THE TT030 COMPANION:
DEVELOPER’S NOTES FOR THE ATARI TT030

This document contains a preliminary version of the information a developer should have
concerning the TT030, in addition to the existing ST and STe documentation.

OVERVIEW

A TTO030 is an ST running on a 16MHz 68030, with the following changes (in broad terms):
-Additional RAM expéndability, with fast, nybble-mode RAM.

-SCSI DMA for SCSI hard disks and other devices.

-DMA digital stereo sound (as found in the STe).

-Addition of a 68881/68882 floating-point coprocessor.

-Additional video modes (details later).

-Addition of an 8530 SCC (serial communications controller), giving a Localtalk connector
(with DMA) and one extra serial port, or two extra serial ports.

-Internal speaker.

All this new hardware required some changes to the internal software, particularly in the BIOS.

GEMDOS changed a little. Changes to AES and VDI were made as required to support the
new resolutions, as well as changes to the desktop to allow cache control.

The most important thing to remember about the TT is that itis ST

compatible and therefore GEM compatible. As a result, for the majority of
applications, ALL of the normal things that applications need to do are done
through GEM, just like an ST. The documentation that you have on the

AES, VDI, GEMDOS, XBIOS, and BIOS are still valid and are correct for the

TT. The extensions to these things for hardware specific areas are outlined
in the following.

3K 3K K 5K K K K 5K XK 5K XK K K %K 5K XK 5K XK 5K XK XK 5K XK 5K X 3k %K X 3K K XK 3K XK 3K K XK 5K K XK 3K 5K XK XK % K XK 3K K XK 3K 5K K XK 5K K 3 5K XK K XK 3 XK XK K XK K K KK X

THE NEW HARDWARE
THE 68030

The 68030 has two caches: an instruction cache and a data cache. Details on them are available
in the 68030 documentation. TOS boots with the cache off, but there is an option on the
Desktop to enable i* (iust like the Blitter switch on a Mega). Programs normally do not notice
the presence of the cache (except that they run faster!), but programs which modify memory,
then execute it (e.g. self-modifying code) will need examination, and any program which uses
DMA directly (as opposed to making the BIOS or XBIOS calls) needs to invalidate the caches
after the DMA operation completes, before accessing the memory which may have been
changed by the DMA.

The 68030 has a full 32-bit address bus, not the 24-bit bus of the 68000. Programs using the
high 8 bits of addresses for any reason (e.g. a type field for a pointer) will not run on the
TT030.

Naturally, the 16MHz 68030 with a 32-bit data bus runs faster than the 8MHz 68000 with a 16-
bit data bus. Programs which rely on instruction timing will not run correctly.

Those of you that are doing assembly language programming or debugging can get more
detailed information from the 68030 user’s manual by Motorola: MC68030UM/AD REV 1,
"Enhanced 32-Bit Microprocessor User’s Manual, Second Edition". The 68030 will run user-
mode-only 68000 programs, with one slight hitch: the move from SR instruction 1s now
privileged. Some compilers, notably Alcyon C 4.14, use this instruction. The BIOS has a
handler for the privilege violation exception, which checks for this instruction: it replaces the
instruction with a move from CCR and tries running it again. This is sufficient for most
programs.

Authors of programs which perform supervisory operations (e.g. respond to traps) need to
know about one other, crucial change: the exception stack frame format is changed. There is
an extra word on the stack after the return SR and PC. That means that if a trap was made
from supervisor mode, the arguments the caller pushed are one word farther away from the top
of the stack than they are on a 68000. This is the case for all 680x0 processors except 68000.
There is a new system variable, _longframe, at $59e: if this word is nonzero, you are running
on a CPU which uses the long stack frame format. (See the Cookie Jar documentation for the
way to tell what CPU you're running on.)

