continued

Pointpair Integers Deuvice
Function Op in out in out GDP namie Comments
$0 §2 $§$4 $6 §8 $SA $C
Set 108 0 0 2 0 = 0=square (def’t)
polyline 1 =arrow
end style intin(0) = start style 2=rounded
vs1_ends (2)=end style
Set 18 0 0 1 1% — All devices
polymarker support at least
type intin(0) = marker type six markers.
1=dot 5 =Cross
2=plus 6=diamond Defaults on
3 = asterisk error to
vsm_type 4= square asterick
Set 19 1 1 0 0 — Height set is
polymarker nearest below.
height ptsin(0) = zero ptsout(0) = x—axis width
vsm_height (2)=y-axis ht (2) = y-axis height
Set poly- 20 0 0 1 L* — Set colour for
marker colour polymarker ops.
vsm_color intin(0) = colour index
Set 12 1 2 0 0 — Size is of
character character.
height ptsin(0) = zero ptsout(0) = char width
(2)=height (2) =char height V | char
(4) = cell width
vst_heig (6) = cell height
Set 107 O 2 1 I - Size is of cell.
character .
cell intin(0) = cell ptsout(0) = char width
height point ptsout(2) = char height v cell
size ptsout(4) = cell width
vst_point (1/72) ptsout(6)=cell height
Set char 13 0 0 1 1* == Angular range
baseline 0 to 3600
vector intin(0) = angle

vst_rotation

requested

2 g |
T EEAEREEREREEMENREN

wl

-—-—l—l—l-l-!.-

-
-

-
Ly

-«

3-35
Attribute functions - continued
Pointpair Integers
Function Op in .out in our GDP Comments

$0 $2 $4 $6 $8 $A4

Set text 21 0 0 1] * Face 1 is built
face in (System face)
vst_font intin(0) = face selection
Set graph 22 0 0 1 1* Set colour for
text colour next text.
vst_color intin(0) = text col. index default 1
Set text 106 0 0 1 I Default to
special standard text
effect intin(0):bits 0 to 5 set effects Effect on if
bit=1

vst_effects Thick,light,skew,underline,

outline,shadow
Set 39 0 0 2 2% Left/right/centre
graphic justify.
rext intin(0) = 0,Ift 1,cntr 2,rt Vertical position
position (2)=3,4,0,1,2,5 respectively defaults to

vst_alignment bottom,descent,base,half,ascent,top

base (=0)

Set fill 23 0 0 1 1%
interior
style intin(0)=0 to 4 respectively

Set future
polygon fill
style.

vsf_interior O_hollow, 1_solid,2_pattern,3_pattern,4_user defined

Set fill 24 0 0 1 1*

. style intin(0)=0,n where n=solid colour
index 2,1 to 24 patterns
vsf_style 3,1 to 12 hatch

Set pattern or
hatch type.

No effect if
interior hollow,
solid or usrdef

Set fill 25 0 0 1 1*
colour

index

vsf_color intin(0) = colour index

Set future
polygon fill
colour

The set fill style index can be found with the colour command in the ST BASIC

sourcebook.

3-36

Attribute functions - continued

Pointpair Integers Device
Functrion Op i out in out GDP name Comments
J0 $2 $§4 §6 $8 $4 sC
Set fill 104 0 0 1 1% — Set on/off

peri visible fill outline

vsf_perimeter intin(0),0_invisible, <>0_visible

Set user 112 0 0 16xn 0 — Pattern 16
—defined words/plane
fill pattern intin(0-15) = 1st plane Bit 15 word one
vsf_udpat (16-31)=2nd plane etc. upper left bit.
* denotes intout() is actual value of intin() used.
TQOO

Notation used for 1800 = — ()
angular specifications l

2700

The set fill style index can be found with the colour command in the ST BASIC
sourcebook.

-

® 8 W

e
(B

-

A EEEfEEREEE

) wd am

ll

s
-«

mmmwwammmmmw

RASTER OPERATIONS

Raster operations are the manipuation of rectangular blocks of bits in memory or
pixels on screen, the area is defined in memory form definition blocks (MFDB) that
consists of:

Offset
$0 Memory pointer | 32-bit address of pixel 0,0
$4 Width pixels | Raster area dimensions
$6 height pixels
§8 Word width Pixel width/word size
$A Format flag 1 = standard, 0= device specific
$C Memory planes | No. of planes in raster area
$E Reserved 3 reserved words

The raster planes word-bit—pixel relationship follows the format shown in the TOS
overview (Chapter 2), the top left hand corner pixel address being 0,0.

The colour index tables take a non-standard form and care should be taken to ensure
correct colour usage.

Pixel Index Colour Pixel Index Colour

0000 0 white 1000 9 grey

0001 2 red 1001 10 light red
0010 3 green 1010 11 light green
0011 6 yellow 1011 14 light yellow
0100 4 blue 1100 12 light blue
0101 7 magenta 1101 15 light magenta
0110 5 cyan 1110 13 light cyan
0111 8 low white 1111 1 black

Raster operations perform logical translations of the source to the destination over
the original destination pixel area. The required logic operation is passed as an
argument in intin(0) as follows:

3-38
Mode Function Mode Function
0 D’=0 (all white) 8 D’=NOT[SORD]
1 D’=SANDD 9 D’=NOT[SXORD]
2 D’=SAND[NOT D] 10 D’=NOTD
3. 2Pi=S 11 D’=SOR[NOT D]
4 D’=[NOT S]JANDD 12 D’=NOTS
5 D'=D 13 D’=[NOT S]ORD
6 D'=SXORD 14 D’=NOT[S AND D]
7 D’=SORD 15 D’=1 (all black)
S=Source Mode 3 =replace
D = Destination Mode 4 = erase
D’ = Destination pixel final state Mode 6=XOR
Raster operations
Pointpair Integers Device
Function Op in out in out GDP name Comments
$0: 82 =i Inrgg g8 g4 $C
Copy 109 4 0 1 0 — Copy rect block
raster c,d from source to
opaque intin(0) = logic op Source l_ destination.
ab____| If source <> dest'n
cntrl § E=Address.L of then source size
source MFDB g,h used.
cntrl §12 = Address.L of Dest r ptsin a,b,c,
vro_cpyfm destination MFDB e,f______ d,e,f,g;h
Copy 121 4 0 3 0 — Copy mono block
raster c,d from source to
trans- intin(0) = write mode l—;l colour dest’n
parent (2)= colour for 1s a,b If src <> dest’n
(4) = colour for Os then source size
cntrl 8 E= Address.L of used.
source MFDB g,h
cntrl $12= Address.L of Dest |_ ptsin a,b,c,
destination MFDB t:,f_J d.e.f,g,h
write mode a replace, ink (2), paper (4)
b transparent. If src=0 then dest ink(2) unused
¢ XOR mode. XOR source to planes (2)&(4)unused
vrt_cpyfm d rev tran. If src= 1 then dest paper(4) unused

‘i-

=
m e 0
d Ol oW oW

z
-

fﬂﬂmmmm

w
hj el ll]i

o

Raster operations — continued

Pointpair Integers
Function Op in our in out GDP name
$0 82 %4 36 $8 %4 $C

Deuwice

Comments

Transfrm 110 0 0 0 0
form
cntrl § E= Address.L of
source MFDB
cntrl $12= Address.L of «»”

(This block
must be verified)

Toggle raster
area from
standard to
device—specific
form.

vr_trnfm destination MFDB
Get
iiel 105 1 0 0 2 — Return pixel
p . ‘ value and colour
. ptsin(0) =x coor intout(0) = pixel value index
v_get_pixel (2)=y coor (2)= colour index

3-40 ; 3-41
g 3
INPUT FUNCTIONS Input functions
, P
ﬁ — ==
There are two types of input function generally provided by GEM: l Pointpair Integers Device
Function Op m out in out GDP name Comments
Request and wait for reply, and ﬁ-'-.'——"‘ S0 52 8§4 S6 S8 s$4 sC
Request and sample current status.
' Exchange 12610 0 0 0 — Goto routine on
Only the following are implemented on the Atari ST. E - 3 mouse cntrl $ E=Addr.L user routine mouse movement.
1 ¢ f ' " ' movement retn $12=Addr.L old routine DOW & DI1.W
nput functions vector x and y coordinates may be changed storex & y.
! . — /ex_mot after being stored in hardware register Int’s disabled
; Pointpair f ntegers Device H ? il £ = =
Hunceon ?{f " f;f: ;f; (;;’ (;ip ke X Conmen; ()] Exchange 7 & 6 0 ‘D — Goto routine on
1 1 $ E= Addr.L user routine cursor state chg
EE - j cursor cntr
: change ret'n $12=Addr.L old routine DO.W &DI1.W
Set 111 0 37 0 —_ =define curs :
¥ LN 5 ik Sidehng bitsor vector routine can be used to draw storex & y.
mouse intin(0)=x coor intin(6)= mask colour pattern. Bit 15 of : e di
VEX_CUury special cursor. Int’s disabled
form (2)=y coor (8) = data colour word | upper left E _—
(4)=1, reserved (usually 1) bit of pattern I
) = Sample 128 1 0 0 0 1 — Return state
(8 A—428)=16word cursor mask bits Data under : feyboard " “ditout(0), - bit0; right shift of keyboatd shiftagit
vsc_form ($2A-$48) = 16 word cursor data bits mask is saved. E s 3 state bit 1, left shift - control keys
3 « 3
information bit 2, Control 0 bit key u
Exchange 118 0 0 0 1 — Goto user-written I : : g . e 2

; ; . . . va_key_s bit 3, Alternate 1 bit key dn
timer int cntrl § E=Addr.L of new routine interrupt routine E — : S,
vector ret’'n $12= Addr.L of old routine 3 on timer tick.
vex_timy intout(0) = milliseconds per tick Int’s disabled
Show 122+ 0 0 1 0 - Functions calling user written code should not enable interrupts. Registers may
cursor intin(0) = 0, show cursor need to be restored.

<>, show if no. of show E == j

v_show_c calls = no. hide calls w1 The following GEM VDI functions are not implemented on the Atari ST, brief
= details are included for completeness:
Hide cur 123 0 0 0 0 — Hide cursor (def’t) % -4

y # - - -
v_hide_c Operates as per ‘show cursor’ . —! Input func_non.s. (Notunplementexl)
Sample 124 0 1 0 1 BT Reth b e S tate — j o o 1?03?;!;0(1;;- {;ztegg:sr Sl I:e-mce A -
mouse p[SOu[(O) L SaBT Lef‘[but[(}n LSB E - uncrion Sg .‘?; {‘);:; ;-?; lSNg SA 1;?:8 OMMeENnts
button state (2)=vy coor 1 =button pressed I : "
vg_mouse intout(0) = return button stat = butt N i]

q I (0)=return button state 0= button up E e j Set 33 0 0 2 1 n Set i/p mode for
Bichinge 125 0 0 0 0 . Goib%utine on I mp:t 1r1t1m01) _=IL0g1ca] 1;1;_,__(1?‘?&(dc&flcc t(l)‘rcqucst
button cntrl § E=Addr.L user routine button state ch’g . R 3 : ‘cl)_lca.t?r, 4: ‘ta Iua o} (;r Sam]it' d
change ret’'n $12=Addr.L old routine Uses D0.W for E o 3 : o = L o S L

b vsin_mode intin(2) =1/p mode (1 =req, 2 =sample) selected
utton
vector keys as above. o
vex_butv (Save and restore registers) Int’s disabled = i j
~ 3
By -—]

3-42

Input functions = con tinued

Pointpair Integers Device
Function Op in our in out GDP name Comments
50 $2 $4 $6 38 34 $C
Input 28 1 1 0 1 Ret position of
locator, ptsin(0) = init x coor intout(0)= locator device.
request (2)=init y coor terminate Screen tracks
mode cursor until
ptsout(0)=final x coor character terminated by
vrg_locator (2)=final y coor (LSByte) key/button press
Input 28 1 1/0 0 0/1 — | Ret position
locator, ptsin(0) = init x coor intout(0)= of locator device
sample (2)=init y coor terminate _"Tf__IE;—_
mode ptsout(0)=new x coor character e T
(cursor (2)=new y coor (LSByte) Eeﬁ" p?ess-. o 1
change (A tablet or a mouse terminate noi/p 0 0
event) chars begin at 20H, 32dec) Ecydi).l;c_s:s— ;""_ =
vsn_locator If 2 locators, either may input s e i 1
Input 29 0 0 1 2 = Return value of
valuator, intin (0)=init value valuator device -
req mode intout (0)=o/p value arrow keys, range

vro_valuator

(2)= terminator

1 to 100.

Input
valuator,
sample
mode

ysm_valuator

29 0 0 1 0/2
intin (0)= init value
intout (0)=new value
(2)=keypress, if event
occurred

Return value of
device.

il 8 | event

0 none
1 |valch’ge
2 .keypress

Input
choice,
req mode
vrag_choice

30 0 0 1 i
intin(0) = Init choice number
(range 1 to device
dependant maximum)

Ret choice status
of device chosen.
If invalid return
choice number

Input
choice,

sample mode

vsm_choice

30 0 0 0 1
intout(0) =0, choice number
cntrl $8 =0, nothing occured

=1, sampled ok

Ret choice status
of device chosen.
intout(0)=0 if
unsuccessful.

3-43
Input functions - continued
. : Pointpair Integers Device
‘unction]]
Op in out in our GDP name Comment
s

Input 31 1 0 2 L
string, ptsin(0) = scr x coor
request (2)=scr y coor
mode intin(0) = max string length
(2)=0, no echo

1, echo at ptsin

L =array length

Ret a string from
specified device.
Terminate on CR
or intout full. If
intin(0) is neg
keyboard def D.5

‘mmmm?_

’ Input 31 1 0 2
string, ptsin(0) = scr x coor
(2)=scr y coor
intin(0) = max string len (abs)
(2)=0, no echo
1, echo at ptsin
cntrl(8) =0, no chars returned

0/>0 £

sample
mode

-
|

VSm_string

Ret a string from
specified device.
Terminate on CR,
intout full or

no more data. If
intin(0) is neg

pg D.5 def kybd.

™

r

-

3

3

S oriing
L

3

3

-

b

-
i

.

Al

T EREARE RN
i

m ©
W 0 h -
| "y

A

S

3-44 E ﬁs 3-45
INQUIRE FUNCTIONS E 1 3 Inquire functions
I ' —
I - . e . . . -
The inquire functions return the current attribute settings of a specific device. Pointpair Integers Device
. E ' j Function Op in nff! in out GDP »‘rau‘re Comments
Inquire functions $0 $2 %4 56 38 34 3C
Pointpair Integers Device 2 Inquire 26 0 0 2 4 = Ret value of
Function Op in out in out GDP narme Comments E . 3 colour intin(0) = req colour index colour index in
$0 $2 $4 $6 138 $4 sC representation (2)=0,ret colour val regst RGB units.
- _ P (0)= 1,ret col val available Intout(0)=-1 out
Extended 102 0 6 1 45 — .Rct cxtrzla device E ! 3 intout(0) = colour index of range
inquire intin(0) =0, open workstation values info not in the 0 . (2)=red intensity(0-1000)
function =1, extended inquire open workstation (4) = green intensity(0-1000)
intout(0) =0, not screen call or return E | j vg_calor (6)= blue intensity(0-1000)
=1, separate scrn Alpha open workstation
=2, common and values. Inquire 35 0 1 0 5 — Ret all attribs
=3, separate imagegraphics E ' 3 current ptsout(0) = line width that affect
=4, common memo polyline (2)=zero polylines
ry controller may notbe] attributes intout(0) = line type intout(6) = Start end style
(2)= # pallette background colours the same as E 1 3 (2) = line colour (8)= Finish end style
(4)= Text effects supported(op 106) $4E (78) vgl_attributes (4) = write mode
(6)= Scaling 0=no, 1 =yes
(8)= Number of planes E 1 3 Inquire 36 . 0 1 0 3 L1t Ret all attribs
($ A)= Support look up table: 0=yes, 1 =no current ptsout(0) = width that affect
($ C)= $ 16 x 16 pixel raster ops/s (speed factor) polymarker (2)=height polymarkers
($ E)= contour fill capability . E i 3 attributes intout(0) = marker type
($10)= Char rotate 0=no, 1 =90° steps only, 2 = continuous (2) =marker colour
(812)= $ writing modes available vam_attributes (4)=writing mode
($14)= Input mode 0= none, 1 =request, 2= sample E : 3
(§16)= Textalignment 0=no, l=yes Inquire 3 0 0 0 5 — Ret all attribs
($18)= Inking ability 0=no, 1=)'GS‘ current intout(0) = interior style(f_23) that affect fill
(81A)= Rubberbanding 0=no, 1=lines, % = ‘ﬂ fill area (2)=colour areas.
2 =lines & rects : attributes (4)=fill style(f_24) f=VDI function
($1C)= Maximum $ pts, —1 =no max (6) = writing mode
($1E)= Maximum intin, ~1 = no max E - 3 vgf_attributes (8)=fill perimeter status
($20) = Number of keys on mouse i
($22)= Styles for wide lines: 0=no, 1 =yes Inquire 38 0 2 0 6 - Ret all attribs
($24)= Writing modes for wide lines - current ptsout(() = char width that affect
($26-58) = reserved, contain zero words R 3 graphic (2)=char height graphic text.
vg_extnd ptsout(0-$16) = reserved, contain zero words text (4)=cell width

attributes (6) =cell height
3 intout(0) = current graphic text face

(2)= current graphic text colour (font)

(4) = baseline angular rotation (0-3600)
3 (6) =horizontal alignment

(8) = vertical alignment

vgt_attributes (8A) = writing mode (f_32)

3-46

Inquire functions - continued

Pointpair Integers Device

Function Op in our in out GDP name Comments
s0 $2 $4 S6 §8 §4 $C

Inquire 116 0 4 n 0 — Ret a rectangle
text intin = no. words in text that encloses
extent ptsout (0) =x coor\ bottom specified string.

(2) =ycoor left

(4) =xcoor bottom

(6) =ycoor right

(8) =xcoor top

($A) =y coor right

($C) =xcoor top
vat_extent ($E) =y coor left
Inquire 117 0 3 1 1 — Ret character cell
character intin(0) = char val in ADE form width of spec’d
cell ptsout(0)= cell width ptsout(2)=0 character
width (4) = left char delta 6)=0 in current

(8)=right char delta ($A)=0 text face
intout(0) = ADE of inquire value
vat_width —1 if invalid character
Inquire 130, 150 0 1 33 — Return 32 char face
face name intin(0) = Font id (1 is base) descriptor (text).
and index intout(0)=ID (Vst_fontife)
vat_name (2-840)= 32 ADE codes 1st 16 chars face
2nd 16 style and weight

Inquire 27, 2 0 0 n — Return cell array
cell cntrl $ E=row length colour index definition of
array $10=#. rows array pixels.

vg_cellarray

return $12=#. elems/row Used in colour
return $14 =#. rows Index array

return $16 0 = errors, 0=none, 1 = pixel colour indeterminate
ptsin(0)=xcoor ptsin(2)=y coor (lower left)
(4)=x coor (6)=y coor (upper right)
intout(0) = colour index array (1 row at a time)
-1 indicates indeterminate pixel colour

0 8

B
|

"

]

adl

o
L

"

W W oW W W W W W d w

3-47
Inquire functions — continued
Pointpair Integers Device
Funcrion Op in our in our GDP name Comments
$0 §2 §4 §6 §8 §A sC
Inquire 115 0 0 1 1 - Ret’n current i/p
input intin(0) = logical dev. 1 = locator mode for device.
mode 2 =valuator
3 = choice
4 =string
intout(0) =1/p mode 1 =request
vgin_mode 2=sample
Inquire 131 0 5 0 2 —_— Ret’n current face
current ptsout(0) =max normal cell width size information.
face (2) =baseline to bottom
information (4) =max extra skew width
(6) =baseline to descent line
(8) =left skew extra
($A) = baseline to half distance
($C) =right skew extra
($E) = baseline to ascent ADE=ASCII
($10) =zero decimal
($12) = baseline to top distance equivalent
intout(0Q) = 1st char in face
vat_fontinfo (2) =last char ADE

ESCAPE FUNCTIONS

The escape functions allow the programmer to access special device functions.

Pointpair Integers Device
Function Op in out in out GDP name Conunents
$o0 82 54 $6 §8 84 sC
Escape 5 — id —
general
format
Inquire 5 0 0 0 2 1 — Get #of vertical
addressable intout(0) = ffrows rows & horizontal
alpha (2)=#fcolumns columns for alpha

char cells
vo_chcells

—1 no cursor addressing

Ccursor.

Exit 5 0 0 0 0 2 — Enter graphics
alpha mode mode and exit
v_exit_cur alphameric mode.
Enter 5 0 0 0 0 3 — Exit graphics
alphamode cursor set to upper left of char cell mode and enter

y_enter_cur

alphameric mode.

Alpha 5 0 0 0 0 4 — Move alpha cursor
cursor up Do nothing if at top up one row.
v_curup

Alpha 5 0 0 0 0 5 — Move alpha cursor
cursordown Do nothing if at bottom down one row
v_curdown

Alpha 5 0 0 0 0 6 — Move alpha cursor
cursor right Do nothing if right edge right one column.
v_curright

Alpha 5 0 0 0 0 7/ — Move alpha cursor

cursor left

v_curleft

Do nothing if at left edge

left one column.

i e w il

e wal

3-49
Escape functions = continued
Pointpair Integers Deuvice
Function Op in out in our GDP name Comments
30 $20 84 w6538 oA §C
Home 5 0 0 0 0 8 — Move cursor to

alpha cursor

Home, usually top left

home position.

y_curnome

Erase to 5 0 0 0 0 9 — Erase from
end of current cursor
alpha No cursor position change position to end
screen of screen.
V_eeos

Erase to

5 0 0 0 0 10

Erase from

end of current cursor
alpha No cursor position change position to end
text line of line.

v_eeol

Direct 5 0 0 2 0 11 — Place cursor at
alpha cursor intin(0)=row (1 to n) specified row &
address (2)=column (1 to n) column.

V3

curaddress

Output 5 0 0 n 0 12 — Display a string
cursor n=# chars in string of alpha text
addressable from current
alpha text intin() = text string in ADE cursor position.
v_curtext

Reverse 5 0 0 0 0 13 - Display following
video on text in reverse.
v_rvan

Reverse 5 0 0 0 0 14 — Display following
video off text in normal
v_rvoff video

Inquire 5 0 0 0 2 15 — Return current
current intout(0) = row# (minimum one) alpha cursor
alpha cursor (2)= column# (minimum one) position.
address

Vg

curaddress

3-50

Escape functions - continued

Pointpair Integers Device

Function Op in our in out GDP name Comments

§0 $2. 84 6 §8 ¥4 §C
Inquire 5 0 0 0 1 16 — Return availab’ty
tablet intout(0) = 0, not available status of tablet, -
status 1, available mouse, j’stk etc.
vg_tabstatus
Hard 5 0 0 0 0 17 = Copy screen to
copy specific printer.
v_hardcopy may not be implemented
Place 5 2 0 0 0 18 - Place crosshair
graphic ptsin(0) = x coor on screen.
cursor at (2)=y coor
location
v_dspcur
Remove 5 0 0 0 0 19 —
last graphic
cursor
v_rmeur

- —

<
!nmmmmomgmmmmmmmmm

mmmmmuimmmmmm

A~

3~-51

The following Escape functions are not implemented on the Atari ST, but are
included for completeness; as is a discussion on VDI bit image file format.

Escape functions (Not implemented)

Pointpair Device
Function Op in our im our GDP name

$0 $2 $4 %6 $8 $A $C

Integers

Comments

Form 5 0 0 0 0 20 — Pages printer but

advance keeps screen
v_form_adv display

Output 5 2 0 0 0 21 — Copies specified

window window to printer

ptsin(0) =x coordinate } window
(2) =y coordinate
(4)=x coordinate } opposite

corner

Adjacent pictures
may not join.

v_output_window (6)=y coordinate } corner
Clear 5 0 0 0 0 22 — Clear screen list
display without paging
list printer

v_clear_disp_lis

Output 5 02 0 L2 @ 23 —
bit cntrl(2) = 0,get coordinates from file
image = 1,upper left specified

ptsin(0) =x upper left coordinates
(2)=y upper left if
(4)=x lower right | specified
(6) =y lower right

intin(0) = Aspect ratio flag

Enables printer
to process bit
image file.

by specifying
or by default

Pixel ratio
provides for

0=ignore, 1 =pxl ratio, 2= page ratio printing
(2)=Scaling 0=uniform, 1=xand y circles
(4) = First char file name (length L)
v_bit_image (2n+ 2)= Last (nth) char file name
Select 5 0 0 1 1 60 — Allows IBM
pallette intin(0) = 0,use red,green,brown compatable
= 1,use cyan,magenta,white pallette
vs_palette intout(0) = pallette selected selection.
Inquire 5 0 0 0 12591 — Return film drier
pallette intout 5 sets 25 ADE byte strings descriptor string
film types
vap_films

3-52

Escape functions - continued

Function

Inquire
pallette
driver
state

vgp_state

Pointpair Integers
Op in our in our GDP

$0 82 $4 $6 $8 SBA

Deuvice
name

$C

Comiments

5 0 0 0 20 92
intout(0) = port # 0= 1st comms
(2)=film number (0 to s)

Return film driver
status block.

(4)=lightness control(-3 +3) 1/3 f_stop step
(6)= 0 noninterlace, 1 =interlace

(8)=planes(1 to 4)

(ADE format)

($0A-828) = 2 char colour code for 8 colour indexes

Set
pallette
driver
state

5 0 0 0 20 93
intout(0) = port no. 0 = 1st comms
(2)=film number (0 to 4)

Set film driver
status block.

(4)=lightness cntrl(-3 +3) 1/3 f stop step
(6)= 0 noninterlace, 1 = interlace
($8-%26) = colour codes for 16 colours

Save
pallette
driver
state

VSp_save

5 0 0 0 0 94

Save current
driver state to
disk

Supress
pallette
messages

vsp_message

Supress user
prompts and error
messages

Pallette
error
inquire

vap_error

5 0 0 0 1 96
intout(0)= 0, no error

=1, open dark slide for print film
=2, no port at specified location

= 3,pallette not found at port specified
= 4,video cable disconnected

Return error code

=5,08 does not allow memory allocation

= 6,not enough memory for buffer

=7,memory not deallocated

= 8,driver file not found

=9.driver file incorrect type
= 10,prompt user to process print film

mmmm.nnfmmmmmm'mmmmm

BN | N N | | N N O T O O |

W W W W W W sl W

wll

L b W L L Wy
¢4

-

3-53
Escape functions - continued
Pointpair Integers Device
Function Op in out m our GDP name Contments
%50 $2 $4 %6 $8 BA $C

Update 5 2 0 0 0 08 — Update file
metafile ptsin(0) =min x ‘ header enabling
extents (2)=miny bounding application to

(4) = max x rectangle get indication
v_meta_extents (6) =maxy of a min window.
Write 5 n 0 1 0 99 — Intin and ptsin
metafile ptsin user defined data data written to
item intin user defined data metafile with a

intin(0) = sub-opcode

v_write_meta

Sub opcodes 0 to 100 reserved

sub opcode >100

Change 5 0 0 1
GEM VDI
filename

vm_f1ilename

0 100

intin()path/filename up to
74 characters

Rename metafile

from
GEMFILE.GEM
to _ GEM

Nortation used for
angular specifications

900

1800 -

2700

3-54

Bit image file format

Header There are two parts to the bit
Raw pixel image file, a 16 word header, and a
data block of codified raw data.
IMG file
File header
% 0 upper left x
8 2 upper left y Bit
$ 4 lower rightx | image
$6 lower right y
$ 8 page width
$ A page height Source
$ C pixel width in microns device
$ E pixel height in microns
%10 bits per pixel
$12
to zero, reserved
$20

Raw data formats

The four methods of data coding may be mixe

file.

Run length encoding (default)

%0 | Runlength <128 bytes
$1 | colour index <256
data

Extended run length encoding

$0 Op code -1
$1 | Extended run
length] <128 bytes
$2 colour index | <256

data

d in any desired combination within a

Use a two byte subheader to define
the data, which must be less than
128 bytes. The pixels may line
wrap.

To cater for pixel runs >127, the
extended run includes a count of
128 pixels providing a range of 128
to 255 pixels. The pixel line may
wrap.

-

1

W W W W ot W W W e W el

-

Raster encoding
$0 Op code -2
81 Zpix strm Raster encoding packs colour
82 e s indices into bytes in the following
format:
colour
indices
ixels: —) 1 2 3 4 5 6
: ey oy e N N,
bits: Y o0o0l101]000f101]100}101}0

pytes: % 0

Use either:

1 (black and white)
3 (four colour)
or 4 (sixteen colour)

Raster run encoding

$0 Op code -3
$1 repeat count | <256
$2 # pix strm *
$3 Packed

colour

indices

;ﬂ * #pix strm = the number of pixels in the stream

bits per pixel format (offset $10 in the header).

Raster run encoding permits the
efficient coding of repeated pixel
patterns. It is in the same form as
raster encoding but includes a
repeat count in the header.

3-56 = I 3-57
Metafile Sub opcodes - GEM Output codes
I The Metafile functions are not implemented on the Atari ST, but are included for E ‘3 = , : ‘
completeness of the GEM operating environment. Potntpazr fr’”“g"” Device
’ ! Function Op i owr in out GDP name Comments
Output page (Not implemented) [$0 82" 54 36" 58" “54 $C
There are two reserved GEM output codes for configuring the output page: I Start 5 0 0 1 0 99 — Bracket a set
Ef ' 3 group intin(0) = sub opcode 10 of primitives ds a group
Physical page size, which defines the output area and coordinate window, specifying
the coordinate system used in the metafile. End 5 0 0 1 0 99 == for a GEM DRAW
| group intin(0) = sub opcode 11 application.
Output page E’ i
Pt 1 .)"' 3 Start draw 5 0 0 l 0 99 - Use the vertices
Pointpair f,’”"’gws Device a1 area type intin(0) = sub opcode 80 of the first
Function Op in our in out GDP name Comments E j primitive prifiive
2032 3408644880 A §C (except text)
Physical 5 0 0 3 0 99 i Sub opcode 0 E >] End draw 5 0 0 1 0 99 _ to define a
p:age intin(0) = sub Op(:‘OdQ 0] area type intin(0) = sub opcode 81 GEM DRAW area
size (2)=page width } tenths of " primitive typeptimitive.
(4)=page height } millimeters i. 5 3 i
: T Set 5 0 0 1 0 99 e Only draw a
Coordinate 5 0 0 3 o — Sub.opcode 1 ' attribute intin(0) = sub opcode 50 drop shadow
window intin(0) = sub opcode 1 i, i 3 Shadooron o thetizes
(2)=x coor } lower left corner piihitive
(4)=1y coor of window | 8 51 '
(6) =x coor } uppesright Carnex B 5 Set 5 Jorebrion £y MILG Hg00 — ignore remaining
(8)=y coor of window attribute intin(0) = sub opcode 51 shadow primitives
. shadow off until next off
n o
GEM Draw E ﬂ 3 sub—opcode.
e 5 0 1 0 — >
There are a number of reserved GEM output codes used by GEM draw: . —:") 2 Tm i g B2 Subscq‘ue.nF A
'r' J' line style intin(0) = sub opcode 49 type primitives
Group: Start and end enclose a set of primitives. not to be outlined
Draw area type primitive: Start and end indicate that enclosed functions are i 1" 'S‘
subject to the area type primitive block that follows the start function.
Attribute shadow: On and off indicate enclosed primitives are ignored as they are -
used to draw a drop shadow for the first primitive following ‘off’. E " of
|

Set no line style: Subsequent area type primitives are not outlined.

3-58 - : ﬂ 3-59
. . AES PARAMETER BLOCK
GEM AES function calls !: — 3
A set of application environment services (AES) function calls are available to the .
programmer, they consist of routines that make extensive use of the VDI function
calls, and a dispatcher that provides a limited multitasking capability. The GEM E——"‘ﬁ Offset
VDI calls generally manage graphic outputs to peripheral devices, screen, printer Control
etc. whereas GEM AES calls usually handle graphics input. The AES calls are $0 table pointer
grouped into eleven libraries that provide a variety of facilities: s — 3
' ' Global
Application library : controls the access to the other AES libraries. . $4 array Offset
Ewvent library: responds to user inputs from mouse, keyboard or elapsed time. ! : - i I/P attrib int_in $0 O_IJCOdﬁ
. : . ’ $8 table pointer $2 Length i/p coor table | Table length
Menu library: text options. %4 Length o/p coor table lin words
-— 3 T : $6 | Length i/p addr table | Table length
Object library: data collections that describes a displayed object, eg a box, an ' O/P attrib 1nt_out €8 [TLencth J,.p ad '. g
ha . $C table pointer i ength o/p addr table fjin longwords
Form library : a means of obtaining information by the use of a list of questions. E e 3 I/P address addr_in
$10 table pointer
Graphics library: a set of routines for manipulating the outline of a rectangular CONTROL TABLE
box. ‘ o 3 O/P address addr_out
: : $14 table pointe
Scrap library : routines that allow the interchange of data between applications. . g <
File selector: user selection of a file from a displayed directory or a file via a . $18
filename and path. l
;. by . i 5 i —
Window library : manages up to eight GEM AES windows. ' 3
f{\’lesow-ge library: provides the interface between the application and its data and E .‘ 3 Global array
1ES., "
: - : — : ' Offset
Shell library: enables an application to invoke another application and to keep - —)
tack ofdie calling command and tail. \ —*‘\ $0 version GEM AES version identification word
- — _5'_'“ ; $2 count Max # concurrent applcs supported
Within GEM AES there is a limited multitasking environment created by the §4 id Unique application identifier
dispatcher; a routine that activates processes sequentially simulating a multi- i 6 private Longword user data as required
tasking environment. The dispatcher maintains two process queues, the ‘ready’ E — 3
for proccss_ing list an.d the ‘not ready’ list, where processes are r_ypicaliy wai}ing $A ptree Pointer to resource load address tree, initially zero
for a user input, an input from another process or a spemﬁcd t1mc‘dclay. Each : $E reserved Zero :Address of memory allocations
‘ready’ process is allowed a predefined Permd of .CPU time before being returned E — 3 $12 reserved Zero :Memory length; screen colours
to the end of the ‘ready’ queue, the environment is saved, the queues updated and $16 reserved Zero
control passed to the next item in the ‘ready’ queue. $1A reserved Fero
= 5 $1E
Access to the AES functions is through an extended BDOS call and the AES E I 3.|
parameter block (six longword pointers to the tables; control, global array, input I
and output attributes and input and output addresses). The AES parameter : \
block, control table and global array have the following formats: E - 3 The minimum size of an input table is one word, which must contain zero if no
l parameters are being passed.
s =1

|

3-60

-l

-

Typical AES application call PARAMETER BLOCK SIZE

A typical sequence of calls for an application might be: / ‘ _ _ ' . |
o < The numbers of parameters required by the various functions are detailed in the
Initialize and free unused memory, set up GEM parameter blocks and tables (APPL tabular format:

INI [10] must be called first).

n w

Open (virtual) workstation and get the screen resolution.

Integers Addresses

| |»ll.

Load a resource file, applicable to the current screen resolution and number of

i i Function O in out in out G
colours available, into memory. p

S0 $2 §4 §6 §8

Get the address of specific resource objects and store them in memory.

The table contains details of the parameter inputs and outputs; note that a zero

3 e address of the resource menu bar and call ‘display menu’.
I indicates a block filled with a zero.

=]

Find the size and location of window (WIND_GET), identify window as a desktop
(handle = 0), get the windows width/height (get field=4)and draw icons.

GEM AES components

Wait for a user action, a keystroke, mouse button click or movement, GEM AES
message or a specified time delay as either individual occurences or combined

events.

1
]]] 1

Select from the menu, normally by moving the mouse to the menu bar. The message

buffer is updated automatically and the process waiting for the input is moved to the Library Limited multitasking Desk accessory Menu alert
‘ready list’ and progressed to the next stage. subroutines kernal & dispatcher buffer buffer
I

Reserve and then box a space to hold the dialog which is tested for an exit. On exit, MoriftE b tse Briary e
anv hichli i 5 ted. movement and R files for the desk Drop down menus and
any highlighting shou e deselec application

; . . {6t; display error & sys accessories alert boxes always
Further user selections, could entail keyboard entries, icon selection etc. message. Draw Wordprocessor appear on top of a

: 3 : objects. spreadsheet etc. Up to 3, the files I\\'[ndu\\'\ icon or dialog,

One of the first operations of an application is to create an active window, which may remain in memory A el e
be sized, redrawn, updated and finally closed. Resident in memory until user exits AES. fromitbasbitferwhen

atall times.

the menu is erased.

Note that VDI calls use device handles and AES windows handles — further

confusion may arise in the use of file handles - they are all different, beware!!!!

Upto 1/4 screen

Ej
Screen manager capability and faster
%‘_lr Up to 3 desk accessories than an application
_.' |'\-"|.nmlnr mouse action I'('drﬂ“-'.
when outside the work
Desk accessoriesrunina area. Shell
E‘ specially designed window
" Runs on top of the limited
on top of the GEM desktop The screen manager S
. multitasking kernal.
or any other application. handles all events in the :
E; border area of the top Handles the passing of control
= window, then menu bar from and to applications as
Dispatcher
| and the drop down menus. they are called and terminated.
|] s fragdy’ L The shell also rides ¢
T Update ‘ready’ and ‘not The shell also provides a
= ready’ lists of the processes graphic or text window as
on each AES call. Use required by the application
— EVNT_TIM to ensure a through a VDI open
my mm s .
by sequencing if there are no workstation call.
I‘ AES calls.
—
i mmy
L '

APPLICATION LIBRARY

The application library functions initialize memory and data structures, terminate
processes, communicate with other processes and record/replay user actions.

Funcrion

Integers Addresses
Op in our in out
$0 $2 §4 §6 §8

Comments

APPL_INIT 10 0 1 0 0 Initialize application and
intout(0) = application ID generate data structures
—1 failure, > =0 ok prior to other AES
put in global array function calls.
APPL_READ 11 2 1 1 0 Read n bytes from message
pipe. int_in(0) = from pipe ID
(2)=n bytes read
int_out(0) = 0,error
30, ok
addr_in(0) = buffer address of data to be read
APPL_WRITE 12 2 1 1 0 Worite n bytes to message
int_in(0)=rto pipe ID pipe.
(2)=n bytes write
int_out(0)=0,error
>0, ok
addr_in(0) = buffer addr of data to be written
APPL_FIND 13 0 1 1 0 Find the ID of another

int_out(0) =applic ID
=—1, not found
addr_in(0)=address of null
term’ted filename

application in the system.

The filename must be 8
characters long, blank fill.

APPL_TPLAY

actions.

