TT030 TOS Release Notes
October 8, 1990

Atari Corporation
1196 Borregas Avenue

Sunnyvale, CA 94086

COPYRIGHT
Copyright 1990 by Atari Corporation; all rights reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of
Atari Corporation, 1196 Borregas Ave., Sunnyvale, CA 94086.

DISCLAIMER
ATARI CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Atari Corporation reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Atari Corporation to
notify any person of such revision or changes.

TRADEMARKS
Atari is a registered trademark of Atari Corporation. SLM, ST, and TOS are trademarks of

Atari Corporation.

This document was produced entirely with Microsoft Write, an Atari Mega 4 computer,
and an Atari SLM laser printer.

Table of Contents

D R T et cvakanissssabassunaiansusionihabanissnis shasnsgsssesasorsssinsssasorieasssrdessbuiss s metsa e oovsisoths 9
GEMDOS, BIOS, and XBIOS Changes
tNew XBIOS Graphics CallS forthe TTO30...... v dsimnrionsimssissasasmsssressssaessssssespismssmssossanesil 9
New XBIOS Calls

Instatling New BeonmapiDEvIOR DIIVETS.. ..l .k dsrcersessssssrsrsmssssssrssasssssasasnosipsnssssssersrassonssassld
BEOFHBAD A BSCONE LU L. . rorsesenssnontomotatiihnnentsesssiodssmusntsnansansbammmnimerdsonme siibimtbasontbiesssnons 200
IS RINAS ORBANITEC. o L e irresserstrissiamrmsetmmmsam s sserfuninsnsareissssmrisssuessenmsnsratilinsssins 20
The Specifics of the Two Kinds Of RAM..........corsemsensmsmsssnssssssssersasasasossorerssssassoasassansssmsarsasdd

B 3o yn e i n el (s s Y T N e B TN SR o Jot 0, S SRR 1.1 Bl 32

The AES version number returned in globl[0] after appl_init is
now 0x0300 (version 3.0).

Critical Error Handler:

No context switching will happen in the AES critical error
handler. Previously, this could have caused recursive
GEMDOS calls if a timer event was waiting at the time a
critical error happened. Now all processes are blocked until
the user dismisses the critical error alert box. Remember that
GEM programs which take the critical error handler must not
make any AES or GEMDOS calls while handling a critical
error. No GEMDOS calls because GEMDOS is not recursive at
all, and it could have been a GEMDOS call which triggered
the critical error. No AES calls because an application making
an AES call will cause a context switch, and the AES process
switched to might make a GEMDOS call.

Desk Accessories:

On startup and after a change of resolution, the AES now
creates a GEMDOS process for the code that starts up desk
accessories and launches the desktop. As a result, all
memory which is allocated by accessories and the Desktop
will be freed on a resolution change. Previously, it was
possible for a desk accessory to Malloc memory which did not
get freed because the AES had no way of knowing about that
memory. Now, the Desktop (as a GEMDOS process) actually
terminates on a resolution change, and GEMDOS frees all the
memory allocated to it.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 5

Any appl_exit call will now block the calling process until all
desk accessories are waiting for 2 message event. As a result,
under this AES version, DAs can safely Malloc memory.
Memory allocated by a DA is actually owned by the GEMDOS
process that is running when the application makes the Malloc
call. When that process terminates, GEMDOS will free the
memory. Previously, the AES was not always getting
AC_CLOSE messages to DAs until after a program had already
terminated, and all of its resources freed. Now, a DA can be
assured that it will receive the AC_CLOSE message before the
application terminates, so any memory that it has allocated
will not already be invalidated at AC_CLOSE time.

This improved AC_CLOSE handling helps with VDI
workstations opened by desk accessories as well. When a
workstation is opened, the VDI makes a GEMDOS Malloc call
to allocate memory for an application's workstation.
Previously, any workstation opened by a desk accessory
would be freed when its parent application terminated, and
possibly before the DA got its AC_CLOSE message and was
able to close the workstation.

Menu/Alert
Screen Buffer:

The menu/alert screen buffer is now 1/2 the size of the screen
memory.

