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Preface 
"A picture is worth a thousand words". This statement sums it all up. 

A few years ago, when I first opened a book on computer graphics, I was stunned 
by the beautiful simulations of life-like objects generated by computers. But these 
were from state-of-the-art machines, far more powerful than the popular personal 
microcomputers of the time, which were almost exclusively 8-bit 

With the advent of 16-bit micros things changed markedly. Their extra power and 
memory had an immediate impact on all graphics applications, from painting 
programs to fast flight simulators sporting solid 3D primitives (objects). The low 
price and high power of micros such as the Atari ST and the Commodore Amiga 
meant that anyone could enjoy high quality computer graphics (especially in 
games) for a few hundred pounds. But enjoying other peoples programs is Only 
half the fun. Surprisingly, writing them is not really as difficult as it looks. Of 
course there is a fair amount of technology to be learnt along the way, but a good 
deal of the dramatic effect comes from the speed of the machines themselves, 
performing fairly standard algorithms very fast. 

When I first became interested in graphics programming and wanted it to be as fast 
as possible in machine code, it seemed to me that essential information was spread 
thinly in the literature. There were certainly books on machine code programming 
and on computer graphics; there were even a few books on machine code graphics 
programming. But somehow I could never quite find the balance I was looking for. 
Standard texts on computer graphics seemed amazingly obscure on certain aspects 
of transforms, in particular how to picture a scene from an arbitrary view point I 
felt, quite unreasonably perhaps, that there was a tendency to hide it all behind a 
smokescreen of professional mystique; certainly it helped considerably to 
understand the mathematics of vectors and matrices, but surely all this had been 
worked out years ago and ought to be fairly straightforward? Perhaps it was just 
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me! Anyway I wanted to write 3D solid graphics programs that would run in real 
time (like a flight simulator), and couldn't find anyone who would tell me how to 
do it. For sure the people who write commercial games knew, but they weren't 
telling - for obvious reasons! There were a few very useful serialised articles in 
magazines but, by necessity I'm sure, these were often too brief and not exactly 
what I wanted. 

Things came to a head when I was assigned to give a college course on Advanced 
Microcomputer Software (which was another way of saying "Assembly Language 
Programming on the 68000"). Teaching programming, especially in assembly 
language, can be a very sterile pastime unless the application is interesting. What 
better application than graphics? and what better machine (for the price) than the 
Atari ST? 

This book arose from my efforts to penetrate the world of computer graphics and 
make some of the basics understandable (I hope) to non-specialists. It is about fast 
3D (so-called vector) graphics in assembly language. There is certainly no 
guarantee that the programs in this book are the most efficient, most elegant and 
fastest of their kind. But they are reasonably fast. Certainly as fast as some 
commercial programs! The astute reader will undoubtedly be able to make 
improvements (and tell me, I hope). 

There is no assumption that the reader has any prior knowledge of any of the 
following subjects, all of which eventually figure heavily in the graphics process: 
the ST operating system, vectors and matrices. It helps enormously to have some 
knowledge of them, but those aspects which are important for the programming are 
explained in the text when they are used. There are further explanations in the 
Appendices. That is not to say that the book contains exhaustive discussions of 
these subjects, only sufficient for the purpose in hand. The enthusiast will 
undoubtedly wish to add to them. 

As regards the assembly language, although an Appendix contains a list of the 
instruction set and (most important) the addressing modes, it is assumed that the 
reader who wishes to fully understand what is going on will have on hand a 68000 
code reference book (they are available in pocket form very cheaply). 

For the writing, assembly, debugging and running of the programs in the book the 
powerful and friendly Devpac ST 2 assembler from Hisoft has been used. This 
comes as an integrated package within which all functions can be performed. There 
are several good assemblers/debuggers available but I like this one best. It's an 
excellent workhorse for the development of assembly language programs. A 
demonstration version of it was provided on Cover Disk 10 of ST Format. A full 
working version of DevpacST 1, the first version of the assembler, but without the 
debugger, has been made available on the cover disk of the March 1991 issue of 
Atari ST User. It can be used to assemble the programs in this book, providing the 
headings SECTION TEXT, SECTION DATA and SECTION BSS are deleted 
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from them (or marked with an asterisk, *). Further information on the assembler is 
given in Appendix 2. 

The book is laid out in serial form. Each chapter deals with a different topic and 
illustrates its application with example programs. To the experienced reader the 
early chapters will seem pedestrian. To the newcomer they will not. There is really 
no easy introduction to the overall process and so each stage (a somewhat artificial 
division) is dealt with in detail separately. Each stage of the graphics "pipeline" 
does a specific task and has its own algorithm and strategy. The chapters are laid 
out to reflect the build up of the overall process. Each chapter has its own example 
programs and the programs saved from the earlier chapters are used in later ones 
so that they don't have to be entered more than once. In this way the example 
programs at the end of the book end up being the largest and most complex, 
though the amount of code you have to enter for each new chapter doesn't really 
increase very much. The programs are written for the Atari ST but can be modified 
to run on any 68000 based computer since, with the exception of certain specifics 
concerned with the screen and operating system, the graphics routines are entirely 
independent and self-contained. 

Computer graphics is a vast subject; a book of this length can only cover a small 
part. Especially since it is not just descriptive but contains working programs. 
Techniques such as Ray Tracing and Radiosity methods are perhaps better suited 
to a future, more powerful generation of personal computers. But that will come; it 
is likely that many of the software routines discussed here will be replaced in 
future machines by hardware "geometry engines". 

Until then, 3D graphics will have to be done by "bashing the bytes". Good luck. 

Andrew Tyler 
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THE DISK 
The programs listed in this book are available on disk. The disk contains all the 
source files listed here together with the assembled binary program files ready to 
run. The disk can be obtained from: 

LIVE GRAPHICS 
PO BOX 19 
ALDERLEY EDGE 
CHESHIRE SK9 7XY 

The price (at April 1991) is £4.99 inclusive in the UK. 
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An Overview 
Computer graphics is not a minority interest of computer freaks. It is a 
multi-billion dollar industry. Even in 1982 when Hollywood spent 3 billion dollars 
on movie production, the world commercial computer graphics industry spent 2 
billion dollars and was growing at the rate of 30% a year. In the same year in the 
U.S. 10 billion dollars were spent on video games. There has been no halt since 
that time. Computer graphics is very big business indeed. 

The microcomputer owner meets some of the best graphics for his machine in 
games, many of which use advanced concepts straight out of the professional 
computer journals. For small machines there are always limitations on what can be 
achieved, determined by the speed of the processor and the size of RAM. But in 
recent years the popular microcomputer has been extremely good value for money, 
having considerable computational power at very low price and providing complex 
graphics at minimal cost. The Atari ST is just such a computer. So is the 
Commodore Amiga. This explosion in the power/price ratio of computer hardware 
has put immense computing capability in the hands of the popular micro owner 
and made advanced graphics techniques, which were the domain of the 
professional, available to anyone. 

The aim of this book is to develop fast 3D solid graphics routines which run in 
real time and include features such as windowing (clipping), hidden surface 
removal, illumination from a light source, joystick control and full perspective and 
rotational transforms. The programs are written in 68000 machine code to run on 
an Atari ST but the algorithms are valid for any machine. In short, everything 
needed to get started on a flight simulator. 

The programs are written in assembly language for maximum speed and have been 
tested and run using the Hisoft Devpac assembler. There are many excellent 
commercial assemblers available at modest expense, and even some in the public 
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domain. The Devpac assembler has been used here because it is excellent. There is 
nothing more irritating when looking for a persistent and obstinate bug in a 
program than an unfriendly assembler. The Devpac assembler has been a friendly 
and helpful companion through the many hours required to develop the programs 
in this book. 

1.1 A New Medium 
What is 'computer graphics'? It is certainly shrouded in mystique to some degree. 
Because it is still a relatively young subject its evolution is continuing apace, and 
is intimately linked to the power of current computers and the special graphics 
hardware incorporated in them. The solutions to many of the problems of 
yesterday, once based in software, are now provided at great speed in hardware. It 
is likely that much of the software of the kind developed in this book will be 
replaced in future machines by dedicated 'geometry engines'. 

1.1.1 Is it Art, or What? 

Humans are very good at generating and recognising complex visual patterns but 
not very good at doing arithmetic. By contrast, digital computers were designed to 
be perfect at binary arithmetic. What else they can do depends on how well 
complex mathematical functions can be constructed from basic binary arithmetic. 
There is a limitation here since numbers in a computer cannot be more accurate 
than the number of bits assigned to them but, apart from that, it is clear that 
complex mathematical calculations can be done quickly on even very modest 
microcomputers. 

In computer graphics, the computer adds tremendous speed to any calculation 
associated with geometry, which is the mathematics of drawing. Because geometry 
is concerned with the exact mathematical relations between lines and surfaces, it is 
ideally matched to the way the computer works. This is the good and the bad news 
of drawing with computers: precise mathematical functions can be expressed 
graphically at lightning speed but making them look like natural objects requires 
considerably more work. In fact much of the effort in computer graphics is now 
concerned with 'messing up' the perfect but sterile images of geometry to make 
them fit for human consumption. Doing this has less to do with computers and 
more to do with the traditional skills of animation discovered many years ago by 
Walt Disney. 

It is very easy to draw precise mathematical shapes with a computer because such 
shapes can be generated from a formula. A circle is an example of a simple 
mathematical function. For a circle centred at the the origin of an x-y coordinate 
system the formula is 

x2 + y2 = r2 
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Such a function is a good starting point for a billiard ball but a poor starting point 
for an apple, although superficially the difference is not all that great (both have an 
overall spherical shape with a shiny exterior). Let's consider how we might use a 
computer to draw an apple. 

First of all there has to be a good starting point There is no such thing as a 
mathematical formula for an apple. All apples are different. However, apples do 
have a typical shape and that is what the human artist knows from experience. But 
an artist would not draw all the apples in a still life with the same shape, it would 
be too boring. Programming a computer to avoid repetition and simplicity is 
difficult. 

One way to draw apples would be to use equations of curves having the apple 
shape. By choosing functions with high powers of x, y and z, as much sharpness or 
flatness as desired can be included. This is the world of bicubic patches, Bezier 
functions and beta-splines. This would certainly allow variation, but with 
considerable computatational effort. One way to do this would be to hold different 
apple outlines as (x,y) coordinate pairs in a data base and then use curve and 
surface fitting techniques to connect then as in a "join the dots" picture. This is 
how the famous teapot of Martin Newell, which was a prototype in the early 
development of modelling solid surfaces, was constructed. In technical language it 
can be constructed from an outline consisting of three Bezier curves. Since the 
teapot is symmetrical, its surface (with the exception of the spout) is then 
generated by rotating the outline about the central vertical axis. 

Another way is to avoid curves altogether, and instead subdivide the surface of the 
apple into many flat facets like a gemstone. By making the facets sufficiently small 
and numerous, an apple of any shape can be modelled. The little facets, being flat 
and many sided, are polygons and the surface of the apple is a polygon mesh. This 
approach is less time consuming than using curved patches but there remains the 
problem of disguising the sharp boundary edges between polygons. 

This leads to the next level of refinement in producing a convincing image. A 
mathematical function on its own knows nothing of the laws of physics. These are 
so familiar to us that we take them for granted: glass is transparent but wood is 
opaque, metals look bright and shiny but human skin is dull and diffuse. Somehow 
these subtle but essential clues must be included. The most important first step is 
to make the rear surfaces of opaque objects invisible. This is called hidden surface 
removal which, despite the apparent simplicity of the task, turn out to be quite 
difficult. Much time has been spent investigating efficient and thorough ways of 
doing this. Next there must be visual clues to the surface structure. One obvious 
step is to illuminate it with a light source so that one side is brighter than the other. 

At the next level of refinement the surface must be textured and patterned in a 
"natural" way to look real. In this the programmer is aided by the mathematics of 
fractals, developed and promoted by Benoit Mandelbrot. This is the geometry of 
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self-similar structures and quite different from the geometry of Euclid where 
structures are built from perfect lines and surfaces. Natural objects appear to have 
a lot in common with self similar structures and even if the similarity is not exact, 
they are convincingly modelled by them. A self-similar structure is one which has 
the same appearance at any level of magnification. Of course natural objects may 
only satisfy this definition over a limited range of dimensions but it often produces 
very convincing results. For example, the side branch of a fern when magnified 
looks like the main branch and small pebbles under magnification look like 
boulders. Nature is full of such structures. An additional bonus is that algorithms 
have been discovered which allow self-similar structures and landscapes to be 
generated from a relatively small amount of information. This relieves the 
programmer of carrying a colossal database from which to generate each separate 
detail of a complex scene. 

All of these steps are essential to give a convincing image. The fact that so much 
visual richness is required to make an image look real testifies to the very 
advanced pattern recognition capability of human beings. 

When all this is done, what have we got? Just a very roundabout way of painting 
an apple? The difference is that once created in software the graphic entity has an 
independent existence. The picture on the screen is just the final stage. Even if not 
being currently displayed, it can evolve according to rules included in the program. 
There is not even the constraint to create objects which are modelled on real life. It 
is possible to invent new "lifeforms" inside the computer. In Computer Aided 
Design (CAD) this is what happens all the time. Machines are designed, built and 
tested inside the computer long before they exist as material objects. In simulators 
and games this aspect is pushed as far as possible. Computer games specialise in 
generating artificial realities; the more exotic the better. 

Future developments in input-output devices will undoubtedly have a major impact 
on what is currently called computer graphics. At the moment the emphasis is on 
generating realistic images. But images are only computer output designed for 
human input through the eyes. What will it be called when all of the senses are 
involved? Already, with the aid of spectacles which give separate input to each eye 
and tactile stimulators on the hands, it is possible to enter totally into the world 
inside the computer. What will it be like when computer couples directly into the 
human nervous system without the need for an intermediate interface? 

Computer graphics is the thin end of a very long wedge which started when 
computers first produced a visual output in response to human input. Where it will 
end is unknown, but along the way it is sure to be lots of fun. 



An Overview 5 

1.2 What Can You Do With A 16-bit Micro? 
The answer to this question is best illustrated by looking at what is achievable on a 
powerful commercial system, of which a good example is the Reyes system 
developed at Lucasfilm Ltd and currently in use at Pixar. This has been used to 
make a number of well known short film sequences including "The Adventures Of 
Andre and Wally B", "Luxo Jr.", "Red's Dream" and the animated knight 
sequence from "Young Sherlock Holmes". The Reyes system was set up to 
compute a full length feature film in about a year, incorporating graphics as 
visually rich as real life. Assuming a movie film lasts about 2 hours and me film 
runs at 24 frames per second, this means each frame must be computed (rendered) 
in approximately three minutes. 

The basic strategy in this system is to represent each object (geometric primitive) 
in a scene by a mesh of micropolygons which are subpixel-sized quadrilaterals 
with an area of ty4 of a pixel (the smallest visible unit on the screen). All the 
shading and visibility calculations are done on these micropolygons.The overall 
picture is constructed like a movie set with only the visible parts actually being 
drawn. Micropolygons are deemed to be invisible if they lie outside a certain 
viewing angle or are too close or too far away. The final system includes subtleties 
such as motion blurring, the effect whereby objects in motion appear to be blurred 
at their trailing edges. This is one of the devices used to enhance the impression of 
motion and is another lesson learned from traditional cartoonists. 

A very complex picture in this system typically uses slightly less than 7 million 
micropolygons to render a scene of resolution 1024x612 pixels. With 4 light 
sources and 15 channels of texture a picture takes about 8 hours of CPU time to 
compute on a CCI 6/32 computer which is 4-6 times faster than a VAX 11/780. 
Frames from "Young Sherlock Holmes" were the same resolution and took an 
hour per frame to compute, slightly more than me 3 minutes per frame aimed for. 
In the final movie all the stored frames are played back as in a conventional film. 
We can conclude that computational time is still a little too extended. 

But it's not necessary to go as far as this to produce high quality pictures. There 
are now (1990) "personal" graphics stations available at prices almost within the 
reach of mortals. The Personal Iris machines manufactured by Silicon Graphics are 
good examples. They offer 256 colours (8 planes) from a palette of 4096 and, 
using a hardware "geometry engine", are able to perform transforms such as 
scaling, rotation, hidden-line removal and lighting, amongst others, to produce 3D 
motion in real-time. The CPU is a 20MHz R3000 RISC processor with a R3010 
FPU (floating point unit). Here RISC technology has been used to maximise the 
speed, but it is interesting to note that before 1986 Silicon Graphics used the 68000 
processor. It will not be long before machines such as these drop into the personal 
computer market 
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What about a micro with 512 kbytes of RAM and a CPU working at 8 MHz? The 
potential for detailed graphics is somewhat less, especially if frames are to run in 
real time, sufficiently fast to avoid intolerable flicker. But it is surprising how 
much can be achieved. For speed, building up solid objects using polygon meshes 
is most attractive since it only requires that the vertices be stored, and a large 
object can be described by a very small amount of information. Moreover, since 
polygons are sets of vertices joined by straight lines, the most complex algebra 
involved will be that of simple geometry. This is the strategy we will use. 

1.3 Assembled for Speed 
There are many computer languages but assembly language gives the the best 
opportunity of getting as close to the hardware as possible and tailoring to the 
application in hand. All the programs in this book are written in 68000 assembly 
language and except for "housekeeping chores" and a few Line A examples in the 
first chapter, do not use any of the routines in the ST operating system. The 
programs could therefore easily be rewritten to run on a processor other than the 
68000 since the most difficult thing is the overall program structure. Language 
details are secondary. 

Assembly language is very exacting and unforgiving with a masochistic charm all 
of its own. It really has very little grammatical structure beyond the syntax of the 
instructions themselves, and the main criteria for efficient programming are speed, 
economic use of registers and memory, and efficient parameter passing. Sometimes 
there is conflict between these, especially where there is no shortage of memory. 
Where speed is all important, programs often sacrifice brevity in order to avoid 
time-consuming subroutine calls. 

The programs in this book have been assembled and run using the very popular 
Devpac ST assembler from Hisoft. The Hisoft assembler has been used because it 
is powerful and friendly. It provides an excellent and relatively inexpensive 
workbench for program development. In particular the simple but powerful 
INCLUDE directive allows files to be pulled together at assembly time without the 
need to define global variables. The INCLUDE directive can be nested to any 
depth that memory will allow so that each chapter can INCLUDE the programs 
from earlier ones. In this way there is hardly any duplication, and a program file, 
once entered, can be used later. The overall program therefore grows steadily in 
size as the book progresses and practically no programming effort is wasted. The 
final program INCLUDE's all earlier parts. This is the only linking which needs to 
be done and it is painless. 

Appendix 2 gives a brief description of assembler usage in general and the Devpac 
assembler in particular, including those commands which have been found to be 
most useful. 
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1.4 Writing for a 16 bit Micro 
Writing programs in assembler for a 16 bit micro is quite different from writing for 
an 8 bit micro. Apart from the more powerful addressing modes available, there is 
a fundamental difference which centres on the ideas embodied in position 
dependent and independent code. The picture is somewhat confused by other 
similar sounding terms such as absolute and relocatable code. We shall discuss 
what these mean because they have a profound effect on how a program is written 
in assembler. 

In an 8-bit micro usually only one program at a time is loaded in RAM and at a 
fixed location. Of course where an operating system oversees the running of 
programs, such as CP/M, things are more complicated. But in small micros with 
built in BASIC and very little else, the operating system reserves fixed space for 
its variables area and frees everything else for the current program. Knowing 
where the program resides in memory makes life simple for the programmer since 
fixed addresses can be assigned for variables and these will never change. A 
program which directly addresses fixed memory locations is said to be written in 
position dependent or absolute code. 

Though such code can be written for computers with operating systems, there is 
another way of doing things which gives much greater flexibility, and allows 
several programs to reside in memory simultaneously. A consequence of this is 
that the actual position in memory of a particular program will not be known until 
run time. As a result, no actual actual numerical address can be referred to in the 
program since it is not fixed until the program is loaded and run. 

There are several ways of overcoming this problem. One way is to use an 
addressing mode of the processor specifically designed to generate position 
independent code. This is called PC (program counter) relative addressing. What it 
does is locate an address not as an absolute value but relative to the value of the 
program counter where the reference is made. The assembled code will tell the 
processor to calculate the actual address by adding or subtracting a displacement to 
die current value of the program counter, which will always have a fixed value 
relative to the start of the program. 

Another way is to calculate all addresses from a base address, or pointer, held in 
an address register. The program will then constandy refer to offsets from the 
address register but no actual value for the address need be specified when the 
program is being written. The register cannot, of course, be used for anydiing else 
while it is reserved in this way. The special register will have to be set up at the 
start of die program with die correct pointer. A good pointer is the address of the 
end of the program. 
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Another way is to allow the assembler take care of everything and generate 
relocatable code. This is code where no reference to specific addresses is made, but 
instead labels are used. The label name is chosen to be informative and of 
assistance to the programmer. For example, COLOUR might be the label for die 
long word address where die byte lengdi value of die current colour of a polygon 
is held. The assembler will mark such a label as relocatable and its address will 
finally be fixed by the computer operating system when die program is loaded. 

All of the programs in diis book use relocatable code generated by die Devpac 
assembler. It is simple to write. 

The instruction set of die 68000 is long and complex. To fully appreciate its power 
and elegance the reader should refer to die Motorola 16-Bit Microprocessor User's 
Manual. A brief listing is given in Appendix 1. 

1.5 The Programs 
The programs in diis book have been written using die Devpac assembler and are 
ready to run. Once a program has been entered all diat is necessary is to assemble 
it from witiiin die editor and it will run as described. The program files all have die 
extension .s since they are source files. If a program is to run independendy it can 
be assembled to disc with die file extension .prg. 

The programs have all been run extensively to ensure tiiey are as bug free as 
possible, and die listings have been obtained from witfiin the assembler Editor 
using die PRINT BLOCK facility to ensure tiiat tiiere are no further stages of 
transcription during which errors might creep in. However as witii all human 
endeavours, tiiere can be no guarantee tiiat the programs are completely bug free. 

The programs are undoubtedly neidier die fastest nor most elegant examples of 
tiieir kind in existence but, in a tutorial of this kind where die emphasis is on 
teaching, die main point is to understand how tilings are done. The astute reader 
will quickly discover clever ways of improving diem. In any case die best 
commercial programs are proprietary and kept secret from us. 

1.6 The ST Operating System 
The ST operating system is large and complex and operates at many levels. There 
are often many ways of doing die same thing depending on the level of entry. 

At the top are die device-independent parts: VDI (virtual device interface) and 
AES (applications environment services). In die middle are die device dependent 
parts: BIOS (basic input-output system), XBIOS (bios extension), BDOS (basic 
disc operating system). Collectively, these middle level calls are called GEMDOS. 
At the bottom are die A-Line or Line A routines which provide a fast interface to 
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the low-level graphics primitives as provided in all ST computers with TOS in 
ROM. TOS is the name given to the overall Operating System. 

Using the device independent routines ensures that programs are portable, i.e. they 
are shielded from hardware details and in principle work on any machine with die 
same operating system. The penalty is one of speed. Generally the closer you get 
to the hardware, die faster tilings run. Using the Line A routines for speed means 
that the programs are not portable to other machines. This is not important if the 
programs are being written exclusively for the ST. 

In this book we will occasionally use BIOS, XBIOS and Line A routines. In 
particular they are used to make "legal" calls to the operating system, particularly 
where system variables addresses are required in order to make the programs 
"future proof against low level modifications at some later time. 

Apart from this all the programs are "original" (if there is such a thing in 
programming) and tailored closely to the graphics applications. 



Drawing on the Screen 
In this chapter we look at how the ST screen is addressed. This is detail which is 
highly specific to the ST but of great importance for fast graphics, since our 
intention is to bypass the routines of the operating system and draw 3D solid 
objects in real time. A very important aspect of this will be filling in polygonal 
shapes quickly. 

No matter how complex graphics programs are, ultimately their output must appear 
on the screen. Actually, to be precise, on the physical screen. There is a distinction 
between the physical screen, which is that part of RAM which holds the picture 
frame currently being displayed on the monitor, and the logical screen, which is 
where the output of the program is currently directed. These are just two 32 kbyte 
blocks of RAM and the distinction between them is that the hardware thinks it 
should display the one called the physical screen. To produce flicker-free graphics, 
the usual scheme is to alternate the names of these two screens so that one of them 
is being displayed whilst the other is being drawn. This is often called 'screen 
buffering'. The switch from one to the other is naturally synchronised to the 
program; the program doesn't ask for the switch until the new frame is complete 
and the hardware doesn't change the display until the raster on the screen has 
reached the bottom right-hand comer and is ready to fly back to the top. The short 
time for this to occur - called the vertical blank - is more than sufficient for the 
hardware to switch the screens. There is even a routine in the operating system 
which will do all this in one go. To start with, for simplicity, we will use only one 
screen. The switch to two screens is not difficult. 

2.1 The Screen 
What then is a screen? Well this depends on the resolution. All resolutions have 
one thing in common though. They all consist of a single block of RAM 32 kbytes 
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in length. How this is used is quite different in the different resolutions. Of the 
three resolutions, high, medium and low, it is really only the low resolution which 
offers the extensive use of colour. High resolution is very poor indeed for colour -
there isn't any, but it does give very clear pictures in monochrome. Medium 
resolution is somewhere in between but is not widely used. 

To understand the problem, think of the differences between the actual monitor 
screen and the block of RAM holding the image. The actual screen is a rectangular 
end of a cathode ray tube on which an electron beam writes. To make this look 
like a picture the beam moves very quickly from left to right and top to bottom in 
a series of 'raster' scans; the picture is made up of closely spaced horizontal lines. 
There isn't really a solid picture at all, it just looks that way from a distance. 
Memory, on the other hand, is laid out as a contiguous line of bytes, which are the 
smallest elements the microprocessor can directly address. Of these, the smallest 
resolvable unit is the bit (8 bits = 1 byte). Somehow each bit in memory must 
directly relate to the smallest 'spot' or pixel on the screen. Let's look at how this is 
done in high resolution which is die simplest case. 

2.1.1 High Resolution 
In high resolution there is a very simple relation between each memory bit and 
each screen pixel. Figure 2.1 shows the 'mapping' from one to the other. Very 
simply, if a bit in memory is set then a screen pixel is on. There are 640 pixels 
horizontally and 400 vertically. Multiplying these two numbers and dividing by 
eight gives the total number of bytes in the screen RAM, 32000. The 68000 does 
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Figure 2.1 High resolution screen memory map 
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not directly communicate with bits however. It can directly address bytes and 
groups of them: words (1 word = 2 bytes) and long words (1 long word = 2 words 
= 4 bytes). Note also that the origin of the screen coordinates is at the top left-hand 
corner and how the bit number in each word in memory increases to the left 
whereas the pixel position increases towards the right. Although the smallest 
addressable unit of memory is the byte the designers of the ST decided to use the 
word as the basic building block in screen RAM. In high resolution this is hardly 
important but in low resolution, the word rules, O.K. 

2.1.2 Low Resolution 

In low resolution, things get complicated because of colour. The problem is that 
each pixel can have one of the 16 different colours currently set in the colour 
palette. This does not mean that there are only 16 specific colours available. It 
means that at any given instant only one of the palette colours can be selected. 
While no change is made to the colour palette the colours are fixed, but the palette 
can be altered, at a convenient moment, to contain 16 new colours out of a 
maximum of 512. A good time to do this is during the fly-back of the electron 
beam from the bottom right-hand corner of the screen to the top left-hand corner 
(the vertical blank) and it is even possible to change it during the short time it 
takes for the fly back from the end of one line to the beginning of the next (the 
horizontal blank) so that up to 512 colours can be displayed simultaneously. 
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Somehow then the pixel colour, as a number between 0 and 15 must be specified. 
This has been done in a way which keeps the total screen RAM fixed at 32000 
bytes. Obviously there has been a trade-off of colour against resolution. A number 
between 0 and 15 can be written in a nibble (4 bits) and this is the key to how the 
screen RAM is laid out in low resolution. Each bit in this nibble is referred to as a 
'colour plane'. So the first word of memory is the first colour plane, the second 
word is the second colour plane, the third word is the third plane and the fourth 
word is the fourth plane of the first 16 pixels. Then the pattern is repeated for the 
second 16 pixels and so on. In this way each pixel has a nibble all to itself to 
specify its colour. This arrangement is shown in figure 2.2. The need to reserve a 
nibble for the colour means that the overall number of pixels that can be written is 
reduced to one quarter of that in high resolution. Hence the halving of both the x-
and y-resolutions to 320 by 200 respectively. For the moment we will use the ST's 
standard palette. Later on we will change it to simulate different levels of 
illumination. A list of the colours of the standard palette is given in Appendix 8. 

2.1.3 Medium Resolution 

Medium resolution is not of much interest to us but it uses memory in a way 
somewhat intermediate between that of high and low resolution. There are two 
colour planes which means that 4 colours can be specified (numbers 0 to 3). The 
penalty is that the number of pixels is halved to give screen resolutions of 640 and 
200 for x and y respectively. The screen looks rather squashed in the x-direction. 

2.2 The Line A routines 
The ST comes armed with an arsenal of built-in graphics routines. Some of them 
are very useful. Others look useful but are not very fast. The example programs 
included in this chapter illustrate the use of two of them. They are called Line A 
routines because the instruction word which triggers them has the value $a00n in 
hexadecimal, where n is the number of the routine. The routine which draws 
horizontal lines, for example, has the code $a004. It is the fourth routine in the list. 
The way these work exploits a design feature of the 68000 processor in which 
unusual (or non-legal) and illegal instruction codes, which on other processors 
might lead to a system crash, are brought within normal operation by calling them 
'exceptions'. The 68000 recognises exceptions for what they are and has a special 
way of dealing with them. The Line A instructions cause an exception because of 
the hex $a which starts the code. When this is spotted by the processor it 
immediately jumps into supervisor mode and uses the "n" at the end of the word 
as an index to find which routine to jump to. When the routine has been executed 
control returns to the user. Such routines are like subroutine calls but much safer 
for the system since they are processed in supervisor mode and can't easily be 
meddled with. 
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The advantage of using them is that they come 'ready made' and take care of all 
the messy details like converting screen coordinates to bits to set in screen RAM 
appropriate to the current resolution. In a sense they make the graphics more 'idiot 
proof since programs can't crash on basic technical details. The disadvantage is 
that because they must be very flexible they "worry" about too much and are 
consequently slightly slower than routines dedicated to a particular resolution. If 
only one screen resolution is being used, they can be tailored to this and speeded 
up a bit. The program examples at the end of the chapter illustrate their use in 
plotting pixels and drawing lines. The line A routines offer a wide range of options 
and although they are not used in this book, their potential is such, particularly in 
sprite graphics, that they are discussed extensively in Appendix 5. 

2.3 Example Programs 
The example programs included in this chapter explore simple drawing operations 
direct to the physical screen: plotting a point and filling a polygon. These are done 
in two different ways: either using Line A routines or using customised software. It 
is not claimed here that these programs are the fastest possible. Other versions may 
be more elegant and faster. But these programs are fast and do the job adequately. 
Besides, they do have an educational value, illustrating various aspects of assembly 
code programming. When you have studied how they work you are encouraged to 
make your own improvements. 

Here is a brief outline of each self contained program, with a discussion of its 
salient features. The programs themselves are listed on the succeeding pages. They 
are ready for assembly by DevpacST. If another assembler is used, modifications 
to the syntax may be necessary as specified in its manual. 

2.3.1 put^pixls 

This program illustrates the use of the $a001 routine to plot a point. It is "quick 
and dirty" in that no attempt is made to clear the screen and there is no orderly 
exit from the program. It just keeps plotting the same point over and over and to 
stop it you will have to switch off the computer. It is set up this way to show how 
little preparation is needed to produce an output on the screen. If your monitor 
isn't too good you may have to peer rather hard to see the dot. 

The routine itself establishes what resolution is currently being used. As with all 
Line A routines, it must be preceded by the system initialisation call to $a000. 
This returns the addresses of the table of routines and the location of the variables 
table to which parameters must be passed. This table also itself contains addresses 
of further tables, the PTSIN and INTIN arrays. A further discussion of these arrays 
is give in appendix 5. 
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2.3.2 set_pixls 
This is the equivalent of put_pixl.s but with the routine $a001 replaced by a low 
resolution screen driver routine. The convenience of using $a001 is clear. This 
program spends much of its time converting the x and y coordinates of the pixel to 
a bit location in memory and is only valid in low resolution. In addition it must 
first find where the physical screen starts in memory which it does with a call to 
that part of the ST's operating system called the XBIOS. The various parts of the 
operating system are discussed in greater detail in Appendix 4. 

All 'housekeeping' subroutines, including calls to the operating system are 
contained within a separate file called systm_oo.s. This must be present when the 
program is assembled so that it can be INCLUDED at that time. This is 
accomplished by the assembler directive INCLUDE which appears at the top of the 
listing. A fuller explanation of the Devpac assembler is given in Appendix 2. 
Another housekeeping subroutine included in systm_oo..s is wrt_phys_tbl. This is 
used to avoid a multiplication in finding the address in RAM of the start of the 
row corresponding to the current y-coordinate. Since this is a calculation that must 
be done each time, it makes sense to do the work beforehand and record the results 
in a 'look-up' table which can easily be accessed using the value of y as an index. 
Look-up tables are frequently used to avoid multiplications and divisions during 
the program. These are among the most time-consuming instructions in the set. 

2.3.3 systmjOO.s 

This is the general housekeeping file referred to in the previous section. It will not 
assemble and run on its own but is meant to be included in other programs at 
assembly time. The directive INCLUDE takes care of this. The file contains 
frequently used subroutines of a utility nature; at present it contains three routines: 

flnd_phys - find the address of the start of the physical screen, 

wrtj?hys_tbl - write a look-up table of the screen row addresses 

hlineju - write a look-up table of masks for horizontal line drawing. 

The first of these uses an Operating System call to an XBIOS (extended BIOS) 
routine to find the starting (base) address of the 32kbyte section of RAM, the 
physical screen, the contents of which are being displayed on the screen. The call 
uses one of the exception modes triggered by the TRAP instruction. 

The second lays out a table of long word start addresses of the 200 raster scan 
screen rows, one for each value of the y-coordinate in low resolution. This helps to 
speed up drawing. 

The last routine is also discussed later in the description of polyfill .s. It also sets 
up a table which is used to speed up drawing but in this case the table contains a 
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set of bit patterns or "masks". These masks are a block of l's to set within a word 
when a line is to be drawn between two pixels. 

At present there are only three housekeeping routines, but more will be added later. 

2.3.4 data_00.s 

This also is not meant to be assembled on its own, but is another INCLUDE file to 
be added in at assembly. It contains lists of permanent data, mosdy the assembler 
directive EQU which allows us to replace Line A variable offsets by informative 
labels in the code and thus make it more readable. 

2.3.5 polyfilO.s 

This program illustrates the repetitive use of the $a004 horizontal line drawing 
routine to fill a polygon, although the polygon is simply a rectangle here. This is 
obviously important since in solid 3D graphics a lot of time is spent shading in die 
polygonal surfaces of objects. Also it introduces the method we will use to feed 
data to the horizontal routine. There are many ways of doing tiiis but we will 
calculate ahead of time the start and end x-coordinates of each scan line to fill in 
the polygon and store die data in a buffer which starts at die address labelled xbuf. 
How tiiis is done for a polygon which is not a rectangle is anodier story to be 
explained later, but for the moment we can use it to see how fast a polygon can be 
filled. As before, die Line A routine works out all die details concerning die 
screen, and life is quite simple. 

2.3.6 polyfill.s 
In this a polygon is filled as in the previous program, but die Line A routine is not 
involved. Instead the screen is directly addressed, so much of die program is 
concerned with taking care of screen details. Once again a look-up table is used to 
avoid a repetitive determination of a mask which is used in die horizontal line 
drawing subroutine. It isn't really necessary to use such a table since the result can 
be arrived at speedily using shift instructions, but it falls in witii die philosophy of 
relegating awkward calculations to look-up tables. The task which it performs is to 
produce the pattern of bits which must be set to draw sections of a horizontal line 
witfiin words and is used in die following way. 

All horizontal lines are split into tiiree sections: die start of die line to die end of 
die first word in screen RAM, a run of completely filled words and from the end 
of die last filled word to the end of die line. Hence tiiere may be incompletely 
filled words at die start and end of the line; this is where die mask look up table is 
used. It quickly finds die pattern of bits to put in these words. The run of filled 
words is easy to handle (of course we mean filled by the colour; some colour 
planes may have all zeros). The line routine chops lines up into these categories 
and deals witii each one separately. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* put_pixl.s * 

* * 
* A program to plot a pixel using the Line A routine number $a001 * 
* with the minimum of fuss. Pull the plug to stop it. * 
* The system takes care of the screen resolution. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION TEXT 

put_pix: 
* Initialization: get the pointer to the Line A Variable Structure. 

d e w $a000 set up the Line A table pointer 
* The address of the table is in aO. Get the pointers to the arrays. 

move.l 8(a0),a4 pointer to intin array 
move.l 12(a0),a5 pointer to ptsin array 

* Enter the x and y coordinates of the pixel in screen coordinates. 
move.w #200,(a5) x = 200, first ptsin word 
move.w #100,2(a5) y = 100, second ptsin word 

* Set the colour number - only the lowest bit works in high resolution. 
* In low resolution this is the standard palette no. for red. 

move.w #l,(a4) colour red, first intin word 
* Set the pixel 

d e w $a001 Line A Put Pixel 
bra put_pix repeat 

END 
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* * * * * * * * * * * * * * * * * * * * * * * * * 
* polyfilo.s * 
* A program to fill a polygon using the Line A routine Sa004 . * 
* * * * * * * * * * * * * * * * * * * * * * *** * * * * * * * * * * * 

SECTION TEXT 

bsr 
bsr 
bra 

poly 
a004 
main 

fill the buffer with x coordinates 
use the x coords to draw the lines 
keep going to cover the mouse 

A subroutine to fill the buffer with x values 16 and 256 to scan fill 
* a rectangle between the limits x=16 to x=256 and y=50 to y=150. 

polyl 

xbuf,a0 
#50,dO 
#2,do 
d0,a0 
#$00100100,dO 
#100-1,d7 
d0,(a0)+ 
d7,polyl 

point to start of buffer 
initial y=50 
*4 for the offset into the table 
pointer to the initial long word 
high word=16,low word=256 
fill 100 lines (up to y=150) 
fill the next long word 
for all the y values 

poly lea 
move 
lsl 
adda.w 
move.1 
move 
move. 1 
dbra 
rts 

* Initialise the a-line parameter block. Find its address. 
a004 dew init returns the address in aO 
* Set the constants for a horizontal line 

move.w #l,fg_bpl(a0) Set 
clr.w fg_bp2(a0) for 
clr.w fg_bp3(a0) mono-
clr.w fg_bp4(a0) chrome 
clr.w wrt_mod(a0) overwrite. 
lea fill,a2 Here is 
move.l a2,patptr(a0) the fill pattern 
move.w #4-l,patmsk(a0) consisting of 4 lines. 
clr.w multifilea0) The pattern is for one plane. 

* Fill a line at a time using the $a004 routine. 
lea xbuf,al pointer to base address 
move #50,dl start at y=50 
move dl,d2 save it 
lsl.w #2,dl y*4 is the offset into the table 
adda.w dl,al here is the first line 
move #100-l,d7 draw 100 lines (counter is 1 less) 
subq #l,d2 reduce initial y 
move.w d2,yl(a0) for the loop 

* Here is the loop which fills each scan line in succession 
poly2 addq.w 

move.w 
move.w 
movem.l 
dew 
movem.1 
dbra 
rts 

#i,yi(ao) 
(al)+,xl(a0) 
(al)+,x2(a0) 
d7/a0-al,-(sp) 
hline 
(sp)+,d7/a0-al 
d7,poly2 

next y in the loop 
next xl 
next x2 
save the registers 
draw the line 
restore the registers 
repeat for all y values 

xbuf 

SECTION DATA 
include data_00.s 

SECTION BSS 
ds.l 100 

add in the data file 

all the scan line x-coords. 

END 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * p o l y f i l l . s * 
* A program to fast fill a polygon. The start and end x coordinates * 
* of each horizontal line are the high and low words stored at xbuf.* 
* * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_00. 

bsr 
bsr 
bsr 
bsr 
bra 

find_phys 
wrt_phys_tbl 
hline_lu 
poly 
main 

put in labels for debugging 
don't try to execute the include 
the housekeeping file 

locate the physical screen 
where the rows start 
the masks for filling words 
set up the buffer and fill it 
keep going to cover the mouse 

Fill the buffer from y=50 to y=150 with the values 16 and 256 to 
* fill 
poly 

polyl 

poly2 

a rectangle between the limits x=16 to x=256 and y=50 to y=150. 
xbuf,a0 point to start of buffer 
#50,dO initial y=50 
#2,do *4 for the offset into the table 
d0,a0 pointer to the initial long word 
#$00100100,dO high word=16,low word=256 
#100-1,d7 fill 100 lines (up to y=150) 
d0,(a0)+ fill the next long word 
d7,polyl for all the y values 
xbuf,al pointer to base address 
#50,dl start at y=50 
dl,d3 save it 
#2,dl y*4 is the offset into the table 
dl,al here is the first line 
#100-1,d7 draw 100 lines (counter is 1 less) 
#l,d3 reduce initial y 
#l,d3 next y 
(al)+,d2 next xl 
(al)+,dl next x2 
d2,dl x2-xl 
#l,dl N= no to do 
#l,d4 system colour #1 - red 
phys_tbl_y,a4 where the screen starts 
d0-d7/a0-a6,-(sp) save all registers (why not!) 
holine draw the line 

lea 
move.w 
lsl.w 
adda.w 
move.1 
move.w 
move.1 
dbra 
lea 
move.w 
move 
lsl.w 
adda.w 
move.w 
subq 
addq 
move.w 
move.w 
sub 
addq 
moveq 
lea 
movem.1 
bsr 
movem.1 
dbra 
rts 

(sp)+,d0-d7/a0-a6 restore the registers 
d7,poly2 repeat for all y values 

•HOLINE. A horizontal line 
* passes: xl=d2.w, yl=d3.w, 
* First find the address of 
holine 
hlineO 

lea 
lsl.w 
movea.1 
move 
andi 
lsr .w 
adda.w 
andi 
move 

hln tbl,a3 
#2,d3 
0(a4,d3.w), 
d2,d5 
#$fff0,d5 
#l,d5 
d5,a4 
#$000f,d2 
d2,d0 

is drawn from left to right. 
N=dl.w, colour=d4.w, phys-screen:a4.1 
the word at which the line starts. 

pointer to mask table 
there are y long words before the 

a4 current row address in the table 
save xl 
go in steps of 8 bytes 
to point to plane #1 word 
at this address 
which pixel from the left? 
save it 
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* does the entire line lie within one word? 
subi 
neg 
cmp 
bmi 

#16,dO 
do 
dl,do 
long_line 

are there more pixels to the word end 
than we have to draw? 
no, so it's a long line 

* The line is entirely within one word. Get the mask and draw it. 
move dl,dO 
bsr draw_it 
rts and that's all. 