14 2 1 1 0
int_in(0)=# actions
(2)=speed(1-10000)
int_out(0) =one (always)
addr_in(0) =memory addr
holding recording

Replays a series of user

speed 50 = half
100 = full
200 = twice

&
=
-
=
E

o
-
E
E
=
E
E

°=
=
£
=

W el W dl

al
-

mquwLuugiquuJuJiuu

Application library - continued

Integers Addresses
Function Op in out in oul
S0 32 $4 36 38

Comments

APPL_TRECORD 15 1 1 1 0

Record a series of actions

Ist word lo longword hi
(6 byte int_in(0) =# actions O=tmer | elapsed time ms
record) int_out(0)=# recorded 1 =button | 0=up, 1 =dwn/# clks
addr_in(0) = addr in memory 2=mouse | x pixels/y pixels
to store records 3=kybd | char/kybd status
APPL_EXIT 19 0 1 0 0 Let application library
int_out(0)=0,error clean up environment when
=0, ok applic finish making calls

Event library - continued

EVENT LIBRARY EVNT_MESAG 23 0 1 1 0 Flag message, up to eight

ords, in > pipe.
int_out(0) =Reserved (=1) ol MCE IR

addr_in(0) = mess type ID —

The event library routines monitor multiple and individual user inputs providing
| efficient polling of the clock, keyboard, mouse and message pipes.

e

mmmmmqimmmmmmwmtum.ﬂ
-

u
‘:.‘— z g (2)=1D of sender ey
| i o3 (4)=0 or length of message words Message
| greater than 16 bytes | 1D_required function
| Integers Addresses E - (6~14)= extra words 10 GH selected menu
Function Op in out in out Comments ’ - - 20 ABCDE redraw window
$0° g2 g4 §6° ¥ l Addn'n() extra word entries 21 A move work area to top
E - A=window handle), AIK N 22 A close window
EVNT_KEY 20 0 1 0 0 Return standard keyboard I B=x coor G= Ob?ect !ndcx F1tl::: 23 A toggle fullsize window
int_out(0) = keycode press code (Appendix D.)) I C=y coor g 5 H= Oblcq indexitem| |5, Ap scroll/page window
El == D= w1‘dth o8 [=menu item ID 25 A]J move window horizontal
EWTBUTTON 21 3 5 0 0 Return mouse status on ' E = height (op35callreturn) | Jo¢ Ay move window vertica
int_in(0) = wait #clicks Mask buttmask | Keystate I = Pagei = J=top/left0=1000 27 ABCDE resize window
(2)=buttmask Ox0001 | buttleft | right_shift B o= 2: :‘fp’ I=down) Mouse 28 ABCDE move window
(4) = button state 0x0002 | 2ndbutt | left_shift 5 el arrow 29 A set new top window
int_out(0)=No. clicks>=1 | 540004 | 3rdbutt | control row 2=up,3= d_o“'n click 40 1 desk_acc open message
| (2)=x coor } on 0x0008 upto16 | alternate i'l col 6=left, 7=right message 41 1 desk_acc close message
l (4)=ycoor } event | = 50 ct_update
(6) = button state Button state bits 0=up, Messages entered FIFO, where message 51 e
1=down A length> 16 byte use APPL_READ. 52 SEHewton
(8) =keystate E: Reading kills message.
EVNT_MOUSE 22 5 5 0 0 Return mouse status on leaving EVNT_TIMER 24 ‘2 1 0 0 Flag .application thaF a
int_in(0)return flag specified area E' int_in(0)= l(‘{ l?ngword specified length of time
(2)=x coor y area Return flag 1, on area exit 52} =hi time ms has past.
(4)=y coor { position 0, on area entry (0)=Reserved (=1)
(6)=width (pixel Mask buttmask I.Ceysmre‘ E ! : o —
(8)=height” coor 0Ox0001 butt left right_shift EVNT_MULTI 25. ‘16 7 1 0 Application waiting on one or
int_out(0) = Reserved (= 1) Ox0002 2nd butt | left_shift int_in(0)= S'tand.'flrd keyboard code more events
" (2)=x coor } o 0x0004 | 3rdbutt | control ﬁ : (2)=No. clicks

Ox0008 up to 16 alternate (4)=buttmask

(4)=y coor) event o
(6) =button state Button state bits 0=up, 1=down (6)=button state Button state 0_up, 1_down
[l (8)=flags Mouse
(8)=keystate - (§A) =% ooor | Mask butrmask | flags
- 0Ox0001 buttleft | Keyboard
(8C)=ycoor } area Sr000 o %
e ($E)=width event X nd butt | Button
- el 0x0004 3rd butt | Mouse 1
($10)=height
Ox0008 Mouse 2
(812) = flags Mouse
iy 4= 0x0010 Message
wn (338) = menor 2 | 0x0020 Timer
- ($16) =y coor area
($18) =width event Flags show the type of
&= ($1A)=height event the application is
- ($1C)=low | longword waiting for, or occurred
(81E)=high § time ms
- continued...

i — i — — — S)

-
L

3-66

Event library - continued

Integers Addresses
Function Op in out in oul
s0 $2 $4 6 $8

Comments

EVNT_MULTI
continued

Keystate
0x0001_right shift
0Ox0002_left shift
0x0004_control
0Ox0008_alternate

int_out(0)=flag
(2)=x coor
(4)=1y coor
(6)=button state
(8)=keystate
($A)=keycode press Return std kybd code
($C)=#clicks>=1 # of button events/time
addr_in(0)= 16 byte buffer (see EVNT_MESAG op 23)

EVNT_DCLICK 26 2 1 0 0 Get/set double click
int_in(0)=slow 0 to 4 speed
(2)=0_get, 1_set
int_out(0)=speed 1_new 0_old

Most applications will wait for a combination of events using the EVNT_MULTI call.
When a required event occurs, the application will be moved from the ‘not ready’
list to the ‘ready’ list by the dispatcher, respond to the event and then return to the
‘not ready’ list to wait for the next event in the EVNT_MULTI sequence.

Be careful in using the right hand Atari mouse button, not all versions of GEM have
two buttons, when considering portable software.

Keystroke selection

Some menu items support keystoke selection through the EVNT_MULTI call. On receipt
of the specified key selection, the application should call MENU TNORMAL to highlight
the title to enable the user to see the selection actually made; deselect highlighting
when the application has finished with the menu. The 16-bit keyboard event codes
are given in Appendix D; use GRAF_MKSTATE to decode Control, Alternate and left and
right sHIFT keys.

Icon selection

The bits for the required icon selection sequence are sct by the application in the
EVNT _MULTI call, button up or down state and a predefined number of clicks within a
given space of time. On the event taking place, a bit value for the mouse and
keyboard state is returned; the application needs to also call GRAF_MKSTATE to obtain
the mouse’s x and y coordinates and then make an 0BJC_FIND call passing the x and y
coordinates and the address of the window, desktop or application object tree
containing its icons.

m

nY

())
mmmmmuiummwuu’wuwwm

IS S | Y B S O N S — | —

H

L

Hl

wi
L_= i}

W

If 0BJC_FIND reports the mouse covering an icon, its state should be changed to
selected.

If the mouse does not cover an icon, the application should assume the user will
select a group of icons by drawing an expanding rectangle around them. Call GRAF_
MKSTATE to ensure the button is still depressed and then call GRAF_RUBBERBOX to
provide the extent of the box when the button is released. The application should
look for icons within the rectangle and change each icon from normal to selected via

0BJC_CHANGE calls.

Menu library

The menu library routines provide the user with a textual menu choice from within
an application, placing the mouse cursor over an enabled item and clicking the
mouse button to make the selection.

. —————— ——

Integers Addresses
Function Op in oul in out Comments
g0 32 84 36 38
MENU_BAR 30 1 1 1 0 Display/erase menu bar

int_in(0) = menu bar 0_erase, 1_draw
int_out(0) = error 0_yes, +ve_no
addr_in(0)= Object tree address that forms this menu
MENU_ICHECK 31 2 1 1 0 Display/erase menu item check mark
int_in(0) = menu item ID
(2)=0_clear, 1_display (check mark)
int_out(0)= error 0_yes, +ve_no
addr_in(0)= Object tree address that forms this menu

MENU_ITENABLE 32 2 1 1 0 Disable/enable menu item

int_in(0) =menu item ID
(2)=0_disabled, 1 _enabled (light/dark)

int_out(0) = error O_yes, +ve_no

addr_in(0)= Object tree address that forms this menu
MENU_TNORMAL 33 2 1 1 0 Display menu title in reverse video

int_in(0)=menu item ID
(2)=0_reverse, 1_normal video

int_out(0)=error 0_yes, +ve_no
addr_in(0)= Object tree address that forms this menu

3-68

Menu library — continued

Integers Addresses
Function Op in out in out
$0 82 $4 §6 58

Comments

MENU_TEXT 34 1 1 2 0
int_in(0) =menu item ID
int_out(0)=error 0_yes, +ve_no
addr_in(0)= Addr of new string for this item
(4)= Object tree addr for this menu

Change menu text reverse video

Place desk accessory menu item
string on desk menu and ret
acc’s menu ID

MENU_REGISTER 35 1 1 1 0
int_in(0) = Desk accessory
process ID
int_out(0)=menu item ID (0-5)
addr_in(0) = address of desk_acc menu text string.

To display a menu bar, call the resource function RSRC_GADDR with the menu bar’s
(object) details to obtain the long address of the object tree root, call MENU_BAR with
the address and set the routine to draw.

Menu bar control

The AES screen manager controls all user interaction with the menu bar in the
following manner:

The user touches an item in the menu bar using the mouse cursor.

The screen manager receives a message that the cursor has entered the menu bar
and enters the ‘ready list’. It determines which item in the title bar the cursor
touched, saves the screen under and displays the ‘titles’ menu; highlighting menu
items as the cursor passes over them.

The application is held in the ‘not ready’ list while the screen manager has
initiated open menus. When the user clicks the mouse on a menu item, the screen
manager sends details of the object tree of the menu selected to the primary
application’s message buffer.

The dispatcher checks the ‘not ready’ list for the application process waiting for
the message and moves it to the ‘ready’ list.

The EVYNT_MULTI call returns a flag of the events that occurred, which may be read by
the application and any action deemed appropriate by the application taken.

When the action is complete, the menu title is de-highlighted by the application
making a MENU_TNORMAL call.

= ¥

\\
atl W <l

\Y

-
- m

E
E
E
=
E
£
€

W W W W W W

e -

(59

Object library

An object, described by a collection of data in a linked list (object tree), can be
created, deleted, edited, drawn on the screen, and the object’s position on the screen
found, using the object library routines.

Object tree

An object consists of a parent and perhaps a number of different levels of children,
who always reside within the parents display space. The tree is created by making
seperate calls to the 0BJC_ADD routine for each child or loaded from disk using
RSRC_LOAD.

Parent (root)

A

level n child ——————————p child
Each child points to a
brother in a chain, if it
has one. The last one
child child points back to its parent.
t Different objects may
child level n+1 be created by only using
parts of the tree.
- Parent

«1- e Chiild ¢1 Boxtext type object

gt (Child c2 Box type object
Ddh— Child c3 Box type object

Parent

el e G2 e [C3

3-70

The object library uses a number of additional tables, as well as the parameter block,
control table and global arrays, to describe objects. The tables are accessed via the

resource library routines and are as follows:

Additional object library word tables
(bracketed items are longwords)

Offset Object Tedinfo Iconblk Bitblk Applblk Parmblk
($0) Nextchild { Text { Mask { Image { Code { Tree
($2) 1stchild string string pointer { pointer pointer
($4) Lastchild (Template Data W_arry Loparm Objindx
($6) Otype { string { string H_pixl Hiparm Oldst
($8) Oflag Vchar Text X_srce — Newst
($A) OState pointer { string y_srce — X_coor
($C) { OSpec Font Icon_c fg_col — y_coor
D) | Reserved x_cpos 0 - W_pixel
($10) X_Coor Justify y_Cpos - —_ H_pixel
($12) y_coor Color X_1pos — — X_cpos
($14) Width Reserved y_ipos — — y_cpos
($16) Height Brdthk i_wide - — W_cpxl
($18) — txtlen i_hite H_cpxl
($1A) — tmplen X_tpos prefixes Loparm
($1C) (x&y y_tpos o=object Hiparm
($1E) rel to t_wide c=char 0
($20) parent t_hite i=icon —
($22) or screen) - 0 t=text —

The tables, filled by the object library routines, are used in performing various

functions:

Object Provides data that describes each object, its tree relationship to other
objects and its location relative to parent (screen if the root). Predefined object

values on next page.

Tedinfo Allows object types Text (21), Boxtext (22), Ftext (29) and Fboxtext
(30) to be edited, using the object table spec pointer to point to Tedinfo table.

Iconblk Isused to hold icon (31) data definitions. Object type Icon points here

with its spec pointer.

Bitblk Obiject type Image (23) uses this to draw bit images like cursors and

icons.

=

m-m m W MM

m

=g

Q-

E
3
=
3
3
3 3
3
3
3
3
3
=9
3
3
3
3
3

3-71

Applblk Is used to locate and call an application defined routine that draws
and or changes an object. The object type Progdef (24) spec pointer points here.

Parmblk Storage of data used by the application defined routine above
(applblk) and pointed to by the code pointer.

Object libraries

Routines which edit, create and draw data describing objects that appear on the
screen, boxes, characters, icons etc.

There are some predefined values for the table entries:

Graphic types Ospec Object flags Object colors
of objects points (Oflag) (color)
(Otype) to
20=Box — 0x0000=none 0= white
21="Text Tedinfo 0x0001 = selectable 1 =black
22=Boxtext Tedinfo 0x0002 = default 2=red
23=1Image Bitblk 0x0004 = exit 3 =green
24=Progdef Applblk 0x0008 = editable 4=blue
25=Invisbox — 0x0010 =rbutton 5=cyan
26=Button Nstrg 0x0020 = lastobj 6=yellow
27=Boxchar — 0x0040 = touchexit 7 =magenta
28= String Nstrg 0x0080 =hidetree 8 =white
20 = Ftext Tedinfo 0x0100 = indirect 9=black
30=Fboxtext Tedinfo 10=1Ired
31=Icon Iconblk 11 =lgreen
32=Title Nstrg 12=Iblue
13=Icyan
14=lyellow
15 =Imagenta
Font types Colour fields
15 1211 8 6 4 3 0
3=system font
5=small font border text 0O_tran fill inside
colour colour 1_repl type colour

3-72
Object states
(Ostate) Ospec 32-bit word|byte values
Low word | High word
0x0000 normal
0x0001 selected Low High
0x0002 crossed byte byte
0x0004 cl? ecked Box olour 0 0
gxggog dlstaiplcg Invisbox | colour brdthk 0
%0070 outline
Boxchs col]
0x0020 shadowed A (LRINE] Ghat
Editable text Borderthickness
field definitions Justification (brdthk)
0= edstart (Justify) 0 none
1 =edinit 0= left justified 1to 128 inside
2 =edchar 1 =right justified -1 to-127 outside
3=edend 2= centered (in pixels)

Allowable valid characters (Vichar pointer)

only digits 0 to 9

only uppercase A to Z and space
upper and lowercase A to Z and space
0to 9, uppercase A to Z and space

0 to 9, upper and lowercase and space
all valid DOS filename chars, plus 7,

all valid DOS pathname chars, plus \, :
anything

MO B 7B » o

L N

all valid DOS pathname chars, plus\, :, 7

" 8

A
LuLuL-ju.-LuL;iLumhxwluLu'mﬂuideJ

| W

D)

® M, m MM

Object libraries - continued

Integers Addresses
Function Op in out in out Comments
05 82 34, I6 38
0BJC_ADD 40 2 1 1 0 Add an object to an object tree.

int_in(0) = Parent ID
(2)=Child ID (item to add)
int_out(0) = error 0_yes, +ve_no
addr_in(0) = Object tree addr of parent and child

0BJC_DELETE

41 1 1 1 0 Delete an object from an object tree
int_in{0) = Object to delete
int_out(0) =error 0_yes, +ve_no

addr_in(0) = Object tree address with object in it

0BJC_DRAW 42 6 1 1 0 Draw an object in an object tree
int_in(0) = start object
(2)=draw 0_obj only, nth_level
(4)=x coor
(6)=ycoor Clip
(8)=width rectangle
(§A)=height
int_out(0) =error 0_yes, + ve_no
addr_in(0) = Object tree address with object in it
0BJC_FIND 43 4 1 1 0 Find an object under the mouse form

int_in(0) = search start object
(2)=levels of search
(4)=%x% coor mouse
(6)=y coor location
int_out(0)=-1_no obj, 0 to n=# of object in tree
addr_in(0)= Object tree address of search start object

0BJC_OFFSET

44 1 5 1 0 Find obj. screen rel x/y coords

int_in(0) = object to locate
int_out(0)=error 0_yes, + ve_no
(2)=xcoor relative
(4)=y coor toscreen
addr_in(0) = Object tree address with int_in(0) in it

3-74

Object libraries — continued

Function

Inzegers Addresses
Op in our in out
30 320 34 36548

Comments

0BJC_ORDER

45 2 1 1 0
int_in(0) = Object to be moved
(2)=new pos (0=bot. level . . 1. . to-1 top)
int_out(0)=error 0_yes, +ve_no
addr_in(0) = Object tree address with int_in(0) in it

Reorder an object within a list.

0BJC_EDIT

46 4 2 1 0
int_in(0) = text object to be edited
(2) = user input character
(4) = next character index in text string
(6)=0,reserved
= 1,fmt str using text/template strings
= 2,validate against Tedinfo valid_char,
update and display.
= 3,turn off text cursor
int_out(0) =error 0_yes, + ve_no
(2)=next char index after operation
addr_in(0)= Object tree addr of obj with text in it

Edit object text.

0BJC_CHANGE

47 8 1 1 0
int_in(0)= object to be changed
(2)=zero, reserved

Changes an object’s state

(4)=x coor

(6)=y coor clip

(8)=width rectangle
($A)=height

($C)=object state new value

(8E)=redraw O_no, 1_yes
int_out(0) = error 0_yes, +ve_no
addr_in(0) = Object tree address

To display an icon, calculate the desktop windows work area using a WIND_GET call
and use 0BJC_DRAW to draw the icon in the work area. The icons position within the
window is held by the ‘Iconblk’ structure.

L

-W W

mammmmom

m m

—
——

a W

ul

(Y

o

Li.lMLuLu'uLniLuLuthu

Form library

A set of routines that enable the user to reply to a list of questions, either by
checking off boxes or entering text.

Integers Addresses
Function Op in out in out Comments
$0 §2 §4 $§6 $8
FORM_DO 50 1 1 1 0 Monitor interaction with a form.
int_in(0) = object number
int_out(0) = object # that caused the exit
addr_in(0) = object tree address
FORM_DIAL 51 9 1 0 0 Reserve/Free dialog box screen area.
int_in(0)="flag
(2)=x coor
(4)=y coor | small Flag:
(6)=width box 0=res screen space
(8)=height for dialog box
($A)=x coor 1 =expanding box
($C)=ycoor [large 2 =shrinking box
(8E)=width | box 3 =free screen space
($10) = height
int_out(0)=error 0_yes, 1_no
FORM_ALERT 52 1 1 1 0 Display an alert.
int_in(0)= exit button 0=no default exit
int_out(0) = chosen exit 1 = 1st exit button
addr_in(0) = address alert string 2 = 2nd exit button..
FORM_ERROR 53 1 1 0 0 Display an error box.

int_in(0)=DOS error code

int_out(0) = exit button code (as above)

FORM_CENTER

54 0 5 1 0

int_out(0) =one, reserved
(2)=xcoor | Of
(4)=y coor centered
(6) =width object
(8)=height | tree

Centre dialog box on screen

addr_in(0) = dialog object tree address

3-76

The forms library routines enable the user to respond to a typical printed style of
form on the screen in a question and answer mode without tying up the applications
resources. The forms library also provides a consistent application/user response
format.

The forms have three optional types of user response, they are:

Check a single box
Check a combination of boxes
Provide a typed response

These may be used any number of times in any combination. Finally the user exits
typically via an oK or CANCEL button.

Taking a dialog as an example :

To display a dialog, which will appear in the centre of the screen, call resource
function RSRC_GADDR to get the address of the dialogs object tree. Call FORM_DIAL to
reserve screen space and then call 08JC_DRAW to draw the dialog.

The application should call FORM_D0 to monitor user interaction with the dialog box.
Where user changes have been made, the application may use 0BJC_CHANGE to reset
initial values, in particular dehighlight selected buttons. It may also be necessary to
save some changes made to dialogs.

To exit from the dialog, call FORM_DIAL to release the screen space, the application
which should be in an EVNT_MULTT wait state can redraw the screen using an 0BJC_DRAN
call.

A nicer display may be achieved if FORM_DIAL is used to draw expanding and
shrinking boxes on start up and finish of the dialog sequence.

Edit keys

Keys have certain specified meanings for editing the text fields of forms and dialog
boxes:

«and —: Move left or right within the field.
land TaB: Move to first free space of the next field.
1: Move to first free space of previous field.
peLETE: Delete character following cursor without moving cursor.

packspace Delete character to the left of the cursor, move cursor and
following text one space left.

reTUrN End edit and terminate if either OK or CANCEL type buttons are
default objects otherwise ignore.

Clear all characters from the field.

ESCAPE!

-

‘a
“m m

-

o=

mwwmmu&ummmuu’.@wdm

Alerts

Alerts, which are used by GEM AES to handle error conditions, contain one of four
pictorial designs; nothing, note icon, wait icon and the stop icon, and upto a
maximum of 5 lines of 40 character width text (each line being seperated by the |
symbol) and up to 3 exit buttons, each containing up to 20 characters of text.

A special case alert is the error box which reports errors in DOS terminology
(Appendix I). ;

A typical set of object structures for an alert on a mono screen box with some textual
information and ok and canceL buttons might be:

Object Comments
Offset structure HELP OK CANCEL
element Box Text Boxtext Boxtext Pntr to next obj
0 nextchild -1 2 3 0 & -lroot
2 Istchild 1 -1 -1 -1 -1 lowest
4 Lstchild 3 -1 -1 -1 } level
6 Otype 20 21 22 22
8 Oflag 0 0 1_selectd 2_default
BA Ostate 0 0 0 0
$C Ospec 00020007L. OL 0L 0L
$10 x-coor 90 Rel 86 374 374
$12 y_coor 150 w 16 18 50
$14 width 454 secron 272 64 54
816 height 98 64 16 16

t Relative to parent (Box)

3-78

Alerts - continued

Tedinfo HELP OK CANCEL
Offset structure
element Box Text Boxtext Boxtext
0 Text string — help ok cancel
4 Tmplestrg —_ 0 0 0
8 Vcharpointer — 0 0
$C Font - 3 3 3
$D Reserved - 0 0 0
$10 Justify — 0_left 2_center 2_center
$12 colour — 00020000L. 00020000L 00020000L
$14 Reserved — 0 0 0
$16 Brdthk - 0 -2 -2
$18 txtlen — 0 0 0
$1A tmplen — 0 0 0

The form library follows the tree from root to children in displaying the form object

(B | l’i H

1

MWW M OE-RN RN RN

1

LNL-JL-JmLuuiwmhoumm'wuluLqu;

Graphics library

The graphics library routines enable the programmer to manipulate the rectangular
outline of a box.

Integers Addresses
Function Op in our in out
s0 $2 $§4 §6 58

Comments

GRAF_RUBBERBOX 70 4 3 0 0
int_in(0)=x coor :I of

Draw box expanding & contracting
from a fixed point with mouse
(2)=y coor box
(4)=min pixel width
(6)=min pixel height
int_out(0)=error 0_yes, + ve_no
(2)=width when button
(4)=height] last released

GRAF_DRAGBOX 71 8 3 0 0
int_in(0)=width] of
(2)=height | box

Move a box and keep the mouse ptr
at same position inside box.

(4)=xcoor | being
(6)=y coor | dragged Height and width in pixels
(8)=x coor 7

($A)=y coor | Boundary

($C)=width rectangle

($E)=height |
int_out(0) = error 0_yes, + ve_no
(2)=x coor | when button
released

(4)=y coor |

GRAF_MOVEBOX 72 6 1 0 0
int_in(0) =width

Draw a moving box

(2)=height
(4)=x coor] Initial
(6)=y coor | position Height and width in pixels
(8)=xcoor | Final
($A)=y coor] position

int_out(0)=error 0_yes, +ve_no

3-80

Graphics library - continued

Integers Addresses

Function Op in our in out
s0 $2 $§4 $§6 88

Comments

GRAF_GROWBOX 73 8 1 0 0 Draw expanding box outline

int_in(0)=x coor

(2)=y coor Initial
(4)=width position
()=height
()=x coor
($A) =y coor Final tleight and width in pixels
($C)=width position

($E) = height
int_out(0) = error 0_yes, + ve_no

GRAF_SHR 74 8 1 0 0 Draw shrinking box
int_in(0) =x coor outline
(2)=1y coor Final
(4)=width position
(6)=height
(8)=x coor
($A)=y coor Initial Height and width in pixels
($C)=width position

($E)=height
int_out(0) =error 0_yes, +ve_no

Track mouse pointer
and button in and
outside the box.

GRAF_WAT 75 4 1 1 0
int_in(0) =reserved
(2)=object tree
(4)=1n the box obj.
(6)=out of box state
int_out(0) = 0_outside, 1_inside the box
addr_in(0) =address object tree containing box
R e e
GRAF_SLI 76 3 1 1 0 Keep sliding box
int_in(0) =parent index inside parent box.
(2) = object index (slider)
(4) =motion 0_horiz, 1_vert
int_out(0) =0_Ift/top to 1000_right/bottom
addr_in(0) =Address object tree
containing slider & parent
_H_ff—ff_

=
u W oW

-

Ul Wl

)

W W W

o ot x i

Graphics library - continued

Integers Addresses
Function Op in out in out
e IO - R (R

Comments

GRAF_HANDLE g L0 s iii0 B0
int_out(0)= VDI handle
(2)=width } char cell

Ret Gim vpi handle for open
screen workstation

(4)=height syst. font
(6)=width box for
(8)=height syst. font
GRAF_MOUSE 78 1 1 1 0 Permit application to change

int_in(0)=0 arrow
=1 text cursor (vertical bar)
=2 bee (hourglass-IBM GEM)
=13 hand with pointing finger
= 4 flat hand, extended fingers
= 5 thin cross hair
= 6 thick cross hair
=7 outline cross hair
=255 mouse form stored in addr_in(0)
=256 hide mouse form
=257 show mouse form

predefined mouse.

int_out(0) = error 0_yes, +ve_no
addr_in(0) =35 wd buf: mouse form def’n block
(VDIop111)

GRAF_MKSTATE 79 0 5 0 0
int_out(0)= 1, reserved

Return mouse location button
and keyboard state.

(2)=x coor) mouse Mask [Buin | Key
(4)=y coor } location 0x0001 lift Rt sHiFT
(6)= Butstate)0_up 0x0002 | 2nd Left sHiFr
(8) =keystate 71_dn 0x0004 | 3rd CTRL
Ox0008 ALT

GEM AES provides the graphic routines to manipulate the rectangular outline of a
box which are based on GEM VDI routines. Graphics applications should use
GEM VDI directly for graphic output to avoid any loss in performance through the
AES overhead.

3-82

Scrap library

The scrap library consists of routines that manage the interchange of information
between applications. Data is either deleted or copied from the source to the
clipboard (disk file named scrap), which only holds one document; and then pasted
(copied) from the clipboard (disk) to the target application.

Integers Addresses
Function Op in out in out

50 $2 34 $6 38

Comments

SCRP_READ 80 0 1 1 0 Read the current scrap
int_out(0) =error 0=yes directory on the clipboard
+ve no
addr_in(0) = buffer address into which

scrap directory is copied.

SCRP_WRITE 81 0 1 1 0 Write new scrap directory
int_out(0) =error 0=yes to clipboard. (Cut & Copy)
+ ve no
addr_in(0) = buffer address from which

scrap directory is copied to clipboard.

The scrap data is held on disk in a file named scrap, the extension identifies the type
of data:

TXT ASCII text string

DIF Spreadsheet data

GEM Metafile - GEM VDI type graphic images
_IMG Bit image — GEM VDI standard form

Applications access the data via GEM BDOS file system calls to:

Search

Create a file
Open afile
Read a file
Write a file
Close a file
Delete a file and
Get file size.

A\

m m=m m m m

mmmmmfﬁmmmm

—=]

wk

3

Wl W W W W

File selector library

The file selector library routine enables the programmer to select file from a
displayed directory or to type in a filename and path.

Integers Addresses
Function Op in out in out
$0 $2 $4 $6 §8

Comments

FSEL_INPUT 90 0 2 2 0 Display file selector
int_out(0) =error 0=yes box and monitor user
+ve no interaction with it.
(2) =exit button 0_cancel
1_ok
addr_in(0) =buffer address of intial directory specification

(if not updated holds last dir spec user selected)
= buffer address of initial selection displayed

in file selector dialog box (If not updated

it holds last selection)

addr_in(4)

This routine displays a file directory dialog box, the user either selects a filename
directly from the directory list using a mouse or types in a filename to create a new
file.

The file directory dialog box displays the name of the current directory path, a
selection field, a scrollable directory listing and two buttons to terminate the routine.
The user interacts with the dialog box in the standard manner, changing the
directory being displayed, selecting an item from the directory list or typing in a user
selection and then exiting via the ok OR canceL button.

The file selector library returns the filename selected or entered, in the buffer at
addr_in(4), the directory path of the file in the buffer at addr_in(0) and whether the
selection is ok or is to be cancelled. The application acts upon the information as
required.

Entering the underscore into the directory string may cause the ST to crash

3-84

Window library

The window library routines permit the creation, opening, closing and deletion of
windows to a maximum of eight active windows. The window parameters can be
recovered or set, the window under the mouse cursor found, a flag set to indicate
that a window is being updated and the size of a window determined.

L=

Integers Addresses
Op in out in oul
S0 $2 $4 86 38

Function Comments

W ORE R R ETRE B

Allocate window size
including border & ret’n
window handle. W’dw open
must set size < = to that

100 5 1 0 0
int_in(0) =window parts
(2) =xcoor Of

(4) =y coor full

WIND_CREATE

(6) =width size allocated.
(8) =height window
int_out(0) =window handle (—ve, no windows available)
WIND_OPEN 101 5 1 0 0 Open a window at its
int_in(0) =window handle initial size and location,
(2) =xcoor -not necessarily its
(4) =ycoor Window fullsize.
(6) =width initial
(8) =height size
int_out(0) =error 0=yes, +veno
WIND_CLOSE 102 1 1 0 0 Close window, does not
int_in(0) =window handle deallocate the window
int_out(0) =error 0=yes, +veno or handle.
WIND_DELETE 103 1 1 0 0 Free space occupied by
int_in(0) =window handle window and handle.
int_out(0) =error 0 =yes, +veno

I HE.I
it
e
o
-
| 41
L'
- ;

B 8

™
all

W W 8l W &l

Ll

2 Ul

amy

3-85

Window parts (bit representation)

0x0001 Name (name and title bar)

0x0002 Close (close box)

0x0004 Full (full box) .

0x0008 Move (move box) |

0x0010 Info (information line)

0x0020 Size (size box)

0x0040 Uparrow (up arrow)

0x0080 Dnarrow (down arrow)

0x0100 Vslide (vertical slider)

0x0200 Lfarrow (left arrow)

0x0400 Rtarrow (right arrow) !

0x0800 Hslide (horizontal slider)]
Window library - continued

Integers Addresses

Function Op i out in oul Comments

§0 $2 §4 $6 58

WIND_GET 104 2 5 0 0

int_in(0) =window handle
(2)=get_field
int_out(0) =error 0=yes, +ve no

Get window data specified

field

(2)= Data
(4)= specified
(6)= by Get
(8)= field =
WIND_SET 105 6 1 0 0 Set displayed window
int_in(0) =window handle parameters
(2)=set_field
4)= Data
(6)= specified
8)= by Set
(8A)= field
int_out(0) =error 0=yes, +veno

:

W

H

H

}

3-86 | I -~
Get int_out() Associated function ‘ -: 3
Fala ez (4) (6) (8) .
4 X coor y coor width height window work area E _‘“ﬁ
5 xcoor y coor width height current size incl border |
6 xcoor y coor width height previous title _
7 xcoor y coor width height max possible window size E |1 3
8 1-1000 1 left, 1000 right rel hor slider pos |
9 1-1000 1 top, 1000 bottom rel vert slider pos l
10 handle top window handle B -F -3
11 xcoor y coor width height 1st rectangle in wind list .
12 xcoor y coor width height nxt rectangle in wind list [)] .
13 reservd ! - 3
15 1-1000 (=1 default min sq box) rel horiz sld size
16 1-1000 (~1 default min sq box) rel vert sld size
17 screen E i 3
|
Set int_in() Associated function
|
field (4) (6) (8) (§A4)
ey 3
1 Parts window components E
2 Name pointer address of name string
3 Info pointer addr info line string ﬁ — 3
5 xcoor y coor width height current window size
8 1-1000 1 left, 1000 right rel hor slider pos
9 1-1000 1 top, 1000 bottom rel vert slider pos E o 3
10 handle top window handle - |
14 lo-word hi-word strtobj GEM desktop to draw _
15 1-1000 (~1 default min sq box) rel hor slider size ﬁu e
16 1-1000 (=1 default min sq box) rel vertical slider size -
17 screen
o=
—
-
L}
=

Lh.ILnJI.nJLuLuul

iy
L2

Window library — continued

Integers Addresses
Function Op in out n out
S0 $2 54 %6 38

Comments

WIND_FIND 106 2 1 0 0
int_in(0) =x coor] mouse

(2)=y coor |position

int_out(0) =window handle

Find w’dw under mouse

WIND_UPDATE 107 1 1 0 0 Flag about to u’d window
int_in(0) =update 0=-end, 1 =begin (window locking)
2=end, 3 =begin (norm. mouse cntrl)

int_out(0) =error 0_yes, + ve_no
WIND_CALC 108 6 5 0 0 Ret w’dw border/work
area
intin(0) =area 0 =work—border, 1 =border—work
(2) = parts
(4)=x coor
(6)=y coor border/work To calculate work
(8)=width area values area, input border
($A)=height area values.
int_out(0) =error 0_yes,
+ve_no To calc border
(2)=x coor area, input work
(4)=y coor | work/border area values.
(6)=width area values
(8)=height

The desktop window is always present in the AES environment and supports a
maximum of eight windows at a time. The AES screen manager handles all the user
interaction outside the border area and the sizing, dragging and scrolling actions
requested from within the border. The contents of the border area determine which
of these functions are available.

Each user action sends a message through the message pipe to the applications FYNT_
MESAG buffer where it is stacked on a first in-first out basis. In order to perform the
requested function, the message must first be read and then the window manage-
ment action may be either programmed to be performed or ignored. The assembler
GEM program (Appendix L) demonstrates the effect of creating a window with the
facilities, but not incorporating any code to handle the screen managers requests.
The example also shows the parts handled by the screen manager, moving sliders,
rubber boxing windows etc.

The application handles all activities within the windows work area.

3 -88

Note that AES windows do not use the same coordinates as VDI areas:

AES x, v, width, height
VDI x1,v1,x2,y2

To create a window, the application calls WIND_CREATE defining the type (only those
facilities that the application supports) and position of the window required,
returning the window handle to be used in all subsequent actions on the window. An
application call to WIND_CALC may be used to return the size of the window work area.
A call to WIND_OPEN will get AES to draw the window’s border area on the screen and
send a message to the application to draw the windows work area.

WIND_SET calls are used to set the size and location of the vertical and horizontal
sliders. If the window is resized, the application must decide if the preview rubber
box size is valid. If not, the application may resize to the nearest valid size or display
a warning dialog message. If valid, the application must issue a WIND_SET call to
change the window size. A reduced window size does not require the work area to be
redrawn, but if larger, GEM AES will send a message to the application to redraw
the windows work area (EVNT_MESAG ID = 20).

The application is responsible for redrawing and updating the visible parts of its
windows, which it divides into the smallest number of non-overlapping rectangles,
found by a series of WIND_GET calls. Initially to the “first’ rectangle in the window list
and subsequently to the ‘next’ rectangle until the returned width and height are both
zero. Note that if the window is not covered, say by the control panel, that there will
be only one rectangle.

Before updating the window, the application makes a WIND_UPDATE call to freeze all
other rectangle lists and to prevent menus and alerts from being displayed during
the update. On completion of the update, another WIND_UPDATE call permits further
change to the display and rectangle lists.

To redraw the window work area, each rectangle in the rectangle list is compared
with the update rectangle in turn, and any common portion redrawn.

To make a window active, the application (which must include an EVNT_MULTI call
that includes a mouse button event) will receive a ‘button pressed’ message from the
screen manager - the event occurred outside the active window and is therefore
detected by the screen manager. The application calls WIND_FIND using the mouse X
and y coordinates to obtain the handle of the window under the mouse. If it is the
desktop, handle 0, 2 rubber box is drawn in expectation of the user selecting desktop
icons. If the handle is that of an inactive window, the screen manager sends a
message (EVNT_MESAG ID=29) to request the window be brought to the top. The
application calls W1 ND_SET to comply.

To close a window via the windows border or menu command, the screen manager
sends a message to the application which should make a WIND_CLOSE call; a WIND_
DELETE call will then free the handle.

"

|-|—l—l-l'_i'—i—1

)

a

»

E=1

-
w
w

m w0

m

J

i

2l

L

| .
- - wa

Resource library

The resource library provides the interface between the application and its file

resources, trees,

objects, icons and pictures etc. providing the means to port an

application to a different environment by simply changing the resource file data.

Integers Addresses
Function Op in out in oul Commenis
$0 $2- g4 36 | 88
RSRC_LOAD 110 0 1 1 0 Allocate mem & load a
resource file.
int_out(0) = error 0 =yes, +veno
addr_in(0)= ASCII filename string address
RSRC_FREE 111 0 1 0 0 Free the memory space
allocated by rsrc_load.
int_out(0)=error 0 =yes, +veno
RSRC_GADDR 112 2 1 0 1 Get address of data
int_in(0)=type structure (object)
(2) = structure index loaded in memory.
int_out(0)=error 0 =yes, +veno
addr_out(0) = address of specified structure
Integers Addresses
Function Op in out in out Comments
50 52 $4 85 88
RSRC_SADDR 113 2 1 1 0 Store the address of a
int_in(0) =type data structure.
(2)=struct location index
int_out(0)=error 0 =yes, +veno
addr_in(0) =address of the data structure
RSRC_OBFIX 114 1 1 1 0 Convert objects location

and size from character
coordinates to pixels.

int_in(0) = obj index

int_out(0) =1, reserved
addr_in(0) = object tree address

3-90 ' 3-91

-

A\
W W W W i uw el

Shell library

Type (of data structure)

-
!
The shell library routines enable one application to call another and keep track of
0 tree 9 template string (tedinfo) I I el corninariel tails.
1 object 10 wvalid chars (tedinfo) -
2 tedinfo 11 mask string (iconblk)
3 icon blk 12 data string (iconblk) I
4 bitblk 13 text string (iconblk) Integers Addresses
5 string 14 image pointer (bitblk) - Function Op in our in out Comments
6 imagedata 15 pointer address of free string I 50 $2 31 36 38
7 obspec 16 pointer address of free image
8 textstring (tedinfo) - SHEL_READ 120 0 1 2 0 Let application identify
int_out(0)=error 0 = yes, command that called it in
I . +ve no fmt of GEM BDOS £.75
|

To isolate an application from device, user and country specific data and provide
program portability; GEM AES supports resource files that contain the variable
parts of the application code.

addr_in(0) = buffer address of command string
(2)=buffer address of command tail

To use a resource file, the application makes a RSRC_LOAD call to find the total file size u SHEL_WRITE 121 3 1 2 0 Inform GEM which, if
in bytes, allocate the memory space for the resource file and update the file for o : any, ko ¥
screen resolution. The pointers to the object and the tree structures are also updated = int_in(0)=0= "-’“'1, 1=run application to run, or exit
and the address of the tree array stored in the applications ‘Global array’. ¥ 3 (2) =graphic 0=no, 1 =yes GEM AES.

(4)=GEM applic 0 =no, 1 =yes
int_out(0) =error 0=yes, +ve no
— addr_in(0) = new executable command file address
= (2)=command tail address of next program

Access to the object library table pointers may be through RSRC_GADDR and RSRC_SADDR
calls. The tree index may be accessed via FORM_D0 and MENU_BAR calls among others.

m W N EEN N e N

RSRC_FREE deallocates the resource file memory and zeroes the tree array address in
the Global array.

SHEL_GET 122 1 1 1 0 Get data
int_in(0)=length
int_out(0) = error code
addr_in(0) = buffer address

i
—_

Resource files are generated using the Atari 8T icon edit and resource utility
program.