Mouse, Keyboard, and
Screen Ownership:

Page 6

Mouse, keyboard, and screen control ownership are now
unconditionally changed to the previous process after a
process is run by the shell library. This shouldn't affect any
applications except the Desktop, but it does make error
recovery from errant programs more reliable.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

Window Colors

Two new wind_set calls are provided in the Atari GEM AES version 3.0 to set the colors of
window elements. See the GEM AES manual section 11.3.6, page 11-21 for information
on the wind_set call. The parameters for setting window element colors are as follows:

wind_set(WORD handle, WORD field, WORD element, WORD tcolor, WORD bcolor);

The "field" values for these new calls are 18 (WF_COLOR), to set window element colors by
window handle, and 19 (WF_DCOLOR), to set default window element colors. When using
WF_COLOR, handle is the AES handle of the window whose colors are to be set. When
using WF_DCOLOR, the handle parameter is ignored.

Applications should normally not use WF_DCOLOR to set the default colors, because users
will use the Window Colors control panel extension to set the default window colors they
want to see. Instead, applications should use WF_COLOR to set window colors for their
own windows.

The element parameter determines what part of the window (close bax, name, horizontal
slider, etc.) is set by the call. Window element numbers are defined in WCOLORH. These
numbers should not be confused with the bits which define window parts for wind_create
and wind_calc - they are different. Also remember that not all elements are visible on all
windows. We could spend several pages describing what elements are visible under
what circumstances, but the result would be more confusing than enlightening. The best
way to find out what elements are visible in a given window is to experiment with
different color settings.

The fcolor parameter defines the element color when the window is topped; bcolor defines

the color when the window is in the background. A value of -1 for tcolor or beolor means
"don't change."

Because AES windows consist of a group of normal AES dbjects, what you actually set
with these calls is the "object color WORD" for the window element you are setting.

Thus, you set not only the text, border, and fill colors for the window element, but also
the fill pattern and text mode (replace/transparent). See the GEM AES manual section
6.3.7.4, page 6-16 for more information on the object color WORD. WCOLOR.H provides
C macros for converting color indices into a nybble-packed color word.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 7

Applications which use wind_set to set window element colors should allow users to
choose color sets. It is recommended that an interface similar to the Window Colors
control panel extension be used for application based window caolor settings. As
appropriate, provide controls that allow the user to select colors for elements or groups of
elements which will be visible in the application's windows. Also provide reasonable
default color sets which use the standard GEM palette. Keep in mind that a user may
have set up a custom palette that renders your default color sets ugly or unusable.

Page 8 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

WCOLOR.H

/* WCOLOR.H
* definitions for new wind_set call WF_COLOR and WF_DCOLOR
* 900614 kbad
o

#define Color2Border(c) ((c)<<12)
#define Color2Text(c) ((c)<<8)
#define Color2Fill(c) (c)

#define ColorWord(borderColor, textColor, fillColor)\
(Color2Border(borderColor) I\
Color2Text(textColor) I\

Color2FillfillColor))

#define WF_COLOR 18 /* set element color words by handle */
#define WF_DCOLOR 19 /* set default element color words */

/t
New wind_set call for sefting window element colors:
wind_set(WORD w_id, WORD field, WORD element, WORD tcolor, WORD bcolor);

field: WF_COLOR set object color words for window element by handle

field: WF_DCOLOR set default object color words for window element
(w_id parameter is ignored for WF_DCOLOR)

element: part of window to set, defined below

tcolor: object color word used when window is topped (~1: ignore)

beolor: object color word used when window is not topped (~1: ignore)

5

/* Window elements object type description 4
#define W_BOX 0 /¢ IBOX window parent object *
#define W_TITLE 1 /* BOX parent of closer, name, fuller ~ */
#define W_CLOSER 2 /* BOXCHAR close box &
#define W_NAME 3 /* BOXTEXT mover bar o
#define W_FULLER 4 [* BOXCHAR full box)
#define W_INFO 5 /* BOXTEXT info line */

ATARI TTO30 TOS RELEASE NOTES — October 8, 1990 Page 9

#define W_DATA 6 /* IBOX holds remaining window elements */
#define W_WORK 7 /* IBOX application work area o

