THE
ATARI FORUM

A Dialog For Atari Software Developers

Voll.une I, Number 3
DEVELOPING MARKETS

by Joe Ferrari
Director, Applications Sofrware

During the recently held show of the National
Association of Music Merchants (NAMM), a MIDI
{Musical Instruments Digital Interface) Developer's
Council was formed. The principal reason for the for-
mation of this group is to ensure that Atari maintains
or expands its market share in the music market. As
some of you may know, within the past year, the Atari
ST has made significant penetration into this large
niche. If this council is successful, I would like to ex-
tend this concept into other niches, such as desktop
publishing, CAD, etc. If anyone has suggestions, please
let me know.

A market where Atari can realize significant market
share is in desktop publishing. At the present time we
are working on several projects (long and short term)
that will provide us with the neccessary tools to be com-
petitive in this segment of the market. Issues such as
fonts, PostScript compatibility, full-page displays etc.,
are all being addressed and in the next issue of this let-
ter, we will cover some of those projects with an appeal
for your support.

As all of you may be aware, during the last year,
Atari has not had much of a presence in the US market;
it is not due to Atari's lack of interest, on the contrary;
due to forces beyond our control we had to abandon our

- plans. (The DRAM shortage caused limited product
availability; this forced Atari to place emphasis in
Europe—where we have been highly successful) We
believe that this problem is beginning to subside and
we are now planning Atari’s renaissance in the US
market. At COMDEX in Las Vegas, we have taken ad-
ditional space to stage this comeback. I hope you will
be able to join us in this exciting event.
by Elizabeth Shook

Newsletters Editor .
From big-name support by companies such as

WordPerfect, to Atari's faithful developers of Atari-
only product lines, Atari computers are backed by a va-
riety of inexpensive, high-quality applications packages
and solutions.

July/August 1988

As Atari identifies and approaches strategic
markets within the personal computer industry, we
would like to encourage developers to consider looking
more closely at products for which there appear to be
a real need.

Established Markets

The strongest of these target markets is music,
education, and desktop video. Atar proved its strength
in the music market at the NAMM show in Atlanta last
month. “The quality and diversity of MIDI software
at the booth eloquently described our strength in the
market,” said Joe Ferrari, director of applications soft-
ware. Atari equipment was prevalent thoughout the ex-
hibition hall, and more and more celebrity
musicians—most recently Hall & QOates—have become
Atari converts.

In the educational market, Atari receives attention
at the university level. And as a result of the efforts
by dedicated users and dealers, Ataris are beginning
to find their way into elementary and secondary schools.
VARs such as Computer Curriculum Corporation (CCC)
have comfortably settled themselves in their chosen
market niche.

Antic Publishing Company is distributing a full line
of desktop video software, successfully establishing
Atari in the desktop video market. Computer graphics
and animation combine television and video technology
to produce spectacular effects.

Atari itself has made a splash in the desktop
publishing market segment. The MEGA and SLM804
Laser system was featured on the cover of the national
monthly, Computer Shopper, and appears in a review
in Personal Publishing magazine. A current dealer pro-
motion makes MEGA/Laser bundles available to users
at special prices.

New Hardware

With development of high-powered workstations

such as the new 32-bit line and the Transputer, there

is more need than ever before for sophisticated applica-
tions software. The processing power of these systems

Coutinued on puge 2

The Aturi Forum was created—in its entirety—using an Atari Pubitshing Systen:: MEGA 4, SLM804, Atan Deskset, Microsoft Write, and Eusy-Draw

Page 2

Q&A

by Johm Feagans
Director of Sofrware Technology

Here are the latest questions from the Atari developers’
mailbag. Leave questions on Compuserve for PIN 70007,1072
or GO PCS57 for Atari developer SIG information.

BIOS

Q: I have a program which will work on the UK and
US versions of the ST but does not work on the French.
I am looking for a control-Q but never receive a match
on the code.

A: It sounds like you are trying to match the complete
long word containing the scan code for each key com-
bination in which you are interested. Scan codes for the
same ASCII code can change between country versions
of the ST. The French use an AZERTY keyboard in-
stead of QWERTY. Thus, the ASCII code will remain
the same but the scan code, or key position, will be
changed. The best procedure to follow here is only to
use the scan code value if the ASCII value is zero. The
ASCII code is zero for all cursor pad keys. Match on
the ASCII codes whenever possible and your program
will be assured of working from country to country.

VDI

Q: When I use the exchange mouse vector to insert my
own handler for mouse position, where are the mouse
x and mouse y positions passed to me?

A: This is information that is processor specific to GEM
and is contained in an appendix to the documentation.
Specifically, the x position is passed in DO and the y
position is passed in D1.

AES

Q: Sometimes my mouse exhibits some peculiar beha-
vior in the application that I am writing. None of the
parts of my windows are active the first time until I
click on the desktop. The control panel will not close
until I double click. Other times my menus will not pop
down until I click on something else. What is wrong
with the mouse?

A: After personally looking at your code I determined
that the problem was with the graf_mouse call in which
you turn the mouse on and off—you were doing it before
the open virtual workstation call in your program. Later,
after the open workstation you turned the mouse on.
When you opened a desk accessory, it was using a dif-
ferent workstation and considered the mouse to be
turned off, but it was not according to your program.
It took a few clicks to get it straightened out. The solu-
tion is simple—wait until your workstation is opened
to do anything to the mouse.

Development Tools

Q: I cannot get MADMAC to generate a listing of my
assembly. What can I do to get a listing?

A:MADMAC is a one-pass assembler. Switch order on
the command line is important. Command lines are pro-
cessed from left to right in one pass and switches
generally take effect when they are encountered. The
recommended procedure is to specify all switches before
the names of any input files. For example, the command
fine: mac foos.s -l bar.s will produce a listing of bar.s
and a symbol table, but NOT a listing of foo.s.