MEMORY
There are three kinds of memory 1n a TT030.

o ST RAM is dual-purpose RAM, shared between the CPU and all the ST devices (video,
ACSI DMA, DMA sound). The machine comes with 2MB of this kind of RAM, and is
expandable with another 2MB of this RAM.

o TT RAM is single-purpose RAM: it is not shared among the ST-compatible devices.
Accesses to it are faster because the CPU never has to wait for its turn. It’s also faster
because it is "nybble mode" RAM, meaning the 68030 can use "burst fill" accesses to
rapidly fill its caches. It is not visible to ACSI DMA, DMA sound, or video. It is
visible to the CPU and to SCSI DMA. The TTO030 has room for one TT RAM board
containing 4MB (or 16MB with 4Meg parts).

o VME RAM is memory which exists on the VME bus. Because it goes through the
VME bus, and because the VME bus data path is only 16 bits wide, it 1s about the same
speed as RAM in ST. It s visible only to the CPU. (It’s not visible to SCSI DMA,
because that requires a 32-bit data path.)

SCSI DMA

A SCSI (Small Computer System Interface) bus is available on the TT030. What this means
to developers and purchasers is that almost any SCSI hard disk drive can be connected to a
TTO030 with a minimum of trouble. The Atari hard-disk utilities can recognize, format,
partition, and install (make bootable) almost any SCSI drive. (SCSI, though a standard, is not
always implemented the same way by all vendors, and it is possible that some nominally SCSI
drives won't work with the TT030.)

There are other types of SCSI devices than hard disks. Streaming tapes, 9-track tapes, and
network node connection devices are available, along with other types of devices. These will
connect just fine to the TTO030, but the vendor, a value-added reseller, or the user will have to
come up with the drivers for them.

There is one internal SCSI connection in the TT030; it’s a 50-pin connector for a ribbon cable,

— and there’s room for a 3-1/2" drive inside. In addition, there is a 25-pin external SCSI

connector which is compatible with the other 25-pin SCSI connectors in the industry (read
"Mac"). You should be able to buy such a hard drive "off the shelf" and plug it right in to a
TTO30.

DMA SOUND, INTERNAL SPEAKER

The DMA sound features of the TT030 are just like those of the STe series. The hardware
registers are at the same addresses and have the same functions. The audio signal from the
DMA sound system and the ST-compatible sound generator are (optionally) mixed in the
volume/tone controller and sent to the internal speaker and to the left/right RCA jacks on the
back of the machine. A switch is provided to disable the internal speaker: it's bit 6 in Port A
of the PSG’s general-purpose output registers.

68881

The TT030 comes with a Motorola 68881 floating-point coprocessor. This can be used by
programs to do floating-point computations very quickly. No provision is made for sharing
this, however, so it should not be used by accessories or from interrupts. (Multitasking
systems will have to save and restore the state of the 68881 just like they save and restore the
state of the CPU registers when changing from one process to another.)

VIDECO

The TTO030 supports all three of the ST video modes, plus three new ones.
The modes are as follows:

ST LOW 320x200 16 colors

ST MEDIUM 640x200 4 colors

ST HIGH 640x400 2 colors (not just black & white)
TT LOW 320x480 256 colors

TT MEDIUM 640x480 16 colors

TT HIGH 1280x960 black and white

All the ST resolutions, and the two color TT resolutions, are displayable on the same kind of
monitor. TT HIGH resolution (1280x960) is available only on special monitors; appropriate
monitors or a list of vendors and models which are compatible will be available from Atari.

The color palette is like the STe: four bits each for red, green, and blue, giving a total of 4096
colors. In the ST-compatible color look-up table (CLUT) at $FFFF8240 (same as on the ST
and STe), the high bit of each nybble is the /ow bit of the corresponding gun value for red,
green, and blue. In addition, at a new address ($FFFF8400), there is a 256-entry CLUT with
the bits in the more natural order. In the 16-color modes (and the 4-color mode), the 256-color
CLUT is divided into 16 "banks," and only one of these "banks" is active at any time. It is the
active bank which is visible in the 16-entry ST-compatible CLUT. Changing banks requires
only one write to the video chip, so you can use the bank system to change all 16 colors at
once. There are new XBIOS calls for accessing the color tables and shifter mode registers.