* complete 1st word in a long line 
long_line: 

sub dO,dl 
bsr draw_it 

* Now fill all the solid words. 

number left 

hline6 clr 
not 
move 
lsr 
beq 

dO 
do 
dl,d2 
#4,d2 
last word 

* a long stretch of filled words 
subq 
move 
not 
moveq 
move 
subq 

inc_plane: 
addq 
movea. 
move 
lsr.w 
bcc 

set_word: 
or.w 
adda 
dbra 
bra 

clr_word: 
and 
adda 
dbra 

new_plane: 
dbra 
subq 

#l,d2 
d0,d3 
d3 
#4-1,d5 
d4,d6 
#2,a4 

#2,a4 
a4,a5 
d2,d7 
#l,d6 
clr_word 

d0,(a5) 
#8,a5 
d7,set_word 
new_plane 

d3,(a5) 
#8,a5 
d7,clr_word 

save number of pixels left to do 
how many are whole words? 
none are 

no need to read the table 
this many full words but one 
which are all l's 
or all O's, depending on the colour 
4 colour planes 

offset for next plane 
save the address 
initialise the word count 
next colour bit 

next word.in this plane 

next word in this plane 

for all the -colour planes 
pointer to next plane 1 
update pointer 

It will start at pixel 0 

d5,inc_plane 
#6,a5 

movea.1 a5,a4 
* it only remains to do the last word 
last_word: 

andi #$f,dl low nibble 
cmpi.w #0,dl any to do ? 
beq holine_end no - finished. 

* In finding the mask,the row offset is zero this time. 
1st pixel at extreme left 

completely finished 

clr 
move 
bsr 

holine_end: 
rts 

d2 
dl,dO 
draw it 
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* Draw in a section of a word which starts at pixel a and ends at pixel b 

the mask row offset=a*32 
plus 
column 
offset of (15-b)*2 gives 
the total offset 
to fetch the mask 
and 
its l's compliment 
(4-1) colour planes 
save colour 

is this colour bit set? 
no 
yes, also set the bits 

clear the bits 

draw it 
lsl 
move 
subq 
lsl 
add 
move.w 
move 
not 
moveq 
move 

next plane: 
lsr 
bcc 
or .w 
dbf 
rts 

not set and.w 
dbf 
rts 

SECTION 
xbuf ds.1 
phys_screen 
phys tbl y 
hln_tbl 

END 

#5,d2 
d0,d5 
#l,d5 
#l,d5 
d5,d2 
0(a3,d2.w),d0 
d0,d3 
d3 
#3,d5 
d4,d6 

#l,d6 
not_set 
d0,(a4)+ 
d5,next_plane 

d3,(a4)+ 
d5,next_plane 

BSS 
400 
ds.l 1 
ds.l 200 
ds.w 256 

the buffer of x word pairs 
the address of the physical screen 
pointers to the row y's 
the masks for filling words 
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* data_OO.s * 

* * 
* The data file * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* A list of the Line A variables offsets. 
* Their meanings are given in Appendix 5. 
fg_bpl 
fg_bp2 
fg_bp3 
fg_bp4 
wrt_mod 
xl 
yi 
X2 
patptr 
patmsk 
multifi 

egu 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
1 

24 
26 
28 
30 
36 
38 
40 
42 
46 
50 
equ 52 

* and the routine names 
init equ $a000 
hline equ $a004 
* The fill pattern for the $a004 routine 
fill: 

d e w %1111111111111111 
dew %1010101010101010 
dew %1001100110011001 
dew %llllllllllllllll 



Drawing on the Screen 23 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* systm_OO.s * 
Calls to the operating system and frequently used subroutines. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

find_phys: 
* A call to the operating System to find the physical screen address 

move.w #2,-(sp) xbios _physbase 
trap #14 xbios call 
addq #2,sp tidy stack 

* the base address is returned in do and saved 
move.1 do,phys_screen 
rts 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
wrt_phys_tbl: 
* Write a look-up table of the addresses of the start of physical each 
screen row in low resolution, 

move.l phys_screen,dO 
#200-1,dl 
phys_tbl_y,aO 
d0,(a0)+ 
#160,do 
dl,luloop 

luloop 

move 
lea 
move. 
add 
dbra 
rts 

The product 4*y is an offset to row y. 
where screen location is kept 
200 rows 
where the table is 
the next row in the table 
there are 160 bytes/row 
for all rows 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
hline_lu: 
* Set up a look-up table for low resolution horizontal line drawing. 
* Each mask in the table is the word to set between pixel a and b. 

lea hln_tbl,a0 pointer to the table base 
move.w #16-1,dl 16 rows, dl is the counter 

hloop2 clr.w do new row 
move.w #16-1,d2 16 columns, d2 is the counter 
bset dl,d0 set the 1st column bit 

hloop3 move.w d0,(a0)+ next column 
move.w d0,d3 
lsr.w #l,d3 shift 
or.w d3,d0 add back 
dbra d2,hloop3 complete this row 
dbra dl,hloop2 for all rows 
rts 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* set_pixl.s * 

* * 
* A program to set a pixel in low resolution using a low * 
* resolution screen driver. The Operating System is used to find * 
* the address of the physical screen. Also a look-up table is * 
* constructed to quickly find screen row adreses from y coords. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * opt d+ write in labels for debugging 

SECTION TEXT 
bra main 
include systm_OO.s 

* Here is the main program 
main: 

bsr 
bsr 
move 
move 
moveq 
bsr 
bra 

find_phys 
wrt_phys_tbl 
#160,do 
#100,dl 
#l,d2 
set_pix 
main 

don't try to execute the include 
include the file of subroutines 

locate the physical screen address 
construct the row address look-up 
plot the pixel at x=160 
and y=100 
with colour red 
plot a point 
avoid being covered by the mouse 

set_pix: 
* The subroutine to plot a pixel at'x,y in low resolution 
* Entry: x=d0.w,y=dl.w,colour=d2.w. Corrupted: d0,dl,d2,d3,d4,d7,a0. 

lea 
lsl 
movea.1 
move 
andi 
lsr.w 
adda.w 
and 
subi 
neg 
clr 
bset 
move 
not 
move 

phys_tbl_y,aO 
#2,dl 
0(a0,dl.w),a0 
d0,d5 
#$fff0,d5 
#l,d5 
d5,ao 
#$000f,d0 
#15,dO 
dO 
dl 
d0,dl 
dl,d3 
d3 
#4-1,d7 

the screen base address is here 
4*y is the row offset 
to this row address 
save x 
go in steps of 4 words 
to the first word in the group 
at this address 
this is the pixel number in the word 

this is the bit 

this is the mask 

and its complement 
the counter for the 

* Use the colour nibble to set the four colour planes 
next_plane: 

#l,d2 
clear_bit 
dl,(a0)+ 
d7,next_plane 

4 colour planes 

lsr 
bcc 
or.w 
dbra 
rts 

clear_bit: 
and.w 
dbra 
rts 

is this bit set? 
no 
it is, so set the plane 
for all planes 

d3,(a0)+ 
d7,next_plane 

the bit is zero so clear the plane 
for all planes 

' SECTION BSS 
* Where uninitialised data (that calculated by the program) is stored 
phys_screen ds.l 1 the address of the physical screen 
phys_tbl_y ds.l 200 pointers to the rows in low resolution 
hln_tbl ds.w 256 (not used just yet) 

END 



Modelling a 3D World 
One of the most fascinating things aspects of computers is the way they can be 
used to build life-like models. The great attraction of realistic computer games and, 
at the more serious end, simulators stems from the way the computer screen can be 
made to look like a window onto an invented universe. Some famous scientists, 
impressed with the similarity to the process of creation, have even gone so far as 
to consider theories of reality based on a real Universe built up from 'bits' of 
information. Whatever the fundamental significance of it all, the fact remains that 
computers offer a new dimension for human expression and experience. Simply 
put, they provide the possibility to create alternative realities where the laws of 
Nature may or not apply. All sorts of strange and exotic situations can be invented 
and investigated. For human beings, who relate most easily to objects and 
situations met in everyday life (and dreams), what appears on the computer screen 
should look familiar. Great effort has gone into constructing models of this kind. In 
a simulator which is supposed to accurately depict reality, the emphasis is on 
models which obey the laws of Nature precisely. 

In this chapter we will look at a way of modelling which provides a very fast and 
reasonably accurate picture of real objects. For the most part, but not completely, 
this involves polyhedral structures with polygonal faces as the building blocks, the 
so-called 'vector' graphics. Spheres and other objects with a high degree of 
symmetry can also be drawn quickly. Actually, to set the record straight, vector 
graphics originally meant something else. It was a name given to a mode of 
display where points on the monitor were joined directly by an electron beam that 
could be switch quickly from one part of the screen to another. This did not 
require much memory devoted to the screen and gave very fast 'wire-frame' 
pictures. The displays on monitors today do not use this technique. Instead, the 
image is built up from horizontal raster scans from one side of the image to the 
other. It is called raster scan (or scan conversion) graphics and we have already 
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used it to fill polygons. The speed with which an outline can be filled by raster 
scans makes it a very useful technique. However the name vector graphics has 
become commonly used to describe the graphics modelling technique itself, not the 
display technology. The adjective "vector" here really refers to the extensive use 
made of vector geometry in the programs. 

One other important technique is the BITBLT (Bit Block Transfer) type of 
graphics, in which SPRITES play an important role. The Atari STE has a piece of 
hardware on board, the BUTTER, which handles such operations very quickly, 
whilst on the 520ST it is done entirely by software. In BITBLT graphics, blocks of 
memory are manipulated as a whole, which is very useful since, once laid out in 
RAM, scan conversion need not be done a second time. The block of bytes is 
simply moved to the screen area. Some very clever and fast things can be done this 
way, particularly with sprites, but the relationships between the parts of the image 
are essentially determined by how the block is initially laid out in RAM. Sprite 
graphics is not discussed any further in the main text of this book, but Appendix 5, 
which lists all the Line A routines, contains an extensive coverage of the powerful 
sprite routines contained within the ST operating system. 

Having said that, it is likely that the next generation of popular computers will 
have hardware implementation of all the common graphics functions including the 
'vector' graphics we are about to discuss. It is very probable that soon all graphics 
functions will be done by very fast hardware 'geometry engines'. 

3.1 3-D Modelling 
"Real-time" 3D modelling has to be very fast This is because humans can spot 
the flicker of the picture if it changes more slowly than about once every 50 
milliseconds. In order to work in real time, the viewer has to be able to enter new 
data through the keyboard, joystick or mouse and see its effects immediately. The 
solid 3D structures which can be transformed and drawn on this time scale most 
easily are polyhedra. 

Polyhedra are very good graphics building blocks or 'primitives' for several very 
good reasons: 

• they are completely defined by their vertices, 

• the faces are polygons with straight edges, 

• in any transformation only the vertices need to be recalculated, 

• a transformed polygon is also a polygon 

• polygons can quickly be filled in to look 'solid' using raster scans. 
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What all this means really is that it's very hard to draw and shade in curved 
surfaces which don't have high symmetry (like circles) and the only 3D objects 
without curved surfaces are polyhedra. 

In fact computer graphics does not have a monopoly on the use of polyhedra as 
basic building blocks. The real world uses them extensively; all houses are made 
from bricks, which are six-sided polyhedra. 

3.2 Transformations and Frames of Reference 
All of die above statements concerning polyhedra can be translated into a definite 
mathematical framework called vector algebra, which is a very elegant and precise 
formulation of the mathematics of lines and planes. It becomes even move useful 
when presented in matrix form and it is this approach which usually appears in text 
books on computer graphics. For someone with little knowledge of advanced 
mathematics this looks very intimidating. Actually it's not. Many secondary school 
syllabuses handle simple rotations using 2x2 matrices, and it really isn't much 
more complicated than that. For those of us who do not wish to blaze new trails in 
the world of mathematics it is simply a case of understanding the general method 
and taking the results on trust. After all, once you've seen the transforms working 
you can use them in your programs and forget about them. There's no need to 
re-invent the wheel. 

For the moment though, in order to see the problem laid out in its entirety, let's 
consider all the various stages of transforms, as shown in figure 3.1. The 
distinction between the view frame and the world frame, and transformations 
between them, is discussed in further detail in Appendix 7. 

3.2.1 The Object Frame 

An object which exists inside the computer has quite a complicated life before it is 
seen on the screen. Most of this complication arises from the various transforms 
required to make it 'lifelike'. But whatever they are (rotations, translation or even 
something more exotic), the object must preserve its original identity, i.e. its 
relative dimensions. What this means.is that no calculation can be absolutely 
precise and, with the picture being recalculated faster than 20 times each second, if 
the original definition were not continually referenced, it would not be long before 
accumulative errors would make it unrecognisable (this problem crops up in all our 
calculations which, for speed, are done in only limited accuracy). Therefore it is 
necessary to constantly refer back to the original data which define the object. We 
call this place, in which the object is defined, the object frame (there is nothing 
sacrosanct about this name, other people have invented other names). Of course it 
doesn't 'exist' in any real sense, it's just that the numbers which fix the positions 
of the vertices are coordinates measured from some origin. This origin is where the 
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object frame is said to be located. The object frame can be positioned so as to 
reflect the symmetry of the object. For example, the natural object frame of a cube 
could be a cartesian (x,y,z) coordinate system centred at the centre of symmetry 
(centre of gravity) of the cube, with the sides of the cube parallel to the x, y and z 
axes of the coordinate system as shown in Figure 3.1. 

Figure 3.1 Frames of reference 

There may be several object frames combined together, particularly when a 
complex object is made up of several simpler objects. The process of sticking 
together simple objects (primitives) to make a complex one involves just the kind 
of transforms we have been talking about. These transforms are sometimes referred 
to as instance transforms. 

3.2.2 The World frame 

Having constructed a complex object - which can be thought of as an 'actor' in the 
scenario we are about to create - it is necessary to place it in the arena with all 
other 'actors'. This common space, inhabited by all objects is called the world 
frame. It is the place where the Laws of Nature play a role. For example, objects 
which are not subject to any force either remain at rest or move at constant 
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velocity. That's Newton's First Law. Since this world is our creation, we do not 
have to stick to these laws, if we wish. This is the place where collisions are tested 
for. We will call the transform which moves the object into its final position in the 
world frame the object-to-world transform. It will consist of some combination of 
rotation and translation. 

3.2.3 The View Frame 

Everyone in the real world has a different view of it, and the same thing, applies to 
the world we are creating inside the computer. The only difference is that there is 
only one screen and therefore only one viewer. The view of the world depends on 
where the observer is standing and looking. 

The view of the world seen by the observer is most easily represented by the view 
frame. This is a set of x, y, and z-axes which follow the gaze of the observer. 
Usually the z-axis points forward and in our convention the x-axis points vertically 
up. In this picture, an object which is straight ahead at a distance of 100m will 
have the coordinates (0,0,100) in the view frame and if the observer rotates to the 
left by 90 degrees it will have view frame coordinates (0,100,0). In general the 
view frame's position in the world frame will be changing continuously. In a flight 
simulator, for example, the view frame is the view from the cockpit. 

It might appear at first sight that there is an unnecessary duplication of points of 
view in all these frames of reference. However they define a natural hierarchy 
within which .the overall picture can be constructed to make it easy to take account 
of the relative motions of the observer and graphics primitives (objects). 

One thing in particular is worth noting. Rotating the view frame to the left or 
moving the scene to the right results in the same relative motion and gives the 
same picture on the screen. This suggests that there is a simple connection between 
two motions. In the language of mathematics, one is said to be the the inverse of 
the other. We will return to this again when we look at the rotations in detail. This 
point is examined in detail in Appendix 7. 

3.2.4 The Screen 

This is the logical screen, the block of RAM on which pictures are drawn before 
being displayed. It is mapped out following the way RAM is allocated to the 
screen, which in turn depends on the screen resolution, as described in Chapter 2. 
This results in the origin (the point with screen coordinates (0,0)) being right at the 
top left hand corner of the screen. To get from the view frame to the screen we 
must make a 'projection' onto a plane, called the view plane, of the objects which 
we wish to display. This is called a perspective transform and must preserve the 
ordering in space, so that objects which are farther away look smaller. It is done by 
tracing "rays" from objects to the view point, which is the location of the 
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observer's eye. The intersection of these rays with the view plane defines the 
outlines as they will appear on the screen. 

The transform to the screen coordinate system is almost the last stage, but not 
quite; the screen has limits. It may turn out that parts of the picture lie outside the 
screen RAM; that part of memory allocated to the screen. If no attempt is made to 
restrict points to appear on the visible screen then the program will attempt to plot 
them outside screen RAM, which could lead to a system crash. For this reason, 
unless it is absolutely certain that no point to be displayed will ever lie outside the 
screen RAM, only part of what is visible on the view plane will reach the screen. 
This is "windowing". What is not visible must be "clipped" away. The outline 
which defines the window on the display is called a view port. To express clearly 
the effort that has gone into producing the final image, this is sometimes also 
called the clip frame. 

There is even a need to clip in three dimensions in the view frame itself. Objects 
which are a long way away from the observer should not be displayed, and no time 
should be wasted worrying about them. It is a consequence of having a finite 
drawing resolution on the screen that small objects become badly distorted. 
Ultimately all very distant objects will end up as single pixels and the horizon 
could have a cluster of dots all over it. Sets of parallel lines will ultimately 
converge to a single line which will then never diminish in intensity. To stop all of 
this it makes, sense to clip out altogether objects which are more than a certain 
distance from the origin of the view frame. 

3.3 Coordinate Systems 
When we try to put all of these transforms on a mathematical basis we 
immediately run into a sticky and irritating problem - how to define the coordinate 
systems. It is standard in engineering, science and most of mathematics to work in 
right-handed cartesian coordinates. A right-handed and a left-handed cartesian 
coordinate system are both shown in figure 3.2. In keeping with this convention we 
will also always use a right-handed Cartesian coordinate system. However, be 
warned, this is not standard in the world of computer graphics. Left-handed 
systems abound and sometimes both conventions are used at the same time! 

There is another frequently used convention within computer graphics which, if we 
are to stick with it, forces the orientation of the axes in the view frame. It is that 
the positive z axis points forward into the picture, along the direction in which the 
observer is looking. 

Putting all this together, we have chosen to end up with the various coordinate 
systems shown in figure 3.1. Positive x is up and in the world frame the y-z plane 
defines ground level. 
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Coordinate systems and frames of reference are also discussed in Appendix 7. 

right-handed 

x 
left-handed 

x 

Figure 3.2 Right-handed and left-handed coordinate systems 

3.4 Vectors and Matrices 
For someone who loves computing but not madiematics, the introduction of 
matrices and vectors is not very welcome. Although it is possible to do all of the 
required mathematics by straightforward algebra, vectors and matrices establish an 
elegant and consistent framework within which to work. In addition there are 
properties of matrices which make them especially useful. An example is when a 
series of transforms take place in succession, such as when a rotation of an object 
about the x-axis is followed by a rotation about the y-axis. Instead of calculating 
the coordinates of the object twice, after each rotation, it is possible to concatenate 
(multiply together) the two transformation matrices and then perform the combined 
transform once only. This can save a lot of time when there are many points to 
transform. 

We will discuss the various types of transforms in detail as they come up. 
Appendix 6 also explains matrices and vectors. 
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3.4.1 Vectors 
Vectors are a mathematical shorthand notation which tell you how far to go in a 
given direction. Vectors go together with matrices. Here again there are two 
conventions concerning vectors. Vectors can be row vectors or column vectors. 
This doesn't mean very much, except that it changes how a vector looks when it is 
written down and the arrangement of elements inside the transformation matrices. 
In the teaching of engineering and science it is more usual to write vectors in 
column form and we will adhere to this convention exclusively throughout the 
book. 

3.5 Data Structures 

3.5.1 Variables and Labels 
One of the most difficult things to get used to when first using assembly language 
is that there are no algebraic variables, just data stored in registers and at memory 
locations. You can't add x to y but you can add the contents of register dO to the 
contents of register dl. In a 16 bit system such as the ST even memory locations 
become hard to locate because they are not always known when the program is 
written. This is in contrast to simpler 8 bit micros where PEEFCmg and POKEing 
allows access to anywhere in RAM at addresses which will be fixed and always 
available to the program. The problem with a micro with an advanced operating 
system, like the ST, is that until a program is actually loaded in the machine and 
ready to run, its exact location will not be known. There is a way of forcing the 
Operating System to load the program at a particular memory location by the use 
of absolute code (set by the assembler directive ORG) but that builds inflexibility 
into the program and may lead to clashes with other software. That may not be a 
problem with a game which will tie up the computer all to itself, though it may fall 
victim to later modifications in the operating system. 

The general philosophy is to produce programs which are insulated from all of this 
and come as complete self-contained packages which can be located and run 
anywhere in RAM. At first sight there appear to be insurmountable problems with 
this approach: how can you set up a table of data and later find it and how can you 
set up a table of addresses (JumP vectors) of subroutines to execute depending on 
the outcome of a test? There are various solutions to these problems, some of 
which utilise particular addressing modes of the processor and others of which rely 
on the assembler, as we have already mentioned in the discussion of position 
independent and relocatable code in Chapter 1. The problem is solved by the 
extensive use of labels which are temporary substitutes for addresses which will be 
calculated later. 



Modelling in a 3D World 33 

Labels play a very prominent part in any assembler program. The way they appear 
in the code makes them look like algebraic variables but they are not. A label is a 
pointer to a memory location where the current value of a variable is held, or it is a 
pointer to another part of the program. This is where much of the difficulty arises. 

3.5.2 Lists 

Finding ways of efficiently storing and accessing data has been the subject of 
intense study in computing. In computer graphics it is very important, particularly 
where speed matters. The important thing is to store data in a form such that is 
easy to get at for the problem in hand. It may not always be in the best form for all 
applications all the time, and some manipulation may be required along the way. 

In vector graphics where primitives are modelled by polyhedral structures with 
polygonal faces, what is most important are lists of vertices (corners) and the 
straight line edges joining them. Figure 3.3 illustrates a house modelled in this 
way. There is more than one way of setting up a data list to describe this structure, 
but the one we will most commonly use has at its centre the list of connections 
which describe the surfaces uniquely: the edge list. One tiling to avoid is having to 
repeat the actual coordinates of the vertices more than once. It is better to give 
each vertex a number and instead refer to this. When the x, y and z-coordinates of 
a vertex are required they can be drawn from the list of coordinates by the 
powerful indexed addressing modes of the ST, providing the position in the list is 
simply related to the vertex number. To make this point clear, here are the lists 
which are needed to draw the house. There will be other lists as well, containing 
other attributes such as the colour of each surface and so on, but they are not 
shown here. The house is not very complicated, but sufficiently so to show how 
long the lists might become for a really complex object. 

First the number of polygons in the house as a whole must be specified. Each 
plane face qualifies: four walls, two sloping roofs, one floor, one door, so we have: 

surface number: 8 

There is only one entry here but if there were other buildings it would be a list 

Then the number of edges in each surface is given, where the entry has the same 
position as the number (circled) of the surface as shown in the figure: 

edge numbers: 5, 4, 5, 4, 4, 4, 4,4 

After this the ordered list of vertex numbers going clockwise round the exterior 
face makes up the edge list. To make the data most useful to the program, the first 
vertex for each surface is again repeated at the end of its group to make a closed 
loop. 
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edge list: 7,8,9,2,1,7,1,2,3,4,1,4,3,10,5,6,6,5,8,7,6,5,10,9,8,5,2,9,10,3,2 
1,4,6,7,1,11,12,13,14,11 

Finally the actual coordinates, in whatever scale is being used, are given for x, y 
and z in the order of vertex numbers: 

x coordinates: 0,100,100,0,100,0,0,100,150,150,0,50,50,0 

y coordinates: 50,50,50,50,-50,-50,-50,-50,0,0,50,50,50,50 

z coordinates: -100,-100,100,100,100,100,-100,-100,-100,100,-10,-10,10,10 

These data would be used to define the house in the object frame. Following the 
transformation to the world frame some of the lists, the edge list, the edge numbers 
and the surface number would all be unchanged but the coordinates in the world 
frame would be different. 

Figure 3.3 A house modelled as a polygon mesh 
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3.6 Summary 
What should be one's attitude towards these very mathematical aspects of 3D 
graphics? If you are mathematically inclined, then it makes sense to try to 
understand what's going on in detail. This gives you the power to write your own 
transforms and explore some of the very interesting effects that can be produced. If 
you are not mathematically inclined then just regard die mathematical transforms 
as software "black boxes" to be "plugged in" as required. The transforms in this 
book are structured to allow you to do this. You only have to understand how to 
present data to them. 



Fast Filling a Polygon 
At the heart of our fast graphics program is the the routine which fills in a 
polygon. Using polyhedra as models for solid 3D objects will produce many 
polygonal surfaces to fill in. Because speed is of the essence, this is done in a way 
which fits in most easily with the way the computer works. The polygon is filled 
in a series of raster scans, or horizontal lines, starting at the top and progressing a 
line at a time to the bottom. Chapter 2 has already shown examples of fast fill 
routines using this method. This task naturally divides into two parts. In the first 
part the x coordinates of the polygon boundary are calculated and stored in a 
buffer (at xbuf) of long-words in order of increasing y. Each long-word holds in its 
high word the start x coordinate of the line and in its low word the end x 
coordinate of the line. In the second part these coordinates are passed in succession 
to the horizontal line drawing routine which connects them. Such an approach is 
called a raster scan conversion. 

The first part looks, at first sight, as if it will require considerable calculation, 
especially if the mathematical equation of a straight line is used to find the 
coordinates of each (x,y) pair along it. Fortunately the solution to this problem was 
solved many years ago in 1962 by JJE. Bresenham. The problem at that time was 
to control a digital plotter which could neither multiply nor divide. Such operations 
are available on the 68000 but they are time consuming and we want to avoid them 
where possible. The great advantage of the Bresenham algorithm is that it can find 
all the screen coordinates of a line using only additions and subtractions. When 
described in algebraic terms the Bresenham algorithm looks intimidating but, like 
all great ideas, is really very simple. Of course some (though not all) commercial 
programs use algorithms which draw lines and fill polygons faster than the the 
Bresenham method will allow, but having understood it you can try to do better. In 
any case it is very elegant and very fast. 
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The problem facing us is to find the (x,y) coordinate pairs along the sides of a 
polygon so that we can use them as the start and end points for horizontal lines to 
do a fill. The fill of a very small area, chosen so to exaggerate the irregularity 
caused by the pixels, is shown in figure 4.1. Regarding the boundary as a line, we 
see that it looks different in different screen resolutions. At the highest resolution, 
the position of a pixel on the screen is specified by an integer value between 0 and 
639 horizontally and between 0 and 399 vertically. With this limitation any line 
(unless it is either horizontal or vertical) will, under a magnifying glass, look like a 
staircase. This is shown in figure 4.2. In low resolution, which is the one we shall 
concentrate on, x has integer values between 0 and 319 and y has integer values 
between 0 and 199 so the staircase is easily visible. There is clearly no need for us 
to try to calculate the coordinates of a point to better accuracy than the screen 
resolution will allow, which means that integer arithmetic is quite adequate. There 
is no point in calculating the position of a point on the screen to 4 places of 
decimals because it can only be plotted to no places of decimals. The Bresenham 
strategy owes its success to the way it fits in with the pixel layout of the screen. 
Here is the way it works. 
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Figure 4.1 A small polygon enlarged to show pixels 
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4.1 Bresenham Algorithm for Drawing Lines 
Let us suppose that we are plotting a line on the screen which starts at the point 
S(xl,yl) and ends at point T(x2,y2) as shown in figure 4.2. These points will, of 
course, lie precisely on the line. Now we could take a pencil and ruler and draw an 
ideal mathematical line between the two end points and then shade in those pixels 
which lie closest to the line. This is how our line will look on the screen. The 
result is shown in the figure where the pixels are represented by squares. We want 
an algorithm to do what the human brain does automatically in deciding which 
points to shade. 

Figure 4.2 Pixel positions along a line 

Here is the Bresenham algorithm which does this. To make the picture simpler we 
replace each pixel by a dot at its centre which makes very clear the degree to 
which each pixel misses the ideal line. Suppose we have just reached the point A, 
which didn't lie precisely on the line, and we have to choose which point to do 
next The next point could be B(x+l,y) or C(x+l,y+l). It seems an obvious choice; 
point C because it is closer. Closer in this sense means a shorter vertical distance 
to the line at the point E from the centre of the pixel. We can call this the error. 
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On the diagram, error t is less than error s. Notice that somehow we didn't 
consider point H in this decision. That's because the angle of the line is less than 
45°. If the angle had been greater than 45°, we would have considered the points H 
and C. Already it is clear that lines of slope less than 1 (angle less than 45°) are a 
different case from lines of slope greater than 1 (angle greater than 45°). We will 
come back to this later. 

Well it looks like the problem is solved! Just inspect the next two points ahead, 
like B and C, calculate the vertical distance of each to the line and choose the 
shorter. In principle that's it. If the vertical distance up to the ideal line is taken as 
a positive error (like s) and a vertical distance down to the line is taken as a 
negative error (like t) then the overall quantity on which the choice is based is 
(s-t): 

if (s-t) = D is positive, the next point is C 

if (s-t) = D is negative, the next point is B. 

The quantity (s-t) is called the decision variable D for obvious reasons. 

Bresenham's great innovation was to spot two tricks to make this a simple 
operation. The first is that since only the sign of (s-t) matters, any quantity which 
is proportional to (s-t) will do. The second is that there is no need to re-do this 
calculation each time. The value of D used for the present choice can be quickly 
corrected to find the value of D for the next choice. 

So it goes like this. The updated decision variable, D, is tested to see if it is 
positive or negative. If it is negative the next point to set is B. Then D is updated 
accordingly. If it is positive, the next point to set is C. Then D is updated 
accordingly. We just have to find out what these updates are and what the value of 
D at the very start of the line should be. 

The key to answering these questions is to look at how to get from A to B or from 
A to C. To get from A to B do a horizontal move; to get from A to C do a 
horizontal followed by a vertical move. To calculate the errors associated with the 
individual horizontal and vertical moves it is simpler to look at point S. From this 
a horizontal move produces an error of AF, but a simple vertical move to G 
produces an error of -SG (points below the ideal line have a positive error and 
points above have a negative error). But SG is equal to SA, so we really only have 
to consider the relative lengths of the vertical and horizontal sides of the triangle 
SAF. But, very important, triangle SAF is similar to the overall triangle SUT and 
the sides are in proportion: 

AF/SA = TU/SU = (y2-yl)/(x2-xl) = dy/dx 

where dy is the overall distance in y and dx is the overall distance in x from the 
start to the end of the line. 
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As we have said, anything in proportion will do, so the errors could be taken as dy 
and -dx. A further factor of 2, which still keeps everything in proportion, will bring 
us into line with Bresenham's original scheme: 

simple horizontal move: error = 2dy 

simple vertical move: error = -2dx 

For the actual moves from A to B or from A to C: 

horizontal move (AB): errorl = 2dy 

horizontal plus vertical move (AC): error2 = 2dy-2dx 

These are the updates which must be made to the decision variable D, for the next 
choice. 

Finally, what value of D should we start with? Everything works fine if we take 
the starting value Dl as the average error of errorl and error2 

Dl = (errorl + error2)/2 = 2dy-dx 

To summarise, here's the algorithm 

1. initialize the first point to xl.yl and the initial value of D to Dl, 

2. if Dl is -ve, increment x but don't increment y and make D = D + errorl, 

if D is +ve, increment both x and y and make D = D + error2 

3. repeat step 2 until x = x2. 

Now what about lines which have a slope greater than 1? The solution is very 
simple. To see it clearly, just draw a line with slope greater than 1 on a piece of 
tracing paper and clearly label the x and y axes. Now turn the tracing paper over. 
With the y axis horizontal and the x axis vertical, it now looks like our original 
line of slope less than 1 except that the x and y axes have been interchanged. 
Everything therefore works exactly as before if x and y are interchanged in the 
formulae. 

4.2 Tailoring Bresenham to the Polygon Fill 
The procedure we have described will certainly generate points along a line, but 
for our purpose we do not need them all. When considering lines of slope less then 
1, points which lie on the horizontal part of the "staircase", such as S and A, all 
have the same y coordinate but different x coordinates. Only the x-coordinate of 
the first one, S, is required since the others, like A, will be filled in by the 
horizontal raster scan anyway. The first one in the line follows immediately the 
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change in sign of D . Our version of the Bresenham algorithm is modified to 
generate only' the start and end coordinates of horizontal lines for raster scans to 
fill a convex polygon. It is not exactly a Bresenham algorithm in the usual sense 
since the coordinates it generates would, if plotted alone, produce a line full of 
holes along horizontals. 

4.3 Example Programs 
There is really only one example program here but it is split up into several parts 
for convenience and to emphasise their different functions. There is the control file 
with a name that reflects the function of the new program, together with a 
housekeeping file (systm_01 .s), a file with the names of the variables (bss_00.s) 
and a file which contains the main subroutines. They are all linked together in the 
assembled program by means of the powerful INCLUDE directive. In the chapters 
that follow, new files of a similar kind are introduced. They bear the same name as 
the current ones but with a higher number. The new file contains the contents of 
the old file indirectly in the form of an INCLUDE directive. This way each new 
file does not waste space repeating previous code. You just have to refer back to 
earlier chapters to see what the earlier code does. 

The main objective here is to fast fill a polygon defined only by its vertices, using 
the modified Bresenham routine discussed above to work out the outline. It is done 
in low resolution (maximum colour) and without windowing (next chapter). The 
polygon is shown in figure 4.3 with the coordinates of the vertices written in and 
the direction of ordering in the edge list indicated. For this routine the data list is 
actually the coordinate pairs themselves. Although the direction looks clockwise, it 
is in fact anticlockwise in terms of the conventional layout of an x-y graph 
because, in screen coordinates the origin is at the top left hand corner of the 
screen. 

4.3.1 polyfil2.s 

This is the main control program. It makes calls to everything else. It loads a set of 
coordinates of the vertices of a polygon into the variables required by the 
Bresenham routine. The Bresenham routine and the horizontal line drawing routine 
are now joined into a singe routine called polyjil which is contained in the 
core_00.s file. You can change these coordinates to suit yourself but just make 
sure they don't go outside the boundary of the screen. As yet there is no 'clipping' 
to take care of this. 

One new feature is the use of a a key-scan routine to terminate the program in an 
orderly fashion. This uses an Operating System BIOS call to see if any key at all 
has been pressed. If it has, anomer call shuts down the program and returns control 
to the calling program, in this case the assembler. 
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Another is the use of the Line A routine $aO0a to get rid of the mouse icon 
directly. 

Figure 4.3 Coordinates of filled polygon 

4.3.2 corejDO.s 
This is where all the work is done. It contains the Bresenham and the scan 
conversion programs together as a single routine polyjil. The scan conversion is 
that used in polflll.s. Let's find out how the Bresenham routine works. 

Pairs of vertices, defining the start and end of each polygon edge are taken from 
the list (xl,yl,x2,y2,...xl,yl) of coordinates, in order, going anticlockwise round 
the face (the direction of the arrows in figure 4.3). Notice how the first pair are 
repeated at the end to close the polygon. To start with, the maximum y and 
minimum y are saved for later use. This is a useful thing to do since this way the 
range of y of the polygon is found out very quickly. Then a buffer (xbuf) of long 
words is filled. Each long word contains two words which are the start and end 
x-coordinates of a horizontal line going from left to right across the screen. The 
low x is in the high word and the high x is in the low word. The position of the 
long word in the buffer has the value of the y-coordinate associated with the 
horizontal scan which is therefore an index into the buffer. Structured this way, it 
is clear why the maximum and minimum y of the polygon are recorded.They give 
the range of long words to be accessed from the buffer by the scan conversion 
program. With the special cases of vertical and a horizontal lines treated 
separately, there are really only two parts to the program: lines of slope less than 1 
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(angle less than 45 degrees) and lines of slope greater than 1 (angle greater than 45 
degrees). These are different cases and so have to be dealt with separately. 

In the case of lines of low slope, (<1), both positive and negative sloping lines are 
catered for with by changing the direction that x moves. For lines of positive slope 
(sloping forwards) x is incremented at each step and for lines of negative slope 
(sloping backwards) x is decremented at each step. At each step D is examined to 
see if it is positive or negative. If it is negative, only x is incremented and nothing 
is stored in the buffer at xbuf. If it is positive, both x and y are incremented and 
the value of x is saved in the buffer at the position dictated by y. 

For lines of high slope (>1), y is incremented each time and the decision parameter 
tested to see if x should also be incremented. Whatever happens the value of x is 
saved in the buffer. 

In this way the entries in the buffer fix the start and end x coordinates of the 
horizontal lines that fill the polygon. They are used by the routine h o l i n e which 
actually draws the lines. 

4.3.3 bss_00.s 

This is an ever increasing file of variables: quantities which are calculated during 
the program. This file opens space to store them. 

4.3.4 systmjOl.s 

This contains three useful routines from the Operating System. Two to read the 
keyboard and one low level Line A routine to remove the mouse icon. The 
keyboard routines differ in that one only detects whether a key was pressed whilst 
the other records which key it was. The code for the keys are listed in Appendix 8. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* polyfil2.s * 
* A program to fast fill a polygon from a set of vertex coordinates * 
* using the Bresenham algorithm to determine the outline. * 

* * * * * * * * * * * * * * * * * * * * * * 
SECTION TEXT 
opt d+ 
bra main 
include systm_01.s 
include core 00.s 

bsr 
bsr 
lea 
move. 1 
bsr 
bsr 

find_phys 
wrt_phys_tbl 
phys_tbl_y,aO 
aO,screen 
hline_lu 
hide_mse 

put in labels for debugging 
here's the main program 
include the housekeeping file 
and the subroutines 

locate the physical screen 
set up the screen table 
pointer to screen table 
pass it 
set up masks for filling words 
exterminate the mouse 

* Transfer my polygon data to the program data block 
move.w #12-1,d7 6 pairs of points for the vertices 
lea crds_in,a0 to be moved here 
lea my_data,al from here, 

loop move.w (al)+,(a0)+ Transfer 
dbra d7,loop them all. 

move.w #5,no_in 5 sides to this polygon 
move.w my_colour,colour set the colour 

* Generate a polygon outline in xbuf, then scan fill it. 

* If 
bsr poly_fil 

a key is being pressed. 
bsr 
tst 
beq 
clr.w 
trap 

loop_again: 
bra 

scan keys 
dO 
loop again 
-(sp) 
#1 

main 

set up the buffer and fill it 
control returns to the desktop, 

has a key 
been pressed? 
no, execute again 
gemdos call TERM - terminate 
back to calling program 

keep going to cover the mouse (bee) 

SECTION DATA 

* A five-sided polygon (pentagon) 
* Here are the vertices (first repeated at the end) in screen coords 
* going anticlockwise. 
my_data d e w 20,100,200,20,300,80,260,180,140,180,20,100 
* Here is the colour - blue 
my_colour d e w 4 

SECTION BSS 
include bss 00. variables calculated by the program 

END 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* core_OO.s 
* Program core. Important subroutines for Chapter 4. 