Atar i Markets Continued from page 1

makes them especially suited for desktop publishing,
simulation, macro modelling, robotics, emulations,
financial modelling, music emulation, speech synthesis,
and general office applications. High specification video
output provides for image processing, computer-aided
design, and TV and film work.

New Atari hardware—such as the CD-ROM and
floating point coprocessor— cannot be utilized until
Atari developers produce the software that drives it.

On the Outside Looking In

Comments by dealers, sales reps, and real-world
users can provide insight into markets that require fur-
ther development, or the potential for ground-level op-
portunities. The following quotes were made to an Atari
representative last month.

“Developers should definitely be focusing on
development of strong educational programs like the
Arrakis series. Educational programs should come with
workbooks, text books, things the students can
transcribe back to the teacher for evaluation, and to
do homework if they have no computer at home.”

—Atari district sales manager (former teacher)
“There appears to be a need for statistics programs,
such as statistical analysis for psychology, etc.”

—salesperson, university bookstore
“Atari needs to take advantage of its special
capabilities: graphics, speech, music, the mouse, etc.
“Two real teaching needs must be addressed by soft-
ware developers. The first is good software for young
children, preschool and kingergarten. Much of the
available software is written by people who don’t have
kids, or who have never taught. The second is software
that teaches higher level thinking skills, especially for
students in high school and college.”

—high school teacher who works with Atari STs

Working Together

The Developers Conference scheduled for later this
fall, as well as the Comdex show in November, will pro-
vide an opportunity for developers to closely examine
market growth and needs in the Atari environment.

Working in conjunction with executive and
marketing management at Atari, developers can make
an investment in the future. It is only with the support
of its developers that Atari can attain these goals.

Page 3

Atari Policy and Software Piracy

by Dennis Hawker
Corporate Securir: Director

Asdiscussed in our last edition, there are three prin-
cipal forms of activity that constitute software piracy:
illegal mass reproduction, electronic distribution
through bulletin boards, and casual copying. In follow-
up, I would like to keep you, our software developers,
as well as end-users, informed of Atari’s on-going efforts
to curb such activity.

First, Atari will make an all-out effort to educate
the public as to the wrongfulness and consequences that
result from pirating software. Secondly, Atari has
adopted an aggressive policy to investigate and pro-
secute those persons responsible. All investigation will
be submitted to local and federal attorneys for criminal
prosecution. Our legal staff at Atari will prosecute those
responsible civilly. The bottom line is simple: Atari will
not fall victim to software piracy. My department is
responsible to investigate all matters relating to soft-
ware piracy and I urge anyone with information to con-
tact me directly: Dennis Hawker, Corporate Security
Director, Atari Corporation, 1196 Borregas Avenue,
Sunnyvale, CA 94086-3427, (408) 745-4319.

I will use this forum in the future to update you
on concluded software piracy investigations.

New Online -

In data library 7 (for registered Atari Developers
only) in the Atari Developers SIG on Compuserve, the
following files are new this month:

QA10.DOC--last menths questions, GDOS.DOC--how
to use GDOS with your application. In Library 4 in the
Atari Developer’s Roundtable on GEnie, QA10.DOC
is file #52 and GDOS.DOC is File #53.
Correction: In the BUTTON.ARC program uploaded
to Compuserve and GENIE there is an error which ap-
pears in the C source file button.c. The declaration:
long BUT_ADDR should be:
extern long BUT_ADDR

MEGAFILE 20

Atari’s new 20-Mb hard drive, the MEGAFILE 20,
is now available. The MEGAFILE 20 is compatible with
the entire line of MEGA and ST computers, and it is
conveniently packaged to fit under a MEGA. For pric-
ing and more information, please contact Cindy
Claveran. The MEGAFILE 20 replaces the SH204 hard
drive, which has been discontinued.

Events Calendar

As a service to Atari users, dealers, and developers,
a calendar of local and national computer events will
be compiled. Announcements of such events should be
sent as early as possible to Elizabeth Shook at Atari
Corporation, 1196 Borregas Avenue, Sunnyvale, CA
94086. Or call Cindy Claveran at (408) 745-2568. Be sure
to always include the name and number of a contact
person to call for more information.

AUGUST

20-21 : Ohio. Computerfest with participation by
MVACE and others, Hara Arena, Dayton, OH. Bruce
Hansford, chairman (513) 439-1993.

18-21: Wisconsin. National games show, GenCon, with
participation by MilAtari (Milwaukee). Bruce Welsch,
president, (414) 774-5253.

SEPTEMBER

2-4: West Germany. Atari Messe, Dusseldorf. Contact
Atari Deutschland, Frankfurter Strasses 89-91, 6096
Raunheim, West Germany, phone (49) 6142-2090.

10: Georgia. Computer show, Houston Mall, Warner
Robins, GA. Atari and IBM compatibles. Contact Peter
Miller, Middle Georgia Atari UG, (912) 922-5666.
15-17: California. Seybold Desktop Publishing Exposi-
tion, Santa Clara Convention Center, Santa Clara,
California. For more information, call Seybold Seminars,
{213) 457-5850.

16-17: California. Southern California Atari Computer
Faire, Version 3.0., Glendale Civic Auditorium, Glen-
dale, CA. Produced by ACENET, a group of 22 com-
puter clubs, including HACKS. Space for 80 exhibitors,
over 5000 attendees expected. John King Tarpinian,
president, (818) 760-1831.

OCTOBER

1-2: Washington, D.C. WAACE AtariFest, Fairfax High
School, Fairfax Virginia. Gary Purinton, chairman, (703)
476-8391.

15-16: California. Atari Expo, San Jose Convention
Center. Bob Barton, president, (408) .

NOVEMBER

14-18: Nevada. Comdex 88, Las Vegas. Atari has
reserved the Gold Room. Write:; Registration Dept.,
Comdex Fall, 300 First Avenue, Needham, MA 02194.

