ok

~ STE TOS Release Notes

January 12, 1990

Atari Corporation
1196 Borregas Avenue
Sunnyvale, CA 94086

COPYRIGHT
Copyright 1990 by Atari Corpuration; all rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manuai, or otherwise, without the prior written permission of
Atari Corporation, 1196 Borregas Ave., Sunnyvaie, CA 94086.

DISCLAIMER
ATARI CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
1, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. Further, Atari Corporation reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Atari Corporation
to notify any person of such revision or changes

TRADEMARKS
Atari is a registered tradermnark of Atari Corporation. SLM804, ST, and TOS are trademarks
of Atari Corporation.

This document was produced entirely with Microsoft Write, an Atari Mega 4 computer, and
an Atari SLM804 laser printer.

d Table of Contents

Introduction...............ccccoov... e s e s et ee s 5
DeSKIOP CRANGES............ooeeeeeeeeeeeeeeeeseerveees e seeem s eressss s 6
AES CRANGES.........oooceeeeeeeeeeeeee et teese s seessneesneessseessann 7
VD CREANGES. ...t e neaee s anss s 8
BIOS/XBIOS CRANGES..........oooooooeeeeeeeceeeeeees e ereeneieess e
The CoOoKI€ Jar............ oo O 1
Reallocating the COOKIE JAT.........oeeeiiieee i cecceetiieiiees s terreasensesraesasannsesene e sessansssssssennanns 11
Desk Accessories and APPlICAtIONS.ooviiiiiii et cs st s s 12
LUSING the COOKIE® JAN.... ..o eiieieeeereieevereeieivtreaterresesesresseaeeraaeneataereerernnnne e s eesanasraannaaanssrans 12
Cookie Jars and OId ROMS....... ... ieeiieeiieeeceeiiieeee s e ee bt resseaseasr s aeeae e eennnassnssrannranan 12
Cookies Instaliled by the BlOS e 12
FIinding Cookies and VAIUES..............cccooeiiieeieiieicciee e re s rerresaerres e se s ae s sen v abaa s s 15
Clearing the Cookie Pointer on Warm Boot...........oveeveeiiimiicen e 17

Iniroduction

‘'niroduction

L

Welcome 1o the STE TOS Release Notes!

This document describes the changes made in STE TOS. It also describes the Cookie JJar,
a feature implemented in STE TOS that can be easily retrofitted to other versions, as well.

There is a section for each affected layer of TOS (Desktop, AES, and so on), and one for
the Cookie Jar. We suggest you look through the Table of Contents, then read through the
document in the order of your interests.

As always, we welcome your comments.

ATARI STE-TOS.-RELEASE NOTES - JANUARY 12..1990 FPage 5

Desklop Changes

Desktop Changes

Show File: - Error messages requiring keyboard input at the start of a Show File were
removed. You now get an alert instead of a cleared screen with an error
message.

- Mouse input was added to Show File. Pressing the iett mouse button during
show file is the equivalent of hitting the space bar, and pressing the right mouse
button aborts (like Q, q, “C or Undo).

Fage 6 ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990

AES Changes

ity § e

- @IES Changes

Autoboot Applications: - The desktop background pattern is now set correctly before an autoboot
application is launched. Previously, it would show a dither pattern in color
resolutions, rather than the normal solid color desktop.

rsrc_load(),
shel_find(): - The shel_name() bug in Rainbow TOS, where the AES is sometimes unable to
find a tilename passed to shel_find(), was corrected in STE TOS.

b

ATARI STE TOS RELEASE NOTES - JANUARY 12, 71990 Fage 7

VDI Changes

VDI Changes

Color Mapping:

vq_color() and vs_color() now have finer granularity in color rapresentation,
reflecting the change in the hardware.

Note that the least significant bit of the STE intensity vaiue is the most significant
bit of the STE hardware register value. This is for ST compatibility to provide the
closest mapping 1o ihe correct STE intensity for ST software that doesn't use 4 bit
color values. Programs which correctly use VDI calls will get correctly scaled
color values in any case. (One of the many advantages of writing your programs
to be device independent!)