* * * * * * * * * * * * * * * 
poly_fil: 
* This fills a polygon. 
* It consists of 2 parts: 
* part 1 - the the x-coordinates of all boundary points are entered in xbuf 
* part 2 - the holine routine fills the polygon, from the values in xbuf 

* PART 1. Fill the buffer. 
* Regs: 
* a3: pointer to crds_in - coords, list (xl,yl,x2,y2,....xl,yl) 
* a2: pointer to xbuf 
* do(xl),dl(yl),d2(x2),d3(y2),d4(vertex no)/(decision ver., 
* d5(lowest y),d6(highest y)/(the increment),d7(edge counter) 
* polygon vertices are ordered anticlockwise 

* Initialise all variables 
filxbuf: 

move.w 
beq 
lea 
subq.w 
move.w 
clr.w 

filbufl lea 
addq.w 
move.w 
move.w 
move.w 
move.w 
subq.w 

no_in,d7 
fil_end 
crds in,a3 
#l,d7 
#399,d5 
d6 
xbuf,a2 
#2,a2 
(a3)+,d0 
(a3)+,dl 
(a3)+,d2 
(a3)+,d3 
#4,a3 

* Find the lowest and highest 
cmp.w 
bge 
move.w 

filbuf3 cmp.w 
bge 
move.w 

d5,dl 
fiibuf3 
dl,d5 
dl,d6 
filbuf5 
dl,d6 

no. edges in polygon 
quit if none to do 
pointer to the coords, of vertices 
the counter 
initial minimum y 
initial maximum y 
init. buffer pointer 
point to ascending side (low word) 
next xl 
next yl 
next x2 
next y2 
point back to x2 

y values: the filled range of xbuf 
test(yl-miny) 
minimum y unchanged 
minimum y is yl 
test(maxy-yl) 
unchanged 
maximum y is yl 

filbuf5 exg d5,a5 
exg d6,a6 
clr.w d4 
moveq #l,d6 

save minimum y 
save maximum y 
init. decision var 
init. increment 

* All lines fall into two catagories: [slope]<1, [slope]>1. 
* The only difference is whether x and y are increasing or decreasing. 
* See if line is ascending (slope > 0) or descending (slope < 0). 

cmp.w dl,d3 (y2-yl)=dy 
beq y_limits ignore horizontals altogether 
bgt ascend slope > 0 

* It must be decending. Direct output to LHS of buffer. a2 must 
* be reduced and we have to reverse the order of the vertices. 

exg d0,d2 exchange xl and x2 
exg dl,d3 exchange yl and y2 
subq.w #2,a2 point to left hand buffer 

ascend sub.w dl,d3 now dy is +ve 
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* Set up yl as index to "buffer 
l s l . w # 2 , d l 
add.w d l , a 2 

* Check the sign of the slope 
sub.w d0,d2 (x2-xl)=dx 
beq vertical if it's vertical its a special case 
bgt pos_slope the slope is positive 

* It must have a negative slope but we deal with this by making the 
* increment negative 

neg.w d6 increment is decrement 
neg.w d2 and dx is positive 

* now decide whether the slope is high (>1) or low (<1) 
pos_slope: 

cmp.w d2,d3 test(dy-dx) 
bgt hislope slope is >1 

* The slope is less than 1 so we want to increment x every time and then 
* check whether to also increment y. If so this value of x must be saved. 
* dx is the counter. Initial error Dl=2dy-dx 
* If last D -ve, then x=x=inc, don't record x, D=D+errl 
* If last D +ve, then x=x+inc,y=y+inc, record this x, D=D+err2 
* errl=2dy; err2=2dy-2dx 
* dx in d2, dy in d3, incx in d6, x in do 

dx-1 is the counter 
2dy>Ferrl 
2dy 
-dx 
2dy-dx = Dl 
2dy-2dx=err2 
save first x 
x=x+incx 
what is the decision? 
don't inc y, don't record x 
inc y so record x; find next buffer place 
save this x 
update decision D=D+err2 
next one 
D=D+errl 
increment x again 

inc_x 

no_stk 
next_x 

move.w 
subq.w 
add.w 
move.w 
neg.w 
add.w 
add.w 
move.w 
add.w 
tst.w 
bmi 
add.w 
move.w 
add.w 
bra.s 
add.w 
dbra 
bra 

d2 
#1 
d3 
d3 
d2 
d2 
d4 
dO 
d6; 
d4 
no 
#4 
dO, 
d2, 

,d5 
,d5 
rd3 
,d4 

,d4 
,d2 
,(a2) 
,d0 

stk 
,32 
.(a2) 
,d4 

next x 
d3. 
d5, 

,d4 
,inc_x 

y_limits 

* The slope is >1 so change the roles of dx and dy 
* This time we must increment y each time and record the value of x after 
* having done so. 
* Init error Dl = 2dx-dy 
1F If last D -ve, then y=y+inc, D=D+errl, record x 
* If last D +ve, then x=x+inc, y=y+inc, D=D+err2, record x 
* errl=2dx, err2=2(dx-dy) 
* dx in d2, dy in d3, inc in d6, x in do 

dy-1 is counter 
2dx=errl 
2dx 
-dy 
2dx-dy=Dl 
2dx-2dy=err2 
save 1st x 
next place in buffer (equivalent to incrementing y) 
what is the decision? 
don't inc x 

hislope 

inc_y 

move.w 
subq.w 
add.w 
move.w 
neg.w 
add.w 
add.w 
move. w 
addq.w 
tst.w 
bmi 

d3,d5 
#l,d5 
d2,d2 
d2,d4 
d3 
d3,d4 
d4,d3 
d0,(a2 
#4,a2 
d4 
same_x 
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m e x 
D=D+err2 

add.w <16,d0 
add.w d3,d4 
bra.s next_y 

same_x add.w d2,d4 D=D+errl 
next_y move.w d0,(a2) save the x value 

dbra d5,inc_y 
bra y_limits 

* the special case of a vertical line, x is constant, dy is the counter 
vertical: 

save next x 
next place in buffer 

for all y 

move.w d0,(a2) 
addq.w #4,a2 
dbra d3,vertical 

* Restore the y limits 
y_limits: 

exg d5,a5 
exg d6,a6 

next_line: 
dbra 

next_poly: 
d7,filbufl do all lines in this polygon 

* This part ends with minimum y in d5 and maximum y in d6 

* * * * * * * * * * * * * 
* PART 2 
* set up the pointer 

* * * * * * * * * * * * * * * * * * * * * 

poly2 

poly4 
poly3 

lea 
sub.w 
move.w 
beg 
move.w 
lsl.w 
add.w 
move.w 
subq 
addq 
move.w 
move.w 
sub.w 
bmi 
addq 
move.1 
movem.1 
bsr 
moliem. 1 
dbra 
rts 

xbuf,al 
d5,d6 
d6,d7 
poly3 
d5,d3 
#2,d5 
d5,al 
colour,d4 
#l,d3 
#l,d3 
(al)+,d2 
(al)+,dl 
d2,dl 
poly4 
#l,dl 
screen,a4 
d0-d7/a0-a6, 
holine 
(sp) + ,d0-d7/i 
d7,poly2 

base address 
no. lines to do-1 
is the counter 
quit if all sides are horizontal 
minimum y is the start 
4*minimum y = offset into xbuf 
for the address to start 
the colour 
reduce initial y 
next y 
next xl 
next x2 
x2-xl 

N = no to do in this line 
where the screen table starts 

-(sp) save the registers 
draw the line 

a0-a6 restore the registers 
repeat for all y values 

*HOLINE. A horizontal line is drawn from left to right. 
* passes: xl=d2.w, yl=d3.w, N=dl.w, colour=d4.w, screen y table:a4. 
* First find the address of the word at which the line starts. 
holine lea 

lsl.w 
movea.1 
move 
andi 
lsr.w 
adda.w 
andi 

hln_tbl,a3 
#2,d3 
0(a4,d3.w),a4 
d2,d5 
#$fff0,d5 
#l,d5 
d5,a4 
#$000f,d2 

pointer to mask table 
there are y long words before the 
current row address in the table 
save xl 
go in steps of 8 bytes 
to point to plane #1 word 
at this address 
which pixel from the left? 
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move d2,d0 save it 
* does the entire line lie within one word? 

subi 
neg 
cmp 
bmi 

* The line is 
move 
bsr 
rts 

* Complete the 1st word 
long_line: 

sub 
bsr 

#16,dO 
do are there more pixels to the word end 
dl,dO than we have to draw? 
long_line no, so it's a long line 

entirely within one word. Get the mask and draw it. 
dl,dO 
draw_it 

and that's all. 
in a long line 

dO,dl 
draw_it 

number left 

* Now fill all the solid words. 
clr 
not 
move 
lsr 
beq 

dO 
do 
dl,d2 
#4,d2 
last word 

save number of pixels left to do 
how many are whole words? 
none are 

* a long stretch of filled words - no need to read the table 
subq 
move 
not 
moveq 
move 
subq 

inc_plane: 
addq 
movea 
move 
lsr.w 
bcc 

set_word: 
or .w 
adda 
dbra 
bra 

clr_word: 
and 
adda 
dbra 

new_plane: 
dbra 
subq 
movea 

#l,d2 
d0,d3 
d3 
#4-1,d5 
d4,d6 
#2,a4 

#2,a4 
a4,a5 
d2,d7 
#l,d6 
clr_word 

d0,(a5) 
#8,a5 
d7,set_word 
new_plane 

d3,(a5) 
#8,a5 
d7,clr_word 

this many full words but one 
which are all l's 
or all O's, depending on the colour 
4 colour planes 

offset for next plane 
save the address 
initialise the word count 
next colour bit 

next word in this plane 

next word in this plane 

for all the colour planes 
pointer to next plane 1 
update pointer 

It will start at pixel 0 

d5,inc_plane 
#6,a5 
a5,a4 

* it only remains to do the last word 
last_word: 

andi #$f,dl low nibble 
cmpi.w #0,dl any to do ? 
beq holine_end no - finished. 

* In finding the mask,the row offset is zero this time. 
d2 1st pixel at extreme left 
dl,dO 
draw_it 

clr 
move 
bsr 

holine_end: 
rts completely finished 
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* Draw in a section of a word which starts at pixel a and ends at pixel b 
draw_.it 

lsl 
move 
subq 
lsl 
add 
move.w 
move 
not 
moveq 
move 

next plane: 
lsr 
bcc 
or .w 
dbf 
rts 

not set and.w 
dbf 

fil_end rts 

#5,d2 
d0,d5 
#l,d5 
#l,d5 
d5,d2 
0(a3,d2.w) 
d0,d3 
d3 
#3,d5 
d4,d6 

#l,d6 
not_set 
d0,(a4)+ 

,d0 

d5,next_plane 

d3,(a4)+ 
d5 ,'next_plane 

the mask row offset=a*32 
plus 
column 
offset of (l5-b)*2 gives 
the total offset 
to fetch the mask 
and 
its l's compliment 
4-1 colour planes 
save colour 

is this colour bit set? 
no 
yes, also set the bits 

clear the bits 

finished 

http://draw_.it
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* systm_01.s * 
* * 
* Subroutines and calls to the operating system in Chapter 4. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

include systm_OO.s 
scan_keys: 
* See if a key has been pressed; don't wait (BIOS call BCONSTAT). 
* returns -1 in do if a key was pressed 

move.w #2,-(sp) look at the keyboard 
move.w #l,-(sp) was a key pressed? 
trap #13 bios call 
addq.l #4,sp tidy stack 
rts 

read_key: 
* Read a character from the keyboard; wait for it (BIOS call BCONIN). 
* returns the code in the lower byte of the upper word of do 

move.w #2,-(sp) look at the keyboard 
move.w #2,-(sp) wait for a key press 
trap #13 bios call 
addq.l #4,sp tidy stack 
rts 

hide_mse: 
* Exterminate the mouse 

d e w $a000 
dew $a00a 
rts 

init. a-line 
hide mouse 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* bss_OO.s 
* A file of variables locations used in chapter 4. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

xbuf 

SECTION 

phys_screen 
log_screen 
phys tbl 
hln_tbl 
screen 
crds_in 
noLin 
colour 

_y 

BSS 

ds.l 
ds.l 
ds.l 
ds.l 
ds.w 
ds.l 
ds.w 
ds.w 
ds.w 

400 
1 
1 
200 
256 
1 
100 
1 
20 

the buffer of x word pairs 
the address of the physical screen 
the address of the logical screen 
pointers to the row y's 
the masks for filling words 
the screen address 
coords, list (xl,yl,x2,y2....xl.yl) 
number of sides to polygon 
list of polygon colours 



Windowing 
If a picture is larger than the limits of the screen then there is a problem with what 
happens to the excess. Unless some provision is made for this possibility, the 
program will attempt to write to addresses outside of the section of RAM reserved 
for the screen - the screen RAM. This could be the physical screen, the 32K block 
of memory which is currently being displayed on the monitor or, if screen 
buffering is being used to produce a flicker-free picture, another 32K block, the 
logical screen, which is currently being drawn on and will be displayed next. 
Whatever the arrangement, unless we are sure that everything will always lie 
within the screen size, some provision must be made to clip off those sections of 
the picture which lie outside. Confining a picture in this way is called widowing 
because of the obvious analogy to someone looking out of a window. The screen is 
a window onto the internal world of the computer. This window could be the 
maximum allowed on a given resolution or something smaller (one obvious way to 
make graphics fast is to keep the picture small so that not much has to be drawn). 
The freedom to vary the size of the visible image can even give rise to special 
effects - an aperture opening, for example. Because of the 'clipping off of the 
unwanted parts of the picture that takes place, we shall call outline of this window 
the clip frame. 

The algorithm we need is one which will handle filled polygons. It is not sufficient 
to just chop off vertices where they exceed the clip frame. The line left by the 
chop must become an additional edge to close the polygon. Once again an elegant 
solution to this problem was found many years ago by Sutherland and Hodgman. 
Before we proceed to discuss the Sutherland-Hodgman Algorithm, it is worth 
mentioning that there are always shortcuts to solving problems of this kind in 
situations where some degree of constraint is placed on the size of graphics 
primitives. The way we have saved the outline of a polygon in the buffer, xbuf, 
suggests a very fast way of clipping down to a smaller frame. To provide clipping 
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within smaller y limits, the values of ymax and ymin can be decreased and 
increased respectively. Likewise a fast scan of the high and low word sides of the 
buffer would immediately reveal those values which exceeded the x limits, which 
could then be reset to the limits themselves. To stand alone, such a strategy would 
require that nothing ever exceeded the maximum allowed by the buffer size (which 
could be larger then the screen). Even if overall clipping were done separately, 
such a method would allow special effects such as the picture unfolding from the 
centre. It is always possible to achieve fast special effects by exploiting the 
symmetries of data structures. 

5.1 Sutherland-Hodgman Clipping Algorithm 
The Sutherland-Hodgman algorithm is actually more powerful than we require; it 
can handle polygons of any shape. In this book, for speed, only convex 
(round-shaped, all external angles greater than zero) polygons are filled. The 
requirement to be convex is a consequence of a later constraint; the need to keep 
the hidden-surface-removal algorithm simple. This is something we will meet at a 
later stage. 

clip fran 
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1 \ 
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i \ / 
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— y nin 
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^ RI 
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\ / 

Figure 5.1 Windowing a polygon 
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Strictly speaking, Sutherland-Hodgman does not require polygons to be convex nor 
does it require the clipping frame to be a rectangle. But, for simplicity, the version 
given here does use a rectangular clipping frame parallel with the monitor screen. 
The boundaries of the clipping frame are defined by xmin, xmax, ymin and ymax 
and are shown for a general polygon in Figure 5.1. The Sutherland-Hodgman 
strategy is to find the intersections in turn of all of the edges of the polygon with 
each boundary. Since our boundary has four sides this means that four cycles of 
the polygon will be made. On each cycle some of the original edges may be lost 
and new ones added. 

As each new vertex is examined, various actions are taken which depend on the 
position of it and the previous vertex. These cases are illustrated in the Figure and 
examined below: 

1. If the next vertex is outside the frame, (A), check the position of the previous 
vertex, (C). If that was in, find the point of intersection, (S), of the edge joining 
them with the clip frame and save it. Don't save the next vertex (A). 

2. If the next vertex is inside the frame, (B), check the position of the previous 
vertex, (A). If that was out, find the point of intersection of the edge joining them 
with the clip frame, (R) and save it. Also save the next vertex, (B). 

This is the algorithm applied to all the vertices going round the polygon. 

Once again it might appear that calculating points of intersection of sloping lines 
with the clip frame requires a lot of mathematical computation involving divisions 
and multiplications. Surprisingly this is not so. As usual in assembly language 
programming, where variables are not abstract algebraic symbols, but contents of 
memory locations or registers, it is possible to find answers using only addition 
and subtraction and, where it occurs, to use division and multiplication by powers 
of two which can quickly done by right and left shifts. 

To illustrate this consider the case where the previous point was outside but the 
next point is inside the frame limit xmin. This is shown in more detail in Figure 
5.2 where the two possible cases, depending on which point is closest to the limit, 
are examined. As part of the process to determine that B(x2,y2) lies inside and 
A(xl,yl) lies outside the limit, it is necessary to compare both xl and x2 with 
xmin. But instead of just using the COMPARE instruction, the actual differences 
(xmin-xl) and (xmin-x2) are calculated and the sign of the result used as the basis 
for decision. Note that (xmin-xl) is positive and (xmin-x2) is negative. Having 
then decided that there is a point of intersection to determine and save, these 
differences are used as the stating point for calculating the point of intersection in 
the following way. 

One of the coordinates of the point of intersection is already known; it is xmin, the 
limit itself; it remains to find the y value at the intercept. This is done iteratively in 
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the following way. The average of A and B is calculated by adding coordinates 
and dividing by 2. The result Tl is closer to the intercept than either A or B and 
we can see what side of the boundary it lies by following the sign of the average 
of (xmin-xl) and (xmin-x2). More important, the average of yl and y2 will be the 
intercept value itself if the average of (xmin-xl) and (xmin-x2) is zero, because 
when this happens the two points are either evenly spaced on either side of the 
boundary, or coincident with it. This is the basis of the iterative algorithm used in 
the example program. 

case 1 case 2 

y 

Ti (first iteration) \ + v e i 
U 

(xnin-x) -ve B 

xnin xnin 

->* 

Figure 5.2 Intersection of the boundary by iteration 

What happens the first time is that the average of yl and y2 and the average of 
(xmin-xl) and (xmin-x2) are calculated by means of an addition and a shift right (a 
quick divide by two). This yields the y coordinates of the point Tl. If the average 
of (xmin-xl) and (xmin-x2) is zero then the intercept has been found. If the 
x-average is negative, as at point Tl in case 1, then it lies inside the boundary and 
the next average must be taken between (xmin-xl) and(xmin-xTl). Likewise, the 
next y-average must be taken between yl and yTl. If, on the other hand, the initial 
average of (xmin-xl) and (xmin-x2) is positive, as case 2, the next average must 
be taken between (xmin-xTl) and (xmin-x2) and the next y-average between yTl 
and y2. This iterative process continues until the x-average is zero, at which point 
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the current y-average is the y coordinate of the point of intersection, which is then 
saved. 

5.2 Example Program 
The example program clips a polygon using a version of the Sutherland-Hodgman 
algorithm and then fills it. The polygon is that shown in Figure 4.3. What it looks 
like after the windowing is shown in Figure 5.3. 

140,180 2^0,180 

Figure 5.3 Windowed polygon 

5.2.1 clipfrme.s 

This is the control program plus the data for the polygon vertices. The coordinates 
in my_data are, as usual in the order xl,yl,x2,y2 xl.yl, with the first coordinate 
repeated at the end. The clip frame limits are also given in the data and you can 
change them to suit yourself. The program will keep going until you press a key, 
when it will stop. 
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5.2.2 core_01.s 
Here is where the actual clipping routine resides (together with all the other 
routines used so far by means of the include core_00.s directive at the end). Most 
of the work is done by the subroutine clip. It looks rather long but that is to try to 
make it more readable. Because many of its parts are very similar, it would be 
possible to make it shorter with inner subroutine calls, but then it would be harder 
to follow. It is a complicated routine but that is a consequence of the rather 
difficult task it does, which has been described above. 

It is laid out in the order that it clips against boundaries: xmin first followed by the 
others. In all four complete traversals of the data are made with new vertices being 
added each time. The data for the vertices is input on the first traversal from 
crdsjn and output to crds_out. The next traversal reverses the order. Because 
there are four traversals, the data ends up back where it started in crdsjn, ready 
for the next part of the program, to follow in later chapters. 

5.2.3 bss_01.s 

As the number of variables gets larger, so does this file. So far it hasn't become so 
large that it has been added to with an INCLUDE directive. 
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* * * * * * * * * * * * * * * * 
* clipfrme.s * 
* A program to clip and fast fill a polygon to a window (clip frame)* 
* defined by the limits stored at xmin, xmax, ymin and ymax. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_01.s 
include core_01.s 

debugging info 

the housekeeping file 
and the subroutines 

main bsr 
bsr 
lea 
move 
bsr 
bsr 

* Set up the 
move 
lea 
move 
lea 

clp_loop 
move 
dbra 

move 
move 
move 
move 
move 
move 
bsr 
bsr 

loop_again: 
bsr 
tst 
beq 
clr .w 
trap 

find_phys 
wrt_phys_tbl 
phys_tbl_y,aO 

1 aO,screen 
hline_lu 
hide_mse 

data 
w #12-1,d7 

crds_in,aO 
1 a0,a3 

my_data,al 

w (al)+,(aO)+ 
d7,clp_loop 

locate the physical screen 
where the rows start 
the row look-up table pointer 
pass it 
the masks for filling words 
exterminate the mouse 

6 pairs of points for the vertices 
destination 
ready for drawing 
from here 

transfer 
them all 

#5,no_in 5 sides to this polygon 
my_colour,colour set the colour 
my_xmin,xmin 
my_xmax,xmax 
my_ymin,ymin 
my_ymax,ymax 
clip 
poly_fil 

scan_keys 
dO 
loop_again 
"(SP) 
#1 

set the 
clip 
frame 
limits 
window it 
fill it 

has a key been pressed? 

no, try again 

SECTION DATA 
* A pen tagon 
my_data d c . w 
* which i s b l u e 
my_colour d e w 
my_xmin d e w 
my_xmax d c . w 
ray—ymin d e w 
my_ymax d c . w 

20,100,200,20,300,80,260,180,140,180,20,100 

4 
50 
270 
50 
150 

SECTION BSS 
include bss_01.s 

END 
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* * * * * * * * * * * * 
core_01.s 

* Program core for Chapter 5. 

* * * * * * * * * * * * * * * * 
* A version of the Sutherland-Hodgman clipping algorithm. 
* It goes round the polygon clipping it against one boundary at 
* a time; it goes round four times in all. 
* regs: 
* aO(crds_in),al(crds_out).a2(no_out),a3((saved) crds_out) 
* dl(xl),d2(yl),d3(x2),d4(y2),d5(saved x2), d6(saved y2) 
* do(current limit) 
clip: 
* first clip against xmin 

bsr clip_ldl 
tst.w d7 
beq clip_end 

* do 1st point as a special case 

set up pointers 
any sides to clip? 
quit if none 

move.w 
move.w 
move. w 
cmp.w 
bge 
bra 

(a0)+,d5 
(a0)+,d6 
xmin,do 
d0,d5 
xmin_save 
xmin_update 

1st x 
1st y 
this limit 
test(xl-xmin) 
inside limit 
outside limit 

* do successive vertices in turn 
xminnext: 

move.w (a0)+,d3 
move.w (a0)+,d4 
move d3,d5 
move d4, d6 

now test for position 
sub.w d0,d3 
bge xmin_x2in 

x2 is outside, where is xl? 
sub.w dO,dl 
bit xmin_update 

x2 
y2 
save x2 
save y2 

x2-xmin 
x2 is in 

xl-xmin 
both x2 and xl are out 

* x2 is out but xl is in so find intersection, 
* needs dxl(+ve) in dl, dx2(-ve) in d3, yl in d2 and y2 in d4 
* finds the y-intercept and save it 

bsr y_intercept 
* but because its out, don't save x2 

bra xmin_update 
xmin_x2in: 
* x2 is in but where is xl? 

sub.w dO,dl xl-xmin 
bge xmin_save both xl and x2 are in 

* x2 is in but xl is out so find intercept 
* but must have the -ve one in d3, so switch 

exg dl,d3 
exg d2,d4 
bsr y_intercept 

xmin_save: 
move. 
move, 
addq, 

xmin_update: 
move 
move 
dbf 

,w 
,w 
• w 

as, 
d6, 
#1, 

d5, 
d6, 
d7, 

,(al)+ 
,(al)+ 
,(a2) 

,dl 
,d2 
,xmin_next 

save x 
save y 
inc count 

xl:=x2 
yl:=y2 
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* the last point must be the same as the first 
movea.l a3,a4 
subq 
cmpm.1 
beq 
move.1 
bra 

in dec: 
tst.w 
beq 

#4,al 
(a4)+,(al)+ 
xmin dec 
(a3),(al) 
clip xmax 

(a2) 
clip_xmax 

subq.w #l,(a2) 

pointer to first x 
point to last x 
check 1st and last x and y 
already the same 
move first to last 

if count 
is not already zero 
reduce it 

clip_xmax: 
* Now clip against xmax. Essentially the same .as above except that 
* the order of subtraction is reversed so that the same subroutine 
* can be used to find the intercept. 

bsr clip_ld2 set up pointers 
tst.w d7 any to do? 
beq clip_ymin no 

* do 1st point as a special case 
move.w 
move.w 
move.w 
cmp.w 
bge 
bra 

(a0)+,d5 
(a0)+,d6 
xmax,do 
d5,d0 
xmax_save 
xmax_update 

1st x 
1st y 

test(xmax-xl) 
inside limit 
outside limit 

* do successive vertices in turn 
xmax_next: 

move.w (a0)+,d3 
move.w (a0)+,d4 
move d3,d5 
move d4, d6 

now test for position 
sub.w d0,d3 
neg.w d3 
bge xmax_x2in 

x2 is outside, where is xl? 
sub.w dO,dl 
neg.w dl 
bit xmax_update 

x2 
y2 
save x2 
save y2 

xmax-x2 
x2 is in 

xmax-xl 
both x2 and xl are out 

* x2 is out but xl is in so find intersection 
* needs dxl(+ve) in dl, dx2(-ve) in d3, yl in d2 and y2 in d4 
* find the intercept and save it 

bsr y_intercept 
* but because its out, don't save x2 

bra xmax_update 
xmax_x2in: 
* x2 is in but where is xl? 

sub.w dO,dl 
neg.w dl 
bge xmax_save 

* x2 is in but xl is out so find intercept 
* but must have the -ve one in d3, so switch 

exg dl,d3 
exg d2,d4 
bsr y_intercept 

xmax-xl 
both xl and x2 are in 
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xmax_save: 
move.w 
move.w 
addq.w 

xmax_update: 
move 
move 
dbf 

d5, (al) + 
d6,(al) + 
#1,(32) 

d5,dl 
d6,d2 
d7,xmax_next 

* the last point must be the 
movea.1 
subq 
cmpm.1 
beq 
move.1 
bra 

xmax_dec: 
tst.w 
beq 
subq.w 

clip_ymin: 
* clip against 

bsr 
tst.w 
beq 

* do 1st point 
move.w 
move. w 
move.w 
cmp.w 
bge 
bra 

* do successive 
ymin_next: 

move. w. 
move.w 
move 
move 

* now test for 
sub.w 
bge 

a3,a4 
iC4,al 
(a4)+,(al)+ 
xmax dec 
(a3),(al) 
clip_ymin 

(32) 
clip ymin 
#1,(32) 

ymin 
clip ldl 
d7 
olip_ymax 
as a special 
(a0)+,d5 
(ao)+,d6 
ymin,do 
d0,d6 
ymin_save 
ymin_update 

: vertices in 

(ao)+,d3 
(ao)+,d4 
d3,d5 
d4,d6 
position 
d0,d4 
ymin_y2in 

save x 
save y 
inc count 

xl:=x2 
yl:=y2 
r 

same as the first 
pointer to first x 
point to last x 
check 1st and last : 
already the same 
move first to last 

if count 
is not already zero 
reduce it 

set up pointers 
any to do? 
no 

case 
1st x 
1st y 
this limit 
test(yl-ymin) 
inside limit 
outside limit 

turn 

x2 
Y2 
save x2 
save xl 

y2-xmin 
y2 is in 

x and y 

yl-xmin 
both y2 and yl are out 

* y2 is outside, where is yl? 
sub.w d0,d2 
bit ymin_update 

* y2 is out but yl is in so find intersection 
* needs xl in dl, x2 in d3, dyl in d2 and dy2 in d4 
* find the intercept and save it 

bsr x_intercept 
* but because its out, don't save y2 

bra ymin_update 
ymin_y2in: 
* y2 is in but where is yl? 

sub.w d0,d2 
bge ymin_save 

* y2 is in but yl is out so find intercept 
* but must have the -ve one in d4, so switch 

exg dl,d3 
exg d2,d4 
bsr x_intercept 

yl-ymin 
both yl and y2 are in 
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ymin_save: 
move.w 
move.w 
addq.w 

ymin_update: 
move 
move 
dbf 

d5,(al)+ 
d6, (al) + 
#l,(a'2) 

d5,dl 
d6,d2 
d7,ymin_next 

* the last point must be the 
movea. 1 
subq 
cmpm.1 
beq 
move.1 
bra 

ymin_dec: 
tst.w 
beq 
subq.w 

a3,a4 
#4,al 
(a4)+,(al)+ 
ymin dec 
(a3),(al) 
clip_ymax 

(a2) 
clip ymax 
#l,(a2) 

save x 
save y 
inc no 

xl:=x2 
yl:=y2 

same as the first 
pointer to first x 
point to last x 
check 1st and last : 
already the same 
move first to last 

if count 
is not already zero 
reduce it 

clip_ymax: 
* Now clip against ymax. Essentially the same as above except 
* the order of subtraction has been reversed so that the 
* same subroutine can be used. 

bsr clip_ld2 set up pointers 
tst.w d7 any to do? 
beq clip_end no 

* do 1st point as a special case 
move.w 
move.w 
move.w 
cmp.w 
bge 
bra 

* do successive 
ymax_next: 

move.w 
move.w 
move 
move 

* now test for 
sub.w 
neg.w 
bge 

(a0)+,d5 
(a0)+,d6 
ymax,do 
d6,d0 
ymax_save 
ymax_update 
vertices in 

(a0)+,d3 
(a0)+,d4 
d3,d5 
d4,d6 
position 
d0,d4 
d4 
ymax_y2in 

1st x 
1st y 

test(ymax-yl) 
inside limit 
outside limit 

turn 

X2 
y2 
save x2 
save y2 

ymax-y2 
y2 is in 

y2 is outside, where is yi? 
sub.w d0,d2 
neg.w d2 
bit ymax_update 

ymax-yl 
both x2 and xl are out 

* y2 is out but yl is in so find intersection 
* needs xl in dl, x2 in d3, dyl(+ve) in d3 and dy2(-ve) in d4 
* find the intercept and save it 

bsr x_intercept 
* but because its out, don't save y2 

bra ymax_update 
ymax_y2in: 
* y2 is in but where is yl 

sub.w d0,d2 
neg.w d2 
bge ymax_save 

ymax-yl 
both yl and y2 are in 
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* y2 is in but yl is out so find intercept 
* but must have the -ve one in d4, so switch 

exg dl,d3 
exg d2,d4 
bsr x_intercept 

ymax_save: 
move.w 
move.w 
addq.w 

ymax_update: 
move 
move 
dbf 

d5,(al)+ 
d6,(al)+ 
#l,(a2) 

d5,dl 
d6,d2 
d7,ymax_next 

* the last point must be the 
movea.1 
subq 
cmpm.l 
beg 
move.1 
bra 

ymax_dec: 
tst.w 
beg 
subq.w 

clip_end: 

a3,a4 
#4,al 
(a4)+,(al)+ 
ymax dec 
(a3),(al) 
clip_end 

(a2) 
clip end 
#l,(a2) 

save x 
save y 
inc no 

xl:=x2 
yl:=y2 

same as the first 
pointer to first x 
point to last x 
check 1st and last 
already the same 
move first to last 

if count 
is not alrsdy zero 
reduce it 

rts 

clip_ldl: 
* first set up the pointers for the first snd third pssses 

pointer to vertex coords, before clip 
snd sfter the this clip 
saved 
this many sides before 
where the number after is stored 

lea 
lea 
move.1 
move.w 
lea 
clr .w 
rts 

crds in,aO 
crds_out,al 
al,a3 
no_ln,d7 
no_out,s2 
no out 

clip_ld2: 
* set up the pointers for the second snd fourth passes 
* ensures the final output is 3t the same place as initial input 

pointer to vertex coords before clip 
and after this clip 
saved 
this many sides before 
where the number after is stored 

lea 
lea 
move.1 
move.w 
lea 
clr.w 
rts 

crds_out,aO 
crds_in,al 
al,33 
no_out,d7 
no_in,s2 
no in 
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y_intercept: 
* Find the y-i 
* line joining 
* entry: 
* dl: (xl-k) -
* d3: (x2-k) -
* d2: yl, d4: 

tst.w 
beq 
tst.w 
beq 
movem 

yint_in move.w 
add.w 
asr.w 
move 
add.w 
asr.w 
beq 
bgt 
move 
move 
bra 

yint_loop: 
move 
move 
bra 

yint_end: 
move.w 
move.w 
addq.w 
movem 

yint_out: 
rts 

ntercept on the clipping boundary x = k 
pl(xl,yl) to p2(x2,y2). 

of the 

y2 

positive number 
negative number 

dl 
yint_out 
d3 
yint_out 
d5/d6,-(sp) 
d2,d6 
d4,d6 
#l,d6 
dl,d5 
d3,d5 
#l,d5 
yint_end 
yint_loop 
d5,d3 
d6,d4 
yint_in 

d5,dl 
d6,d2 
yint_in 

do,(al) + 
d6,(al)+ 
#l,(a2) 
(sp)+,d5/d6 

point on boundary 
already saved 
point on boundary 
will be saved 
save x2, y2 
yi 
yl+y2 
(yl+y2)/2 = <y>, a possible intercept 
dxl 
dxl+dx2 
()/2 = <dx> 
if <dx>/2=0, boundary reached 
if not loop again 
unless <dx> is -ve, and becomes new dx2 
and <y> is new y2 
and try again 

<dx> is new dxl 
<y> is new yl 

store x boundary 
and <y> as the coords of a new vertex 
and increment the vertex count 
restore regs 

d2: 
d4: 

x_intercept 
* Finds the 
* line joining 
* entry: 
* dl: xl, d3: 

(yl-k) -
(y2-k) -
tst.w 
beq 
tst.w 
beq 
movem 

xint_in move 
add.w 
asr.w 
move 
add.w 
asr.w 
beq 
bgt 
move 
move 
bra 

intercept on the clipping boundary y 
pl(xl,yl) to p2(x2,y2) 

k of the 

x2 
a positive 
a negative 
d2 
xint_out 
d4 
xint_out 
d5/d6,-(sp 
dl,d5 
d3,d5 
#l,d5 
d2,d6 
d4,d6 
#l,d6 
xint_end 
xint_loop 
d6,d4 
d5,d3 
xint_in 

number 
number 

point on boundary 
already saved 
point on boundary 
wil be saved 

) save x2, y2 
xl 
xl+x2 
()/2 = <x> a possible intercept 
dyl 
dyl+dy2 
(dyl+dy2)/2 = <dy> 
if <dy> = 0, boundary reached 
if not loop again 
unless <dy> is -ve and becomes dy2 
and <x> becomes x2 
and try again 
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xint_loop: 
move 
move 
bra 

d5,dl 
d6,d2 
xint_in 

<x> is new dxl 
and <dy> is new dyl 

xint_end: 
move.w d5,(al)+ 
move.w dO,(al)+ 
addq.w #l,(a2) 
movem (sp)+,d5/d6 

xint_out rts 
* leaves with: 
* a list of vertex coordinates at coords_in 
* the number of polygon sides at no_in. 

store intercept <x> 
and the boundary y as new vertex coords 
and increment the vertex count 
restore regs 
next vertex 

include core_OO.s add on the previous core 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* bss_01.s 
* A file of variables used in chapter 5. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION BSS 

* System variables 
xbuf 
phys_screen 
log_screen 
phys tbl y 
hln_tbl 
screen 

ds.l 
ds.l 
ds.l 
ds.l 
ds.w 
ds.l 

* Polygon atributes 
crds_in 
crds_out 
no_in 
no_out 
colour 
xmax 
xmin 
ymin 
ymax 

ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 

400 
1 
1 
200 
256 
1 

100 
100 
1 
1 
20 
1 
1 
1 
1 

the buffer of x word pairs 
the address of the physical screen 
the address of the logical screen 
pointers to the row y's 
the masks for filling words 
address of current screen 

input coords, list (xl,yl,x2,y2....xl.yl) 
output ditto 
input number of sides to polygon 
output ditto 
list of polygon colours 
clip frame limit 
ditto 
ditto 
ditto 



Getting Things Into 
Perspective 
It is a curious thing that distant objects look smaller than ones which are close. 
They aren't smaller, but they do subtend a smaller angle at the eye. For any scene 
to look real therefore, the size of primitives must diminish as they recede into the 
distance. All of this is done by the eye and the brain. Simulating the same effect 
on the computer screen is what the perspective transform is all about. 

You don't really need to understand much maths to use the transforms in this 
book. The maths and the transforms have all been worked out; you only have to 
understand how to feed data to them. The perspective transform is just such an 
example. However, to understand and use transforms fully requires some 
understanding of maths and matrices. We will introduce these as the need arises. 
The Appendices also contain information on these topics 

6.1 The Perspective Transform 
The perspective transform is a set of mathematical operations which project an 
image of an object from the world reference frame onto the screen. This has a 
similarity to the way in which a shadow is formed, except that in that case the 
shadow falls behind the object and is larger, whereas in the perspective projection 
it is between the viewpoint and screen and smaller. This is shown in Figure 6.1. 

One aspect that crops up repeatedly in transforms and matrices is die use of 
homogeneous coordinates. Yet it is possible to avoid using them altogether and in 
many cases it is an inconvenience to use them at all. What do they mean? Do they 
matter? In this chapter we find out about homogeneous coordinates and how to use 
them in the perspective transform which is done using matrix multiplication just to 
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illustrate the method. At the same time it will be clear how to do the transform 
without using matrix multiplication at all. It just turns out that the perspective 
transform is a good opportunity to try it out. 

Figure 6.1 Perspective projection of a cube 

Figure 6.1 shows me an object, in this case a cube, defined inside the computer in 
the world frame and seen from the view point. The view plane lies in the xv-yv 
plane of the view frame and the projected image is defined by the points where the 
'rays' from the view point (also called the centre of projection, at -d along the zv 
axis) pierce the view plane. The window is the area of the view plane which is 
visible on the screen. That's really all there is to it. The view point plays a very 
important role in this scheme and could be placed anywhere. Placing it along the -z 
axis makes the algebra simple and centres the projection about the view frame 
origin. This is a very simple type of projection; draughtsmen use many other kinds. 
But it works fine and the algebra associated with it is minimal. 

To make life simple, take the case where the window entirely fills the monitor 
screen. Then the distinction between the two disappears. Let's look at how a very 
simple object projects onto the screen. This is shown in Figure 6.2. As part of the 
transform it is also necessary to adjust to the screen coordinate system, where the 
origin is at the top left-hand corner. There are three coordinate systems shown in 



Getting things into Perspective 67 

the. diagram: the view frame (xv,yv,zv), the screen frame (xs,ys), and the projected 
coordinates (Xv.Yv). This projected coordinate system is an intermediate one, 
introduced for convenience and centred at the view frame origin. 

centre of 
projection ̂  

(0,0,-d) 

Figure 6.2 Perspective projection of a line 

From the similar triangles ABC and ADE and the similar triangles ABF and ADG 
we get the results: 

Xv/xv = d/(zv+d) and Yv/yv = d/(zv+d) 

or 

Xv = xv.d/(zv+d) and Yv = yv.d/(zv+d). 

It only remains to choose where to centre the projection on the visible screen. If it 
is to be centred half-way across at the bottom then in screen coordinates, then 

xs = Yv+Wx/2 and ys = Wy-Xv 

where Wx and Wy are the width and height of the screen in the current resolution. 
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In low resolution Wx=320 and Wy=200. In what follows we shall only consider 
low resolution, though a conversion from one resolution to another is 
straightforward. 

In low resolution the perspective transform becomes, for display in screen 
coordinates: 

xs = 160+yv.d/(zv+d) ys = 200-xv.d/(zv+d) 

These transforms can be worked out using straightforward algebra. The only thing 
to look out for is that the denominator doesn't ever become zero because this will 
cause a 'divide by zero' exception. The program can be set up to watch out for 
this. 

6.2 Homogeneous Coordinates 
The perspective transform, above, is quite simple but has a serious disadvantage if 
it is to be concatenated with several other types of transform. Remember, in the 
jargon of matrix transforms, concatenation simply means multiplying matrices 
together. That is die advantage of writing transforms as matrices. Where several 
transforms (rotations etc.) take place in succession, the overall transform can be 
constructed by multiplying the individual transforms and then applied to the 
coordinates in one go. The problem with this perspective transform is that as it 
stands it cannot be written as a matrix at all. 

Basically, a matrix can represent any transform which is linear, which means there 
is a proportional relation between the initial and the transformed coordinates. What 
we would like to see for the transforms between Xv,Yv and xv,yv,zv are equations 
like 

Xv = a.xv + b.yv + czv 

Yv = d.xv + e.yv + f.zv 

where the coefficients a,b,c,d,e and f are simple numbers. 

Then it could be written as a matrix product (see Appendix 6 for more information 
on matrices) 

Xv* /a b c \ / x v \ 

Yv I I d e f I yv 

\ zv 
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Unfortunately the perspective transform we have derived does not have this form. 
What messes it up is the (zv+d) in the denominators; the coordinates themselves 
have to be in the numerators. Therefore as it stands our transform cannot be put 
into 3x3 matrix form. The perspective transform isn't the only one to suffer from 
this problem. Simple translations do as well. The way out of the problem is to go 
to homogeneous coordinates. 

As far as we are concerned the use of homogeneous coordinates is just a trick to 
get round this problem. The trick is to introduce another dimension, temporarily, to 
give more "space". That's all this extra dimension does because in this extra 
dimension all vertices have the same value, 1. In homogeneous coordinates the 
point (xv,yv,zv) becomes (xv,yv,zv,l). 

How does this help? Now the transform can be written as a product but there are 
penalties' to pay: the matrix product will generate an extra term which must be 
divided into the others. Also all matrices are now bigger (4x4). Here's how it 
works. 

First do the perspective transform in homogeneous coordinates to give an 
intermediate result: 

/d.xv \ / d 0 0 0 \ / xv \ 

d.yv 0 d 0 0 

\ 

0 

zv+d \ 

0 0 0 0 

0 0 1 d 

yv 

zv 

/ , 

Then divide by the fourth element (zv+d) to give 

Xv = xv.d/(zv+d) 

Yv = yv.d/(zv+d). 

Finally translate to the screen centre (this translation can also be done as a matrix 
multiplication in homogeneous coordinates but that would be making work for the 
sake of it): 

xs = 160 + yv.d/(zv+d) 

ys = 200 - xv.d/(zv+d). 

The perspective matrix has zeros for most of its elements and so many of the 
multiplications are a waste of time. In the program at the end of this section which 
illustrates the transform, we have used the homogeneous form. It serves as a useful 
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introduction to matrix multiplication in assembly language and allows us to try a 
few little-used assembler instructions. 

6.3 Example program 
The example program shows a view of a plane with the letters "ST" (an ST 
monolith) sloping forwards in the world frame. When the perspective transform is 
done (together with windowing and everything else) it appears on the screen like 

Figure 6.3 ST monolith 

Figure 6.4 Screen picture of ST monolith 
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the opening logo in a movie, where the words diminish into the distance. Figure 
6.3 shows how the plane is set up in the view frame. Figure 6.4 shows how it 
looks on the screen. 

You can look at the coordinates in the data file and change them if you wish to see 
how it looks in different orientations. If you want, you can change the data 
altogether to draw something different, but first read Carefully how the data is laid 
out. This is explained more fully below in the data file. Be careful to join up the 
characters and label the vertices properly. 

6.3.1 perspect.s 

This is the control program. Its function is to load up the data, draw the picture 
and terminate with a key press. The data are stored in the file data_01 .s, described 
below. 

6.3.2 data_01.s 

This is discussed next because it contains lists of the data. Understanding how 
these are used is essential to understanding how the program works. Since we start 
off with an object drawn in 3D in the view frame, each of its vertices must be 
fixed by three coordinates (xv,yv,zv). The lists of these are held at myjiatax, 

0 , , 1 
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17 

18 

Figure 6.5 Vertex numbers of ST monolith 
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my_datay and my_dataz. There is a scheme to identify each vertex in these lists. 
Each vertex has a number as shown in Figure 6.5. To find its coordinates simply 
read in from the start counting the first coordinate as number zero. The number of 
vertices in each polygon is given at vectors. 