Page 4

TOS 1.4 Development

by Ken Badertscher
Atari R&D Support
Beta testing of the latest release of TOS is nearly
complete. The 5/18/88 Beta Test TOS was sent to Atari
subsidiaries world-wide, and the response we received
was very positive. Our thanks go to those whose System
Problem Reports (SPRs) helped us to eliminate the final
few problems with the new software. The SPR format,
designed to simplify bug repo:ts and enhancement re-
quests, combined with the Product Tracking System
(PTS) database, has helped the TOS developers in Sun-
nyvale a great deal. The PTS continues to meet its goal
of keeping Atari aware of beta test findings and sug-
gestions for new features.
Among the enhancements initiated as a direct result

of the beta test are:

» Improved documentation of various OS functions

a Better redraws of the File Selector

s Improved Desktop window handling

a A more standard interface in Desktop dialogs

a Several improvements in new Desktop features

a Time/date stamp now preserved by file copy

= VDI escape functions made more robust

We have a Developer Release of TOS 1.4 available,
so that you can have a head start taking advantage of
the new features. The Developer Release will be a RAM-
loaded version (just like the good old days!). It will come
with a complete set of release notes describing changes
and enhancements to TOS and how they might affect
your software. To receive this developer release of TOS
1.4, please see the “Developer Kit Update” section.

Details of the PTS and how you can submit System
Problem Reports will also be included in the Developer
Release of TOS. SPRgen, a program for generating
SPRs in the approved format, will be included on the
TOS boot disk. SPRgen creates text files which are
parsed and integrated directly into the PTS database.
SPRs should be submitted electronically on Com-
puServe, BIX, GEnie, or the Atari Base Bulletin Board
Systems. Details of how to submit problem reports will
be included in the PTS documentation.

The Product Tracking System is our primary means
of identifying and resolving problems with Atari hard-
ware and software. With your help, we will be better
able to document, track, and solve problems you are
having with TOS and other Atari products. You can
also use the PTS to suggest enhancements to Atari pro-
ducts and documentation. All System Problem Reports
are reviewed by Atari engineers, and you can get feed-
back if required. Working with the PTS results in timely
resolution of problems.

If you have questions about the Product Tracking
System, you can send electronic mail to the PTS coor-

dinator via Usenet: {portal,ames,imagen}!atarilpts, or
contact me on BIX (kbad), GEnie (SYNERGIST), or
CompuServe (71531,715).

Developer Kit Update
Registered developers are invited to apply for a set

of revisions and additions to the ST Developer Kit. The
complete set includes:
Developer Release of TOS 1.4

a floppy-based, RAM-resident

s Release Notes
SFP004 Developer Kit (MEGA Floating Point PCBA)

aroutines and demos

a Developer’s Manual
MadMac macro assembler and tools

s 4 bug fixes

s manual and release notes
'aln’ linker

s several bug fixes and enhancements

s manual and release notes
"db’ object-level debugger

afirst release! (extensively used internally at

Atari)
s manual
Please send a check for $20 to Cindy Claveran, Atari

Corporation,1196 Borregas Avenue, Sunnyvale, CA
94086. The $20 covers our production and shipping costs
for this set of updates.

Accessories, Pop-Ups, and
Main Applications
by Richard Body

Introduction

The trend to larger random-access memories in per-
sonal computers has lead to increasing numbers of com-
plete single-user-dedicated environments. Many PC
users now expect to find (or create) a special set of tools
that work together harmoniously and can perform
related tasks without disruption of the main task—the
task being directed towards a primary goal, such as
publishing a multi-page document.

The Macintosh resorts to “Switcher” type pro-
grams. Accessories for the Macintosh must not use more
than 32K RAM. In the MS-DOS world there are no
standards—although Borland’s “SideKick Plus” pro-
vides a de facto gap-filler. OS/2 is a huge response to
this lack of standards although it also appears to have
a mammoth’s appetite for resources.

For the Atari ST, of course, we already have GEM's
Application Manager. In this article I will discuss
mechanisms already supplied for the Atari ST by DRI's

Continted on page 5

Page §

Accessories

Continued from page 4

GEM, and I will propose a partial set of standards for
message-passing amont accessories and applications.

I will also present two accessories conforming to
these standards. One accessory checks spellings and
looks up synonyms. The second allows other accessories
to be opened with hot-keys.

Desk Accessories
According to DRI “A desk accessory is an applica-
tion that does not take over the entire screen.”! Desk
accessories are loaded at system-boot and never ter-
minate.
We already have, or can soon expect to see, many

good examples:

1. keyboard macro expanders and enhancers;

2. system measures/controls;

3. alarms, clocks, calendars;

4. memo, notepad editors;

5. spell-checkers, synonym-finders, idea-outliners;

6. debugging aids, program profilers, software

metrics;

7. file-squeezers, file-locaters;

8. screen dimmers, output device setups;

9. MIDI, modem and print spoolers.
Limitations: Room for at most 6 accessory titles
registered under *“Desk” Menu. Room for creation of
at most 4 windows owned by accessories.

HandShaking on a Loan of Resources

Among even a limited number of concurrent tasks,
cooperation is probably best implemented by a
systematic discipline of sharing data and operations.
Some of the discipline is provided most naturally by
the AES Application Manager and its functions
appl__find, appl__writ and appl__read.

Whenever two tasks share data, each must exercise
restraint while manipulating the other’s information.
If an accessory changes the main application’s data
without its permission or knowledge, catastrophe can
result. Remember that either accessory or main applica-
tion can become active at any AES call. Even reading
data without the donor’s permission can be dangerous—
the data may become rapidly out-of-date. We will define
non-catastrophic borrowing of data in terms of
“primitive” operations. A primitive operation on some
datum must guarantee the integrity of the datum for
the entire duration of the sharing. The data-structure
plus all of its primitive operations is known as a
“monitor.”2

When the main application terminates, all open ac-
cessories are automatically closed, so in most cases, it
is the main application which is the foremost guardian

of the (user’s) data. For this reason I shall focus mainly
on situations such as when an accessory requests per-
mission to view and perhaps modify some (text) data
structure of the main application. I will call the recom-
mended communications protocol a “‘handshake’ con-
sisting of three transactions, called the request, the
reply and the release.