Color Palette Size:

The palette size returned by v_opnwk () and v_opnvwk () in the workstation
structure (work_out [39]) is now 4096, reflecting the change in the hardware.

Underlined Text:

Fage &

In some cases, the underline of underlined text would fall outside of the character
cell. This would cause lines of texi following underlined lines of text to overwrite
and thus erase underlines. A check was added lo ensure that the underiine falls
within the character cell so that il is not erased by subsequent lines of text.

ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990

BIOS/XBIOS Changes

‘ @ BIOS/XBIOS Changes

‘ Color: - Setpalette() and Setcolor() support 4 bit color values.

Note that the least significant bit of the STE intensity value is the most significant
bit of the STE hardware register value. This is for ST compatibility to provide the
closest mapping to the correct STE intensity for ST soliware that doesn't use 4 bit
color values. Programs which correctly use VDI calls will get correctly scaled
color values in any case. (One of the many advaniages of writing your programs
10 be device independentl)

Console Bell

and Keyclick: - Hooks are provided for changing the keyclick and bell sounds. The ROM routines
may be replaced by a TSR routine by merely setting the appropriate variable to
the address of the appropriate routine in the TSR.

bel1_hook is a system variable at $5ac. The handler there gets a jsr when the
bell is to sound. The enable bit in conterm has already been checked at that
point - the beli really should sound. it may change d0-d2fa0-a2 but must preserve
all other registers. it can take as long as it likes, and use BIOS calis. It can chain
to the oid value of the beli handler. '

kc1_hook, at $5b0, is a similar hook for keyclick. It can change the same regs,
and it shouldn't take very long. If you want an elaborate sound, set something up
to be played at interrupt levei.

@ Both handlers run in Supervisor mode. Each should return with rts.

ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990 Page 9

BIOS/XBIOS Changes

Akl

PR, S

Hard Disk .

Bootup Delay: - A delay has been placed in the boot sequence at the time hard disk boot is
allempted. This gives hard disks time to get up to speed belfore the OS starts
trying to talk to them. The delay is ten seconds for an acknowledge to the first
command byte, and forty seconds for data. This delay only occurs on powerup,
not on warmboot.

This is a convenience leature only, S0 you can power up your whole system at
the same time, and may or may not work with all hard diski/controller/host adapter
configurations. This feature does work with the Atari hard disks on which it was
tested.

Physbase(): - Physbase() may return values that are not 256-byte aligned, since word-aligned
values are now supported. Also see Setscreen().

Rsconf() Bug: - The bug in Rsconf() In Rainbow TOS, where any attempt to set RTS/CTS flow
control instead results in NO flow control, has been corrected in STE TOS.

Setscreen(): - Setscreen{) supports word aligned arguments for physbase. Previously 256-
byte aligned values were required. You can no longer expect Setscreen() to
round down to a 256-byte boundary. Also see Physbase().

Sound: - By default, DMA and Gl sound are both mixed through the speaker and the
external sound channels. There is no other BIOS support for DMA sound.

Timeouts: ~ All BIOS timeouts now use the 200Hz timer rather than instruction loops. This
means that il you disable the 200Mz timet, you may have problems with devices
requiring timeouts, such as floppy VO and DMA. Accesses {0 these devices will
never time out; if no timeout efrors occur, these devices will work fine.

Page 10 ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990

The Cookie Jar

kJThe Cookie Jar

Starting after Rainbow TOS, TOS contains something we cail the Cookie Jar. (it can be “retrofitted” into oider
TOSes, as well.) The name comes from the fact thai certain, hopefully unique, numbers used to identify
something special are called "cookies,” and the Cookie Jar is a special place for storing them. Cookies are
placed in the cookie jar by the system iiseit, and by programs which, in effect, add some utility to the system,
such as resident device drivers or OS call handters. Collectively, these programs are called TSRs, for
Termina;e and Stay Resident utilities. (See "Desk Accessories and Applications” for the special problems they
present.)