#define W_SIZER 8 /* BOXCHAR sizer box %
#define W_VBAR 9 /* BOX holds vertical slider elements ¥/
#define W_UPARROW 10 /* BOXCHAR vert. slider up arrow o
#define W_DNARROW 11 /* BOXCHAR vert. slider down arrow i
#define W_VSLIDE 12 /* BOX vert. slider background *
#define W_VELEV 13 /* BOX vert. slider thumby/elevator /]
#define W_HBAR 14 /* BOX holds horizontal slider elements */
#define W_LFARROW 15 /* BOXCHAR horz. slider left arrow i
#define W_RTARROW 16 /* BOXCHAR horz. slider right arrow "
#define W_HSLIDE 17 /* BOX horz. slider background o
#define W_HELEV 18 /* BOX horz. slider thumb/elevator *

Page 10 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

. GEMDOS, BIOS, and XBIOS Changes

_FPU Cookie: The _FPU cookie describes what hardware and software
floating-point support is installed in the machine. The low
word of the cookie's value describes software floating-paint
support; currently, this is always zero, but Atari may assign
values in the future for software floating-paint support
packages. Notably, the 68040 requires software to support
some of the instructions that the 68881/68882 execute on—
chip.

The high word describes the hardware floating—paint installed
in your system. Note that the "unsure" cases result because
the BIOS probes for the 6888x without determining which
FPU you have. If some software cares, it can probe, and reset
the cookie's value accordingly. The BIOS alwaysinstalls an
_FPU cookie, even with zero value, so floating—paoint support
software can change the low word when it installs itself.

_FPU Cookie (high word)

Value Meaning

No hardware FPU detected

SFP004 or compatible: 68881 as peripheral
(68881 or 68882, unsure which, as coprocessor
68881 or 68882 plus SFPO04

68881 for sure

68881 plus SFP004

68882 for sure

68882 plus SFP004

68040's internal floating—point support
68040 plus SFP004

O AN RN = O

Note: If your software requires Line-F floating point support,
check this cookie for a non—-zero value in either the
high or low word.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 11

Malloc(OL) returns zero. It used to return a pointer, but since
the call doesn't allocate any memory, the painter pointed to
memory that nobody owned, and that painter could not
legally be used. Now a Malloc request for zero bytes is
considered an error, and Malloc returns zero.

Sversion: Sversion returns the GEMDOS version number. The return
value has the "major" revision number in the Jow byte and the
"major" revision number in the high byte.
Versi Mai Mi R {by S .
Mega TOS 1.02 00 13 0x1300
Rainbow TOS 1.04 00 15 0x1500
STE TOS 1.06 00 15 0x1500
STE TOS 1.62 00 17 0x1700
TT TOS 3.01 00 19 0x1900

TOS Version Number: The TOS version number for the first release of TT TOS is

Page 12

TOS 3.01.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

New GEMDOS Calls

Mxalloc 0x44 Allocate memory (with

preference)
LONG Mxalloc(amount, mode)
LONG amount;
WORD mode;

This call works like Malloc(), but takes an extra parameter: a flag telling where to get the
memory.

Mode Meaning
0 ST RAM only
1 alternative RAM only
2 either, ST RAM preferred
3 either, alternative RAM preferred

If amount is 1L, the size of the largest single block of the type specified by mode is
returned. In that case, mode values 2 and 3 are identical, and the size of the largest block
of either type is returned.

If amount is not —1L, a block amount bytes long is allocated to the calling process and a
painter to it is returned. If mode is O or 1, the block will come from the kind of memory
specified. Ifmode is 2 or 3, the "preferred" type of memory is checked first for a large-
enough block, then the other type is checked.

If alternate RAM is eligible to satisfy a request, but there isn't enough of it available, the
request will come from ST RAM. If there isn't enough of that, the request fails.

It should be clear that the Malloc() call devolves into a Mxalloc() call with a mode value of 0
or 3, depending on the state of the Malloc—eligibility bit in the program's header.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 13

Maddalt 0x14 Inform GEMDOS of "alternative")
memory

LONG Maddalt(start,size)

This call causes GEMDOS to become aware of memory that it can use for loading

processes and satisfying Malloc calls. It can be used to inform GEMDOS of memory that
the BIOS memory-sizing algorithm did not tell GEMDOS about initially.