ST HIGH resolution is now called "duochrome" on the TT030 because you can display any
two colors, not just black and white. The two colors which are displayed are the last two in the
256-entry CLUT. In addition, a bit is used to invert the display, just like the ST’s high-
resolution mode. The bit in question is bit 1 (not bit 0) of the first entry in either CLUT.

The existence of the new video modes will reveal the lazy programming practices of
developers who make assumptions about the screen, like its resolution, the number of colors
available, and the size of the screen image in memory. It has always been possible to use the
VDI enquire functions, or even examine the Line-A variable space, to determine the
characteristics of the display. Even writing "resolution-independent” code which calls Getrez(}
is not good enough, since Getrez() will return values for the new modes which were impossible
(and therefore unanticipated) on an ST. Use the VDI to get the information that you need.

In general, only the most careful programmers have avoided all assumptions in this area.
Programs which use AES/VDI exclusively will often work in the new modes, allowing their
users to take advantage of the larger screen space, colors, etc. Other programs will need to be
modified, or will be restricted to running in the ST-compatible modes.

SCC AND OTHER SERIAL PORTS

The TTO30 has three new serial ports. Two of them come from the 8530 SCC (Serial
communications Contro!!2r): these have all the modem control signals. One of those shares the
hardware with the Localtalk-compatible LAN (local-area network) connector: you can use
either LAN or that serial port, but not both at the same time.

The other new port comes from the new 68901 MFP. It works just like the ST-compatible port,
except that it only has transmit, receive and ground signals: there are no modem control signals
on that port. :

The BIOS has support for all of these ports, including XON/XOFF or RTS/CTS flow control,
and provisions for compatiblity with existing programs. See the documentation for the
Bconmap call for more. (Naturally, the new 68901 port doesn’t support RTS/ICTS, since these
signals are not available.)

KK 3K K K K K K K K K 3K 5K 2K 5K 3K K K K K 5K XK K K K K XK K XK K 5K K XK K 5K XK K 5K XK 5K X K 5K XK K XK K K K 5K XK K XK XK 5K XK XK K XK XK 5K X XK Xk X K % X X X

TOS CHANGES

The TOS version number for the first release of TT TOS is TOS 3.0. Until that ROM 1S
finalized, all TT ROMs will have TOS version number 3.0, and finer distinctions will be made
with the date code in the OS header.

3K K K K K K K K K XK K K XK 5K XK K 3K 3K XK 3K XK K XK K % OK 3K XK K K XK 5K XK K XK XK K XK XK 5K XK K XK XK K XK %K X XK 5K X K XK XK K XK XK K XK XK K XK XK 5K XK XK XK X X X

GEMDOS CHANGES
TWO KINDS OF RAM

This section will discuss the concept of "alternative RAM" in generalfirst, and gets to the
specifics as the relate to the TTO30 later.

In the TT030 and other ST-like machines planned for the future, there are two general kinds of
RAM: there is ST RAM, which is ST-compatible, and there is "alternative RAM," which is
not. Exactly how it is not varies by machine and type of RAM. Primarily, the video chip can
only display screen data from ST RAM, and the DMA sound chip can only play data stored in
ST RAM. Secondarily, other chips which access memory, like ACSI DMA (for ST hard disks
and other devices) and SCSI DMA (for SCSI devices), may not be able to get at alternative
memory directly. This affects most programs not at all, since they use BIOS and GEMDOS
calls to accomplish this kind of transfer, and the device driver is responsible for getting the
data from here to there transparently, no matter where "here" and "there" are.

The "rules for eligibility" for a program running in alternate RAM are:

(1) It must not try to set the screen base address in alternative RAM, or play DMA sound
from there.