The pointer to the Cookie Jar is found at _p_cookies, a new system variable at $5a0. If no Cookie Jar exists
(e.g. on old TOS) this pointer will be zero.

Even in old TOSes, a program can install a cookie jar. See the section called "Cookie Jars and Old ROMs”
below.

The Cookie Jar contains pairs of longwords. The first longword of each pair is the cookie; it's a (hopefully)
unique number which identilies the m~~ning of this entry. The second longword is any value at ail, and
provides additional information relating 1o that cookie. Think of entries as environment variables, with a name
and a value.

The first longword (the cookie) may aiso be any vaiue, but when choosing values you should strive for
something both descriptive and unique. Many good choices spell out meaningful words when dumped as four
ASCIl characters. Please don’'t use any vatiant of the word “cookie.” It's just oo obvious, it doesn’t
describe the entry at aii, and besides, it's like calling a variable in your program “var.”

Some cookies are boolean; that is, either the cookie is there or it isn’t, meaning the associated TSR is either
present or absent, and no other information is necessary.

The opposite end of the spectrum is an entry whose value is a pointer to a structure describing something in
Wotail. such as variables which conirel the operation ot the TSR or report its status.

in between are the entries which describe something useful in the second longword of the entry {such as the
revision number of the TSR}, but require no further information. - .

Any search of the cookie jar must end when it encounters an eniry whose first longword is zero. This marks
the end ol the list of cookies. The second longword of that entry contains the size of the space which is)
allocated for the cookie jar, in entries (eight bytes each). Adding an entry means copying the zero entry and its
value to the next slot, and placing your cookie and value where the zero entry was before. However, there
might njot be room for this: if the zero eniry takes up the last allocated slot, you will have to reallocate the
cookie jar.

Reallocating the Cookie Jar

If you need to add an entry to the jar, but the zero cookie is using the last siot in the jar, you have to allocate a
new cookie jar. The new one must be at least as big as the old one, plus room to add your new cookie. 1t will
pay, however, o allocate even more room than that, because if you allocate only one more slot and fili it, the
next TSR will just have to realiocate the cookie jar again. Allocating the cookie jar in increments of eight slots
(8*8=64 bytes) is probably reasonable.

To move the codkle jar, allocate the new space, copy the old jar to the new one, change _p_cookies 1o point
to the new jar, and update the zero entry at the end with the new value for the size of the jar. Remember, the
value of the zero entry is the size of the allocated space in entries, not bytes.

The old value of __p_cookies doesn't matter; there's no reason 1o save it, and it cah’t be freed or otherwise
recovered.

Do not rely on the location of the cookie jar or a specific cookie in the jar -- some later program might reallocale
the jar, or even reorder the entries.

ATARI STE TOS RELEASE NOTES - JANUARY 12. 1990 Fage 17

The Cookie Jar

The crucial aspect of reallocating the cookie jar is thal the memory it gets put in must never be freed or reused.
That's why the cookie jar can only be expanded by resident utilities and the system itselt, not transient
programs, which terminate, and not accessories, which are freed by a resoiution change.

Desk Accessories and Applications

The cookie jar is not a generalized interprocess communication facility. Desk accessories and applications
(such as shells) should not place cookies in the cookie far. In the first place, they can't realiocate the cookie jar
because the memory they own can be freed: desk accessories go away if the resolution is changed from the
Desktop, and applications go.away when they terminate. In the second place, there are other ways of
communicating with accessories and applications: the AES has message-passing, and shells can place
information in the environment string.

Using the Cookie Jar

TSRs place cookies in the jar so other programs can tell that they're installed, and get other information like a
pointer to a structure containing status and controf variables, or even procedure addresses.