The arguments slart and size must describe a contiguous block of memory, and once this
call is made that memory "belongs" to GEMDOS. There is no way to "take it back," and

no program should use this memory except through GEMDOS's Malloc and Pexec calls.

The memory so added is "alternative" memory; that is, it is only eligible for program
loading if the Alternative RAM Load bit is set in the header of the program being loaded,
and it is only eligible for satisfying Malloc calls if the Alternative RAM Malloc is set, or if
Mxalloc modes 1 or 3 is used.

Maddalt returns 0 for success, or an error code for failure.

This call should only be made once for a given block of memory. The best way to do
this is to run a program in your AUTO folder that makes the Maddalt call. This would only
be appropriate if there is memory in your system that you want to use for programs and
Malloc calls, and which the BIOS doesn't "find" and tell GEMDOS about at boot time.

Page 14 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

New XBIOS Graphics Calls for the TT030

Warning: Use of these calls is restricted to the TT only. For compatibility with other Atari
computers use of these calls should be limited to those applications which will require
porting due to other incompatibility.

EgetPalette 0x85 Get Look Up Table registers

VoID EgetPalette(colorNum, count, palettePtr)
WORD colorNum, count;
LONG palettePtr;

Copy the contents of of a contiguous set of TT hardware color Look Up Table (LUT)
registers starting with register colorNum into the area pointed to by palettePtr. count words are
transferred into the area. palettePtr must fall on a word boundary.

EgetShift O0x81 Get current shift mode value
WORD EgetShift()

Return the current shift mode register value. See Esetshift for details.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 15

EsetBank 0x82 Set color Look Up bank

WORD EsetBank(bankNum)
WORD bankNum;

Set bank number (0-15) for active TT color Look Up Table (LUT). This call also maps the
current bank's colors to the old ST color Look Up Table. The bank is set immediately.

Function always returns old bankNum. If bankNum is negative, the hardware register is not
altered.

EsetColor 0x83 Set color entry

WORD EsetColor(colorNum, color)
WORD colorNum, color;

Set the absolute entry colorNum in the TT color Look Up Table (LUT) to the given color.
color is set immediately. Always returns the old color. Ifcolor is negative, the hardware
register is not altered.

Page 16 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

EsetGray Ox86 Set/clear gray mode

WORD EsetGray(switch)
WORD switch;

Set the manner in which the color Look Up Table (LUT) data is interpreted by the display
hardware. A switch value of zero directs the display hardware to interpret the LUT data as
color, 4 bits for each of the three components. With a non-zero switch value, the upper
byte of the LUT entry is ignored and the lower byte alone represents one of 256 gray
levels. Always returns the old switch value (a non-zero value means switch is set). On
input if swilch is set to a negative value, the hardware register is not altered.

EsetPalette 0x84 Set palette registers

VOID EsetPalette(colorNum, count, palettePtr)
WORD colorNum, count;
LONG palettePtr;

Set the contents of a contiguous set of TT hardware palette registers with the words
painted to by palettePtr. palettePtr must fall on a word boundary. The set of registers loaded
begins with Look Up Table (LUT) register colorNum and extends for count words. The
function sets the palette immediately.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 17

EsetShift 0x80 Set shift mode register

WORD EsetShift(shftMode)
WORD shitMode

Set the TT shift mode register to shftMode. Return old shift mode register value.

Bit Assi

S--G-MMM----BBBB

S = Smear Mode

G = Gray-Mode

MMM =Mode: 000 320x200x4
001 640x200x2

010 640x400x1

100 640x480x4

110 1280x960x1

111 320x480x8
BBBB = Bank

For more information on Gray-Mode see: EsetGray. Note the values returned by Getrez()
correspond to the Mode information given here. Also, it is easier to change individual
elements of this register using the spedalized calls below. They should be used
whenever possible.

Page 18 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

EsetSmear O0x87 Set/clear video smear mode

WORD EsetSmear(switch)
WORD switch;

Set the video smear mode. A switch value of zero indicates normal display mode while a
non-zero value instructs the display hardware to repeat (smear) the last non—zero color
encountered whenever zero values are retrieved. Function always returns the old switch
value (a non-zero value means switch is set). On input, if Switch is set to a negative value,
the hardware register is not altered.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 19

New XBIOS Calls

Bconmap O0x2c Change mapping of device 1

LONG Bconmap(devno)
WORD devno;

This call maps devno in as Bcon* device number 1. It returns the old mapping. If devno is -
1, there's no change; the current mapping is simply returned. If devno is -2, a pointer is
returned (see below). Legal values are -1 (for no change), -2 (to return the pointer), and
values 6 and up.