L

SHEL_PUT 123 1 1 1 0 Put data
int_in(0) = length
int_out(0) = error code
addr_in(0) = buffer address

ER
I
@

-y SHEL_FIND 124 0 1 1 0 Search for filename and
’ int_out(0) = error 0 = yes, return full DOS spec
+ ve no

addr_in(0)=address 80 character buffer minimum
i/p search filename
o/p full DOS filename

SHEL_ENVRN 125 0 1 2 0 Search for environment
int_out(0)=1, reserved parameter and store
address of following byte
addr_in(0) = pointer to byte storage address
(2) =search parameter string

3-92 3-93

\\
el

se a single buffer containing the command and command

> shell library routines u
b i j sequence to call and run another

tail that invoked the current application. A typical
application might be:

Utilities

N
i

Call SHEL_WRITE with a command, command tail and the home directory a_cldrcsses;
also define graphic/character or GEM/Not GEM application. O'n cgmplcnon of the
current application, the shell library will start the requested application.

A\

INTELLIGENT KEYBOARD COMMAND
INSTRUCTIONS

TE call with the int_in(0) parameter set to

1\

The Atari ST keyboard unit contains a IMHz HD 6301 8-bit microprocessor with
some on-board memory storage to maintain the time of day clock etc. The keyboard
and its peripheral items, joystick and mouse may be initialized, monitored for
position or status and the time of day clock read or set.

Exit from GEM AES by making a SHEL_WRI

ZETO0.

Wwoow W

The intelligent keyboard (ikbd) communicates with the main processor over a 7.8
Kbit/s bidirectional serial link, sending individual keycodes or receiving instructions
and returning status codes in packets of data through a pair of addresses, one for
transmit and one for receive.

|

Characters can be read from the keyboard input queue in main system RAM, it is
filled by an interrupt routine that transfers data from the ikbd to memory
automatically. Characters are written to the keyboard by placing the character code
in the keyboard data register after bit 1 of the keyboard command/status register is
set.

w w W

Keycodes

The keyboard transmits make and break keycodes for each key press and release.
Appendix D provides the codes for the individual keys, bit 7 being set for break and
cleared for make.

._.—-—.—-—I—l—l—l-q

W W W Ww W W w w w

Data packets

To differentiate the keyboard codes from the data packets transmitted to and from
the ikbd to the main processor; the codes #8F6 to #8FF precede status information
packets. The packets provide reports of mouse position and status, time of day and
joystick status. The packets may be stored and used later, with the header byte
removed, to restore the condition of the ikbd.

Sec 3-l] For TRAGIH e To wAiTe STRING 7o [MGD,

= m ri m m W m m

; exatee © . feAq S« BDpiy
- move-H g |ugdWS, ~(42)
- TRAP (4
ara.L gy, 42 \ Ty w’
E RTs
g (ubrls zaw §19 \(or #25)

suBwy D<-B (2, $1A \sor 295, 3-9%

|

3-94
Zz73
IKBD commands l
R
Input Output
op code databyte Function
string string E 1 3
#3880 Reset. Return keyboard to power-up status I
#801 without affecting clock. E i 3
A break > 200ms also causes a reset.
#8307 Set mouse button action. E - 3
00000aaa default ¢, 00000000
1_press Mouse position report on a,q ’
1_release (only relevent in absolute mode) g " 1
0_button, 1_key type operation. E =
#3508 Set mouse relative position reporting (default). - 3
Position packet generated asynchronously = -
when threshold exceeded.
#509 Set mouse absolute positioning. E 1 j
X msb X maximum Resets ikbd x and y coors.
X Isb The x and y values in scaled .
Ymsb Y = o q
maximum mouse ‘clicks’ do not
wrap,
Y Isb ignore <0 & >max E 1 3
H#$0A Set mouse keycode mode.
X step Returns mouse motion in cursor keycodes E a ;
Y step instead of relative or absolute motion records. 2
#80B Set mouse threshold. .)E g)
X level Before move event is generated.
Y level default value 1. (Relative motion only)
o
#$0C Set mouse scale Set X and Y E
X Set X and Y scale factors for absolute mouse
X positioning — ‘clicks’ per coordinate change.

= EJ

IKBD commands — continued

Input Output
op code databyte Function
string string
#$0D #8F7 Interrogate mouse position
0000xxxx
right button down since last interrogation
right button up
left button down % since last
left button up report
X msb X coor
X lsb Only valid in absolute
Y msb) Y coor mode, regardless of mouse
Y Isb button action setting.
#H0E Load mouse position.
#%00 filler Enables user
X msb X coor in scaled to preset the
X Isb coordinate internal absolute
Y msb Y coor system mouse position
Y Isb
#80F Set Y = 0 at bottom
Set for relative and absolute
#810 Set'Y = 0 at top(default) puse modons.
#8511 Resume Resume sending data back.
#4812 Disable mouse. Stop mouse event reports. Resume
on any mouse mode command.
#5813 Pause output Stop sending further reports,
queue them in a finite buffer.
#8514 Set joystick event reporting (default)
#%15 Set joystick Disable joystick event reporting,
interrogation mode use interrogate to sense jstk state.
#$16 Joystick interrogation Return a record of current

joystick state.

D s N SRR
|

3-96 F —
IKBD commands = continued .
i - 3
Input Ourput E "s
op code databyte Function .
Lrii stri
e : = LR
#$17 Set joystick monitoring (sample rate
rate 000000ab [packets of two] of 0.01s)
\Joystick 1 } Fire Set ikbd to monitor E _i
Joystick 0 button serial command line "
aaaabbbb and joystick,update
Joystick 1 } Pos’n time of day clock only E _;_vs
Joystick 0 '
" F
#%18 ccceccee Set fire button Set ikbd to monitor serial command E . 53
packed 8- monitoring line and fire button jstk 1, update -
bits/byte time of day clock.
#8519 Set joystick keycode mode (Joystick 0) ~
Rx (provides a velocity autorepeat facility)
Ry Initial rate Final rate E -3
Tx |Tn'Tn.Tn.anan If Rn zero
Ty ‘ i ' T s . only Vn
Vx Rn times in 0.1s matters.
L__I
Vy length of time EI . 3
#H1A Disable joysticks.
A 5 - ——
Disable any joystick event generation. E a
Valid joystick commands resumes generation l
#$1B Set time of day clock E — 3
YX year (86, 87, 88 etc) An invalid I
MM month BCD digit % ’
DD day Data sent in packed does not S— ?
hh hour BCD format. alter the
| mm minute existing L
! 88 second value. E" = 3
#$1C #$FC Interrogate ime of day clock g l
YY year r;“ — 3
‘ MM month
DD day Data in returned in . o
‘ hh hour packed BCD format. B - 5
‘ mm minute
ss second |
-
-

w

=

3-97
IKBD commands — continued
Input Output
op code databyte Function
string string
#%$20 Memory load
Addr msb } ikbd controller address
Addr Isb to be loaded.
Numb Number of data b
tes (0-12
S ytes (0-128)
#$21 #8F6 Memor
v read S
5 ta
Addr msb #$20 ikbd controller mc;;ljrheader
Addr Isb data address to be read. e
data
d 6 bytes of
ata !
LA dal:s‘;:l Ztartlng
e at ; ress
data add)
Ad#:i$22 Controller execute Allows main s
Addr msb } ikbd controller to call an ikbdysrem
r Isb subroutine address subroutine
Oti i::’] Status inquiries. Get 8 byte data packet
wi e #8F6 Strip packet header and return to recover status
set mode #57 #58 #59 #SA #S0B #s0C
command param 1l code 0 Xmaxh Xstep Xthresh Xtick
param2 0 0 Xmax] Ystep Ythresh Ytick
param3 0 0 Ymaxh 0 0 0
param4 0 0 Ymax] 0 0 0
param5 0 0 0 0 0 0 O'NLY l
param6 0 0 0 0 0 0 p
ata
time.
#8F6 Packet header
mode #80F #810 #§12
e #$ #3814 #815 #8519 #81A
param 2 Inquiry on EX ‘o
param 3 returns Ti #%00
param 4 correct
param 5 mode pERaT T %
param 6 Y3
Vy

Not valid if in joystick or fire button monitoring mode

3-98

When preceding a data packet returned from the keyboard, the special keycodes
#8F6 to #$FF give the following meanings to the data packets:

Code Data packet function
Dec Hex
246 F6 Status report
247 F7 Absolute mouse position record
248 F8 Relative mouse position record
to 111110xx (xx = left-right button state)
FB delta x, 2s complement

delta y, 2s complement
252 FC Time of day (resolution of 1 second)

253 FD Joystick report header (both sticks)
254 FE x000yyyy) x=trigger J oysu:ck 0 event
255 FF x000yyyy{ y=stick position Joystick 1 event

0
"L

m wm
o w

'

L | m-m m

w W oUW W W W U w

nmmmwaljmm

L

i
!
!
i
=l
.l
!
I
!
I
|
!
|
|
|

|

»

-

A-LINE ROUTINES

Atari ST programmers have access to the VDI primitives via the A-line exception
routines; they provide a faster performance than the VDI routines, additional
facilities and use less code to implement. The A-line routines may be mixed with
VDI calls or used entirely on their own, but program portability to other systems
will not be possible.

The A-line routines operate from a set of variables contained in a data table
(Appendix F). The table is initialized by activating the A-line exception vector in
passing the word #$A000. The programmer may then alter or insert variables into

the data table and call the required function by passing the appropriate function call
word.

dc.w #$A000
move.w #n,d(A0)

;initialize data table
;set function at offset d
; to value n

de.w #SA00m rcall function

Initialization creates the following pointers:

do = base address of A-line variables

a0 = base address of A-line variables

al = array of pointers to the 3 system font headers
a2 = array of pointers to the 15 A-line routines

(a2 is not returned correctly on disk based versions of TOS)

If VDI and AES are not used, the variables should be fairly static. If they are used,
the variables may be changed, registers d0—d2 and a0-a2 will be trashed.

A-line routines

Pointpair Integers
Function Op in out in out
$0 $§2 %4 %6 §8

Comments

Put #8A001 1 0 1 0 Plot a pixel at x,y
pixel ptsin(0) = X_msbyte, Y_Isbyte

intin(0) = pixel value
Get #BA002 1 0 0 0 Get the pixel at x,y
pixel ptsin(0) =X_msbyte, Y_Isbyte return d0= pixel value

3-100

A-Line routines — continued

Comments

Draw a line between

X1,Y1 and X2,Y2

The line is ALWAYS drawn
from left to right and the
mask applied left to right
also- so watch the phase.

Mask is word aligned
pattern for horizontal
lines. i.e. any bit

of mask may used at the
left-most endpoint.

Mask is rotated to align
with rightmost endpoint.

Function Parameters
Line #$A003
offset $26 X1 coordinate
$28 Y1 coordinate
$2A X2 coordinate
$2C Y2 coordinate
$18 plane 0 .
$1A plane 1 Bt
$1C plane 2 value
$1E plane 3
$22 line style mask ¢——
$24 writing mode
%20 -1 for XOR mode
else ignore
output
$22 line style mask
Horiz #$A004
Line offset 26 X1 coordinate
$28 Y1 coordinate
$2A X2 coordinate
$18 plane 0
$1A plane 1 Bit
$1Cplane2 | value
$1E plane 3
$24 writing mode
$2E Fill pattern pointer
%32 Fill pattern mask
$34 Multi-plane fill flag
output

none

Draw a line between

X1,Y1 and X2,Y1

The line is ALWAYS drawn
from left to right

Filled #8A005
rectangle 26 X1 coordinate

$28 Y1 coordinate

$2A X2 coordinate

$2C Y2 coordinate

$18 plane 0

$1A plane 1 Bit
$1Cplane2 | value
$1E plane 3

$24 writing mode

$2E Fill pattern pointer
$32 Fill pattern mask

offset

Draw a filled rectangle
with upper lefthand corner
X1,Y1 and lower righthand
corner X2,Y2.

Continued . . .

-

W m m m m W

mmmmmu&mmmmm

I_I_I_-_‘—-_.—-_q

mmwmmujmmmmww

-

A-Line routines — continued

3-101

Function

Parameters

Comments

output

$34 Multi-plane fill flag

$36 Clipping flag

$38 minimum X clipping value

$3A maximum X clipping value
$3C minimum Y clipping value
$3E maximum Y clipping value

none

Line-by
-line
filled
polygon

offset

#$A006 n - - -

ptsin(0)=X,Y array of
polygon vertices

$28 Y1 coordinate
$18 plane 0

$1A plane 1 Bit
$1C plane 2
$1E plane 3
$24 writing mode

$2E Fill pattern pntr
$32 Fill pattern mask
$34 Multi-plane fill flag
$36 Clipping flag

value

Draw 1 scan-line of a
filled polygon.

Polygon
X1,Y1..Xn,Yn...X1,Y1
Start point must be
repeated at the end of the
list

Y1 is the Y coor
of line to fill.

$38 minimum X clipping value

$3A maximum X clipping value
$3C minimum Y clipping value
$3E maximum Y clipping value

output

none

X1 and X2 trashed on return

Bitblt

#$A007
input
output

none

Bit block transfer

a6=1i/p parameter table pointer

Textblt

#$A008
offset

24 = writing mode
$6A = Foreground
$72 = Background}
$54 = Pointer

$58 = Width

$48 = X coor

$4A = Y coor

$4C = X coor }
$4E = Y coor

$50 = width

$52 = height

Text

Font
form

Character

Perform a Text block
transfer of 1 character.

colour

Writing mode
0-3 VDI modes
4-19 Bitblt modes

Character
on screen

Continued . . .

3-102

A-Line routines — continued

Function

Parameters Comments

output

$5A = Style flag

$5C = Lighten text mask

$5E = Skew text mask

$60 = Thickening txt width
$62 = above] Char offset

$64 = below from baseline

$66 = Scaling flag (0 = none)

$40 = Accumulator for x dda

$42 = Textblt scale factor

$44 = Scale dir (down > 0)

$68 = Char rotation vector

$46 = Font status

$6C = Special effects buffer pointer

$70 = Scaling buffer offset in above pointer
none

Show
mouse

Show the mouse, if # of
‘show’ calls >= #of
‘hide’ calls.

#$A009
input
output

none
none

Hide

mouse

Hide the mouse, if # of
‘hide’ calls exceeds #
of ‘show’ calls.

#BA00A
input
output

none
none

Transform
mouse

#$A00B Transform mouse form
Cntrl $E= Addr.L src MFDB
Cntrl $12= Addr.L dest MFDB

output none

Undraw
sprite

#$A00C

input a2 = sprite slave blk pntr
The sprite save block saves the
screen underneath the sprite and is
(10bytes + 64 x # planes) bytes in size.

*** a6 smashed ***

sprite

output none

Undraw previously drawn

W W W E W "WYY

mom o

4

[

rEVi

e

)

N

W W o dl W

W W w W ow w
-

T T Y

3-103

A-Line routines — continued

Function Parameters Comments
Draw #BA00D Draw a sprite
sprite input d0= X hot spot (Funct not avail’bl directly
dl = Y hot spot on disk-based vs of TOS)
a0 = pointer sprite definition block
a2 = pointer sprite save block
output none *** a6 smashed ***
Copy #$A00E Copy a raster from source
raster cntrl $E = Addr.L to destination.
(source MFDB)
form cntrl $12=Addr.L

(destination MFDB)
output none

A-line variables table

offset Function

$00 0 Number of video planes Can produce special

$02 2 Number of bytes/video line } effects.

$04 4 Pointer to cntrl array

$08 8 Pointer to intin array

$0C 12 Pointer to ptsin array

$10 16 Pointer to intout array

$14 20 Pointer to ptsout array

$18 24 Bitplane 0

$1A 26 Bitplane 1 [W™

$1C 28 Bitplane 2 (©O1°W

$1E 30 Bit plane_3 valite

$20 32 -1

$22 34 VDI line style equivalent

$24 36 Writing mode: 0 =replace, 1 =transparent
2=XOR mode, 3 =inverse transparent

$26 38 Xl coordinate

$28 40 Y1 coordinate

$2A 42 X2 coordinate

$2C 44 Y2 coordinate

$2E 46 Pointer to current fill pattern

$32 50 Fill pattern mask (length of pattern)

Continued . . .

F-i

;

3-104 e
_—
1
A-Line routines — continued l 3-105
Function Parameters Comments T o S Sprite definition block
§34 52 Multi-plane fill pattern g I o
" Set
0_current fill pattern 1s single plane =
1_current fill pattern is multi-plane f': : - 's $00 X
$36 54 Clipping flag 0=no clipping I oo 2 offset of hot-spot
$38 56 Minimum x clipping value s $04 & offset of hot-spot
$3A 58 Minimumy clipping value i l‘ - S $06 B:Q“E;E)Eai
$3C 60 Maximumzx clipping value 808 n }
$3E 62 Maximumy clipping value W I $0A fOFEground tablt(e: iol'll;:;
§40 64 Accumulator for textbltx dda fa1 = ﬂ $0C nterleaved Background line 0
initialize to 8000H before each call B i Background / Foreground line 0
$42 66 Textbltscale factor) I) ")'l $4A | Foreground
$44 68 Scale direction 0 =down I:! | W s $4C image (32 words) Foregroundifie 16
46 70 Fontstatus -
1 = current font monospaced & may be thickened |
0=may not be thickened to increase font width T om a
§48 72 X coor of character in font form — ' “F()rmat flag
$4A 74 Y coorof character in font form (typically 0) I
$4C 76 X coor of character on screen fin wm 3 5
$4E 78 Y coor of character on screen - F L =2 colour
g50 80 Character width | g Bg | Fg Bg| plotted
§52 82 Character height fin 3 0 ol
54 84 Pointer tostart of font data (font form) LB 0 e 0 Transparent
§58 88 Width of font form ‘ e 1 | Background
: $5A 90 Stylebit0= Thicken, bit 1 =lighten, bit 2 =skew @ 1 a : 3 1 Foreground
bit 3 = underline (ignored), bit 4= outline e Foreground
| §5C 92 Lighten text mask .l 1 0 | XOR screen
. §5E 94 Skew text mask =
iy

§60 96 Text thickening additional width

862 98 Offsetabove character baseline for skew

$64 100 Offset below character baseline for skew o ‘ Memory form definition block (MFDB
866 102 Scaling flag 0=no scaling)

§68 104 Character rotation vector 0= horizontal offset
900 = vertical down etc. —
$6A 106 Text foreground colour : - 3 $00 Memory pointer | 32-bit add '
. $6C 108 Special effects buffer pointer $04 Width NRaster are;ess of pixel 0,0
§70 112 Scaling buffer offset in above buffer e 3 $08 Height } easiong
Il $72 114 Text background colour (RAM VDI only) L $0C Word width Pixel width/word siz
474 116 Copy raster form type flag (RAM VDI only) §10 _MQL e A e e f:]
0= opaque type G $14 Memory plancs | No. planes i; i vice specific
n-plane source t0 n-plane destination bitblt write mode . ,H - 3 818 Bt van ftot.drea
<0 = transparent type $i1C S
1-plane source to n-plane destination VDI write mode — $20 i
§76 118 Abort fill routine pointer L 3 $24 ?
(Function not available on disk based versions of TOS)
S =

|

3-106 R .1 I
E ' . Logic Table hed9
BITBLT table used in block transfers E — _13 i, Abe
Parameter block length must be 76 bytes, the first 52 bytes being set by the user and .I e 10 Op_0 SA 0 0
the remainder by the blt. Address register A6 is used as a pointer to the table, a point 11 Op_1 $8 0 1
that ‘C’ programmers should note. E r— .ﬂ 12 Op_2 $C 1 0
m 1 % -|-—-—--Dp‘3 o D 1 1
o The logic operation b .
0 Tath width } N tlock in E —-— *3 b ckgrt;gund golour bitsifihfiir?;ip;f:n :) specify the effect of foreground and
2 b_height height pixels m
* 4 #iplanes # of cosecutive planes to blt i
*6 fg_col foreground colour high bit } logic op E _. “i
*8 bg_col background colour low bit index " I "].
10 op_table $A logic op — Table of 4 raster op code bytes, &= ‘
11 $B each containing one of sixteen logical ml - 3
12 $C operations. They are indexed by fg x 2+ bg for I(l
13 $D each plane.(see below) — I
14 s_xmin $E minimum source X = e 3
16 s_ymin $10 minimum sourcey
18 s_form $12 source form base address (word b’dry) . l
22 s_nxwd $16 word in line next offset (2=hi,4=med,8=1o) E -
24 s_nx1n $18 line in plane } in bytes (90 =hi,160= med/lo) I|
26 s_nxp] $1A next plane offset from current (always 2) |
28 d_xmin $1C minimum destination X -
30 d_ymin $1D minimum destination y '
32 d_form $20 destination form base addr (word boundary) .
36 d_nxwd $24 word in line | next offset (2=hi,4=med,8=10) -
38 d_nx1n $26 line in plane } in bytes (90=hi,160= med/lo) i
40 d_nxpl $28 next plane offset from current (always 2)

1mmﬁmmm
|

Wow W oW ou W oW W ow
Y

* 42 p_addr $2A addr of pattern buffer (0= none)

A word size repetitive, word aligned pattern that is
ANDed with the source before being logically
combined with the destination.

46 p_nx1n $2D next line in pattern offset (2, 4, 6 etc)
48 p_nxpl $30 next plane in pattern in bytes (0=1 plane)
50 p_mask $32 pattern index mask length "

* may be altered during bitblt execution =

H

e — —

The source bit defined by s_xmin, s_ymin, b_width, b_height is transfered to
destination d_xmin, d_ymin by the number of planes iterations (#planes). There is no
clipping or check that bit blocks are within the encompassing memory forms.

)

1E)

e -3

3-108

Interrupt handler

The standard system interrupt is level 2, vector $68 (104) and takes the following

sequence every interrupt:

Vertical blank interrupt (VBI)

Order Function Sys variable
1 Increment the frame counter FRCLOCK.L $466
2 Test for mutual exclusion if =< 0 return VBSLEM.W $452
3 Save all the registers on stack
4 Increment ‘Vblank counter’ VBCLOCK.L $462
5 Test for high resolution mode SHFTMD . W $44C
if shftmd < 2 then goto 6 test for low resolution
monitor attatched,
if yes set mode to zero or DEFSHFTMD.B $44A
6 Call cursor blink routine
7 Test for new colour pallette COLORPTR.L $45A

if colourptr =0 then goto 8
Load pallette with 16 words pointed to by colourptr
and then zero it.
8 Test for new screen SCREENPTR.L $45E
if screenptr =0 then goto 9
Set screen physical base to screen pointer and
then zero pointer.
9 Run deferred VBI vectors
of deferred VBI vectors nvbls.W $454
Pointer to VBI vector array vblqueue.L $456

10 Return

There are eight VBI vectors available in the default array, the first is reserved for
GEM'’s VBI code. Pointers to new handlers are placed in the spare slots. Handler
code ends in RTS and may use any register except the user stack pointer. Larger
arrays can be allocated by redefining nvb1s and vblgqueue, copying the current vectors
to the new array. An application that returns should tidy up the VBI queue.

| L1

Wy

L

min
s

i
o

K

f

1§ 0
.

[

oW oW W W -
w W W W

Ww W W w uw

& 4

Appendix A
System variables

+

A-2 E e :i A-3
The following tables present the system variables in low supervisor space §0 to 2 l MPFP hardware bound interrupt vectors
$7FF (0 to 2047): = d
I 256* $100 Parallel port interrupt_0 (Centronics busy)

Exception vectors 260* $104 RS232 carrier detect (dcd) interrupt_1

é = 3 264* $108 RS232 clear to send (cts) interrupt_2
10 $000 Reset init?al SSP value 268* $10C Graphics blt done interrupt_3
4 $004 Reset initial PC address 272% $110 RS232 baud rate generator (Timer D)
8 $008 Bus error Dump state E o 3 276 8114 200Hz system clock (Timer C)
12 $00C Address error and terminate - 280 $118 Keyboard/MIDI (6850) interrupt_4
16 $010 Illegal instr. routine pointer 284* $11C Polled fdc/_hdc interrupt_5
20 $014 Divide by zero Pointer to an RTE E‘ - ‘3 288* $120 Horizontal blank counter (Timer B)
24 %018 Chk instr. Dump state : 292 $124 RS8232 transmit error interrupt
28 $01C Trapv instr. and terminate ‘, I ", 296 $128 RS232 transmit buffer empty interrupt
32 $020 Privilege viol routine pointer ' 300 $12C RS232 receive error interrupt

[—=%
36 8024 Trace mode m n j 304 $130 RS232 receive buffer full interrupt
40 $028 Line 1010 A-line routine pointer 308* $134 User/application (Timer A)
44 $02C Linellll Used by AES 312* $138 RS232 ring indicator interrupt_6
48 $030 Unassigned E - 3 316* $13C Polled monochrome monitor detect interrupt_7
52 $034 Coprocessor protocol violation (MC68020) 320 $140
56 $038 Format error (MC68020) ¥ — =
60 $03C Uninitialized interrupt vector E - 3 508 $1FF
64 $040 Unassigned
* - - Reserved I * Initially disabled Priority levels (7 high)
82 $05C Unassigned . !
9 8060 Spurious interrupt (Hacked to level 3) E =] 3 The polled fdc/_hdc interrupt must be disabled on return.
100 $064 Intlevel 1 (Used if user wants Hblanks) e e
104 $068 Intlevel2 Horizontal blank sync (Hblank) fiptication interrupts
108 $06C Intlevel 3 Normal processor interrupt level E - 3 = 50
112 $070 Int level 4 Vertical blank sync (Vblank) 2 $ for OE
116 $074 Intlevel5 L ol SErR fonEMe
120 2078 Intlevel 6 MK 68901 MFEP interrupts E - 3 s
124 $07C Intlevel 7 Non maskable interrupt
128 $080 Trap #0 : I ’
132 $084 Trap#l GEM DOS interface calls ‘E _ : _
136 8088 Trap #2 Extended DOS calls - ; After an uncaught trap, the processor state is dumped as follows:
140 _508C Trap #3 I Processor state
176 $0B0 Trap#12 E - 3 . ;]

0 1 P tat d t bl
750 $0B4 Trap #13 GEM BIOS calls I 896 $38 proc_lives Sertotc:;slo;;‘; ;6?7 ;ave if system variable
o e :i‘; Steni exended BIOS calls = 900 $384 proc_regs DO-D7/A0-A6, A7 _ssp
102 §0CD Urap oo - _; 964 $3C4 proc_pc First byte exception number
INEIIe . 5 968 $3C8 proc_usp USP

2‘5"2 ;0FC {Inassigned ERCIVE E : 3 972 $3CC proc_stk sixteen words of superstack

E ! 3 The above values are not overwritten by a system reset, but are by a further crash.

S -1

A-4

System variables

>
I
w

1024 $400 L etv_timer Timer handoff (logical vector $100)
1028 $404 It etv_critic Critical error handoff vector (§101)
1032 $408 | 4 etv_term Process terminate handoff vect (§8102)
1036 $40C 5xL etv_xtra Space for res’d logical vectors ($103-8107)
1056 $420 L memvalid #%8752019F3 (cold start ok)
1060 $424 B memcntlr memory controller low nibble
0=128K,
4=512K, (0=256K, 5= 1 MB 2 banks)
1062 $426 15 resvalid #$31415926 to jump through resvector
1066 $42A L resvector System reset bailout vector
1070 $42E L phystop Phys RAMtop (points 1st unusable byte)
1074 $432 L _membot Available memory bottom (getmpb uses)
1078 $436 L _memtop Available memory top (getmpb uses)
1082 $43A L memval2 #5237698AA
1086 $43E W flock Floppy FIFO lock variable
1088 $440 w seekrate 0=6ms, 1=12ms, 2=2ms, 3= 3ms default
1090 $442 W _timr_ms 20 (#$14) system timer calibration
1092 $444 W _fverify 0=no write-verify else verify (default)
1094 $446 W _bootdev System boot device number
1096 $448 W palmode 0=NTSC, 60Hz else PAL, 50Hz
1098 $44A B defshftmd Default video res if monitor changed
1100 $44C B sshiftmd Shadow shiftmd hardware register
0=320x200x4
1=640 % 200 x 2
2=640x400x 1
1102 $44E L _v_bas_ad Screen mem base pntr (32K contiguous)
on a 512 byte boundary
1106 $452 W vblsem Vertical blank mutual exclusion semaphore
1_vblank enabled
1108 $454 W nvbls 8 (No. longwords vblqueue points to)
1110 $456 L _vblqueue Vblank handler pointer to pointers
1114 $45A L colorptr 0 null else pointer to 16 word vector
for hardware pallette next vblank
1118 $45E T, screenpt Pointer to screen base next vblank or 0
1122 $462 L _vbclock Vertical blank interrupt count
1126 $466 L _frclock Count vblank interrupts not vblsem’d

U U U o U e oW W oW W owd

W b U Uy

L 4

System variables - continued

1130 $46A L hdv_init Hard disk initialize vector else zero
1134 $46E L SWV_vec ‘Monitor changed’ vector to follow
1138 $472 L hdv_bpb Hard disk vector to return bpb else 0
1142 $476 L hdv_rw Hard disk rd/wr routine vector else 0
1146 $47A L hdv_boot Hard disk boot routine vector else 0
1150 $47E L hdv_mediach Disk media change rout vector else 0
1154 $482 W _cmdload <>0 load & exe COMMAND . PRG (boot dev)
1156 $484 B conterm Attribute bits for console sys, bit:
0O_bell on (AG), 1_keyrepeat
2_keyclick, 3_bios conin() function,
kbshft in bits 24-31 of D0.L.
1157 $485 B reserved
1158 $486 1 trpldret Saved trap 14 return address
1162 $48A L criticret Saved return address for etv_critic
1166 $48E L themd GEMDOS memory descriptors
(don’t change)
Structure MD
m_link Next MD/null
m_start Start of TPA
mn_length Byte size of TPA
m_own MD’s owner/null
1182 $49E W _nmd ?
1186 $4A2 L savptr BIOS register save area pointer
1190 $4A6 W _nflops No floppies attached 0, 1 or 2
1192 $4A8 L con_state State of conout() parser
1196 $4AC W save_row Save row# for x—y addressing
1198 $4AE L sav_contxt Pointer to saved processor context
1202 $4B2 L _bufl GEMDOS two buffer-list pointers

1st buffers data sectors
2nd buffers FAT and DIR sectors

Structure BCB
b_Tink Next BCB
b_bufdrv Drive#/-1
b_buftyp Buffer type
b_bufrec Record # cached
b_dirty Dirty flag
b_dm Drive media descriptor
b_bufr Buffer pointer

A-6

System variables - continued

s

€5

e

1210 $4BA L _hz_200 Raw 200Hz timer tick :
1214 $4BE L the_env Default environment string $00000000 i Em 3
1218 $4C2 L _drvbits 32 bit vector of live block devices e
1222 $4C6 L _dskbufp Pointer to common disk buffer,
1 Kbyte in systems BSS. i -
(Do not use by an interrupt routine) - I i
1226 $4CA L _autopath Pointer to autoexec path (or null) [
1230 $4CE 8xL _wbl_list Initial vbiqueue ” E
 aid e N Appendix B
e f ppendix
1262 $4EE W _prtcnt Initially —1., Alt_Help increments e i
1264 $4F0 W _prtabt Printer abort flag _ (: f' e o
1266 $4F2 L _sysbase Base of OS pointer (RAM or ROM) g ’ On lguratlon re ngterS
1270 $4F6 L _shell_p Global shell info pointer E =] i
1274 $4FA L end_os Pointer to end of OS memory usage ¥
1278 $4FE L exec_os Pointer to shell addr to exec on startup
(normally 1st byte of AES text seg). O —
3
2048 $800 Start of user RAM I
e I 3
F TS €op- < DES wiTH _ MEm BoT A9 |e2¢; E - 3
A=~D M I‘C»A(?” \ a7 { _“J_\. :
5 7 €O} CI D ~ e) -
Em a
53
S

(&
P~

fan
L

3
w4

B-2

Configuration Registers (one/_zero)

MEMORY
16744452 FF8004 r/w [l XX | Memory configurations
Bank 0 Bank 1 (not used)
0 128Kbyte 128Kbyte
1 128Kbyte 512Kbyte
2 128Kbyte 2Mbyte
3 reserved
4 512Kbyte 128Kbyte
5 512Kbyte 512Kbyte
6 512Kbyte 2Mbyte
7 reserved
8 2Mbyte 128Kbyte
9 2Mbyte 512Kbyte
10 2Mbyte 2Mbyte
11 reserved
12+ reserved
DISPLAY
16745061 FF8201 rfw | XXXXXXXX| Video base high
16745063 FF8203 r/w XX | Video base low
16745065 FF8205 r | XXXXXXKX | Video address counter high
16745067 FF8207 r | XXXXXXXX | Video address counter mid
16745069 FF8209 r | XXXX XXX | Video address counter low
16745071 FF820A el e x| Sync mode
\—__\ External/_Internal sync
50Hz/_60Hz field rate
16745124 [FF8240 ol] (PR xxx.xxx.xxx| Pallette color 0/0 (border)
\\ Invert /_normal b&w
Blue
Green
Red
16745126 FF8242 rfw ... xxx. xxx.xxx| Pallette color 1/1
16745128 FF8244 IfW | XXX XXX XXX Pallette color 2/2
16745130 FF8246 rfw |....oo0xxxx | Pallette color 3/3
16745132 FFB8248 o QR [EERe xxx.xxx.xxx| Pallette color 4
16745134 FF824A rfw |.....xxx.xxx.xxx| Pallette color5
16745136 FF824C r/w |.....0x.xxx.xxx| Pallette color 6
16745138 FF824E r/w |.....xxx.xxx.xxx| Pallette color7
16745140 FF8250 r/w | Cxxx.xxx.xxx| Pallette color 8
16745142 FF8252 r/w |.....oxxx.oooxxx | Pallette color 9
16745144 FFB8254 rfw ... xxx.xxx.xxx| Pallette color 10
16745146 FF8256 T/W | XXX XXX XXX Pallette color 11

Continued . . .

@
-
-
=
&
))
n
E
e
E
&
e
*s
B
&
&

Configuration registers — continued

e

16745148 FF8258 rfw |.....xxx.xxx.xxx| Pallette color 12
16745150 FF825A r/w |.....xxx.xxx.xxx| Pallette color 13
. — -\.i 16745152 FF825C oo A [xxx.xxx.xxx| Pallette color 14
. 16745154 FF825E o A (P xxx.xxx.xxx| Pallette color 15
16745156 FF8260 EW b X Shift mode
— 0
: \ 320 x 200, 4 plane
. 1 640 x 200, 2 plane
2 640 x 400, 1 plane
_a:ﬂ 3 Reserved
. | RESERVED
== 3 16745572 FF8400 vevieraineeai...| reserved
. DMA/DISK
—
> 3 16746084 FF8600 levvieiiieiii....| reserved
16746086 FF8602 [ciieviiviiann..| reserved
- a 16746088 FF8604 r/w [........xxxxxxxx| Disk controller
dat
. 16746090 FF8606 r N T e xxx| DMA status -
(mode control)
— 3 _Error
_Sector count zero
a _Data request inactive
. FF8606 w [ooooooxxxxxxxx. | DMA mode control
3 3 \ N A0 -WD1772 register
f— \ Al-WD1772 register
’ HDC/_FDC reg select
Sect count reg selct
E 3
g 0 reserved
I Disable/_enable DMA
FDC/_HDC
-— 3 Write/_Read
l 16746093 FF8609 W | XXXXXXXX | DMA base & counter high
e— 16746095 FF860B r/w 1
o [XXXXXHXK | DMA base & counter mid
I 6746097 FF860D /W | XXXXXXXX | DMA base & counter low
== ’
- _3
-

Bt . B-5

Configuration registers — continued
Configuration registers — continued

— MK68901
SOLND s = 16775681 FFFA0I XXX MFP G.P.1/O
PSG read data I Parallel port status
16746596 FF8800 I XXXXXXXX| 1|0 port B, Par i|f data R — WD1772 active
W | XXXXXXXX| PSG register select E -i Interrupt
register number I Mono monitor
gbit 0 Channel A fine tune - 16775683 FFFA03 [XXXXXXXX | MFP active edge
4bit 1 Channel A coarse tune = m 3 16775685 FFFA05 | XXXXXXXX | MFP data direction
8bit 2 Channel B fine tune l 16775687 FFFA07 [XXXXXXXX | MFP interrupt enable A
4bit 3 Channel B coarse tune p— — 16775689 FFFA09 [XXXXXXXX | MFP interrupt enable B
8bit 4 Channel C fine tune g — 3 16775691 FFFAOB [XXXXXXXX | MFP interrupt pending A
4bit 5 Channel C coarse tune \w I) ‘. 16775693 FFFA0D | XXXXXXXX | MPFP interrupt pending B
5bit 6 Noise generator control il ' 16775695 FFFAOF [XxXXXXXX | MFP intrpt in-service A
8bit 7 Mixer control-1/O enable E - 3 16775697 FFFA1l | XXXXXXXX] MFP intrpt in-service B
5bit 8 Channel A amplitude l 16775699 FFFA13 [XXXXXXXX | MPFP interrupt mask A
Sbit’ 9 Channel B amplitude - . 16775701 FFFA15 | XXX | MFP interrupt mask B
5bit 10 e o e | r— 3 16775703 FFFA17 XXX | MFP vector base
8bit 11 Envelope period fine tune . 16775705 FFFA19 [XXXXXXXX | MFP timer A control
8bit 12 Envel period coarse tune — 16775707 FFFA1B [XXXXXXXX | MFP timer B control
4bit 13 Envelope shape o 3 16775709 FFFA1D | XXXXXXXX | MFP timers C & D control
14 I/O port A (output only) I 16775711 FFFAIF | XXXXXXXX | MFP timer A data
15 I/O port B (Centronics o/p) _ 16775713 FFFA21 [XXXXXXXX | MFP timer B data
T s W 3 16775715 FFFA23 | XXXXXXXX | MPFP timer C data
16746598 FF8802 W | XXXXXXXX] ff)G wﬂ:: dats, I 16775717 FFFA25 [XXXXXXXX | MFP timer D data
\ Fllopf:;?ide 0/_side 1 sel ! 16775719 FFFA27 | XXXXXXXX | MFP sync character
Floppy_drive (_] select r — 3 16775721 FFFA29 [XXXXXXXX | MFP USART control reg
Floppy_drive tualect l 16775723 FFFA2B | XXXXXXXX | MPFP receiver status
RS232 ;{TS - 16775725 FFFA2D | XXXXXKXX | MPFP transmitter status
RS232 DTR E - 3 16775727 FFFA2F [XXXXXHXX | MFP USART data
Centronics STROBE l MC6850
General purpose output k — 3\ ’
Reserved . 16776192 FFFC00 | XXXXXXXX | Keyboard ACIA control
I 16776194 FFFC02 | XX XXXXXX | Keyboard data
t/w XKoo I/O port B, Par i/f data = 16776196 FFFC04 [xxXXXXXX | Midi ACIA control
- i 3 16776198 FFFC06 | XXXXXXXX | Midi data
s r =
1 1
_
- om 3
N
===

Appendix C
Printer and terminal
escape codes

-~
i313ﬂ333333?33333

~.—._._._I-l_l_l.l.l.l.l.l.l.l.l.
B & & (& E & @ B W B W .w: B 5 = B W

C-2

In general an Atari printer that is designed to work with the ST will provide the
most suitable path to trouble free computer/printer interfacing and the production
of hard copy printout and screen dumps. Where a printer of another manufacture is
to be used, the following information may be of use:

If screen dumps are required, the code 1B 4C (27 76 decimal) should be recognized as
‘double density bit image mode’ for printing 960 dots per line at 120 dots per inch on
8” wide paper (the dump is virtually the same size as the monitor screen display) or
code 1B 59 (27 89 decimal) for the wider paper screen dumps.