(2) It must not try to make a device driver do DMA from or to there, unless the device
driver knows about the differences between ST RAM and alternative RAM.

(3) It must not try to do DMA itself from or to there (only specialized device drivers do
this).

The second point is a bit sticky: it refers to the fact that existing DMA device drivers don’t
know about the restrictions on alternative RAM.

Since programs written before there was any concept of alternative RAM don’t know if they
break the rules or not, you, the user, must inform GEMDOS as to whether a program is eligible
to use aiternative RAM, or must use ST RAM. As a finer distinction, you can select the
eligibility for program loading and Malloc() calls separately. A program which Malloc’s a
screen buffer might still be eligible to /oad into alternative RAM, but its Malloc() calls must
be satisfied from ST RAM.

THE SPECIFICS ON TWO KINDS OF RAM

As of Rainbow TOS , one of the reserved longwords in the header of executable files (PRG,
TTP, TOS) acquired a meaning: the bits there control the way GEMDOS treats that program.
(The least-significant bit of that longword (bit 0), when set, means GEMDOS need not clear all
of RAM when loading that program, only the program’s declared BSS. This makes programs
load faster.)

The next two bits have been assigned meanings relating to alternative RAM. Bit 1, when clear,
means that the program must be loaded into ST RAM; bit 2, when clear, means that Malloc
calls by that program must be satisfied using ST RAM.

When one of these bits is set, the corresponding operation (program load, Malloc call) may be
satisfied from "alternative" RAM. In general, alternative is considered preferable to ST RAM.
If a program doesn’t break any of the rules for eligibility in alternative RAM, it is desirable to
set those bits in its header.

If TT RAM is eligible to satisfy a request, but there isn’t enough of it available, the request
will come from ST RAM. If there isn’t enough of #2/, the request fails.

For loading programs, "enough” RAM is a relative thing. For one program, it’s more
important to run fast than it is to have a lot of memory, so "enough" RAM is, say, 256K more
than its own declared requirements (text+data+bss). For another, having lots of RAM is more
important, even if it means not running as fast as possible.

A new field in the program’s header, called the TP Asize field, reflects the memory
requirements of the program. If the program’s "program-load" bit is clear (meaning it must
load in ST RAM) this field is ignored, and the program is loaded into ST RAM. If the
program can be loaded in alternative RAM, and there’s more alternative RAM than ST RAM,
the field is ignored and the program is loaded into alternative RAM. The field is only checked
if alternative RAM is eligible for loading the program, and there is more ST RAM available.
In that case, the TPAsize field tells how much alternative RAM is "enough." If there is
"enough" alternative RAM, the program loads there; if not, the program loads in ST RAM.

The TPAsize field tells, in 128K steps, how much alternative RAM is enough. The amount is
added to the declared size (text+data+bss) of the program. If there is less than this amount
available, the program gets loaded into ST RAM. The field is four bits wide, and is in the high
four bits of the program-flags longword. The amount is the field's value times 128K, pius
128K. Therefore a value of zero, which is what all programs have currently, means 128K.

The value can go up to 15, meaning 2MB.

EXAMPLE:
SETUP:

A program’s alternative-RAM load bit 1s set. Its TPAsize field 1s set for S12K. Its
text+data+bss size is 110K.

RESULT:

If there is more alternative RAM than ST RAM, the program loads into alternative
RAM.

If there is more ST RAM, the TPAsize field is taken into account. If there is 622K of
alternative RAM available, or more, the program loads into alternative RAM. If not, it
loads into ST RAM.

In this example, it’s possible that there isn't 622K of ST RAM available either. If there 1s
more than 110K, though, the program will still be loaded and run; the TPAsize field is not
considered an absolute minimum for the program to load. 110K is the program’s declared
text+data+bss size: that, plus space for a small initial stack, 1s the absolute minimum.

Remember, TPAsize does not reflect the maximum or minimum size of the TPA the program
will ultimately get. It's just the tiebreaker in the case where there is more ST RAM than
alternative RAM, and GEMDOS has to know where to put the program.