The handshake begins when the accessory is open
and wishes permission to use some data structure of
the main application. The accessory sends (with
appl__writ) a pre-defined message to the main applica-
tion requesting the main application’s help in accessing
the data-structure.

The main application will make a decision about
whether it can safely share the requested data. If it
decides not, it simply ignores the message and, two
seconds later the accessory has to fend for itself as best
it can (probably by complaining to the user). To reach
a decision about sharing data, a main application must
be able to guarantee that the data in question will not
be changed in some conflicting way so long as it is allow-
ing the accessory access to the data. If the main ap-
plication decides it is safe to grant access it replies,
telling the accessory how it may safely access the data
in terms of primitive operations.

In return , the accessory must relinquish the data
at the very first possible moment—by sending a
message to the main application saying, in effect,
“Thanks, no more access needed for now.” Until the
accessury so replies, the main application will be
severely limited in what it can do, because it must con-
tinue to keep unchanged the data it is sharing.

Although GEM provides for arbitrarily long
messages, the standard pre-defined messages which
GEM._uses are all 16 bytes long. Tom Hudson3 makes
the suggestion that replies to requests should be
numbered hexadecimal 80 beyond the request’s number.
I believe this is a good suggestion since it can resolve
possible synchronization problems. Patrick Bass’ arti-
cled, in the same magazine, develops accessory inter-
faces for Degas Elite graphics in the same spirit that
I will use for a text-processing accessory. In the case
of Degas Elite, the structure shared is a screen-buffer.
In the example that follows, the structure will be a
stream of text.

An Example : Handshaking on a Secure Word
Stream
An accessory provides auxiliary text-processing ac-
cording to the functional definitions given below9: the
accessory will check the spelling of a word against its
own dictionary. It can also shade the meaning of a word
with its own thesaurus.
Continued on page 6

Page 6

Accessories

Continued from page 5

/***X <FIGURE 1> HandShake (Accessory’s Point-of-View) X*x#/
#include <define.h>

#include <gemdefs.h>

extern int gl_apid;

#define ENQ 5

#define ACK 6

#define REPLY 0x80

#define WORD_STREAM 0x50 /* data-type and access-method*/
#define CURRENT_WD 0x10 /* data-instance */

#define MAIN_ID 0/*CAVEAT NOT DOCUMENTED*/

typedef char* StringFcn(): /*function returning string */
typedef int * IntFen():

stringFcn* Getword:
IntFcn * Changeto;

HandShake(data_shr)

int data_shr;

{ int message[8]):
message[0]=ENQ<<812:
message{ll=gl_apid:
message{2]=0;
message{3]=data_shr:
Getword=NIL:
Changeto=NIL;
if (tappl_writ(MAIN_ID,0.message))

return{FALSE)}; /*main program is no GEM*/

/*WORD_STREAM<<8 | CURRENT_WD: */

fort:;)

{ int evnt=evnt _multi (MU_TIMER|MU_MESAG,
0.0 .0,0.0.0,0.0.0,0,0,0,0.
message,

2000,0,

. &evnt . &evnt, &evnt, &evnt &evnt, &evnt)
if(evnt&MU_TIMER)
return FALSE: /*timed-out*/
if(evnt&MU_MESAG
&& message({0)==(ENQ+REPLY)<<812
&& message(1)== MARIN_ID
?& message[3)== data_shr

{ Getword= ((StringFcn**)(message+4))(0];
Changeto= {(IntFcn**)(message+6))(0];
return{TRUE) ;

}

Release(data_shr)

int data_shr;

{ int message(8]:
message[0)=ACK<<8(2:
message({1]=gl_apid:
message[2}=0:
message{3]=data_shr;
Getword=NIL:
Changeto=NIL;
if(tappl_writ(MAIN_ID,0, message))

{ Assert("Main application no longer functioning!“):
Assert("Data just processed may be corrupted!”):

/*primitives no longer valid*/

Check_spelling_of_current_word_of_main_application()
char *current_word:
if(Handshake(WORD_STREAM<<8 | CURRENT_WD)
?&(current_word = (*Getword)())
{ char corrected_word[132]:
if(spelt_wrong(current_word.corrected_word))
if (! ('Changetol(corrected word))
Assert(“Main program won’'t accept change®):
Release(WORD_STREAM<<8 |CURRENT_WD) ;
lelse Assert("Can’t get current word from main pgm."):

Assert(s)
char*s;

{ Cconws(s) Cconws("\n"}:}
/R!"‘It!ﬁ!ﬁlkﬂ!ﬂ'kﬂt!!KKK* END of FIGURE 1 '!ﬁlﬂ'ﬁllﬂl!ﬁlll‘ﬁﬂ/

The Accessory’s Request
To access text in a word processing program, the
accessory sends one of the following 16-byte messages
to the main application.
byte[0] = ENQuire = 0x05 (Ascii control code-ask for
resources)
byte[1]= N__Primitives = 0x02 (this access method re-
quires only two primitive operations- see below, at

main-applications reply.)
word[1] = accessory__id = sending accessory was given
this by AES. -
word[2] = 0 = number of bytes in message in excess of
standard 16.
byte[6] = general classification of data structure =0x10
(Word__stream)
byte[7] = unique description of data structure = (one of)
0x10 current word
0x20 current line
0x30 block of words most recently selected by
user
0x40 top-most window
0x50 current text__buffer
0x60 current filewords{4-7] unused.
The accessory will wait two seconds for some
message in response.