More data than this is required to actually draw the picture. The connections 
between the vertices are specified in my_edglst. For each polygon there is a list of 
connections in this table. The overall object is split into 6 polygons, all of which 
lie in the same plane. The vertex connections for these, going clockwise and 
closing the polygon, are 

polygon 0: 0,1,2,3,0 

polygon 1: 4,5,6,7,4 

polygon 2: 8,9,10,11,8 

polygon 3: 12,13,14,15,12 

polygon* 16,17,18,19.16 

polygon 5: 20,21,22,23,20. 

Arranged in this way all the information required to draw the object is readily 
available. To colour in the polygons a list of individual colours is held at 
my_colour. Notice that in this picture it was decided to construct the " S " by 
drawing an outline (polygon 1) and masking out the open parts (poly's 2 and 3) 
with the background Colour, rather than by drawing each segment separately. This 
is also evident from the actual colour list, my_colour where it can be seen that the 
background is red and the letters are blue. Doing it this way saves a bit of time but 
may lead to problems when the blue boundaries at 9-10 and 12-15 don't quite 
match up. To supplement these lists the total number of polygons is given at 
myjipoly. These are the data blocks must be loaded up at initialisation. Other 
variables are calculated by the various parts of the program as it goes. 

You can change these lists to draw anything you wish. Just remember it is a 3D 
object in the view frame and coordinates are easiest to determine from views along 
the different axes. It must also be placed in front of the view plane as shown in 
Figure 6.3. 

6.3.3 dataj02.s 

The 4x4 matrix for the perspective transform is stored here, a row at a time, with a 
viewpoint at -100 on the view frame z axis. It isn't included with data_01.s since 
that file will only be used once 
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If you can't follow the matrix multiplication used in the transform, don't worry. 
Just think of the transform as a piece of 'machinery' to perform a function. If you 
want to alter the angle of view, change each of the numbers 100 to the new 
position of the view point. Remember 100 here is the distance of the view point 
along the negative zv axis. 

6.3.4 bss_02.s 

This contains a list of the variables used by the programs. Data is loaded into the 
variables blocks from the data file data_01.s by the control program. What goes 
where is clear from the control program. It consists of the lists of the x, y, and z 
coordinates of the vertices in the view frame, and other attributes as described in 
the previous sections. 

6.3.5 core_02.s 

This has two parts: the perspective transform, and polydraw which takes care of 
clipping and the actual drawing. 

The perspective transform is done by matrix multiplication in homogeneous 
coordinates. It could be done by direct algebra but it is done this way to illustrate 
the use of homogeneous coordinates and matrix multiplication in a very compact 
way. Also it utilises a useful but little-used assembler instruction, LINK. When 
invoked, this causes the processor to open a space on the stack, called a frame, 
where data can be stored without interfering with the main stack. The pointer to 
the frame, one of the address registers, is declared in the LINK instruction together 
with the space required. The processor takes care of adjusting the regular stack 
pointer clear of the frame. In the present case it's where the intermediate 
perspective calculations are stored. When finished with, the frame is closed by 
means of the UNLK instruction and the tidying up of the stack pointer is taken care 
of by the processor. 

The perspective transform calculates the projections of the vertices on the view 
plane and stores them in two lists: scoordsx and scoordsy. 

Polydraw is the final part. It contains all the previous subroutines necessary to 
complete the drawing. It also contains at the start a test for the visibility of each 
polygon. This is in anticipation of things to come. The test is to look for a negative 
colour number. Such a value would have been set earlier if the polygon was found 
to be facing away from the view point. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* perspect.s * 
* A perspective view of an ST monolith * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_01.s 
include core_02.s 

housekeeping file 
core subroutines 

main bsr 
bsr 
lea 
move.1 
bsr 
bsr 

* Transfer the 

loopO 

move.w 
beq 
move.w 
subq.w 
move.w 
lea 
lea 
lea 
lea 
move.w 
move.w 
dbra 

find_phys 
wrt_phys_tbl 
phys_tbl_y,aO 
ao,screen 
hline_lu 
hide_mse 
data. First the 
my_np°iy>d7 

term 
d7,npoly 
#l,d7 
d7,d0 
my._nedges,aO 
snedges,al 
my_colour,a2 
col lst,a3 
(aO)+,(al)+ 
(a2)+,(a3)+ 
dO,loopO 

set 
up 
screen 
routines 

edge numbers and colours 
no. of polygons? 
if none, quit 
or becomes 
the counter 
save it 
source 
destination 
source 
destination 
transfer edge nos. 
transfer colours 

* Second the edge list and coordinates 

loopl 

loop2 

loop3 

move.w 
lea 
clr 
clr 
add.w 
add.w 
addq 
dbra 

subq 
lea 
lea 
move. w 
dbra 
move.w 
subq 
lea 
lea 
lea 
lea 
lea 
lea 
move.w 
move.w 
move.w 
dbra 

d7,d0 
my nedges,a6 
dl 
d2 
(a6)+,dl 
dl,d2 
#l,d2 
do,loopl 

#l,d2 
my_edglst,aO 
sedglst,al 
(aO)+,(al)+ 
d2,loop2 
dl,vncoords 
#l,dl 
vcoordsx,al 
my_datax,aO 
vcoordsy,a3 
my_datay,a2 
vcoordsz,a5 
my_dataz,a4 
(a0)+,(al)+ 
(a2)+,(a3)+ 
(a4)+,(a5)+ 
dl,loop3 

restore count 

last one repeated each 
= total no. of vertices 

the counter 
source 
destination 
pass it 

the counter 
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* The clip frame boundaries 
raove.w my_xmin,xmin ready 
move.w my_xmax,xmax for 
move.w my_ymin,ymin clipping 
move.w my_ymax,ymax 

* Calculate the perspective view and draw it 
bsr perspective 
bsr polydraw 

* Test for a key press to finish 
loop4 bsr 

tst 
bne 

scan_keys 
dO 
term 

test for a key press to quit 

term 
bra loop4 
clr.w -(sp) 
trap #1 

keep testing 
terminate - return to calling program 

SECTION DATA 
include data_01.s 
include data_02.s 
SECTION BSS 
include bss_02.s 

END 
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* * * * * * * * * * * * * * * 
* core_02.s 
* Program core for Chapter 6 

* perspective 
* A subroutine which uses the perspective transform matrix at 
* persmatx to transform a set of viewframe coords at vcoordsx, 
* vcoordsy and vcoordsz into screen coords at pcoordsx and pcoordsy 
* by matrix mutiplication. 
* Regs: 
* aO: pointer to view frame x-coords list vcoordsx 
* al: ditto y vcoordsy 
* a2: ditto z vcoordsz 
* a4: pointer to screen x-coords list scoordsx 
* a5: pointer to screen y-coords list scoordsy 
* Just to be tricky we use the link instruction to open a frame on the 
* stack to temporarily store the results of the calculation. 

any points to do? 
if none, quit 
otherwise this is the count 
the 
source 
coords. 
the 
destination. 
open a frame with space for 16 words 

perspective: 
move.w vncoords,d7 
beq prs_end 
subq.w #l,d7 
lea vcoordsx,aO 
lea vcoordsy,al 
lea vcoordsz,a2 
lea scoordsx,a4 
lea scoordsy,a5 
link a6,#-32 

prs_crd: 
* set up the perspective matrix pointer to transform the next vertex 

moveq #3,d6 4 rows in the transform matrix M 
lea persmatx,a3 init matrix pointer 

prs_elmnt: 
* calculate the next column vector element i 

move.w (aO),dO next view frame coord xv 
move.w (al),dl next yv 
move.w (a2),d2 next zv 
muls (a3)+,d0 the matrix products xv*Mil 
muls (a3)+,dl yv*Mi2 
muls (a3)+,d2 zv*Mi3 
add.l dl,dO a long word product 
add.l d2,d0 

4jioveqTwZ#i3ri 
muls (a3)+,dl 
add.l dl,dO 

and the extra homogeneous term 

the new element 

prs_ok 

move, 

dbf 

move. 
bne 
addq 
addq. 
move. 
divs 

,1 

1 

,1 
1 

add.w 
move. w 

d0,-(a6) 

d6,prs_e 

(a6)+,d3 
prs ok 
#l,d3 
#4,a6 
(a6)+,d4 
d3,d4 
#160,d4 
d4,(a4)+ 

save it 

repeat for 4 elements 

restore 4th 

avoid divide by zero 
point to 2nd 
restore 2nd 
next Yv=yv/(zv/d+l)result in lw 
centre at bottom, middle of screen 
becomes next xs 
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move.1 
divs 
sub.w 
neg.w 
move.w 

addq.1 
addq.1 
addq.1 

dbf 
unlk 
rts 

(a6)+,d4 
d3,d4 
#199,d4 
d4 
d4, (a5) + 

#2,a0 
#2,al 
#2,a2 

d7,prs_crd 
a6 

restore 1st 
next Xv=xv/(zv/d+l) 
Xv-199 
199-Xv=next 
ys 

point to next xv 
yv 
zv 

repeat for all coords 
close frame 
and quit 

polydraw: 
* This draws the visible surfaces of a polyhedron. 
* It follows the perspective transform and first converts coords 
* from the form of two arrays accessed from an edge list to the 
* actual sequence of coord, pairs (xl,yl,x2,y2..-xl,yl) needed for 
* windowing and all that follows. 
* Input: scoordsx pointer to list of x coords 
* scoordsy " y 
* sedglst - the list of edge connections (1,2,3,4,..1) 
* snedges - the number of edges in each polygon 
* npoly - number of polygons 
* col_lst - list of colours (colour > $f means hidden) 
* init. all addresses 

move.w npoly,d7 number to do 
beq polydraw5 there are none 
subq #l,d7 the polygon counter 

*Set up the pointers 
lea scoordsx,aO list (xl,x2,....xn) 
lea scoordsy,al list (yl,y2,....yn) 
lea sedglst,a2 list (1,2,3 1) 
lea snedges,a3 list (nl,n2, ) 
lea col_lst,a4 list (cl,c2 en) 

* start the loop 
polydraw2: 

move.w (a4)+,d0 colour of next polygon 
cmp.w #$f,dO is it visible? 
ble polydraw3 yes 

* it's hidden - update the pointers 
move.w (a3) + ,d0 no. edges in next poly 
addq.w #l,dO last vertex repeated 
add do,do 2 bytes/word 
adda.w d0,a2 update edge list pointer 
bra polydraw4 go on 

polydraw3: 
move.w do,colour the current colour 
move.w (a3)+,d0 no edges in next polygon 
beq polydraw3 none to do 
move.w d0,no_in clip this number of edges 
lea crds_in,a5 from this list 
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* set up the coords for this polygon for clip and all that follows 
polydrawl: 

move.w (a2)+,dl next vertex no 
lsl #l,dl for index 
move.w 0(aO,dl.w),(a5)+ next x 
move.w 0(al,dl.w),(a5)+ next y 
dbf do,polydrawl one more coord than the count 
movem.l d7/a0-a4,-(sp) save these 
bsr clip window it 
bsr poly_fil draw the filled polygon 
movem.l (sp)+,d7/a0-a4 restore 

polydraw4: 
dbra d7,polydraw2 for all the polygons 

polydraw5: 
rts all done 

include core_01.s all the previous subroutines 
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. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* data_01.s * 
* The data file for chapter 6 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* Data for current program. A large ST in perspective. 

115,115,25,25,100,100,40,40,92,92,81,81 
70,70,55,55,100,100,81,81,81,81,40,40 
-100,100,100,-100,-80,-20,-20,-80,-60 
-20,-20,-60,-80,-40,-40,-80,0,80,80 
0,25,55,55,25 
120,120,0,0,100,100,20,20,90,90,75,75 
60,60,40,40,100,100,75,75,75,75,20,20 
0,1,2,3,0,4,5,6,7,4,8,9,10,11,8,12,13,14,15,12 
16,17,18,19,16,20,21,22,23,20 
4,4,4,4,4,4 
6 
1,4,1,1,4,4 
0 
319 
0 
199 

my_datax 

my_datay 

my_dataz 

my_edg l s t 

my_nedges 
m y _ n p ° i y 
my_colour 
my_xmin 
my_xmax 
my_ymin 
my_ymax 

d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 

V 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* data_02.s * 
* A data file for chapter 6. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* Here is the matrix for the perspective transform. The 
* distance to the viewpoint along the -z axis in the viewframe 
* is 100. 
* The elements are given a row at a time, 
persmatx: 

d e w 100,0,0,0,0,100,0,0,0,0,0,0,0,0,1,100 
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* * * * * * * * * * * * * * * * 
* b s s _ 0 2 . s 
* Variables locations used in chapter 6. 
* * * * * * * * * * * * * * * * * * * * 

* * * * * * * * * 

SECTION BSS 
System variables 

xbuf 
phys_screen 
phys tbl y 
hln_tbl 
screen 

ds.l 
ds.l 
ds.l 
ds.w 
ds.l 

* Polygon atributes 
crds_in 
crds_out 
no_in 
no_out 
colour 
xmax 
xmin 
ymin 
ymax 
* Screen lists 
scoordsx 
scoordsy 
sedglst 
snedges 
npoly 
col_lst 
* View frame li 
vcoordsx 
vcoordsy 
vcoordsz 
vncoords 

ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 

ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
sts 
ds.w 
ds.w 
ds.w 
ds.w 

400 
1 
200 
256 
1 

100 
100 
1 
1 
1 

l-t 

1 
1 
1 

100 
100 
100 
20 
1 
20 

100 
100 
100 
1 

the buffer of x word pairs 
the address of the physical screi 
pointers to the row y's 
the masks for filling words 
the current screen pointer 

input coords, list (xl,yl,x2,y2. 
output ditto 
input number of sides to polygon 
output ditto 
current polygon colour 
window limit 
ditto 
ditto 
ditto 

x coordinates 
ditto y 
edge connections 
no. edges in each polygon 
no. polygons in this polyhedron 
colours of polygons 

x coords 
y coords 
z coords 
no. of vertices 

-•xl,yl) 



Simple Rotations 
What we want to do here is rotate an object in the world frame. In our world 
model this is part of what happens when an object is moved from its object frame 
to the world frame. In addition, in general, there will be an associated translation 
as it is moved to its current location. As an example of simple rotations in action, 
the object-to-world transform is a good thing to do next. In a complex world with 
several different objects, each one would have different translations and rotations 
to bring them all together to make the world picture. 

Let's take a simple world with just one object to start with. We already have a 
good example to work on - the monolith with the ST written on it, which was used 
to illustrate the perspective transform. The data is already entered and ready to go. 
What we would like to see is the monolith rotating in the centre of the screen. 
That's what we'll do next. 

7.1 Geometric Transforms 
Geometric transforms are those which change the coordinates of objects. Are there 
any other kinds? Yes, those which change frames of reference, called coordinate 
transforms. In mathematical language a geometric transform is the inverse of a 
coordinate transform (this topic is also discussed in Appendix 7). An example of 
the latter kind is the transform from world frame to view frame. Remember, the 
view frame is the set of axes attached to the observer (you) moving through the 
world frame. Seen from the view frame of an observer on the move, the 
coordinates of all objects are continuously changing. Although coordinate and 
geometric transforms are two sides of the same coin, the viewing transform is a bit 
more difficult to follow and is done later in Chapter 11. 
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In this section simple rotations about the x, y and z axes are presented without 
mathematical derivation. Turn to Appendix 7 for an additional mathematical 
description. 

7.2 Rotations About the Principal Axes 
A spinning top is a good example of an object undergoing geometric rotation about 
the vertical axis. As far as we are concerned here, the mathematics used to do this 
is just 'heavy machinery'. There is no real need to know how it is derived in order 
to use it. The transforms we are about to discuss are illustrated in Figure 7.1. 

Figure 7.1 Rotations about the x, y and z axes 
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7.2.1 Rotation about the x-axis 
This is illustrated in Figure 7.1(1) by a point P with coordinates (x,y,z) being 
rotated about the x-axis by an angle 0 to arrive at the point P' with coordinates 
(x' ,y' ,z ') . Representing the points by vectors clearly shows the rotation. Notice 
how the sense of the rotation is defined. It is clockwise when looking along the 
positive x-axis from behind the y-z plane. In terms of the column vectors, the 
transform can be written as a matrix product 

/ x ' \ 

r 
\ z ' / 

/ l 0 0 
/ X \ 

0 cos0 -sin9 

\ 0 sinO cos6 / \ z / 

In simple algebra, with the matrix product multiplied out: 

x' = x 

y' = y.cos6 - z.sin9 

z' = y.sine + z.cos6 

For conciseness, the matrix is abbreviated to R'(6) and the transform is then 
abbreviated to 

P' =R'(0).P 

7.2.2 Rotation about the y-axis 

In this case the the point P is rotated about y-axis by an angle (j) as shown in 
Figure 7.1(2). As before, the rotation R' (<))) is clockwise looking along the positive 
y-axis from behind the x-z plane. Expressed as a matrix product, the transform is 

1 x'\ 
r 

\ z ' / 

= 

/ cos<I> 

0 

\ -sine)) 

0 

1 

0 

sincj) \ 

0 

COS<(> / 

/ x \ 

y 

\ z / 

7.2.3 Rotation about the z axis 

In Figure 7.1(3) the point P is rotated about the z-axis by an angle y. The rotation 
R' (y) is clockwise looking along the z axis from behind the x-y plane. 
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/ X ' \ 

y ' l = 
Iw 

/ cosy 

siny 

\o 

-siny 

cosy 

0 

0 

0 

1 

7.2.4 Composite Rotations 

When all three types of rotation are done simultaneously things become a good 
deal more complicated. This is because the order of rotation matters; rotating first 
by 9, second by <|> and third by y does not end up with P in the same place as with 
any other order. This may seem to be a surprising result. In mathematical jargon, 
three dimensional rotations are said to be noncommutative. To illustrate the point 
look at Figure 7.2. 

This has two parts to it. In part 1 a vector which lies along the z axis to start with 
is first rotated about the x axis by 90° and then about the z axis by 90°. It ends up 
pointing along the x axis. In part 2 the order of rotations is reversed. Consequendy 

Figure 7.2 The order of the rotations matters 
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the first rotation does nothing and the second leaves it pointing along the -y axis. 
Clearly, changing the order of rotation alters the end result 

A consequence of this is that keeping count of the individual rotations 0, <(> and y 
separately provides insufficient information to get to the final position. The order 
of rotation must also be given. Where the individual rotations are small and 
frequent, such as in an object following a complex path, a different strategy must 
be found to keep track of the orientation.. This is discussed in Chapter 12. 

For the moment this is not such a problem. Performing a simple sequence of 
rotations in the world frame, or as part of the object-to-world transform, may only 
require three rotations about the individual axes in a simple order. To have a 
consistent scheme, we rotate first by y, second by <j> and third by 9. In shorthand 
me overall transform when all these rotations take place in this order is: 

P ' =R'(8).R'(<t>).R'(Y).P 

Notice how the first rotation appears next to the original point P, and later rotations 
appear farther to the left. This is the order of matrix multiplication with column 
vectors. 

There is no need to perform the matrix products on the vector separately. Their 
product can be found beforehand to produce one resultant matrix, which can the be 
multiplied by the vector in one single operation. This combined (concatenated) 
rotation is denoted by R' (0,<|>,Y)-

R' = 

/ COS<1>COSY -cos4»siny sin<|) 

sin6sin<t>cosy + cosBsiny -sin0sin<|>sinY + COS0COSY -sin0cos<)) 

\ -cos0sin<|)cosY + sinBsiny eos0sin<|>sinY + sin0cosY cos0cos<t> 

7.3 The Object-to-World Transform 
This is a good transform to illustrate what we have been talking about. 

The point of this transform is to move an object from its object reference frame to 
the world frame where it appears in the cluster of all the other objects which make 
up the world picture. The object-to-world transform is illustrated in Figure 7.3 for 
the general case of all three rotations and a translation. In this case the angles are 
specific to the transform and are called o0, o<|> and oy to distinguish them from 
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other angles which will appear later in other transforms and the displacement is 
(Oox,Ooy,Ooz) or, written in vector notation: 

x'\ r\ 
r 

VI 

= R' y 

w 

'Oox\ 

Ooy 

tOoz/ 

Notice that the translation has not been implemented as a matrix multiplication, but 
has been left as a vector addition. Like the perspective transform, the translation 
can be converted to a matrix product in homogeneous coordinates to put it on the 
same footing as everything else and allow it to be included in concatenation. This 
is not done here because it can be incorporated simply as an addition following the 
rotation transform. Further information on homogeneous coordinates is given in 
Appendix 6. 

Figure 7.3 General geometric transform in the world frame 
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One way to think of the object frame is as a set of axes centred on the world frame 
origin. This is certainly a valid picture since without any rotation or translation, the 
object would appear at the world frame origin. The translation is essential to avoid 
superimposing all objects at the world frame origin. If the angles are continuously 
changed between frames then the object will rotate in the world frame. Since we 
already have the perspective transform in place from the previous chapter we can 
watch this happen. 

7.4 Example Program 
This is a program to set up the object-to-world transform and use it to show the ST 
monolith rotating about the z-axis of the world frame. To give a flicker-free 
picture, screen buffering is used. Also the sines and cosines of angles must be 
calculated for the rotation matrices. How these are done is discussed below in the 
example programs. 

7.4.1 otranw.s 

This is the main control program. This time the initialisation is more extensive 
because of the screen buffering and a lot of data transfer takes place. The data to 
draw the ST monolith is in the file datajOl.s as before, but now it has to be 
transferred to the object variables list. The rotation takes place as it is transferred 
from the object frame to the world frame. 

At the moment we can only show rotation by an angle oQ about the xw axis. This 
is because rotations <?<)) and oy about the other axes would try to display the rear 
side of the monolith. This cannot be done because of the way the polygon filling 
routine is set up to expect polygons in the screen frame to have an anticlockwise 
connected edge list . The rear side has this order reversed and in trying to cope 
with this the routine draws garbage. Normally the rear side of an object is not 
visible and would be dealt with in that way. As yet we do not have the capability 
to test for visibility. This is done in Chapter 9. If it were desired to show the back 
of the monolith it would have to be entered in the data as a separate object in a 
back-to-back arrangement. 

Screen buffering is used to eliminate flicker effects which arise from the drawing 
and displaying of the picture being two separate operations, not usually in 
synchronisation. The problem is solved using two screens; screenl and screen2 
here. These alternately play the roles of the logical and physical screens. The 
logical screen is where the next frame is being drawn while the last picture is 
being displayed on the physical screen. The switch in the identities of these screens 
is made to occur when the electron beam flies back from the bottom of the screen 
to the top to begin drawing the next frame , called the vertical blank interrupt (or 
vblank for short). There is enough time for the switch to occur whilst this is 
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happening. A flag, screenflag, is updated each frame to keep track of the which 
screen is currently performing which function.. 

The program shows the rotation of the ST monolith about the zw axis in the world 
frame through the range of angles 0° to 360° in 10° steps. You can alter the 
angular increment between each frame and the displacement (Oox,Ooy,Ooz) to see 
what effect these have. For very large objects it is a good idea to have a small 
window so that only a small fraction of a large object will actually get drawn so 
that speed is maintained without losing the impression of size. This explains why 
many games have a very small window, which is the only part that needs to be 
re-drawn each frame, surrounded by a large static control panel which is drawn 
only once at the beginning. 

7.4.2 data_03.s 

The rotation transform uses the sines and cosines of the angles o0, o<)) and oy. For 
a program operating in Basic these would be calculated to many significant digits 
using a series approximation. There is no time for that here. We have to resort to 
the method used before hand calculators were invented - tables. The table in this 
file contains the sines of all the angles between 0° and 90° in 1° increments each 
multiplied by the factor 16384, which is 214. The reason for this is straightforward. 
It moves the decimal point 14 places to the left in binary and allows us to work in 
units of 1/16384 so that products can be determined to high accuracy. However it 
must be remembered that at the end of the calculation of a new coordinate the 
result must be divided by 16384 to restore it to its correct size. There is no point in 
knowing the final coordinate to greater accuracy than plus or minus 1 since this is 
the smallest increment which can be displayed on the screen. Also if all the 
trigonometric functions were not multiplied by 16384, all products would fall in 
the range 0 to 1 and in the approximation of binary would be approximated to one 
or other of these values which would then give either zero or the same result for all 
products. The point of choosing 214 as a factor is that it can introduced or removed 
very quickly by 14 left or right shifts. Greater accuracy could be obtained using a 
larger factor, but 16384 is quite adequate for our purposes providing steps are 
taken to correct for errors where they occur. 

For greatest speed it makes most sense to have separate tables for both sines and 
cosines. This is not done here mainly to illustrate how the symmetry of sine and 
cosines allows any value in the entire range 0° to 360° degrees to be calculated 
from the range 0° to 90° degrees. The time to do this is very small compared, for 
example, to the time taken to actually fill the polygon, but for greater speed 
separate tables should be used. 
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7.4.3 core_03.s 
The first part of the subroutine here uses the look-up table in data_03.s to find the 
sines and cosines of the angles used in the rotation, ready for use in the transform 
matrix. This uses the result that the sine or cosine of any angle in the range 0° to 
360° can be found from that of an equivalent angle in the range 0° to 90°. Finding 
this equivalent angle is what the start of the first part is all about. 

In the second part, the matrix is constructed and then used to transform the object 
coordinates by matrix multiplication as was done in the earlier perspective 
transform. Although only rotations about the x axis are done in this example, the 
matrix can handle rotations about all three axes as described above. At the end of 
the rotational transform, the displacements Oox, Ooy and Ooz are added to place 
the object at the desired location in the world frame. 

7.4.4 systm_02.s 

This contains the new routines needed for screen buffering. Since two screens are 
now used alternately, one to draw on and one to display, the switching between 
them must coincide with the vertical blank interrupt to avoid flickering. In fact in 
botii drawl_disp2 and draw2_displ, the system is made to stop and wait for this to 
happen by the XBIOS call number $25. 

Clearing the logical screen (the one about to be written on) before it is used is a 
time consuming operation. It can be speeded up by clearing blocks of long words, 
ten at a time, using the MOVEM instruction. Also since there are two screens, there 
are two look-up tables for row addresses. 

7.4.5 bss_03.s 

New variables lists. 
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otranw.s 
Simple Rotations 

* * * * * * * * * * * * * * * * * * * * * 

* * * * * * * * * * 

* * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_02.s 
include core_03.s 

housekeeping file 
important subroutines 

find the addresses of the two screens 
write a row address table for screenl 
ditto screen2 

exterminate the mouse 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

bsr 
bsr 
bsr 
bsr 
bsr 

find_screens 
wr t_scrnl_tbl 
wrt_scrn2_tbl 
hline_lu 
hide_mse 

transfer all the data 
move.w my_npoly,d7 

loopO 

beq 
move.w 
subq.w 
move.w 
lea 
lea 
lea 
lea 
move.w 
move.w 
dbra 

term 
d7,npoly 
#l,d7 
d7,d0 
my_nedges,aO 
snedges,al 
my_colour,a2 
col_lst,a3 
(aO)+,(al)+ 
(a2)+,(a3)+ 
do.loopo 

no. of polygons 
if none quit 
pass it 
the counter 
save it 
source 
destination 
source 
destination 
transfer edge nos. 
transfer colours 

* Calculate the number of vortices altogether 

loopl 

move.w 
lea 
clr 
clr 
add.w 
add.w 
addq 
dbra 

d7,d0 
my_nedges,a6 
dl 
d2 
(a6),dl 
(a6)+,d2 
#l,d2 
do,loopl 

restore count 

no more than this 
total number of vertices 
and with last one repeated each time 

* Move the edge list 
subq #l,d2 
lea my_edglst,aO 
lea sedglst,al 

loop2 move.w (aO)+,(al)+ 
dbra d2,loop2 

* and the coords list 
move.w dl,oncoords 
subq #l,dl the counter 

the counter 
source 
destination 
pass it 

loop3 

lea 
lea 
lea 
lea 
lea 
lea 
move.w 
move. w 
move. w 
dbra 

#l,dl 
ocoordsx,al 
my_datax,aO 
ocoordsy,a3 
my_datay,a2 
ocoordsz,a5 
my_dataz,a4 
(aO)+,(al)+ 
(a2)+,(a3)+ 
(a4)+,(a5)+ 
dl,loop3 
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and the window limits 
move.w my_xmin,xmin ready 
move.w my_xmax,xmax for 
move.w my_ymin,ymin clipping 
move.w my_ymax,ymax 

* * * * * * * * * * * * * * * * * * * * * * * * * 
place it in the world frame 

move.w #300,Oox 
move.w #200,Ooz 
clr.w Ooy 

Initialise for rotation 
clr.w otheta 
move.w #50,ophi 
clr.w 
clr.w 
bsr 
bsr 

ogamma 
screenflag 
clearl 
clear2 

* Start the rotation about the 
* or we'll see the back of it). 
loop5 
100p4 

move.w #360,d7 

move.w 
move.w 
tst.w 
beq 
bsr 
bsr 
clr.w 
bra 

d7,ogamma 
<J7,-(sp) 
screenflag 
screen_l 
draw2_displ 
clear2 
screenflag 
screen 2 

screen!: 
drawl_disp2 
clearl 
#1,screenflag 

otranw 

bsr 
bsr 
move.w 

screen_2: 
bsr 

* pass on the new coords 
move.w oncoords,d7 
move.w 
subq.w 
lea 

loop6 

lea 
lea 
lea 
lea 
lea 
move.w 
move.w 
move.w 
dbra 

d7,vncoords 
#1,<J7 . 
wcoordsx,a0 
vcoordsy,al 
wcoordsz,a2 
vcoordsx,a3 
vcoordsy,a4 
vcoordsz,a5 
(a0)+,(a3)+ 
(al)+,(a4)+ 
(a2)+,(a5)+ 
d7,loop6 

* Complete the picture 
bsr perspective 
bsr polydraw 
move.w (sp)+,d7 

* Test for terminate 
bsr 
tst 
bne 
sub.w 
bgt 
bra 

scan keys 
dO 
term 
#10,d7 
loop4 
loop5 

300 in the air 
200 in front 
dead centre 

init angles 
tilt it up 50 degrees 

Onscreen 1 draw, l=screen 2 draw 
clear the screens 

zw axis (can't rotate about the others 

a cycle 

next angle gamma 
save the angle 
screen 1 or screen2? 
draw on screen 1, display screen2 
draw on screen 2, display screenl 
but first wipe it clean 
and set the flag for .next time 

draw on 1, display 2 
but first wipe it clean 
and set the flag for next time 

rotational transform 

perspective 
finish the picture 

has a key been pressed? 
if so 
back to caller 
otherwise 
next angle 
or repeat the cycle 
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term clr.w -(sp) terminate and 
back to caller 

clr.w 
trap 

SECTION 
include 
include 
SECTION 
include 

-(sp) 
#1 

DATA 
data 01.s 
data 03. s 
BSS 
bss_03.s 

END 

/ 
V 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* d a t a _ 0 3 . s * 
* A s i n e l o o k - u p t a b l e * 
* * * * * * * * * * * * * * * ' * * * * * * * * * * * * * * * * * * * * * 

* A t a b l e of s i n e s from 0 t o 90 d e g r e e s in i n c r e m e n t s of 1 d e g r e e 
* m u l t i p l i e d by 2A14 ( 1 6 3 8 4 ) . I t can be used t o f i n d t h e s i n e o r c o s i n e 
* of any a n g l e , 
s i n t a b l e : 

d e w 0,286 ,572 , .857 ,1143 ,1428 ,1713 ,1997 , 2 280, 2563 , 2845 , 3126 
d e w 3 4 0 6 , 3 6 8 6 , 3 9 6 4 , 4 2 4 0 , 4 5 1 6 , 4 7 9 0 , 5 0 6 3 , 5 3 34 ,5604 ,5872 ,6138 
d e w 6 4 0 2 , 6 6 6 4 , 6 9 2 4 , 7 1 8 2 , 7 4 3 8 , 7 6 9 2 , 7 9 4 3 , 8 1 9 2 , 8 4 3 8 , 8 6 8 2 , 8 9 2 3 
dc.W 9162 ,9397 ,9630 ,9860 ,10087 ,10311 ,10531 ,10749 ,10963 ,11174 
d e w 11381 ,11585 ,11786 ,11982 ,12176 ,12365 ,12551 ,12733 ,12911 
dc.W 13085 ,13255 ,13421 ,13583 ,13741 ,13894 ,14044 ,14189 ,14330 
dc.W 14466 ,14598 ,14726 ,14849 ,14968 ,15082 ,15191 ,15296 ,15396 
dc.W 15491 ,15582 ,15668 ,15749 ,15826 ,15897 ,15964 ,16026 ,16083 
dc.W 16135 ,16182 ,16225 ,16262 ,16294 ,16322 ,16344 ,16362 ,16374 
dc.W 16382,16384 

include data_02.s the perspective transform 
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* * * * * 

* * * * * * * * * * * * * 
core_03.s 

Subroutines for Chapter 7 
* * * * * * * * * * * * * 

* * * * * 

include core_02.s all the previous subroutines 

sincos: 
* The sine and cosine of an angle are found. 
* The sintable covers the positive quadrant 0 to 90 degrees 
* and can be used to generate any sine or cosine in the range 0 to 360 
* Entry: angle in degrees in dl 
* Returns: sine in d2, cosine in d3 

lea 
cmp 
bmi 
sub 

less360 cmp 
bmi 
bsr 
rts 

less270 cmp 
bmi 
bsr 
rts 

lessl80 cmp 
bmi 
bsr 
rts 

less90 add 
move. w 
subi 
neg 
move. w 
rts 

over270 subi 
neg 
add 
move.w 
neg 
subi 
neg 
move.w 
rts 

overl80 subi 
add 
move.w 
neg 
subi 
neg 
move. w 
neg.w 
rts 

sintable,a5 
#360,dl 
less360 
#360,dl 
#270,dl 
less270 
over270 

#180,dl 
lessl80 
overl80 

#90,dl 
less90 
over90 

dl,dl 
0(a5,dl.w),d2 
#180,dl 
dl 
0(a5,dl.w),d3 

#360,dl 
dl 
dl,dl 
0(a5,dl.w),d2 
d2 
#180,dl 
dl 
0(a5,dl.w),d3 

#180,dl 
dl,dl 
0(a5,dl.w),d2 
d2 
#180,dl 
dl 
0(a5,dl.w),d3 
d3 

pointer to the table base 
test(angle-360) 
it's < 360 
make it less than 360 degrees 
test(angle-270) 
it's < 270 
angle is over or equal to 270 

test(angle-180) 
it's < 180 
angle is over or equal to 180 

test(angle-90) 
it's < 90 
angle is over or equal to 90 

*2 for offset into table for sine 
the sine 
cos(angle) = sin(90-angle) 
offset into table for cosine 
the cosine 

360 - angle 
*2 for offset 

the sine 

offset for cosine 

angle-180 

*2 for offset 

the sine 

offset for cosine 

the cosine 
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over90 subi 
neg 
add 
move.w 
subi 
neg 
move.w 
neg 
rts 

#180,dl 
dl 
dl,dl 
0(a5,dl.w),d2 
#180,dl 
dl 
0(a5,dl.w),d3 
d3 

angle-180 

*2 for offset 
the sine 

offset for cosine 

the cosine 

otranw: 
* This is the subroutine for transforming object coords to world coords. 
* It includes rotations determined by otheta, ophi and ogamma about the 
* world axes wx,wy and wz and a displacement of Oox, Ooy and Ooz relative 
* to the world origin. 
* PART 1. 
* The matrix for the rotations is constructed. 
* Convert object rotation angles to sin & cos and store for rot. matrix 

move. w 
bsr 
move.w 
move.w 
move.w 
bsr 
move.w 
move.w 
move.w 
bsr 
move.w 
move.w 

* Construct the 

* do 

* do 

* do 

lea 
lea 
lea 
lea 
lea 
lea 
lea 

otheta,dl 
sincos 
d2,stheta 
d3,ctheta 
ophi,dl 
sincos 
d2", sphi 
d3,cphi 
ogamma,dl 
sincos 
d2,sgamma 
d3,cgamma 

theta 

store for mat 

phi 

gamma 

transform matrix otranw remenT 
stheta,a0 
ctheta,al 
sphi,a2 
cphi,a3 
sgamma,a4 
cgamma,a5 
o_wmatx,a6 

element 0M11 
move.w 
muls 
lsl.l 
swap 
move.w 

0M12 
move.w 
muls 
neg.l 
lsl.l 
swap 
move.w 

0M13 
move.w 

(a3),d0 
(a5),d0 
#2,do 
dO 
d0,(a6)+ 

(a3),d0 
(a4),d0 
dO 
#2,dO 
dO 
dO,(a6)+ 

(a2),(a6)+ 

sin theta 
cos theta 
sin phi 
cos phi 
sin gamma 
cos gamma 
the matrix 

cphi 
cphi x cgamma 

/2*14 
0M11 

cphi 
cphi x sgamma 

ii 

/2A14 
0M12 

sphi 
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* do OM21 
move.w 
muls 
move. w 
muls 
lsl.l 
swap 
muls 
add.l 
lsl.l 
swap 
move.w 

* do OM22 
move. w 
muls 
move.w 
muls 
lsl.l 
swap 
muls 
sub. 1 
lsl.l 
swap 
move.w 

* do OM23 
move.w 
muls 
neg.l 
lsl.l 
swap 
move.w 

* do 0M31 
move.w 
muls 
move.w 
muls 
lsl.l 
swap 
muls 
sub.l 
lsl.l 
swap 
move.w 

* do OM32 
move.w 
muls 
move.w 
muls 
lsl.l 
swap 
muls 
add.l 
lsl.l 
swap 
move.w 

* dO OH33 
move.w 
muls 
lsl.l 
swap 

(al),d0 
(a4),d0 
(aO),dl 
(a2),dl 
#2,dl 
dl 
(a5),dl 
dl,dO i 
#2,dO 
dO 
d0,(a6)+ 

(al),d0 
(a5),d0 
(a0),dl 
(a2),dl 
#2,dl 
dl 
(a4),dl 
dl,dO i 
#2,dO 
dO 
dO,(a6) + 

(aO),dO 
(a3),d0 
dO 
#2,dO 
do 
d0,(a6)+ 

(aO),d0 
(a4),d0 
(al),dl 
(a2),dl 
#2,dl 
dl 
(a5),dl 
dl,d0 : 
#2,do 
do 
d0,(a6)+ 

(aO),dO 
(a5),d0 
(al),dl 
(a2),dl 
#2,dl 
dl 
(a4),dl 
dl,dO 
#2,d0 
dO 
dO,(a6)+ 

(al),dO 
(a3),d0 
#2,d0 
dO 

stheta x sgamma 

ctheta 

ctheta 
ctheta x sgamma 
stheta 
stheta x sphi 

stheta x sphi x cgamma 
x sphi x cgamma + ctheta 

ctheta 
ctheta x cgamma 
stheta 
stheta x sphi 

stheta x sphi x sgamma 
x cgamma - stheta x sphi x sgamma 

stheta 
stheta x cphi 

stheta 
stheta 
ctheta 
ctheta 

x sgamma 

x sphi 

stheta 
ctheta 3 

x sgamma 
sphi x cgamma 
- ctheta x sphi x cgamma 

stheta 
stheta x cgamma 
ctheta 
ctheta x sphi 

ctheta x sphi x sgamma 

" + stheta x cgamma 

ctheta 
ctheta x cphi 
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move.w do,(a6)+ 
PART 2 
now the object coords are transformed to world coords 
Remember matrix elements are *2~14 and must be corrected at the end 

move.w oncoords,d7 the number 
ext.l d7 any to do ? 
beq otranw3 if .not quit 
subq.w #l,d7 or this is the count 

lea 
lea 
lea 
lea 
lea 
lea 
exg 
link 

ocoordsx,aO 
ocoordsy,al 
ocoordsz,a2 
wcoordsx,a3 
wcoordsy,a4 
wcoordsz,a5 
a3,d3 
a6,#-6 

the 
source 
coords. 
the 
destination 

save this address-shortage of regs. 
3 words to store 

otranwl: 
#2,d6 
o_wmatx,a3 

* calculate the next wx, wy and wz 
otranw2: 

moveq. 
lea 

3 rows in the matrix 
init matx pointer 

move. w 
move.w 
move.w 

muls 
muls 
muls 

add.l 
add.l 
lsl.l 
swap 
move.w 
dbf 

move.w 
add.w 
move.w 
move.w 
add.w 
move.w 
exg 
move.w 
add.w 
move.w 
exg 
addq. 1 
addq.1 
addq.1 

dbf 
unlk 

otranw3 rts 

(aO),d0 
(al),dl 
(a2),d2 

(a3)+,d0 
(a3)+,dl 
(a3)+,d2 

dl,d0 
d2,d0 
#2,dO 
dO 
d0,-(a6) 
d6,otranw2 

(a6)+,d0 
Ooz,d0 
d0,(a5)+ 
(a6)+,d0 
Ooy,dO 
d0,(a4)+ 
a3,d3 
(a6)+,d0 
Oox,do 
d0,(a3)+ 
a3,d3 
#2,a0 
#2,al 
#2,a2 

d7,otranwl 
a6 

ox 
oy 
oz 

ox*Mil 
oy*Mi2 
oz*Mi3 

/2A14 
save it . 
repeat for 3 elements 

off my stack 
add the displacement 
becomes wz 

becomes wy 
restore address wx, save matx pointr 

becomes wx 
save address wx, restore matx pointr 
point to next ox 

oy 
oz 

repeat for all ocoords 
close frame 
and quit 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
systm_02.s 

Calls to the Operating System 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
include systm_01.s the earlier routines 

* find the screen addresses 
find_screens: 

move.w #2,-(sp) xbios _physbase 
trap #14 xbios call 
addq.w #2,sp tidy stack 

* the physical screen base address is returned in do and saved 
move.l d0,screen2 as screen2 

* calculate the address of the logical screen and save it 
sub.l #$8000,do another 32k screen to draw on 
move.l dO,screenl called screenl 
rts 

drawl_disp2: 
* DRAW ON SCREEN 1, DISPLAY SCREEN 2 (AT VBLNK) 

* wait 

move.w 
move.1 
move.1 
move.w 
trap 
add.l 
lea 
move.1 
for it 
move.w 
trap 
addq.1 
rts 

draw2_displ: 
* DRAW 

* wait 

#-l,-(sp) 
screen2,-(sp) 
screenl,-(sp) 
#5,-(sp) 
#14 
#12,sp 
scrnl_tbl,aO 
aO,screen 

#$25,-(sp) 
#14 
#2,sp 

ignore resolution 
display 2 
draw on 1 
xbios_setscreen 

tidy 
tell the program 

xbios wait for vb 

trap 14 

ON SCREEN 2, DISPLAY SCREEN 1 
move.w 
move.1 
move.1 
move.w 
trap 
add.l 
lea 
move.1 
for it 
move.w 
trap 
addq.1 
rts 

#-l,-(sp) 
screenl,-(sp) 
screen2,-(sp) 
#5,-(sp) 
#14 
#12,sp 
scrn2_tbl,aO 
aO,screen 

#$25,-(sp) 
#14 
#2,sp 

ignore resolution 
display 2 
draw on 1 
xbios_setscreen 

tidy 
tell the program 
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* CLEAR SCREEN 
clear1 raove.l 

adda.1 
move.w 
raoveq.1 
move.1 
move. 1 
move.1 
move.1 
move.1 
move.1 
movea.1 
movea.1 
movea.1 

clrl_l movem.l 
dbf 
rts 

* CLEAR SCREEN 
ciear2 move.l 

adda.1 
move.w 
moveq.1 
move.1 
move. 1 
move. 1 
move. 1 
move.1 
move.1 
movea.1 
movea.1 
movea.1 

clr2_l movem.l 
dbf 
rts 

1 (by wiping out 10 long words at a time) 
screenl,a3 screenl base 
#32000,a3 point to top 
#799,d7 
#0,d0 
d0,dl 
dl,d2 
d2,d3 
d3,d4 
d4,d5 
d5,d6 
d6,a0 
a0,al 
al,a2 
d0-d6/a0-a2,-(a3) 
d7,clrl_l 

screen2,a3 
#32000,a3 
#799,d7 
#0,d0 
d0,dl 
dl,d2 
d2,d3 
d3,d4 
d4,d5 
d5,d6 
d6,a0 
a0,al 
al,a2 
d0-d6/a0-a2,-
d7,clr2_l 

screen 2 base 

(a3) 

* Write a table of row addresses for screenl 
wrt_scrnl_tbl: 

mbve.l screenl,do 
move.w #200-1,dl 
lea scrnl_tbl,aO 

lulloop move.J. d0,(a0) + 
add #160,do 
dbra dl,lulloop 
rts 

* Write a table of row addresses for screen2 
wrt_scrn2_tbl: 

move.1 
move.w 
lea 

lu21oop move.l 
add 
dbra 
rts 

screen2,d0 
#200-1,dl 
scrn2_tbl,a0 
d0,(a0)+ 
#160,dO 
dl,lu2loop 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* bss_03.s * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
include bss_02.s 

Object frame variables 
otheta 
ophi 
ogamma 
ocoordsx 
ocoordsy 
ocoordsz 
oncoords 
Oox 
Ooy 
Ooz 

ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 

1 
1 
1 
200 
200 
200 
1 
1 
1 
1 

* World frame variables 
wcoordsx ds.w 
wcoordsy ds.w 
wcoordsz ds.w 
* Variables for the o_w 
o wmatx ds.w 

the rotation of object coords about wx 
ditto wy 
ditto wz 
vertex x coords 
ditto y 
ditto z 
number 
object origin x coord.in world frame 
ditto y 
ditto z 

200 
200 
200 
transform 

the matrix elements 

* General 
screenl 
screen2 
scrnl_tbl 
scrn2_tbl 
screenflag 
stheta 
ctheta 
sphi 
cphi 
sgamma 
cgamma 

ds 
ds 
ds 
ds 
ds 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 

1 
1 
200 
200 
1 
1 
1 
1 
1 
1 
1 

where the screenl address is stored 
ditto 2 
table of row addresses for 1 
ditto 2 
0 to display screenl, 1 for screen2 
trig functions of the current angle 



Keyboard, Joystick and 
Mouse 
These three input devices provide a simple way of injecting data into a running 
program. Getting to grips with program input from these devices is straightforward 
but a litde confusing, largely as a consequence of the number of ways of achieving 
similar results. There are 'standard' ways using the higher levels of the operating 
system, low level assembler routines which use the machine-dependent BIOS and 
XBIOS and 'quick and dirty' methods which spy on system variables. 