WHAT'S IT ALL MEAN?

There are two common memory models for programs on the Atari ST. One has the user or
library declare a "stack size" at compile time or link time. The runtime startup moves the stack
pointer to the end of the program plus the stack size and uses Mshrink to give the rest of the
TPA back to GEMDOS. Then, as the program calls the library malloc(), it uses Malloc to get
memory back from the OS. For this kind of program, the TPAsize field should represent at
least as much space as the "stack size" the startup will use. MWC, GCC, Turbo C, and lots of
other environments use this memory model.

The other memory model keeps some amount of memory, and that memory is used as a "heap"
-- the stack grows down from the top of it, and library malloc() calls use memory up from the
bottom. For this kind of program, the TPAsize field should be the minimum reasonable size of
the stack+heap space. Alcyon C uses this memory model.

You may wonder why these fields are part of the program header, and not controlled by, say,
new GEMDOS calls, or new parameters to Pexec. The reason is that they are properly part of
the program: a program’s alternative-RAM characteristics and memory requirements are
inherent in its behavior. They're not based on its parent’s behavior, and its parent should not
have to know about them in order for GEMDOS to make intelligent decisions.

Since the information is in the program’s header, it can be changed by an outside utiliity
without special knowledge of the program’s structure. If you can see that a program doesn’t
do screen-flipping or talk to the DMA chip directly, it can probably be run in alternative RAM,
and you could set its flags appropriately.

AFTER YOUR PROGRAM LOADS

The bit in the program header which controls the eligibility of alternative RAM for Malloc
calls is intended for compatiblity, so existing programs which have no knowledge of
alternative RAM can get the benefit of the higher speed and extra capacity.

New programs, wriien after the publication of this information, can use a new call, Mxalloc():
GEMDOS CALL 0x44: Mxalloc

LONG Mxalloc(amount, mode)

LONG amount;

WORD mode;

This call works like Malloc(), but takes an extra parameter: a flag telling where to get the
memory.

MODE MEANING

0 ST RAM only

1 alternative RAM only

2 either, ST RAM preferred

3 either, alternative RAM preferred

If "amount’ is -1L, the size of the largest single block of the type specified by 'mode’ is
returned. In that case, ‘'mode’ values 2 and 3 are identical, and the size of the largest block of
either type is returned.

If "amount’ is not -1L, and a block of that size is available in the type(s) of memory specified
by 'mode’, the block is allocated and its starting address is returned.

It should be clear that the Malloc() call devolves into a MxallocQ) call with a "'mode’ value of O
or 3, depending on the state of the Malloc-eligibility bit in the program’s header.

5K 3K K 3K 3K 5K 3K XK 5K 3K K 3K XK 5K XK 3K 5K X 5K XK 5K 5K XK 3K XK K 3K XK K 3K X 3K XK K XK XK 3K XK 5K XK 3K XK 5K 3 X 3K XK 5K X % X % 3K X XK 5K XK XK XK K K X kK X XK X X X X

NEW XBIOS CALLS

XBIOS 0x2a: DMAread
0x2b: DM A write

long DM Aread(sector,count,buffer,devno)
long sector;

word count;

void *buffer;

word devno;

Reads sectors from the device into memory. Works for ACSI and SCSI devices. For SCSI,
does not actually use DMA: handshakes the bytes across. Device numbers are:

$0-$7 ACSIdevices $0-$7
$8-3f SCSI devices $8-%f

other reserved for future use
Returns a BIOS error code.
DM A write is the same, but writes sectors. These calls assume that the memory at "buffer’ can

actually be accessed by the bus the device is on. Therefore, DMAread from an ACSI device
into alternative RAM won't work.

XBIOS call Ox2e: NVMaccess

WORD NVMaccess(op,start,count,buffer)
WORD op, start, count;
BYTE *buffer;

This call manages the non-volatile memory (NVM) in the TT's real-time clock chip. There are
50 bytes of memory there, of which two are reserved at the end as a check on the rest of the
data. This call validates the check data on reads, recomputes the check data on writes, and
initializes the check data if you want.