It may reasonably be assumed that whatever word processor you employ, it will
provide the necessary print configuration file to make available the printers facilities.
Double clicking a non-executable file icon to print its contents should not cause
problems as control codes are not sent within the text. The ST does however
precede the file with the code to select draft or NLQ (near letter quality) print, i.e.
EsC, "x",n.

Some serial printers are restricted to 2400 and 600 baud operation, the ST supports
neither rate without recourse to ‘C’ or assembly language programming.

N s

¥

-
[l
.
Al
]
E
L
im
L
S
"m
.
'm
EE)
im
i
[]
L
™~
L
-
o
oy

m oW
~

s

£8

=W

|

woo o W w

-

oW ow oW oW ouWw oW W w oW ow w
'~

C-3
TYPICAL EPSON PRINTER CODES
Code Ascit Code ASCII
Dec Hex Mnem Function Dec Hex Char ESCape code functions
0 00NUL Dec Hex Char ESCape code
1 01 SOH
2 02S8TX .
3 03 ETX 33 21 ! Combine print modes
4 04 EOT g 2hS
5 05 ENQ 7P ool
6 06ACK o
7 07 BEL Bell 37 25 9, Sel ROM/user char set
8 08 BS Backspace . 38 26 & Define user characters
9 09 HT Tab horizontal 39 27 °
10 OA LF Linefeed aod ML
11 OB VT Tab vertical 29)
12 0C FF Form feed 42 2A * Select graphics mode
13 0D CR Carr. Return 43 2B +
14 OE SO *Enlarged iy 20
15 OF 'SI'‘Condensed 45 2D - Underline on/off
16 10DLE o 2B %,
17 11 DCI on-line printer 47 2F |- Sclverttabchan
18 12 DC2 Condensed off 48 30 0 Setl/8 ir_ICh LF
19 13 DC3 Off-line printer 49 31 -1 Set7/r2inch LF
20 14 DCA4 * Enlarged off 50 32 2 Setl/6inchLF
21 15NAK 51 33 3 Setn/216inchLF
2 16 SYN 52 34 4 Italicon
23 17ETB 53 35 § Iralic off
24 18 CAN Clear print buffer 24 0 ¢
25 19 EM 2 A
2 1ASUB 56 38 8 Detect paper-out on
27 IBESC 57 39 9 Detect paper-out off
28 IC FS 58 3A : Copy ROM charto RAM
29 1D GS s -
30 IE RS 60 3C < *Unidirection print
31 1IF US vl
62 3E >
63 3F ? Redef. graphic mode
64 40 (@ Initialize printer
32 20 Printable ASCII codesy 65 41 A Setn/72inch LF
| 66 42 B Setvertical Tabs
: 67 43 C n Set form length
127 7F 68 44 D Sethorizontal Tabs
69 45 E Boldon

* for one line only

Cc-4 p :

= C-5
o
Typical Epson printer codes - continued
F—r GCode ASCII o - VT52 TERMINAL ESCAPE CODES
; h ESCape code functions
Dec Hex Char ESC code functions s The following BIOS bconout() functions simulate a VT52 terminal, with extensions
70 4(”:_'_';(;1‘1_0-;-_____-— 85 55 U Unidirection on/off - — ﬂ for color, screen wrap etc.
47 G Double strike on 87 57 W Enlarged onjoff - -
[t 89 59 Y 120 dpibitimage-fast g = 3 - :
aigae scape unction omments
72 48 H Double strike off 90 60 Z 240 ;lpl b?l:‘;jng: ¢ e _3
73 49 1 94 O i -1 i - g P A Cursor up Up one line, no effect if at top
74 4A J LFn/216inch 91 GIE e QI 1 B Cursor down |Down one line, no effect if at bottom
75 4B K 60 dpibitimage 08 62 b Setverttabs Char.me 2 T C Cursor right |Right one position, no effect if at edge
76 4C L 120 dpibitimage 101 65 e Sethor/ ve;' Tib Increment w- - D Cursorleft |Left one position, no effect if at edge
: Paperfeed/Tab execute
lite on 102 66 f ;
;; t[]; h’Ni I;l:i; perforation on 108 6B 1 Setleft margin If,'l'l P 3 E Clearscreen |Clear screen and home cursor to column 0, row 0
A i ter generator I
79 4F O Skip perforation off 109 6C m Special c;har;ac T %f | -~ H Home cursor gome cursor ;o column Ol,lrow 0
80 50 P Picaon/Elite off 112 70 p Proporuona (}n f}') I Cursor up p one line, if at top scro
F 115 73 s Halfspeedon/o =
81 51 Q Setright column . 120 78 x Select draft/NLQ mode | — 3] Erasetoeop |Erase to end of page from and including cursor position
82 52 R Sclectchaacicr 3¢ 127 7F del Cancel last char K Clear toeol |Clear to end of line from cursor of line position
83 53 S Super/subscripton L Insert line Insert blank line with cursor at start of line.
84 54 T Super/subscript off i - 3 Move current line down
- ; M Delete line Delete cursor line and move remaining lines up one,
I put blank at bottom.
=3 =
e I Y,r,c Cursor r,c Position cursor at row r column ¢
= b,f fg'dcolourf [Color isthe 4 lsb of color byte
E " - 3 c,b bg'dcolorb [Color is the 4 Isb of color byte
. I d Erase to Erase to start of page including the current cursor position
=: - 3 start of page
I e Show cursor |Show cursor
% - 3‘ ’ f Hide cursor |Hide cursor
| T j Save cursor | Save the cursor position
‘ k Restore cursor| Restore cursor, home if no saved position
| _— :
| ‘ :: - 3 1 Erase line Erase line and move cursor to left edge
I o Erase to Erase to start of line from and including the cursor
| 2 - line start
| LT a
L F o
P Reverse video | Enter reverse video mode
= q Normal video | Exit reverse video mode
T 3
| v Wrap atend |Wrap at end of line and scroll up if necessary
of line
= a w Discard end |Overprint line end character with the next character
e of line
L
==

N

ﬁp -
N
o ".'J
- i Appendix D
® i , Keycode definitions
F_rli |
1

-

I —————————l_ 1] I |

Wmom O E B @ E# W O W | M

3
E
3
=
3
3
3
3
3
3
-
3
3
3
3
3

ASCII CODES 0-127

Dec Ascii Dec Ascii | Dec Ascii]I Dec Ascit
0 NUL 32 space| 64 [} 96 :
1 SOH 33 ! 65 A 97 a
2 STX 34 66 B 98 b
3 ETX 35 # 67 C 99 C
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
T BEL 39 ! 71 G 103 g
8 BS 40 { 72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 iy 74 i 106]
11 vT 43 + 75 K 107 k
12 FF 44 76 L 108 1
13 CR 45 = 77 M 109 m
14 SO 46 ; 78 N 110 n
15 ST 47 / 79 0 |111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 0 (113 g
18 DC2 50 Vi 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 1A 175 r R
22 SYN 54 6 86 Vv | 118 v
23 ETB 55 7 87 W 119 W
24 CAN 56 8 88 X 200 %
25 EM 57 9 89 Y |121 y
26 SUB 58 : 90 74 122 z
27 ESC 59 : 91 [E23
28 FS 60 < 92 N 124 |
29 GS 61 = 93] 125}
30 RS 62 > 94 A 1260 =
31 us 63 ? 95 ! 127 DEL

o

B . W E‘
y

||

m

LR

&l
==

L g

L
e

"

W w W w W w u w d w

w W

m

m

n |
w Ww

e

!
W — — (O O I O O -

W W

s

D-3

GSX COMPATIBLE KEYSCAN CODES

Code Keytop Code Keytop Code Keyrop
Dec Hex Dec Hex Dec Hex
1 01 ESC 41 29 ! 81 51 n.u
2 02 1 42 2A LsHIFT | 82 52 INSERT
3 03 2 43 2B \ 83 53 DEL
4 04 3 44 2C z 84 54 n.u
5 05 4 45 2D X
6 06 b 46 2E C
7 07 6 47 2F v 95 5F n.u
8 08 7 48 30 B 96 60 1so key
9 09 8 49 31 N 97 61 UNDO
10 0A 9 50 32 M 98 62 HELP
11 0B 0 51 33 99 63 kpd (
12 oC - 52 34 . 100 64 kpd)
13 (1)B] 53 35 / 101 65 kpd |
14 OE BS 54 36 rsuirrT | 102 66 kpd*
15 OF TAB 55 37 n.u 103 67 kpd 1
16 10] 56 38 ALT 104 68 kpd 8
17 11 W 57 39 SPACE 105 69 kpd 9
18 12 E 58 3A capsrock | 106 6A kpd 4
19 13 R 59 3B Fl 107 6B kpd b
20 14 T 60 3C F2 108 6C kpd 6
21 15 ¥ 61 3D F3 109 6D kpd 1
22 16 U 62 3E F4 110 6E kpd ?
23 17 I 63 3F F5 111 6F kpd 3
24 18 0 64 40 Fb 112 70 kpd 0
25 19 P 65 41 F7 113 71 kpd .
26 1A [66 42 F8 114 72 kpdEnT
27 1B] 67 43 F9
28 1C RET 68 44 Fl10 116 74 Left m|j but
29 1D CNTL 69 45 n.u 117 75 Right m|j but
30 1E A 70 46 n.u
31 1F S 71 47 HOME
32 20 D 72 48 i UK Kevhoar.}
33 21 : 73 49 nu s
34 22 G 74 4A kpd - 43 2B #
35 23 H 75 4B - 96 60 \
36 24 J 76 4C n.u
37 25 K 77 4D =
38 26 L 78 4E kpd +
39 27 : 79 4F n.u
40 28 ' 80 50 l
kpd = keypad n.u = not used m/j but = mouse/joystick button

Returned highword lowbyte by BDOS c_conin function

J
7
-

L 1
m GEM VDI standard keyboard codes - continued
GEM VDI STANDARD KEYBOARD CODES : = 3 e —
.: - by te by:g byre byte byte byte
E —.1 -ﬁ 16 75 u 11 00 ALTW 71 00 * F40
i Lo ‘Char | Hi Lo Ghar ‘ Hi Lo - Char Il 2F 76 v 2D 00 ALTX 73 00 erkte
byte byte byte byte byte byte | 1 77 W 15 00 ALTY 4D 00 =
E [3 2D 78 X 2C 00 aLtZ 4D 36 SHIFT —
03 00 CTRLZ 28 27 ! 31 4E N 15 79 y 3B 00 Fl 74 00 CTRL —
IE 01 CTRLA 0A 28 (18 4F 0 2C 7A z 3C 00 F2 50 00 l
30 02 creiB [0B 29) 19 50 P E — ﬂ 1A 7B { 3D 00 F3 50 32 surFr)
SE 03 TR 09 2A * 10 51 a _ 2B 7C | 3E 00 F4 48 00 1
20 04 crrd | OD 2B . 13 52 R) » 1B 7D } 3k 00 ¥ 48 38 suirr]
12 05 creeE | 33 2C : IRV 53 S E — 3 29 7E & 40 00 F6 51 00 *PAGEDOWN
21 06 cTrRLF oCc 2D = 14 54 T)2l 2 DEL 41 00 F7 51 33 * suIFT PG
22 07 cTRLG 34 2E . 164855 3 l 81 gg ALT? ;li gg Fg e g DN
2F¥ 56 I 78 ALT F CTRL PG DN
?3 gg :Zt? 3]2 235 é 11 57 W E _: - 3 79 00 ALT?2 44 00 F10 49 00 *paGgeup
24 0A CTRLJ 02 31 1 2D+ 58 X . 7A 00 ALT3 54 00 sHIFTF1] 49 39 *suirrecue
23\ =08 ERRLL ox 0 ! ol) E _1| 3 78 00 aLTd 55 00 SHIFT F2 84 00 *cTrRLPGUP
26 0C CTRLL 04 33 3 2C: ' 5A Z e 7€ 00 ALTH 56 00 SHIFT F3 77 00 CTRLHOME
32 0D cTrLM 05 34 4 1A 5B [.‘ ';l}:i) % ALT? 5; Og SHIFT r-‘-sl- Z; (3}{; HOME
- 5 2B 5C \ : ALT 5 0 SHIFT F SHIFT HOME
:;’313 g]:; :r:tg gg zi 6 1B 5D] E — 3 7F 00 aLT8 59 00 sHIFTF6| 52 00 INSERT
19 10 CTRLP 08 37 7 07 5E A l 80 00 ALTY 5A 00 SHIFT F7 52 30 SHIFT INSERT
10 11 Gl 09 38 8 0C 5F _(ufscore) E 1IE 00 ALTA 5B 00 suiFTF8| 53 00 DELETE
13 12 crriR | 0A 39 9 29 60 : S a 30 00 ALTB 5C 00 swiFre9| 53 2E SHIFTDEL
1F Weel3 CTRLS 27 3A ; IE 6l a l 2E 00 ALTC 5D 00 sHIFTFI0 72 00 * crRL
14 14 cTRLT 27 3B i 30 62 b E 20 00 aLTD 5E 00 *r21 PRINT
16 15 cTRLU 33 3C < 2B 63 c S— 3 12 00 ALTE 5F 00 *E22 SCREEN
2F 16 CcTRLY oD 3D = 20 64 d .‘ 21 00 ALTF 60 00 *F23 37 2A * PRINT SCRN
11 17 cTrLW 34 3E > 1278 ‘65 e ‘E _ ‘ 22 00 ALTG 61 00 *£24 01 1B Escape
2D 18 CTRLX 35 3F ? 21 66 f — 3 23 00 ALTH 62 00 *F25 OE 08 BACKSPACE
15 - 119 cTrLY 03 40] 22 67 g .l 17000 ALTI 63 00 *F26 82 00 ALT-
°C 1A cTRLE 1E 41 A 239% 68 h . 24 00 ALT) 64 00 *F27 83 00 ALT=
1A 1B cre[| 30 42 B 17 69 i E — 3 25 00 aurk 65 00 *28 1C 0D R
2B 1C CTRL\ 2E 43 c 24 6A i l 26 00 ALTL 66 00 *F29 IC 0A cTRLCR
1B 1D CTRL] 20 44 D 25 6B k _ 32 00 aLTM 67 00 * F30 4C 35 suiFTkpd 5
07 1E CTRLE 12 45 E 26 6C 1 E — 3 31 00 ALTN 68 00 *F31 4A 2B kpd -
0C IF CTRL- 21 46 F 32 6D m l 18 00 ALT0 69 00 * 32 4E 2B kpd +
39 20 SPACE 22 47 G 31 6E n = _ 19 00 ALTP 6A 00 * £33 OF 09 TAR
02 21 ! 23 48 H 18 6F 0 - — 3 10 00 AurQ 6B 00 *r34 OF 00 *BACKTAB
28 22 ! 17 49 I 19 70 P I‘ 13 00 ALTR 6C 00 * ¥35 4B 00 —
2B 23 ¥ 24 4A J 1048 71 g 2 IF 00 ALTS 6D 00 * 536 4B 34 sHIFT—
05 24 § 25 4B K 13 72 r | - 3 14 00 ALTT 6E 00 * £37 4F 00 * END
06 25 % 26 4C L 1F. 73 s l‘ 16 00 aLtl 6F 00 * F38 4F 31 * sHIFTEND
08 26 & 32 4D M 14 T4 t o i =] 3 2F 00 ALTY 70 00 F39 75 00 *cCTRLEND
=

* These scan codes are not supported by Atari ST BIOS

Appendix E - List of callable
functions

:)
mm MMM MMM MMM M m

f |
T T O
B - - W B W O e W mw_._ o & B OB W

;

GEM BIOS calls = .!_ 3 Extended ST BIOS calls continued
Code Function (called from trap#13) 3 . Code Function (called by trap#i14)
Dec Hex : Dec Hex
0 00 getmpb Get & fill memory parameter block g I : 7 QA fiopfat Boinid flonpy didk
1 01 bconstat Return character-device input status 11 0B getdsb Get device status block pointer
2 02 bceonin Input character to device, ret if done E: f— 3 12 0C midiws Werite string to MIDI port
3 03 bconout Ooutput character to device, ret if done . l . 13 oD _nfpint Set MFP interrupt number
4 04 rwabs Rd/wr logical sectors to device 14 OE iorec Ret pointer to serial device buffer record
E: —-——-ﬂ
5 05 setexc Get or set vector number 15 OF rsconf Configure RS232 port
6 06 tickcal Return system timer value (ms)) .) 16 10 keytbl Set pointer to keyboard translation tabl
ii 07 getbpb Return pointer to BIOS param block ﬁ - ‘3 17 11 _rapdom Ret 24 bit pseudo random number
8 08 bcostat Return character output device status ' = 18 12 _protobt Prototype image boot sector
9 09 mediach Check for media change . 19 13 _flopver Verify sectors from floppy
10 OA drvmap Set bit map & logical drives EI — 3 20 14 scrdmp Dump screen to printer
11 0B kbshft Set keyboard shift bits I 21 15 cursconf Get/set cursor blink/attributes
E[— a 22 16 settime Set keyboard time & date
Callable from user mode 23 17 gettime Get time & date from keyboard
Re-entrant to three levels l 24 18 bioskeys Restore keyboard translation tables
E' s a 25 19 ikbdws Write string to interrupt keyboard
Device = 0 Printer, parallel port I 26 1A jdisint Disable interrupt no. on MK68901
=1 Aux, RS232 port 27 1B jenabint Enable interrupt no. on MK68901
=2 Con, screen E:! —— a 28 1C giaccess Read/write sound chip reg
=3 i l 20 1D offgibit Set port A bit 0 atomically
=4 Keyboard E 3
c— 30 1E ongibit Set port A bit 1 atomically
Brsndgial Bl e I 31 1F xbtimer Set MFP timers & control registers
Code Function (called by trap#i14) “,\ET _ : 32 20 dosound Set pointe.r to command b.ytes
- ? 33 21 setprt Set/get printer configuration
e e I 34 22 kbdvbase Ret pointer to keyboard structure
inimous Initialise mouse packet handler)
(l) g? ;:LT{;U Reserve X bytes E;ﬂ)m top memory E — 3 35 23 kbrate Get/set kt::yl.:'(?ard repeat rate
2 02 _physbase Get screen’s physical base address l 36 24 _prtblk prtt?lk primitive
3 03 _logbase Get screen’s logical base = 37 25 vsync Wait for pext vblank
4 04 _getrez Get screen’s current resolution ra— a 38 26 supexec Execute in super mode
I 39 27 puntaes Throw away AES
5 g Set screen’s logical location T
Z gz :z:tiz]r?:: 2 Set contents of hardware pallette =i [! Callable from user mode.
7 07 _setColor Set the pallette number I
8 08 _floprd Read sectors from floppy disk s :
9 00 _flopwr Write sectors to floppy disk : |]
_1
B

E-4
GEM BDOS calls
Code Function (called by trap#l)
Dec Hex
0 00 p_termo Terminate process (use $4C)
1 01 c_conin Read character from standard input
2 02 c_conout Write character to standard output
3 03 c_auxin Read character from aux device
4 04 c_auxout Write character to aux device
5 05 c_prnout Write character to standard print device
6 06 c_rawio Raw 1/O to standard I/O
7 07 c_rawcin Raw input from standard input
8 08 c_necin Read character standard input (no echo)
9 09 c_conws Write null term $ standard input
10 0A c_conrs Read edited $ from standard input
11 0B c_conis Check status of standard input
14 0E d_setdrv Set default drive
16 10 c_conos Check status of standard output
17 11 c_prnos Check stat standard print device
18 12 c_auxis Check stat standard aux device input
19 13 c_auxos Check stat standard aux device output
25 19 d_getdrv Get default drive
26 1A f_setdta Set disk transfer address
42 2A t_getdate Get date
43 2B t_setdate Set date
44 2C t_gettime Get time
45 2D t_settime Set time
47 2F f_getdta Get disk transfer address
48 30 s_version Get version number
49 31 p_termres Terminate and stay resident
54 36 d_free Get drive free space
57 39 d_create Create a subdirectory
58 3A d_delete Delete a subdirectory
59 3B d_setpath Set current directory
60 3C f_create Create a file
61 3D f_open Open file
62 3E f_close Close file
63 3F f_read Read file
64 40 f_write Write file
65 41 f_delete Delete file
66 42 f_seek Seek file pointer
67 43 f_attrib Get/Set file attribute
69 45 f_dup Duplicate file handle
70 46 f_force Force file handle
71 47 d_getpath Get current directory

)

m . -

=<

3
3
3
:
g

“E
=
:

U w

Ww W
L4

W oW W W w w w w b w u w

L ¥

GEM BDOS calls continued

Code Function
Dec Hex

(called by trap#l)

Allocate memory

Free allocated memory

Shrink size of allocated memory
Load or execute a process
Terminate process

Search for 1st occurence of filspec
Search for 2nd occurence of filspec
Rename a file

Get/set file date & time stamp

72 48 m_alloc
73 49 n_free
74 4A m_shrink
75 4B p_exec
76 4C p_term
78 4E f_sfirst
79 4F f_snext
86 56 f_rename
87 57 f_datime

Extended ST BDOS function calls

Code Function {called by trap#2)
Dec Hex
0 00 System reset System/program control
15 73 VDI access
200 C8 AES access

+

E-6 — E-7
g . 3
GEM VDI functions E J 3 GEM VDI functions continued
Op Definition OQutput device . Op Definition Output device
code Scrn Prnt Plot Mfil E s ‘j code Scrn Prnt Plot Mfil
1 "
*1 Open workstation ~ Use virtual x X xillax . 5 Escape codes
*) Close workstation ~ workstation X X X X _ = 95 Supress pallet.te messages X
3 Clear workstation X X X X E — 3 3 96 Pallette error inquire X
4 Update workstation X X X X . : 32 %P'_ﬂﬂte me;alﬁlf? extents X
rite metafile item X
g — g 100 Change GEM VDI filename
5 Escape code E ‘a X
1 Inquire address character cells .4 X X X iﬂ‘-' .) B
i 4 ’ 6 olyline X X X x
2 Exitalpha mode X X - * o :
3 Enter alpha mode X X B - 3 : - y Zodslynimlt X
4 Cursor up X .ext X X X X
5 Cursor down X . 9 Filled area X X X X
6 Cursor right X E e 3 10 Cell array > S vl X
7 Cursor left X : : S
8 Home cursor % 11 Esc Generalized Drawing Primitives
9 Erase to screen end X E — 3 code
10 Erase to line end X 1 Bar X X X X
11 Direct cursor address X 2 A.rc X X X X
12 Output cursor addressable text X E — 3 i I(‘;l‘f-‘ 1 X X X X
13 Reverse video on X ircie X X X X
: 5 Ellipse X X % X
14 Reverse video off X . o
15 Inquire curr. alpha cursor add X E — 3 g Eﬂfptfcai N X X X X
16 Inquire tablet status X iptical pie X X X X
17 Hard copy x 8 Rounded rectangle X X X X
18 Place graphic cursor X E 3 9 Filled rounded rectangle X X x X
i . .
. — 10 Justified graphics text X X X X
19 Remove last graphic cursor X
x 20 Form advance X X
* 21 Output window - = “.E ; . - J 12 Set char height abs. mode X X X X
* 22 Clear display list = = — 3 13 Set character baseline vector X X
TS 14 Set colour representation X X
23 OQutput bit image file X X I
15 Set polyline linetype X X x X
* 60 Select pallette X - == 3 16 Set nnbiline lineewidih
% 91 Inquire pallette film types X — o s p iY _ 1 : X X
* 92 Inquire pallette driver state X . 8 SEt polyllnaico our index X X
¥ 93 Set pallette driver state X E ; a 19 Set POy ;r typ? = i % *
x 94 Save pallette driver state X " et polymarker height X X
l 20 Set polymarker colour index X X X X
* Not implemented on atari ST B _ 21 ‘ Set text face: X X X
= e 3 * Not implemented on atari ST
Scrn = screen Prnt = printer - . Scrn = screen Prnt = printer
Plot = plotter Mfil = metafile =1 —_— 3 Plot = plotter Mfil = metafile
- l

E-8

m
NN
w

;

GEM VDI functions continued
GEM VDI functions continued

Op Definition Qutput device - aR 5 -
code Scrn Prnt Plot Mfi P efinition utput device
. sl ? —ﬁ code Scrn Prnt Plot Mfil
22 Set text colour index X X X -
23 Set fill interior style X X X X . 118 Exchange timer interrupt vector X
= 119 Load fonts X
27 Inquire cell array X X E — 3 120 Unload fonts X
*28 Input locator X X . 121 Copy raster, transparent X
*29 Input valuator, request/sample X X E — ﬂ 122 Show cursor X
*3() Input choice, request/sample X X)\ .) 123 Hide cursor b4
x31 Input string X X L) 124 Sample mouse button state X X
32 Set writing mode X X X - 125 Exchange button change vector X
*33 Set input mode X X ﬁ — 3 126 Exch. mouse movement vector X
. 127 Exchange cursor change vector X
35 Inquire curr polyline attributes X X X X . 128 Sample keyboard state info X
36 Inquire curr polymarker attr’s X X X X E — 3 129 Set clipping rectangle X X
37 Inquire curr fill area attributes X X X X . 130 Inquire facename and index X X
38 Inquire curr graphic text attribs X X X X 131 Inquire current face info X X X X
39 Set graphic text alignment X X X X E e 3
* Not implemented on atari ST
100 Open virtual screen workstation X .
101 Close virtual screen workstation X E E— ;)
102 Extended inquire function ' X X Scrn = screen Prnt = printer
103 Contourfill Plot = plotter Mfil = metafile
b o ﬂ.l : prse Gty y ¥ % E - a The standard range of VDI function output devices include a camera and a tablet as
105 Inquire pixel _ . well as the screen, printer, plotter and metafile. Only the screen is implemented on
106 Set graph text special effects X X _ the Atari ST.
107 Set char cell ht, pnts mode X X E — 3
108 Set polyline and styles X X X
109 Copy raster, opaque X 3 Py
110 Transform form X E = 3
111 Set mouse form X
112 Set user-defined fill pattern X X
113 Set user-defined linestyle X E —— 3
114 Fill rectangle X
115 Inquire input mode X
116 Inquire text extent X X E | — a
117 Inquire character cell width X X X .
* Not implemented on atari ST E; o 3
Scrn = screen Prnt = printer .
Plot = plotter Mfil = metafile E' — 3
B
& = 4

T ——

E-10

GEM AES function calls

Op
code Description

Application library routines

10 Initialise application APPL_INIT

11 Read message from pipe |APPL_READ

12 Write message to pipe APPL_WRITE

13 Find another application APPL_FIND

14 Playback GEM recording APPL_TPLAY

15 Record GEM session APPL_TRECORD

19 Cleanup and exit APPL_EXIT
Timer event routines

20 Waiting for keyboard input EVNT_KEY

21 Waiting for button input EVNT_BUTTON

22 Waiting for mouse input EVNT_MOUSE

23 Waiting for messag input EVNT_MESAG

24 Waiting period EVNT_TIMER

25 Waitg for multi-events EVNT_MULTI

26 Get/set mouse clickrate EVNT_DCLICK
Menu library routines

30 Toggle application menu bar MENU_BAR

31 Toggle menu check mark MENU_TCHECK

32 Toggle menu item able
33 Toggle display video
34 Change item menu text
35 Putacc’s menu in desk

MENU_IENABLE
MENU_TNORMAL
MENU_TEXT
MENU_REGISTER

Object library routines

40 Add object to tree

41 Delete objct from tree
42 Draw an object or tree
43 Find objct under mouse
44 Compute object offset
45 Change obj tree order
46 Edit objects text

47 Change objects state

0BJC_ADD
0BJC_DELETE
0BJC_DRAW
0BJC_FIND
0BJC_OFFSET
0BJC_ORDER
0BJC_EDIT
0BJC_CHANGE

EEER

| 1 O O O N N T [|
!

W oW W W W W W oW W W wa w

2

]
E
E
E
&
S
E
E

-
s

i)

Jﬂw

GEM AES function calls - continued

E-11

Form library routines

50 Monitor user/form
51 Toggle dialog boxes
52 Display alert box
53 Display error box
54 Centre dialog box

FORM_DO
FORM_DIAL
FORM_ALERT
FORM_ERROR
FORM_CENTER

Graphics library routines

70 Draw a rubber box

71 Drag a box around

72 Draw moving box

73 Draw expanding outline
74 Draw shrinking outline
75 Test for mouse inside
76 Slide box in parent

77 Return screen handle

78 Redefine mouse form

79 Return mouse attributes

GRAF_RUBBERBOX
GRAF_DRAGBOX
GRAF_MOVEBOX
GRAF_GROWBOX
GRAF_SHRICKBOX
GRAF_WATCHBOX
GRAF_SLIDEBOX
GRAF_HANDLE
GRAF_MOUSE
GRAF_MKSTATE

Scrap library routines

80 Read clipboard directory SCRP_READ

81 Write directory to clipboard SCRP_WRITE
File selector routines

90 Display file selector box FSEL_INPUT

“

Window library routines

100 Allocate full window
101 Open window to size
102 Close window

103 Deallocate window
104 Get window data

105 Setwindow data

106 Find mouse window
107 Update window

108 Calculate window data

WIND_CREATE
WIND_OPEN
WIND_CLOSE
WIND_DELETE
WIND_GET
WIND_SET
WIND_FIND
WIND_UPDATE
WIND_CALC

Intelligent keyboard (ikbd) command set

E-12

GEM AES function calls — continued

Resource library routines

m sy
-
w

W W oW w W www ow e o dd w

Command
110 Load resource file RSRC_LOAD Godz
111 Deallocate resource file RSRC_FREE E Dec Hex Function
112 Get structure address RSRC_GADDR
113 Save structure index RSRC_SADDR 128 80 Reset return keyboard to power-up
114 Convert characters to pixels RSRC_OBFIX E 1 01 status without affecting clock.

A break > 200ms also causes a reset
07 Set mouse button action
08 Set mouse relative position reporting
09 Set mouse absolute positioning
10 0A Set mouse keycode mode
11 0B Set mouse threshold
12 0C Setmouse scale
13 0D Interrogate mouse position
14 OE Load mouse position
15 OF SetY = 0at bottom
16 10 SetY = Oattop
17 11 Resume
18 12 Disable mouse

Shell library routines

m

O 00 =]

120 Find how created SHELL_READ
121 Exit AES or run other SHELL_WRITE
122 Getdata

123 Putdata

124 Find filename path SHELL_FIND
125 Find parameter address SHELL_ENVRN

<
-

mom

19 13 Pause output

20 14 Set joystick event reporting

21 15 Setjoystick interrogation mode
22 16 Joystick interrogation

23 17 Set joystick monitoring

24 18 Set fire button monitoring

25 19 Set joystick keycode mode
26 1A Disable joysticks

27 1B Set time of day clock

28 1C Interrogate time of day clock
32 20 Memory load

33 21 Memory read

34 22 Controller execute

€
“

W m m m W

Status inquiries (OR 80H with command)

The status of the keyboard can be determined by interrogating the status register in
the configuration tables.

L

m

E-14 .

Al
/|
)

Code
Dec Hex Function

246 F6 Status report
247 F7 Absolte mouse position record

)
d w

ey
——
248 F8 Relative mouse position record I
248 F8 111110xx (xx = right-left button state) -
-
F9 delta x, 2’s complement E 3 A en dix F
FA delta y, 2’s complement . pp
252 FC Time of day (resolution of 1 second) E — 1
253 FD Joystick report header (both sticks) : P bl k
254 FE x000yyyy X =trigger Joystick 0 event .V .) arameter Oc S
255 FF x000yyyy y = stck posn Joystick 1 event = 3
i —
A-line routines m . ' 3
Dec Hex ‘A’ line function E rm— a
20480 A000 Initialization I
20481 A001 Put pixel —
20482 A002 Get pixel - 3
20483 A003 Line .
20484 A004 Horizontal line E e a
20485 A005 Filled rectangle
20486 A006 Line-by-line filled polygon
20487 A007 BitBlt (including half tone source patterns) E e ‘3
20488 A008 TextBlt (all 16 BitBlt logic operations)
20489 A009 Show mouse I)
20490 AO00A Hide mouse ’ E — 3
20491 AOOB Transform mouse =
20492 AQ0C Undraw sprite l
20493 A00D Draw sprite :
20494 AO0OE Copy raster form E — 3
20495 AOOF Seedfill l
E i 3
= i -
E — 3

SYSTEM BLOCKS

System start-up block

offset
$00 Reseth Branch to reset handler
$02 Vers OS version number
$04 Reseth System reset handler
$08 Ostext Base of OS
12 $0C Endos End of OS mem used | Pointers
16 $10 Reseth Default shell
20 $14 Magic Verification no. or zero
24 §18 Date System build date

Boot sector parameter block

offset
$00 BRA.S |Branch to boot code
$02 |OEM’s space] Reserved for OEMs use
$08 Vol ser # |24 bit volume serial number
11 $0B BPS Number of bytes/sector
13 $0D SPCs Number of sectors/cluster
14 $0E RES Number of reserved sectors
16 $10 NEATS | Number of file alocation tables
17 $11 NDIRS | Number of directory entries
19 $13 NSECTS | Number of sectors on media
21 $15 MEDIA | Media descriptor - not used
22 $16 SPF Number of sectors/FAT
24 $18 SPT Number of sectors|/track
26 $1A NSIDES | Number of sides on media
28 $1C NHID Number of hidden sectors-not used
30 $1E boot code | Start of code, if any ?
511 $1FE last word | Used for checksum
512 $200

m mim momom ow

m m m

€
m m M

m

m

| N T O T | | O

m m

W oW W W W W ow

oW W oW

oW uw

uJ

A=

L

F-3

DEVICE DRIVERS

Each device has one driver (Device control block — DCB) that contains entry points
to routines and constants used by systems to initialize the device’s state during a
warm-start. The routines and constants are defined as follows:

Device driver

offset

12
16
20
24
28
32
34
38
42

§00
§04
$08
$0C
$10
$14
$18
§1C
$20
$22
$26
$2A

BREAD

Read sector

BWRITE

BINIT

[BFORMAT |

BINTR

BRDTRK

BWRTRK

BXLATE

BCVSIZ

BALVSIZ

BDEFINFO

Write sector

Initialize drive (warm start)
Format drive

Vblank call (timeout-homing)
Read track

Write track

Logical to physical translate
CSV size allocation

ALV size allocation

Default info block

Device dri.vcrs are stored in RAM in a device state block (DSB), the DSB contains
TOS specific data structures (the DPB and DPH) and device specific information,
such as the number of tracks, head seek rate. The DSB is allocated during a warm-
start.

Fos B s ey
G
Device state block - n : PROGRAM PARAMETER BLOCKS
W —
l Transient program area block
- —_ ﬁ offset
$00 |- DDPH | Device parameter header m
26 $1A DDPB Disk parameter block p—_. Low TPA
2 $2A BINFOSIZ | DSB size (not incl DDPH) Y fhasg
4 $2C DPHYSDEV | Device physical number m page To maintain maximum GEM DOS
46 $2E DNTRACKS | No. tracks on device - Text compatibility, free unused memory
48 $30 DSPT No. sectors/track ; ::: — i Data and lower top of stack (-’-%A).
50 $32 DNSIDES No. sides/device \-v"l m)_} BSS Determine memory available and allocate it.
52 $34 [DSEERRT | Floppy seek rate . Application
54 $36 E (B : user area | High TPA
N |
Floppy parameter block E_. — .__—4
offset .l Load block
$00 Floc Floppy lock return address E — 3 olfier
$04 Cret Callers return address
$08 Dmapn | DMA pointer I’ $00 Opened program file address
12 s0C — Obsolete E —— 1.= $04 Base address to load program
16 $10 Devno Device number $08 Program end address + 1
18 §12 Secno Sector number .‘ 12 $oC Address of base page
20 %14 Trkno | Track number E —ne a 16 $10 Default user stack pointer
22§16 Sidno Side number 20 $14 Loader control flags
24 $18 Secnt Sector count .J 22 §l6 0_load at bottom
26 $la E e 3 1_load at top (reserved)
Sector buffer block @ E ’ I| 3)J
-—
offset l‘ Base page format block
$00 BNEXT [Next buffer or null :
$04 BBUF | Size of buffer (512 bytes) E — E; o
$08 BLRU | LRU replacement value .‘ $00 Low TPA | Base address of TPA
12 $0C BFLAGS | Valid/dirty flags E . 5 $04 Hi TPA | End of TPA + 1
14 $0E BDEV Device number : $08 Thbase Base address of text
16 §10 BTRACK | Track number .] 12 $0C Tlen Length of text
18 $12 BSIDE | Side number - 16 $10 Dbase Base address of init data
20 $14 BSSECT | Start sector number E e B 20 314 Dlen Length of data
22 $16 BESECT | End sector number I] 24 $18 Bbase Base add of BSS uninit data
24 $18 BPSECT | Physical sector number o — 3 28 §1C Blen Length of BSS uninit data
26 $1A BSIZE = m -
L 1% t
S |

-

Atari OS specific base page
Extension to file header if BSS and data not contiguous:

(=3
[e
offset E} 3 (not supported by ST OS)
32 $20 Length free memory after BSS | offset
36 $24 Drive from which prog loaded - B ﬁ 28 $I1C Start address of data segment
37 $25 Reserved by BDOS ‘ 32 $20 Start address of BSS
56 $38 2nd parsed FCB |\ Command Set | 36 $24
92 $5C 1st parsed FCB) line by § E— 3
128 $80 Command tail and default CCP .] -
DMA buffer
i
pe====r=] cEFend ¥ ﬂ Memory parameter block
9 ‘) f
= | offset
I .o
L] 3 $00 Owner description
; No. bytes in block Memor
GEMDO ifi - ‘
S specific base page =: : | 3 Start address of block | descriptor
— . Next link MD
offset [
Roving pointer
32 $20 DTA address pointer E. : 3 Memory allocation list
36 $24 Parent’s base page pointer - Memory free list
40 $28 | Reserved
44 $2C Environ | Environment string pointer
128 $80 Cmdline | Command line image -

m m

File header E
offset
601AH data & BSS contiguous d)
$00 | BRA.S flag] else 601BH (not supported by ST 0S) E :
$02 Bytes in text segment
$06 Bytes in data segment .
10 $0A Bytes in BSS E :
14 $0E Bytes in symbol table
| 18 $12 Zero (reserved)
22 $16 Start of text seg & prog exec E ' a
26 $1A Zero if no relocation bits
& = 3
—
; ln | 3
-0
e

GEM PARAMETER BLOCKS

F-8
VDI parameter block
offset
$00 contrl
$04 intin
$08 ptsin
12 $0C intout
16 $10 ptsout
20 $14
VDI control table
offset
$00 Op code
$02 Lptsin
$04 Lptsout
$06 Lintin
$08 Lintout
10 §0A
12 $0C
14 $0E
AES parameter block
offset
$00 control
$04 global
$08 int_in
12 $0C int_out
16 $10 addr_in
20 $14 addr_out
24 $18

Longword address

Control table pointer

input attribute table pointer
input points table pointer
output attribute table pointer
output points table pointer

Longword address

Function op code

input coordinate Size in

output coordinate} Wordpairs Table
input attribute Size in sizes
output attribute } words

Subfunction ident number

Device handle

Op code dependent information

Longword address

Control table pointer

Global array pointer

input attribute table pointer
input points table pointer
output attribute table pointer
output points table pointer

"

O

-

'I'ﬁ

s
o <

N=#

e

m

=

€

&l

V=i

]

| 5

'uwuuvwa

u W w

W oW oW W W W W W

v

AES control table
offset
$00 QOp code |Function op code
$02 lint in input coordinate Size in
$04 lint out Joutput coordinate words Table
$06 |j—laddr in _Jinputattribute } Size in Sizes
$08 { addr_gut | output attribute longwords
10 $0A
AES global array
offset
$00 version | GEM AES version ident word
$02 count Max #concurrent applics allowed
$04 id Unique application identifier
806 private Longword user data
10 $0A pLICS Resource address tree pointer
14 $0E |—rescrved] Zero
18 $12 j—rescrved] Zero
20 $16 |tescrved] Zero
26 $1A Zero
30 $I1E

F-10

A-LINE VARIABLES

A-line routine table

offset

$00
$02
$04
$08
$0C
$10
$14
$18
$1A
$1C
$1E
$20
$22
$24

$26
$28
$2A
$2C
$2E
$32
$34

$36
$38
$3A
$3C
$3E
$40

$42
$44
$46

$48
$4A
$4C

= oo

16
20
24
26
28
30
32
34
36

38
40
42
44
46
50
52

54
56
58
60
62
64

66
68
70

72
74
76

Function

Number of video planes
Number of bytes/video line
Pointer to Cntrl array
Pointer to Intin array
Pointer to Ptsin array
Pointer to.Intout array
Pointer to Ptsout array

} Can produce special
effects.