The Main Application’s Reply

As noted above, if the main simply ignores the
accessory’s request and sends no message in reply, the
accessory will consider this a “‘no” response, and make
alternate provisions if possible. However if the main
application wishes to provide access to the structure
specified in bytes 6-7 of the message, it will provide a
means of (securely) accessing the structure. In the case
of Word__stream, two primitive functions, written in
C or the equivalent,are necessary:
char* Get__Ascii__translation();*/for first ungot word

instream,starting at the beginning of the structure;
return NIL pointer (OL) if stream exhausted®/
int Replacement__with(Ascii__string)/* change last-
gotten word of the stream with internal representa-
tion of parameter; return value 0 if replacement not
successful.”/
It is the responsibility of the provider (the main ap-
plication program) to ensure that none of its other ac-
tions interfere with these primitives during the duration
of the access. The access begins with the sending of the
reply in the following format:
byte[0]= ENQ + 0x80 = Reply to request.
bytes[1] same as corresponding byte of the request.
word[1] = main_application’s i.d. (issued by AES)
word[2] = 0=length of this message in excess of stand-
ard 16 bytes (nonzero if more than two primitives
required for some access method)

long[3]= pointer to Get__Ascii__Translation();

long[4] = pointer to Replacement__with();

Release from the Accessory

The access {and the handshake) end when the main
application receives the release from the accessory.
byte[0] = ACK =0x06 = Ascii control character (“Thank

you™)
byte[1] =same as corresponding byte of the request.
byte[2] = accessory’s id (same as in request).

word[3-7] same as in reply.)
Continued on page 7

Page 7

Accessories _
Continued from page 6

A strict definition of a possible word is probably
necessary here. A word is a sequence of alphanumeric
letters, separated by delimiters. Delimiters include
blanks and special characters, such as commas, periods,
colons, hyphens and so on. However apostrophes and
digits are considered to be letters.6 The Ascii strings
mentioned above must be in the range 32126 decimal
and must be NULL-terminated.

Recovery from Catastrophe

Although the above protocol is designed to secure
the shared data structure, it is in the nature of mortal
designs that there’s no perfect security. Accordingly
designers of accessories should take extreme precautions
to release their programs from unneeded handshakes
even in the most extreme circumstances. Designers of
main applications should provide a “bail-out” feature
in each of the primitives supplied, so that if the unex-
pected happens, the primitives can refuse to provide fur-
ther access (stream exhausted, replacement not possible
ete.).

[ARARARRXARAKRXA FIGURE 2 Primitives AXAXZaxaxxxxxasxxxas,
#include <define.h>

#include <gemdefs.h>

extern int gl_apid:

#define ENQ 5

#define ACK 6

#define REPLY 0x80
#define WORD_STREAM 0x50
#define CURR_WD Ox1i0
#define CURR_LN 0x20
#define CURR_BLK 0x30
#define TOP_WIND 0x40

/* data-type and access-method*/
/* some data-instances*/

#define CURR_BUF Ox50
#define CURR_FIL Ox&0
typedef char® Stringron @
typedef int * IntFcn:

*tunction returning string */

typedef struct T oformet ot
{ char event n_g
short requester
char rsrc_type
char rsrc_instance
StringFen “primivi
IntFzn “primtv2

request-to-chare-word-stream®,

}wds_Rq:

extern /*very external...please ignore’
user_has_already_se werd
1n_some_vast_reorga 1ol strean

we_like_sharing_dat
n_open_windows

extern 1nt how_many
extern char copy_of .
extern hypernodel] tr

rcv_messageimsgl/*application’s general message_handler?/
int *msg
i switch (msg(0))

{case WM_TOPPED: /” and sc forth’~s

shares_wer eami tWds_Pq° nsy

share_wnrd_streamirqg
wds_Rg’ rg
{ switchirg-»rers 1
{case CURR_WLD
ifC user_
&& !in_s
&& we_like
’
share
else retur

*wird stream e iest_handler®/

iready_select
t_reorganiz
g data_wl

_stream
requester)

wdlcg

case CURP_LN
Srwe e
case TOP_WI

FALSE
ool e s eniedt s
_open_windows. - i
_top_window(rgs -
else return FALSE:
default: return FALSE: /*unknown resource-instance®/

}
share_cutrent wiirg)
Wds_Rg’rg
{ StringFen one_tame ool
IntFen asc1i_ e culient woia
wds_Rq releas.
int accessry= rg-s1equestel
how_many_words_shared=1
rg->primtvlzone_time_only
rg->primtvz=ascil_to_current_word
rg->requester=gl_apid
rg->event |=REPLY:
1f(fappl_writtaccessiy O 1g' o
{ Assert{“Accessory made Lugus request’t
return
)
do evnt_mesagié&release}
whilel release->event '= ACK
| release->requester's accessiy
It release->rsrc_type!s WORD_STREAM
Il release->rsrc_instance!=CUKR_WD
)

}/*this is the simplest way of ensuring nothing harmful 1s done during hand-
shake--do nothing at all'!! There a:e more sophisticated methods*/
/X*XRARRXXRAIMaginary examples of primitives *AAARARX*Ax/
char* one_time_only()
{ if (how_many_words_shared-->01

transiate_from_hypertext

{ hypernodel0), copy_of current_word):

return copy_of_current_wor:

Jelse return NIL:

int ascii_to_current_word(ascii_string)

char * ascil_string:

{ return translate_to_hypertext
(ascii_string.hypernodell)i:

JRAXRXARRAXXKANANAEND Of Figure 2 APAPANRARRRRXARRAARARKAKA,

PopUps and Hot-Keys

Macintosh accessories can often be opened by press-
ing a combination of “‘hot-keys,” so that the user does
not have to lift his hands off the keyboard. Similarly
MS-DOS users can activate “transient and stay-
resident” programs with “pop-up” keys. If you install
an accessory POPUPS before installing your own ac-
cessory, you can register hot-keys with POPUPS.
POPUPS will monitor the keyboard, and open the ac-
cessory when you hit the registered key-combination.