You can tell you're on a system which doesn't support Bconmap by making the call and
checking the return: if the return value is 44 (0x2c, the same as the XBIOS call number)
then Bconmap is not available.

In addition to the above, if devno is -2, a painter to the device mapping structure is
returned. This is used by programs which need to install new mappable handlers. It also
contains the number of mappable devices; the highest legal devno value for Bcon calls
(including Beconmap itself) is that number plus 5.

Illegal values (0-5, or higher than the highest legal value, or negative but not -1 or -2)
don't change anything, and return 0.

The mapping is accomplished by writing into the (published) vector table in low memory.
In addition, new painters are used to make lore¢c and Rsconf indirect. Therefore, programs
which use the vector table in low RAM and/or lorec and Rsconf will see the "currently—
mapped" device when they make Bcon calls with devno=1, and when they make lorec and
Rsconf calls.

Page 20 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

Bconmap-aware programs can use the higher devno values to get at a spedific port, no
matter what the current mapping is. They still need to use Bconmap to "map in" the
desired port before making lorec and Rsconf calls.

DMAread O0x2a Read sectors from device

LONG DMAread(sector,count,buffer,devno)
LONG sector;

WORD count;

VOID *buffer;

WORD devno;

Reads sectors from the device into memory. Works for ACSI and SCSI devices. For SCSI,
does not actually use DMA: handshakes the bytes across.

Device numbers are:

devno Device

$0-$7 ACSI devices $0-$7
$8-$f SCSI devices $8-$f
other reserved for future use

Returns a BIOS error code. This call assumes the memory at buffer can acrally be

accessed by the bus the device is on. Therefore, DMAread from an ACSI device into
alternative RAM won't work.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 21

DMAwrite O0x2b Write sectors to device

LONG DMAwrite(sector,count, buffer,devno)
LONG sector;

WORD count;

VOID *buffer;

WORD devno;

Writes sectors from memory to a device. Works for ACSI and SCSI devices. For SCSI,
does not actually use DMA: handshakes the bytes across.

Device numbers are:

devno Device

$0-$7 ACSI devices $0-$7
$8-$f SCSI devices $8-$f
other reserved for future use

Returns a BIOS error code. This call assumes the memory at buffer can actually be
accessed by the bus the device is on.

NVMaccess 0x2e Access Non—Volatile Memory

WORD NVMaccess(op,start,count,buffer)
WORD op, start, count;
BYTE *buffer;

This call manages the non-volatile memory (NVM) in the TT's real-time clock chip.
There are 50 bytes of memory there, of which two are reserved at the end as a check on
the rest of the data. This call validates the check data on reads, recomputes the check
data on writes, and initializes the check data if you want.

Page 22 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

Opcade Meaning
0 READ: copy data from NVM to the buffer.
1 WRITE: copy data from the buffer to NVM.
2 INIT: zero the NVM and initialize the check data.

start spedifies the first location to read or write; count specifies the number of bytes to
transfer.

Returns zero for success, EBADRQ (-5) for a range error in the arguments, and EGENRL (-
12) if the NVM check data isn't consistent before a read or write. In the case of a read the
data is transferred anyway.

NVM usage is to be dictated by Atari. We will take suggestions and applications for
assignments of bytes, but using bytes or values whose meanings are not published by us
assures trouble in the future.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 23

Bconmap Discussion

Bconmap() makes the new serial ports on a TT030 accessible to programs which were
written when there was just one serial port.

There are new Bconin/out/stat/ostat device numbers on a TT:

devno Meaning
0 PRN
1 currently-mapped serial port (see below)
2 CON
3 MIDI
4 IKBD
5 RAW
6 ST-compatible serial port (called Modem 1; default).
7 SCC Channel B (Modem 2 on the back of a TT).
8 TIMFP serial port (3-wire, Serial 1).
9 SCC Channel A (full handshake, Serial 2).