Bit plane 0

) current
Bit plane 1

) color
Bit plane 2

j value
Bit plane 3

-1
VDI line style equivalent
Writing mode: 0= replace; 1 = transparent
2 =XOR mode 3 = inverse transparent
X1 coordinate
Y1 coordinate
X2 coordinate
Y2 coordinate
Pointer to current fill pattern
Fill pattern mask
Multi-plane fill pattern
0_current fill pattern is single plane
1_current fill pattern is multi-plane
Clipping flag: 0=no clipping
Minimum x clipping value
Minimum y clipping value
Maximum x clipping value
Maximum y clipping value
Accumulator for textblt x dda
initialize to 8000H before each call
Textblt scale factor
Scale direction 0_down
Font status
1 = current font monospaced & may be thickened
0=may not be thickened to increase font width
X coor of character in font form
Y coor of character in font form (typically 0)
X coor of character on screen

Continued . . .

<

=

mm

e
d

m e s

d

1

Ww W ow W W w w w o w W w

bl

Ve

(B

F-11

$4E 78 Y coor of character on screen

$50 80 Character width

$52 82 Character height

#54 84 Pointer to start of font data (font form)

$58 88 Width of font form

$5A 90 Style bit: 0=Thicken, bit 1 =lighten, bit 2= skew

bit 3 =underli i it4= i

e . T maSkerllnc (ignored), bit 4 = outline
$5E 94 Skew text mask

$60 96 Text thickening additional width

$62 98 Offset above character baseline for skew
$64 100 Offset below character baseline for skew
$66 102 Scaling flag: 0 =no scaling
$68 lQ4 Character rotation vector

0= horizontal
900 = vert down, etc
Copy raster form type flag (RAM VDI only)
0=opaque type
n-plane source to n-plane destination bitblt write mode
<>(_transparent type
1-plane source to n-plane destination VDI write mode
Abort fill routine pointer

(not available on disk based versions of TOS)

$74 116

$76 118

Th.e A-line variable table contains other parameters
which may be of use to the programmer.

offset Function
:gi :;12 Plxel. cell height. (Same as font form’s height)
MaX{mum number of cells across -1 (X)
ggg —42 Maximum number of cells high -1 (Y)
R —40 Byte .offset nex't vert cell. Scn wid(byte) x Pixel cell ht
—38 Physical color index of background color
$DC —36 Physical color index of foreground color ;
$DE —34 Current cursor address ‘
:Ei —30 Byte offset from screen base to top of first cell
—28 Cursor position: cell x
$E6 —26 Cursor position: cell y
$E8 —24

Cursor flash interval (in frames)

Continued . . .

F-12

$E9
$EA

$EE
$FO0
§F2
$F4
$F6
$FA

$FC

=23

-18
-16
-14
-12
-10
-06

-04

Cursor countdown timer

Address of monospace font data
Each cell is 8 pixels wide and byte aligned.
The data format is defined in the VDI manual.
The cells may be arbitrarily high.

Last ascii code in font

First ascii code in font

Width of font form in bytes

Maximum x pixel value

Address of font offset table (per VDI spec)

Alpha text status byte
bit 0 cursor flash 0=disabled, 1=enabled
bit 1 flash state 0=off, 1=on
bit 2 cursor visibility 0=invisible, 1 =visible
bit 3 end of line 0=overwrite, 1 =wrap
bit 4 reverse video 0=on, 1 =off
bit 5 cursor position saved 0= false, 1 =true

Maximum y pixel value of the screen

e
m

&
4%

=

=

BSm 8

=
=
—

B RS

rm

H

-

il

il

W oW W W W Ww W ow

wo o W

w

v

F-13
Sprite definition block
offset
800 X offset of hot-spot
%02 Y offset of hot-spot
$04 Format flag
$06 Background) Color
$08 Foreground ! table index
10 $0A Interleaved B’gnd line 0
12 $0C background/foreground % F’gnd line 0
74 $4A image (32 words) F’gnd line 16
76 $4C
Format flag
+ve —ve color
\IFg Bg Fg Bg plotted
0 0 0 0 | Transparent
0 1 0 1 | Background
| 1 1 |Foreground
1 0 Foreground
1 0 | XOR screen

Memory form definition block (MFDB)

offset
$00 MeEl pointer | 32-bit address of pixel 0,0
$04 Width Raster area
$08 _Height } dimensions
12 $0C Word width Pixel width/word size
16 §10 Format flag 1 =standard, 0 = device specific
20 $14 Mem planes No. planes in raster area
24 318 Three
28 §$1C reserved
32 $20 words
36 $24

F-14 o
i &
HEADER BLOCKS -
L3
Cartridge header block E
offset Prefix to application header
= T o Wl smilseeteintan e
252 $FC Flag #$ABCDEF42 program/data @ :
' Appendix G- MC68000

or #$FA52255F diagnostic

Instruction summary

W W od u

Q))
Application header block E
|
offset
$00 Next Link to next application o ;
$04 Flag/init Pointer to initialize code s =
or run flag (MSB)
$08 Run Pointer to run code E' 3
12 $0C Time DOS-format) Time/Date
14 $0E Date DOS-format)} application created
16 $10 Size Application size "‘
20 $14 Name Application name (NNNNNNNN. EEE) 3
Ll .
E =3
| Run flag bit set:
; P m
Bit0 Run before interrupt vectors and memory initialized & 3
Bit1 Run before GEMDOS initialized ' "
Bit2 unused 3)
Bit3 Run before disk boot v { - 2
Bit4 unused -
Bit5 Application is a desk accessory
Bit6 Nota GEM application. No AES calls am
Bit7 Requires command line parameters before execution =

(ES

pp———tCTC 0 T

W oW W W W W

ADDRESS MODE

Assembler language and BASIC equivalents

Address mode

Source

Destination

Data register
direct

Dn MOVE.LD2,00
LET DO=D2

MOVE.L #999,00
LET DO=999

Address register
direct

An MOVE.L AQ,DO
LET DO=AD

MOVEA.L #9993 A0
LET AD=999

Address register
indirect

MOVE.L (AQ),DO
LET DO, PEEK_L(AQ)

(An)

MOVE.L #3999, (AO)
POKE_L (A0),999

Address register
indirect with
postincrement

(An)+ MOVE.L (A0)+,00
LET DO, PEEK_L(AQ)

LET AD=AQ + 4

MOVE . L #999, (A0)+
POKE_L (AO),999
LET AO=AO + 4

Address register
indirect with
predecrement

—(An) MOVE.L -(AD),DO
LET AO=AO - 4

LET DO, PEEK_L(AOQ)

MOVE.L #999, -(A0)
LET AO=AO -4
POKE_L (A0),999

Address register
indirect with
displacement

d(An) MOVE.L 9(AO).DO
LET DO=PEEK_L(9 + AQ)

MOVE.L #999,9(A0)
POKE_L(AO+9),999

Address register
indirect with
index

d(An.Ri)MOVE.L 9(A0.D2),D0
LET DO=PEEK_L(9+A0+D2)

MOVE.L #999,9(A0.D0)
POKE_L(A0+9+D0),999

Absolute short
ABS.S

$xxxx MOVE.L 1024,D0
LET DO=PEEK_L(1024)

MOVE.L #999,1024
POKE_L(1024),999

Absolute long
ABS.L

$xxxxxx MOVE.L 16384000
LET DO=PEEK_L(163840)

MOVE.L #999,163840
POKE_L(163840),999

Program counter
with
displacement

d(PC) MOVE.L9(PC).DO
LET D0=9 + conts of
Program Counter

Not legal

Program counter
with
index

d(PC.Ri)MOVE.L 9(PC.D2).D0
LET D0=9+D2 + cont of
Program Counter

Not legal

i)

lalalel)

=l
1
-

s

mom Mmoo om =

H

'
o - - - .

Wow oW oW W ow o w w Wwow

'rl

«

v

G-3
ALLOWABLE ADDRESS MODE TYPES
Alt Data Alt Dat Dat Con Con Con
All Mem Alrble Add Add Add Add Alr Add
Add Addr’g Mod Mdi Md2 Mdl Add Md2
Source Dest. Destination Dest. Source Dest. Dest. Src.
Dn X X X *3 X X
An X X
(An) X X X X X X X X X X
(An)+ X X X X X X X b
—(An) X X X X X X X X
d(An) X X X X X X X X X X
d(An.Ri) x X X X X X X X x X
ABSsh’t x X X X X X X X X X
ABSlg x X X X X X X X X X
d(PC) X X X X X
d(PC.Ri) x X X X X
Imm X X
ADD ADD | ADDI | NBCD | ADDQ | AND |BTST | JMP !MOVEM| MOVEM
ADDA | AND | ANDI | NEG | SUBQ | CHK JSR reg | mem
CMP OR | BCHG | NEGX DIVS LEA to to
CMPA SUB | BCLE | NOT DIVU PEA mem reg
MOVE BSET | ORI
MOVEA| ASL | CLR MOVE
SUB ASR | CMPI | Scc to CCR
SUBA | ROXL| EOR MOVE
ROXR | EORI | SUBI to SR
ROL MOVE| TAS
ROR TST MULS
LSL | MOVE MULU
LSR fr SR OR
Alt = Alterable Mod = Mode Md1 = Model /Types ofaddressing mode
Mem = Memory Dat = Data Md2 = Mode2 | definitions used by

Add = Address Con = Control

Motorola to describe
allowable modes

albl . - S
Addre sSS Mo des @ . - g Assembler language and BASIC equivalents continued
. Address mode Source Destination
ENCODING E ’ﬂ Immediate #8xxx MOVE.L #65536,D0 Not legal
Imm LET D0=65536
The range of addressing modes are coded consistently throughout the MC68000 e
instruction set and may be summarized as follows: ﬂ — 3 Register DO is used The source is defined
for the destination as immediate data
[table - . Notes as an example; any value 999; any other
.] — i other valid effective valid effective
Addressing Syntax I\«;ode i&g E:»{::i “’ Y .) address may be used. address may be used.
mode 0. 0. words /
:] E [=s 3 All equivalents have been defined as having longword operands, byte and word-
Data register direct Dn 0 1 0 sized operands may also be used.
Address register direct An 1 n 0
Address register indirect (An) 2 n 0 E :
Address register indirect (An)+ 3 n 0 E . .
with postincrement I a
Address register indirect —(An) 4 n 0 .
with predecrement E
| o— :
Address register indirect d(An) 5 n 1
with displacement ;
Address register indirect d(An.Ri) 6 n 1 E oy a
with index .
Absolute short ABS.S Bruxxx 7 0 1 E —— 3
Absolute long ABS.L fxxxxxx 7 1 _ l
Program counter with d(PC) 7 2 1 E =1 a
displacement
Program counter with d(PC.Ri) 7 3 1
index E - a
Immediate HIxxx 7 4 lor2 .
& =3
n = Register number 0 to 7 .
Ext. Word = Number of extension words following the op word due to this address ; - 3
mode (source and destination ext. words are cumulative) e .
Mode No. =Dmod and Smod in instruction code tables — 3
Reg No. =Dreg and Sreg in instruction code tables E : .

Data storage

The MC68000 accesses two internal locations for storage:

Internal registers, of which there are 17, store the data inside the microprocessor
itself. They are very limited in the amount of data they can store, but provide
extremely fast access.

ST RAM/ROM, where data access is still quick, but not as fast as the internal
register data access.

<—— External
|—— External data storage
PrOCESSOT e Data (Hard/floppy
L MEMOTY registers disk)
Address
RAM Registers
L (Random Acces
e MLEMOTY) e
Program counter
ROM
Memory) computer
Internal memory MC68000 processor
devices internal register layout

=

=

]

-

=

<
B R

c
Mmoo W oW o S

i

]

L

W o w

\

W oW W W ow

v

w W oW W W w w w

Data types

The MC68000 microprocessor supports five different data types; some instructions
are limited to a specific data type, bust mostly there is an allowable range with the
default of word. Where the choice is not implicit, it is defined in the instruction word
extension as either yre, word or longword.

Byte, Word and Longword data types

MSB
Word
A
7 N\
High order byte
Low order byte
31 23 25 7 0
Byte
Hi mid order byte Low byte
High Byte Lo mid order byte
— Longword {
MSB
BCD and IT data types
MSB Bit data LSB

byte 7 6 5 4 3 2 1 0

— - rF
BCD 0 BCD 1

Most significant Least significant

BCD byte BCD byte

G-8

Internal registers

The Motorola 68000 has seventeen 32-bit registers, a 24-bit program counter and a
16-bit status register. eight of the 32-registers (DO to D7) are used as data
registersfor operations involving single-bit, bed (4-bit), byte (8-bit), word (16-bit)
and longword (32-bbit) data. The remaining nine registers are split into two; seven
of these (A0 to A6) act as address registers, and two act as stack pointers. Only one
stack pointer may be accessed at a ti,me, hence the convention of calling oth A7. The
address register operations are based on word and longwords only.

Data registers

Data storage of byte, word and longword is always performed in the part of the data
registers shown; unused parts of the register are not altered.

Eight
data
registers
3 16 15 87 0
Do
byte D1
D2
word D3
[D4
Langword 05
D6
D7
Address registers

The address registers are used as pointers to user stacks, as base address registers
and temporary storage for computed addresses tyhat are not to affect the Status
Register. Address storage is always performed in the part of the address registers
shown. When used as a destination operand, the entire address is changed regardless
of the operation size. Address registers do not support byte-sized operations as either
a source or destination. Words are sign-extended to longwords before an operation

is performed.

Seven
address
registers
31 16 15 8 7 0
AO
Al
word A2
I A3
Longword Ad
AS
AB

Ik

=

MMM!‘E&“%M!@!&

<
!

mmmmm
I-l-I-l-l-l-l-l-l-l-l-'.

m

]

w W W oWw W W

W W W

R

«

«

Stack Pointer

The user stack pointer typically saves subroutine returns when in user mode. The
supervisor stack pointer saves the status register contents during trap and interrupt
routines as well as the supervisor subroutine returns. Only one of the stack pointers
is addressable at a time, so they are both called A7. ytes pushed on a stack are stored
in the high order half of a word.

Two Stack
Pointers
31 0
User Stack Pointer i) o
Supervisor stack Pointer 7

Program Counter

The program :?ounter provides the MC68000 with an address range of 16
Megabytes. As instructions are based on word-sized operands, the counter must
always hold an even address. Attempts to address odd-numered locations will cause
an error trap.

31 23 0
| oooo00 | s i
Status Register

15 8.1 0

[! 51

The statl::&:. register is split into user and syszem bytes. The user byte is evaluated for
Fhe cont:’htlon codes used in the branching instructions. The codes are affected by all
instructions that alter the contents of the data registers or memory, but not by
changes to the address registers.

USERBYTE
Condition codes

Zlx[x]a]s2]1]0]

Zero

Not used

Extend
Negative
Overflow

Carry

_—r%

G-10

INSTRUCTION SUMMARY

The unused bits in the status register are read as zero. They are available for the
MC68000 instruction set.

13) ﬂ.
1)
Wi

s

Each Motorola MC68000 instruction is presented, many in terms of equivalent
BASIC Instructions or assembler routines. The similes are for clarification of the
use of each instruction; there is no access to the data or address registers (Dn or An
respectively) or the condition codes from BASIC and therefore the examples which
make use of these registers, and most of the effective address modes (ea), cannot be

SYSTEM BYTE

£\
Wow dl

4 I | I | | O | | |

15 X 13 b, 4 X 10 9 8

R T] @i taken literally.

i J

Trace Interrupt K

mask

- E!- && bitwise AND

I b
: i A A bitwise EOR
i v P || bitwise OR

m =
i~

ABCD: Add Binary Coded Decimal with Extend
Organisation of addresses in memory

m : Add two byte-sized binary coded decimal numbers and the Extend bit; a dollar sign
& -'q is used to indicate a BCD number. Clear the extend bit and set the zero bit before
performing this instruction which is limited to byte-size data register operations;
Memory For word and longword : multibyte additions are performed more easily in memory.
4 _Siiiston memory operations, the high E .-3
et e e byte is on a word boundary
| any (even address), the following BCD addition DATA Register Memory
Byte Byte address bytes are in order higher in E} . : ;\dditioln Multibyte Addition
memory. yte only
Lowbyte | +3 MOVE #4,CCR
Longword I 1 +2 By convention, system stacks E: g 57 527 ABCD - (AO) .- (A1)
. _| +1 grow downwards in memory. ' ABCD $6 ABCD$16 ABCD DO,D1 ABCD - (A0),- (A1)
Highbyte | « Even $13 $43 ABCD -(A0),-(A1)
- address E
Word B L?Tf;}ytc = j-lEven ﬂ\ ‘J Note that the z-flag is cleared if the result is non-zero, otherwise it is unchanged and
b el address . El that in memory additions the data must be stored with the most significant digit
s e | ; lower in memory and the address pointers initially set to the byte above the low
0 | | Memory bottom order BCD digit in memory, as the only available addressing mode is predecrement.

ADD: Add two integers.
One of the integers must be the contents of a data register.

m m

LET Dn=Dn + ea ADD ea,Dn
- LET ea=ea + Dn ADD Dn,ea
L
oy 5
Use ADD ea,Dn where the destination is a data register,
Use ADDA where the destination is an address register.
T Use ADDI or ADDQ where the source is immediate data.

W b o Uy U U W

(e

e ER e e e D e ——r—f——

G-12

Instruction summary — continued

ADDA: Add the contents of the effective address to the contents of the destination
address register.

LET An=An + ea ADDA ea,An

ADDI: Add a constant value to the contents of the destination effective address. Use
ADDAQ for speed and small integers.

LET ea=ea + 999 ADDT #999, ea

ADDQ: Add a constant in the range of 1 to 8 to the contents of the effective address.
Faster addition than ADDI.

LET ea=ea + 8 ADDQ #8,ea

ADDX: Add either register to register, or predecremented memory t0 memory,
with extend. Use of the extend bit enables multiprecision arithmetic to be
performed, the extend bit acting as a carry between successive operations.

Data register addition

Memory additions Add two 64 bit integers

D0_D1 and D2_D3 Lo-Hi resply

ADDX - (Ay) .- (Ax)
ADD.L DO,D2 Low bits

Where X infers the Extend bit

LET Ay=Ay-4 ADDX.L D1,D3 High bits
LET Ax=Ax-4
POKE (Ax) ,PEEK(Ax) + PEEK(Ay) *+ X Memory addition
MOVE #4,CCR
ADDX.L -(AD),- (A1)
ADDX.L -(AQ),- (A1) etec.

Note that the z-flag is cleared if the result is non-zero, otherwise it is unchanged.
For memory additions first clear the Extend bit and set the Zero flag. The data must
be stored with the most significant digit lower in memory and the address pointers
initially set the operand size above the low order digit in as the only addressing mode

is predecrement.

=

<
bh"ﬂ £%)

3
M WM m M W e .

m m m m m

wd

|

w

Ww w W w

PR

WoW oW Wl

J

_';.L

<

W
<

)

Instruction summary — continued

AND: AND the source operand to the destination operand.

The source AND data is normally used either (a) as a mask enabling a portion of the
destination operand to be examined (bits are masked by 1’s in the source); or (b) to
clear bits by setting the corresponding bit in the source to a zero.

LET ea=Dn && ea
LET Dn=src && Dn

AND Dn,ea
AND ea,Dn

If src= 3, then AND src keeps bits 0 and 1 in Dn only, the others are set to zero.
Use AND ea,Dn where the destination is a data register.

Use ANDA where the destination is an address register.
Use ANDI where the source is immediate data.

ANDI: ANDI the immediate data to the destination effective address.
LET ea=data && ea ANDI . W #512,D0

Keep bit 9 of word only

ANDI to CCR: ANDI the data to the condition code register.

LET CCR=26 && CCR ANDI #26,CCR

Normally bits ca{nvbe tested via the condition codes without using the AND function
asa r.nask. Here it is used to zero a bit position where there is a zero in the AND data;
that is zero and carry (bits 0 and 2 in the CCR) are cleared. ,

AN.D.I to SR: ANDI the data to the status register.
This is 4 prw:!eged instruction and attempted access while in user mode will trap to
the privilege violation exception vector.

LET SR=63743 && SR ANDI #63743, SR

rup
Set llle inter L]Ilask leVCl to zero alld leaVC unChan ed thc (8)91
g C ditlon C(]de and

_—r—-—*—-

G-14

Instruction summary - continued

ASL: Arithmetically Shift Left the bits of the operand.

The last MSB shifted sets the carry and extend bits; the LSB is set to zero each shift.
The overflow bit is set if the sign is changed during the shift and is used to flag a
change of sign. The instruction is used for fast multiplication of X 2 and x 4; other
values should use MULS.

—— | = ()

X/C

ASL ea (shift 1)
ASL Dx,Dy (reg modulo 64)
ASL #5,Dy (shift 1 to 8)

LET ea=ea * 2
LET Dy=Dy * (2ADx)
LET Dy=Dy * (2AB)

ASR: Arithmetically Shift Right the bits of the operand.

The MSB sign bit is retained; the last LSB shifted is used to set the carry and extend
bits. This instruction can be used for rapid integer division by 2, 4, 8 of signed
numbers; use DIVS for other divisions.

X/C

e—— |

sign bit e

| SRS

ASR ea (shift 1)
ASR Dx,Dy (reg modulo 64)
ASR #5,Dy (shift 1 to 8)

LET ea=INT(ea/2)
LET Dy=INT(Dy/(2ADx)
LET Dy=INT(Dy/(2AB)

Bee: Branch on condition a two’s complement displacement from the current
program counter position (Instruction address +2) + 126 to —128 for a short branch
or 432766 to —32768 for a word branch operation, the condition xx may be:

2’s complement

arithmetic
EQ EqualTo CS Carry Set GT Greater Than
NE Not Equal CC Carry Clear LT LessThan
MI Minus VS Overflow GE Greater Than
PL Plus VC No Overflow or Equal to
HI Higher Than LE Less Thanor
LS Lower Than or same Equal to
IFDn=0THEN GOTO yy BEQ #14
IF Dn > 0 THEN GOTO label BGT label

m

'
W W WM W oWm e 8

VEl

|
um
-

i

s
w

§
W

o

5 11

VR

G-15

Instruction summary — continued

BCHG: A bit is tested and its state reversed.
If the bit was zero before the test; that is clear, then the Zero flag is set, otherwise it
is cleared.

IF BITn = O THEN set_Zflag:
ELSE clear_Zflag

BCHG #6,ea (data modul
LET BITn = 1-BITn : o

BCHG Dn,ea (reg modulo 32)

BCLR: A bit is tested and then cleared. If the bit was zero before the test; that is
clear, then the Zero flag is set, otherwise it is cleared.

IF BITn = O THEN set_Zflag:
ELSE clear_Zflag

BCLR #6,ea (data mod)
LET BITn = 0 il

BCLR Dn,ea (reg modulo 32)

BRA: BRanch Always.

A two"s compAlcmcnt displacement branch either of + 126 to —128 bytes by a single
word instruction or of +32766 to —32768 bytes by a two-word instruction from the
current program counter position (instruction address + 2).

GOTO Tabel
GOTO 1275

BRA label
BRA #8

BSET: A bit is tested and then set.

-Iftfle bl:l was zero before the test; that is clear, then the Zero flag is set, otherwise it
is cleared.

IF BITn = O THEN set_Zflag:
ELSE clear_Zflag

BSET #6,
LET BITn=1 #6.ea (data modulo 8)

BSET Dn,ea (reg modulo 32)

BSR: Branch to SubRoutine.
!Elther a two’s complement displacement of + 126 to —128 bytes by a single-word
instruction, or of +32766 to —32768 bytes by a two-word instruction, from the

f:urrent _program counter position (instruction address +2). Return to the next
instruction via an RTS from the subroutine.

GOSUB Tabel
GOSUB 1275

BSR Tabel
BSR #8

G-16

Instruction summary - continued

BTST: A bit is tested. If the bit was zero; that is clear, then the Zero flag is set,
otherwise the Zero flag is cleared.

IF BITn = O THEN set_Zflag:
ELSE clear_Zflag

BTST #6,ea (data modulo 8)
BTST Dn.ea (reg modulo 32)

CHK: Check a data register low-order word against the two’s complement upper
bound of the source operand.
If the register value is less than zero or greater than the test value, then jump to the
CHK Trap exception vector.

IF Dn > ea OR
Dn < O THEN GOSUB chk_trap

CHK ea,Dn

CLR: Clear an operand sets all or part of a specified address or register to zero.
LET ea=0 CLR ea

MOVEQ #0,Dn is quicker than CLR.L Dn
SUBA.L An,An is quicker for memory applications

CMP: The compare instructions are used exclusively to set the condition code
registers for a subsequent conditional operation. The comparison is made by
subtracting the source operand from the destination operand and setting the
condition codes accordingly; neither operand is altered by the instruction.

CMP ea,Dn

IF ea=Dn THEN GOTO loop BEQ loop

Use CMPA when the destination is an address register.
Use CMPI when the source is immediate data.

Use CMPM for memory to memory comparisons.

CMPA: Subtract the source operand from the address register and set the condition
code flags accordingly.

The comparison is based on a sign-extended source if it is a word operand. The
address register is not altered.

CMPA ea,Dn

® =

m - =

A o | (O O ..

¥

=)

W - W W

W

¢
)

L

Ve

i)

&

e
o
.

=]

o W W W U w
_

w W W w w
&

W W

W

G-17

Instruction summary — continued

CMPI: Subtract the immediate operand from the effective address operand and set

the condition code flags accordingly.
Neither operand is altered. Use TST for comparing with zero as it is much quicker.

CMPT #999 ea

CMPM: Subtract the contents of the memory address pointed to by the source
address register from the contents of the memory address pointed to by the
destination register and set the condition code flags accordingly. Increase the value
of both address registers by the size of the operand (1, 2 or 4 byte word and

longword respectively).

The main use for this instruction is comparing strings

LET Dn = length_string -1

loop loop CMPM (Ay)+, (Ax)+
IF PEEK (Ay) <> PEEK (Ax) THEN BNE not_same
Ay = Ay + s : Ax = Ax + s DBRA Dn, loop
GOTO not_same next
ELSE
Ay = Ay + s:Ax = Ax + s
LET Dn = Dn -1
IF Dn = -1 THEN GOTO next
GOTO loop
END IF not_same
next
not_same Dn is the

s = operand size character count

DBce: Test the condition and exit loop to the next instruction if the condition is
met.

If the condition is not met, then decrement the low order 16 bits of the count data
register. If the count becomes —1, then exit loop and carry on with the next
instruction, otherwise branch the two’s complement displacement of the following
word —32766 to + 32768 from the current program counter position (instruction
address + 2). The test may be one of the following:

T

G-18

Instruction summary = continued

2’s complement

arithmetic
EQ Equal To CS Carry Set GT Greater than
NE Not Equal CC Carry Clear LT Lessthan
MI Minus VS Overflow GE Greater than
PL Plus VC No Overflow or Equal to
HI Higher than T SIErie LE Lessthanor
LS Lower thanorsame F False Equal to
DBEQ DO, Toop = BEQ pass
SUB #1,00
(Equivalent) BPL loop
pass

DBT: Always branches and is of little use.

//
DBRA: Sometimes written DBF, it makes the branch based on the data register
count only and branches when the count reaches —1. Therefore the count should be
initialised to the required count _1. If the loop is entered via a jump or branch at the
DRBcc instruction, then the count is the required count and usefully an initial zero
count will cause an immediate exit from the loop.

DIVS: Sign Divide a 32-bit data register destination operand by a 16 bit source
|. operand and store the integer result in the lower 16 bits of the destination register.
| The remainder is stored in the upper 16 bits of the destination and keeps the
dividend sign. Division by zero causes a jump to the Divide-by-Zero Trap exception
| vector. On overflow, the result is larger than 16 bits, the V-flag is set and the
operation terminated without affecting either operand.

LET Dn=Dn [/ ea DIVS ea,Dn

ASR ea is a fast signed divide by two.
MOVEQ #2,02
ASR D2,Dx isaquicker divide by four.

Generally use DIVS and DIVU for division by a prime number, otherwise think of
an alternative as the division instruction, because of its general nature, is not quick.

| e R —— e

H

&)

Y

’

)

i

(8

m ®

lI]T

|
W w w

L

0L
W e

M @ W
W W W

g M @D

LI

W oW oW W W ow
v

G-19

Instruction summary — continued

DIVU: Unsigned arithmetic divide of a 32-bit data register destination opera db
16-bit source operand. i
The integer result is stored in the lower 16 bits of the destination register and th
remainder in the upper 16 bits. Division by zero causes a jump to the Divide-B f
Zero exception vector. On overflow the result is larger than 16 bits, the V-flag is -}(Iet
and the operation terminated without affecting either operand. , i

LET Dn=Dn / ea DIVU ea,Dn

EOR: EOR the data rcgister S he conten

: ource operand to the tents of sti i

n ' the destination
The source EOR data is normally used to invert the state of a bit or bits.

LET ea=Dn aAn ea EOR Dn,ea

If Dn =3, then bits 0 and 1 in the effective address are inverted.

USC EOI!I thre ﬂle source 1s lInlIlEdla‘e da a | here 1s no I‘nemo[‘}f 10 da[a register
g

EORI: EORI the immediate data to the destination effective address.

LET ea=data an ea EORI.B #16,00

Invert bit 4 of DO

EORI to CCR: EORI the immediate data to the condition code register.

LET CCR=4 an CCR EORI #4 CCR

Toggle the Zero_flag

EORI to SR: EORI the immediate data to the status register.

This i o .)
his is a prw.llt?ged 1:1.struct1or1 and attempted access while in user mode will cause a
trap to the privilege violation exception vector.

LET SR=8192 aa SR EORI #8192, SR

Toggle the supervisor bit

G-20

Instruction summary — continued

EXG: Exchange the longword contents of two registers.
Referred to in many BASICs as SWAP, which has a different meaning in the
MC68000 instruction code.

LET tmp=D0:D0=D1:DT=tmp EXG DO, D1
LET tmp=A0:AQ=A1:AT=tmp EXG AD,A1
LET tmp=D0:D0=A0:AQ=tmp EXG DO,AO

EXT: Sign-extend a data register contents, a byte to a word or a word to a longword,
to permit operations involving mixed size data to take place.

EXT Dn

ILLEGAL: The illegal instruction causes the processor to jump to the illegal
instruction trap exception process subroutine.

GOSUB I11_Trap TLLEGAL

JMP and JSR: JMP and JSR are long forms of BRA and BSR.
The main difference lies in the jump instruction’s ability to access any part of
memory whereas the branch instructions are limited to a relative + 32K bytes jump.

JMP: Jump to a routine in memory specified by the effective address, either
absolute or relative to the current program counter position.

GOTO ea JMP ea

JSR: Jump to a subroutine in memory specified by the effective address, either
absolute or relative to the current program counter position

GOSUB ea JSR ea

LEA: Load Effective Address loads a calculated effective address into an address
register.

The calculated address can be the sum of two registers, one must be an address
register, and a displacement which provides the addition of two registers and a
displacement without affecting either register, all in a single instruction.

Let An=Start_of_text address LEA text, An
Let An=Start_of_table LEA tabl,An
GOTO An + DO JMP 0(An.DO)

LET AO=A1 + D2 +64 LEA 64(A1.D2),A0

. §
m m m | &\ P E & 8 @ 8 S

4

| |
—
il
il
e
il
 —
i
=—
i
e
1
1
N]
i
| =
i
==
3
—
¥
a—
i
-
|
—

-z-q

U w

wow W ow

1V Y R VT 11 Y 1 I 1

I\

Instruction summary — continued

LINK: LINK enables a block of memory, part of the stack, to be temporarily
reserved for a specific purpose; that is an index table, a text string, an array etc. and
the space recovered when the requirement has passed.

DIM A(64) LINK An.# 064
Saves a block of 64 bytes in memory.
The original value of An is preserved on the stack and will be recovered on UNLK.

The current value of An is the start of the data space which may be most easily
accessed via indirect with displacement or indirect with index addressing modes.

LSL: Logically Shift Left the bits of the operand. The MSB sets the carry and
extend bits, the LSB is set to zero.

——J=0

X/C

LET ea=ea * 2
LET Dy=Dy * (2ADx)
LET Dy=Dy * (2ab)

LSL ea (shift 1)
LSL Dx,Dy (reg modulo 64)
LSL #5.Dy (shift 1 to 8)

LSR: Logically Shift Right the bits of the operand.
The MSB is set to zero and the LSB sets the carry and extend bits.

0 -

X/C

LET ea=INT(ea/2)
LET Dy=INT(Dy/(2ADx)
LET Dy=INT(Dy/(2a5)

LSR ea (shift 1)
LSR Dx,Dy (reg modulo 64)
LSR #5,Dy (shift 1 to 8)

MOVE: Move the byte, word or longword contents of the source effective address
to the destination effective address.

MOVE ea,ea
MOVE DO,D1
MOVE D7,-(SP)
MOVE (SP)+.D7

LET D1=D0
LET SP=SP-4:POKE(SP),D7
POKE(SP) ,D7:LET SP=SP+4

Use MOVEA where the destination is an address register.

G-22

Instruction summary - continued

MOVE from SR: Save the word contents of the status register in the effective

address register or memory location.
Be careful as this instruction is privileged in the MC68010 and MC68020 instruction

sets, programmers should try not to use it in user state.

MOVE SR,ea

LET DO=PEEK_W(SR) MOVE.W SR,DO

MOVE to CCR: Move the contents of the source operand WORD into the
condition code register.
Only the low-order byte is used; the upper byte is ignored.

MOVE ea.CCR

POKE_W(CCR) .4 MOVE #4,CCR

Set the Zero flag and clear all others.

MOVE to SR: Move the contents of the source operand into the status register.
This is a privileged instruction and attempted access while in user mode will cause a
trap to the privilege violation exception vector.

MOVE ea,SR

POKE_W(SR) ,1792 MOVE #1792,5R

Clear all flags, set user state, and set interrupt mask to level seven.

MOVE USP: Move the contents of the user stack pointer to or from the specified
address register.

This is a privileged instruction and attempted access while in user mode will cause a
trap to the privilege violation exception vector.

MOVE USP A3
MOVE A3,USP

LET A3-=USP
LET USP=A3

MOVEA: Move the contents of the source effective address to the destination
address register.
Byte-sized operations are not permitted.

MOVEA.W 192 A3
MOVEA.L 4,A0

LET A3=PEEK_W(192)
LET AQ=PEEK_L(4)

Instruction summary — continued

MOVEM: Move multiple registers to or from memory which permits the transfer of
a block of specified registers to and from memory in a predetermined sequence by
one instruction.

LET A7=A7-4:POKE_L(A7),D0
LET A7=A7-4:POKE_L(A7).D1
LET A7=A7-4:POKE_L(A7),D2

MOVEM.L #57344 - (A7)

MOVEM.L (A7)+,#1860

Saves registers D0, D1 and D2 in order on the stack and then recovers them in the
reverse order.

These instructions save registers D0, D1 and D2
(MOVEM.L # 7,24(A7)
(MOVEM.L #57344, —(A7) *

These two instructions recover registers D0, D1 and D2
(MOVEM.L 24(A7) .#7
(MOVEM.L (A7)+,#7

* The predecrement mode of addressing values the registers in reverse order for the
register list mask, permitting push-on, pull-off on a last in-first out basis.

MOVEP: Move data to or from a data register and alternate bytes in memory.
Enables the MC68000 to interface with 8-bit peripheral devices. The data is
transferred on either the high half of the data bus D8-D15, even addresses, or the
low half D0-D7, odd addresses, to memory occupying alternate bytes in the
processor’s memory map. The data is transferred in high-low order.

POKE_W(7+65536) ,0n
LET Dn=PEEK_W(7+65536)

MOVEP Dn,d(Ay)
MOVEP 7(Ay),Dn

This is the only instruction that provides word and longword access at odd
addresses.

MOVEQ: Move sign-extended 32-bit immediate data in the range of + 127 to —128
to a data register.

A fast means of loading small positive and negative integers into a data register.

LET DO=0 MOVEQ #0,D0

G=24

Instruction summary — continued

MULS: Multiply two signed 16-bit operands.
Only the low-order 16-bits are used from both operands for the multiplication, the
result being the 32-bit product in the destination data register.

MULS ea,Dn

ASL ea is a fast signed multiply by two.

MULU: Multiply two unsigned 16-bit operands.
Only the low-order 16-bits are used from both operands for the multiplication, the
result being the 32-bit product in the destination data register.

MULU ea,Dn

NBCD: Negate Decimal with Extend.
Subtracts the destination byte-sized operand and the extend bit from zero using

decimal arithmetic.

NBCD ea

Extend bit clear, the ten’s complement is produced.
Extend bit set, the one’s complement is produced.

NEG: Negate subtracts the destination operand from zero, producing the two’s
complement of a byte, word or longword operand.

NEG ea

NEGX: Negate with extend subtracts the destination operand and the extend bit
from zero, producing the two’s complement of a byte, word or longword operand.

NEGX ea

NOP: No OPeration.

Has no effect other than to increment the program counter by 2. Its use is generally
either for creating a space in code which may be used later on for adding a
subroutine call, for writing text etc. or for deleting parts of code, especially test
routines, without the need for recompiling.

NOP

:

£
w

=%
)

s T
W ow w

FF

H

-

m m

Wiy W W W W

m

Instruction summary - continued

NOT: Logically complement.
Produces the one’s complement of the operand.

NOT ea

OR: Or the source to the contents of the destination data register.
The source OR data is normally used to set specific bits of an operand

LET Dn=src || Dn OR ea.Dn

If src=3, then OR src sets bits 0 and 1 in Dn; the other bits are left unchanged

Use OR ea,Dn where the destination is a data register
Use ORI where the source is immediate data.

ORI: ORI the immediate data to the destination effective address.

| . ORI.W #512,D0
LET ea=data || ea Set bit 9 of word, others unchanged

ORI to CCR: ORI the data to the condition code register.

LET CCR=5 || CCR ORI #5,CCR

S us d to set b][posituons: Zero an Ca Iy b s 0 da d 2 m]Ie]Q set e
ORI 158 use ! d
T (1t n £ (,C) are 1 th

ORI to SR: ORI the data to the status register

LET SR=1792 OR SR ORI #1792, SR

S b :
TT-:- th.e statu.s ‘reglstell' Interrupt mask to level seven, all other conditions unchanged

is is a prn.nl.egcd instruction and attempted access from user mode will cause a
trap to the privilege violation exception process routine.,

et e e e

LY

W b W e

G-26

Instruction summary - continued

PEA: Push effective address.

Pushes a longword-computed address onto the current stack. Itis useful for passing
parameters to a subroutine which are accessed via an address register indirect with
displacement instruction and removed from the stack prior to return if necessary.

PEA param

JSR sprog
Access parameter sprog MOVEA.L 4(SP),AQ
Tidy stack MOVE.L (SP)+,(SP)

RTS

RESET: Reset external devices by asserting the reset line.