Reporting what keys are pressed, how far the mouse has moved or where the 
joystick is pointing is all done by the intelligent keyboard (IKBD) controller. It is 
'intelligent' because it is a computer in its own right and operates quite 
independently of the main processor. In the default setting, every time something 
changes on one of the input devices the IKBD passes the decoded information onto 
the 68000 in an interrupt. This relieves the main processor of the chore of 
repeatedly scanning them. The technicalities arise for us in 'grabbing' this 
information and using it for our own nefarious purposes. As you will see, there are 
some very "sneaky" ways of doing this. 

8.1 "Quick and Dirty" 
There are always quick ways of doing things which bypass the cumbersome but 
thorough routines of the operating system. When it comes to identifying what keys 
are being pressed or how much the mouse has moved, it's important to remember 
that GEM is keeping track of such things all the time. The problem is to locate 
where the operating system stores its findings and how to interpret them. This 
looks like a 'needle-in-a-haystack' problem, but it isn't. We can use a talent 
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possessed by humans but not shared by computers to quickly solve the problem: 
humans are good at recognising patterns and changes in them. This can be 
exploited by displaying the System Variables area of RAM visually and watching 
how the patterns change as the input devices are operated. The only disadvantage 
with using System Variables this way is that, due changes in the Operating System, 
they may be at different locations in machines produced at different times. If you 
only want to write programs for yourself, this method is O.K. 

To get a visual representation of the variables area, we can use the xbios routine 
SETSCREEN (#5) to make this area of RAM the physical screen. Then the 
contents of the memory locations are visible as set pixels on the screen. The 
program ramview.s listed at the end of the chapter does this. When the program is 
running you can press keys, waggle the joystick or move the mouse and see which 
pixels flicker. Calculating their locations in RAM can then be found fairly 
accurately in the following way. 

Take a good ruler and measure the height of the screen - call this length Y. 
Measure the distance from the top of the screen to the row containing the 
flickering pixel - call this y. Then remembering that the overall length of the 
screen is 32kbytes and that it starts at the beginning of user RAM, 2049, the 
address you're interested in is the vicinity 

address = ((y/Y)*32000) + 2049. 

This is best done in high resolution. 

You will see different locations for the keyboard, mouse and joystick. Try holding 
down a key and watching a key buffer fill up, or move the mouse around and 
watch the resulting frenetic activity. Apart from these input registers, it's fun to see 
all the other functions, particularly counters and clocks, being updated in this 
"bird's eye view" of the System. 

Obviously this isn't an accurate enough result to use directly in a program, it will 
only be approximate. The exact location will have to be pinned down by 
examination of specific addresses. This is helped by the way input devices are read 
by the IKBD controller independent of what else is going on. The default settings 
of the System are such that whenever an input change is detected the result is 
passed on regardless. So, for example, you can use a debugger to single-step 
through a trivial program whilst watching memory locations at the same time as 
the joystick is operated. The program key_peek.s does this. Type in the program 
and assemble it to memory. Then enter the debugger and run the program by 
pressing the keys CTRL-Z. This will fill the buffer sufficiently to keep it going 
whilst you press other keys and look for a response in the registers. 
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The address to start with is $e40. The variables will be somewhere in this vicinity. 
Once the locations of variables are known you can read them into your programs 
whenever you want. 

8.2 Strictly by the Book 
The operating system is packed with routines to look at the keyboard but finding 
out what the mouse or joystick are up to is a little more difficult. We'll look at the 
keyboard first. 

8.2.1 The Keyboard 

Actually it has already been done. The routines in systm_01.s are all that are 
required and have already been used to quit programs. The routine readjcey 
returns the GEM standard codes of the keys pressed. You can run this in a loop as 
an independent program and using the monitor to watch dO, find the codes for all 
the ST keys. The codes are also listed in Appendix 8. 

8.2.2 The Joystick 

To read the joystick and the mouse, subterfuge is required. It will appeal to the 
latent hacker present in all of us! 

The IKBD has to report which joystick is being operated, whether the fire button 
has been pressed and in what direction the stick has moved. There is more than 
one piece of information here and so several bytes are passed together as a data 
packet. Since the IKBD works independently, it tells the main processor when a 
data packet is coming. The packet is then intercepted by a routine called the packet 
handler. The addresses of the handlers for data packets from all input devices is 
located in a table. This table of pointers to subroutines is called a vector table. The 
trick is to find the location of this table and the joystick vector within it, and then 
substitute our own vector, i.e. write our own joystick handler routine and place its 
address in the table. This way, whenever a joystick packet is sent out it will be 
intercepted by our own routine ready for our use. The original System vector can 
of course be saved and replaced when we're finished. It will not surprise you to 
learn that there is an XBIOS routine (KBDVBASE) which returns the base address 
of the vector table. The joystick vector is number six up in this table. The 
subroutine to make the substitution is given in the file systm_03.s. and is called 
initjoy. Once in place, the new handler takes the second byte in the packet and 
stores it in the location joy_data for our later use. The first byte in the packet is $ff 
for joystick 1 and $fe for joystick 2. This byte is of no further interest to us. 



Keyboard, Joysticks and Mouse 103 

The byte which is saved contains in its lowest nibble the number signifying the 
direction in which the stick has been moved. This is : up - 1, down - 2, left - 4, 
right - 8, up-left - 5, down-left - 6, up-right - 9, down-right - 10. 

There is a further complication to the business which we can avoid by setting the 
system up properly. It arises from the fact that at any given time both the joystick 
and the mouse are active and cause data packets to be generated. If no attempt is 
made to inspect the header byte then data from the mouse can be confused with 
that from the joystick. We have made no attempt to do this in our handler but the 
problem is simply solved by turning off the mouse altogether. To do so means 
sending instructions to the IKBD and we discuss how to do this at the end. 

8.2.3 The Mouse 

Like the joystick, this has its own data packet handler. Again, we can write our 
own and substitute its address in the vector table. How this is done is shown in the 
file systm_03.s. This time the vector is number four in the table. 

There is more than one way of setting up the mouse and we will use the most 
common which is called relative mode. There are three bytes in the mouse data 
packet and each one contains something useful. The first byte is $f8 plus either (or 
both) of the two lowest bits set depending on which of the two buttons has been 
clicked. The second byte is the signed x-displacement and the third is the signed 
y-displacement since the last report. Signed means 2's complement so that for 
backward movements the top nibble is $f. But remember the displacement is 
measured in screen coordinates with the origin at the top left-hand corner of the 
screen and positive y is down. 

8.3 Talking to the IKBD 
Although the IKBD mainly concerns itself with reporting keyboard, joystick and 
mouse events, it is also able to receive instructions. These are necessary to 
configure it and select its reporting mode from the many options available. The 
way this is done is simple but not particularly obvious. It is done through the xbios 
call IKBDWS (intelligent keyboard write string) #25, in the following way. The 
instruction code to be sent to the IKBD is written as a string. The pointer to the 
string and the number of bytes minus one in the string are placed on the stack. 
Then the XBIOS function is called. How this is done for the specific cases of 
turning off the mouse, interrogating the joystick, turning off the joystick and 
setting up the mouse is shown in systm_03.s 
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8.4 Example Programs 

8.4.1 ramview.s 

This is the program to spy on the GEM variables area of RAM by making it the 
physical screen RAM. It uses the XBIOS routine SETSCREEN to do this. When 
the program is running you can operate the keyboard, joystick or mouse to see 
where pixels change, and calculate the approximate locations of the registers in 
RAM. 

8.4.2 keyjieek.s 

Having found the approximate location of variables with ramview.s, now pin them 
down with the Devpac ST's monitor or debugger. Run this program (it's hardly a . 
program at all) after having assembled it in the debugger. When the debugger is 
first entered switch to memory 3 (the block view) and modify the block address to 
something around $e40. Press CONTROL-Z to single step through the program 
and hold it down for a few seconds. This will fill the buffer and keep the program 
running for a short time. Whilst the program is running you can waggle the 
joystick, or whatever, and see which registers change. It will probably be necessary 
to search memory before and after this address to find the right area. 

8.4.3 systm_03.s 

This contains the subroutines for substituting ikbd data packet handlers and passing 
instructions to the IKBD. 

Usually the joystick and mouse operate in the default mode of automatically 
reporting changes to their settings. Routines in this file stop this. When information 
is then required regarding these devices, it must be asked for. Part of the reason for 
doing it this way is to stop unwanted reporting from devices and the other is to 
illustrate how to communicate through the IKBD controller. 

Note that communication with the controller is done in a roundabout way, with the 
address of the function number being pushed onto the stack before making the 
XBIOS call IKBDWS (write string). 

8.4.4 joyJests 

This uses the subroutines to show movements of the joystick. In particular it uses 
the VT52 terminal emulator routines in the operating system to write text. When 
the program is run, text will appear on the screen in response to movements of the 
joystick. The VT52 emulator routines provide a very powerful and simple method 
of displaying text in a variety of ways. A full list of functions available is given in 
Appendix 4. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* ramview.s * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* A look at what goes on in the GEM variables area 
* Display the bottom 32K of user RAM on the screen 
* While it's on view you can use the keyboard, joystick or mouse 
* to see where data is being altered. The screen is 32k long and 
* starts at 2049 so with a ruler you can measure where in RAM the 
* variables are located. 
* set up the screen 

main move.w #-l,-(sp) ignore resolution 
move.l #2049,-(sp) physical screen = bottom of user RAM 
move.l #-l,-(sp) forget the logical screen 
move.w #5,-(sp) xbios_setscreen 
trap #14 
add.l #12,sp tidy 
bra loop idle loop 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * „ 
* key_peek.s * 
* A program to find where the codes from the keyboard, joystick * 
* and mouse are kept. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* This is a very long program! 
* Run it in the monitor or debugger and having selected the part of RAM 
* to look at (around $e40) press the CONTROL and Z keys simultaneously. 
* While the program is running you can also press any key or mouse button, 
* or waggle the joystick and see where data appears. Then you know where 
* to find it for your programs. 

main bra main 
END 
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* * * * * * * * * * * * * * * * * 
* systm_03.s 
* Joystick and mouse routines 
* * * * * * * * * * * * * * * * * * 

* End automatic reporting from the joystick 
joy_of£ 

* 

pea 
move. 
move. 
trap 
addq. 
rts 

,w 
,w 

,1 

joyoff str 
#0,-<sp) 
#25,-(sp) 
#14 
#8,sp 

* Interrogate the joystick 
rd_joy 

* Turn 
mse_off 

pea 
move. 
move. 
trap 
addq. 
rts 

,w 
w 

1 

rdjoy str 
#0,-(sp) 
#25,-(sp) 
#14 
#8,sp 

the mouse off 
pea 
move, 
move. 
trap 
addq. 
rts 

w. 
w 

(-•
 

mseoff str 
#0;-(sp) 
#25,-(sp) 
#14 
#8,sp 

pointer the instruction string 
1 less than length of string 
function ikbdws 
xbios 
tidy 

ditto 

ditto 

* Set up the mouse for reporting in relative mode i.e. 
mse_rel 

pea relmse_str ditto 
move.w #0,-(sp) 
move.w #25,-(sp) 
trap #14 
addq.l #8,sp 
rts 

position change 

* Intercept GEM joystick routine with our own 
init_]oy: 

move. 
trap 
addq, 
move. 
move. 
lea 
move. 
rts 

#34,-(sp) 
#14 
#2,sp 
dO,aO 
24(aO),gem_joy 
joy_handle,al 
al,24(a0) 

find the table of vectors 
using xbios call kbvbase: address in do 
tidy stack 
base pointer 
hijack GEM vector 

substitute mine 
and sneak off 

* This is my joystick data packet handler. Now when an interrupt occurs 
* my handler will be activated with aO pointing to the data packet. 
joy_handle: 

clr.w do 
move.b l(aO),d0 
move.w dO,joy_data the second data byte has the info 
rts 
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* When I've finished, put back the GEM handler as if nothing happened 
]oy_t< srm: 

move, 
trap 
addq, 
move. 
move. 
move, 
rts 

w 

.1 

.1 

.1 

.1 

#34,-(sp) 
#14 
#2,sp 
dO,aO 
gem_joy,al 
al,24(a0) 

call xbios kbvbase 

tidy 
base pointer 
dust off GEM's 
and return it 
before I'm spotted 

* Intercept the mouse packet handler with our own 
ihit_mse: 

#34,-(sp) 
#14 
#2,sp 
dO,aO 
16(aO),gem_mse 
mse_handle,al 
al,16(a0) 

move.w 
trap 
addq.1 
move.1 
move.1 
lea 
move.1 
rts 

find the table of vectors 
using xbios call kbvbase: address in do 
tidy stack 
base pointer 
hijack GEM vector 

substitute mine 
and sneak off 

* This is my mouse data packet handler. Now when an interrupt occurs 
* my handler will be activated with ao pointing to the data packet, 
mse handle: 

clr.w 
move.b 
move.w 
move. b 
move.w 
move.b 
move.w 
rts 

dO 
(aO)+,dO 
dO,mse_click 
(aO)+,dO 
do,mouse_dx 
(aO),dO 
do,mouse_dy 

1st byte is the header 
save it 
next byte is 
the x displacement relative to last position 
last byte is 
ditto y 

* When I've finished, put back the GEM handler as if nothing happened 
mseterm: 

move.w 
trap 
addq. 1 
move. 1 
move. 1 
move. 1 
rts 

#34,-(sp) 
#14 
#2,sp 
dO,aO 
gem_mse,al 
al,24(a0) 

call xbios kbvbase 

tidy 
base pointer 
dust off GEM's 
and return it 
before I'm spotted 

* The strings to be sent to the ikbd are just the command numbers 
* Each string is 1 byte long 
mseoff_str dc.b $12 turn off the mouse 
joyoff_str dc.b $15 turn off default automatic joystick reporting 
rdjoy_str dc.b $16 interrogate the joystick 
relmse_str dc.b $08 put the mouse in relative mode automatic report 
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* * * * * * * * * * * * * 
* joy_test.s 
* A routine to test the ikbd joystick function 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* The joystick is interrogated and our own packet handler used to 
* grab the data packet containing the FIRE bit (7) and the position 
* bits (0-2) which is saved in the variable joy_data. 

opt d+ 
bra main 
include systm_03.s 
even 

main 
* Set up joystick for standard 

mainl 

the important subroutines 

reporting. 

up 

down 

left 

right 

bsr 
bsr 
bsr 

clr.w 
bsr 
move.w 
move 
andi.w 
bne 
andi. w 
beq 
cmp.w 
beq 
cmp.w 
beq 
cmp.w 
beq 
cmp.w 
beq 
bra 
le VT52 
pea 
move.w 
trap 
addq.1 
bra 
pea 
move.w 
trap 
addq.1 
bra 
pea 
move.w 
trap 
addq.1 
bra 
pea 
move.w 
trap 
addq.1 
bra 

init_joy 
joy_off 
mse_off 

joy_data 
rd_joy 
joy data,do 
d0,dl 
#$f0,d0 
fire_press 
#$f,dl 
joy out 
#l,dl 
up 
#2,dl 
down 
#4,dl 
left 
#8,dl 
right 
diagonal 
subroutines for 
up text 
#9,-(sp) 
#1 
#6,sp 
joy_out 
down text 
#9,-(sp) 
#1 
#6,sp 
joy_out 
left text 
#9,-(sp) 
#1 
#6,sp 
joy_out 
right text 
#9,-(sp) 
#1 
#6,sp 
joy_out 

set up our packet handler 
end automatic reporting 
turn off the mouse 

read joystick 
here's the result 
save it 
fire pressed ? 
yes • 
what direction is the stick? 
no direction 
up? 
yes 
down? 
yes 
left? 
yes 
right? 
yes 
only possibility left 

messages 
pointer to text 
VT52 emulator 
GEM call 
tidy 
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diagonal: 
pea 
move.w 
trap 
addq.1 
bra 

fire_press: 
pea 
raove.w 
trap 
addq.1 

joy_out clr.w 
bra 

SECTION 

gem_joy 
joy_data 
gem_rase 
mse_click 
mouse_dx 
mouse_dy 

diag text 
#9,-(sp) 
#1 
#6,sp 
joy_out 

fire 
*9,-(sp) 
#1 
#6,sp 
joy_data 
mainl 

BSS 

ds.l 1 
ds.w 1 
ds.l 1 
ds.w 1 
ds.w 1 
ds.w 1 

SECTION DATA 
* Here are the messages to be printed. The number 27 is the ESCAPE 
* code. In low res.Text can be positioned at any row (0 to 24) 
* or column (0 to 39) but the number 32 must be added. Text must end in 

clear screen 
type at row 1 (+32) and column 18 (+32) 
the word "up" 
end of text 

up text dc.b 
dc.b 
dc.b 
dc.b 

down text: 
dc.b 
dc.b 
dc.b 
dc.b 

left text: 
dc.b 
dc.b 
dc.b 
dc.b 

right text: 
dc.b 
dc.b 
dc.b 
dc.b 

fire dc.b 
dc.b 
dc.b 
dc.b 

diag text: 
dc.b 
dc.b 
dc.b 
dc.b 
END 

27,"E" 
27,"Y",3 3 
"up" 
0 

27,"E" 
27,"Y",56 
"down" 
0 

27,"E" 
27,"Y",44 
"left" 
0 

27,"E" 
27,"Y",44 
"right" 
0 
27,"E" 
27,"Y",44 
"FIRE" 
0 

27,"E" 
27,"Y",44 

50 

50 

32 

62 

50 

50 
"diagonal" 
0 
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Hidden Surfaces and 
Illumination 
A computer is a fast number cruncher, but it doesn't know anything about the real 
world. When it comes to conveying simple everyday experiences like not being 
able to see through solid opaque objects, the computer is a real loser. There are no 
codes in the processor instruction set which allow us to easily convey such 
information. It seems obvious to us that the rear sides of opaque objects are not 
visible and that an opaque object will obscure those behind it. Making the 
computer show this simple fact of life is hard work. It is called the hidden surface 
problem and it is the basis of some very time-consuming algorithms in computer 
graphics. 

For any micro without dedicated graphics hardware, this becomes a severe problem 
since the burden of computation falls on the main processor, and of necessity 
therefore, any strategy we adopt to deal with hidden surfaces cannot be too time 
consuming. As a consequence, the geometry of the objects themselves cannot be so 
complex as to require a time consuming hidden surface algorithm. The simplest 
solution is to require that all polyhedra be convex, i.e. each surface polygon looks 
outward and not towards another polygon. It is possible to deal with simple 
polyhedra which are not convex but we shall only consider ones which are convex. 
It is always possible to construct complex objects out of several convex polyhedra 
and the strategy then is to draw the furthest ones first and the nearest ones last. 
This is the so called 'painter' algorithm by which objects in the background are 
naturally obscured by those in the foreground. More of this later. 

The procedure for deciding whether a surface is visible, combines naturally with 
the calculation to decide how brightly it is illuminated by a distant light source, a 
necessary attribute if the object is to look real. Surfaces which face towards the 
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light source must be brighter than those which face away. We shall combine both 
of these into a single algorithm in this chapter. 

9.1 Hidden Surface Removal 
In the simple strategy for convex polyhedra adopted here, deciding whether a 
surface is visible requires a substantial amount of vector algebra (which can be 
minimised by pre-calculating certain surface parameters) . The procedure is 
straightforward: a polygonal surface is visible if it faces the view point. The 
problem is how to-convert the word "faces" into a mathematical expression. This 
is done in the following way. 

Each surface has associated with it a vector which points out at right angles from 
the surface so that the polyhedron as a whole looks like a porcupine. All such 
vectors have the same length, which is chosen to be unity. They are called surface 
normal unit vectors. The only difference between two unit vectors is their 
direction, which reflects the different directions in which the surfaces face as 
shown in Figure 9.1. Of course, for the purposes of calculation, 1 is not a useful 
size for a vector and so it is multiplied by the factor 16384 (214). This keeps 
quantities wiuiin word size and makes multiplication and division simple. 

i t vector 

n 

Figure 9.1 A convex polyhedron showing surface normal vectors 
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To see whether a surface is visible from the view point now consists of testing 
whether its unit vector is in the same or.opposite direction to a vector (the view 
vector) drawn from the viewpoint to the surface. There is a basic vector product 
which performs this test. It is called the scalar or dot product. Appendix 6 explains 
products involving vectors. In the language of mathematics, where the view vector 
is V and the surface normal vector is n, the scalar product will yield a positive 
result if the surface is hidden and a negative result if it is visible: 

hidden: scalar product V,n is positive 

visible: scalar product V.n is negative. 

The scalar product itself is really nothing more than the distance from the view 
point to the surface times the cosine of the angle between the view vector and the 
surface normal. The sign of the product naturally follows therefore from the fact 
that the cosine of an angle less than 90° is positive whereas the cosine of an angle 
between 90° and 180° is negative. Figure 9.2 shows the directions of the vectors 
for a visible and a hidden surface. All this is very satisfactory except for one thing; 
the surface normal unit vector must be calculated and that is not so simple. Here 
the unit vector is calculated in view frame coordinates. 

Figure 9.2 Visible and hidden surfaces 
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As a brief digression, it's worth mentioning that the test for visibility can be done 
without any reference to vector products. The way that data lists have been set up, 
with the list of edge connections of a polygon going clockwise when viewed from 
the front, can be used to give a simple test for visibility. When converted to screen 
coordinates by the perspective transform, visible polygons have their edge list 
going anticlockwise. Projected polygons with clockwise screen edge lists will 
therefore have come from polygons facing away from the screen and which should 
be hidden. A test for this can easily be constructed. 

We choose to use the scalar product here because the normal unit vectors, once 
calculated, can also be used to determine the level of illumination of each surface. 

9.2 Calculating the Surface Normal Unit Vector 
The procedure to calculate the normal unit vectors requires quite a lot of vector 
algebra and time consuming multiplications. It can be minimised by working out 
some relevant quantities beforehand and storing the data in a list in the usual way. 
In fact the normal vectors themselves could be completely worked out in the object 
frame and transformed together with the vertices at each stage. There are 
substantial advantages to doing it this way. 

Instead, we choose to calculate the vectors in view frame coordinates because of 
the way it fits in nicely with the evolution of our program and the tutorial objective 
of the book. The particular vector product which allows us to calculate the normal 
vector is called a cross product. It's more difficult to understand than the scalar 
product but it's precisely what we want. Appendix 6 also covers this topic. 

A vector product is illustrated in Figure 9.3. for a single polygon. Going round the 
perimeter of the polygon, the first two edges we meet are from vertices 1 to 2 and 
2 to 3. Let us call the vectors associated with these edges A12 and A23. The 
normal vector B is then calculated as the cross product between them: 

B = A23 x A12. 

This shorthand notation is all fairly meaningless until translated into a set of 
mathematical operations. The x, y and z components of A12 and A23 are: 

A12x = x2-xl, A12y = y2-yl, A12z = z2-zl 

A23x = x3-x2, A23y = y3-y2, A23z = z3-z2 

and the components of B are: 

Bx = A12z.A23y-A12y.A23z 

By = A12x.A23z-A12z.A23x 

Bz = A12y.A23z-A12x.A23y 

http://A12z.A23y-A12y.A23z
http://A12x.A23z-A12z.A23x
http://A12y.A23z-A12x.A23y
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xl ,yi_ . 

X 

fll2 

L 

A 

x2;y2 

B 

\ 
L & J 

\ ^V-*x3,y3 

Figure 9.3 The vector product of two vectors 

These multiplications constitute the bulk of the calculation. 

There is one final step. What we want is the unit vector. The vector B is in the 
right direction but its size is too large. To get the unit vector, each of the 
components must be divided by the magnitude of B. This provides an additional 
chore because the magnitude of B is calculated from: 

B = V(Bx2+By2+Bz2) 

which requires taking a square root. How this is done is explained in. the example 
program. 

Once the magnitude B has been calculated, the components of the unit vector are 

bx = Bx/B, by = By/B, bz = Bz/B. 

After this the line-of-sight vector (view vector) from the view point to the first 
vertex of the surface in the edge list is then found and the scalar product taken 
with the normal vector. On the basis of this test, the surface is either flagged as 
hidden or else its level of illumination calculated. We discuss illumination next. 
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9.3 Illumination and Colour 
It is possible to employ the most elaborate computations to construct geometrically 
accurate 3D models, and yet the attributes which make them look real may be very 
subtle and less obvious. In sprite graphics, the shadow on the ground which 
follows the motion of a projectile is a small but essential clue to its altitude. In 
3-D, one of the easiest and dramatic improvements to add realism to a model is 
illumination by a light source. Facets which face the light source are more brightly 
illuminated than those which face away. As the object changes its orientation, so 
the changes in illumination give additional visual clues to its shape and structure. 
This is what we shall try to simulate next. There are limitations to what can be 
achieved on a the ST, not so much a consequence of software constraints, but 
mainly resulting from the way colour is implemented in the colour palette. The 
way in which illumination is determined is very similar to the way visibility is 
tested for, but in this case an actual number must be generated, depending on the 
angle of the surface to the light source. 

The direction of the beam of light emanating from a light source is specified by a 
vector, called the illumination vector. It would be possible to simulate a diverging 
or converging beam by having this vector change its direction across the field of 
illumination, but for simplicity the beam is taken to be parallel". Consequently a 
single vector is sufficient to define to direction of the beam. Likewise, the intensity 
of the light is taken to be constant everywhere. These approximations are valid for 
a distant light source such as the Sun, but the difference for a near light source is 
hardly noticeable. This illumination vector is also a unit vector, (i.e. it has a 
magnitude of unity.) 

Because we have already calculated the surface normal unit vectors, everything is 
set up to find the level of illumination of each facet on the surface. Figure 9.4 
illustrates the calculation. It is nothing more than the scalar product of the 
illumination vector and the normal vectors. This is a realistic calculation since the 
level of illumination does depend on the cosine of the angle between the two 
vectors. 

There is one minor modification we will use in the calculation. Consider how the 
earth is illuminated by the Sun: the side which faces the Sun is brightly lit but the 
side which faces away would be pitch black if it weren't for the reflected light of 
the Moon (forgetting the light from die stars). In a room a single light source is 
sufficient to illuminate everything, though much of this is back-reflected light from 
the walls and all the objects in the room. This is the basis of the Radiosity method 
of illumination calculation which is used in very advanced graphics to simulate 
realism to a high degree. We can incorporate a very rudimentary version of this 
into our method, using the scalar product to set an illumination level even where it 
is negative, so there is some illumination even on the dark side of objects. 
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n 

< 
il lunination 

vector 

Figure 9.4 Surface illumination 

Here then is the method in outline: for each surface, take the scalar product of the 
illumination vector with the normal unit vector; since both vectors are 1 in 
magnitude, this will yield a result between +1 (minimum illumination) and -1 
(maximum illumination). If you're confused by the sign, remember in our 
geometry the illumination vector points away from the light source. Since in our 
method all unit vectors are multiplied by 214(16384), the scalar product will 
actually yield a result somewhere in the range -228 to H-228. Adding 2^ to this 
result and dividing by 225(by right shifting) reduces this to the range 0 to 16. This 
result can then be used to index 16 different colour shades. How this is done 
requires a brief explanation of the colour palette. 

9.3.1 The Colour Palette 

In low resolution, which is the most colourful, 16 different colours can be 
displayed simultaneously out of a possible 512. This selection of 16 is called the 
colour palette. There are tricks to exceed 16 for the screen as a whole by changing 
the colour palette frequendy whilst a picture is being drawn (during the horizontal 
blank, for example). We will use the basic 16. For what follows Figure 9.5 will be 
of assistance. The ST standard palette settings are listed in Appendix 8. 
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Figure 9.5 The control panel and the colour palette 

An excellent aid to understanding how the colour palette works is found in the 
Control Panel Accessory which comes with the ST. This shows three sliders of red, 
green and blue, each with 8 possible settings in low resolution. This means there 
are 8.8.8 = 512 possible combinations. Have a play with the sliders to see what 
colours can be obtained. At any one time 16 of these 512 can be displayed on the 
screen simultaneously. Why sixteen? Because there are 4 colour planes in low 
resolution, as we have seen in Chapter 2, and each plane is represented by a bit in 
the colour nibble so that up to 16 combinations are available. The value of the 
colour nibble is used to index a 'pot' from the colour palette which contains the 
word number of the colour. Simple isn't it! 

All that remains is to find out how to generate the colour word in the palette from 
the red, green and blue settings in the control panel. In fact the nibbles follow 
exactly as they are presented in the control panel when written in hexadecimal. A 
setting of $0777 (white) means red=7, green=7 and blue=7. If you want to write 
them in decimal, the recipe is: 

colour value = 256*(red setting) + 16*(green setting) + l*(blue setting) 

The chosen colours must then be loaded into the palette with an Operating System 
call. This is what is done in the example program. 
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For our purposes, in order to simulate lighting, the colours will be different shades 
of the same colour. There is obviously going to be a trade off here. With a 
maximum of 16 colours the following combinations are possible: 

mode 0 16 shades of one colour 

mode 1 8 shades of 2 colours 

mode 2 4 shades of 4 colours 

mode 3 2 shades of 8 colours. 

The last of these isn't worth considering but the other three possibilities are 
implemented in the programs. 

9.4 Example Programs 
The example programs show the ST monolith in rotation with hidden surface 
removal and illumination. The program is set up with rotation about the x axis but 
this can be altered as desired. The monolith is coloured in red and blue but, once 
again, it is good fun to set up alternative palettes in different colours following the 
colour recipe, above. 

9.4.1 illjiide.s 

This is the control program. It still uses the data for the ST monolith to display it 
rotating about any, or all three of the object frame axes. Because we now have 
hidden surface removal, it doesn't matter if the angles become large enough to 
display the back. Nothing will be displayed because the back is hidden. The 
program is set for rotation about the x-axis of the object frame. 

The colour palette has been set up to use 7 shades of blue and 8 shades of red. The 
first colour in the palette has the value 0 which is black and is used by the system 
to provide the background. The shading mode is flexible and is set up by means of 
a key, called illkey, which has a value equal to the mode number, above. The 
program is set up in mode 1. 

9.4.1 core_J)4.s 

This calculates surface normal vectors, determines whether a surface is visible and 
if so calculates the level of illumination and the final palette colour as outlined in 
the text. Because of the limitations of word multiplication in the calculation of 
normal vectors, objects are restricted to linear dimensions of less than about 200. 

First of all the surface normal vectors are calculated as described above. In the 
subroutine nrm_vec the normal vector is converted to a unit vector by dividing 
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each of its components by the magnitude of the vector. The magnitude is 
calculated by Pythagoras' theorem in 3D and requires a square root operation 
which is done in the subroutine sqrt by an iterative process. 

The square root algorithm works in the following way. Suppose the square root of 
a number, N, is known approximately; call it sqrtl. Then a better approximation, 
sqrt2, can be found by dividing the number by sqrtl, adding this to sqrtl and 
dividing by 2, i.e. 

sqrt2 = l/2(sqrtl + N/sqrtl). 

Sqrt2 is a better approximation than sqrtl. Then starting with sqrt2 an even better 
approximation, sqrt3, can be found in the same way. Each one of these 
recalculations is. called an iteration. Starting with a modest approximation, only 
three iterations are needed in the routine to calculate a square root accurate to 1 
part in 216, i.e. as accurate as a word will allow. 

The line-of-sight vector used to determine visibility in visjll is taken from the 
view point to the first vertex on a surface. There is no ambiguity here since at the 
point where a surface just ceases to be visible all vertices give a line-of-sight 
vector perpendicular to the surface normal. The illumination vector is specified by 
its components illjvecx, ill_yecy and ill_vecz each multiplied by 214 for accuracy, 
as usual. 

If a surface is invisible, the illumination is set to the value $f0. Otherwise the 
intrinsic colour, 0 or 1 in mode 1 (the mode used here), is then combined with the 
shading to produce a number to index the colour palette. This is a tricky 
calculation and best understood by following the algorithm through. 

Depending on whether the colour is 0 or 1, either the colours fron 1 to 7 (blue) (0 
is reserved for black, the background) or from 8 to 15 (red) are selected. The 
actual shading level then fixes which colour in the group is chosen, with the 
lightest being 1 (blue) and 8 (red) and the darkest being 7 (blue) and 15 (red). 

The colour palette is set up by XBIOS call number 6, with a pointer to the list of 
colours. 

9.4.3 data_04.s 

This contains the illumination vector components, which in this example define a 
light source shining from right to left in the view frame. This is clearly no good in 
general since the light source should be fixed in the world frame and transformed 
like everything else to the view frame. 

Following this are the intrinsic colours (red or blue in this case) corresponding to 
the two posibilities, 0 or 1, in mode 1. The colours for the palette are listed in 
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hexadecimal, as the settings appear on the control panel, giving 7 shades of blue 
and 8 shades of red. 