We can express the interaction between the user’s
accessory and popup as an unusual form of handshake;
the user accessory requests a service of PopUp, namely
to translate a key-combination? into a message
AC_OPEN. It is unusual in that the data shared, the
accessory’s AES id.,, is guaranteed to be valid for the
lifetime of the accessory, which is eternal! The handshake
likewise need never be released.

Jrrrerarana xrAh FIGURE
/*PopUp is an accesscory
1)1t registers the

f any registered hot keys
/*How CurAccesscry regist with Poplp */
/* but first a few defin:t

#include <gemdefs n-

#define SERVICE 0
#define POPREY Ux05
#define ENQ 5
#define RESkeycombe Uxl4U0 TRit-T see [T
struct popmsg
{ char event. n_prim tives
int apid msglen
char type.instance
int menuid
long keyscan:int ext
}Poprey
A"

Yelse Asserti"No PopUp sscry found 7))

Continued on page 8

Page 8

Accessories
Continued from page 7
The POPUPS accessory and its source files are
uploaded on GEnie’s Atari Developers’ Forum.

Conclusion

It remains problematic whether most users of per-
sonal computers need or want the overhead and com-
plication of full unlimited multi-tasking systems.
Accessories are a useful compromise for building com-
puting environments dedicated to one priwnary goal,
such as desktop publishing, graphics design or music
composition. Developers will find a rewarding set of
challenges in building tools for such environments.

1 GEM Prog. Guide, Vol. 2: AES: 1.5.2.1

2 Per Brinch Hansen, “The Architecture of Concur-
rent Programs,” Prentice Hall, 1977, pp. 19-22, 52-
54.

3 Tom Hudson, START Summer 1987, Vol. 2, No. 1
“Plumbing GEM’s Mysteries” pp. 43-47.

4 Patrick Bass, START, Summer 1987, Vol. 2, No. 1
“A Super Toolkit For DEGAS Elite” pp. 23-29.

5 Julius Oklamcak, “Application to Spelling Checker
and Thesaurus Interface Specification” Atari Can-
ada Corp., October 1987

6 James L.Peterson, “Lecture Notes in Computer
Science #9,” Springer-Verlag, 1980, p. 3.

7 Sheldon Leemon, “Technical Reference Guide Atari
ST Volume 2" Compute! Publications Inc., 1987, Ap-
pendix B7. ‘

Best of the Boards

by Ken Badertscher
Atari R&D Support

Electronic Bulletin Board Systems (BBSs) and
online services are a great source of information and
helpful tips about all facets of Atari development. Af-
ter sifting through hundreds of kilobytes of text files
captured from three of the major information networks,
CompuServe, GEnie, and BIX, I came up with a
representative sample of the kind of messages you can
see every day online. Each of the networks has its own
personality, but they all have something in common:
helpful users and sysops. Chances are pretty good that
you can pose an electronic question on just about
anything, and useful feedback will be waiting for you
next time you log in.

The CompuServe AtariDEV Forum is a direct line
to Atari developer support. Topics in the forum include
open language and hardware sections along with two
areas for registered developers only. The discussions
represented here range from evaluating a C develop-
ment system to talking to the 68000 on the Mega bus.

GEnie is a popular information service because it
is less expensive than many of the others. The ST
RoundTable on GEnie is one of the most popular. GEnie
also has a RoundTable just for registered Atari
developers, also called AtariDEV. In the messages here,
amalloc() question results in a description of the public
domain dLibs C library, and Neil Harris opens discus-
sion on the upcoming developers conference. BIX (the
Byte Information eXchange) has a wide variety of talent
online representing fields from Artificial Intelligence
to Zoology. Atari has four conferences on BIX: atari.st,
ataricorp, atari (for 8-bit computers) and the developer
conference, ataridev. Excerpts include using BIOS calls
with MID]I, info on Pexec 4 and 5, and GEMDOS stand-
ard handles.

From the CompuServe AtariDEV Forum:

AZTEC C
Fm: Corey Cole 76224,66

I haven'’t seen the Aztec source debugger yet (just
saw an ad for it yesterday), but have been using the
rest of the package heavily for a month or so now, and
I like it. I chose Aztec (even though I've been using
Megamax for another project for some time, and am
very impressed with it as well) because I am develop-
ing for the Mac and Amiga as well, and Manx has essen-
tially identical compilers for all three machines. Also,
I like having a separate assembler, as the project I'm
converting (from the PC) is about 1/3 assembly
language, and I didn’t like the idea of doing so much

- assembly code with an in-line assembler.

I would say that compilation speed with Aztec is
a little slower than with Megamax, but my off-the-cuff
impression is that Aztec’s code generation is superior
to Megamax’s (seems to have better optimization,
makes good use of the 68000 instruction set).

The documentation on how to create Alcyon-
compatible symbols (for use with SID) is incorrect, but
the feature does work. The only other negative I have
is that the compiler gets unhappy about CTRL-Z end-
of-file characters (doesn’t kill it, but puts out lots of an-
noying warning messages). On the whole, it's a very
solid and well-documented package, comparable to
Megamax, but with the mentioned advantages
(portability and separate assembler.

General Information
Fm: Winston M. Llamas 75176,2260

Thanks so much for the information. I have been
trying to compile an expert system shell on the ST for
a while now, but Megamax and Mark Williams always
choked on it—Megamax because it isn't “ANSI”
enough, and MWC kept generating an internal compiler
error (since the program worked on my other system
I never bothered modifying the code—lazy I guess). I've
used Aztec on the PC and on the Mac and I like it—it

Continued on page 9

Page 9

Best of the Boards
Continued from page 8

looks like they keep the quality up across the boards,
so to speak. And it’s a pretty good deal with their cur-
rent special.

Thanks again.