OPCODE MEANING
0 READ: copy data from NVM to the buffer.
1 WRITE: copy data from the buffer to NVM.
2 INIT: zero the NVM and initialize the check data.

"start” specifies the first location to read or write; "count’ specifies the number of bytes to
transfer.

Returns zero for success, EBADRQ (-5) for a range error in the arguments, and EGENRL (-
12) if the NVM check data isn’t consistent before a read or write. In the case of a read the data
1s transferred anyway.

NVM usage is to be dictated by Atari. We will take suggestions and applications for
assignments of bytes, but using bytes or values whose meanings are not published by us
assures trouble in the future.

3K XK K K KK K K K KK K K K K K K K XK K K K K K K K K K K K K K K K 5K 5K 5K 5K 2K 3K 5K 3K XK XK K 5K XK 2K XK XK XK K 5K 5K 2K 5K XK 5K 2K 3K 2K XK K 5K 2K XK K X X

OTHER IMPORTANT NOTES

The Line-A graphics interface is maintained for backward compatibility with existing ST
programs only. It should not be used for new programs. It will not keep pace with future
hardware or software improvements. The VDI should be used.

This document describes the new XBIOS call, Bconmap(), which makes the new serial ports
on a TT030 accessible to programs which were written when there was just one serial port.

There are new Bconin/out/stat/ostat device numbers ona TT:

devno meaning
0 ., PRN
1 currently-mapped serial port (see below)
2 CON
3 MIDI
4 IKBD
] RAW
6 ST-compatible serial port (called Modem 1; default).
7 SCC Channel B (Modem 2 on the back of a TT).
8 TTMFP serial port (3-wire, Serial 1).
9 SCC Channel A (full handshake, Serial 2).

Bcon calls on device 1 (normally AUX) might actually refer to any of these devices, or to a
user-installed device (with an even higher devno). You use Bconmap to change the mapping
of device 1. Bconmap also changes the mapping of Rsconf() calls, and of lorec calls with
Iorec device number O.

The port assignments above are for TT only; other machines with “extra" serial ports will have
other assignments. Port 6 is always going to be the ST-compatible one, though. Other devices
may be installed by drivers at boot time (or even later).

2K K XK K K K Kk K K K K K K K K 3K K K 2K K K 2K K 3K 3K XK K K K XK K 3K K K K 3K 3K XK XK K XK K K K K XK K XK A K K K K K K XK K K KK K K K XK K KX

XBIOS call 44 (0x2¢)

LONG Bconmap(devno)
WORD devno;

This call maps "devno" in as Bcon™ device number 1. It returns the old mapping. If devno is -
1, there’s no change; the current mapping is simply returned. If devno is -2, a pointer is
returned (see below). Legal values are -1 (for no change), -2 (to return the pointer), and values
6 and up.

You can tell you're on a system which doesn’t support Bconmap by making the call and
checking the return: if the return value is 44 (Ox2c, the same as the XBIOS call number) then
Bconmap is not available.

In addition to the above, if devno is -2, a pointer to the device mapping structure is returned.
This i1s used by programs which need to install new mappable handlers. It also contains the
number of mappable devices; the highest legal devno value for Beon calls (including Bconmap
itself) is that number plus 5.

Illegal values (0-5, or higher than the highest legal value, or negative but not -1 or -2) don’t
change anything, and return 0.

The mapping is accomplished by writing into the (published) vector table in low memory. In
addition, new pointers are used to make lorec and Rsconf indirect. Therefore, programs which
use the vector table in low RAM and/or lIorec and Rsconf will see the "currently-mapped"

device when they make Bcon calls with devno=1, and when they make lorec and Rsconf calls.