There is no affect on the processor other than an increase of two in the value of the
program counter. This is a privileged instruction and attempted access while in user
mode will cause a trap to the privilege violation exception vector.

RESET

ROL: ROtate without extend Left.
The MSB is rotated to the LSB and the carry; the other bits are shifted up one.

Fr

ROL ea (shift 1)
- ROL Dx,Dy (Reg modulo 64)
ROL #5,Dy (shift 1 to 8)

ROR: ROtate without extend Right.
The LSB is rotated to the MSB and the carry; the other bits are shifted down one.

—] C

ROR ea (shift 1)
e ROR Dx,Dy (reg modulo 64)
ROR #5,Dy (shift 1 to 8)

|

>
L

N — I N

Tl

g 05 0

m

, d W od w

W w w W w w w

W W O w W

i

Instruction summary — continued

ROXL: ROtate with eXtend Left. ;
The MSB is rotated to the extend bit and the carry, the extend bit is rotated to the
LSB and the other bits are shifted up one.

X/C &

ROXL ea (shift 1)
-y ROXL Dx,Dy (reg modulo 64)
ROXL #5,Dy (shift 1 to 8)

ROXR: ROtate with eXtend Right.
The LSB is rotated to the extend bit and the carry, the extend bit is rotated to the
MSB and the other bits are shifted down one.

- X/C

ROXR ea (shift 1)
ROXR Dx.Dy (reg modulo 64)
ROXR #5,Dy (shift 1 to 8)

|

RTE: Return from Exception.
The status register and the program counter are pulled from the current (supervisor)

stack. This instruction is privileged and attempted access while in user mode will
cause a trap to the privilege violation exception vector.

RTR: Return and Restore.
The condition code and then the program counter are pulled from the current stack.

(SP)+,CCR RTR
(SP)+,PC

RTS: Return from Subroutine. The program counter is pulled from the current
stack.

(SP)+,PC RTS

G-28

Instruction summary = continued

SBCD: Subtract Decimal with Extend.
Subtract a byte-sized binary coded decimal number and the extend bit from the

destination operand byte using decimal arithmetic and store the result in the
destination location.

SBCD $7 SBCD $27
56 $16 MOVE #4,CCR
$1 $11 SBCD DO,D1

Note that the z-flag is cleared if the result is non-zero, otherwise it is unchanged.
For memory additions the data must be stored with the most significant digit lower
in memory and the address register pointers initially set to the byte above the low-
order BCD digit. The only memory addressing mode is predecrement.

Scc: Set according to condition.
The specified condition is tested and the byte specified set to all ones if true or all

zeros if false. The condition may be:

2’s complement
arithmetic

EQ Equal To CS Carry Set GT Greater than

NE Not Equal CC Carry Clear LT Lessthan

MI Minus VS Overflow GE Greater than

PL Plus VC No Overflow or Equal to
HI Higher than T True LE Lessthanor

LS Lowerthanorsame F False Equal to

Sccea

STOP: Load the status register and Stop.
The immediate operand is put into the status register and the program counter

advanced to the next instruction and then stopped. Execution only resumes when a
trace, interrupt or reset exception occurs.

STOP #7

SUB: Subtract the source from the destination.
One of the integers must be the contents of a data register.

SUB ea.Dn
SUB Dn,ea

LET Dn=Dn - ea
LET ea=ea - Dn

Use SUB ea,Dn where the destination is a data register.
Use SUBA where the destination is an address register.
Use SUBI or SUBQ where the source is immediate data.

wm W

mom ﬂi m
¢ et e | N N O Y O ||

-

w

W o

WO ow W W o

W W

M W W W W

v

Instruction summary - continued

SUBA: Subtract the contents of the effective add
: ess fi
destination address register. e g g

LET An=An - ea SUBA ea,An

SUBI: Subtract a -
i constant value from the contents of the destination effective
Use SUBQ for speed and small integers.

LET ea=ea - 999 SUBI #999 ea

SUBQ: Subtract 4 constant Offrom I to8 f Im € CO.
TO! t_h ‘V
i . ntents l:lf the effectl ([~} 3ddre35.

LET ea=ea - 8 SUBQ #8,ea

SUBX- Subtr re ter t T ter T T e]nel}]ed memor fr()m
: act el Ehel ng (4] egls y O P Cdecr Y
memory, w lth exter 1d.

Th : Z " .
e extend bit enables multiprecision arithmetic to be performed, acting a
borrow between successive operations. , ey

Data register subtractions
Subtract two 64 bit integers
D0_D1 and D2_D3 Lo-Hi resply
SUB.L DO,D2 Low bits

SUBX.L D1,D3 High bits

Memory subtractions

SUBX - (Ay) ,-(Ax)

Where X infers the Extend bit
LET Ay=Ay-4

LET Ax=Ax-4

Memory addition

POKE(Ax) ,PEEK(Ax) - PEEK(Ay) -X MOVE #4,CCR
SUBX.L -(AD),-(A1)
SUBX.L -(AD),-(A1)

1I:lol:e that the z—f.l.'.ig is cleared if the result is non-zero, otherwise it is unchanged
bor memory additions first clear the Extend bit and set the Zero flag. The data mus;
e stored with the most significant digit lower in memory and the address pointers

initially set the operand si
size above the low order digit. P i
: . Pred
memory addressing mode. = G i s

SWAP: Swap register halves exch i
Sy xchanges the high-order word of a data register with

This instruction provides access to the low-order byte of the high word

Dn 0--15 < - - > Dn 16-31

G-30

Instruction summary — continued

TAS: Test and set an operand, compares the operand byte with zero and sets the
condition codes accordingly.

If the byte is zero, the Z_{flag is set; if the MSB is non-zero, then the N_flag is set.
The MSB of the operand is then set.

TAS ea

TRAP: Trap. The processor commences execution at the relevant trap exception
vector address.

TRAP #n

TRAPY: Trap on Overflow.
The processor commences execution at the trap on overflow exception vector
address.

TRAPV

TST: Test an operand.
The operand is compared with zero and the condition codes set accordingly.

TST ea

Use in preference to CMPI #0,ea

UNLK: Unlink.

The stack pointer is loaded from the specified address register; the address register
is then loaded with the longword pulled from the top of the stack and the linked
space deallocated.

UNLK An

BN B B -

’

Y

m o om | om

| o | O A O O N |

m W W

W W oW wwddd W w

)

L-.«LIJII.IJ

|
A

Appendix H- MC68000
Instruction Codes

H-2

=¥
T

The Motorola MC68000 series of microprocessors rationalize instruction code
allocation by segmenting the 16-bit Operation Word into five smaller blocks, each of
which has a fairly consistent meaning. Operation word instruction

Dreg

£z

1111019

m

Dre 1 1
mogel-;isstt:lre? main uses, normally holding the destination address in the general
; ; dducnon, one of t.he two register numbers for use in the specified instructi

r embedded data for use in the add and subtract quick instructions -

15141312111098?6543210

Type dreg dmod smod sreg

iy

frego Y = 5w 1Ster
g nl fefers toa rengteI m I‘_h()SC mnstances Where Lhe mnstruction ha‘a two reg

Instruction Word Parsing Analysis operands.

m

Type Dmod

b |

Y

817 |6

—

2

{15 |14 |13

The types 0 to 15 instruction codes (16 classes) are allocated as follows:

™

Dm i specifyi
od has two main uses, specifying the effective address mode of the destinatio
10N

operand in the general move ins i i
nstruction or, in mMost i
. 0 i
the operation to be performed. i el e

LR

Type Instructions Range Smod

m

51413

Bit manipulation, Move Peripheral and Immediate instructions
Move byte Instructions

Move longword instructions

Move word instructions

Miscellaneous instructions

Add Quick, Subtract Quick, Set conditionally and Decrement
instructions

6 Branch conditionally instructions

7 Move Quick instructions

8 Or, Divide and Subtract decimal instrs.

9 Subtract, Subtract extended instrs.

10 Unassigned

11 Compare, Exclusive Or instructions

12 And, Multiply, Add decimal and Exchange instructions

13 Add, Add extended instructions

14 Shift and Rotate instructions

15 Unassigned

Smod usually defi i
ines the effective address i
ss mode of i
operand for the move instruction. - e i

!'!1

Sreg

(6 T SR U I N =)

L

21110

Sreg defines the effective address register, usually the source

m

g

"

m

!

|8
h]

I

L
—-—

L1l
-

|
an

Instruction codes

BIT MANIPULATION, MOVE PERIPHERAL
AND IMMEDIATE INSTRUCTIONS

Type 1 (Bits 15-12)

- N
/.

.8

Instruction Dreg Dmod Smod Sreg Address Cond Codes E
syntax 11-9 8-6 5-3 20 Mode XN VC ‘]i
BCHG Dn, ea Dn 5 —ea— dataltadd R G I
BCHG data,ea 4 1 —ea— dataltadd --A - -
BCLR Dn,ea Dn 6 —ea— dataltadd e A e
BCLR data, ea 4 2 —ea— dataltadd o SNV b
BSET Dn,ea Dn 7 —ea— dataltadd --A - -
BSET data,ea 4 3 —ea— dataltadd S
BTST D, ea Dn 4 —ea— dataddmd2 SRE e @
BTST data,ea 4 0 —ea— dataddmd2 --A - -
MOVEP Dx,d(Ay) Dx 11x 1 Ay S e N E;;
MOVEP d (Ay) ,Dx Dx 10x 1 Ay - aeaa 2
ORI data,ea 0 0ss —ea— dataltadd -AA0O o
ORI data,CCR 0 0 7 4 - AAAAA -
ORI data,SR 0 1 7 4 - AAAAA
1
ANDI data,ea 1 0ss —ea— dataltadd -AAO00O E:
ANDI data,CCR 1 0 T 4 - AAAAA
ANDI data, SR 1 1 7 4 - AAAAA ’“E-
SUBI data,ea 2 0ss —ea— dataltadd AAAAA
1

ADDI data,ea 3 0ss —ea— dataltadd AAAAA E
EORI data,ea 5 0ss —ea-— dataltadd -AA0Q0O y
EORI data,CCR 5 0 7 4 - AAAAA E
EORI data,SR 5 1 7 4 - AAAAA
CMPI data, ea 6 0ss —ea- dataltadd - A A A A i

w

-

L
=y
-

)

1

-

W oW W W

AN

W w w W ow w w d w

v

v

H-5

MOVE BYTE INSTRUCTION

Type 1 (Bits 15-12)

Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 5-3 2-0 Mode XN VcC
MOVE.B ea,ea -AAO0O
source —ea— ALL *

destination —ea— dataltadd

* Address register direct mode is not permitted

MOVE LONGWORD INSTRUCTION

Type 2 (Bits 15-12)

Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 8-6 53 2-0 Mode XN VcC
MOVE.L ea,ea -AAO0O
source —ea— ALL
destination —ea— dataltadd
MOVE WORD INSTRUCTION
Type 3 (Bits 15-12)
Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 5-3 2-0 Mode X N V€
MOVE.W ea,ea -AAO0O
source —ea— ALL
destination —ea— ataltadd

MISCELLANEOUS INSTRUCTIONS

Type 4 (Bits 15-12)

Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 8-6 53 2-0 Mode XN VG
NEGX ea 0 0ss —ea— dataltadd AAAAA
CLR ea 1 0ss —ea— dataltadd -0100
NEG ea 2 0ss —ea— dataltadd AAAAA
NOT ea 3 S s —ea— dataltadd -AAO0O
MOVE SR, ea 0) —ea— dataltadd @ - - - - -
MOVE ea, CCR b 3 —ea— dataddmdl1 AAAAA
MOVE ea, SR 3 3 —ea— dataddmdl AAAAA
SWAP Dn 4 1 0 Dn — -AAO0O
EXT.WDn 4 2 0 Dn — -AA0D
EXT.LDn 4 3 0 Dn — -AAO00O
NBCD.B ea 4 0 —ea-— dataltadd AuAuA
PEA ea 4 1 —ea— conaddmdl - --- -
MOVEM 1ist ea 4 01x —ea-— conaltadd - --- -
MOVEM ea, Tist 6 01 x —ea— conaddmd2 @ - - - - -
TST ea 5 0ss —ea-— dataltadd -AA00O
TAS ea 5 —ea— dataltadd -AAO00O
TLLEGAL 5 3 7 4 —_ — ===
TRAP data 7 1 00vvyy— = @ ——— ==
LINK An,data 7 1 2 An —_ == ===
UNLK An 7 1 3 An —_ === ——
MOVE An,USP 7 1 4 An — === ==
MOVE USP, An 7 1 5 An —_ ===
RESET 7 1 6 0 — == ===
NOP 7. 1 6 1 —_ == ===
STOP data 7 1 6 2 - AAAAA
RTE 7 1 6 3 - AAAAA
RTS 7 1 6 5 —_ == -
TRAPV 7 1 6 6 e g kg = e
RTR T 1 6 T — AAAAA

= - —

=!! ===

mom 3 om
EmENNNNEEBENBNNNBNBNBNBG

m

4§

-
sy
-

|-
w

oL

i

™

WO oW W W W oW b W W b o w

4

v

- iy

Type 4 (Bits 15-12)
Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 5-3 2-0 Mode XN VG
use on on H5 & H7
x Size 55 Size Condition codes
0 = Word 0 0= Byte u = Undefined
1 = Longword 0 1= Word A = Affected

1 0= Longword — = Unaffected
ea = Effective address 0 = Cleared
CCR = Condition code register 1 = Set
SR = Status register

ADD AND SUBTRACT QUICK,
SET CONDITIONALLY and
DECREMENT INSTRUCTIONS

Type 5 (Bits 15-12)
Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 53 2-0 Mode XN VC
AddQ data,ea data 0 s s —ea— altaddmod AAAAA
SUBQ data,ea data 1 s s —ea— altaddmod AAAAA
Scc ea cccecll —ea— dataltadd - - - - -
DBcc Dn,data cecell 1 Dn — == ===
x Size 5§ Size Condition codes
0 = Word 0 0= Byte u = Undefined
1 = Longword 0 1= Word A = Affected

1 0= Longword — = Unaffected
ea = Effective address 0 = Cleared
CCR = Condition code register 1 = Set
SR = Status register
cccec = 4-bit Condition code
vvvv = 4-bit Vector address

BRANCH CONDITIONALLY INSTRUCTION

Type 6 (Bits 15-12)

Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 5-3 2-0 Mode XN VC
Bce data cccc displacement i
BSR data 0 1 displacement — ===
BRA data 0 0 displacement A e
x Size ss Size Condition codes
0 = Word 0 0= Byte u = Undefined
1 = Longword 0 1= Word A = Affected
1 0= Longword — = Unaffected
ea = Effective address 0 = Cleared
CCR = Condition code register 1 = Set
SR = Status register
CONDITIONAL TESTS
cc Mnemonic Condition
0 3 TRUE
1 F FALSE
2 HI HIGH
3 LS LOW or SAME
4 cC CARRY CLEAR
5 Cs CARRY SET
6 NE NOT EQUAL
7 EQ EQUAL
8 vC OVERFLOW CLEAR
9 Vs OVERFLOW SET
10 PL PLUS
11 MI MINUS
12 GE GREATER or EQUAL
13 LT LESS THAN
14 GT GREATER THAN
15 LE LESS or EQUAL

There is no Branch TRUE BT or Branch FALSE BF, the codes are used by the

BSR and BRA instructions

=
I

| E—
i |

E.i—-—

i

| E—— |

H-9
MOVE QUICK INSTRUCTIONS
Type 7 (Bits 15-12)
Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 53 2-0 Mode XN VcC
MOVEQ data,Dn Dn 0 data — - AAO0O
2's complement data value
OR, DIVIDE AND SUBTRACT DECIMAL
INSTRUCTIONS
Type 8 (Bits 15-12)
Instruction Dreg Dmod Smod Sreg Address Cond Codes
syntax 11-9 86 5-3 2-0 Mode XN VcC
22 ea,Dn D 0.8 § —ea— dataddmdl -AAO0O
Dn,ea Py lisi s —ea— altmemadd -AAO0O
g;ig ea,Dn Dn 3 —ea— dataddmd1l ~AAAYD
ea,Dn Dn —ea— dataddmdl -AAAO0
SBCD Dy, Dx Dx 4 0=)
y iy
SBCD —(Ay), -(Ax) Ax 4 1 Ay — : E : ; i
u
x Size 55 Size Condition codes
0 i Word 0 0= Byte u = Undefined
1 = Longword 0 1= Word A = Affected
1 0= Longword — = Unaffected
ea = Effective address 0 = C]car:(;: :
CCR = Condition code register 1 = Set
SR = Status register

e ——r——T
w3
SUBTRACT AND SUBTRACT EXTENDED AND, MULTIPLY, ADD DECIMAL
INSTRUCTIONS - AND EXCHANGE INSTRUCTIONS
Type 9 (Bits 15-12) ‘ ﬁ Type 12 (#8C) (Bits 15-12)
Instruction Dreg Dmod Smod Sreg Address Cond Codes Instruction A?Jlreg Dwmod Smod Sreg Address Cond Codes
syntax 11-9 86 5-3 2-0 Mode XN V.G syntax -9 86 5-3 2-0 Mode XN VC
SUBA.Wea,An An 3 —ea— ALL -———-- 3 AND ea,Dn Dn 0ss —ea— dataddmdl -AAO0O
SUBA. L ea, An An 7 —ea- ALL ----- AND Dn. ea Dn 1lss -ea— altmemadd -AAO00
SUB ea,Dn Dn 0ss —ea— ALL AAAAA i -‘ MULU ea,Dn Dn 3 —ea— dataddmd1 -AA00O
SUB Dn,ea Dn 1ss —ea— altmemadd AAAAA MULS ea,Dn Dn 7 —ea— dataddmd1 -AA00O
SUBX Dy, Dx Dx l1ss 0 Dy = AAAAA ABCD Dy, Dx Dx 4 0 Dy - A SEALRT A
SUBX —(Ay), -(Ax) Ax 1lss 1 Ay — AAAAA ABCD -(Ay), -(Ax) Ax 4 1 Ay — A A A
EXGD Dx, Dy Dx 5 0 Dy <l IR S e
EMULATION INSTRUCTIONS - Type 10 (#$A) EXGA Ax. Ay e namas TS AL A |
EXGM Dx, Ay Dx 6 1 Ay BET et e
Normally available for the implementation of user—written routines and entered by
ensuring four MSB of the op word or defined word constant are 1010 (10 dec),

which will cause a trap to a user routine; other bits of op word may be used for
parameter passing. The ST uses this instruction for initializing and operating the

> A’_line functions on which GEM VDI and subsequently GEM AES are based — so ADD AND ADD EXTENDED INSTRUCTIONS

use with care.

COMPARE AND EXCLUSIVE OR INSTRUCTIONS

Type 13 (#$D) (Bits 15-12)

3 ¢
momommmmm®E N e N ®

3 Instruction Dreg Dmod Smod Sreg Address Cond Codes
‘ Type 11 (4$B) (Bits 15-12) : syntax LIR9L 86 i3 gD Mode X NL¥.C
‘ Instruction Dreg Dmod Smod Sreg Address Cond Codes 3 ADDA.W ea, An An 3 —ea— AEL —mm e
| syntax 11-9 86 5-3 2-0 Mode XN VC " ADDA.L ea, An An 7 —ea— ALES 0 e
‘ CMPA ea, An An. X1 —ea-— ALL -AAAA 3 ADD ea,Dn Dn 0 ss —ea-— ALL AAAAA
ADD Dn, ea Dn 1ss —ea— altmemadd AAAAA
| CMP ea,Dn Dn 0ss —ea— ALL -AAAA 3
\ ADDX Dy, Dx Dx 1ss 0 Dy — AAAAA
CMPM —(Ay)., —(Ax) Ax 1ss 1 Ay — -AAAA ADDX —(Ay), —(Ax) At ol s 6 1 Ay — AAAAA
| EOR Dn,ea Dn 1ss —ea— dataltadd -AAO0O p 3
x Size 55 Size Condition codes
Bar 0 = Word =
x Size ss Size Condition codes =:E 3 1 = Longword g (1)2 S(;(::d ; -, Egjgized
0 = Word 0 0= Byte u = Undefined 1 0= Longword — = Unaffected
| 1 = Longword 0 1= Word A = Affected o ea = Effective address 0 = Cleared
1 0= Longword — = Unaffected T 3 CCR = Condition code register 1 = Set
‘ ea = Effective address 0 = Cleared SR = Status register
| CCR = Condition code register 1 = Set e
SR = Startus register iy 3

r%h—gl

—

& ""‘\S H-13
SHIFT AND ROTATE INSTRUCTIONS 3
I Conaon e —. R | EMULATION INSTRUCTION - Type 15 (4#$F)

) A " Normally available for the implementation of user—written routines, and entered by
Instruction Dreg Dmod Smod Sreg Address (»rmcvf Codes { E _‘ﬁ ensuring four MSB of the op word or defined word constant are 1111 (15 dec),
syntax 11-9 86 53 20 Mode X N E . directing the trap service to a user routine. Other bits of op word may be used for

parameter passing.
ASL Dx, Dy Dx 1ss 4 Dy — AAAAA - —
ASL data, Dy T S 0 Dy — AAAAA E 3 This service trap is used by the MC68020 processor for passing co—processor
ASL ea 0 7 —ea— altmemadd AAAAA instructions. The ST uses it in processing the application environment services
— AES), so be careful.
ASR Dx, Dy P 0'E 8 4 Dy — AAAAA ey
ASR data,Dy count 0 s s R B L — AAAAA ~ .
ASR ea 0 3 —ea— altmemadd AAAAA E 3
LSL Dx, Dy Dx 1ss 5 Dy — AAAO0OA
LSL data,Dy count 1 s s 1 Dy -— AAAOA
LSL ea NE —ca— altmemadd A AAO0A - —
LSR Dx, Dy Dx O0ss 5 By — AAAODA ; .
LSR data, Dy count 0's's 1 Dy = AAAOA - —
LSR ea 1 3 —ea— altmemadd A AAO0A .
ROL Dx Dy Dx 1ss 7 Dy £ ~-AAO0A S
ROL data,Dy count 1 s s 3 Dy — -AAO0OA
ROL ea 3 7 —ea— altmemadd -AAO0A
—
ROR Dx, Dy Dx O0ss T YaBy —_ -AAO0A
ROR data,Dy count 0 s s 3 Dy — -AAO0A
ROR ea 3 3 —ea— altmemadd - A A0 A E S 3
ROXL Dx,Dy Dx.-1isys 6 Dy —_ AAAODA . .
ROXL data, Dy count 1ss 2 Dy — AAAO0A ‘*E —
ROXL ea 2 7 —ea— altmemadd AAAOA .
ROXR Dx, Dy Dx 1ss 6 Dy — AAAOA -
ROXR data,Dy count 1 s s 2 Dy — AAAOA E j
ROXR ea 2 3 —ea— altmemadd AAAO0A .
E = 3
x Size ss Size Condition codes .
0 = Word 0 0= Byte u = Undefined
-_—
= Longword 0 1= Word A = Affected E 3
1 0= Longword — = Unaffected .
ea = Effective address 0 = Cleared
CCR = Condition code register 1 = Set E -— 3
SR = Status register .
(——g

Appendix I - Error codes

- -
m m ™ M TP MmMMmMmMmMMmMMMMMMM M M

(O O

EEEEE@EEEEEEEE_E_E:_

(=
BIOS ERROR CODES o I _ BDOS ERROR CODES
Fa—
. Error PCDOS Function
I - — ﬁ code equiv Supported Not supported
rror
v ~ -
code’ Fimnezion Grgnee l =32 1 Invalid function number
. -33 2 File not found
" G € t -_
0 }Q:K Successful operation = frm— 3 = 5 ko dommd
=1 B 35 4 No handles left
—2 Drive not ready Not ready, not attached or busy
¥ _—— (too many open files)
! —
-3 Unknown command Command not understood by device L ‘j .)
I . =36 5 Access denied
-4 CRCerror Soft error while reading sector) . S 5 AT
-5 Bad request Bad parameter, Cannot do request i — 3 :38 s Byaad. Jaucic
LE Baeiics . o I -39 8 Insufficient memory
7] ’ 1 i dia. Bad zero boot sect .
é ‘{S_Jnknown rfnedi:l ORISR TGt : = 3 —40 9 Invalid memory block address
. sy = —41 10 ** Insufficient memory
—42 11 ** Insufficient memory
-9 No paper e 15 12
—10 Write fault - 3
—11 Read fault I o 13
-12 General error Reserved 2 o 3 —45 14 - :
! . —46 15 Invalid drive specified
—13 Write protect Read only or protected media - 6 o Tasalid ?
—~14 Media change Media changed since last write or s ayalidoperabion
the rd/wr op not done (file error) : — a o =
—15 Unknown device BIOS doesn’t recognize device -4 I —49 18 Nomore files
—16 Bad sectors Format yielded bad sectors : == 3
-17 Insert disk Disk not in drive (shell error) I
- L) _ _
= (| 3 The list of PC-DOS equivalent error codes supported may be found by running the
l GEM demonstration program (Appendix L).
&=
. MISCELLANEOUS ERROR CODES
; | —
- a Error
code Function
; |
- 3 —64 Range error
I —65 Internal error
e 3 —66 Invalid prograrn load format o
bl I —67 Setblock failure due to growth restrictions
i — -ﬂ
.

Appendix] - BASIC GEM

) -
m T m T MM mmmmmMmMmmm Mm ™M W

(1 | O O T |

E_.____;__;_;__m_:_:_,___.,_:_.,.__.______::___::__._:_
» »

J-2

ST BASIC provides the programmer with direct access to parts of the operating
system AES and VDI interface.

GEMSYS

The AES control arrays are accessed through the AES parameter block (GB
pointer), the block provides pointers to the other supplementary AES parameter
blocks:

Control table + %0
Global array + $4
Int_in table +$8
Int_out table +$C
Addr_in table +$10
Addr_out table +§14

Data input and output as specified in
the AES traps and utility tables
Chapter 3.

The tables are used by the programmer to input data, call the appropriate GEM
AES function, GEMSYS(n), and read any reply from the data placed in the output
tables by the function.

VDISYS

The VDI parameter blocks are directly accessible from BASIC:

contrl input

ptsin input

ptsout output tables
intin input

intout output

The appropriate tables are loaded with data and the function called via VDISYS(1),
the (1) being a dummy argument. Any reply is read from the output tables.

GEMSYS VDISYS
GB control
global contrl
int_in Indirect ptsin
int_out access ptsout
addr_in intin
addr_out intout

)

)

M & W W W

m W Mm W

m om m
1 O O | | | O | N T | M |

-
-
—

i

oW W oW W w ow Wow w w da w e

il

»

-

J-3

SYSTAB

ST BASIC also provides access to a BASIC system table of the following read only
pointers and parameters:

Graphics resolution +$0 1 =high resolution
2 =medium resolution
4= low resolution
Editor ghost line style +$2 O0=thickened
(Read/write) 1 = intensity
2 =skewed
3 =underlined
4=outline
5=shadow
Edit AES handle + 84 1
List AES handle +§6 2 default
Output AES handle + 88 3
Command AES handle +$A 4
Edit open flag +§C
List open flag +$E 0=closed
Output open flag +§10 1 =open
Command open flag +$12
Graphics buffer +§14 Longword 32K buffer pntr
GEM flag + 8§18 0=normal, 1 =off

The GEM flag is used to turn BASIC I/O off and increase the processing speed of
GEM based operations. With BASIC partially off, the I/O functions involving the
screen, mouse and keyboard are disabled, although disk I/O is still enabled.

The BASIC functions can be re-enabled after the burst of speed for user input

Not all GEM and VDI functions are available through BASIC, some of the BASIC
housekeeping activities negate the effect of the functions.

Cautionary notes:

Ensure that evaluations of the graphic primitives take into account color. Many
experiments may appear not to work simply because the writing color is the same as
the screen backgound.

Characters are written to the screen starting from the left-hand edge and will
probably be obscured by the command screen border unless the programmer moves
it out of the way.

Use the mouse and the right button to draw a primitive, use the left button to change
the primitive. Note the effect on a primitive of crossing the left hand screen edge.

J-4

10
20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

Look at the spelling of the variables, particularly contrl, if the program crashes.
Although BASIC access to the processor is normally in user mode, PEEK and
POKE instructions are performed in supervisor mode to provide access to all parts
of memory.

start: CLEAR: a#=gb:int_out=PEEK(a#+12)

FULLW 2:CLEARW 2

INPUT "GDP (1 to 9) ";gdp

IF gdp<l or gdp>9 THEN GOTO start

POKE systab+24,1 : REM BASIC 1/0 off

POKE contrl,122:POKE contr1+2,0:POKE contrl+6,
GOSUB curson
attribs: GEMSYS(79)
x=PEEK (int_out+2)
y=PEEK(int_out+4) : REM y mouse

key=PEEK(gintout+6) : REM button state nil_left_right
ON key+1 GOSUB showcurs, done, drawprim

GOTO attribs

done: POKE systab+24,0:G0TO start:REM nasty return
drawprim: REM

COLOR 1,(RND*15)+1,1,RND*25,2
IF mouse=0 THEN GOTO 210
mouse=0

POKE contrl,123:POKE contr1+2,0:POKE contr1+6,0
VDISYS(1) : REM hide cursor

POKE contrl,11:in=0:x0p=x+50:yop=y+50:rc=0
ptin=2:1F gdp=4 THEN ptin=3:xop=0:yop=0:rc=50
IF gdp=2 OR gdp=3 THEN ptin=4:xop=0:yop=0:in=2
POKE contrl+2,ptin

IF gdp=6 OR gdp=7 THEN xop=50:yop=20:in=2

IF gdp=5 THEN xop=60:yop=40

IF in<>0 THEN POKE contrl+6,in

POKE contr1+10,gdp

POKE ptsin,x

POKE ptsin+2,y

POKE ptsin+d,xop

POKE ptsin+6,yop

REM IF ptin=2 THEN GOTO nxtin

POKE ptsin+8,rc

POKE ptsin+10,0

REM IF ptin=3 THEN GOTO nxtin

POKE ptsin+12,50

POKE ptsin+14.,0

REM nxtin: IF in=0 THEN GOTO draw

POKE intin, (rnd*3600)

POKE intin+2, (rnd*3600)

draw: VDISYS(1)

RETURN

showcurs: IF mouse=1 THEN RETURN

POKE contrl,122:POKE contr1+2,0:POKE contrl+6,0
curson: POKE intin,0: VDISYS(1)

mouse=1: RETURN

. REM x mouse

: REM random color

1l

i
I

ml
-

i
L4

e

[]
)

oW oW oW oW ow oWw W ow W wd w e Ww

10 RESTORE

30 ZB$=STRINGS(100,"*"):
40 y=VARPTR(ZAS$) :

50 DEF SEG=y:

60 FOR a=0 TO0 n

70 READ x:POKE a,x:

80 NEXT a

90 BSAVE "progl.asm",y,n:
100 STOP

200 DATA . .

»

by the BASIC program.

-

10 ZB$=STRINGS(100,"*"):
20 ZR$="12345678":

30 y=VARPTR(ZBS):

40 ans=VARPTR(ZR$)

50 BLOAD "progl.asm",y:

100 CALL progl(x,y,ans):

s

BASIC ASSEMBLER

There are many ways of producing a combined BASIC/assembler program on the
Arari ST computer, the following demonstrates one of them:

First create the assembler subroutine of relocatable 68000 machine code that can be
saved using a BASIC program similar to the following.

20 ZA$="12345678901234567890": REM \Use either method to

REM /create space for code
REM Somewhere to put code
REM Set up loop offset
REM Put code into memory

REM Save code to disk

REM Byte sized data

The machine code will probably be loaded into a space created within the main
BASIC program by a dummy variable. Obviously, any number of different machine
code utilities can be loaded into the same space dependant upon program state, or
they may be stored in individual program spaces.

Parameters are passed to the machine code routine on the user stack which contains
en integer count of the number of parameters passed on top. The next item on the
stack is a longword pointer to the 8-byte per parameter array. String variables use
the array parameter as a pointer to the string.

Output can be placed in predefined variables and if correctly formatted, read back

REM Space to joad code
REM Space for reply
REM Position for code
REM Position of reply
REM Load code from disk

REM Call program code,
passing parameters x
and y, returning data
in the variable ans

An alternative might be to compile the code within the BASIC program proper if
the machine code program length is quite short.

J-6

HAND CODING

Many programmers had their first contact with assembly language programming
through hand coded 8-bit microprocessor routines embedded in short BASIC
programs. MC68000 code is slightly more complicated to assemble than 8-bit code,
but is still perfectly manageable.

Use tables of instruction types 0 to 15 (H5 to H14), to generate the basic code i.e:
4096 x type +512 x dreg + 64 % dmod + 8 X smod +sreg

and the address modé encoding table (H.15) to determine the effective address (-ea-)
values if required.

Example of a hand coded program

|

5 |
w

-

mam

¢
| W

Project: Monitor screen inversion Author:

m e

Version: 2 Date: Dec [85
labl | Syntax| Src | Dest type dmod sreg dec Notes
Mnm| Mnm dreg smod value

00 MOVE.W |n |(SP) 3|7|4|7|4 |16188 Get old color
02 -1 -1

04 MOVE.W [n SP) 3|7 /4|7|4 |16188

06 0 0

08 MOVE.W |n |~«(SP) 3|714|7|4 |16188

10 7 7

12 TRAP |14 4171 14 | 20046

14 ADDA.W | n SP 137 (3[7]| 4 |57084 Tidy stack
16 6 6

18 EORI.W | n DO o|s5|1]10]0 2624 | Toggle col bit 0
20 1 1

22 MOVE.W [DO |—(SP) 3|7 /4|00 |16128 | Setnew colour
24 MOVEW|n |~HSP) 3(7|4|7|4 |16188

26 0 0

28 MOVEW|n |(SP) 3(7|4|7|4 |16188

30 7 7

32 TRAP 14 n A 14 | 20046

34 ADDA.W | n SP 13|713]|7]|4 |57084 Tidy stack
36 6 6

38 RTS 4|7 11]6]|5 |20085 | Return toBASIC

™

W "

-

m

Use this type of program to load the code into a file on disk:

10 restore:n=70

20 zb$=string$(100,"*")

30 y=varptr(zb$)

40 def seg = y

50 for a=0 to n step 2

60 read x:poke a,int(x/256):poke a+1,x mod 256

70 next a
80 bsave "b/w.asm",y,n+2
100 stop

210 data 16188,-1,16188,0,16188,7
220 data 20046,57084,6,2624,1

230 data 16128,16188,0,16188,7

240 data 20046,57084,6

250 data 20085

300 data 0,0,0,0,0,0,0,0,0,0,0,0,0
310 data 0.0,0,0,0,0,0,0,0,0,0,0,0
320 dats 0,0,0,0,0,0,0,0,0,0,0,0,0

and to toggle the screen or border color, run the following BASIC
program which loads the file back from disk and executes it:

10 zb$=string$(100,"*")
20 y=varptr(zbs$)

30 bload "xb/w.asm" y
40 call y

50 stop

The following brief notes ma g i 0 ili
be useful in c i \Y
: y mpiling programs in the above

Entry to machine code level from BASIC is in supervisor mode.
If you drop to user mode, be careful where you place your stack. Perhaps you might

like to use .the following sequence of instructions that jump over your stack or data to
the beginning of the executable code. DATA 17402,4,24576 + dis,...

Start LEA 4(PC),Al | Set Al to start of text
BRA dis dis =2+ text length (must be even)
Textor
stack
Program Start of program
code

If in difficulties with a BRAnch or JuMP, surround wi
i with NOP’ j
less sensitive to the count. 1 il e

B — e e e ————e L S

J-8

W
i

Project: Author:
Version: Date:

o

"

W

labl | Syntax | Src | Dest | type dmod sreg | dec Notes

Mnm| Mnm l drlegl smod l value
& +

“1

Appendix K - Program development
tools

L

0o NS

<

- -
£

o s S O I ..

=

o < TN S =
Ve

0w e DO
g

w oo
]

w

[+ B < NNC =S S R =

g 05
- - -

37
i/

1

ATARI MC68000 ASSEMBLERS

There are a number of assemblers available for the Atari ST programmer, they have
small discrepancies in the assembly syntax used, no uniformity in the library and
utility files supplied or of the method of creating an executable program.

This makes it difficult for the inexperienced programmer to type as source a
program listing created for another assembler, and to get it operational. What I have
tried to produce is an analysis of each assembler and a conversion chart that may
help in isolating fairly straightforward problems.

Where a published program uses a particular assembler specific facility (special
macros etc.) then translation will not always be possible by simple substitution and
there may be no easy solution. Hopefully the general assembler compatibility chart
will indicate whether there is the likelyhood of a conversion.

This guide is very much less than perfect, but it is an attempt at assisting
inexperienced programmers in a very difficult field.

The assemblers

Very few of the assemblers provide programming details of the Motorola M68000
processor instruction set, or teach the user basic assembler language programming.
If the reader has not written assembly language programs before, the brief overview
of the language in Appendix G and H should help.

Seka

The combined editor/assembler/monitor/debugger is held in a very compact 20K of
code, this means that parts of the package are a bit weak. Although two editors are
supplied, a line editor and a screen editor, neither performs block find and replace
function. Use the Atari wordprocessor in non wp mode for major or block changes
in large files. What is likely to be more of a significant problem is the limitation to a
leading letter for label and symbol names (the use of an underscore is very common
in most libraries and the Atari system variables). A possible solution would be to
substitute a little used letter for the leading underscore, say ‘z’.

On the positive side, the Seka assembler generates absolute or relocatable executable
code directly, has limited macro and conditional capability, and is a quick assembler
for writing programs if you know what you are doing — some of the runtime error
messages are incomprehensible with no guide in the manual as to what they are
trying to tell you. It is very convenient having all the facilties in one program, an
assembly error leaves the editor at the erroneous line for immediate correction and
reassembly or the programmer may trace through the code with the
monitor/debugger. The editor also allows the programmer to type the source code in
free format; the assembled output listing is automatically tabulated, but there is no
way of simply listing the code to a printer in a tabulated form which makes the
source difficult to read when trying to debug program logic errors. Source files

-

i

W oW oW W W b W ow W ow W W o W dl

v

-

K-3

entered in a tabulated form are o~casionally detabulated in parts of the assembly list
file. The system for linking files i. a bit messy and very non-standard as are some of
the assembler directives. The monitor/debugger allows the programmer to
single/multiple step through a program, examine registers, set breakpoints and
provides all the necessary facilities to aid program debugging. It is important to
ensure that program files are of even length; odd file lengths sometimes produce
run-time errors not discovered by the debugger, which makes the fault extremely
difficult to locate. The assembly syntax is pretty standard; labels must terminate in%
colon, ‘movea’ should be entered as ‘move’, the assembler correcting the syntax but
strangely ‘adda’ is acceptable. The 36 page manual limits the two examples to very
simple TOS programs, one of which includes macros. The manual has a lot of
ground to cover which it manages only at a fairly minimal level. i.e it does not
provide enough information regarding the cause of errors — an error in a macro is
flagged as an illegal operand in the calling code. The manual contains a very useful
single page command summary.

The package is very easy to use, although not as powerful as some of the other
packages in this Appendix. As an assembler, it is complete with minimal libraries of
DOS calls equates and GEM array generators.

Hisoft

A combined editor/assembler with a seperate monitor/debugger. The Hisoft
assembler employs include files to ease the access to the GEM and TOS functions
and produces machine code directly. The include files require function parameters
to be explicitly placed in the parameter arrays as per the assembler GEM example
(Appendix L). The assembler package incorporates a selective GST compatible
linker and does not like labels followed only by comments on the same line. The

editor is a full feature program with the minor omission of displaying and handling
only one file at a time.

The package contains include files of equates for BDOS, BIOS, extended BIOS
calls, system variables and a GEM include file that provides program initialisation,
VDI and AES constant equates and parameter array initialisation. The package does
not provide details of the data (Chapter 3) to be placed in the arrays.