PTERM
Fm: SYSOP*Keith Ledbetter 76701,124

Ok, guys...here’s another one. I have an application
I'm writing that traps all BIOS calls, and under certain
circumstances I need for my BIOS routines to blow the
currently running program ‘“‘out of the water” (grin).
What's the best way to do this? Can I just execute a
PTERM call from within my trap13 handler. If not,
what could I do to cause a fatal error just on the cur-
rently executing process? Keith

Fm: John Feagans (Atari) 70007,1072

If you can do a pterm from trap #13 and survive,
you would be extremely lucky... Here is the way I would
do it: Monitor trap #1 as well. Set a global flag in the
trap #13 that you want to do a pterm. The next time
the application does a trap #1, change the function code
to pterm and bye bye.

Fm: SYSOP*Keith Ledbetter 76701,124
Hmmm... that sounds like a good idea. It’s probably

the “cleanest” way to do it.
Thanks!

Fm: Marc A. Pelletier 76340,3107
Actually, if you don't mind the bombs on the
screen, just execute that bit of code:
move.l $8,a0
jmp (a0)

That will simulate an address error, put two bombs
on the screen, and quietly return control to the calling
program. Of course, you must be in Supervisor mode
to do that, but then again, you are if you are trapping
bios/xbios calls. Mare.

Fm: SYSOP*Keith Ledbetter 76701,124
Thanks, Marc. The bombs don’t bother me at all
(the SysOp’s may be a different story, but...(grin)Keith

From the AtariDEV RoundTable on GEnie:

Sub: Use of Malloc(
Usage of Malloc(-1) to give you all available memory
J.ROBINSON12

Is there an amount of memory reserved that Malloc
can’t get to? I have 37,536 bytes free listed when using
the Intram accessory with DBMaster and my own pro-
gram that can’t be used. Is it just not possible to use
this memory? If so, does this amount of unusable
memory remain the same with different memory con-
figurations?

Keith

JLS [John Stealey/

J.Robinsael2, you might want to use the dLibs
malloc routines (and dstart startup module) to avoid
the space limitation problems in the Alcyon libraries.
The dLibs memory allocation system uses Malloc
(GEMDOS call) to take a huge block of memory
(programmer defineable size) and then parses it out in
smaller chunks via the C malloc() call. This means that
-all- system memory is available for your allocations,
you don’t run into the 20 Malloc problem, you don’t
have to worry how small you make your runtime stack
(because your malloc() calls don’t care), and you can still
run Pexec’ed programs from within your program and
they’ll use almost all non-malloc’ed memory to run in.

I have several interacting programs (editor, shell,
etc) that all use the dLibs functions. I can pull in a
monster text file almost as large as free memory, or 1
can pull a couple of smaller files, run Flash from inside
the editor,drop out of Flash, and still be able to pull
in alarge text file. Frankly, I can’t imagine why anyone
would want to stick with the very limited Alcyon
memory management when dLibs is available as a
public-domain library that's so much more bug free than
the Alcyon libraries...

dLibs is available in the main ST RT in GEnie. It’s
fully compatible with the Alcyon compiler and source
code is provided free of charge. 1 know I sound like an
ad, but I also know of several people who have spent
months fighting to get the Alcyon libraries to work.
They then tried relinking with dLibs and major sections
of code suddenly started to work...

Sub: Developer Conference
Atari is planning a major conference for developers,
to be held in Sunnyvale immediately following Comdex.

NHARRIS [Neil, Atari U.S]

We have a meeting scheduled next week to discuss
the details of the first ever USA conference for Atari
developers. Now is the time for some input. What sorts
of activities do you think should be included?

J.OKLAMCAK [ulius, Atari Canadal
Neil, I can see the conference taking two directions.
One for marketing folks and the other for programmer
folks. First an intro of where Atari is going in terms
of marketing and products. Then the two groups could
be split up into different sets of seminars. I would like
to see the Atari Engineers on hand to answer questions,
programming seminars (how-to’s, why-for’s, etc.) For
marketing folks you could have info on the different
avenues of selling products, selling into other English
speaking countries, and even to foreign language coun-
tries. (Or is this going to be an international developers
conference?) Maybe even a revised set of docs could be
ready by then (grin). Possibly set forth some standards
for applications to follow...
Continued on page 10

Page 10

Best of the Boards

Continued from page 9

R.WARSHAW at 19:55 PDT
A good idea. I'm sure many developers would
welcome a chance to discuss Atari’s present and future

plans. Needn't be a shouting match either.
Ray Warshaw

JR.WILSON [WPCorp] at 14:31 EDT
Programming for upward compatibility with future
ST designs might be nice. : :
N.WEINRESS at 22:21 PDT
I echo that last statement. Everybody knows that
Atari must replace the ST with a more capable machine.
Upward compatibilty, or the lack of it, is going to be
a vital question. ’
C.GREENE3 at 13:37 EDT
Yes, upward compatibility would be great. How
about scheduling part of the conference to deal with
this? Possibly a discussion on OS changes that might
be offered to allow programmers a chance to reduce the
amount of direct hardware stuff that is done... Chris

From ataridev and ataricorp on BIX:

MIDI
ataridev/internals #50, from ggf [Gary Frederick]

We are playing with the MIDI port and would like
to have some info on what the MIDI port really does.

Does TOS flow control work with the MIDI port?

1f I read/ write the MIDI buffer directly, will I get
extra control characters or will it just have what I put
in?

1 did a few tests of bcon* and the MIDI seems to
be sending at around 1/3 of the max possible. Do the
beon* calls have some overhead that TOS uses?

Jefferson Software will be modifying the zmodem
programs from case to use the MIDI port. Has anyone
other than Fred Brooks with mx2 done anything with
the MIDI port and ST used as a file server?

ataridev/internals #51, from john.r.strohm

The MIDI 1.0 Specification does not define any flow
control protocol. Some of the instrument manufacturers
(Roland comes to mind) have defined flow control as
part of their System Exclusive stuff.