Bconmap-aware programs can use the higher devno values to get at a specific port, no matter
what the current mapping is. They still need to use Bconmap to "map in" the desired port
before making lorec and Rsconf calls.

KK K K K KKK K XK K K K K KK K K K K K K K K K KK K K K XK K 0K XK K K K XK K K K XK K K 5K K XK K K K K K XK K K K K K K K K KK K K K KKK XK

INSTALLING NEW BCONMAP DEVICE DRIVERS
Bconmap(-2) returns a pointer to a structure. The structure looks like this:

struct bconmap {
LONG *maptab; /* ptr to map table (see below) *

WORD maptabsize; /* number of lines 1in the table X
¥

The map table contains a line for each device. Each line contains pointers to the Bconstat,
Bconin, Beostat, and Beonout routines, plus a pointer to the Rsconf routine, plus a pointer to
the lorec for that device. The tavle’s size (the number of devices) is in maptabsize.
Maptabsize is used by all Bcon calls to range-check the device number. The highest legal
value for Bcon calls (including Bconmap) is this number plus 5.

A Bconmappable driver must have Bconstat, Bconin, Beostat, and Beonout entry points, plus
an iorec, plus an Rsconf function pointer. You install it by copying the table pointed to by
maptab into a larger area and adding your driver’s entry (five procedure pointers and an iorec
pointer), then changing maptab and maptabsize.

In the unlikely event that your program finds itself installing the 38th device, that is, the one
which would have Bconmap number 44 (decimal), you should actually allocate TWO new
rows for maptab, install your device in the SECOND one, and increment maptabsize by two.
Otherwise, a current mapping of device 44 would be indistinguishable from the case where
Bconmap was not available at all. No programs should be told to use device number 44.

KK KK XK KKK K K K K K K K K K K 3K 5K XK XK K XK K 5K XK K K XK K K K 3K XK XK K 3K XK XK K 5K XK XK XK 3K XK XK %K 3K XK 5K XK XK XK 3K X %K K XK XK X XK X X XK X X X X

BCONMAP AND RSCONF

Rsconf has been mis-documented for some time. It actually returns a longword value. That
longword is four bytes stuck together. Those four bytes are the UCR, RSR, and TSR registers
of the MFP, plus a useless byte. The UCR register 1s in the high byte of the returned

longword, followed by the RSR, then the TSR, and the useless byte in the low-order byte.
These bytes are the values of those registers BEFORE the changes dictated by the arguments to
Rsconf.

In addition, ever since Rainbow TOS , Rsconf(-2,-1,-1,-1,-1,-1) returns the last baud-rate value
set with Rsconf. If the first argument is -2, all the other arguments are ignored.

In the world of Bconmap, the Rsconf arguments have to be interpreted slightly differently.
Not every device is a 689C! MFP any more. For the new c>vices, the bits which make sense
are used, the others discarded.

Programmers should use Rsconf(-1,-1,-1,-1,-1,-1) to read the current values, then change the
bits they want to change and call Rsconf again with the new values; changing bits in registers
not listed below is now considered illegal. (Consider a REAL MFP: TSR contains, among
other things, the transmitter enable bit; if you write 0x08 to cause a break, you will be
disabling the transmutter!)

The bits in the Rsconf args and return value which Bconmappable devices must emulate are as
follows:

UCR: bits 6-5: word-length (00=8, 01=7, 10=6, 11=5)
bits 4-3: stop bits: (01=1, 10=1.5, 11=2; 00 is invalid)
bit 2: parity (O=no, 1=yes)
bit 1: parity (O=odd, 1=even, meaningful only if bit 2 is 1)

RSR: none
TSR: bit3: break (sends break while 1)
SCR: none

Programs which use synchronous modes probably talk directly to their hardware, so it doesn’t
make much sense to "emulate" that here. If a legal value is inconvenient (such as 1.5 stop bits
with hardware which doesn’t support it, or a baud rate you can’t support) you can ignore it:
users will get used to the restrictions imposed by your device and driver.