The monitor/debugger besides supporting the usual step, set breakpoints, examine
and modify registers and memory etc. enables the assembled program to be run and
debugged using seperate screens for the graphics and the monitor output, a very
useful feature.

The documentation is well written and provides a good introduction for the
beginner.

A very friendly package that could benefit from the use of a RAM disk to hold all the
files in memory at once. In a 512K machine, seperating the program into two
components does not appear to provide the optimum ‘modus operandi’.

K-4

GST

The GST assembler package has a very good GEM based editor that enables up to
four files to be worked on at the same time in multiple windows, copying blocks
from one to another with ease. The only possible complaint regarding the editor
could be the relatively slow loading of program and files and of cursor movement up
and down within the file.

The assembler can produce relocatable binary output suitable for the linker or
executable code directly from position independant source. The executable code
does not contain the standard Atari TOS file header preamble, which must be added
by the programmer if the file is to act as a stand alone program. A very useful list of
the instruction mnemonics is provided, as is information on the optimisation route
taken in compiling code. The use of an underscore for the leading character of a
label or symbol is not permitted, which entails a degree of non compatibilty with the
standard Atari ST notation for some system variables and extended BIOS calls.

The assembly of source is slow by virtue of the many disc accesses, but the use of
RAM disc for compilation and the loading of all modules into memory together will
obtain reasonable speed. There is no uninitialised data (BSS) d The GST linker is
also supplied with the Metacomco macro assembler, it enables other high level
language modules written in Pascal, Assembler and C to be linked together in a

single program.

The library supplied contains macro definitions of conditional structures. GEM and
TOS libraries are not supplied.

The documentation consists of seperate (unindexed) assembler, editor and linker
manuals, which are very well packaged in a ring binder, the manuals are very
detailed, but may be difficult for the inexperienced assembly language programmer
to read.

Metacomco

The screen editor is good but does not follow the normal GEM style of access,
although the user will very quickly adjust. The global ‘find and replace’ is
comparitively slow as the screen is re-written for each change.

The assembler is slow in comparison with the smaller assemblers evaluated in this
Appendix and would benefit greatly from the use of RAM disk. Symbols may be of
up to thirty significant characters, but tabulated ‘dc’ data values on one source line
seperated by a comma and space are not permitted — the space may be used to
introduce a comment.

Metacomco supply the GST linker with their macro assembler which can produce
either a binary file suitable for the GST linker or a CP/M 68K obiject file suitable for
the DR 1ink68 linker; which links to the complete DR set of GEM and TOS
libraries, but is undocumented.

1
--—m—l_I_I_I—I-I_I-I-I-l-l-l_l-l-'I

m
| &)

-

o

m

= m

I

a W

oo o s G G W o w Whow W W o w

K-5

The Metacomco assembler package is supplied with assembler source to the GEM
libraries and a monitor program. The monitor provides breakpoints, a trace mode
and register/memory change and examine facilities.

The assembler suite of programs can be batched using the Menu+ program
provided, It enables the sequence of edit, assemble, link and run to be controlled by
the menu file, which runs and loads each program producing the specified outputs as
requested and entering the next stage automatically via a pause, wait or continue
programmed instruction.

The documentation is concise and very well laid out, but gives no additional
explanation on assembly errors to that displayed on the screen during the assembly
phase.

Digital Research

The Digital Research package can use any editor/word processor that is capable of
producing an unformatted ASCII text file.

The assembler, which is a reasonable implementation of the Motorola M68000
assembly language, has no macro facilities but optimises instructions and branches
to produce efficient code.

The .DR LINKG68 linker provides access to the DR GEM and TOS libraries that
consist of accessory and application header files, GEMDOS, BIOS, XBIOS, VDI,
AES and floating point libraries.

Although the assembler, linker and relocator programs can be installed as TTP
(TQS Takes Parameters) files, the programs are much easier to run via the
Activenture Corp. batch program. The additional use of a RAM disk to hold the

ﬁ.les and programs produces a very reasonable response, eliminating much of the
disc access.

The development package was intended for software developers and not the general
pul?lic:', as such it is written with a high degree of technical jargon. Complete with no
omissions, a veritable “War and Peace’. It provides information on all of the GEM
VDI functions and makes no mention of those not implemented on the ST.

DR C language modules may also be linked with the assembled source and DR
libraries to produce executable programs.

The package is supplied with the DR symbolic interactive debugger ‘SID’ enabling
the program writer to test and debug M68000 executable code, either from TOS or
GEM, read/write/move blocks of memory, disassemble code or produce a hex
dump, examine the CPU state, trace, run or step through the code.

K-6

Compatibility table

The analysis of each package necessarily concentrates on the flaws, looking for
inconsistences and omissions. What may not be apparent is how good in absolute
terms the packages are, any purchaser being able to justify the cost on technical
excellence alone.

It may be useful to give an indication as to the range of likely purchasers of each
package:
Kseka assembler
Absolute beginner — competent programmer: very fast program development

Hisoft devpak
Absolute beginner — competent programmer: fast program development, with
GEM and TOS bindings.

GST macro assembler
Absolute beginner — expert: full feature assembler capable of linking with
other high level language modules to form executable programs.

Metacomco assembler
Competent programmer — expert: full feature assembler with macros. DR’s
linker may be used to provide access to the complete set of system libraries,
and GST’s linker to link high level language modules into a combined
language program.

Digital Research assembler
Software developer: not available to the general public.

B B B - |
N N I Y O | O O | I |

& <
m W W W W W m m m &

L
[3
—

ol

' 4
44

i

TR VIR

W oW W W W W w W ow

W

Ak

-

-

K-7
GENERAL ASSEMBLER COMPATIBILITY
Not exhaustive, merely a guide to what facilities are available.
Function Hisoft macro Digiral GST macro Meracomeo Kseka
assembler Research assembler macro assmbler assembler
Editor GENST - Edit Ed All-in-one
package
multifile edit No Can use any Yes (4) No No
screen/line screen wordprocessor screen screen Line &
screen
GEM Yes ASCII text. Yes No No
Assembler(i/p) (.S) AS68(.S) (.ASM) (.ASM) (.S)
Qurpurt Executable Binary file Binary file or See linker Executable
no link or binary executable
(no file hdr)
Optimiser Yes Yes Yes Yes
Macros Yes No Yes Yes Yes
conditional Yes Yes Yes Yes Yes
Linker LINKST Link68 GST-LINK Can use either Relocatable
Input Binary file GST-LINK or mode
Submissions Barch file Control file DR’s LINK68 only
Qutput File-header and RELMOD
GST reloc tab programs (odd
compatible code (GST-LINK is formar)
linker data supplied)
opt symb tabl
Libs
GEM Yes (limited) Yes (complete) No Yes (source) Yes (mumimal)
TOS Yes (limited) Yes (complete) No No Yes (mintmal)
Maths No Yes No No No
Monitor Yes — No Yes Yes
(MONST) Supplied as
Debugger Yes SID Not supplied a source Yes
symbolic Linker can put example
interactive debug symbols on disk.
debugger in program
Relocator prg No RELMOD No No No
Symbols 16 sig chars 8 signif char Upto 30 chars
Label col 1 Space Spcor colon Spcor colon Spe or colon Colon
end } coln Spaceor: Colon Colon Colon Colon
Directives Optional period
Comment col 1 3 * *or; *or; *or;
coln space * ; Or space ; Or space :
Case (Symbols) Selectable Significant Not signifent Selectable Not signifent
Quotes Single/double Single/double Single Single/double Single/double

GST assembler executable code must supply a TOS program header and be written
in positition-independant code before it can be run.

Default file extensions are given in brackets.

K-8

ASSEMBLER DIRECTIVES COMPATIBILITY

Digital
Directive Explanation Hisoft Research GST Metacomco Kseka
Include (i/p) Insert external Yes(.5) No Yes (.IN) Yes Abs. code
file (.MAC) via linker
Text Relocatable code No Yes Section code Yes (def) Code ==
Data Initialised data No Yes Yes No
BSS Uninitialised data DSBSS== Yes No Yes Data ==
even Align to word Yeghan Yes AN R Yes & odd
ORG <addr> Absolute section Yes Yes Yes No Yes
Common Common region No Yes Yes No No
RORG
<add> Adjust curr locn No Yes Yes No
Offset Define table via No Yes Yes Yes No
a D8 directive
OPT Select addr mode Diff meaning Ignored PCor Abs No No
Globl External label MNo Yes No No Yes
Xref External name Yes Yes Yes Yes No
Xdef Internal label Yes Yes Yes Yes No
for external use
Module Lnk mod name Yes Yes
Comment Incl comments Yes
in linker listing
Equ Symbol Yes Yes Yes Yes Yes& =
Equr Register Yes Yes
Reg Register list Yes Yes Yes
Set Temporary value Yes Uses Equ Yes
DC Constant Yes Yes Yes Yes Yes
DS Storage Yes Yes Yes Yes
DCB Constant block Yes Yes Blk ==
RS Yes No
Conditionals Yes Yes Yes Yes Yes
IF eq,ne,gt Yes Yes No Yes If,Else
ge,lt,le 1FB
String c,nc Yes Yes Yes Yes No
Symbol d;nd Yes Yes Yes No
Library
Systemn GEM/TOS GEM/TOS/F
P None None Minimal
Macro 1f,Else,For
While,Until
Repeat,Case
Sub nth arg \n Not [n] n \n
Sub unigue # nnn @ applicable [.L] 20 \@
Mask2 Ignored Ignored
IDNT Ignored Ignored

**x* DS and DC word and longwords automatically align to boundaries

"

mm m

L

4l

i
L&

-
L S
e

ASSEMBLER CONVERSIONS

There are a number of assemblers available for the ST, each with different
characteristics, this section is provided as an aid to translation of programs presented
from alternative sources.

One of Lt‘u: by-products of the compatibility information is that it provides the
opportunity of generating a subset of directives and instructions that are of almost

universal applicability, but compatibility does tend to look at the lowest common
denominator.

ft\l] of these programs have other attributes which provide a significant improvement
in performance over the base standard, these improvements are not always apparent
to the casual user but very handy to have if required.

If you wish to wr:tf: source for maximum compatibility with other assemblers, the
following should minimise the problems: ,

P Size all instructions (move, clr, lea etc. do not default)

P Size branches (avoids masses of GST warning messages)

» Avoid using reserved words for labels such as text, code etc.

P Use a semicolon for all comments (except Hisoft and DR which should use a %39
» Do not tabulate DC data, added spaces do not travel well.

P Limit label and symbol lengths to eight characters.

» Use ‘EQU’ directive, not ‘=",

P After text and data sections, it is wise to ensure that the PC is on a word

boundary. Most programs use ‘EVEN’, some
5 assemble % > TYQ? s
a.Wora.L extension. rs use ‘DC’ and ‘DS’ with

.Slz:ng 1nstruct.iuns is perhaps the most difficult factor to come to terms with. I find
it cxtremel.y dlf:ﬁC.U]t to ignore and not stop and read any warning messages, and
become a little irritated to find that a branch ‘might be short’ or that LEA has not

gota.LL cxtensvlon. All warnings should be significant or else they will all be treated
as superfluous information.

K-10

General conversion chart

To To To To To
Kseka Hisoft GST Metacomco DR Comments
from |
Macros MACRO MACRO A n.a. Program may use
21 - \1 —[A] —[\l Expand many labels thatdo
Kseka 72 - \2 - [Bl — \2 code not appear to have
?0 - \@ =[L - \@ infull any function. They
comment 3 - * — * will probably be
Size Size breakpoints.
Opcodes opcodes opcodes
& branch
blk — ds — ds —ds —ds
Macros MACRO
MACRO
A n.a. Places GEM data
- 71 | — [A] Expand directly into VDI
Hisoft —?2 N2 — |B] code and AES arrays. If
— 20 \@ —[.L] in full the source includes
comment — 3 * - -3 GEM calls, follow
Size Size the examples in
Opcodes opcodes opcodes Appendix L
& branch
— blk ds
Macros MACRO MACRO
MACRO
A MACRO n.a. Seems to like all
— 21 - A\l [A — A\l Expand instructions sized
GST -7?22 - \2 [B - \2 code orissues lots of
-»? - \@ [.L] — \@ infull warning messages.
comment — * 3 Library of conditio-
nal macros will
Opcodes cause problems.
Code has to belong
— blk ds to a section.
Macros MACRO
A MACRO n.a. GEM lib supplied
— 21 — [A] 0 | Expand Implementation is
Metacomco
- 22 — [B] \2 code standard but
- ?0 —[.L] \@ in full translation depends
comment - * H on the availability
Size of the library used,
Opcodes branch (follow examples
inappx L)
— blk ds
—code Section C TEXT Delete any period
—data Section D BSS directive prefix.
Digital —zlabel —zlabel _label No macro facilities
Research but a full set of
comment -3 — 3 — 3 e GEM libraries. Look
(add at examples Appx L
Opcodes toall to see sheer power
labels) and how difficult
- blk ds translation will be

2 N

l—|-|-l-|-l-l-l-|-l-l-l-l-I'-l!l-_‘

i

"9

=
]
&

A

! mmmE

L
0w m

4

H

-_
-

a W

W W W W W W by W oW o ow ow

-

-

T 0 e

K-11

The above table will help to eliminate some of the more straight-forward program
conversion problems, those that remain are likely to be due to the use of assembler
specific directives and or libraries (especially label errors).

If a program is published, one assumes that any include file data will be generally
available and can either be appended as an include file or the code integrated with
the main program block of code.

If your assembler does not have VDI and AES libraries, then to use GEM you will
have to create the arrays and load the addresses as shown in the assembler GEM
example in Appendix L.

The chart is limited to simple conversions. Once include files and global label
definitions are used, you will need to assemble the program, generate a list of the
missing external labels and hopefully find them in the examples Appendix and/or
the call listings Appendix E.

Numbers

The following shows the standard presentation of the various numeric types:

Binary BBX XXX XXX X x=0or1l
Decimal nnnn n=0to9
Hexadecimal $nnnn n=0to9,atof

BASIC CALLING PROCEDURES

These are for simple source files assembled (and linked) without libraries.

KSEKA
SEKA>T Instruction to read source file from disc
FILENAME>f1ilename File to read (default .S extension)
SEKA>a Instruction to assemble source
OPTIONS>v Option to view assembly on screen
SEKA>wo Instruction to write output program

FILENAME>f1ilename File to write (default .PRG extension)

HISOFT
Menu driven, place cursor over instruction and click

Option --> Assemble

Option dialog box
Binary filename xxxxx.prg
Listing option boxes (none/screen/printer/disc)
Assemble/cancel boxes

GST
Menu driven, place cursor over instruction and click, or double click the TTP

program file and enter the filename as the parameter:

ASM . PRG filename to produce a list file and filename BIN from a default . ASM extension
file

LINK.PRG filename to produce a .MAP file and filename.PRG from a default .BIN
extension file

METACOMCO
The program files are installed as Tos Takes Parameters (TTP), double click and

enter input file:

ASSEM. PRG f11ename assembles filename.asm to produce a GST format output file

LINK.PRG filename produces a .MAP file and filename.PRG from a default .BIN

extension file

DIGITAL RESEARCH
The program files are installed as Tos Takes Parameters and Research the file data
entered into the parameter box.

AS68.PRG filename.S

LINK68.PRG filename.68K = filename.o

RELMOD.PRG filename

Produce binary file
Produce relocatable file
Produce absolute file

=)

£z

w a8

|

m

= Im (M fE) O

LA

A O N T N Y O | O O | J I |

i

ik

W W e

s W

W W W W W W W

1
an

<

-

Executable file sizes (bytes)

Natural compilations with no optimisation extensions called

Program Page # D.R Seka | Hisoft | GST |Metacomco
GEM error message L7 777 - = = 781
Assembler GEM 1.8-1L.17 1651 1734
3170 3170 3016 3170
TOS colour demo L16 145 162
246 246 235 248
TOS VT52 screen L18-19 194 .'
202 202 192 202
TOS sound program 1.20-22 324 331
591 591 586 591
A-line sprite prog 1.25-26 296 314
304 394 374 392

The Metacomco file sizes are for files linked via the GST linker except for the
‘GEM error message’ which used the DR linker.

The Digital Research files are absolute files and therefore presumably nearer the
minimum possible size.

(a secondary figure is given which specifically sets all text and data sections
initialised to provide standard file size compilation comparisons, not all of the test
assemblers can handle an uninitialised section)

K-14

C COMPILERS

Many C compilers have been developed for the ST range of computers, enabling the
ST programmer to produce modular, well documented, easily maintained code that
may be ported to other C systems with a minimum of effort.

Although achieving the same end result, the C compilers differ considerably in the
way that they attain that result. I give three examles of the compilation process:

DIGITAL RESEARCH C
Source text

,‘, Preprocessor

Intermediate file

[

Intermediate code file

Y=

Assembler text

| [Aembia]

Object file

Resolve define and include statements
Produce an intermediate code file
Generate assembly language source file
Create an object file

lLibrarit:s

Executable program file

Absolute program file

Link object file with run-time library and operat-
ing system files

Change the relocatable information to absolute
data

|

«m
“m

‘\

|

LU LN Y VR | VI U) O (I

U W w d

u L

W s b s

w oW W W W w

i

9

w.

K-15

GSTC COMPILER

Source text

Assembler text

|

Relocatable binary file

Resolve, define and include statements, produce
assembly source file.

Produce a relocatable binary file

l Libraries

Executable program file

Link object file with run-time library and operat-
ing system files

METACOMCO LATTICE C

Source text

,Q, LCI compiler

Intermediate quad file

LC2 compiler

Binary file (GST or TOS format)
|

Produce an intermediate file of logical records

Produce either an object file (DR linker) or a
relocatable binary file (GST linker)

l Libraries

Executable program file

Link object file with run-time library and operat-
ing system files

Those programmers who wish to program the Atari ST in C may find the following
brief notes helpful.

Unlike nearly all of the commercial assemblers, the C compilers supply a full set of
GEM and system libraries. Commercial C compilers for the Atari ST will, in
general, adhere to the GEM VDI and GEM AES function names used in this book,
usually only the first 8 characters being significant. The compilers diverge

W W OWw W w w w Wwow ww uwud o w

K-16

considerably in use of parameter names, the call and parameters are therefore not
provided here to avoid confusion. The manual of the C compiler you are using will
provide a definitive list of the library routines available, interfaces, and the required
parameter size, sequence and annotation.

Many compilers will have additional features to greatly simplify the task of writing
GEM programs; but bear in mind that the use of these ‘super C’ GEM functions
may put a restraint on program portability. A definite decision should be made as to
whether the programmer is writing portable code or simply writing a program.

On a more general note; it is very much easier to develop programs on a 1 Megabyte
disk drive, which makes the larger drive well worth the small additional cost for
those machines without the built-in drive.

=¥

£s

=¥

_
| &]

o m W

-

-

Appendix L - Example assembler
programs

L-2

The programs presented in this section illustrate some of the techniques involved in
accessing parts of the Atari ST operating system and also present general purpose
header/include files. The programs are written as shells to which the programmer
may add his/her own composition.

It is not the intention to provide ‘state of the art’ programs, merely demonstrate
access to the various parts of the operating system. Any attempt at definitive
programming would rapidly succumb to the passage of time and tend to produce a
book of listings. The main place to find quality programs will be the computer
magazines, where programs developed from this and other books will appear as
programmers quickly find new, smarter routes to access and use the ROM routines.

Desktop accessories should be compiled as applications for debugging purposes as it
is not possible to execute an accessory.

Program conversion key :

n.a program not suitable for this assembler.
xxx delete this line
¥ use ; for Kseka, GST and Metacomco comments

oy

0 DN N N N NN N NN NN) NN | N J N) NN NN N N) NN N NN |

i e T

i

s

wl

ool W

W W w W W w w W w W

ik

-

-

GEM

APPLICATION AND ACCESSORY HEADER FILE

Digital Research (and Metacomco in CP/M 68K object mode) application and desk
accessory files require a similar type of header source file construct to provide access
to the GEM VDI and AES libraries, either as the first file in the DR link statement
or as the beginning of a single block of assembler code.

Part of this file determines the size of memory the application requires and returns
the remainder to GEMDOS. Some Atari ST assemblers will provide similar code as
a header/initialisation file to permit the programmer to access the VDI and AES
functions through their own integral libraries.

* Digital Research * Hisoft . GST Metacomco Seka
- * n.a . n.a . . n.a
text ¥ Text segment *
*
globl _main * Make labels ¥ . xdef
globl _crystal * accessible to % . xdef
globl _ctrl_cnts * external files * . xdef
*
move.1 a7, ab * store stack (ab) *

move.] #ustk,a7 * set local stack *

* Desk accessories do not require the following lines of code
which size memory and return the unused memory to GEMDOS

move.l 4(ab),ab * basepage address *

move.l $c(ab),d0 * length of text *
add.1 $14(ab),d0 * length of data *
add.1 $1c(ab),d0 * length of BSS x
add.1 #$100,d0 * basepage size i
move.l d0,-(sp) * retained mem len *
move.l ab,-(sp) * memory to modify *
move d0,-(sp) * dummy word #
move #$4a,-(sp) * reallocate to GEM*
trap #1 * function number *
add.1 #12,sp * tidy stack *

* Main program call

jsr _main * main program code*
move.l #0,-(a7) * return to GEMDOS *

trap #1 * function call i

i
]
v

T

* Digital Research Q8 B0 e E2 G Bkacnico, Sats * Digital Research * Hisoft . GST Metacomco Seka

* GEMAES calls link through _crystal

*

* Menu manager
*

4
I | .
2

_crystal: —— -ﬁ de.b 1,1,1 * MENU_BAR... 30 &
move.l 4(a7),d1 * address of AES pblk* ! . ; 1l ‘ de.b 2,1,1 * MENU_ICHeck....31 '
move.w #200,d0 * GEMAES function # * y de.b 2,1,1 * MENU_IENable...32 &
trap #2 * function call s 4 ; : ; P' S — de.b 2,1,1 * MENU_TNOrmal...33 X
rts * return > 1 T dotb 1,2 %= MENU-TEXE......34 x

* I deshan g * MENU_REGister..3b X
bss * block storage seg * _—— I de.b 0,00 * "
even * force even boundary*® ; KXX deb 000 * *

de.b 0,00 * *
64 * de.b 0,00 * *

ustk: ds.] * - : : : L1l

 ; -y T
data i : : . - l
even ¥ XXX w |

&y
.

W W U w
-«

*

Object manager

; : - - E" s dc.b 2,1,1 * 0BJCLADD.... ...40 *
» : dc.b 1,1,1 * OBJC_DELete....41 *
_ctrl_cnts l dc.b 6,1,1 * OBJC_DRAw......42 *
: . S de.b 4.,1.1 * OBJC_FING...... 43 =
* Application manager E,. " 3 dc.b 1.3,1 * 0BJC.OFFset....44 =
* ' dc.b 2,1,1 * OBJC_ORDer..... 45
de.b 0.1,0 * APPLINI.......10 * : . ; :) II b % dc.b 4,2,1 * OBJCEDIt......46 *
deb 211 * APPLREAd......11 - : : : T deb 8,11 * OBJCCHAnge... 47 *
de.b 2,1,1 * APPLWRIte..... 12, ! . : ' dc.b 000 * »
de.b 0,1,1 * APPLLFINd......13 *] :) : dc.b 0,00 * *
de.b 2.1.1 * APPL_TPLay..... 14 : : : : E. i 3 *
de.b 1,1,1 * APPL_TREcord...15 * . : : ; : I * Form manager
de.b 0,00 * ¥ ‘ *
dc.b 0.0,0 * £ : . : : | o 3; de.b 1,1,1 * FORMDO........50 *
dc.b 0,00 * x ; . : : war 1 Ve dc.b 9,1,17 * FORM_DIAlog....51 *
de.b 0,1.0 * APPLLEXIt......19 *] : : : D)) ; de.b 1,1,1 * FORM_ALErt..... 52 ¢
. E | de.b 1,1,0 * FORM_ERRor..... 53 &
* Event manager e e 3 dc.b 0.5,1 * FORM_CENtre....54 *
: dc.b 0,0,0 * *
de.b 0,1,0 * EWNTKEY.......20 * e I‘ dc.b 0.0,0 * *
. de.b 3.5.0 * EVNT_BUTton....21 * i 3 de.b 0.0.0 * .
dc.b 5.,5,0 * EVNT_MOUse..... 2 0+ . . ; . 8 dc.b. 0.0.0 * *
dc.b 0,1,1 * EVNT_MESsage...23 b : “ . : dc.b 0,00 * ¥
de.b 2,1,0 * EVNT.TIMe......24 * , j ! _ e 3 .
de.b 16,7,1 * EVNT_MULti.....25 * ; _ _ - .
de.b 2,1,0 * EVNT_DCLick....26 * _ . _ : l
de.b 0,0,0 * X . ; : - = :
de.b 0,0,0 * A : ; - B 3
de.b 0,0,0 * : : : ; - n
e i! =
e -

F‘W
aﬁ

- - —
i) I -
* Digital Research * Hisoft . GST Metacomco Seka B : * Digital Research * Hisoft . GST Metacomco Seka
o : .
: - — * File selector manager
* Dialog manager I *
; - de.b 0,2,2 * FSELLINPut..... 90 ¥
| de.b 0,00 * ' 1 — dc.b 0,00 * '
dc.b 0,0,0 * * dc.b 0,0,0 * *
|‘ de.b 0,0,0 * : B dc.b 0,0,0 * A
. de.b 0,00 * . | e 3 de.b 0,00 * '
de.b 0,0,0 * * . dc.b 0,00 * s
de.b 0,0,0 * * de.b 0.0,0 * *
de.b 0,0,0 * o - ,ﬂ de.b 0,00 * *
de.b 0,00 * : ,'r-,'-'“ ‘ dc.b 0,0,0 * *
dc.b 0,00 * * : de.b 0,00 * ¥
dc.b 0,00 * * — *

* E!,l [- 3 * Window manager

* Graphics manager *

* e I de.b 5.,1,0 * WIND_CREate...100 *
dc.b 4,3,0 * GRAF_RUBberbox.70 * : _ _ ; I : dc.b 5,1,0 * WIND_OPEn..... 01 ¢
dc.b 8,3.0 * GRAF_DRAgbox...71 2 7 dc.b 1,1,0 * WIND_CLOse....102 *
dc.b 6,1,0 * GRAF_MOVebox...72 * : . _ : dc.b 1,1,0 * WIND_DELete...103 *
dc.b 8,1,0 * GRAF_GROwbox...73 * . . ; ; o 3 dc.b 2,5,0 * WINDGET...... Tk %
dc.b 8,1,0 * GRAF_SHRinkbox.74 * : / : : - de.b 6,1,0 * WIND.SET...... 106 =
dc.b 4,1,1 * GRAF_WATchbox..75 * : : . . I de.b 2,1.0 * WIND_FINd.....106 *
de.b 3,1,1 * GRAF_SLIdebox..76 % : : . . i i de.b 1,10 * WIND_UPDate...107 '

, dc.b 0,5,0 * GRAF_HANdle....77 * ; : . : = 3 dc.b 6,50 * WIND_CALc.....108 *
de.b 1,1,1 * GRAF_MOUse..... 78 ¢ de.b 0,0,0 * #
dc.b 0,5,0 * GRAF_MKState...79 * S : :

| < | LR 3 7

| : [Resource manager

* Scrap manager *

* L l de.b 0,1,1 * RSRC_LOAd..... 110+
dc.b 0,1,1 * SCRP_REAd...... g0 * - 3 de.b 0,1.0 * RSRC_FREe..... M+
dc.b 0,1,1 * SCRP_WRIte..... g1 : . ; . de.b 2,1,0 * RSRC_GADdress.112 *
de.b 0,0,0 * * : : . ; ») | 4 de.b 2,1,1 * RSRC_SADdress.113 *
dc.b 0,0,0 * & T 3 de.b 1,1,1 * RSRC_OBFix....114 *

| dc.b 0,0,0 * * - de.b 0,00 * :
de.b 0,0,0 * * I dc.b 0,0,0 * ¥
i il e S I L) (R x = de:b 10,0,0 %
de.b 0,00 * ‘ - 3 dc.b 0,00 * '
de.b 0,00 * * I dc.b 0,0,0 * x

| de.b 0,0,0 * * e *

| % B - 3 * Shell mana

- ger

_ I de.b 0,1,2 * SHELREA.....120 *

- 3 dc.b 3.1,2 * SHELWRIte....121 *
de.b 1,1,1 * *
de.b 1.1,1 * *

T 3 de.b 0,1,1 * SHEL.FINd..... 124 *

- I dc.b 0,1,2 * SHEL.ENVFn....125 *

Bism A g

L-8

The object file is used as the first file in the link to produce an Atari ST program ==

file, say myprog, that accesses the DR GEM libraries i.e: lany
either DR =
'r-'ll
ash8 -1 -u apstart.s all
or Metacomco (3
"
assem.prg apstart.asmopt j —
followed by the linking of the main program file (see following example) to the [l

header and the DR library files.

1ink68 [u] myprog.68=apstart myprog.o vdibind aesbind .
} 8l
and finally relocated using: -

relmod myprog =

Delete all temporary files, leaving either an application file nyprog.prg (which may
be run by double clicking the icon in the directory listing) or an accessory file which
must be renamed myprog.acc. Reboot the system and run the file by clicking the =
icon in the list of ‘Desk’ accessory files. -

Remember to initially compile and run accessories as applications to debug them. -

i

|
-

W I N T N N N J N O Y OO N NN NN NN | N J N |

L U

oW W W W W W bow W ow d w

ik

v

-

- I L-9

GEM DEMONSTRATION PROGRAM

To use GEM directly, push the function parameters onto the stack in the order
given by the GEM VDI and GEM AES tables, ensuring that the correct size of
parameter is pushed.

The following program, which may be written in either DR or Metacomco macro
assembler but must use the DR link68 linker, lists in descending order the TOS
error codes in dialog boxes, the user stepping from one code to the next via the
mouse or the ‘return’ key.

* Digital Research * Hisoft GST Metacomco Seka
* * na . na . PP |
* Demo GEM program

*

globl _main * % ! . xdef
globl _form_err * % : . xref
globl _appl_ini * % : . xref
globl _appl_exi * * ; . xref

*
text * . . The

* # Metacomco

_main: % .external
jsr _appl_ini i . .symbo1

* % . names .
move.w #63,d4 * Error start # * : . are

loop: move.w d4,temp * Save it 2 : Jlimited.
move.w dd4,-(sp}) * Stack it] . . to 8
jsr _form_err * What is it ¥ . characters
add.w #2,sp * Tidy it * . . i.e
move.w temp,d4 * Recover it * : .
dbra d4,loop * and next ‘ _form_er
jsr _appl_exi * Controlled exit* : appl_in
rts ¥ . _appl_ex

¥
bss *

s

temp: ds.w 1 ¥

s
end

= =
L-10 1
The file may be assembled using: =
-

either DR
asf8 -1 -u-pmyprog.s | E;

or Metacomco
assem myprog.asmopt j E:
Both programs are linked with the Digital Research link68 linker i.e:

=
1ink68 [s,u] myprog.68k=dpstart,myprog.o,aesbi nd ;}

Finally relocate using:

m
relmod myprog E. .

i

* m om
o e o — — S N S —

wmom m

3

Lak

v &

W Wl WE O WE O W R L

-

>

L-11

GEM DEMONSTRATION ASSEMBLY PROGRAM

It is possible to write assembly language programs that do not use the DR GEM
bindings but simply access the functions via the Extended BDOS TRAP #2 calls.
The following example shell shows a technique that will enable the programmer to
create a window, do some work in it, and then make a controlled exit.

Note: Although the window is created with the sizing diamond and sliders, no code
has been written to handle the screen managers requests for change; if these
functions are activated they are ignored. If the cursor is active (as in this program)
and covers part of the foreground content of the screen when the program is loaded,
it will leave a hole when moved.

* Digital Research * Hisoft GST Metacomco Seka
*
* Assembler GEM program

*

*

Size the job and free back to GEMDOS unused memory

text * xxx section ¢ . code

1 a7,ab ¥ curr -> gf ¥
move.l #Hustk, a7 * set local stk *
1 4(ahb),ab * get base page *
1 $c(ab),d0 * text segment *
add.1 $14(ab),d0 * data segment *
add.1 $1c(ab),d0 * uninitialized *
add.1 #5100,d0 * basepage size *

move.1 d0,-(sp) % ‘
move.l ab,-(sp) ¥ *
move d0,-(sp) * i
move #34a.-(sp) *free unused mem*
trap #1 ¥ *
add.1 #Sc,sp * tidy stack %
jsr start ¥ *
move.l #$0,-(sp) * ret to GEMDOS *
trap #51 * %

Technique for setting up VDI & AES arrays
Initialize AES arrays
start:

*

jsr ini_aes * *

=12

L [~ l L-13

U

LE)
* Digital Research * Hisoft GST Metacomco Seka T * Digital Research * Hisoft GST Metacomco Seka
* (all APPL_INI (1st call) see section 3 — g * Save virtual screen workstation device handle
appl_ini: o move.w contrl+12,vhandl *
move.w #$a.control o wyl tst.w contrl+12 ¥
move.w #50,control+2 i beq appl_exi #
[move.w #$1,control+4 = o .
| move.w #50,control+ ¥ ::’ * Test here for screen resolution and number of colors available
jsr aes ¥ * (even in mono). Load appropriate resource file using the AES

* RSRC_LOA call if necessary.

#*

tst.w int_ou
bpl graf_han

! | '_ : -
rts i y . . : ?rur

|

* [Get max possible size of window

*

*

* (all GRAF_HAN to get name of the currently opened window. E max_wind:

* move.w vhandl,int_in *

graf_han: move.w #7,int_in+2 ¥ sizes *
move.w #77,control * ay jsr wind_get *
move.w #30,control+2 . = tst.w int_ou *
move.w #$5,control+4 beq appl_exi *

move.w #50, control+6
isr aes
move.w int_ou,handle

Calculate work area of window

: 3 5 move.w #0,int_in *
* Tpitialize VDI arrays E isr wind_cal *

| & tst.w int_ou .
j&r TR ¥ beq appl_exi *

*

m

* (Qpen virtual workstation Calc new window bordered area

*

W oW ow W ow W o w o

v_opnvwk: move.w #1,int_in *
' move.w #100,contr] = ; s : : jsr wind_cal *
move.w #0, contrl+2 i :] . . j) tst.w int_ou *
move.w #11, contri+b i ; : ' beg appl_exi *
move.w handle,contrl+12 * :

* 11 input parameters

mom om om

move.w #1,intin *drive id = 3
move.w #1,intin+2 *line type :

move.w #1,intin+t4 *line color > ;
move.w #1,intint6 *marker type *

move.w #1.intin+8 ‘*marker color *

move.w #1,intin+10 *text face * -

move.w #1,intin+12 *text color * E 3
move.w #1,intint14 *interior fill *

move.w #1,intin+16 *fill index * . o
move.w #1,intin+#18 *fill color ¥ E s
move.w #2,intin+20 *NDC/RC *

jsr vdi #

.

¢ e | T T N O O | O

m

| L-14 L-15

="

Lk

* Digital Research * Hisoft GST Metacomco Seka * Digital Research * Hisoft GST Metacomco Seka

I1-1
L

'

* Alloc space for full size window * * Set screen parameters

& *

—
=1
wind_cre: ? S ﬁ vsf_inte:
move.w #100,control * Il move.w #23,contrl ¥
move.w #55 control+2 4 move.w #0, contrl+2 x
move.w #51,control+4 t e move.w #1, contrl+6 ¥
move.w #30,control+6 ? E: 3 move.w whandl, contri+12 8
*
move.w #S0fff,int_in * edges * L I nove.w #1.intin * solid A
move.w int_ou+2,int_in+2 * x1 ® =: — i isr vdi *
move.w int_ou+4,int_in+4 * y1 & i ' ’ *
move.w int_ou+6,int_in+6 * x2 * * Style 5
qt0ve.w int_ou+8,int_in+8 * y2 i El = 3 *
i jsr aes * - vsf_styl:
* I move.w #24, contrl ¥
move.w int_ou,whand] * - move.w #0,contrl+2 *
tst.w int_ou * Ef! o 3 move.w #1,contrl+6 ¥
beq appl_exi * I move.w whandl, contrl+12 :
* *
2l . .
* Open window at last * E_lf — 3 move.w #1,intin *n.a 3
¥ jsr vdi al
wind_ope: . 3
! move.w #101,control - E} —— = * Colour *
move.w #$5,control+2 % e = X
move.w #$1,control+4 * vsf_colo:
move.w #30,control+6 * E: a move.w #25, contrl -
% v - move.w #0, contrl+2 =
* Absolute parameters l move.w #1.contri+é ¥
* : move.w whandl,contrl+12 .
move.w whandl,int_in 2 EEI s 3 b
move.w #0,int_in+2 * v * move.w #1,intin * black ¥
move.w #0,int_in+4 g | * » - & . jsr vdi *
move.w #280,int_in+6 * x2 e EE — 3 i3
move.w #160,int_in+8 * y2 * ; * Set mouse style :
| jst ' '
| j aes)
| move : EE — 3 graf_mou:
| tst.w int_ou * move.w #78, control *
| beq appl_exi % l move.w #$1,control+2 ’
| * B move.w #$1,control+4 ’
* Do something on the screen, this is where your program starts. | e 3 move.w #$1,control+6 v
* *
| =— l move.w #S$0,int_in -
D . ;
— 3 jsr aes *
tst.w int_ou *
| i beg appl_exi *
- -
O 5
L

o S,

L-17

R e B

L-16 =S

/)

+ Hisoft GST Metacomco Seka

+ Digital Research * Digital Research * Hisoft GST Metacomco Seka

*

'

* (et position of window work area

*

Close v_scrn Stop o/p (Shut window down) *

#*

where: E;_'lll v_clsvwk:
move.w whandl, int_in 2 move.w #101,contr] *
move.w #4, int_int2 * work area " move.w #0,contrl+2 #
jsr wind_get : - ' ' ' B move.w #0,contrl+6 "
‘ tst.w int_ou - : ' : g - move.w vhand],contrl+12 *
. * i "
beq appl_exi 2
' - * Close window ¥
i 1
I + (et coordinates within work area Cll *
) wind_clo:
| add.w #35,int_out2 : : ; ' — move.w #102,contro] *
" add.w #35,int_out+d = : : : ' !ll move.w #$1,control+2 *
‘] sub.w #50,int_ou+B * . 7 ; i move.w #$1, control+d *
sub.w #50,int_ou+8 4 move.w #S0,control+6 *
| mw #
> [& i ; -
* Draw a shape from those coords * — move.w whandl,int_in *
* jsr aes *
v_rfbox: . :‘: tst.w int_ou . *
| move.w #11,contrl E ' : - beq appl_exi *

*

move.w #2, contrl+2
‘ move.w #0,contrl+b . : : : -
nove.w #9,contr1+10 ¥ . 3 - . e

* Deallocate space and handle *

*
o

move.w whandl, contrl+12 * wind_del:
. _ move.w #103, control o
+ Absolute coords -- not window the reason for this patch e move.w #$1 control+? *
g —— move.w #$1,control+4 *
move.w int_out2,ptsin i move.w #50,control+6 *
move.w int_ou+4, ptsin+2 . . . : : - -
move.w int_ou+B, ptsin+d 3 : ' : : - move.w whandl,int_in .
move.w int_ou+8,ptsin+b * . : ! . o 35T .)
- i — , tst.w int_ou *
jsr vdi ' ¥ : : ’ ’ —_ * beg appl_exi *

*
*

* Wait for a sign - about 1 minute o * Call APPL_EXI (Last call) *

* K1l

-

~
-

W W kg W oW U o L U o W odl

gynt_tim: applsxi:
move.w #24, control * - o g n Y *
nove.w 52, control+2 : ' ' ' ' e move.w #$0,control+2 "
nove.w. #¥1,control 4 ; ') - move.w #$1, control+d 5
move.w #$0,control+6 * it e :

' T jsr aes P

LML 1 :

nove.w HSFFFF.int_in *Lo e . A . 4 s < L e ’
move.w #$0000,int_in+2 *Hi * : ; , . e 8
. 5 . . : . = 3 !