When reading the MIDI buffer, you will get exactly
what was received from the other end, no more no less.
Be aware that some instruments DO send active sen-
sing bytes every so often. (Yamaha DX7, the original,
sends every 80 msec.)

The Atari ST MIDI receive data interrupt handler
has a defect. It cannot use more than 32K worth of buf-

fer. If you are going to receive more than 32K bytes
at a whack, you MUST empty the buffer on the fly. (The
Oberheim M atrix-6 synthesizer Sys Ex bulk voice dump
sends 34K bytes. Guess how I discovered the problem
in the interrupt handler?) Beyond these flakes, there
is not much to using the MIDI port. The BIOS and
XBIOS calls work well enough.
Good luck!

PEXEC
ataridev/internals #62, from ggf
Can someone who is wise beyond belief tell me about
pexec 4 and 57
* I can get one pexec 4/ 5 combination to work, but
it—uh—fails if I pexec 4 several programs then try to
run them via pexec 5.

ataridev/internals #64, from tempel [Thomas
Tempelmann/]

In the Megamax Modula-2, I've used that Pexec
4 & 5 to load programs resident and executed them from
RAM. There are two problems:

First, many programs (often written in C) use the
DATA segment and change it. That means, if you load
aprogram with Pexec and run it, that program changes
its own pre-initialized data. Then, if you run it again
with the changed data, it'll get confused. To fix this
problem, you must save the data segment every time
you exec the loaded program and restore it when it has
returned. You can get the location and size of the data
segment out of the base page.

The second problem is that the TOS developers
made a mistake. Every time a process (prg) is called,
the system needs some initialization, e.g. the file
handles, redirection, and so on. Pexec does it, but at
the wrong time. It does it when you load the program
and not when you call it. So, the system gets confused
when you call a process twice because its resources are
only initialized when executing the first time. Then, af-
ter the termination of the first process call, it closes
its resources. When calling the second time, the process
uses the old, closed/invalid resources. Because of that,
it could happen, that redirection (from the parent pro-
cess) and current paths will not be active/found when
doing in the second and further process calls. As we
are using the program load/execute in our Modula-2
system nevertheless, I'd say that it doesn’t make for
big problems.

But I'll try to convince the current Atari program-
mers to fix this bug. As I've got a source (recompiled
by hand) of the pexec function I'd say that it would not
be so hard to change it. ('m wondering why the
developers know this bug but haven't fixed it yet).

—tempel
Continued on page 11

Page 11

Best of the Boards

Continued from page 10

ataridev/internals #73, from kbad [Ken Badertscher]

Allan Pratt sez: Tempel's explanation of what Pexec
4 & 5do and don’t do (see message 64) is quite correct.
He has obviously studied them well. However, fixing
the way Pexec works is not as simple as it may seem.
Not only that, but if it *is* fixed to do something dif-
ferent, people who have working code now may find that
their code breaks. The evils of backward compatibility
manifest themselves in many ways...

STANDARD HANDLES

ataricorp/tos.upgrades #90, from orc [David Parsons]

Another thing that would be very* nice in the new
roms would be to follow Unix convention for the file
handles. The old developers notes don’t really* describe
how the file handles work, but I've been told by (highly-
placed sources” that handle 2 is pointed at aux: instead
of being used as stderr. Not having a real stderr is a
pain in the nether regions if you're trying to (a) redirect
output but not error output or visa-versa or (b) run the
st via a terminal attached to the serial port.

ataricorp/tos.upgrades #91, from ggf

1 asked a LONG time ago what the standard
handles point at. There are 6. What are the official
devices for ALL 6.

ataricorp/tos.upgrades #92, from kbad
GEMDOS standard handles are as follows:

0 - stdin (CON:)

1 - stdout (CON:)

2 - (AUX:)

3 - (PRN:)

4,5 - not initialized (but' inherited by child
processes)

Because a lack of stderr is a documented GEM-
DOS bug, and some development systems may have
worked their way around it in one way or another, it
is not likely that handle 2 will be changed to stderr.
Especially since there is probably some software out
there that will break seriously if it expects 2 to be at-
tached to the serial port.

Ore, why don't you roll your own UNIX(tm)
compatible stderr library code by fduping handle 2 and
then fforcing it to whatever you want to be stderr? That
is a perfectly legit way of getting a stderr that does what
you need without causing problems, and it could be
easily accomplished in your startup code. ttfn...

ken @ atari

STDERR

ataricorp/tos.upgrades #93, from orc

Why don’t I do that in startup? Look at how Unix
handles stderr. I could set things up so that my shell
redirects handle 2 and makes it stderr, but then I'd have
to require that all my programs are run from within
my shell. (And that would make a lot* of unhappy
STadel sysops—Gulam appears to be the shell of choice
for the STadel sysops that use a shell.)

I want a stderr so that I can redirect it. If the start-
up code does dupping on stderr, stderr can't be
redirected (my startup code, by the way, does not* do
redirection itself—that is left, as it should be, to the
shell.)

Has anybody done any testing to see whether peo-
ple use the (undocumented) official handle 2? Keeping
it as is is very silly—obviously someone was thinking
MS-DOS when GEM was written, 'cause 0-5 are kept
around, so why not try an experiment?

ataricorp/tos.upgrades #94, from ggf

If 4 and 5 are not initialized and passed to the child
process, we can use them to redirect io to the child pro-
cess. Is it official they are not initialized or is that just
the current state of TOS?

ataricorp/tos.upgrades #95, from kbad

The current state is “not initialized.” In the new
GEMDOS, handles 4 and 5 point to the console.
“Officially” I would say 4 and 5 are not initialized, since
that’s how it has been in TOS up to now, and we must
be backward compatible. Yup, you could use handles
4 and 5 for special cases for child processes, since they're
passed along in a Pexec. GEMDOS has no stderr. In
a perfect world, GEMDOS would use handle 2 as stderr,
or at least have a documented stderr. Alas, in the real
world there are bugs and shortcomings in TOS.