2K K XK K 2K 2K XK XK XK XK K K K XK XK XK XK XK XK K K XK K K K XK KK XK XK K K XK KK XK K KKK XK XK KKK KKK X KK KKK XK KKK XK XK XK XKXKXKXKXKXXKXKX
SCC channel A is shared between the DB9 on the back of the TT030 (labelled Serial 2) and the

round LAN connector on the left side. Initially, it is programmed to use the DB9 connector.
The selection can be made as follows:

Select LAN connector: Offgibit(0x7f); I* clear bit 7 (only) */
Select DB9 connector: Ongibit(0x80); [* set bit 7 (only) |

Warning: Use of these calls is restricted to the TT only. For compatibilty with other Atar
computers use of these calls should be limited to those applications which will require
porting due to other incompatibility.

(80) _EsetShift
WORD _EsetShift(shftMode)
WORD shftMode
Set the TT shift mode register to shftMode.

Bit assignments
| S--G-MMM----BBBB|
(I [
I i Bank
| Mode
l 000 320x200x4
| 001 640x200x2
| 010 640x400x1
! 100 640x480x4
| 110 1280x960x1
| 111 320x480x8
————————————————— Gray-Mode
——————————————————— Sample & Hold

Call always returns old shift mode register value.

Note: For more information on Gray-Mode see: _EsetGray. Also the values returned
by Getrez() correspond to the Mode information given here. Also, it is easier
to change individual elements of this register using the specialized calls below.
They should be used whenever possible.

(81) _EgetShift
WORD _EgetShift()
Returns the current shift mode register value.

(82) _EsetBank
WORD _EsetBank(bankNum)
WORD bankNum;
Set bank number (0-15) for active TT color Lookup Table. This call
also maps the current bank’s colors to the old ST color lookup Table.
The bank is set imediately. Function always returns old bankNum. If
"bankNum’ isnegative, the hardware register is not altered.

(83) _EsetColor
WORD _EsetColor{(colorNum, color)
WORD colorNum, color;
Set the absolute entry "colorNum’ in the TT color LookUp table to the
given color. Color is set imediately. Function always returns the old
color. If "color’ is negative, the hardware register 1s not altered.

(84) EsetPalette

VOID _EsetPalette(colorNum, count, palettePtr)

WORD colorNum, count;

LONG palettePtr;
Set the contents of a contiguous set of TT hardware palette registers
with the words pointed to by "palettePtr’. 'palettePtr’ must fall on a
word boundary. The set of registers loaded begins with LUT register
"colorNum’ and extends for "count’ words. The function sets the
pallete immediately.

(85) _EgetPalette

VOID _EgetPalette(colorNum, count, palettePtr)

WORD colorNum, count;

LONG palettePtr;
Copy the contents of of a contiguous set of TT hardware color LookUp
Table registers starting with register 'colorNum’ into the area pointed
to by "palettePtr’. ’count’ words are transfed into the area. "palettePtr’
must fall on a word boundary.

(86) _EsetGray

WORD _EsetGray(switch)

WORD switch;
Set the manner in which the color LookUp Table data is interpreted by
the display hardware. A "switch’ value of zero directs the display
hardware to interpret the LUT data as color, 4 bits for each of the three
compenents. With a non-zero 'switch’ value, the upper byte of the
LUT entry is ignored and the lower byte alone represents one of 256
gray levels. Function always returns the old switch switch value (a non-
zero value means "switch’ is set). On input if "switch’ is set to a
negative value, the hardware register is not altered.

(87) _EsetSmear
WORD _EsetSmear(switch)
WORD switch;
Set the video smear mode. A "switch’ value of zero indicates normal
display mode while a non-zero valueinstructs the display hardware to
repeat (smear) the lastnon-zero color encountered whenever zero
values are retrieved. Function always returns the old switch value (a
non-zero value means "switch’ is set). On input, if "switch’ is set to a
negative value, the hardware register is not altered.