Beon calls on device 1 (normally AUX) might actually refer to any of these devices, or to a
user-installed device (with an even higher devno). You use Bconmap to change the
mapping of device 1. Bconmap also changes the mapping of Rsconf() calls, and of lorec calls
with lorec device number 0.

The port assignments above are for TT only; other machines with "extra" serial ports will
have other assignments. Port 6 is always gaing to be the ST-compatible one, though.
Other devices may be installed by drivers at boot time (or even later).

Page 24 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

Installing New Bconmap Device Drivers

Bconmap(-2) returns a painter to a structure. The structure looks like this:

struct bconmap {
LONG *maptab; /* ptr to map table (see below) */
WORD maptabsize; /* number of lines inthe table ~ */
¢

The map table contains a line for each device. Each line contains painters to the Bconstat,
Bconin, Beostat, and Bconout routines, plus a painter to the Rsconf routine, plus a pointer to
the lorec for that device. The table's size (the number of devices) is in maptabsize. Maptabsize
is used by all Bcon calls to range—check the device number. The highest legal value for
Bcon calls (including Bconmap) is this number plus 5.

A Beconmappable driver must have Bconstat, Bconin, Beostat, and Beonout entry points, plus an
iorec, plus an Rsconf function painter. You install it by copying the table pointed to by
maptab into a larger area and adding your driver's entry (five procedure pointers and an
iorec painter), then changing maptab and maptabsize.

In the unlikely event that your program finds itself installing the 38th device, that is, the
one which would have Bconmap number 44 (decimal), you should actually allocate TWO
new rows for maplab, install your device in the SECOND one, and increment maptabsize by
two. Otherwise, a current mapping of device 44 would be indistinguishable from the case
where Bconmap was not available at all. No programs should be told to use device
number 44.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 25

Bconmap and Rsconf

Rsconf has been mis-documented for some time. It actually returns a longword value.
That longword is four bytes stuck together. Those four bytes are the UCR, RSR, and TSR
registers of the MFP, plus a useless byte. The UCR register is in the high byte of the
returned longword, followed by the RSR, then the TSR, and the useless byte in the low-
order byte. These bytes are the values of those registers BEFORE the changes dictated by
the arguments to Rsconf.

In addition, ever since Rainbow TOS, Rsconf(-2,-1,-1,-1,-1,-1) returns the last baud-rate
value set with Rsconf. If the first argument is -2, all the other arguments are ignored.

In the world of Bconmap, the Rsconf arguments have to be interpreted slightly differently.
Not every device is 2 68901 MFP any more. For the new devices, the bits which make
sense are used, the others discarded.

Programmers should use Rsconf(-1,-1,-1,-1,-1,-1) to read the current values, then change
the bits they want to change and call Rsconf again with the new values; changing bits in
registers not listed below is now considered illegal. (Consider a REAL MFP: TSR contains,
among other things, the transmitter enable bit; if you write 0x08 to cause a break, you will
be disabling the transmitter!)

The bits in the Rsconf args and return value which Bconmappable devices must emulate are
as follows:

UCR: bits 6-5: word-length (00=8, 01=7, 10=6, 11=5)
bits 4-3: stop bits: (01=1, 10=1.5, 11=2; 00 is invalid)
bit 2: parity (0=no, 1=yes)
bit 1: parity (O=odd, 1=even, meaningful only if bit 2 is 1)

RSR: none

TSR: bit3: break (sends break while 1)

SCR: none

Programs which use synchronous modes probably talk directly to their hardware, so it
doesn't make much sense to "emulate" that here. If a legal value is inconvenient (such as
1.5 stop bits with hardware which doesn't support it, or a baud rate you can't support)

you can ignore it: users will get used to the restrictions imposed by your device and
driver.

Page 26 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

Serial 2 vs. LAN Connector

SCC channel A is shared between the DB9 on the back of the TT030 (labelled Serial 2)
and the round LAN connector on the left side. Initially, it is programmed to use the DB9
connector. The selection can be made as follows:

Select LAN connector: Offgibit(0x7f); /* clear bit 7 (only) *
Select DB9 connector: Ongibit(0x80); /* setbit 7 (only) o/

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 27

The Two Kinds of RAM /

This section discusses the concept of "alternative RAM" in general first, and gets to the
spedifics as they relate to the TT030 later.