9.4.4 bss_04.s 

Additional variables from Chapter 9. 
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* * * * * 
* ill_hide.s * 
* A program to illustrate illumination and hidden surface removal * 

* * * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_02.s 
include core_03.s 
include core 04.s 

bsr 
bsr 
bsr 
bsr 
bsr 
bsr 

find_screens 
wrt_scrnl_tbl 
wrt_scrn2_tbl 
hline_lu 
hide_mse 
palette_set 

housekeeping file 
subroutines 
illumination, hidden surface removal 

find the addresses of the two screens 
write a row address table for screenl 
ditto screen2 

exterminate the mouse 
set up the shades of blue and red 

* transfer all the data from my lists to program lists 
bsr transfer 

* place it in the world frame 
move.w #0,Oox on the ground 
move.w #100,Ooz 100 in front 
clr.w Ooy dead centre 

* Initialize angles for rotation 
clr.w otheta 
move.w #50,ophi tilt it forward 
clr.w ogamma 

* Initialize screens 
clr.w screenflag 0=screen 1 draw, l=screen 2 draw 
bsr clearl clear the screens 
bsr clear2 

* Start the rotation about the 
loop5 
loop4 

screen. 

screen. 

move.w 
move.w 
move.w 
tst.w 
beq 
bsr 
bsr 
clr.w 
bra 

.1: 
bsr 
bsr 
move.w 

-2: 
bsr 

#360,d7 
d7,otheta 
d7,-(sp) 
screenflag 
screen_l 
draw2_displ 
clear2 
screenflag 
screen_2 

drawl_disp2 
clearl 
#1,screenflag 

otranw 

xw axis 
a cycle 
next theta 
save the angle 
screen 1 or screen2? 
draw on screen 1, display screen2 
draw on screen 2, display screenl 
but first wipe it clean 
and set the flag for next time 

draw on 1, display 2 
but first wipe it clean 
and set the flag for next time 

object-to-world transform 
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pass on the new coords 
move.w oncoords,d7 

loop6 

move 
subq. 
lea 
lea 
lea 
lea 
lea 
lea 
move, 
move, 
move, 
dbra 

,w 
,w 

,w 
,w 
,w 

d7,vncoords 
#l,d7 
wcoordsx,aO 
wcoordsy,al 
wcoordsz,a2 
vcoordsx,a3 
vcoordsy,a4 
vcoordsz,a5 
(a0)+,(a3)+ 
(al)+,(a4)+ 
(a2)+,(a5)+ 
d7,loop6 

* Test for visibility and lighting 
bsr illuminate 

* Complete the drawing 
bsr perspective 
bsr polydraw 
move.w (sp)+,d7 

* Check for termination 

term 

if it's visible find the shade 

perspective 
finish the picture 

bsr 
tst 
bne 
sub.w 
bgt 
bra 
clr.w 
trap 

scan keys 
do 
term 
#10,d7 
loop4 
loop5 
-(sp) 

n 

has a key been pressed? 
if so 
back to caller 
otherwise increment in 10 degree steps 
next angle 
or repeat 
terminate and 
back to caller 

SECTION DATA 
include data_01.s 
include data_03.s 
include data_04.s 
SECTION BSS 
include bss_03.s 
include bss_04.s 
END 
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* * * * * * * * * * * * * * * * * * 
core_04. s 

Subroutines for chapter 9 
* * * * * * * * * * * * * * * * * * * 

illuminate: 
* New subroutines: 
* calc_nrra - calculate the polygon normal unit vectors 
* calc_ill - calculate the level of illumination 0 - 7 
* vis_ill - convert this to a palette colour 
* transfer - move my data to program data 
* Calculate the normal unit vectors. All components are *2A1 
calc_nrm: 

any to do? 
quit if none 
ready to loop 
coords 

connections 
no. edges per poly 
surface normals pointer 

unit vectors 

save pointer to normals list 
rertex of the next surface 
second vertex 
*2 for offset 
ditto 

* 

move.w 
beq 
subq 
lea 
lea 
lea 
lea 
lea 
lea 

Calculate the 
next_nrm: 

move.1 
move.w 
move.w 
add 
add 
move.w 
sub.w 
move.w 
sub.w 
move. w 
sub.w 
move 
move.w 
add 
move.w 
sub.w 
move.w 
sub.w 
move. w 
sub.w 

movea.w 
muls 
movea.w 
muls 
sub. 1 
move.1 
move.w 
move.w 
movea.w 
muls 
movea.w 
muls 
sub.l 
move. 1 
move.w 

npoly,d7 
nrm out 
#l,d7 
vcoordsx,a0 
vcoordsy,al 
vcoordsz,a2 
sedglst,a3 
snedges,a4 
snormlst,a5 
surface normal 

a5,-(sp) 
(a3),a5 first 
2(a3),a6 
a5,a5 
a6,a6 
0(a0,a6.w),dl 
0(a0,a5.w),dl 
0(al,a6.w),d2 
0(al,a5.w),d2 
0(a2,a6.w),d3 
0(a2,a5.w),d3 
a6,a5 
4(a3),a6 
a6,a6 
0(a0,a6.w),d4 
0(a0,a5.w),d4 
0(al,a6.w),d5 
0(al,a5.w),d5 
0(a2,a6.w),d6 
0(a2,a5.w),d6 

d2,a5 
d6,d2 
d3,a6 
d5,d3 
d2,d3 
d3,-(sp) 
a5,d2 
a6,d3 
d3,a5 
d4,d3 
dl,a6 
d6,dl 
d3,dl 
dl,-(sp) 
a6,dl 

X2 
x2-xl 
y2 
y2-yl 
z2 
z2-zl 

= A12X 

A12y 

A12Z 

third vertex 
*2 for offset 
x3 
X3-X2 = A23x 
y3 
y3-y2 = A23y 
z3 
Z3-Z2 = A23z 

save 

save 
ditto 
Bx 
save it on stack 
restore 
restore 
save 

save 

By 
save it 
restore 
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* last component, no need to save values 
muls d5,dl 
muls d4,d2 
sub.l dl,d2 Bz 
move.l d2,-(sp) save it 

novel.1 
nrm_cmpt: 

lsr.l 
lsr.l 
lsr.l 
move.w 
move.w 
move.w 
move. 1 
bsr 
move.1 
move.w 
move.w 
move.w 
move.1 
move.w 
move.w 
move.w 

move.w 
addq 
add 
adda.w 
dbra 

nrm_out: 

(sp)+(d4-d6 

#2,d4 
#2,d5 
#2,d6 
d4,d0 
d5,dl 
d6,d2 
d7,-(sp) 
nrm_vec 
(sp)+,d7 
d0,d4 
dl,d5 
d2,d6 
(sp)+,a5 
d6,(a5)+ 
d5,(a5)+ 
d4,(a5)+ 

(a4)+,d0 
#l,dO 
do, do 
d0,a3 
d7,next_nrm 

Bx in d6, By in d5 and Bz in d4 

/4 to prevent overspill 

save 
calculate the unit vectors bx, by, bz 
restore 

restore pointer to normals list 
save nx 
save ny 
save nz 

number of vertices in this surface 
the edge list always repeats the first 
*2 for offset 
adjust edge list pointer to next surface 
do all the surfaces (polygons) 

vis_ill: 
* Find the visibility and level of illumination of a surface by taking 
* the scalar product of the surface unit normal vector with the 
* line of sight vector from the viewpoint and with illumination vector 
* respectively. 

move. 
subq 
lea 
lea 
lea 
lea 
lea 
lea 
lea 
move, 
move, 
move, 

,w 

w 
,w 
,w 

npoly,d7 
#l,d7 
vcoordsx,aO 
vcoordsy,al 
vcoordsz,a2 
snedges,a3 
sedglst,a4 
snormlst,a5 
slumlst,a6 
i1l_vecx,do 
ill_vecy,dl 
ill_vecz,d2 

surface unit normals list 
surface illumination and visibility list 
illumination vector x-component 
ditto y 
ditto z 
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* The line-of-sight vector is 
* surface and the view point, 
next ill: 

move. w 
add 
move.w 
move.w 
move.w 
sub.w 
muls 
muls 
muls 
add.l 
add.l 
bmi 

* It is hidden 
move.w 

ill_tidy: 
addq.w 
move. w 
addq 
add 
adda.w 
dbra 
bra 

(a4) ,d'6 
d6,d6 
0(a0,d6.w),d3 
0(al,d6.w),d4 
0(a2,d6.w),d5 
vwpointz,d5 
(a5),d3 
2(a5),d4 
4(a5),d5 
d4,d3 
d5,d3 
visible 

#$f0,(a6)+ 

#6,a5 
(a3)+,d5 
#l,d5 
d5,d5 
d5,a4 
d7,next_ill 
set_colr 

taken between the first vertex on the 

1st point on next surface 
offset 
is the line-of sight x-cmpt., xls 
yls 
z 
zls :view point lies along -zv axis 
nx*sx 
ny*sy 
nz*sz 

scalar product 
is negative if surface visible 

set illumination for hidden and move on 

update normals pointer 
current no. edges 
first vertex is repeated 
2 bytes/word 
update edge list pointer 

for all surfaces 
go on to set the colours 

* The surface is visible so find the illumination level. 
* Remember all vectors are *2A14 
visible: 

vis_l 

ill_save: 

move.w 
move.w 
move.w 
muls 
muls 
muls, 
add.l 
add.l 
add.l 
move.w 
lsr.l 
cmp.w 
ble 
move. w 
bra 
cmp.w 
bge 
clr 

move.w 
bra 

d0,d3 
dl,d4 
d2,d5 
(a5),d3 
2(a5),d4 
4(a5),d5 
d4,d3 
d5,d3 
#$11100000,d3 
#25,d4 
d4,d3 
#$f,d3 
vis_l 
#$f,d3 
ill_save 
#0,d3 
ill_save 
d3 

d3,(a6)+ 
ill_tidy 

copy the illumination vector 

nx*illx 
ny*illy 
nz*illz 

-2*28 < scalar product < +2*28 
0 < scalar product < 2A29 

keep in range 
correct 
for 
errors 

0 to $f 

save 
next 

it 
one 
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set_colr: 
* The illumination level is combined with the intrinsic colour to produce 
* the final displayed colour. 
* Illkey is used to determine the number of shades per colour so that 
* different lighting levels can be simulated: 
*.illkey = 2 gives 4 shades of 4 colours: 0, 1, 2, 3 
* illkey = 1 gives 8 shades of 2 colours: 0, 1 
* illkey = 0 gives 16 shades of 1 colour: 0 

move.w npoly,d7 
subq.w #l,d7 the counter 
move.w illkey,do how many shades per colour 
lea slumlst,aO the levels of illumination 
lea srf_col,al raw intrinsic colours: 0 or 0,1 or 0,1,2,3 
lea col_lst,a2 final colours for display 
moveq.w #4,d6 
sub.w d0,d6 

next_col: 
move.w 
cmp.w 
ble 
move.w 
addq.1 
bra 

set_col lsr.w 
move.w 
rol.b 
add.w 
bgt 

(a0)+,dl 
#$f,dl 
set_col 
#$f0,(a2)+ 
#2,al 
set_next 
d0,dl 
(al)+,d2 
d6,d2 
dl,d2 
pass_col 

4-illkey 

next illumination 
is it hidden? 
no 
it is, set flag 
point to next intrinsic colour 
and go on 
divide by 0, 2, or 4 
the intrinsic colour 
0 or 0,8 or 0,4,8,12 = colour base 
illumination + colour base 

moveq.w #l,d2 

d2,(a2)+ 

d7,next_col 

palette 
#6,-(sp) 
#14 
#6,sp 

pass_col 
move.w 

set_next: 
dbra 
rts 

* Set the colour palette 
palette_set: 

pea 
move.w 
trap 
add.w 
rts 

* Transfer my data to program data 
transfer: 

move.w my_npoly,d7 
move.w d7,npoly 
subq.w #l,d7 
move.w d7,d0 
lea my_nedges,a0 
lea snedges,al 
lea intr_col,a2 
lea srf_col,a3 

loopo move.w (a0)+,(al)+ 
move.w (a2)+,(a3)+ 
dbra do,loopO 

avoid background 

= final colour 

for all surfaces 

here's my palette 
setpalette function 
xbios 
tidy 

no. of polygons 
pass it 
the counter 
save it 
source 
destination 
my intrinsic colours 
program intrinsic colours 
transfer edge nos. 
transfer intrinsic colours 
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* Calculate the number of vertices altogether 

loopl 

move.w 
lea 
clr 
clr 
add.w 
add.w 
addq 
dbra 

* Move the edge list 

d7,d0 
my_nedges,a6 
dl 
d2 
(a6),dl 
(a6)+,d2 
#l,d2 
do,loopl 

loop2 

subq 
lea 
lea 
move. 
dbra 

#l,d2 
my^edglst,aO 
sedglst,al 
(aO)+,(al)+ 
d2,loop2 

* and the coords list 
move.w dl,oncoords 
subq #l,dl 
lea ocoordsx,al 
lea my_datax,aO 
lea ocoordsy,a3 
lea my_datay,a2 
lea ocoordsz,a5 
lea my_dataz,a4 

loop3 move.w (aO)+,(al)+ 
move.w (a2)+,(a3)+ 
move.w (a4)+,(a5)+ 
dbra dl,loop3 

* and the window limits 
move.w my_xmin,xmin 
move.w my_xmax,xmax 
move.w my_ymi n,ymi n 
move.w my_ymax,ymax 
rts 

restore count 

no more than this 
total no. of vertices 
and with last one repeated each time 

the counter 
source 
destination 
pass it 

the counter 

ready 
for 
clipping 

nrm_vec 
* normalise a vector: unormalised components in d0,dl,d2 
* normalised components returned 

move 
move 
move 
muls 
muls 
muls 
add.l 
add.l 
bsr 
move.w 
ext.l 
ext.l 
ext.l 
lsl.l 
lsl.l 
lsl.l 
divs 
divs 
divs 
move.w 
move.w 
move.w 
rts 

d0,d3 
dl,d4 
d2,d5 
dO, dO 
dl,dl 
d2,d2 
dl,dO 
d2,d0 
sqrt 
#14,d7 
d3 
d4 
d5 
d7,d3 
d7,d4 
d7,d5 
d0,d3 
d0,d4 
d0,d5 
d3,d0 
d4,dl 
d5,d2 

save 
the 
components 
squares 

sum of squares 
calculate the magnitude 
multiply 
the 
components 
by 
2A14 

divide by 
the magnitude 
to derive 
the 
normalised 
components 
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sqrt: 
* A routine to find the square root of a long word N in do 
* in three iterations using the formula 
* squrt = l/2(squrt + n/squrt) 
* An approximate starting value is found from the highest bit in do 
* Result passed in dO.w 

sqrtl 

sqrt2 

tst.l 
beq 
move.w 
btst 
dbne 
lsr.w 
bset 
move.1 
divs 
add 
lsr.w 
move.1 
divs 
add 
lsr.w 
move.1 
divs 
add 
lsr.w 
move.w 
rts 

do 
sqrt2 
#31,d7 
d7,d0 
d7,sqrtl 
#l,d7 
d7,d7 
d0,dl 
d7,dl 
dl,d7 
#l,d7 
dO,dl 
d7,dl 
dl,d7 
#l,d7 
d0,dl 
d7,dl 
dl,d7 
#l,d7 
d7,d0 

quit if 0 
31 bits to examine 
is this bit set? 

this bit is set and 2"d7/2 is approx root 
raise 2 to this power 
N 
n/squrt 
squrt+N/squrt 
/2 gives new trial value 
N 

second result 

final result 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* data_04.s * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

-16384 l i g h t s h i n i n g from +y t o - y 
i l l _ v e c x d e w 0 
i l l _ v e c y d e w 
i l l _ v e c z d e w 
vwpointz d e w -100 
i l l k e y d e w 1 
i n t r _ c o l d e w 0 , 1 , 0 , 0 , 1 , 1 
p a l e t t e d e w 0 , $557 ,$446, $336, $226, $225, $114, $113 

d e w $756, $745, $734, $723 , $713, $702, $502, $401 

* * * * * * * * * * * * * * * * 
* bss_04.s 

* * * * * * * * * * * * * * * * * * * * * * * * 
* Variables for surface illumination and colour 
snormlst ds.w 100 
slumlst ds.w 40 
srf_col ds.w 40 

* * * * * 

* * * * * * * * * * 



General Transforms in 3D 
In this chapter we investigate a number of transforms of various kinds involved in 
the manipulation of 3D structures. 

10.1 Geometric Transforms 
Combinations of simple rotations and displacements are extensively used in the 
construction of a complex scene consisting of several graphics primitives in 
different locations and with different orientations. Besides these instance 
transforms, there are other more exotic distortions that can be used. Structures can 
be manipulated in a variety of ways: 

rotation - a change of orientation, 

shear - distortion, 

scaling - change in size, 

reflection - replacement by a mirror image, 

inversion - inside out and back to front, 

In general, any 3x3 matrix will produce a combination of scaling and shear. In the 
special case that there is no change in volume, what results is a pure rotation. 
Sometimes shears with fixed (simple) matrix elements are used to simulate rotation 
by fixed angles. The first three of these transforms are illustrated in this chapter, 
with input and control from the keyboard and joystick. 

Transformations of these kinds are easily implemented using matrices and several 
of them can be combined by concatenation (multiplication) of the individual 
matrices prior to actually transforming the points. Where a large number of points 
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is concerned, this saves a lot of time compared to performing each transform 
separately. An example of this is shown in the programs. 

10.1.1 Rotations 

When the joystick is moved or a key is pressed we want to see a corresponding 
rotation on the screen. In principle, doing this is very simple. For example, a 
movement of the joystick to the left could cause a positive rotation about the 
x-axis and a movement to the right could cause a negative rotation. Other joystick 
movements could produce rotations about other axes; The matrices for simple 
rotations about the x, y, and z axes have all been listed in Chapter 7. 

Following each movement of the joystick, a new set of object vertices could be 
generated by multiplying the old vertices by the appropriate rotation matrix. In this 
way the results of the previous rotation would be used as the starting point for the 
next. The problem with doing this is that errors in the accuracy with which binary 
arithmetic is done in the transformations accumulate from frame to frame and 
eventually reduce the picture to chaos. A solution to this problem is to redraw the 
object each time from a reference position (like die object frame) with information 
stored in a set of "signposts" (unit vectors again) which have been continuously 
rotated with the object to keep up with joystick movements. Then the object is 
only transformed once each time. This method is essential in the viewing transform 
when die observer is moving freely. This is discussed extensively in the next 
chapter. 

Alternatively, there is a simple way to implement rotations, but witii a motion 
determined by a scheme similar to that involving lines of longitude and latitude, 
where rotations about the y and x axes are added up separately and finally put 
together at the end. In this scheme, several movements of die joystick (say) may 
have taken place both left or right (rotation about the x axis) and up and down 
(rotation about the y axis) in any order, but only the separate totals are recorded. A 
single movement of the joystick may correspond to a 1° increment in mat 
direction. 

As an example, suppose the total rotation about the y-axis is 40° and the total 
rotation about the x-axis is 83°. Then die overall rotation is taken to be a single 
rotation about me y-axis of 40° followed by a single rotation about the x-axis of 
83°. Note that this isn't the same as rotating about the x-axis first and men the 
y-axis second which gives a different result. The fact that die order is important is 
a peculiar property of rotations. The fact mat rotations can be written as matrices 
means that the order of multiplication is also a property of matrices. 

Doing a rotation about the y axis first, followed by a rotation about the x axis, 
does provide a recipe for always getting to the same orientation every time. This is 
just like finding a position on die globe uniquely using circles of longitude and 
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latitude. The first rotation about the y axis gives the angle of latitude, and the 
second rotation about the x-axis gives the angle of longitude. This results in a 
simple scheme to orientate an object but, as we will see, the joystick response 
seems strange since what happens on the screen depends on the total current angles 
of rotation. 

If this seems confusing then consider the complementary scheme of leaving the 
object stationary and moving the observer to different orientations at some fixed 
distance from the object. This is what has been done in the example program in 
this chapter. Figure 10.1 illustrates what is going on in the world frame. You can 
imagine a long pole, AB, between the object and the observer, with the observer 
looking down the pole towards the object. The rotations which take place change 
the orientation of the pole. In the example program, movement of the joystick left 
or right changes 8 and movement up or down changes <j>. We are now dealing with 
things the other way round to just rotating the object. 

A 
/ " / 

!M 

/ / 
yw' 

c 

A s 

fy-
/ 

XV 

" / ' observer 

/yl8Q-B 

Figure 10.1 Rotating the observer about the object 

The observer is at the angles shown in the figure and we have to find out what 
he/she sees. As drawn, the observer is closest to the vertex C and sees it pretty 
well head-on, so in the observer's reference frame (where the pole is horizontal) 
things appear as in Figure 10.2. How can this view be constructed from knowing 



132 Real-Time 3D Graphics for the Atari ST 

only the angles 9 and <j>, and the distance AB? Like most problems involving 
rotations it is easier than it looks and has a lot to do witii the complementary 
nature of geometric (moving the object) and coordinate (moving the observer) 
transforms, which are discussed extensively in Appendix 7. 

Figure 10.2 The view seen by the observer 

The problem is solved by finding what rotations of the line AB about the world 
axes bring it back into line with the zw axis. The sequence of rotations to do this is 

1. rotate about xw by (-0) bringing it into the xw-zw plane, 

2. rotate about yw by (-<(>) bringing it along the zw axis, 

(3. rotate about zw by (-y) to make xw the "up" direction). 

This last step is put in parentheses since it is not actually implemented in the 
program, i.e. there is no "twist" of the observer involved. 

If this sequence of rotations is actually applied to the object with the viewer fixed 
in position along the world frame zw axis, then the overall result is the same. This 
is precisely what is done in the example program. The sequence of rotations which 
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must be applied to object about its centre are, in order (remember the one at the 
right acts first): 

/ cosy 

-sury 

\° 

siny 

cosy 

0 

°\ 
0 

1 i 

/ cose)) 0 

0 1 

^ sin<|> 0 

-sin<)) \ 

0 

cos<|> j 

/ 1 0 0 

0 cos9 sin9 

\ 0 -sin9 cosO 

which when multiplied (concatenated) out give the single matrix whose elements 
appear in the program. After transforming all the vertices with this matrix, all that 
remains to do is to add on the distance AB (also called Ovz) to each z coordinate. 

We will use this particularly simple transform to the observer's reference frame 
again in Chapter 12 in a flight simulator where the angles (called Euler angles) can 
be easily related to joystick movement. It's OK if you don't mind the restriction of 
the way the angles are defined. In general, more freedom may be desired. 

10.1.2 Scaling 

Scaling is very straightforward. It simply makes the object larger or smaller. The 
scale change occurs independently along the three axes. For a general scale 
change, with different scale factors, a, b and c, along the three axes the 
transformation matrix is 

/ a 

0 

\o 

0 

b 

0 

°1 
0 

J 
If both b and c are unity and a is greater than unity, then the resulting distortion is 
a stretch along the x axis. This is what is implemented in the example program. It 
is shown in Figure 10.3. 

10.1.3 Shear 

A shear distortion has the effect of displacing one face relative to its opposite. In 
the simplest case, one of the coordinates is increased in proportion to one of the 
others. If x increases in proportion to z, the matrix is: 
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/ l 

0 

0 

0 

1 

0 

1 \ 

0 

1 / 

and both y and z remain unchanged. This is illustrated in Figure 10.4 and included 
in the example program. 

!l 

: : 

>f%:;: 

1 
/ 

Figure 10.3 A stretch along the x axis 

If x increases in proportion to both y and z the distortion becomes more exotic. 
This is shown in Figure 10.5 and also included in the example program. The 
matrix is 

1 

0 

0 

1 

1 

0 

1 \ 

0 

1 
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Figure 10.4 A shear in the x direction, proportioned to z 

Figure 10.5 A sheer in the x direction proportioned to both y and z 
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10.2 Instance Transforms 
Up till now, although motion has been 3-dimensional, the only structure displayed 
has been the flat ST monolith. Now, six such monoliths are joined together to 
make an ST cube. 

Instancf transforms are usually taken to mean those changes of orientation and 
position which set primitives in the world space and we use the term to describe 
the set of operations which construct the ST cube. Once constructed, the cube can 
be used as a basis to illustrate the transforms we have been discussing. 

To construct a cube in this way, a monolith is first laid down in the yw-zw plane 
and then successively rotated and displaced five more times to make up the other 
sides. This is illustrated in Figure 10.6 where the sides are numbered. The angles 
of rotation and displacements of the six sides are in the lists inst angles and 
inst_disp in the data file data_05.s, and are in the order 0, <j>, 8 and x, y, z. 

Figure 10.6 Construction of an ST cube 
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10.3 Physical Realism 
Physical objects have more subtle attributes than shape and colour. This is 
particularly evident when motion occurs. Real objects do not move instantaneously 
from one place to another, nor do they achieve their final velocity the instant 
motion begins. There is an acceleration period whilst the velocity builds up to its 
maximum value. Likewise a real object cannot reduce its speed to zero 
instantaneously. A period of deceleration is required. Acceleration and deceleration 
are both evidence of an additional attribute of a physical object, its inertia or mass. 
The mass of an object determines how rapidly it can be accelerated or brought to 
rest. In building realistic computer models of physical objects it is important to pay 
attention to these details. The role of the mass of a body in determining its motion 
is really summarised in Newton's Laws of Motion. In essence, they say that if a 
body is acted on by a force it will accelerate in proportion to the force and, if there 
is no force, it remains at constant velocity (or at rest). 

In the example programs, some attempt has been made to incorporate these laws 
by modelling joystick movements as applied forces. The result is that motion of 
the image does not follow immediately, but with an acceleration determined by its 
inertia. In addition, the effect of friction is incorporated so that if the applied force 
is removed the velocity drops to zero, and even when it is constantly applied there 
is a maximum to the velocity. In the programs, the motion is purely rotational but 
the same principles hold true. 

10.4 Example Program 
The program shows a cube with the letters ST written on each face in rotation 
under the control of the joystick. In addition the cube can be subject to shear and 
scaling transforms whilst the rotation takes place. 

10.4.1 trnsfrms.s 

This is the control program. After initializing variables, it reads the joystick and 
keyboard settings to choose the rate of rotation, viewing distance and whether a 
shear or scale change should take place. Both of these latter transforms are 
accompanied by a size reduction to keep word-size variables within range. 

Once input is complete the cube is assembled, unrotated or distorted, in the world 
frame by the multiple object-to-world transform for all the sides. Following this the 
distortion is concatenated with the viewing transform to produce the overall 
transform which then converts the vertices for perspective projection. 
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10.4.2 core_05.s 
Here are the new subroutines. The first part is concerned with constructing the 
rotation transform from the viewing angles v0, v<|> and vy and then using it (after it 
is concatenated with the shear) to transform the vertices. Following this the 
routines are concerned with reading the joystick and keyboard and making 
adjustments accordingly. 

In order to simulate inertia, movements of the joystick are converted not to angles 
of rotation themselves but as increments to the angles of rotation, up to a 
maximum. These increments are added to the angles each time to give the total 
angles to rotate. In addition, the increments are always decremented by 1 each time 
to give built-in frictional slowing down. The procedure to implement joystick 
alternatives uses a vector jump table to the various possible subroutines. This is an 
elegant way of avoiding testing for each possibility in a long list. This technique is 
also used for keyboard input. 

There are seven possible keyboard inputs concerned entirely with the function keys 
fl to f7: 

fl- move closer (continuously) to a minimum distance, 

f2- move away (continuously), 

f3- implement shear 1 (x increases with z, called xshear), 

f4- implement shear 2 (x increases with y and z, called yshear), 

f5- implement a stretch (y and z reduced by 1/2), 

f6- stop movement (of f 1 and f2), 

f7- quit. 

Input from f3, f4 and f5 is used to set the bottom three bits of a word length flag, 
shearflg, in a toggle fashion using the bit-change instruction. This simply NOT's 
the appropriate bit to provide a record of whether the transform should be 
implemented. The routine which examines which flag bits are set also includes the 
option of combinations of them which are not actually used for anything. They are 
called userl to user4 and can be used to try other transforms (providing products 
do not exceed word size in the concatenation products). 

Finally the shear and rotation matrices are multiplied to produce the overall 
transform to act on the cube. 
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10.4.3 bss_05.s 
New variables for this chapter. 

10.4.4 data_05.s 

New data for this chapter. In particular note that the 3x3 matrices for the shears 
and stretch are arranged in column order to simplify the matrix concatenation 
routine. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* trnsfrms.s * 
* Various 3D transforms * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_02. 
include systm_03. 
include systm_04. 
include core 05.E 

screens and tables 
joystick 
set up screens, palette, joystick 
motion of the view frame 

set up screens etc 

********************************************************************* 
main 

bsr set_up 
* transfer all the data 

bsr transfer 
move.w oncoords,vncoords 
move.w vncoords,wncoords 

* Initialise dynamical variables 
move.w #-50,Ovx view frame initial position 
move.w #0,Ovy 
move.w #150,Ovz 
clr.w vtheta 
clr.w vphi 
clr.w vgamma 
clr.w shearflg 
move.w #25,vtheta_inc 
move.w #25,vphi_inc 
clr.w speed 
clr.w screenflag 
bsr clearl 
bsr clear2 

loop4: 
* Switch the screens each time round 

initialize rotation angles to zero 

set flag to no shear 
initial rotation rates 

0=screen 1 draw, l=screen 2 draw 
clear the screens 

drawl_disp2 
clearl 
#1,screenflag 

screen 1 or screen2? 
draw on screen 1, display screen2 
draw on screen 2, display screenl 
but first wipe it clean 
and set the flag for next time 

draw on 1, display 2 
but first wipe it clean 
and set the flag for next time 

tst.w screenflag 
beq screen_l 
bsr draw2_displ 
bsr clear2 
clr.w screenflag 
bra screen_2 

screen_l: 
bsr 
bsr 
move.w 

screen_2: 
* look for changes in the rotation angles 

bsr joy_in 
* see if the function keys have been pressed to change the speed 
* or initiate a shear 

bsr key_in 
* Adjust to new rotation angles and speed 

bsr angle_update 
bsr speed_adj 

* Construct the compound object from the same face at different positions 
move.w nparts,d7 how many parts in the object 
subq #l,d7 
lea inst_angles,aO list of instance angles for each part 
lea inst_disp,al ditto displacements 
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* Do one face at a time 
instance: 

move. w 
move. w 
move. w 
move. w 
move.w 
move.w 
move.w 
movem.1 
bsr 
bsr 
bsr 
bsr 
bsr 
bsr 
bsr 
movem.1 
move ..w 
dbra 
bra 
SECTION 
include 
include 
SECTION 
include 

d7,-(sp) 
(aO)+,otheta 
(aO)+,ophi 
(aO)+,ogamma 
(al)+,Oox 
(al)+,Ooy 
(al)+,Ooz 
aO/al,-(sp) 
otranw 
wtranv_l 
shear 
wtranv_2 
illuminate 
perspective 
polydraw 
(sp)+,aO/al 
(sp)+,d7 
d7,instance 
loop4 
DATA 
data_03.s 
data_05.s 
BSS 
bss_05.s 

save the count 
next otheta 
next ophi 
next ogamma 
next displacements 

save position in list 
object to world transform 
construct the rotation transform 
concatenate with shear (if flag set) 
and transform .the points 
if it's visible find the shade 
perspective 
draw this face 
restore pointers 
restore the parts count 
for all the parts of the object 
draw the next frame 

END 



742 Real-Time 3D Graphics for the Atari ST 

* * * * * * * * * * * * * * * * * * * * * 
core_05.s 

Subroutines for Chapter 10 

include core_04.s 
include core 03.s 

previous subroutines 

* A set of subroutines for transforming world coords, including 
* rotations of vtheta, vphi and vgamma about the x, y and z axes 
* and x, y and z shears. 

* The matrix for the rotations is constructed. 
* First convert rotation angles to sin & cos and store for rot. matrix 
wtranv_l: 

bsr view_trig find the sines and cosines 
* Construct the transform matrix wtranv remember, all elements end up *2*14 

do 

do 

do 

do 

lea 
lea 
lea 
lea 
lea 
lea 
lea 

stheta,aO 
ctheta,al 
sphi,a2 
cphi,a3 
sgamma,a4 
cgamma,a5 
w_vmatx,a6 

element WMli 
move. w 
muls 
lsl.l 
swap 
move.w 

WM12 
move.w 
muls • 
move. w 
muls 
lsl.l 
swap 
muls 
add.l 
lsl.l 
swap 
move.w 

WM13 
move.w 
muls 
move.w 
muls 
lsl.l 
swap 
muls 
sub. 1 
lsl.l 
swap 
move. w 

WM21 
move.w 
muls 
lsl.l 
swap 
neg 
move.w 

(a3'),d0 
(a5),d0 
#2,d0 
dO 
d0,(a6)+ 

(al),d0 
(a4),d0 
(a0),dl 
(a2),dl 
#2,dl 
dl 
(a5),dl 
d0,dl stheta 
#2,dl 
dl 
dl,(a6)+ 

(aO),d0 
(a4),d0 
(al),dl 
(a2),dl 
#2,dl 
dl 
(a5),dl 
dl,dO stheta 
#2, do 
dO 
d0,(a6)+ 

(a3),d0 
(a4),d0 
#2,dO 
dO 
dO 
dO,(a6)+ 

sin theta 
cos theta 
sin phi 
cos phi 
sin gamma 
cos gamma 
the matrix 

cphi 
cphi x cgamma 

/2*14 
WM11 

ctheta 
ctheta x sgamma 
stheta 
stheta x sphi 

stheta x sphi x cgamma 
x sphi x cgamma + ctheta 

stheta 
stheta x sgamma 
ctheta 
ctheta x sphi 

ctheta x sphi x cgamma 
x sgamma - ctheta x sphi 

cphi 
ctheta x sgamma 

/2*14 

x sgamma 

x cgamma 
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* 

* 

* 

* 

* 

* 
* 
* 

do 

do 

do 

do 

do 

WM22 
move.w 
muls 
move. w 
muls 
Isl.l 
swap 
muls 
sub. 1 
lsl.l 
swap 
move. w 

WM23 
move. w 
muls 
move. w 
muls 
lsl.l 
swap 
muls 
add.l 
lsl.l 
swap 
move.w 

WM31 
move. w 

WM32 
move.w 
muls 
lsl.l 
swap 
neg 
move.w 

WM33 
move.w 
muls 
lsl.l 
swap 
move.w 
rts 

PART 2 
Now the world 
Remember matr 

wtranv_2: 
move.w 
ext.l 
beq 
subq.w 

lea 
lea 
lea 
lea 
lea 
lea 
exg 
link 

(al),dO 
(a5),d0 
(aO),dl 
(a2),dl 
#2,dl 
dl 
(a4),dl 
dl,dO ctheta 
#2,dO 
dO 
do,(a6)+ 

(aO),dO 
(a5),d0 
(al),dl 
(a2),dl 
#2,dl 
dl 
(a4),dl 
dO,dl 
#2,dl 
dl 
dl,(a6) + 

(a2),(a6)+ 

(a3),d0 
(aO),dO 
#2,do 
dO 
dO 
d©v(a6)+ 

(al),do 
(a3),d0 
#2,dO 
dO 
d0,(a6)+ 

ctheta 
ctheta x cgamma 
stheta 
stheta x sphi 

stheta x sphi x sgamma 
x cgamma - stheta x sphi x sgamma 

stheta 
stheta x cgamma 
ctheta 
ctheta x sphi 

ctheta x sphi x sgamma 

" +stheta x cgamma 

cphi 
cphi*stheta 

/2-14 
— 

ctheta 
ctheta x cphi 

coords are transformed to view coords 
ix elements are 

wncoords, 
d7 
wtranv3 
#l,d7 

wcoordsx, 
wcoordsy, 
wcoordsz, 
vcoordsx, 
vcoordsy, 
vcoordsz, 
a3,d3 
a6,#-6 

,d7 

aO 
,al 
a2 
,a3 
,a4 
,a5 

*2'14 and must be corrected at thi 

the number 
any to do ? 
if not quit 
or this is the count 

the 
source 
coords. 
the 
destination 

save this address-short of regs. 
3 words to store 
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wtranvl: 
moveq.l #2,d6 3 rows in the matrix 
lea w_vmatx,a3 init matx pointer 

* calculate the next wx, wy and wz 
wtranv2: 

move.w 
move.w 
move.w 

(aO),d0 
(al),dl 
(a2),d2 

wx 
wy 
wz 

sub.w #50,dO 
sub.w #50,dl 
sub.w #50,d2 

wx-50 
wy-50 
wz-50 

muls 
muls 
muls 

add.l 
add.l 
lsl.l 
swap 
move.w 
dbf 

move.w 
add.w 
move.w 
move.w 
exg 
move.w 
add.w 
move.w 
exg 
addq.1 
addq.1 
addq.1 

dbf 
unlk 

wtranv3 rts 
* Calculate the 
view_trig: 

move.w 
bsr 
move.w 
move.w 
move.w 
bsr 
move.w 
move.w 
move.w 
bsr 
move.w 
move.w 
rts 

(a3)+,d0 
(a3)+,dl 
(a3)+,d2 

dl,d0 
d2,d0 
#2,do 
dO 
d0,-(a6) 
d6,wtranv2 

(a6)+,d0 
Ovz,d0 
d0,(a5)+ 
(a6)+,(a4)+ 
a3,d3 
(a6)+,d0 
#100,dO 
d0,(a3)+ 
a3,d3 
#2,a0 
#2,al 
#2,a2 

d7,wtranvl 
a6 

wx*Mil 
wy*Mi2 
wz*Mi3 

wx*Mil+wy*Mi2+wz*Hi3 

/2"14 
save it 
repeat for 3 elements 

off my stack 

becomes vz 

restore address vx, save matx pointr 

becomes vx 
save address vx, restore matx pointr 
point to next wx 

wy 
wz 

repeat for all ocoords 
close frame 
and quit 

sines and cosines of view angles 

vtheta,dl 
sincos 
d2,stheta 
d3,ctheta 
vphi,dl 
sincos 
d2,sphi 
d3,cphi 
vgamma,dl 
sincos 
d2,sgamma 
d3,cgamma 

theta 

sine 
cosine 
phi 

gamma 



General Transforms in 3D 145 

J^Jy^ 
3oy_in: 
* Read the joystick and update the variables accordingly 
* The data packet containing the FIRE bit (7) and the position 
* bits (0-2) is saved in the variable joy_data 

clr .w 
move.w 

joy_again: 
bsr 
dbf 

joy data 
#10,d6 

rd_joy 
d6,joy_again 

* convert the joystick reading 
angle_speed: 

move.w 
move 
andi.w 
bne 
andi.w 
bne 
rts 

joy_dir lea 
lsl.w 
move.1 
jmp 

jump table: 
del 
del 

joy_data,d0 
d0,dl 
#$f0,d0 
fire_press 
#$f,dl 
joy_dir 

jump table,aO 
#2,dl 
0(a0,dl.w),a0 
(aO) 

read joystick 
give it time to think 
to angle totals 

here's the result 
save it 
fire pressed ? 
yes 
what direction is the stick? 

base address 
offset into jump table 
the jump address 
go for it 

0 , up,down,0,left,up_left,down_left 
0,right,up_right,down_right 

* set up the increments to angl 
up subg.w 

rts 
down addq.w 

rts 
left addq.w 

rts 
right subq.w 

rts 
up_left: 

addq.w 
subq.w 
rts 

down_left: 
addq.w 
addq.w 
rts 

up_right: 
subq.w 
subq.w 
rts 

down_right: 
subq.w 
addq.w 
rts 

fire_press: 
move.w 
rts 

#2,vphi_inc 

#2,vphi_inc 

#2,vtheta_inc 

#2,vtheta_inc 

#2,vtheta_inc 
#2,vphi_inc 

#2,vtheta_inc 
#2,vphi_inc 

#2,vtheta_inc 
# 2,vphi_inc 

#2,vtheta_inc 
#2,vphi_inc 

#l,fire 

es - +-10 is the limit 
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angle_u 
•Check 

vth_neg 

chk_phi 

vph_neg 

chk_out 

pdate: 
the limits 
move.w 
bmi 
beq 
subq.w 
cmp.w 
ble 
move.w 
bra 
addq.w 
cmp.w 
bge 
move. w 
move.w 
bmi 
beq 
subq.w 
cmp.w 
ble 
move.w 
bra 
addq.w 
cmp.w 
bge 
move.w 

* update vtheta 

thta_l 

thta_2: 

move.w 
add.w 
bgt 
add 
bra 
cmp.w 
bit 
sub 

move.w 
* update vphi 

phi_l 

phi_2: 

move.w 
add.w 
bgt 
add 
bra 
cmp.w 
bit 
sub 

move.w 
rts 

vtheta_inc,dO 
vth_neg 
chk_phi 
#1,vtheta_inc 
#25,vtheta_inc 
chk_phi 
#25,vtheta_inc 
chk_phi 
#l,vtheta_inc 
#-25,vtheta_inc 
chk_phi 
#-25,vtheta_inc 
vphi_inc,dO 
vph_neg 
chk_out 
#l,vphi_inc 
#25,vphi_inc 
chk_out 
#25,vphi_inc 
chk_out 
#l,vphi_inc 
#-25,vphi_inc 
chk_out 
#-25,vphi_inc 

vtheta,do 
vtheta inc,dO 
thta_l 
#360,do 
thta_2 
#360,dO 
thta_2 
#360,dO 

dO,vtheta 

vphi,do 
vphi_inc,dO 
phi 1 
#360,dO 
phi_2 
#360,do 
phi 2 
#360,dO 

dO,vphi 

the previous angle 
increase it by the increment 
check it 
lies 
between zero 
and 360 degrees 

becomes the current angle 

similarly for vphi 

key_in: 
* Read the keyboard 

bsr scan_keys 
cmp.w #-l,d0 
beq key_read 
rts 

was a key pressed? 

yes 
no 
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key_read: 
bsr read_key 
tst.w do 
beq key_rpt 
rts 

key_rpt swap do 
sub #$3b,dO 
and #7,dO 
lea key_jump,aO 
lsl.w #2,dO 
move.l 0(aO,d0.w),a0 
jmp (aO) 

key_jump: 
* The jump table for f keys 

del fl,f2,f3,f4,f5, 
fl move.w #-1,speed 

rts 
f2 move.w #1,speed 

rts 
f3 bchg.b #2,shearflg 

rts 
f4 bchg.b #l,shearflg 

rts 
f5 bchg.b #0,shearflg 

rts 
f6 move.w #0,speed 

rts 
f7 clr.w -(sp) 

trap #1 

which key? 
f keys have $0 in the low word 
only interested if f keys 
something else 
the code 
fl is 3b : set it to zero for offset 
first 7 f keys 
jump table 
key code is offset 
to the routine address 
go for it 

f6,f7 
reverse 

forward 

toggle x shear flag (reverse flag) 

toggle y shear flag 

toggle z shear flag 

stop 

quit altogether- return to caller 

•Concatenate the shear with the rotation 
shear clr do 

move.b shearfig,dO 
and #$f,d0 

* there are 8 possibilities: 
* the bit numbers refer to x, 

lea shear_jump,aO 
lsl.w #2,dO 

the shear flags are the 3 low bits 

shear. 
* The 

null 
z 

y 

userl 
X 

user2 
user3 
user4 

move.1 
jmp 

.jump: 
jump tabl 
del 
rts 
lea 
lea 
bsr 
rts 
lea 
lea 
bsr 
rts 
rts 
lea 
lea 
bsr 
rts 
rts 
rts 
rts 

0(a0,d0.w) 
(aO) 

e 
null,z,y,u: 
do nothing 
zshear,a0 
w_vmatx,al 
concat 

yshear,a0 
w_vmatx,al 
concat 

xshear,a0 
w_vmatx,al 
concat 

111,110,101,100,011,010,001,000 
y and z shears respectively 

jump table base 
shear code is offset 
to routine address 
go for it 

pointer to shear 
pointer to rotation 
concatenate them 
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concat: 
* Concatenate (multiply) the two 3x3 matrices pointed to by aO and al. 
* The order is (al)x(aO) with the result sent to temporary store at (a2). 
* (aO) is in column order and (al) and (a2) are in row order, 
* of word length elements. Finally (a2) is transferred to (al) 

concl 

conc2 

lea 
moveq.w 
move. w 
movea. 1 
move. w 
ext.l 
lsr.l 
move.w 
ext.l 
lsr.l 
move.w 
ext.l 
lsr.l 
muls 
muls 
muls 
add.w 
add.w 
move. w 
dbra 
addq.w 
dbra 

tempmatx,a2 
#2,d7 
#2,d6 
a0,a3 
(al),dl 
dl 
#l,dl 
2(al),d2 
d2 
#l,d2 
4(al),d3 
d3 
#l,d3 
(a3)+,dl 
(a3)+,d2 
(a3)+,d3 
d2,dl 
d3,dl 
dl,(a2)+ 
d6,conc2 
#6,al 
d7,concl 

temporary store 
3 rows in al 
3 columns in aO (shear) 
reset shear pointer 
next rot. element 

/2 

next product element 
for all elements in this row 
pointer to next row 
for all rows 

* transfer the result back to the rotation matrix 
lea tempmatx,aO 
lea w_vmatx,al 
moveq.w # 8, d7 

conloop move.w (aO)+,(al)+ 
dbra d7,conloop 
rts 

* Set the velocity components 
speed_adj: 

move.w 
lsl.w 
move.w 
cmp.w 
bgt 
move.w 

adj_out add.w 
rts 

speed,do 
#3,do 
Ovz,dl 
#10,Ovz 
adj_out 
#10,0vz 
dO,Ovz 

temp, store of product 
becomes new transform 
9-1 elements in 3x3 matx 
next element 
for all elements 

scale it 

musn't come any closer 

zw speed component 
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* bss_05.s 
* Additional variables for Chapter 10 

include bss_04.s 
include bss_03.s 

* world frame variable 
wncoords ds.w 1 
*view frame variables 

surface illumination vars. 

of vertices in world frame 

vtheta 
vphi 
vgamma 
Ovx 
Ovy 
Ovz 

ds.w 
ds.w 
ds.w 
ds.w 
ds.w 
ds.w 

rotation of view frame about wx 
ditto 
ditto 
view frame origin x 
ditto y 
ditto z 

wy 
wz 

in world frame 

* The general transform matrices 
w_vmatx ds.w 9 t 
tempmatx ds.w 
* Variables for the intelligent keyboard 

the matrix elements 
temporary store for matx products 

gem_]oy 
joy_data 
gem_mse 
mse_click 
mouse_dx 
mouse_dy 

ds.l 
ds.w 
ds.l 
ds.w 
ds.w 
ds.w 

* Dynamical variables 
speed ds.w 
vtheta_inc ds.w 
vphi_inc ds.w 
vgamma_inc ds.w 
fire ds.w 
shearflg ds.w 

store gem joystick handler 
jostick direction/fire 
store gem mouse handler 
click flag 
x displacement since last 
y ditto 

mse fire flag 
shear flags 
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* * * * * * * * * * * * * * * * 
* data_05.s 
* 

* Data for Chapter 10. An ST cube 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
my_datax 

my_datay 

my_dataz 
my_edglst 

my_nedges 
my_npoly 
nparts 
inst_angles 
inst_disp 
my_xmin 
my_xraax 
my_ymin 
my_ymax 

ill_vecx 
ill_vecy 
ill_vecz 
vwpointz 
illkey 
intr_col 
xshear 
yshear 
zshear 
p a l e t t e dew 

d e w 

dew 
dew 
dew 
dew 
dew 
dew 
dew 
dew 
dew 
dew 
dew 
dew 
d e w 
dew 
dew 
dew 

dew 
dew 
dew 
dew 
dew 
dew 
dew 
d e w 
d e w 

,100,0,0,85,85,15,15,75,75,65,65,50,50,40,40 
85,70,70,70,70,15,15 
00,100,0,10,40,40,10,20,40,40,20 
30,30,10,50,90,90,50,60,80,80,60 
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
,2,3,0,4,5,6,7,4,8,9,10,11,8,12,13,14,15,12 
17,18,19,16,20,21,22,23,20 
,4,4,4,4 

100 
85, 
0,1 
10, 
0,0 
0,1 
16 
4,4 
6 
6 
0,0 
0,0 
0 
319 
0 
199 

-16384 light shining from +y to -y 

-100 

,0,90,0,0,180,0,0,270,0,0,0,270,0,0,90,0 
,0,0,100,0,0,100,100,0,0,100,100,0,0,0,0,100 

0,1,0,0,1,1 
1,0,0,0,1,0,1,0,1 1 shear 
1,0,0,1,1,0,1,0,1 2 shear 
2,0,0,0,1,0,0,0,1 3 stretch 

0,$557,$446,$336,$226,$225,$114,$113 
$756,$745,$734,$723,$713,$702,$502,$401 



Flying Around The World 

11.1 Introduction 
A flight simulator? Well not exactly, but getting there. 

In order to fully implement the simulation of independent motion of the observer, 
we require a little more vector algebra. The task is to construct a view of the world 
model from the point of view of an observer free to move in any direction. This is 
different from the simple procedure we used in the previous chapter. We now wish 
to operate a joystick and navigate our way through the assembly of objects 
constructed in the world frame. We want the view on the screen to move up or 
down when the joystick is pushed forward or pulled back and to move to the left 
or right when the joystick is moved to the right or the left. In other words, all of 
the motion on the screen must be relative to the observer's current position. Even 
if the pilot of a plane is flying upside down, his perception of "up" is directed 
towards the roof of the cockpit, which as far as someone on the ground is 
concerned is "down". What matters is that all of the. movements corresponding to 
"up", "down", "left" and "right" apply to the observer's reference frame, 
which we have called the view frame. Unlike rotation by Euler angles, which we 
used in the previous chapter, here we want the rotations to be about the view frame 
axes. 