The absence of a TSR's cookie from the cookie jar means that TSR hasn't installed itself (or has somehow
been removed.) The absence of one of the cookies that the system puts in the cookie jar means you're on an
ST with ROMs which don't initialize the cookie jar, and you should behave accordingly. You can presume that
you are on a 520ST, 1040ST, or Mega ST using TOS 1.4 or earlier. TOS 1.6, in the STe, Is the first version of
TOS with a BIOS which installs a cookie jar.

Programs can scan the cookie jar for the presence of a cookie using a routine like getcookie(), found at the
end of this document.

Cookie Jars and Old ROMs

Oid ROMSs clear the pointer at $5a0 at cold boot, which is why a zero vaiue there means there is no cookie jar.
A TSR which knows about cookie jars can create the cookie jar, though, by allocating some space {in the area
that will stay resident, of course), setting up the zero entry, and placing a pointer to that space at $5a0. Other
TSRs which know about the cookie jar will see this one, and operate normally.

A program which creates a cookie jar (because the BIOS didn't do it} should also arrange to Femove it if the
machine is reset, because a warm boot with old ROMs does not zero the cookie jar pointer. This can be doqe
with a procedure like unjar(). found at the end of this document. If your program expands an existing cookie
jar it need not use unjar(); only the program which creates the cookie jar needs to remove it.

Cookies Installed by the BIOS

Cookies which the BIOS instalis have an underscore ($5f, '_") in the high-order byte, to avoid conflict with
other cookies. Inasmuch as we can specify what cookies people should use, please consider all names with
an underscore in the first byte as "reserved for use by Atari.”

Fage 12 ATARISTE TOS RELEASE NOTES - JANUARY 12, 1990

The Cookie Jar

| . As a rule, things which you can easily determine in existing, ROM-independent ways have not been assigned
| cookies, but things which are harder to find out have been. The system-installed cookies are:

\

|

Cookje Yalue

_CPU 0, 10, 20, 30 (decimal), meaning 68000, 68010, etc
vDO the major/minor part number of the video shifter installed.
~SND a bitmap of sound hardware types available.

~MCH the machine type, describing the machine in general.
_SWI the vaiue of configuration switches, it available.

-FRB a pointer to a 64K buffer for ACSI DMA transfers.

The value for _VDO is a major and minor part number ifor the video shifter in the machine. The low-order word
of the value is the minor part number, to make fine distinctions, and for now they're all zero. The high-order
word of the vaiue is the major part number. Their characteristics are described elsewhere. As a rule, check
only the high word to find out what kind of video hardware is in the machine. The low word will make finer
distinctions should that become necessary, but all parts with the same major number will be compatible with
one another (indeed, nearly identicat).

_VDO COOKIE {high word)

Value Meaning
0 ST

1 STE

2 TT

The value for _SND is a bitmap of sound hardware availabie. Some of the bits are for future expansion.
O External hardware and drivers (ST-Replay, etc.} should install their own cookies: the _SND cookie describes
only the sound hardware which the BIOS knows about.

_SND COOKIE

Bit Meaning
0 GliYamaha sound chip (as in STs)
1 stereo DMA sound (as in STEs and TTs)

The value for _MCH is simply an indication of what machine you're on. it describes the “rest” of the machine,
such as the presence and type of real-time clock, DMA channels, eic. Any attribute described by a cookie
takes precedence over the general atiributes lumped into the overall machine description.

As with _VDO, the _MCH value is defined as two words, with a major and minor number for each machine type.

The minor number is currently always zero, until we come up with something which needs it. if you want to
know about the machine in general, check only the major number (the high word of the value).

_MCH COOKIE (high word)

Yalue Meaning

0 520ST, 1040ST, Mega
1 STE

2 TT

ATARI STE TOS RELEASE NOTES - JANUARY 12 1990 Page 13

The Cookie Jar

The vaiue of the _SWI cookie is the value of the configuration switches, it any. Only STE and TT have .
configuration switches. They are normally found at the same place, except that some TTs have themina

different place. That's one reason there's a cookie for them. Another reason is that the BiCS had to probe

ihem anyway, to determine the presence of the sound output electronics for that bit in _SND. The meaning of

each configuration switch is defined eisewhere.