In the TT030 and other ST-like machines planned for the future, there are two general
kinds of RAM: there is ST RAM, which is ST-compatible, and there is "alternative RAM,"
which is not. Exactly how it is not varies by machine and type of RAM. Primarily, the
video chip can only display screen data from ST RAM, and the DMA sound chip can only
play data stored in ST RAM. Secondarily, other chips which access memory, like ACSI
DMA (for ST hard disks and other devices) and SCSI DMA (for SCSI devices), may not be
able to get at alternative memory directly. This affects most programs not at all, since they
use BIOS and GEMDOS calls to accomplish this kind of transfer, and the device driver is

responsible for getting the data from here to there transparently, no matter where "here"
and "there" are.

The "rules for eligibility" for a program running in alternate RAM are:

(1) It must not try to set the screen base address in alternative RAM, or play DMA
sound from there.

(2> It must not try to make a device driver do DMA from or to there, unless the device
driver knows about the differences between ST RAM and alternative RAM.

(3) It must not try to do DMA itself from or to there (only spedalized device drivers do
this).

The second paint is a bit sticky: it refers to the fact that existing DMA device drivers don't
know about the restrictions on alternative RAM.

Since programs written before there was any concept of alternative RAM don't know if
they break the rules or not, you, the user, must inform GEMDOS as to whether a program
is eligible to use alternative RAM, or must use ST RAM. As a finer distinction, you can
select the eligibility for program loading and Malloc() calls separately. A program which
Mallocs a screen buffer might still be eligible to load into alternative RAM, but its Malloc()
calls must be satisfied from ST RAM.

Page 28 ATARI TT0O30 TOS RELEASE NOTES - October 8, 1990

The Specifics of the Two Kinds of RAM

As of Rainbow TOS , one of the reserved longwords in the header of executable files
(PRG, TTP, TOS) acquired a meaning: the bits there control the way GEMDOS treats that
program. (The least-significant bit of that longword (bit 0), when set, means GEMDOS
need not clear all of RAM when loading that program, only the program's declared BSS.
This makes programs load faster.)

The next two bits have been assigned meanings relating to alternative RAM. Bit 1, when
clear, means that the program must be loaded into ST RAM; bit 2, when clear, means that
Malloc calls by that program must be satisfied using ST RAM.

When one of these bits is set, the corresponding operation (program load, Malloc call) may
be satisfied from "alternative" RAM. In general, alternative is considered preferable to ST
RAM. If a program doesn't break any of the rules for eligibility in alternative RAM, it is
desirable to set those bits in its header.

Bit Meaning
0 Only clear BSS
il Alternative RAM Load

2 Alternative RAM Malloc

If TT RAM is eligible to satisfy a request, but there isn't enough of it available, the request
will come from ST RAM. If there isn't enough of that, the request fails.

For loading programs, "encugh" RAM is a relative thing. For one program, it's more
important to run fast than it is to have a lot of memory, so "enough" RAM is, say, 256K
more than its own declared requirements (text+data+bss). For another, having lots of
RAM is more important, even if it means not running as fast as possible.

A new field in the program's header, called the TPAsize field, reflects the memory
requirements of the program. If the program's "program-load" bit is clear (meaning it
must load in ST RAM) this field is ignored, and the program is loaded into ST RAM. If the
program can be loaded in alternative RAM, and there's more alternative RAM than ST
RAM, the field is ignored and the program is loaded into alternative RAM. The field is
only checked if alternative RAM is eligible for loading the program, and there is more ST
RAM available. In that case, the TPAsize field tells how much alternative RAM is "enough."
If there is "enough" alternative RAM, the program loads there; if not, the program loads in
ST RAM.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 29

The TPAsize field tells, in 128K steps, how much alternative RAM is enough. The amount
is added to the declared size (text+data+bss) of the program. If there is less than this
amount available, the program gets loaded into ST RAM. The field is four bits wide, and
is in the high four bits of the program—-flags longword. The amount is the field's value
times 128K, plus 128K. Therefore a value of zero, which is what all programs have
currently, means 128K. The value can go up to 15, meaning 2MB.

Example

Setup: A program's alternative—RAM load bit is set. Its TPAsize field is set for 512K.
Its text+data+bss size is 110K.