’ 3 "y o j * Subroutines

* End of program, shut the window in a controlled manner .

* y =

24 - = £
e ﬁ - ; 19
* Digital Research * Hisoft GST Metacomco Seka E ! : * Digital Research * Hisoft GST Metacomco Seka
* (Get window data % . 2 * Set up AES array
* ¥
wind_get: !- e S— a ini_aes:
move.w #104,control x i move.l #control,_c : Tt A . zc
move.w #52,control+2 * move.l #global, c+4 . . zeHd . zc+d
] move.w #$5,control+4 = E,. — a move.l #int_in,_c+8 x . zCc+8 . . zc+8
move.w #30,control+6 £ "2 move.l #int_ou,_c+12 * o ze+1? . . ze+1? .
. . move.l #addr_in,_c+16 : . Zet16 . . zet16 .
* move.w vhandl, int_in * rem g o move.l #addr_ou,_c+20 * . ze+20 . . zc+20 .
* move.w #7,int_in+2 * out *] :] . E; s SO .
jsr aes . 3 . - : » 3 ¥
rts d : : : y ! * Set up VDI array
. T = *
* (Calculate window work area based on facilities: title, ad - iniivdi:
* scroll bar etc. ¥ I move.l #contrl,pblock *
* EE — : move.l #intin,pblock+4 *
wind_cal: - move.l #ptsin,pblock+8 *
move.w #108,control * I move.l #intout,pblock+12 *
move.w #%6,control+2 * move.l #ptsout,pblock+16 :
move.w #55,control+d g E,_: — 3 rts *
move.w #50,control+6 ¥ : : . . I '
| . : " Make space for the arrays. You must ensure these are large
|' * move.w #0,int_in * rem out * . . . E =5 : * enough to hold the array‘s data. Be especially careful regarding
| move.w #SOfff, int_in+2 * edges * * the spelling of the array names.
i move.w int_ou+2,int_in+t4 * x1 ¥ . ; - . l *
| move.w int_ou+d,int_in+6 * yl % E p— 3 bss * xxx section d . data .
move.w int_ou+B,int_in+8 * x2 * even ¥ oy, RRE . XXX . UXXK
move.w int_ou+8,int_in+10 *y2 £ I *
jsr aes S [— 3 ds.] 256 X : : . blk.1 .
Fe * - ustk: ds.1 1 * ; ; : Bk s
* *
* DI parameter block call m,—-- I . ’ pblock: ds.] 5 i ; . . blk.1 .
* e == _3 contrl: ds.w 12 .] . Bk
s intin: ds.w 30 * . . . blk.w .
move.l #contrl,pblock * reset * ; : : : — ptsin: ds.w 30 % : ; . blk.w .
move.l #pblock,dl y . . : : o - j intout: ds.w 45 b . . . blkiw .
move.l #115,d0 " ptsout: ds.w 12 2 : : Cblkow .
trap #52 & I 2
rtg ' : : ; ; [— a handle: ds.w 1 * 4 y CRTEN
‘ _—= vhandl: ds.w 1 . .] . blk.w
*+ AES parameter block call I whandl: ds.w 1 * - . . blk.w
" o 3
aes —
move.l #control,_c * reset * .| = “EG A I
move.l #_c,dl s . #ze . . #zc -
move.1 #200,d0 . e

! | .] -
trap #52 * : ; . .
rts 2 : 3 . . ~ AN

L-20

T
I
I

*

* Digital Research Hisoft GST Metacomco Seka

TOS

F-‘.
|
¢ ds.1 6 * 20 ¢ .z¢ blk.] I‘
contraol: ds.w 5 = : ; Eitw - |
* . i - ey
global: ds.w 16 : : - o (&1 l ﬁ DISPLAY DEMONSTRATION PROGRAM
int_in: ds.w 16 : B |
int_ou: ds.w ¥ : g : = E;t: — The following program shows a typical Atari TOS file, which simply inverts the
addr_in: ds.] 2 y ! ! . G k- : . g: - 3 current mono display color for those programmers who,like myself, prefer white on
addr_ou: ds.1 1 - : : Bt ll : black or toggles the border of a color display.
end prn — ﬁ * Digital Research * Hisoft GST Meta . Seka
0w I *
" ! ; . ”} I) . Demo Atari TOS program
The program may be assembled and linked (if required) using the assembler calling e] ¥
procedures outlined in Appendix K. | L -} 3 text ¥ Xxx section ¢ . code .
— l move.l a7,ab *
Su - 3 move.l #Hustk a7 * set -> a7 *
move.l 4(ab), ab .
move.l $c(ab).d0 ¥
P 3 add.1 $14(ab),do *
add.1 $1c(ab),d0 *
add.1 #$100.d0 ¥
- : move.l d0,-(sp) ®
n
. — 3 move.l ab,-(sp) *
I move d0,-(sp) *
— move #54a,-(sp) * free unused =
E: - a trap # * back to GEM ¥
add.1 #5c,sp =
— jsr start * jump to prg i
:: = 3 move.l #$0,-(sp) * terminate *
trap #51 =
i) - =
| start:
— 3 clr.l -(sp) :
move.w #32,-(sp) * set super d
- trap #1 *
mr
| i 3 move.l dO,al 5
I move.w #-1,d0 * get/set col &
— Jsr newcol *
:: - a eori #1.d0 *
jsr newcol .
! exit:
:Ju; =2 3 move.l al,-(sp) “
move.w #32,-(sp) * set user *
trap #1 ki
B m E move.1 #0,-(a7) *
- | trap #1 ¥
o _g
-

L-22

* Digital Research * Hisoft GST . Meta . Seka

newcol:

move.w d0,-(sp) * get color &

move.w #0,-(sp) *

move.w #7,-(sp) §

trap #14 A 4

add.w #6,sp i

rts =
#*

bss * xxx section d . data

ds.1 20 i . blk.]

ustk: ds.1 1 * : Bk
*

end

The above program is assembled and linked without any other files.

J

I-I-l-l-l-l-I-I-I-I-l-l-l-l-l-l-'

/

i

ii

W W o w W W w w W w o w w ow

| 9

K Y

L-23

TOS HEADER FILE

The following shows a typical Atari TOS header file that may be incorporated in a
user-written program to provide access to the base page offset variables.

T eSS PN S R S S R E R R R R R R R R R R RS R R A R R R R R R R R R R R RS RR R RS S R
#*

= Base page format initialised by BDOS
*

B T e

#

Itpa equ 0 * Low TPA address

htpa equ 4 * High TPA address + 1

Tcode equ 8 * Text segment start

codelen equ 12 * Length of text segment

ldata equ 16 * Initialized data segment start
datalen equ 20 * Length of initialized data
Tbss equ 24 * BSS segment start

bsslen equ 28 * Length of uninitialized data

a either GEMDOS

*dta equ 32 * pointer to DTA address

*parent equ 36 * pointer to parents base page

. eau 40 * reserved

*env equ 44 * Environment string pntr (GEMDOS)
2 or Atari 0§

freelen equ 32 * Free memory length after BSS

ldriv equ 36 * Drive from which program loaded
resvd equ 37 * Reserved

fcb2 equ 56 * 2nd parsed fcb

febl equ 92 ¥ 1st parsed fcb

#

¥ common tail

command equ 128 * Command tail

Although it is good practice to size the memory requirements of your program and
return the unused memory to GEMDOS, programs can be written without if they
return to the GEM desktop.

GEM allocates all the memory to the program, only if it multitasks or calls and loads
another program is there any real need to return spare memory.

CHARACTER PRINTING PROGRAM

This simple program demonstrates some of the methods available for printing to the
VT52 screen. The compiled program may be installed as:

=
A ‘GEM program’ — the busy bee cursor will appear in the display and leave a hole -
when moved.
A ‘TOS program’ — with flashing cursor, the cursor may be hidden quite easily by : ::

incorporating within the prdat string the ‘hide cursor’ escape code as specified in
Appendix C.

-
* Digital Research * Hisoft GST Metacomco Seka ;‘)""
* Monochrome TOS VT52 screen print program (0,0 to 24,79) En.
o (For colour, set max print width in 'prdat' to 39)
- -
text * xxx section c . code . —
=3 GEM BIOS type print
clr.1 d4 * Clear d4 % ; : : ; EE
clr.1 db * Clear db 2 : . : ;
lea prdat,a4d * Get data address*
move.b (ad4),d4 * Data count-1 * E
cloop:
adda.1 #1,ad * Get next *
move.b (ad),db * Getchar byte . E:
move.w db,-(sp) * Stack char.w ‘ 2
move.w #2.-(sp) * Send to console *
move.w #3,-(sp) *Set bconout() y E
trap #13 * a9t * E
add.w #6,sp * Tidy stack * y . .
dbra d4,cloop * loop for next * i ! :) J'\E
* GEM BDOS type print
lea mess,a0 * GetASCII string * T
move.1 a0,-(sp) * Stack it . —
move.w #9,-(sp) * set conws() '
trap #1 * Call jk ¥ B
add.w #6,sp * Tidy stack 7 -
move.l #200,d1 * % : : : . =
exlp: =!
move.l #-1,d0 * Wait -
dloop: -
dbra d0,dloop * ¥ :_l
dbra dl,exlp * %

H

f]

W W o w o w o w w b ow W W o w o

e

| I -

ul

* Digital Research * Hisoft GST Metacomco Seka
move.l #0,-(a7) * GEM return o
trap #1 t i
rts * Return -
data * xxx section dl KK
even N G PR (I ¢ < AR
* \T52 screen location character equivalents
e e e L U e (¢ S P i S e
*0.1,2,3,4,56,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
BRI s e = o g A B D E FFGE HT W
*73,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42
Sk N 0B A RS T WM MW X YD LN]
* 43,44 45, 46,47,48,49,50,51,52,53,54,55,56,57,58,590,60,61

*

A e hy e i et FUagi b o g kBl om0
* 62,63,64,60,66,67,68,69,70,71,72,73,74,75,76,77,78,79

*

% Data string to print (See Appendix C for codes)
) ¥ section d2 . even .
prdat:dc.b 50 * Length of text -1

deb 27,'E! * Clear screen

de.b 27,'b';0 * foregnd col white

doub 27 e * backgnd col black

dc.b 27,'Y 0,0' * Set cursor at 0,0

de.b 27,'Y!11,1' * Set cursor at 1,1

dc.b 27,'b',1 * foregnd col black

de.b 27,%".0 * backgnd col white

dc.b 27,'YBf24,69' * Set curs @ 24,69

de.b 27,'p! * Inverse video

dob 27 NI *Up 1 line

de.b 'hi I! * Say something witty

dc.b 27.'Y.4" * gset cursor at 12,20

deb 27" * Reset video

X

L-26

N
o
I
s

* Hisoft GST Metacomco Seka

¢ gt ocdith T SOUND DEMONSTRATION PROGRAM
L —
* Print null terminated string - uses ASCIT & control codes This program provides a basic introduction to ‘sound’ programming on the Atari
* . . even . = - i ST; where cxpcrimentzftion with each of the sounds provided is perhaps the best
3 : ' 1] I] approach to understanding the effects of each argument.
*
* .
. de.b 'hello’ * Alternative print - Take care of the following general points:
mess: .16 7 ¥ method for screen T B
! A0, -] .
de.b 'hello’ * printing. Userstack Make sure it is large enough. It grows down in memory and it can
dc.b 10 * Text overwrite the data area.
s b inefeed 4 A . \ .
dc.b 'hello’ 1]lZir?age e :: - a Timing It is necessary to provide a delay before an exit back to GEMDOS, TOS
dc.b 10,13 caid & balh ‘5 b could reallocate the sound data bytes space.
dc.b 'hello’ BRG ¢ _
trin : Y
dc.b 0 * End of stri 9* .) . even . 1T m 3 * Digital Research * Hisoft GST Metacomco Seka
* - *
- I * Experimental TOS sounds program
end == 3 .
e
— I text * xxx section c . code .,
o move.l a7,ab * create *
= a move.l #Hustk, a7 * space for e
move.l 4(ab),ab * program ¥
- move.l $c(ab),d0 i
T ; add.1 $14(ab),d0 *
add.1 $1c(ab),d0 ¥
add.1 #5100,d0 *
T move.1 d0.-(sp) *
e : move.l ab,-(sp) '
move d0.-(sp) :
o 3 move #54a,-(sp) »
-— I trap #1 A
add.1 #5c,sp *
M‘L_ . .
::EIF - B start:
move.l #soundl,al * ¥
S jsr dosound ¥ %
Lo m 3 *
move.]l #150,d1 * 15 secs -
loopo:
i a moveq #-1,d? * wait for *
= g loopi:
dbra d2, Toopi * finish 3
fnl E dbra d1, Toopo =
exit:
= - ¢lr.l =(sp) * GEMDOS ret *
E.El ! .\! trap #51 *
rts x
*
T 1 \=
=) 7 L5

L-28

* Digital Research * Hisoft
dosound:
move.l al,-(sp) * gound pointer *
move.w #32,-(sp) * >
trap #14 y *
add.w #6,sp % :
rts
bss R
gven LA
*
ds. 1 g4 * Large enough not ™
ustk: ds.1 1 * to overwrite data *
data * X
gven L
* * Bell
soundl:
*
de.b 0,334 *\ chan A .
de.b 1,0 */ 2150 hz :
de.b 2,0 *\ chan 5
de.b 3.0 */ B *
de.b 4,0 *\ chan *
dodh: 500 #f € ¥
de.b 6,0 * noise ¥
de.b 7.8fe * enable A only 7%
dc.b 8,510 * enable A envelop®
de.b 9,0 * Boff *
de.b 10,0 * Coff *
de.b 11,0 *\Single attack ¥
de.b 12,$10 **envelope shape *
deb 13,8 * 1001 o
dc.b 130,100 * delay 3

GST Metacomco Seka

section dl
XXX

section d2
AXA

XXX

XAX

data .

XXX

i 1 1l
. bkl

code .

b398 4

-
.

=t

| &]

-

o
U
—-—
i
—
i
L]
i
-
i

|

i

=

: * Digital Research * fisoft GST Metacomco Seka
] * sound?: £ Siren
ﬁ dc.b 0,$fe *\ chan A X
de.b 1,0 */ 440 hz Hi note*
de.b 2,0 * \ chan £
i! i il e .
dc.b 4,0 *\ chan ¥
do:bh: Gh0 ESOC %
— dc.b 6,0 * noise *
ﬁ dc.b 7,$fe * enable A only *
P dc.b 8,11 * A amplitude *
) dc.b 9,0 * B off g
q de.b 10,0 * C off *
de.b 11,0 * no *
dc.b 12,0 * envelope %
= dc.b 13,0 */ shape ¥
dc.b 130,20 * *
a dc.b 0,$56 *\ chan A Lo note*
dc.b 1.1 */ 187 hz %
dc.b 130,20 * %
: dc.b 0,5fe,1,0,130,20 *Hinote*
dc.b 0,$56,1,1,130,20 *Lonote*
a * sound 57 silence
de.b 8,0,9,0 * A& B off *
3 dé.b 130,50 * *
* sound3: * unshot
e . .
;! dc.b 0,0,1,0,2,0,3,0,4,0,5,0 *
de.b 6,15 * medium noise period
dc.b 7,199 * enable noise chans A,B & C
3 dc.b 8,16 *\ using *
de.b 9,16 * envelope o
de.b 10,16 * / control 2
;; dc.b 11,0 *\ envelope period*
> de.b 12,16 */ ¥
de.b 13,0 * one cycle decay *
3 de:b 130,25 * =
* sound % silence
}5 dc.b 8,090 * A& B off - *
do.b 130,60 * ¥

-

l_
I
=

=¥
[

W !

-
|
o

s YJisoft GST Metacomco Seka

A-Line

* Digital Research

=

]|

* soundd: ' explosion
de.b 0,0,1,0,2,0,3,0,4,0,5,0* ﬁ I‘ﬁ A-LINE PARAMETER TABLE
; * eriod
dL'E 3 :gg * e:{;;?: Emse chans A.B & C The following is the complete list of the A-line equates and functions. It may be
gzb 816 *\ using * ?, — ._3 used as a standard assembler header file to A-line programs.
de.b 9’16 ; el’WE]DDB ; . L R %
dc-b 10.16 & I.," Con[r()] *] : FREFRBERRERIRRRENS * L
de.b 11,0 *\ envelope period* . i’:' —— . ¥ o) }
de.b 12.80 */ * ; ; : '7)'\ I 2 : -line parameter table
dc'b 13‘0 i One C}rc.le decay ; I I - I 3 LS s R SR R E R R A R R R R Y P S N]
dc.b 130,120 * * I | 5
; s silence I V_CEL_HT equ -46 * W Pixel cell height
" shing = V_CEL_MX equ -4 * W Maxinum cells across -1
dcb 8.0.9.0,10,0 * A B &C off | 3 V_CEL_MY equ -42 * W Maximum cells high -1
2 30'160‘,' * V_CEL_WR equ -40 * W Offset to next cell
. gecB 90, : V_COL_BG equ -38 * .W Background index color
) ' whistle E'— - 3 V_COL_FG equ -36 * .W Foreground index color
: Saurds: I V_CUR_AD equ -34 * L Current cursor address
6,0 V_CUR_OFF equ -30 * W Offset to 1st cell
dek, 3 O5L?Qn2b?eﬂtzngign1; E - 3 V_CUR_CX equ -28 * W X cursor position
dC'E ; ?5 J V_CUR_CY equ ~ -26 * WY cursor position
dc.b 9.0.,10,0,11,0,12,0,13,0 * I V_CUR_CNT equ =24 * B Cursor flash interval
48 Iﬁtl} o im'!l.ieﬂ tempreg * [l V_CUR_TIM equ -23 * B Cursor countdown timer
dc.b 128 -2 40 * reg-step- end’ | =irg— 3 V_FNT_AD equ -22 * L Font address
de-h 1290 4 “ I V_FNT_ND equ -18 * W Last font ASCII code
g0 - V_FNT_ST equ -16 * .W Tst font ASCII code
W o W V_FNT_WR equ -14 * W Font width
s g I V_X_MAX equ -12 * W Maximum X pixel screen value
do.b 7.256.8,0 * off s ; - : ﬂ‘};_)__ ? V_OFF_AD equ =10 * .L Font offset table address
ic.b 255.0 * return * ; . . :ﬂl - B V_STATUS equ B * W Tex.t statuslbyte
. .) * : | . even . I V_Y_MAX equ -4 * W Maximum Y pixel screen value
e TR VPLANES equ 0 * .W# video planes
Sr VWRAP equ 2 * W # bytes/video
1 CONTRL equ .l
- INTIN equ et
i 3 PTSIN equ 3l e array pointers
INTOUT equ s
. PTSOUT equ o) el i
Wila 3 COLBITO equ 24" R A R
COLBITY equ 26 * W*2*) write
2o COLBIT2 equ 28: % W X 4% Vicplor
TR S COLBIT3 equ 30 * W/8*)
- LSTLIN equ 32 * W =1

a'il

L-32

LNMASK
WMODE
X1
Y1
X2
X2
PATPTR
PATMSK
MFILL
CLIP
XMINCL
YMINCL
XMAXCL
YMAXCL
XDDA
DDAINC
SCALDIR
MONO
SRCX
SRCY
DESTX
DESTY
DELX
DELY
FBASE
FWIDTH
STYLE
LITEMSK
SKEWMSK
WEIGHT
ROFF
LOFF
SCALE
CHUP
TEXTFG
SCRTCHP
SCRPT2
TEXTBG
COPYTRAN
SEEDABORT

equ
equ

equ
equ
equ
equ

equ
equ
equ

equ
equ
equ
equ
equ

equ

equ
equ
equ
aqu
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

a4 *
3/

i i
40 *
47! %
44 *

46 *
50 *
52 *
54 *

56 *
58 *
60 *
62 *
64 *
66 *
68 *

0
rEiy
74 F
78 &
78 °*
80 *
82 *

g4 *
g *
90, !
92 *
94 *
9% *
98 *
100 *
102 *
104 *
106 *
108 *
1 #
114 *
116 *
T8 *

W VDI line style
W Write mode

MWOA

W coordinates
W

M/

L Current fill pattern pointer
W Length of fill pattern mask
W O_single plane
W O_no clipping

M\

W Clipping

MW values

N/

W txtblt x dda accumulator
W txtblt scale factor

W O_down

W 0_font monospaced
W\ Coordinates of character
W / in font form

W\ Coordinates of character
W / on screen

W Charachter width

W Charachter height

L Font form pointer

M width

MW style

W Lighten text mask

W Skew text mask

W Extra text width

W High offset skew

W Low offset skew

W O_no scaling

W 0_horizontal orientation
W Text foreground color

L Text effects buffer

W Offset to scale buffer
W Text background color

W Copy raster type flag

W Abort fill routine pointer

>

(E

T

av

el

(1.
r- EE——_ Y 1 1 IIIIII' I IIIIIII l IIIIII IIIIIIII'I lIIIIIII
W W oW w w o ow w W ouw w u

)

f

7

o

N

L Y

i!il*li!lili-}iiliinf!!iiii*fil(—l—-}i!*aiodililiii

*

F : x
A-1ine function calls

*

I*lliili!iliiilii!ie8{&&-}-}{-{--}'{‘1!!!!ill’f!iii—-}*(—

*

init equ $a000

putp?x equ init+]l * Put pixel

getpix equ init+2 * Get pixel

abline equ init+3 * Draw a line

habli?e equ init+4 * Horizontal line
rectfil1 equ init+h * Draw filled rectangle
pg1yf111 equ init+6 * Draw 1 line polygon fill
bithlt equ init+7 * Bit block transfer
textblt equ init+8 * Text block transfer
showcur equ init+9 * Show mouse

hidecur equ init+10 * Hide mouse

chgcur equ init+11 * Transform mouse form
unspr?te equ init+12 * Undraw previous sprit
drsprite equ init+13 * Draw sprite
copyrstr equ init+14 * Copy raster form

seedfill equ init+15 * Polygon fill

* Digital Research * Hisoft GST Metacomco Seka

SPRITE DEMONSTRATION

w @
.-
u

s

new: dc.w drsprite * new versn *

The following A-line program is deliberately compressed to show the small number cont: move.w #2000.d0 . * ' _ .. 3

of lines of assembler used to control sprites. The program produces an alternate FI' —i wait: dhbra d0, wait * delay s _ . ; . on
black and white sprite crossing a monochrome screen. f . 165 Vi i3 s savaras®
dc.w unsprite % ’
* Digital Research * Hisoft GST Metacomco Seka ?: S movem.1 (sp)+,d0-d3/a0-a3 * unsave r*
5 " m add.w #1,d0 * slide over®
init equ $a000 * initielize . ‘ L l cmp.w ab,d0 * screen *
unsprite equ init+12 * undraw sprite ; UnSD"Ttﬁ‘-‘ - ble lo0p % :
drsprite equ init+13 * draw sprite . : RESREICE: - i move.w #0,d0 *initx
. | "y) add.w #10,d1 *dropy
V_X_MAX equ -12 * Max X pixel scrn val . V_X_MAX: S
¥ s E |] S sub.w #1,d2 * count down*
sk * xxx section ¢ . code l bne] setcol * and again * . : . B
5 move.l stksv,-(sp) * back *
* x i "r
start: clr.1 -(sp) * Set ' i i 1 E - g move.w #520,-(sp) to § 1
move.w #520,-(sp) * super ' : : - i 3 : trap I #1 * user , =
trap #1 * mode : : : % addq.]1 #6,sp * mode '
addq.1 #6,sp ; - : : 4y o= a move.w #0,-(sp) * back *
move.l d0,stksv * save stack : : : M trap #1 * to GEM *
move.w #0,0lda * versn flag* \ : :] I 2 :
move.l #0,a2 * * . : : S : ata * xxx section d -
| dc.w init * Injt * - ; : : E - ; even FOXXX . XXX . XXX . XXX
| move.l a2,d2 * aline * ¢ . . v owy * .
bne alak * registers * : T Ty : sprit: dc.w 0,0 * Xy *
[o #’60{31)32 ¥ gk ——Ae= -60(al).a .] E - 5 de.w -1 * 1_vdi, -1_xor
' move.w #-1,0lda g i 9 I dew 0 * bg col .
¥ dc.w 0 * fg col *
a2ok: move.l $34(a2),a3 * draw addr (4*13) l +9 ol a ghoul: dc.w sFEFF s
move.w #V_X_MAX(a0),a5 * get max width <---- V_X_MAX(a0),ab -----> . o : de.w $03¢c0 .
move.w #0,d0 * nitx % : : - dec.w SFFFF *
2 I
I move.w #50,d1 £ anEy } "'E o a) dc.w $0Ff0 *
| move.w #10,d2 * scan count* i - dc.w SFFFF *
; Tea sprit,al * sprite add* de.w $1ff8 *
‘ lea save,al * bg savearea =3 dc.w SFFFF *
movea.l a0, a4 * sprite col* 'I:E L a de.w $3ffc *
adda.1 #6,a4 * pointer * I de.w SPFFF .
% dc.w $73ce *
. ‘ setcol: move.w (ad),d3 * get color * E‘- = a de.w SFFFf .
bne white 2 i dc.w $73ce *
| move.1 #500010001,(a4) * black * I dc.w SFFff *
bra Toop] . 3 dc.w SFFff .
‘ white: move.1 #0,(ad) * set white * : . . : i dc.w SfFFf .
loop: movem.l d0-d3/a0-a3,-(sp) *sav r* . dec.w SFFFF s
tst.w olda * test versn® : . : ; '2 T dc.w SPFFf .
beq new ' . - ; ; : *2 B ‘5 de.w $fbdf .
jsr (a3) * old versn * ; ; : : ‘? de.w SFEFF »
bra cont . ! . : . - "2 ___ o . de.w $FBIf *
[T

L-36 =~
|
* Digital Research * Hisoft GST Metacomco Seka e .
N —
de.w SFFFF . ' g
dew SFFFF i s
dc.w $FEFF A [——
do.w $67eb * - ﬁ
dc.w SFFFF =
dc.w $300c * e
' de.w SFFFF * - 3 .
dow $1FF8 : _ _ . I Appendlx M - Glossary
dc.w $FFFF ¥) . ! -) t
-
dc.w $0420 % ; . :) N =
dew SEFFF ' . . _ | 4] o
dec.w 51818 ¥ -
* =3
bss * yxx sectiond . data
even * A XXX . XXX . XXX
L
' 2 =3
stksv: ds.1 1 a ; . 0 1 el ==
save: ds.b 74 4 . : bk b
?1da: ds.w 1 * - : s sl e o —— a
end I‘
= =3
#1 There is no requirement to run this program in supervisor mode, these lines of y K8 I|
code may be ommitted. : -
*7 Some versions of the disk based TOS incorrectly return the value of A2. These l|
lines of code are not requred by ROM based versions of the ST. T ec—
L 1
*+3 The use of the following code provides more stable sprites + “ |’ J]
MOVE #37.-(sp) *+ wait for Vblank e a
TRAP #14 * XBIOS call
' ADDQ #2.sp * tidy stack

The programmer might also contemplate hiding the busy-bee cursor.

Pp S
|

is)
(L}

M-3
ADE ASCII df:cimal ?quivalent] . . LPB Load parameter block
AES Application environment services E S S LSB Least significant byte/bit
ACIA Asynchronous communications interface adaptor . LST Tiist '
ANSI American national standards institute -
ASCII American standard code for information interchange E; ﬁ MD Memory descriptor
AUX Auxilary MFDB Memory form definition block
) ! l MFP Multi function peripheral
BCD Bm‘_’“’ F"dCd dec‘:mal E'_ E] S MIDI Musical instruments digital interface
BDOS Basic disk operating system ' MS-DOS Microsoft disk operating system
BIOS Basic input/output system MSB Most significant bit
BPB BIOS parameter block B g
BSS Block storage segment » m l]= y) NDC Normalized device coordinates
cCcp Console command processor OEM Other equipment manufacturer
CCR Condition code register | os Opeérating System
CON Console 0SC Oscillator
CP/M Control program for microcomputers
CPU Central processing unit | —— ; PC Program counter
CRC Cyclic redundancy check - m PC-DOS IBM personal computer operating system
CTS Clear to send pk-pk Peak to peak
. ; — a PSG Programmable sound generator
DCD Data carrier detect | AN
DIR Directory Random access memory
DMA Direct memory access = I’ RC Raster coordinate
DOS Disk operating system - ; RF Radio frequency
DPB Disk parameter block m RGB Red—green—blue
DS Double sided Ri Ring
DTR Data terminal ready [— 3 ROM Read only memory
D/A Digital to analogue - RSX Resident system extension
RTE Return from exception
EPB Exception parameter block e 3 RTS Return form subroutine
- Rx Receive
FAT File allocation table .
i ® Il p) SASI] .
FCB File control block - : Shugart associates standard interface
FDC Floppy disk controller - 3 SCsI Small computer systems interface
FIFO First in first out register II SP Stack pointer
SR Status regi
- : gister
GDOS Graphics device operating system e — SS Single sided
GEM Graphics environment manager — sSsp Supervisor stack pointer
GIOS Graphics input/output system
GP General purpose = TOS The operating system
Grd Ground e TPA Transient progrim area
GSX Graphic system extension II ;TL Transistor-transistor logic
— — o Transmit
HDC Hard disk controller . ow o G
| gls:i Uncommitted logic array
ID Identification RT Universal synchronous/as i
— nchro / i
ikbd Intelligent keyboard [T | - il /gy RO LECCIVEL) RO mILLES
IPL Interrupt level "] uspr User stack pointer
110 Input/output

[T "*if
]

|t)

|

L

Bl -
VBI Vertical blank interrupt
VDI Virtual device interface e :
VLSI Very large scale integration w—— -~

i |

w

Appendix N
Schematic diagrams

1)

w

QL L
w w

5
o

M W W W W

AL v o W ow w w

L

m

|

L
£

-—
M I
ATARI ST peripheral control diagram B : ATARI ST schematic diagram
‘ oy —
I MMU RAM
T' | —{4M MADoO A0 DO A0 DO A0 Do A0 Do
+5 n [7
‘ MC68901 — 16MHz .Agl- D7 A9 D7 | A9 D7 A9 D7
Mono A2l MAD9
‘ monitor o (’
. sl | RS232 port [- S .
__! D }_ xtal 17 — W - —d g
‘ 16 22 D7 AQ D7 AY D7 A D7 A9 D7
| 2.4576MH
| s o . ground A A0 DO A0 Do AO Do A0 DO
| : T
Z | clk ' o Do ~
- 13 20 UY)) | A
: 12 5 Opto-
A5 11 8 __.l :]_— isolator = wilat
‘ 10}t 41 g coupler | . g rdat 22 N DO Do Do
(& . |
==
Al o
- Al2 Al4 Al4
| - : 1 = SRS SRS
DF ey 1Y B0 373 244 Shifter 2 i
| i e A0 A0 A0
| [D D N] 4
o N DIs i rt—i < —— 5 —— C3
Ci
| D¢ rar |
-
o pm . B = b N Do RIS ROM
L0
! TDO Keyboard I
Reset 1 13 G ..9
lf . ™ H g
| MC6850 16 reset Hard disk E! — ; Do Do Do
g 15 xda port um L] A5 Ly Al12 Al4 Al4
Tx/Rx 14 rx dat D B
| Z IRQ Joy1 19 DRQ D N p7 \ D7 N p7
9 Tx Joy0 12 ‘:l"\‘lﬂ-' D A0
| & 5 7 17 7 14 ACK o S D Mono =2 cs — cs] o
rts 112 wp 71 12 reset - 373 244
| ; 6 HH 11 fire 6 6 10 TRQ
) 2 2 HH 10 down 5 2 o CS
C 39 left 4 g % e
4 8 X
i E -3
| MC6850 8 Taw -
T 9
| I'sx/Rx IRQ l 7 w) s o
11 e N a1 ROMO H
Dy 13 - w ROMI
| 15 gnd = ROM2
- 1 fu g ROM3 rom3 Al
D & H 4 D15 ROM4 rom4
| 1 ded H ‘ WD1772 = A23 s5 N A23 6850CS
YM2149 Y i reset |, S f:: 2 3 MFPCS I g
5 9 i IRQ 13 k.0 IPLI — reset reset SNDCS f—) s Al
§ clk FDRQ -| DRQ 12 wrgt Lz = N
| N D7 710 9 o DAL7 11 data pca FCS =) Do
®) D15 30 a0ep e — FCI - 2MH;
0 2 o0 FCo ok N
Do T E CDO DALO 8 motor - 8MHz —] clk |- 500KHz Y DI5
= 6 FGPO 1 DO CA2 Al — g index
| g 5 CAl A0 s MC68000 GLUE ROM port
| o o i Dart clk clk = — — Y
2 B ’ 6 drivel T |
| g «—c 2 5 drive0d = i
R 0 DMA 2 side
D15-0 controller V Floppy disk a
8MHz port | (. !5
o
:' L g ol
w0

STATUS REGISTER
syste gyTé

ysek RBYT1E

)

-
g

)

MEN}iﬂ_y ALLOCATIa~N U ~DER

57T B45icC

Acso BE UIGD To
mode (7

- V== e ——
- - i 1
lslx“tstx\x 199 8 lxllxélvg {2 T | (tA’7 M€Yy Sayaygy
o . e b ~—rre r » N
$o S(UEIM INTEARYPT ot 07 2 ° 3ix l{ﬁ i Gem Burred) 6y o000 (65535 ?)
i E: i S FOST RASI1C WORWIMACE O uc)_O%ft
) : - RY ~NEEDED 207 oo 210 T¢2)
$¢& 61,670 (sATY ReaiSTER) Pe— "’U‘""”V G, Lo, (
' . ™) D) nesaly dee 215989 (B137%¢)
se77ide @iT IS MaTr e systen (N70 TRAG mode Fox N
ScBulliNG logams (1473 [REGRAA [4Te F7ct’ mede A~D &O0&s . E
70 ExcelTio~ VEcron wpA(Jory)) é€ A-2 A veexatd I ¥ idctarés 324 Sclee~ Barrea (ror lat 4 GRAQ)
5¢€ Ause 'AT4R1 ST ;"{761"‘4‘} P23 e a cylBoand {é-.i:-v‘?(Ta it oF JowuAer Cabe)
SCcTTInG BIT (3 CNTERS JuPGRUISOR MOIE (rw Acse 3-21) . I VARIOY UARIABLES
: . P PAINT i CCUDE PRO& A w ; 2
Bizs 10,9, ¥ €7 ~7eAeaPT 1954 = : M SEREE S
f l | * @ , I
L UYL E R
e i
a1l gl =& =
!9.'1:3 B
(e e SR
o o |) et
e = ==
sce A-2 FoR INTERRLT LEUCU tUECTORS ALsO 2~7, »_ o
ALso ATARI ST (~NTEAYAU" FL36. e E
J 390ec I
MOVE . W/ H$ 2700)512 \ WhiTes 27, i~T° SY58yTE A~D - a
00 iNTe useR ByT€ FF I
quﬂ‘. i oo!oo'n;suv I; i 'a
(€ SeT8 ATy To MHIGHEsT 50 anty =5
A Mool mAJUATE INTERRV T wicl 8¢ I
SIRESHAE: T j
#J 2500, SR 37pec = 00100 101gia r
ot NHi A“D WF/ |STeRAATD
g g 2400, 51 34 < = 00(060 1006~ mor o
D <R A inTe RWPE UVE, A~ s e
Pfﬂ 2000, %@f R culerviren = :

	A1001.jpg
	A1002.jpg
	A1003.jpg
	A1004.jpg
	A1005.jpg
	A1006.jpg
	A1007.jpg
	A1008.jpg
	A1009.jpg
	A1010.jpg
	A1011.jpg
	A1012.jpg
	A1013.jpg
	A1014.jpg
	A1015.jpg
	A1016.jpg
	A1017.jpg
	A1018.jpg
	A1019.jpg
	A1020.jpg
	A1021.jpg
	A1022.jpg
	A1023.jpg
	A1024.jpg
	A1025.jpg
	A1026.jpg
	A1027.jpg
	A1028.jpg
	A1029.jpg
	A1030.jpg
	A1031.jpg
	A1032.jpg
	A1033.jpg
	A1034.jpg
	A1035.jpg
	A1036.jpg
	A1037.jpg
	A1038.jpg
	A1039.jpg
	A1040.jpg
	A1041.jpg
	A1042.jpg
	A1043.jpg
	A1044.jpg
	A1045.jpg
	A1046.jpg
	A1047.jpg
	A1048.jpg
	A1049.jpg
	A1050.jpg
	A1051.jpg
	A1052.jpg
	A1053.jpg
	A1054.jpg
	A1055.jpg
	A1056.jpg
	A1057.jpg
	A1058.jpg
	A1059.jpg
	A1060.jpg
	A1061.jpg
	A1062.jpg
	A1063.jpg
	A1064.jpg
	A1065.jpg
	A1066.jpg
	A1067.jpg
	A1068.jpg
	A1069.jpg
	A1070.jpg
	A1071.jpg
	A1072.jpg
	A1073.jpg
	A1074.jpg
	A1075.jpg
	A1076.jpg
	A1077.jpg
	A1078.jpg
	A1079.jpg
	A1080.jpg
	A1081.jpg
	A1082.jpg
	A1083.jpg
	A1084.jpg
	A1085.jpg
	A1086.jpg
	A1087.jpg
	A1088.jpg
	A1089.jpg
	A1090.jpg
	A1091.jpg
	A1092.jpg
	A1093.jpg
	A1094.jpg
	A1095.jpg
	A1096.jpg
	A1097.jpg
	A1098.jpg
	A1099.jpg
	A1100.jpg
	A1101.jpg
	A1102.jpg
	A1103.jpg
	A1104.jpg
	A1105.jpg
	A1106.jpg
	A1107.jpg
	A1108.jpg
	A1109.jpg
	A1110.jpg
	A1111.jpg
	A1112.jpg
	A1113.jpg
	A1114.jpg
	A1115.jpg
	A1116.jpg
	A1117.jpg
	A1118.jpg
	A1119.jpg
	A1120.jpg
	A1121.jpg
	A1122.jpg
	A1123.jpg
	A1124.jpg
	A1125.jpg
	A1126.jpg
	A1127.jpg
	A1128.jpg
	A1129.jpg
	A1130.jpg
	A1131.jpg
	A1132.jpg
	A1133.jpg
	A1134.jpg
	A1135.jpg
	A1136.jpg
	A1137.jpg
	A1138.jpg
	A1139.jpg
	A1140.jpg
	A1141.jpg
	A1142.jpg
	A1143.jpg
	A1144.jpg
	A1145.jpg
	A1146.jpg
	A1147.jpg
	A1148.jpg
	A1149.jpg
	A1150.jpg
	A1151.jpg
	A1152.jpg
	A1153.jpg
	A1154.jpg
	A1155.jpg
	A1156.jpg
	A1157.jpg
	A1158.jpg
	A1159.jpg
	A1160.jpg
	A1161.jpg
	A1162.jpg
	A1163.jpg
	A1164.jpg
	A1165.jpg
	A1166.jpg
	A1167.jpg
	A1168.jpg
	A1169.jpg
	A1170.jpg
	A1171.jpg
	A1172.jpg
	A1173.jpg
	A1174.jpg
	A1175.jpg
	A1176.jpg
	A1177.jpg
	A1178.jpg
	A1179.jpg
	A1180.jpg
	A1181.jpg
	A1182.jpg
	A1183.jpg
	A1184.jpg
	A1185.jpg
	A1186.jpg
	A1187.jpg
	A1188.jpg
	A1189.jpg