The value of the _FRB ("Fast Ram Butier™) cookie, if present, is the address of a 64K buffer intended tor use by
ACSI DMA device drivers. Single-purpose RAM on the Atari TT (sometimes called "Fast RAM" because it is
not shared with the video logic, and can be accessed in burst mode) is not accessible 10 the ACSI DMA
coniroller. Therelore, requests for transfers to or from this RAM must use dual-purpose RAM as a staging
area. This 64K buifer is provided for use by all ACSI DMA drivers, so they don't all have to allocate their own
buffers. Naturaily, this mechanism implies that drivers are monolithic: once a transfer is started, no other
transfer can start, because both would iry to use the same FRB. This is normally not a problem, since the
ACSI DMA channel is also monolithic in this way. (Access is controlled with the flock system variable.) If the
_FRB cookie is absent, it is because there is no single-purpose RAM.

Fage 74 ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990

The Cookre Jar

@ﬁnding Cookies and Values

getcookie(): C Procedure to Find Cookies and Values

.
%

B % b % ok ok W % % % d % % %% %A RN

int

getcookie(cookie, p_value)
Tong cookie;

long *p_value;

Returns zero if the 'cookie’ is not found in the cookie jar.
Returns nonzero if the ‘cookie' is found, and places its value
in the longword pointed to by p_value. If p_value is NULL,
doesn't put the value anywhere, but still returns the error code.

Note that getcookie takes the cookie itself as its first argument,
s0 calls look like this:

long value;
if (getcookie(0x5f56444f &value)) { succeed;]

The code assumes that Super(} and NULL have been defined appropriately
compiler; since Super is so strange, you might get warnings about

type conversions, but this should still compile correctly. The

cookie jar pointer is in user-mode-protected RAM, but the cookie

jar itself won't be.

*
S

struct cookie {

long c;
long v;

|

int

getcookie(target,p_value)
lTong target;
Tong *p_value;

lTong oldssp;
struct cookie *cookie_ptr;

/* get super mode if not already */
if (Super(lL) == 0) oldssp = Super(0L);
else oldssp = 0;

cookie_ptr = *{struct cookie **)0x5a(;

/* back to user mode if necessary */
if (oldssp) Super(oldssp);
if (cookie_ptr !~ NULL) {
/* Use do/while here so we can match the zero entry itself */
do {
if (cookie_ptr->c == target) {

/% found it */
if (p_value != NULL) *p_value = cookie_ptr->v;

/* return nonzero for success */
return 1;

} while ((cookie_ptr++)->c = 0);

ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990 Fage 15

The Cookie Jar

}

/* failed to find it (or no cookie jar at all!) */

/* return 0 (failed) */
return 0;

Fage 16 ATARI STE TOS RELEASE NOTES - JANUARY 12, 1990

The Cookie Jar

Clearing the Cookie Pointer on Warm Boot

—unjar: Procedure to clear cookie pointer on warm boot

* Procedure to install a new reset handler which clears _p_cookies

* on warm boots, for TOS ROMs which don't do that themselves.

* reshand and the save variables must be in the resident part of a TSR.
* This procedure must be executed ¥n Supervisor mode.

* Reshand itself will run in Supervisor mode, too.

RESMAGIC equ $31415926

—resvalid equ $426

_resvector equ $42a

_p_cookies equ $5a0
.globl -unjar .

—unjar: move.] —resvalid,valsave ; save old valid
move. 1 _resvector,vecsave ; . and vector
move.] #reshand, _resvector ; install new vector
move.] #RESMAGIC, _resvalid ; . and validate it
rts

reshand:
clr. -p_cookies ; clobber cookie jar pointer
move.] vecsave,_resvector : restore old vector
move.]l valsave,_resvalid ; restore old valid
jmp (ab) ; return to ROMs
.bss

vecsave: ds.1 1

valsave: ds.1 1

ATARI STE TOS RELEASE NOTES - JANUARY 12, 71990 Page 17