Result: If there is more alternative RAM than ST RAM, the program loads into
alternative RAM.

If there is more ST RAM, the TPAsize field is taken into account. If there is
622K of alternative RAM available, or more, the program loads into
alternative RAM. If noy, it loads into ST RAM.

In this example, it's possible that there isn't 622K of ST RAM available either. If there is
more than 110K, though, the program will still be loaded and run; the TPAsize field is not
considered an absolute minimum for the program to load. 110K is the program's declared
text+data+bss size: that, plus space for a small initial stack, is the absolute minimum.

Remember, TPAsize does not reflect the maximum or minimum size of the TPA the

program will ultimately get. It's just the tiebreaker in the case where there is more ST
RAM than alternative RAM, and GEMDOS has to know where to put the program.

What Does It All Mean?

There are two common memory models for programs on the Atari ST. One has the user
or library declare a "stack size" at compile time or link time. The runtime startup moves
the stack painter to the end of the program plus the stack size and uses Mshrink to give the
rest of the TPA back to GEMDOS. Then, as the program calls the library malloc(), it uses
Malloc to get memory back from the OS. For this kind of program, the TPAsize field should
represent at least as much space as the "stack size" the startup will use. MWC, GCC,
Turbo C, and lots of other environments use this memory model.

Page 30 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

The other memory model keeps some amount of memory, and that memory is used as a
"heap" - the stack grows down from the top of it, and library malloc() calls use memory
up from the bottom. For this kind of program, the TPAsize field should be the minimum
reasonable size of the stack+heap space. Alcyon C uses this memory model.

You may wonder why these fields are part of the program header, and not controlled by,
say, new GEMDOS calls, or new parameters to Pexec. The reason is that they are properly
part of the program: a program's alternative-RAM characteristics and memory
requirements are inherent in its behavior. They're not based on its parent's behavior, and
its parent should not have to know about them in order for GEMDOS to make intelligent
dedisions.

Since the information is in the program's header, it can be changed by an outside utiliity
without special knowledge of the program's structure. If you can see that a program
doesn't do screen—-flipping or talk to the DMA chip directly, it can probably be run in
alternative RAM, and you could set its flags appropriately.

After Your Program Loads

The bit in the program header which controls the eligibility of alternative RAM for Malloc
calls is intended for compatibility, so existing programs which have no knowledge of
alternative RAM can get the benefit of the higher speed and extra capacity.

" New programs, written after the publication of this information, can use a new call,
Mxalloc(). This call works like Malloc(), but takes an extra parameter: a flag telling where to
get the memory.

Mode Meaning
0 ST RAM only
1 alternative RAM only
2 either, ST RAM preferred
3 either, alternative RAM preferred

If amount is ~1L, the size of the largest single block of the type specified by mode is
returned. In that case, mode values 2 and 3 are identical, and the size of the largest block
of either type is returned.

If amount is not =1L, and a block of that size is available in the type(s) of memory specified
by mode, the block is allocated and its starting address is returned.

It should be clear that the Malloc() call devolves into a Mxalloc() call with a mode value of 0
or 3, depending on the state of the Malloc—eligibility bit in the program's header.

ATARI TTO30 TOS RELEASE NOTES - October 8, 1990 Page 31

Other Important Notes ¢

The Line-A graphics interface is maintained for backward compatibility with existing ST
programs only. It should not be used for new programs. It will not keep pace with
future hardware or software improvements. The VDI should be used.

Page 32 ATARI TTO30 TOS RELEASE NOTES - October 8, 1990

	TT001.jpg
	TT002.jpg
	TT003.jpg
	TT004.jpg
	TT005.jpg
	TT006.jpg
	TT007.jpg
	TT008.jpg
	TT009.jpg
	TT010.jpg
	TT011.jpg
	TT012.jpg
	TT013.jpg
	TT014.jpg
	TT015.jpg
	TT016.jpg
	TT017.jpg
	TT017a.jpg
	TT018.jpg
	TT019.jpg
	TT021.jpg
	TT022.jpg
	TT023.jpg
	TT024.jpg
	TT025.jpg
	TT026.jpg
	TT027.jpg
	TT028.jpg
	TT029.jpg
	TT030.jpg