To be specific, let's ask what we expect to happen when the joystick is pulled 
back. We expect to see the picture move vertically upwards, and this must always 
happen no matter what the orientation of the observer. Suppose we have got into 
the position where the aircraft, or whatever it is being controlled, is flying 
horizontally but with its wings vertically. Figure 11.1 shows this orientation. If the 
joystick is pulled back, object A will come into view at the top of the screen and 
the object B will go out of view at the bottom of the screen. The view seen by the 
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pilot of the plane is shown in Figure 11.2. Herein lies the problem. The pilot has a 
very definite perception of what is "up" and what is "down" at any given 
moment and, while this does not change in the cockpit, it is changing continuously 
with respect to the world outside. In the previous chapter it was easy to relate 
"up" to an increase of v<(> and left to an increase in vO, but when referenced from 
the view frame all these motions depend on the orientation of the observer at any 
given instant. 

Figure 11.1 World view of observer (airplane) 

There is more than one way of solving this problem. One method is to use control 
matrices to perform rotations of coordinates after they have been transformed to 
the view frame. The control matrices perform simple rotations about die view x, y 
and z axes. This method is employed in the next chapter. Another way is to keep a 
constant record of the position and orientation of the view frame in the world 
frame and to generate movements of the view frame resulting from movements of 
the joystick. This second method relies heavily on the notion of a set of view 
frame axes undergoing rotations and translations following the path of the 
observer. It also embodies the notion of rotation about an arbitrary axis that we 
would also like to introduce in this chapter which is very useful for performing 
rotations about any axis in the world frame. 
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We could, of course, decide to accept the limitations of Euler angles to fix the 
view frame orientation in the simpler orbital-like fashion. In Chapter 12, we show 
how a flight simulator works well by using each of these approaches. 

w 
\ 

V 

< . \ 

A / 
/ / 

t 
\ 

B 

~r 

- f - " ^ ~ 

Figure 11.2 Observer s view (from airplane) 

11.2 Coordinate Transforms and Direction 
Cosines 

Here's a bit of maths. It's not as hard as it looks. 

If you know the coordinates of the vertices of an object in one reference frame and 
want to know what they are in another, it is necessary to do a coordinate 
transform. (Remember the other type of transform is called a geometric transform, 
which is what happens when the object itself is moved inside a single reference 
frame). If a point has coordinates (xw,yw,zw) in the world frame, it will have 
coordinates (xv^yv,zv) in the view frame. Thus the point A in Figure 11.3 has 
coordinates (0,0,50) in the world frame, and coordinates (0,-50,0) in the view 
frame (what is seen on the screen has later to be worked out by means of the 
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perspective transform). As far as rotations are concerned there is always a linear 
relation between these two sets of coordinates, and for this case we can write in 
general terms: 

xv = nll.xw + nl2.yw + nl3.zw 

yv = n21.xw + n22.yw + n23.zw 

zv = n31.xw + n32.yw + n33.zw 

where the n's are numbers that remain to be worked out. This relation can also be 
written as a matrix product: 

xv nil nl2 nl3 \ / xw \ 

yv 

\ z v / -

n21 n22 n23 

\ n31 n32 n33 / 

xw 

yw 

zw 

Figure 11.3 Point A seen in two coordinate frames 
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The n matrix is the transformation matrix. The elements nil , nl2, etc., are specific 
to the relative orientation of the two reference frames and are called the direction 
cosines. 

To see how the direction cosines are related to the geometry, look at Figure 11.4. 
The direction cosines are simply the cosines of the angles between the axes of the 
reference frames. It is quite hard to draw a comprehensive diagram which is not 
confusingly messy but, for example, nil is the cosine of the angle between vx and 
wx, nl2 is the cosine of the angle between vx and wy, nl3 is the cosine of the 
angle between vx and wz and so on: 

Figure 11.4 Direction cosines 

nil = cos(a), nl2 = cos(b), nl3 = cos(c). 

If these direction cosines can be found, the problem of converting world frame 
coordinates into view frame coordinates is solved. We are however still left with 
the problem of converting movements of the joystick into changes in the direction 
cosines. It is clear that we should solve the problem with a strategy that centres on 
the direction cosines. Here is one way it can be done. 
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11.3 Base Vectors and Direction Cosines 
Just for a moment let's forget all about the maths. Let's try to visualise what's 
going from the point of view of a second, stationary, independent observer at rest 
in the world frame and able to see both the world frame and the moving observer 
simultaneously. This is the point of view of a man on the ground watching a plane 
fly past. Think of the plane as the view frame but with the fuselage replaced by the 
zv axis, the wings replaced by die yv axis and the vertical tail wing in the direction 
of the xv axis. Although he is not in the plane, the stationary observer can 
calculate the view according to the pilot if he knows the position and orientation of 
the plane at any instant. 

To see how that view would change when the pilot pulls back the joystick, for 
example, he has only to rotate the plane about the axis of the wings (the angle 
depends on how long the joystick is pulled back), which is a rotation about the yv 
axis. Since the plane is moving forward during die rotation this has die added 
complication of making it fly upwards. Like the stationary observer, we need to 
keep a continuous record of die position' and orientation of the view frame as it 
flies around the world. 

To do this, imagine three unit vectors in the directions of the view frame axes. In 
vector geometry these unit vectors are given a special name. They are called base 
vectors. At the very start of the program let us suppose that die view frame is 
positioned coincident with die world frame. This is equivalent to having a second 
set of world frame base vectors at the airfield from where the plane has taken off. 
(Actually it isn't really necessary to have them start off coincident and in general 
tiiey don't, but it makes die argument easier to visualise). 

Now at each stage of the subsequent motion it is necessary to record the position 
and orientation of the view frame unit vectors. It is not possible simply to keep a 
running total of how many degrees the plane rotated to die left (about vx) or up 
(about vy) since we have no way of knowing how to translate this information into 
die final orientation of the plane after many movements. In the method of Euler 
angles used in die previous chapter it was possible to keep a running total since the 
first angle referred to rotation about an axis of die static world frame. But now we 
are using angles referred to the view frame which is moving all the time. 

Here comes the big question. Suppose we can keep a record of die positions of die 
view frame base vectors, what do they have to do with die original transform? The 
answer is very simple: the components in die world frame of die view frame base 
vectors are just the direction cosines that are the elements, nil to n33, of the 
world-to-view transform matrix. In odier words, where iv, jv and kv are the view 
frame base vectors and iw, jw and kw are die world frame base vectors, die 
relation between them is: 
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iv = nll.iw + nl2.jw + nl3.kw 

jv = n21.iw + n22.jw + n23.kw 

kv = n31.iw + n32.jw + n33.kw. 

Or, writing the view frame base vectors in terms of their world frame components 

/ n i l \ /n21 \ I n3l \ 

iv= nl2 

\ „ 1 3 / 

jv n22 

\ n 2 3 / 

kv = n32 

\ n33 / 

At the start of the motion, when the view frame and world frame axes were 
aligned, the view frame base vectors had components 

IV = 0 jv = 1 

\ u / 
0 

kv = 0 

If we can keep a record of the view frame base vectors we therefore have the 
direction cosines immediately available to construct the view from the cockpit. The 
strategy is straightforward but there are some tricky problems to solve on the way. 

11.4 Rotating the Base Vectors: Rotation About 
an Arbitrary Axis 

The base vectors which fix the current orientation of the view frame depend on 
what movements have already taken place. Suppose at a given instant the view 
frame is oriented with its base vectors in the positions shown in Figure 11.5. The 
base vector of the vx axis, iv, has three components in the world frame nil , nl2 
and nl3 (the other unit vectors jv and kv also have components but for clarity 
these are not shown in the diagram). Now suppose a movement of the joystick 
occurs corresponding to a rotation about the vy axis. To find the new components 
of iv and kv (jv remains unchanged in this rotation) we must rotate them about vy. 
The vy axis is the axis of rotation and is specified in the world frame by its 
direction cosines. But we are in luck! This problem has already been solved. It is 
known as rotation about an arbitrary axis. Since at this point yv can be pointing 
anywhere in the world frame, the axis is very arbitrary. In fact the solution to the 
problem is given in just the format most useful to us. It is in the form of a matrix 
for rotation by an angle about an axis specified by its direction cosines. Just the 
form we want. The transform can also be used for rotation about any other axis in 
the world frame. All that is required are the three direction cosines. 
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Once constructed, the rotation matrix can be multiplied by iv and kv to yield the 
new components of iv and kv, which then replace the old ones and are also used 
directly to construct the world-to-view transform (there is a catch, which we'll 
discuss shortly). 

For rotation by an angle 8 about an axis with direction cosines nl, n2 and n3 (just 
the last index in the cosine to show it can refer to any axis), the matrix is 

/ nl.nl+(l-nl.nl)cos(5) 

nl.n2(l-cos(8))+n3sin(S) 

\ nl.n3(l-cos(8))-n2sin(8) 

nl.n2(l-cos(8))-n3sin(8) 

n2.n2+(l-n2.n2)cos(8) 

n2.n3(l-cos(8))+nlsin(8) 

nl.n3(l-cos(8))+n2sin(8) 

n2.n3(l-cos(8))-nlsin(8) 

n3.n3+(l-n3.n3)cos(8) 

xv after rotation 
about yv 

,iv after rotation 

zw 

zv after 
rotation 

Figure 11J Rotation of base vector 
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11.5 Accumulating Errors 
Broadly speaking, all the ingredients required to steer the view frame through the 
world frame controlled by joystick movements are in place. Let us lay out the 
algorithm as it stands at the moment: 

• movement of the joystick specifies a rotation of the view unit vectors about one 
of the view frame axes, 

• construct the rotation matrix to rotate the other two unit vectors about this axis 
and replace them with their new components, 

• use the components of the unit vectors, now called direction cosines, to 
construct the world-to-view transform, 

• perform the transform and display the picture 

• and repeat the cycle. 

This is all O.K. and it works. For a while. 

Eventually it will lead to a degenerating picture, or worse a chaotic mess, because 
of accumulating errors. As it stands the program has a built-in pathological 
self-distruct. Because calculations are done in integer arithmetic, and sines and 
cosines are calculated to an accuracy no better than 1 in 16384, given enough 
transforms, large errors will accumulate in the unit vectors and, as a consequence, 
the world-to-view transform. In life nothing is perfect and this is a good example 
of that adage. In addition, the algorithm has feedback in that joystick movements 
are made on the basis of the picture on the screen that is generated, in turn, from 
the transform constructed from the joystick movements. This has all the ingredients 
necessary to create chaos, and so it does. 

In order to beat the accumulation of errors, the cycle of error accumulation must be 
broken. This is achieved by regenerating the base vectors afresh each time. This 
requires more work but it solves the problem. Figure 11.6 shows the stages in the 
regeneration of the view frame unit vectors. 

The vectors that matter most are kv, the one that points in the direction of motion 
and iv, the pointer to the "up" direction. Without these two it is not possible to 
define either the direction of motion or which way is up as far as the pilot is 
concerned. Let's suppose that, because of errors in the last transform, we have 
three unit vectors iv', jv' and kv' which are slightly wrong. The errors will result 
in the base vectors not being at right-angles to each other and not having size equal 
to unity. As a first step, the vector kv' is normalised, i.e. its magnitude is made to 
be unity. It becomes kv. This at least ensures that if its direction is slightly wrong, 
its size isn't. The only effect a slightly wrong direction will have is that the view 
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will be slightly in error, but that hardly matters since the view is being constantly 
adjusted by the joystick anyway. Second, the vector cross product of kv and iv' is 
taken in order to generate a new vector at 90 degrees to them both. A vector cross 
product has just this property (see Appendix 6). This new vector is in the direction 
that jv would have if it weren't in error. The new vector is then normalised i.e. its 
magnitude is made to be 1, and it becomes the new jv. Third, the vector cross 
product of the new kv and the new jv is taken, and normalised, in order to 
generate a new iv. In this way all three unit vectors are regenerated each frame and 
errors do not accumulate (it is interesting to remove the regeneration stage in the 
example program and watch the disintegration take place). 

Figure 11.6 Regeneration of base vectors 

The components of the new unit vectors then become the components of the 
viewing transform matrix and the cycle is repeated. 

The technical details are discussed as they appear in the example programs. 
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11.6 Clipping in 3D 
No part of an object which lies behind the view plane (zv < 0) must be drawn. If 
this is attempted, the program will not crash but what appears on the screen will be 
garbage. This is because the polygon drawing routines expect to see the edge list 
of vertices go clockwise round the perimeter of a polygon and this will be wrong 
for polygons projected backwards onto the view plane. In addition, objects that lie 
too far from the view plane should not be drawn either. This is because nothing 
can be drawn smaller than a pixel, and very distant objects reduce to an incoherent 
cluster of pixels. 

Besides these obvious cases, there is no point in wasting time on objects that lie 
too far outside the field of view. This field of view is defined by the frustum 
(truncated pyramid) defined by the line of sight from the view point to the 
viewport boundaries. This is illustrated in Figure 11.7. 
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Figure 11.7 Windowing im 3D 

In a more leisurely application it would be possible to clip polyhedra to the 
boundary of the frustum in a 3D generalisation of the way polygons have been 
clipped to the screen window. In this application that would be too time 
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consuming. Here, the centre of symmetry (Oox,Ooy,Ooz) is used to locate objects 
in the field of view and the angle of the frustum is increased to lie beyond the 
screen limit. This means that some time is wasted drawing distant objects which 
cannot be seen, but objects that are close up are not abandoned the instant their 
centres pass beyond the field of view. They are marked as visible but only part 
will appear on the screen as a result of screen clipping. 

The top and base of the frustum are called the hither and yon planes. In the 
example program they are defined by the equations zv=100 (hither) and zv=2000 
(yon). The sides of the frustum of the field of view, are defined (where the 
viewport centre coincides with the view frame origin) by the planes 

zv + 100 = xv side A 

zv + 100 = -xv side B 

(1.2).(zv + 100) = yv side C 

(1.2).(zv+ 100) = -yv sideD 

but the actual sides used in the program extend beyond this limit, for reasons 
explained above, and are described by 

8*(zv + 100) = ±xv sides A and B 

8*(zv + 100) = ±yv sides C and D 

11.7 Velocity of the Observer 
The observer (you) does not only use the joystick to do rotations. The observer 
also has a velocity that may be changing as time passes. To include velocity, all 
that has to be done is to increment the observer's position in the world frame in 
proportion to the velocity. The velocity is a vector, so it has direction as well as 
size - speed is the magnitude of the velocity. The procedure is to change each 
component of the observer's position, each frame, by an amount proportional to 
the speed times the relevant component of the base vector kv. 

In other words, if the view frame is pointing only in the direction of the zw axis, 
only Ovz should be incremented each time. On the other hand if the view frame is 
pointing along the xw axis, only Ovx should be incremented each time. For 
anything between, Ovx, Ovy and Ovz should be incremented in proportion the 
components of kv in those directions. This ensures that the direction in which the 
observer is looking is the direction of motion. The details are explained in the 
example program. 
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11.8 Example Programs 
In this program it is possible to fly round the ST cube. The program starts with the 
cube at mid-screen and with the observer stationary. Pressing f2 causes the view 
frame to move towards the cube at constant speed (pressing fl causes it to retreat). 
Thereafter motion is controlled by the joystick. It is possible to fly past the cube 
and then do an about turn to return to it. Because of 3D clipping, the cube is not 
displayed if it comes closer than 100 or is farther away than 2000 or is outside the 
field of view (see above). Motion can be stopped by pressing f6 and the program 
aborted by pressing f7. 

11.8.1 wrld_vw.s 

This is the control program. Much of it is similar to that of the previous chapter. It 
draws an ST cube that can be flown around under the control of the joystick. This 
time the joystick performs rotations about the axes of the view frame, i.e. the pilot. 
When the joystick is pulled back the viewer looks upwards into the world and if 
there is forward motion he/she follows a rising trajectory. Other motions of the 
joystick produce corresponding motion as if the viewer were flying through the 
world frame. In this way it is possible to fly past an object and then sweep through 
an arc to return to it. 

The program follows the sequence described above. First the view frame base 
vectors are initialized. Following this the joystick is read and immediately the view 
frame unit vectors in the world frame are rotated. Then the keyboard is read to see 
if the speed has changed. Following this the new position of the view frame in the 
world frame is calculated from the speed and the view frame z-axis base vector kv 
which is now pointing along the new direction of motion. In motion that is not in a 
straight line, the velocity is changing all the time (the velocity is a vector and so it 
can change if its direction changes even if its size, the speed, doesn't). Finally the 
unit vectors are themselves regenerated to avoid accumulating errors and passed on 
directly as the elements of the world-to-view transform before drawing the picture 
of the ST cube. 

The function keys fl and f2 are reverse and forward respectively. f6 is stop and f7 
returns to the calling program. Be careful to press the keys lightly and not hold 
them down since the keyboard buffer is not cleared between frames. 

There are no subtleties such as inertia in the motion but these could be 
incorporated along the lines described in the previous chapter. 

11.8.2 core_06.s 

Here is where all the work is done. The subroutine dircosines regenerates the base 
vectors and passes the new values to the viewing transform matrix. To do the 
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regeneration requires vector cross products and normalisation (i.e. scaling the size 
of the vector to unity). To normalise a vector requires dividing each of its 
components by the magnitude of the vector, which must be calculated as the 
square root of the sum of the squares of the components. This is dealt with using 
the nrm_yec routine used previously for the illumination calculation. 

In the subroutine in Joy, the joystick is read and action taken immediately to rotate 
the view frame base vectors about an axis in the world frame, which here is one of 
the base vectors, but could be any axis defined by its direction cosines. The matrix 
for rotation is constructed in v_rot_matx. The elements of this are quite large but 
the overall work is minimised by calculating pairs of elements at a time due to the 
similarity of elements with their row and column indices interchanged. 

In vel_adj the new direction of motion, which is the direction pointed to by the kv 
vector, is combined with the speed to produce a displacement of the view frame. 
What this amounts to is simply multiplying the components of kv by the speed and 
adding them to Ovx, Ovy and Ovz, the current value of the view frame origin in 
the world. 

The test for visibility of objects follows the criteria explained above, where the 
object frame origin (Oox,Ooy,Ooz) is examined to see if it lies in the frustum 
defined as the field of view. To do this, the origin itself is first transformed into 
the view frame where it becomes (Vox,Voy,Voz). 

One final routine, scrn_adj, is included to reset the centre of the screen at the 
origin of the world frame. This is not the same as simply moving the view frame 
in the world frame since it affects the appearance of perspective. Having the view 
frame centred on the screen is more natural to "flying around in space" 
experiences. 

11.8.3 bss_06.s 

This contains the few new variables introduced in this section: the base vectors and 
the rotations resulting from movement of the joystick. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* wrld_vw.s * 
* Joystick control of the view frame * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SECTION TEXT 
opt d+ 
bra main 
include systm_02.s screens and tables 
include systm_03.s joystick 
include systm_04.s set up screens, palette, joystick 
include core_06.s new subroutines 

set up screens etc 
main: 

bsr set_up 
* transfer all the data 

bsr transfer 
move.w oncoords,vncoords 
move.w vncoords,wncoords 

* Initialise dynamical variables 
move.w #0,Ovx view frame 
move.w #o,Ovy starts off 
move.w #-200,Ovz 200 behind world frame 

* Set up view frame base vectors 
* 1. iv 

jv 

* 3. kv 

lea 
move.w 
clr.w 
clr .w 

lea 
clr.w 
move.w 
clr.w 

lea 
clr.w 
clr.w 
move. w 

iv,a0 
#$4000,(a0)+ 
(a0) + 
(a0) 

jv,a0 
(a0) + 
#$4000,(a0)+ 
(aO) 

kv,a0 
(a0) + 
(a0) + 
#$4000,(aO) 

align 
view 
frame 
axes 

with 
the 
world 
frame 

axes 

clr.w 
clr.w 
clr.w 
bsr 
bsr 

speed 
screenflag 
viewflag 
clearl 
clear2 

loop4: 
* Switch the screens each time 

tst.w screenflag 

screen_l: 

beq 
bsr 
bsr 
clr.w 
bra 
1: 
bsr 
bsr 
move.w 

screen_l 
draw2_displ 
clear2 
screenflag 
screen_2 

drawl_disp2 
clearl 
#1,screenflag 

start at rest 
0=screen 1 draw, l=screen 2 draw 

clear the screens 

round 
screen 1 or screen2? 
draw on screen 1, display screen2 
draw on screen 2, display screenl 
but first wipe it clean 
and set the flag for next time 

draw on 1, display 2 
but first wipe it clean 
and set the flag for next time 
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screen_2: 
* Look for changes in the view frame angles. 

bsr in_joy read joystick and rotate the view frame 
* See if the function keys have been pressed to change the speed. 

bsr key_in 
* Adjust to new velocity. 

bsr vel_adj 
* Recalculate the view frame base vectors and set up the world-view 
* transform matrix. 

bsr dircosines 
* See if the object is within the visible angle of view. 

bsr viewtest 
tst.b viewflag is it visible? 
beq loop4 no, try again 

* Construct the compound object from the same face at different positions. 
how many parts in the object 

list of instance angles for each part 
ditto displacements 

save the count 
next otheta 
next ophi 
next ogamma 
next displacements 

move.w 
subq 
lea 
lea 

nparts,d7 
#l,d7 
inst_angles,aO 
inst_disp,al 

* Do one face at a time 
instance: 

move.w 
move.w 
move.w 
move.w 
move.w 
move.w 
move.w 
movem.1 
bsr 
bsr 
bsr 
bsr 
bsr 
bsr 
movem.1 
move.w 
dbra 
bra 

d7,-(sp) 
(a0)+,otheta 
(aO)+,ophi 
(a0)+,ogamma 
(al)+,Oox 
(al)+,Ooy 
(al)+,Ooz 
aO/al,-(sp) 
otranw 
w_tran_v 
illuminate 
perspective 
scrn_adj 
polydraw 
(sp)+,aO/al 
(sp)+,d7 
d7,instance 
loop4 

save position in list 
object to world transform 
world to view transform 
if it's not hidden find the shade 
perspective 
centre window 
draw this face 
restore pointers 
restore the parts count 
for all the parts of the object 
draw the next frame 

SECTION DATA 
include data_03.s 
include data_05.s 
SECTION BSS 
include bss_06.s 

END 
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* * * * * * * * * * * * * * * * * * 

* * * * 

core_06.s 
Subroutines for Chapter 11 

* * * * * * * * * * * * * 

include core_05.s 

dircosines: 
* Find the direction cosines for the transform from the world frame 
* to the view frame. These are components of the view frame base 
* vectors in the world frame. To avoid accumulating errors they 
* are regenerated and normalised to a magnitude of 2"14. 

lea iv,aO here 
lea jv,al they 
lea kv,a2 are 

* First kv is normalised 
move.w (a2),d0 
move.w 
move.w 
bsr 
move.w 
move.w 
move.w 

2(a2),dl 
4(a2),d2 
nrm_vec 
d0,(a2) 
dl,2(a2) 
d2,4(a2) 

normalise it 
the 
new 
components 

lea 
lea 
bsr 
lea' 
move 
move 
move 

, w 
,w 
.w 

jv,a2 
kv,aO 
AxB 
iv,al 
dO,(al) 
dl,2(al) 
d2,4(al) 

Second vj is calculated from the cross product of vk 
and vi using the subroutine AxB: requires A pointer in a2 
B pointer in aO 

bsr AxB 
move.w dO,(al) regenerated 
move.w dl,2(al) components 
move.w d2,4(al) 

Finally the cross product of kv and jv is used for iv 

regenerated iv 

* The components uf the view frame base vectors in the world frame 
* are the elements of the transform matrix required for the world-
* to-view transform. 

pointer to the w-to-v matrix 
here are 
the view base 
vectors 
and 
here 
are 
the 
matrix 
elements 
of the 
view 
transform 

lea 
lea 
lea 
lea 
move.w 
move.w 
move.w 
move.w 
move.w 
move.w 
move.w 
move.w 
move.w 
rts 

w_vmatx,aO 
iv,al 
jv,a2 
kv,a3 
(al)+,(aO)+ 
(al)+,(aO)+ 
(al)+,(aO)+ 
(a2)+,(a0)+ 
(a2)+,(a0) + 
(a2)+,(a0)+ 
(a3)+,(a0)+ 
(a3)+,(a0)+ 
(a3)+,(a0)+ 
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AxB: 
* calculate the vector product AxB: pointer to A in a2, pointer to B 
* in aO. Returns x-cmpt in do, y-cmpt in dl, z-cmpt in d2. 
first component 

Ay 
Bz*Ay 
Az 
By*Az 
Bz*Ay-By*Ax 

2(a2) 
4(a0) 
4(a2) 
2(a0) 
dl,dO 

,d0 
,d0 
,dl 
,dl 

move.w 
muls 
move.w 
muls 
sub. 1 

* second component 
move.w 4(a2),dl 
muls 
move.w 
muls 
sub. 1 

* third component 
move.w (a2),d2 
muls 
move.w 
muls 
sub.l 

(aO),dl 
(a2),d2 
4(a0),d2 
d2,dl 

2(a0),d2 
2(a2),d3 
(a0),d3 
d3,d2 

Az 
Bx*Az 
Ax 
Bz*Ax 
Bx*Az-Bz*Ax 

Ax 
By* Ax 
Ay 
Bx*Ay 
By*Ax-Bx*Ay 

* reduce them to < word size by dividing by 2A14 
move 
lsr.l 
lsr.l 
lsr.l 

* normalise them 
bsr 
rts 

#14,d7 
d7,d0 
d7,dl 
d7,d2 
n 
nrmvec 

back to caller 

* Do a rotation of the view frame about one of the view frame axes 
* in the world frame. The direction cosines for the axis are 
* the base vector components. 
rot_vx: 
* A rotation about the view frame x-axis, vx 

lea iv,aO the axis of rotation 
move.w vxangle,dl the angle to rotate 
bsr v_rot_matx construct the rotation matrix 
jv and kv are affected 

transform this first 
only 

lea 
bsr 
lea 
bsr 
rts 

]v,aO 
rot_view 
kv,aO 
rot_view 

transform this second 

rot_vy: 
* A rotation about the view frame y-axis, 

lea jv,aO 
move.w vyangle,dl 

vy 

bsr vrotmatx 
* only iv and kv are affected 

lea 
bsr 
lea 
bsr 
rts 

iv,aO 
rot_view 
kv,aO 
rot_view 

rot_vz: 
* A rotation about the view frame z-axis, vz 

lea kv,aO 
move.w vzangle,dl 
bsr v_rot_matx 
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* only iv and jv are affected 
lea 
bsr 
lea 
bsr 
rts 

IV, aO 
rot_vdew 
jv,aO 
rot_view 

rot_view: 
* Rotate a view 
* Since it is a 
* which are the 

moveq 
lea 
link 

rot_vwl move.w 
move.w 
move.w 
muls 
muls 
muls 
add.l 
add.l 
lsl.l 
swap 
move.w 
dbra 
move.w 
move.w 
move.w 
unlk 
rts 

frame base vector. The vector is pointed to by aO. 
unit vector it is specified by three components 
direction cosines (nx,ny,nz) 
#2,d6 3 rows in the transform matrix 
vrot_matx,a3 init matrix pointer 
a6,#-6 3 words to store temporarily 
(aO),dO nx component 
2(a0),dl ny 
4(a0),d2 nz 
(a3)+,d0 nx*Mil 
(a3)+,dl ny*Mi2 
(a3)+,d2 nz*Mi3 
dl,dO add them 
d2,d0 
#2,do divide by 2A14 
do the new component 
d0,-(a6) save it 
d6,rot_vwl repeat for three components 
(a6)+,4(a0) off my stack into z 
(a6)+,2(a0) y 
(a6)+,(a0) x 
a6 release frame pointer 

* Construct the rotation matrix for rotations about an arbitrary axis 
* specified by a unit vector with components (direction cosines) 
* (nl,n2,n3') 
* Entry: pointer to direction cosines (nl,n2,n3), in aO, 
* angle of rotation in dO.w 

pointer to the rotation matrix 
find the rotation sine and cosine 
sine delta 
cos delta 

1 
nl 
nl*n2 

v_rot_matx: 
lea 
bsr 
move.w 
move.w 

* elements M12 
move 
move 
move.w 
muls 
lsl.l 
swap 
sub.w 
move 
muls 
lsl.l 
swap 
move 
move.w 
muls 
lsl.l 

vrot_matx,a6 
sincos 
d2,d6 
d3,d7 

and M21 
#16384,d5 
d5,d0 
(aO),dl 
2(a0),dl 
#2,dl 
dl 
d7,d0 
d0,d4 
dl,dO 
#2,dO 
dO 
d0,d2 
4(a0),dl 
d6,dl 
#2,dl 

1-cosdelta 
save it 

nl*n2(1-cosdelta) 

n3 
n3*sindelta 
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swap 
sub.w 
move.w 
add.w 
move.w 

* elements M13 
move 
muls 
lsl.l 
swap 
muls 
lsl.l 
swap 
move 
move.w 
muls 
lsl.l 
swap 
add.w 
move.w 
sub.w 
move.w 

* elements M23 
move 
muls 
lsl.l 
swap 
muls 
lsl.l 
swap 
move 
move.w 
muls 
lsl.l 
swap 
sub.w 
move.w 
add.w 
move.w 

* element Mil 
move.w 
muls 
lsl.l 
swap 
move 
sub.w 
muls 
lsl.l 
swap 
add.w 
move.w 

•element M22 
move. w 
muls 
lsl.l 
swap 
move 
sub.w 
muls 

dl 
dl,dO 
d0,2(a6) 
dl ,d2 
d2,6(a6) 
and M31 
d4,d0 
(aO),d0 
#2,dO 
dO 
4(a0),d0 
#2,d0 
dO 
d0,d2 
2(a0),dl 
d6,dl 
#2,dl 
dl 
dl,dO 
d0,4(a6) 
dl,d2 
d2,12(a6) 
and M32 
,d4,d0 
2(a0),d0 
#2,dO 
dO 
4(a0),d0 
#2,dO 
do 
d0,d2 
(a0),dl 
d6,dl 
#2,dl 
dl 
dl,dO 
d0,10(a6) 
dl,d2 
d2,14(a6) 

(aO),dl 
dl,dl 
#2,dl 
dl 
d5,d2 
dl,d2 
d7,d2 
#2,d2 
d2 
d2,dl 
dl,(a6) 

2(a0),dl 
dl,dl 
#2,dl 
dl 
d5,d2 
dl,d2 
d7,d2 

nl*n2(l-cosdelta)-n3*sindelta 
M12 
nl*n2(l-cosdelta)+n3*sindelta 
M21 

1-cosdelta 
nl*(l-cosdelta) 

nl*n3(1-cosdelta) 

n2 
n2*sindelta 

nl*n3(l-cosdelta)+n2*sindelta 
Ml 3 
nl*n3(1-cosdelta)-n2*sindelta 
M31 

1-cosdelta 
n2*(1-cosdelta) 

n2*n3(1-cosdelta) 

nl 
nl*sindelta 

n2*n3( 1-cosdelta)-nl*sindelta 
M23 
n2*n3(1-cosdelta)+nl*sindelta 
M32 

nl 
nl*nl 

/2"14 
1 
l-nl*nl 
(l-nl*nl)cosdelta 

nl*nl +(l-nl*nl)cosdelta 
Mil 

n2*n2 

/2~14 
1 
l-n2*n2 
(l-n2*n2 ).cosdelta 
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lsl.l 
swap 
add .w 
move .w 

•element M33 
move .w 
muls 
lsl.l 
swap 
move 
sub.w 
muls 
lsl.l 
swap 
add.w 
move.w 
rts 

#2,d2 
d2 
d2,dl 
dl,8(a6) 

4(a0), 
dl,dl 
#2,dl 
dl 
d5,d2 
dl,d2 
d7,d2 
#2,d2 
d2 
d2,dl 

dl 

dl,16(a6) 

n2*n2 +(l-n2*n2)cosdelta 
M2.2 

n3 
n3*n3 

/2"14 

l-n3*n3 
(l-n3*n3)cosdelta 

n3*n3 +(l-n3*n3)cosdelta 
M33 

* The the world coords are transformed to view coords 
* Remember matrix elements are *2'14 and must be corrected at the end 
w_tran_v: 

the number 
any to do ? 

if not quit 
or this is the count 

the 
source 
coords. 
the 
destination 

save this address-short of regs. 
3 words to store 

3 rows in the matrix 
init matx pointer 

wx 
wy 
wz 

wx-Ovx 
wy-Ovy 
wz-Ovz 

wx*Mil 
wy*Mi2 
wz*Mi3 

move.w 
ext.l 
beq 
subq.w 

lea 
lea 
lea 
lea 
lea 
lea 
exg 
link 

w_tranvl: 
moveq.1 
lea 

* calculate the 
w_tranv2: 

move.w 
move.w 
move.w 

sub.w 
sub.w 
sub.w 

muls 
muls 
muls 

add.l 
add.l 
lsl.l 
swap 
move.w 
dbra 

wncoords,d7 
d7 
w tranv3 
#l,d7 

wcoordsx,aO 
wcoordsy,al 
wcoordsz,a2 
vcoordsx,a3 
vcoordsy,a4 
vcoordsz,a5 
a3,d3 
a6,#-6 

#2,d6 
w_vmatx,a 3 
next vx, vy 

(aO),d0 
(al),dl 
(a2),d2 

Ovx,d0 
Ovy,dl 
0vz,d2 

(a3)+,d0 
(a3)+,dl 
(a3)+,d2 

dl,dO 
d2,d0 
#2,do 
dO 
d0,-(a6) 
d6,w_tranv2 

wx*Mil+wy*Mi2+wz*Mi3 

/2A14 
save it 
repeat for 3 elements 
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move.w (a6)+,(a5)+ off my stack becomes vz 
move.w (a6)+,(a4)+ becomes vy 
exg a3,d3 restore address vx, save matx pointr 
move.w (a6)+,(a3)+ becomes vx 
exg a3,d3 save address vx, restore matx pointr 
addq.l #2,a0 point to next wx 
addq.l #2,al wy 
addq.l #2,a2 wz 

dbf 
unlk 

w_tranv3: 
rts 

d7,w_tranvl 
a6 

repeat for all ocoords 
close frame 

and quit 

in_]oy: 
* Read the joystick and update the variables accordingly 
* The data packet containing the FIRE bit (7) and the position 
* bits (0-2) is saved in the variable joy_data 

clr .w 
move.w 

more_joy: 
bsr 
dbf 
move.w 
move 
andi.w 
bne 
andi.w 
bne 
rts 

dir_joy lea 
l s l .w 
move.1 
jmp 

table_jump: 
d e l 
d e l 

jy_up move.w 
bsr 
r t s 

jy_down move.w 
bsr 
r t s 

jy_lef t move.w 
bsr 
r t s 

jy_r igh t : 
move.w 
bsr 
rts 

jy_up_left 
jy_down_left 
jy_up_right 
j y_down_r i ght 
jy_fire_press: 

nove.w 
rts 

joy_data 
#10,d6 

rd_joy 
d6,more_joy 
joy_data,d0 
d0,dl 
#$f0,d0 
jy_fire_press 
#$f,dl 
dir_joy 

table_jump,aO 
#2,dl 
0(a0,dl.w),a0 
(aO) 

read joystick 
give it time to think 
here's the result 
save•it 
fire pressed ? 
yes 
what direction is the stick? 

nothing doing 
base address 
offset into jump table 
the jump address 
go for it 

0, jy_up, jy_down,0, jy_left, jy_up_left, jy_down_left 
0,jy_right,jy_up_right,jy_down_r ight 
#350,vyangle 
rot_vy 

#10,vyangle 
rot_vy 

#10,vxangle 
rot_vx 

rotate up 
about vy axis 

rotate down 
about vy axis 

rotate left 
about vx axis 

#350,vxangle 
rot_vx 

rts 
rts 
rts 
rts 

#l,fire 

rotate right 
about vx axis 

do nothing for now 
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* Set the velocity components 
_ad j: 

lea 
moveq.1 
move.w 
lsl.w 
move 
move 
muls 
lsr.l 
add.w 
muls 
lsr.l 
add.w 
muls 
lsr.l 
add.w 
rts 

kv,aO 
#14,d7 
speed,dO 
#3,do 
dO,dl 
d0,d2 
(aO),d0 
d7,d0 
dO,Ovx 
2(a0),dl 
d7,dl 
dl,Ovy 
4(a0),d2 
d7,d2 
d2,Ovz 

ready to 

scale it 

v*VZx 
/2-14 
xw speed 
v*VZy 

zw speed 
v*VZz 

divide by 2*14 

component 

component 

viewtest: 
* Test whether the primitive is visible. See whether its centre 
* (Oox,0oy,0oz) lies within the angle of visibility. 
* Oox, Ooy and Ooz are transformed to view coords then tested. 
* Remember matrix elements are *2A14 and must be corrected at the end 

tranOv 

moveq.1 #2,d6 
lea 
link 
move.w 
addi.w 
move.w 
addi.w 
move.w 
addi.w 
sub.w 
sub.w 
sub.w 
move 
move 
move 
muls 
muls 
muls 
add.l 
add.l 
lsl.l 
swap 
move.w 
dbra 

move.w 
move.w 
move.w 
move.w 
move. w 
move.w 
unlk 

w vmatx,a3 
a6,#-6 
0ox,d3 
#50,d3 
Ooy,d4 
#50,d4 
0oz,d5 
#50,d5 
Ovx,d3 
Ovy,d4 
0vz,d5 
d3,d0 
d4,dl 
d5,d2 
(a3)+,d0 
(a3)+,dl 
(a3)+,d2 
dl,d0 
d2,d0 
#2,dO 
dO 
d0,-(a6) 
d6,tranOv 

(a6)+,d3 
(a6)+,d2 
(a6)+,dl 
d3,Voz 
d2,Voy 
dl,Vox 
a6 

3 rows in the matrix 
init matx pointer 
3 words to store temporarily 
Oox the 

Ooy 

Ooz 

object centre 

Oox-Ovx relative to the view frame 
Ooy-Ovy 
Ooz-Ovz 
restore 

*Mil 
*Mi2 
*Mi3 

*Mil+*Mi2+*Mi3 

/2A14 
save it 
repeat for 3 elements 

off my stack becomes Voz 
becomes Voy 
becomes Vox 

close frame 
* Clip Ovz. For visibility must have 100<Voz<2000 

cmpi.w #100,d3 test (Voz-100) 
bmi invis fail 
cmpi.w #2000,d3 test(Voz-2000) 
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bpl invis fail 
* Is it within the allowed angle of view? 

addi.w #100,d3 Voz+100 
add.w d3,d3 *2 
add.w d3,d3 *4 
add.w d3,d3 *8 

* first test horizontal position 
tst.w d2 is Voy +ve or -ve? 
bpl pos_y it's +ve 
neg.w d2 it's -ve so make it +ve for test 

pos_y cmp.w d2,d3 Voy is +ve, test(8*(Voz+100)-Voy) 
bmi invis Voy too big 

* second test vertical position 
tst.w dl Vox 
bpl pos_x it's +ve 
neg.w dl make it +ve 

pos_x cmp.w dl,d3 test(8(Voz+100)-Vox) 
bmi invis too high 

* It is visible 
st viewflag set the flag all l's 
rts 

* It's invisible, don't draw it 
invis sf viewflag set the flag all 0's 

rts 

scrn_adj: 
* adjust screen coords so that view frame (0,0) is at the centre 

move.w vncoords,d7 the number 
beq adj_end quit if none 
subq.w #l,d7 count 
lea scoordsy,a0 y coords pointer 

adj_loop: 
subi.w #100,(a0)+ adjust next ys 
dbra d7,adj_loop for all points 

adj_end rts 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* bss_06.s * 
* Variables for Chapter 11 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

include bss_05.s 
* variables for rotating the view frame 

view frame base vector components in world frame 

rotation angles about these axes 

9 rotation matx. about an arbitrary axis 

1 
object centre in view frame 

iv ds.w 
jv ds.w 
kv ds.w 
vxangle ds.w 
vyangle ds.w 
vzangle ds.w 
vrot matx 
* visibility 
viewflag 
Vox ds. w 
Voy ds. w 
Voz ds.w 

3 
3 
3 
1 
1 
1-
ds.w 

ds.w 
1 
1 
1 



A World Scene 
In this chapter a world containing many objects is constructed. 

The transition from a single graphics primitive to a scene containing several brings 
a host of new problems. For example, in the complex scene of many objects, 
spatial relationships must be preserved; objects in the foreground must not be 
obscured by those in the distance. Some form of depth sorting is required that 
orders objects for drawing on the basis of their distance from the observer. 

Just as important is a sound strategy for ignoring all objects outside the immediate 
environment of the observer. In a world consisting of hundreds of objects spread 
out over a landscape, it would be poindessly time consuming to attempt to draw 
them all. As in real life, the observer need only be concerned with those that are 
close by and affect current decisions. We examine these aspects of the multi-object 
world in turn. 

12.1 A Database 
Associated with each object in the complex world will be a list of its attributes 
(type, position, colour, rotation angles, etc.), and the set of lists of all the objects is 
a database. It contains all information needed to draw the view seen by the 
observer. Exacdy how this database is laid out in memory is very important in 
determining the speed with which it can be accessed for graphics. 

To explain this point further, consider the choices available in ordering the objects 
in the database. Objects could be entered in the database in order of increasing x 
(world) coordinate or increasing y coordinate or increasing z coordinate, or indeed 
at random with no spatial order whatsoever. Objects could be listed according to 
their type, colour or any one of their attributes. Of all the possibilities there will be 
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those that provide fast access to those objects which are going to be drawn, i.e. 
those in the immediate vicinity of the observer. It is clear that some kind of 
ordering in position is needed to achieve this. 

12.1.1 A Map 

The position of an object in the world is specified by its three coordinates in the 
form (xw,yw,zw). It is clear that ordering the database in any one single coordinate 
(xw or yw or zw) alone will not provide an immediate picture of where each object 
is in relation to its neighbours. 

What is needed is a database where the objects are arranged in 3D order. This is 
difficult to visualise until it is realised that what is being described is nothing more 
than a map. The similarity to an ordinary route map is fairly exact for the world 
we will construct which consists of objects sitting on a surface, just like the surface 
of the Earth. The advantage of a map of this kind, (which is a 2D array) is that all 
the objects that lie in a particular region are immediately obvious in their spatial 
relations. 

i 

w> 

S: 
• • . 

'.|.\ 

s is tile y 

/ 

Figure 12.1 Layout of world 'tiles' 
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What is actually done is shown in Figure 12.1. The world space is divided into a 
16*16 array of "tiles" (just like on the bathroom wall) each one of which has the 
dimensions 256*256. Each tile is a unit of space to be considered for display. It 
can contain a collection of objects; in the example program it contains just one, for 
simplicity. Of course this is not a very extensive world, but there is nothing in the 
method which limits it to these dimensions; it could be a big as you like and the 
individual tiles as small as you like. But, "wrap" occurs so that when the observer 
strays off any edge he reappears on the opposite side; in this way the world is 
effectively "infinite", like a sphere. For our purposes a 16*16 tile world is 
sufficient to illustrate the method. Each tile defines a region of space which, for 
the purposes of display, is a single entity. To construct the view seen by the 
observer, all that has to be done is to find her/his position on the tile grid, select 
the nearest-neighbour tiles, find which ones are in front of the observer and draw 
the objects placed on them. 

How can this 2D array be laid out in the ID contiguous RAM? There is nothing 
new here. The screen itself is a 2D world which is represented in memory as a ID 
database. The pixel is analogous to a tile and the four bits which specify its colour 
are analogous to the data list specifying the attributes of the object on the tile. An 
arrangement of information in this way, where each element is linked to its 
adjacent ones is called a linked list. In this case, the links are permanent and 
implied by the physical position in the array. The world database is thus a list of 
256 bytes, each one holding the attributes of one tile in the 16*16 tile world. In the 
example program it is held in the file data_08.s. The list starts at map_base and 
every 16th byte starts a new tile in the z direction. The tile position in the list, 
modl6, represents the 16 y values. In this model the world is flat and x does not 
vary. 

There is very little information needed for the attributes, since the position in space 
is automatically included by the tile's position in the list. The first nibble gives the 
colour of the background (1-15) and the second gives the type of object which is to 
sit on the tile. At present only six are possible (listed in data_06.s), but in principle 
there is no limit. 

12.2 Sorting 
As mentioned above, once the visible objects in the near vicinity to the observer 
have been identified there is the problem of ordering them for drawing so that the 
more distant ones are drawn first. This is commonly known as the painter's 
algorithm, since in painting a picture the last brush stroke overlays earlier ones. 

There are many well known algorithms for sorting data in order. Most of the more 
exotic varieties have been developed to handle large databases with a large number 
of entries (records). In our case it is necessary to sort a small number (<16) of 
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records in depth order. Sorting at this level is efficiently done by one of the 
simplest sorting methods, called a bubble sort. Note that at this stage we are 
referring to the attributes and other accumulated data about the objects to be drawn 
as records. A record is a set of data of different types where each data type is 
confined to specific parts or "fields". This is how data for visible objects is 
carried around in the example programs. A record is constructed containing all the 
relevant data to draw in the tile and during depth sorting the records are actually 
sorted like a deck of cards. That way, although the depth field is the basis for 
sorting, it carries with it other information for drawing, reducing the retrieval of 
additional data at a later stage to a minimum. Of course, to avoid slowing things 
down too much it's important to keep the record short. In the example program a 
record consists of 2 long words divided into 7 fields. 

12.2.1 A Bubble Sort 

Let's illustrate the bubble sort by direct example from the program. In this we have 
a short list of records for the visible objects to be displayed. The field on which the 
sort is based is the second word in the record. It is the distance of the object from 
the origin of the view frame in the positive z direction, i.e. the direction in which 
the viewer is looking. The other fields are unimportant for the sorting. Figure 12.2 

Figure 12.2 Depth ordering of objects 
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shows a possible arrangement of simple objects in front of the view frame. The 
number on each object is its type, which is the content of the second field on its 
record. A suitable order in which they should be drawn so that objects in the rear 
lie behind those in the forefront is: 2,1,4,5,6,3- But this is unlikely to be the order 
in which the tiles have been retrieved from the database. Let us suppose that they 
have been withdrawn in the order 6,1,3,4,2,5. The sorting now begins. 

The procedure in a bubble sort is to go through the list comparing each entry with 
its successor and making a switch if necessary. In the present case we will order 
the list with the objects to be drawn first at the top of the list, i.e. the list will be in 
the order: distant objects - near objects. In the first sweep, first the first pair 6 and 
1 are examined, found to be in the wrong order and exchanged. At the same time, 
to record that the list was found to be out of order, a flag is set. This leaves 1 as 
the first entry and 6 as the second. Then the next pair 6 and 3 are examined. The 
order here is O.K so no switch is made. This is continued through the entire list. 
Each time a switch is made the flag is set (of course it can only be set once so the 
following swaps do nothing to the flag). The following lines show the progression 
of the first sort: 

6,1,3,4,2,5 start 
1,6,3,4,2,5 1 st pair tested 
1,6,3,4,2,5 2nd 
1,6,4,3,2,5 3rd 
1,6,4,2,3,5 4th 
1,6,4,2,5,3 5th. 

Notice how, like bubbles, the distant objects "float" to the top. 

At the end of the list the flag is tested to see if a switch was made. If so the entire 
list is tested again. This is repeated until a pass is made in which the flag was not 
set, in which case the list in order and the sort is deemed to be complete. 

12.3 The Viewing Transform 
In this chapter we include two different ways of constructing the view seen by the 
observer. The first uses control matrices and is a simpler version of the view 
transform used in the previous chapter. The second is altogether different and 
much simpler; it uses the Euler angles met in Chapter 10 and is widely used in 
elementary flight simulators. It is slightly limited as a consequence of the way the 
angles are defined. We discuss the application of control matrices first. 

12.3.1 Control Matrices 

Let us suppose that we have reached the stage where all the transforms have been 
done to present a scene from the viewpoint of an observer. The vertices of all 
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visible objects will then be given in the frame of reference of the observer, i.e. the 
view frame. If, as a consequence, for example, of a movement of the joystick the 
observer moves his head to the left, all that is required to show the new view is to 
rotate the vertices to the right. Rotation of the observer about any axis in his 
reference frame can be implemented by rotating view frame vertices coordinates in 
the opposite direction. Such a transform is called a coordinate transform since it 
calculates the view seen from a different coordinate system, i.e. the rotated 
coordinate system of the observer. 

So it seems that all that is required to show the view of the observer, as he flies 
through the world, is to multiply the view frame coordinates by the sequence of 
rotation matrices representing his accumulated motion to date. It won't work! First 
a record of the total sequence of rotations would have to be kept and then, for each 
frame, they would have to be multiplied out in order. Not exactly an efficient 
algorithm for fast graphics. After a while the picture would stop altogether as 
hundreds of matrix multiplications were done for each frame. What is the solution? 

The solution to this problem is very similar to the method used in the previous 
chapter where the view frame base vectors were rotated and then used to construct 
the view transform. In this case the procedure is done backwards. At any instant, 
as a result of calculations done to display die previous frame, we know the view 
transform matrix. This is the starting point for the next frame.'The sequence of 
events at the end of the calculations will be to: 1) do the view transform to 
convert vertices to the view frame, 2) do the rotations about view frame axes we 
have been talking about, 3) finally, do the perspective transform and everytiiing 
else that follows. Here is now the solution to the problem. Instead of regarding the 
view transform, (V), and the view frame rotations, (C), as separate transforms, to 
be done to the vertices, (PW), in the world frame in sequence to produce first the 
view frame vertices (PV) and then the rotated vertices (PV). 

(C)(V)(PW) = (C)(PV) = (PV). 

we concatenate (multiply out) (C) and (V) separately beforehand 

to produce a rotated view transform, (V) 

(C)(V)(PW) m (V)(PW) = (PV). 

In this scheme each rotation of the observer is brought about by pre-multiplying 
the view transform by a "control" matrix appropriate to the rotation. The control 
matrices for the separate rotations about the view frame xv, yv and zv axes are: 
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Notice that these are exactly the same as the geometric transforms of Chapter 7 
except that the sine terms have the opposite sign. This is because 

sin(-G) = -sin(9) 

and shows that the coordinate transforms are the same as geometric transforms 
with negative angles, i.e. they correspond to backward rotations. This is saying 
mathematically what we know to be true: rotating the observer's head to the left 
achieves the same end result as rotating the scene to the right (See Appendix 7). 

The physical motions corresponding to the rotations are shown in Figure 12.3. 
They are: yaw (rotation about the x axis), pitch (rotation about the y axis) and roll 
(rotation about the z axis). 

To speed things up the control matrices can be precalculated. If it is accepted mat 
rotations always occur in 1 degree increments then the elements of the matrices 
will be sine(l) and cos(l) (multiplied by 16384 as usual). This is indeed what is 
done in the example program file dat_07.s where angle increments are taken to be 
5, although here rotations only occur about the xv and yv axes. 

There still remains the need to ensure that errors do not accumulate. So, 
remembering that the rows of the view transform can be visualised as the view 
frame base vectors, we regenerate the view matrix rows by vector products as was 
done in Chapter 11. 

The details of all these stages are shown in the example program, wrld_scn. 

12.3.2. Euler Angles 

We have already discussed these in section 10.1.1. Euler angles are a way of 
specifying the orientation of one reference frame with respect to another using only 
three angles but with some restriction as to how the angles are defined. Most 
important is that they specify rotations about different axes in a fixed order. There 
are many combinations possible. The sequence defined below is the one beloved 
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of aeronautical engineers and is called the 321 sequence because it describes 
rotations about the x, y, and z axes in order. These correlate with motions of the 
joystick and so describe yaw (bearing), pitch and roll but note that yaw here, being 
an initial rotation about the world frame axis, wx, is different from that described 
in section 12.3.1. The physical rotations of the observer are shown in Figure 12.3. 

Figure 12.3 Aeronautical terms for viewframe rotations 

Here is the sequence of rotations (displacements have already been subtracted off) 
which carry the world reference frame into the observer's view frame. It is 
illustrated in Figure 12.4. Both frames are coincident to begin with and rotations 
are about view frame axes, wherever they are at the time: 

1. rotate by 0 about the x axis - the same for both frames (yaw) 
2. rotate by <|> about the y axis (pitch) 
3. rotate by y about the z axis (roll) 

The end product is the orientation of the view frame. 

Looking back to section 10.1.1. it will be seen that this is precisely the sequence of 
rotations done there and so the results, in particular the final matrix product, can be 
used directly. The results are illustrated in the example program eulrjcn. 
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Figure 12.4 Rotation sequence ofEuler angles 

12.4 Running Times 

The example program in this chapter allows you to roam around a world 
containing 256 different graphic entities under the control of the joystick as in a 
rudimentary flight simulator. There is no limitation here; a larger world database 
could be constructed with no additional time penalty. A world of this limited size 
has been used because it is sufficient to illustrate the procedures involved without 
involving excessively long listings. 

Because of the serial way the book has introduced the different stages of getting a 
moving picture on the screen, and the manner in which programs have been 
included together to make an overall program of increasing power, there has been 
an inevitable compromise in speed. The final program in this last chapter could be 
rationalised and simplified to become substantially faster. 

12,5 Example Program 

12.5.1 wrld scn.s and eulr scn.s 

There are two main control programs here. They both allow free flight through a 
landscape of moving objects but differ in the type of viewing transform used. In 



A World Scene 185 

one of them, wrld_scri.s, motion is controlled through the joystick and keyboard by 
means of rotations about the instantaneous axes of the observer's coordinate frame. 
In the other, eulr_scn.s the joystick increments or decrements the Euler angles and 
to vary the orientation of the observer's reference frame. The detailed controls are 

wrldjscn: up, down, left, right = joystick 
roll left = fl, roll right =f2 

eulr_scn: up, down, left, right = joystick. 

In both cases the other function keys are: 

reverse=f3, slow forward=f4, fast forward=f5, stop=f6, abort=f7. 

12.5.2 data_06.s 

This is the data file of the graphics primitives, which are simple 3D structures. 
They appear littered about the landscape according to the database in data_08.s 
where the primitive associated with each tile is specified in the low nibble of the 
attribute byte. There are 6 types (0-5) vectored from a jump table at the address 
primitive. There is no limit to the variety or number; to include a new one simply 
add one more label to the jump vectors and fill in the details at the end of the list. 
The primary jump vectors at primitive point to a list of secondary vectors, which 
are the tables of data for each particular type 

For a particular type data is given in a series of lists: 

• the secondary pointers, 

• the intrinsic colours (0 or 1 for 8 shades of 2 colours), 

• the number of faces on each polyhedral object, 

• the list of edge numbers on each face, 

• the list of vertex connections on all faces in order, 

• the three sets of x, y and z coordinates of the vertices, 

• the total number of vertices and 

• the type of rotation which the object is undergoing. 

The type of rotational motion which each type displays is specified in the lowest 
nibble of the high word of the variable 0n (where n is the type number) and the 
low word is used by the program to hold the current angle but appears as 0 in the 
list. The type of rotation is given by the bit which is set in the nibble: 
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bit 0 - rotation about x axis of object frame 

bit 1 - ditto y 

bit 2 - ditto z 

so that any combination of simultaneous rotations can be included. 

12.5.3 data_07.s 

Here are the four control matrices for positive and negative rotations about the 
view frame x and y axes laid out in row order. 

12.5.4 data_08.s 

Here are the 256 bytes which make up the 16*16 tile world unit. In the program, 
wrap-around occurs so that motion beyond the extreme left boundary returns the 
viewer to the right boundary. In this sense, like a sphere, the world is "infinite". 
In each byte the high nibble gives the actual colour of the background ((0-7), no 
illumination) and the high nibble gives the object type (0-15) sitting on the tile. 
Only 6 types are used in the program. The reader can easily invent new ones. 

12.5.5 core_07.s 

The first subroutine in the core, patch_ext first takes the observer's current position 
and normalises it.to lie within the world map. This is.where the wrap-around 
occurs. Following this the location in tile coordinates (Ty.Tz) is calculated by 
dividing by the y and z positions by 256. Remember there are 16*16 tiles spread 
out over the y-z plane. This is the vertical projection of the observer's position 
onto the plane. Then the attributes of the 16 tiles centred about this position are 
retrieved from the database and, for each tile, stored as the first byte of the first 
word in the 4-word record which accompanies each one. The offset of each tile 
from the observer's position is saved in the second byte of the first record word. 
This collection of potentially visible tiles is called a patch. 

Following this a visibility test is done on every tile in the patch. The test here does 
not consider a frustum of visibility, but only whether the centre of the tile lies in 
front of the observer. The central parameter calculated for each tile during this test 
is its distance (zv) in front of the observer. This is also saved as the second word 
in the record for depth sorting later. Less than half the tiles pass the visibility test. 
The visibility sort, next, simply uses a bubble sort to place the records in order of 
depth, that is in order of decreasing distance from the observer. The tiles with 
records at the top of the list will be drawn first since they are farthest away. 

The subroutine which follows, drwjt, sets up the data to draw each tile and its 
resident object in the ordered list of visible tiles, and calls all the earlier 
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subroutines to draw the complete picture. There is a lot going on at this stage. The 
background on each tile is just a cross of a particular colour so that all the tiles 
together define a grid on which the objects sit. Since the background is the same 
for every tile, it is entered directly from the program rather than being stored in a 
data file. Also since it has a fixed colour without varying illumination, there is no 
need to call the time-consuming illumination calculations. 

The data lists for each object are pulled in from the data file and before it is drawn 
its new angle in the world frame is determined for whatever mode of rotation is 
active. 

12.5.6 bss_07.s 

New variables 

12.5.7 systmjOS.s 

Just a few routines to set up the system. In particular the view point is moved back 
a bit to -300 on the zv axis to reduce the perspective distortion and eliminate the 
possibility of parts of objects falling behind the observer, which would not cause 
the system to crash but would produce a display of spectacular garbage as the 
basic drawing routines attempt to cope with drawing backwards. 

Also a bit of a cheat. The ST is being stretched to its limit with this program and it 
helps to speed things up by reducing the size of the window (clip frame) on the 
screen so that the picture is smaller (ever wondered why games show a tiny screen 
surrounded by a lot of static ornamentation looking like a console?). 

12.5.8 core_08.s 

This is the core file for the Euler angle transform. 

12.6 Epilogue 
How far have we got? What's next? 

For a start the overall program can be speeded up considerably by rationalising the 
anomalies caused by the serial way in which programs have been introduced in this 
book. 

There also remains the inclusion of the third party (you, the world scene and the 
alien). So far the graphic entities have been static in the sense that their^volution 
has been determined by their attributes. To give entities life requires that their 
actions evolve independent of the deterministic structure of the program. But there 
is really only one truly random element in this scenario - you, the observer. Hence 
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to create life within the computer it is necessary to make the entities respond to 
your actions. This is of course what happens in all games. Aliens head for the 
target. To invent a third party is no more complicated than has already been done 
in reading the movements of the joystick to follow the motion of the observer. In 
the case of the third party there are no joystick movements, but rather, the response 
to world conditions. 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* wrld_scn.s * 
* A multi-object scene * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* A world scene consisting of various types of graphics primitives 
* in motion. The viewer is free to "fly" to any location. At any 
* position a patch consisting of 4*4 "tiles" is visible. 
* Joystick controls Yaw and pitch. Fl and F2 control roll 
* Don't hold down keys as keyboard buffer is not cleared. 

SECTION TEXT 
opt d+ 
bra main 
include systm_05.s 
include core_07.s 

main: 
* Initialize the system. 

bsr init_vars initialise view transform 
bsr flg_init initialize flags 

loop: 
* Read input and make adjustments. 

bsr swap_scn swap the screens 
bsr dircosines regenerate view matrix 
bsr joy_read see which direction to move 
bsr in_key update the speed 
bsr adj_vel adjust the velocity 

* Draw the scene 
bsr scne_drw everything to complete the picture 

* Draw the next frame 
bra loop 

SECTION DATA 
include data_06.s 
include data_07.s 
include data_08.s 
SECTION BSS 
include bss_07.s 

END 
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* * * * * * * * * * * * * core_07.s 
Subroutines for Chapter 12 
* * * * * * 

* * * * * * * * * 

* * * * 

include core_06.s 

scne_drw: 
* Draw the scene of several primitives 

bsr patch_ext select the local scene 
bsr sight_tst select only visible ones 
bsr vis_srt sort them in depth order 
bsr drw_it draw them in depth order 
rts 

patch_ext: 
* Extract the tile patch 

move.w oposx,do 
move.w oposy,dl 
move.w oposz,d2 

* Find position in world 
andi.w #$fff,dO 
andi.w 
andi.w 
move.w 
move.w 
move.w 
move.w 
move. w 

Put the 16 tiles in a list at patch_lst 
observer x position 
y 
z 

Keep to range 4096 
range x 
range y 
range z 
restore x 
y 
z 

local world origin 
/256 
y coord, in 16*16 layout 
/256 
z coord 

#$fff,dl 
#$fff,d2 
do,oposx 
dl,oposy 
d2,oposz 
dl,d3 
d2,d4 

* find coords of patch centre 
lsr.w #8,dl 
move.w dl,Ty 
lsr.w #8,d2 
move.w d2,Tz 

* coords of view frame referenced to this origin 
lsl.w #8,dl Ty*256 

#8,d2 Tz*256 
dl,d3 oposy-Ty*256 = Ovy 
d3,0vy 
d2,d4 oposz-Tz*256 = Ovz 
d4,Ovz 
oposx,Ovx Ovx (the height is universal) 

* Fetch the attributes of the 16 surrounding tiles from the map 
* and calculate their world coords., storing the data in a record 
* with the format: 
* word 1: high byte = graphics attributes 
* low byte = clear 
* word 2: Voz tile centre z in view frame coords 
* word 3: tile y in local world coords 
* word 4: ditto z 
* Ty and Tz are the patch centre coords. = local world origin 

move.w Ty,do Ty 
move.w Tz,dl Tz 

* A 4*4 patch of tiles centred on the Ty,Tz are retrieved 
move.w #-2,d5 z offset of start tile 
lea map_base,aO pointer to map of 16*16=256 tiles 
lea patch_lsi,al the local list of 4*4 
move.w #3,d7 4 z values 

lsl.w 
sub.w 
move.w 
sub.w 
move.w 
move.w 

_,—— 
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t i l e _ l p l : 
move. w 
move.w 
move.w 
add.w 
andi.w 
l s l .w 

t i l e _ l p 2 : 
move 
add.w 
andi.w 
add.w 
move.b 
swap 
clr .w 
lsl.l 
move. 1 

* Calculate the 
* Local coords 

movem.1 
lsl 
swap 
lsl 
move.w 
move.1 
movem.1 
addq 
dbra 
addi.w 
dbra 
rts 

sight_tst: 
* Discard all 

lea 
lea 
lea 
clr .w 
move.w 
clr .w 

sight_tstl: 
move.w 
addi.w 
move.w 
move.w 
addi.w 
move.w 
movem.1 
bsr 
movem.1 
tst.b 
beq 
addq.w 
move.w 
move.1 
move.1 

#-2,d4 reset start yoffset 
#3,d6 4 y values 
dl ,d3 origin Tz 
d5,d3 + offset = next z 
#$f,d3 stay in range 0-15 
#4,d3 *16 

d0,d2 origin Ty 
d4,d2 + offset = next y 
#$f,d2 stay in range 0-15 
d3,d2 16*z+y = tile address in map 
0(a0,d2.w),d2 fetch attribute in low byte 
d2 of high word 
d2 0 for low word 
#8,d2 everything into high word 
d2,(al)+ store the 1st half of the record 
tile local coords.: Ooy and Ooz 
are (offset*256) 
d4/d5,-(sp) stack offsets 
#8,d4 yoffset*256 
d4 in high word 
#8,d5 zoffset*256 
d5,d4 in low word 
d4,(al)+ store second half of record 
(sp)+,d4/d5 restore offsets 
#l,d4 next y offset 
d6,tile_lp2 for all the tiles in this row 
#l,d5 next z offset 
d7,tile_lpl for all rows 

tiles which are out of sight 
patch_lst,aO 
vis_lst,al 
vis_cnt,a2 
(a2) 
#15,d7 
Oox 

4(a0),d0 
#128,d0 
do,Ooy 
6(a0),d0 
#128,dO 
d0,0o2 
d7/a0-a2,-(sp) 
testview 
(sp)+,d7/a0-a2 
viewflag 
nxt_tile 
#l,(a2) 
Voz,2(aO) 
(a0),(al)+ 
4(a0),(al)+ 

pointer to source list 
pointer to list of visible tiles 
pointer to count of visible tiles 
set count to zero 
16 tiles in a patch 
all tiles are on ground 

tile 

centres 

is this tile within the field of view? 

visible? 
no 
yes, increment visible count 
save the depth for sorting 
transfer 1st half to visible list 
transfer 2nd half of record 
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nxt_tile: 
addq 
dbra 
rts 

#8,a0 
d7,sight_tstl 

point to next record 
for all tiles 

testview: 
* Is the tile within the field of view? 
* Test whether the primitive is visible. 
* Tile centre (Oox,0oy,0oz) is transformed to view coords then tested. 
* (remember matrix elements are *2"14 and must be corrected at the end) 

tranvO 

moveq. ] 
lea 
link 
move.w 
move. w 
move. w 
sub.w 
sub.w 
sub.w 
move 
move 
move 
muls 
muls 
muls 
add.l 
add.l 
lsl.l 
swap 
move.w 
dbra 

#2,d6 
w_vmatx,a3 
a6,#-6 
Oox,d3 
Ooy,d4 
Ooz,d5 
Ovx,d3 
Ovy,d4 
0vz,d5 
d3,d0 
d4,dl 
d5,d2 
(a3)+,d0 
(a3)+,dl 
(a3)+,d2 
dl,dO 
d2,d0 
#2,dO 
dO 
d0,-(a6) 
d6,tranv0 

3 rows in the matrix 
init matx pointer 
3 words to store temporarily 
Oox the 
Ooy object centre 
Ooz 
Oox-Ovx relative to the view frame 
Ooy-Ovy 
Ooz-Ovz 
restore 

*Mil 
*Mi2 
*Mi3 

*Mil+*Mi2+*Mi3 

/2~14 
save it 
repeat for 3 elements 

move.w (a6)+,d3 
move.w (a6)+,d2 
move.w (a6)+,dl 
move.w d3,Voz 
move.w d2,Voy 
move.w dl,Vox 
unlk a6 close frame 

* Clip Ovz. To be visible, must have 50<Voz<2000 
* This visibility test looks only at depth 

off my stack becomes Voz 
becomes Voy (the centre in view frame) 
becomes Vox 

cmp.w #50,d3 
bmi notvis 
cmp.w #2000,d3 
bpl notvis 
st viewflag 
rts 

* It's invisible, don't draw it 
notvis sf viewflag 

rts 

test(Voz-50) 
fail 
test(Voz-2000) 
fail 
it's visible, set the flag all l's 

set the flag all 0's 
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v i s _ s r t : 
* Order the visible tiles in order of decreasing Voz. 
* Voz is the distance of the tile centre from the view frame 
* origin. Largest Voz's should be drawn first. 

move.w vis_cnt,d7 
beq srt_quit 
subq #l,d7 
beq srt_quit 
subq.w #l,d7 

* bubble sort the records 
vis_srtl: 

lea 
movea.1 
addq,1 
move 
clr .w 

vis_srt2: 
cmpm.w (aO)+,(al)+ 
ble no_swap 
move.l -4(a0),d0 
move.1 (aO),dl 
move.l -4(al),-4(a0) 
move.1 (al),(aO) 
move.l d0,-4(al) 
move.l dl,(al) 
st srt_flg 

number to do 
are any visible? 
this number-1 
but no need to sort only 1 
1 sort per pair 

vis_lst+2,a0 
aO,al 
#8,al 
d7,d6 
srt_flg clear the flag 

pointer to the first record Voz 

pointer to second record Voz 
reset count 

no_swap: 
addq. 
addq. 
dbra 
tst.w 
beq 
bra 

srt_quit: 
rts 

#6,a0 
#6,al 
d6,vis_srt2 
srt_flg 
srt_quit 
vis_srtl 

test(Voz2-Vozl) and advance pointer 
1st is farther 
fetch 1st record 

make 
second first and 
first 
second 
set the flag 

point to next record Voz 
and the one following 
for all records. 
Were any records swapped? 
no 
yes, run through again 

sort is finished 

drw_it: 
* Draw the visible tiles 

move.w vis_cnt,d7 
beq drw_it_out 
subq.w #l,d7 
lea vis_lst,aO 

drw_itl: 
movem. 1 
bsr 
movem.1 
addq.1 
dbra 

drw_it_out: 
rts 

d7/a0,-(sp) 
set_prim 
(sp)+,d7/a0 
#8,a0 
d7,drw_itl 

pointer to list 

draw the next primitive 

next record 
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set_prim: 
* set up next primitive for drawing; enters with pointer to record in aO 
* 1. First do the background 

move.l aO,-(sp) save pointer 
bsr ldup_bkg load background data as program data 
bsr otranw object-to-world 
bsr w_tran_v world-to-view 

* It's always visible at constant illumination; pass colour directly 
movea.l (sp)+,aO restore pointer 
move.w (aO),dO first word of record 
move.l aO,-(sp) save pointer 
lsr.w #8,d0 top byte 
lsr.w #4,do top nibble is colour-
move, w dO,col_lst the final 
move.w d0,col_lst+2 colours 
bsr perspective 
bsr scrn_adj centre it 
bsr polydraw draw it 

ct 
restore pointer 

bsr ldup_obj load object data as program data 
bsr otranw object-to-world 
bsr w_tran_v world-to-view 
bsr illuminate all 
bsr perspective the 
bsr scrn_adj rest 
bsr polydraw 
rts 

* 2. Second draw the object 
movea.l (sp)+,a6 

ldup_bkg: 
* Load background data as program data. 

move.w #2,npoly 
move.l #$40004,snedges 
lea sedglst,a2 
move.l #l,(a2)+ 
move.l #$20003,(a2)+ 
move.l #$4,(a2)+ 
move.l #$50006,(a2)+ 
move.l #$70004,(a2)+ 

the background vertices define a cross 
all x coords are zero 

The background is a grid. 
2 polygons (intersecting rectangles) 
4 edges in each 
edge list 0,1,2,3,0,4,5,6,7,4 
edges 0,1 
edges 2,3 
edges 0,4 
edges 5,6 
edges 7,4 

lea 
move. 
move. 
move. 
move. 
lea 
move. 
move. 
move. 
move. 
lea 
move. 
move. 
move. 
move. 
move. 
move.w 
move. w 

ocoordsx,a2 vertex coords x = 
#0,(a2)+ 0,0 
#0,(a2)+ 0,0 
#0,(a2)+ 0,0 
#0,(a2) 0,0 
ocoordsy,a2 y = 
#$ff800080,(a2)+ -128,128 
#$80ff80,(a2)+ 128,-128 
#$fffcfffc,(a2)+ -4,-4 
#$40004,(a2) 4,4 
ocoordsz,a2 z = 
#$40004,(a2)+ 4,4 
#$fffcfffc,j(a2)+ -4,-4 
#$ff800080,(a2)+ -128,128 
#$80ff80,(a2) 128,-128 
#8,oncoords the 
#8,vncoords counts 
#8,wncoords are all the same 
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the tile centre in the world frame is Oox=0 and the 
contents of the third and fourth words of the record 

move.w #0,0ox 
move.w 
addi .w 
move. w 
addi .w 
clr .w 
clr .w 
clr .w 
rts 

4(a0),0oy 
#128,Ooy 
6(a0),0oz 
#128,Ooz 
otheta 
ophi 
ogamma 

third word 

fourth word 

no 
orientation 

all done 
* Load background data as program data 

move.w #l,npoly only one polygon 
move.w #4,snedges 4 edges 
lea sedglst,a2 edge list 0,1,2,3,0 
move.l #l,(a2)+ edge 0,1 
move.l #$20003,(a2)+ edge 2,3 
clr.w (a2)+ edge 0 

* the background vertices are the corners of the tile 
vertex coords x = 

0,0 
0,0 

ocoordsx,a2 
#0,(a2)+ 
#0,(a2)+ 
#0,(a2)+ 
#0,(a2)+ 
ocoordsy,a2 
(a2) + 
#$ff00ff,(a2) 
ocoordsz,a2 
#$ff,(a2)+ 
#$ff0000,(a2) 
#4,oncoords 
#4,vncoords 
#4,wncoords 

the tile centre in the world frame is 0ox=0 and the 
contents of the third and fourth words of the record 

move.w #0,Oox 
move.w 4(aO),Ooy third word 
move.w 6(a0),Ooz fourth word 
clr.w otheta no 
clr.w ophi orientation 
clr.w ogamma 
rts all done 

lea 
move.w 
move.w 
move. w 
move.w 
lea 
clr.l 
move.1 
lea 
move.1 
move. 1 
move.w 
move.w 
move.w 

y = 
0,0 
255,255 
z = 
0,255 
255,0 
the 
counts 
are all the same 

ldup_obj: 
* Load object data as program 
* first find out what type it 

move.w (a6),d0 

data 
is; pointer to record in a6 
top word 

lsr .w 
andi .w 
lsl.w 
lea 
movea.1 
movea. 1 
move.w 
move.w 
subq.w 
move 
movea. 1 
movea.1 
lea 

#8,do 
#$f,d0 
12, dO 
primitive,, 
0(a5,d0.w) 
4(a5),a2 
(a2),d7 
d7,npoly 
#l,d7 
d7,d0 
8(a5),a0 
a0,a4 
snedges,al 

a5 
,a5 

top byte 
bottom nibble is type (call 
*4 for offset 
pointer to vector table 
pointer to type n lists 
pointer to npolyn 
here it is 

the count 
save it 
pointer to nedgn (list edge 
save it 
destination 

it n) 

numbers) 
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move.l (a5),a2 
lea srf_col,a3 

obj_lpl move.w (aO)+,(al)+ 
move.w (a2)+,(a3)+ 
dbra dO,obj_lpl 

* calculate the total number of 
move.w d7,d0 
clr dl 
clr d2 

obj_lp2 add.w (a4)+,d2 
addq #l,d2 
dbra d0,obj_lp2 

*move the edge list 
subq #l,d2 
movea.l 12(a5),a0 
lea sedglst,al 

obj_lp3 move.w (aO)+,(al)+ 
dbra d2,obj_lp3 

* and the coordinates list 
movea.l 28(a5),a0 
move.w (aO),dl 
move.w dl,oncoords 
move.w dl,vncoords 
move.w dl,wncoords 
subq #l,dl 
movea.l 16(a5),a0 
lea ocoordsx,al 
movea.l 20(a5),a2 
lea ocoordsy,a3 
movea.1 24(a5),a4 
movea.l a5,a6 
lea ocoordsz,a5 

obj_lp4 move.w (aO)+,(al)+ 
move.w (a2)+,(a3)+ 
move.w (a4)+,(a5)+ 
dbra dl,obj_lp4 

* increment the rotation angle 
bsr next_rot 
addi.w #128,Ooy 
addi.w #128,Ooz 
rts 

pointer to intrinsic colours 
destination 
transfer edge numbers 
transfer intrinsic colours 

edges 
restore count 

number of edges 
and with last repeated 

this is the counter 
edglstn, the source 
destination 
pass it 

pointer to no 
no. vertices 
same 
for 
all frames 
the counter 
pointer object x 

object y 

object z 

vertices 

* Increment the rotation of the object 
next_rot: 

movea.l 32(a6),a0 
move.l (aO),dO 
move.1 do, dl 
andi.l #$ffff,dO 
addi.w #2,dO 
cmp #360,do 
bit obj_lp5 
subi #360,dO 

obj_lp5 move.w d0,2(a0) 
* see what angles to rotate 

swap dl 
andi.w #$f,dl 

pointer to angle and flag 
top word is flag, bottom is angle 

the angle 
increment it 

next angle 

the flag is in the low nibble 
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* f lags 

rot_vec: 

no_rot 
rotx 

roty 

rotxy 

ro tz 

rotxz 

rotyz 

rotxyz 

are se t : 
l s l .w 
lea 
move.1 
jrap 

d e l 
r t s 
move.w 
r t s 
move.w 
r t s 
move.w 
move.w 
r t s 
move.w 
r t s 
move.w 
move.w 
r t s 
move.w 
move.w 
r t s 
move.w 
move.w 
move.w 
rts 

: bit 0 = x rot, bit 1 = y rot, bit 2 = z rot 
#2,dl offset 
rot_vec,a0 pointer to jump table 
0(aO,dl.w),a0 the jump vector 
(aO) here goes 

no_rot,rotx,roty,rotxy,rotz,rotxz,rotyz,rotxyz 
no rotation 

dO,otheta rotate about x axis 

dO,ophi 

dO,otheta 
dO,ophi 

dO,ogamma 

dO,otheta 
dO,ogamma 

dO,ophi 
do,ogamma 

do,otheta 
dO,ophi 
do,ogamma 

y 

x and y 

z 

x and z 

y and z 

x, y and z 

joy_read: 
* Rotate the view point about an axis 
* Read the joystick and update the variables accordingly 
* The data packet cpntaining the FIRE bit (7) and the position 
* bits (0-2) is saved in the variable joy_data 

c1r.w j oy_data 
move.w #10,d6 

joy_more: 

joy_dr 

bsr 
dbf 
move.w 
move 
andi.w 
bne 
andi .w 
bne 
rts 
lea 
lsl.w 
move. 1 
jmp 

]ump_;)oy: 
d e l 
del 

uP_jy b s r 

rts 
down_jy bsr 

rts 
left_jy bsr 

rts 

rd_joy 
d6,joy_more 
joy_data,d0 
d0,dl 
#$f0,d0 
jy_press_fire 
#$f,dl 
joy_dr 

jump_joy,a0 
#2,dl 
0(a0,dl.w),a0 
(aO) 

read joystick 
give it time to think 
here's the result 
save it 
fire pressed ? 
yes 
what direction is the stick? 

nothing doing 
base address 
offset into jump table 
the jump address 
go for it 

0,up_jy,down_ jy,0,left_jy,up_left_jy,down_left_ jy 
0, r ight_ jy, up_r ight_ jy, down_right_jy 
rot_down rotate view frame down about vy axis 

rot_up 

rot left 

rotate up about vy axis 

rotate left about vx axis 



198 Real-Time 3D Graphics for the Atari ST 

right_jy: 
bsr 
rts 

up_left_jy 
down_left_jy 
up_right_jy 
down_right_jy 
jy_press_fire: 

move.w 
rts 

rot_right 

rts 
rts 
rts 
rts 

#l,fire 

rotate right about vx axis 

do nothing for now 

in_key: 
* Read the keyboard to set view frame speed 

ky_read: 

ky_rpt 

bsr 
cmp.w 
beq 
rts 

bsr 
tst.w 
beq 
rts 
swap 
subi.w 
andi.w 
lea 
lsl.w 

scan_keys 
#-l,d0 
ky_read yes 

read_key 
dO 
ky_rpt 

do 
#$3b,d0 
*1. do 
ky_jump,aO 
#2,do 

movea.l 0(aO,d0.w),a0 
jmp (aO) 

ky_jump: 
* The jump table for f keys 

del flf,f2f,f3f,f4f ,f5f ,f6f ,f7f 

was a key pressed? 

which key? 
f keys have $0 in the low word 
only interested if f keys 
something else 
the code 
fl is 3b : set it to zero for offset 
first 7 f keys 
jump table 
key code is offset 
to the routine address 
go for it 

flf 

f2f 

f3f 

f4f 

f5f 

f6f 

f7f 

bsr 
rts 
bsr 
rts 
move.w 
rts 
move.w 
rts 
move.w 
rts 
move.w 
rts 
clr .w 
trap 

roll_left 

roll_right 

#-2,speed 

#2,speed 

#3,speed 

#0,speed 

-(sp) 
#1 

rot_down: 
* Rotate down about the yv axis 
* by the view transform matrix. 

lea rot_y_neg,aO 
bsr ctrl_view 
rts 

roll to the left 

roll to the right 

reverse speed 2 

forward speed 2 

forward speed 3 

stop 

quit altogether- return to caller 

. Multiply the "down" control matrix 

pointer to the control matrix 
multiply and set base vectors 

rot_up: 
* Rotate up about the yv axis. Multiply the "up 
* matrix by the view transform matrix. 

lea rot_y_pos,a0 
bsr ctrl_view 
rts 

control 
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r o t _ l e f t : 
* Rotate left about the xv axis . Multiply the "left" control 
* matrix by the view transform matrix. 

lea rot_x_pos,aO 
bsr ctrl_view 
rts 

rot_right: 
* Rotate right about the xv axis. Multiply the "right" control 
* matrix by the view transform matrix. 

lea rot_x_neg,aO 
bsr ctrl_view 
rts 

roll_left: 
* Rotate left about the zv axis. Multiply the "roll-left" 
* control matrix by the view transform matrix. 

lea rot_z_neg,aO 
bsr ctrl_view 
rts 

roll_right: 
* Rotate right about the zv axis. Multiply the 
* control matrix by the view transform matrix. 

lea rot_z_pos,aO 
bsr ctrl_view 
rts 

'roll-right" 

ctrl_view: 
* Multiply the control matrix pointed to by aO by the view matrix 
* to calculate the new elements of the view base vectors. 
*1. base vector iv 

pointer to view matrix 
pointer view frame base vector iv 
3 elements to iv 
set view pointer 
next view element 

lea 
lea 
move.w 
movea. 1 

iv_loop move.w 
move. w 
move.w 
muls 
muls 
muls 
add.l 
add.l 
lsl.l 
swap 
move.w 
addq.1 
dbra 

w_vmatx,al 
iv,a2 
#2,d6 
al ,a3 
(a3),dl 
6(a3),d2 
12(a3),d3 
(aO)>dl 
2(a0),d2 
4(a0),d3 
d2,dl 
d3 ,dl 
#2,dl 
dl 
dl,(a2)+ 
#2,a3 
d6,iv_loop 

/ 
2A14 
next element in base vector 
next column in view matrix 
for all elements in this base vector 

*2. No need to do the base vector jv; it is calculated from the other two. 
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*3. base vector 
lea 
move.w 
raovea.1 

kv_loop move.w 
move.w 
move.w 
muls 
muls 
muls 
add.l 
add.l 
lsl.l 
swap 
move.w 
addq.1 
dbra 
rts 

kv 
kv,a2 
#2,d6 
al,a3 
(a3),dl 
6(a3),d2 
12(a3),d3 
12(a0),dl 
14(a0),d2 
16(a0),d3 
d2,dl 
d3,dl 
#2,dl 
dl 
dl,(a2)+ 
#2,a3 
d6,kv_loop 

* Set the velocity components 
adj_vel: 

adjl 

lea 
move.w 
move. w 
lsl.w 
move 
move 
muls 
lsr.l 
add.w 
bpl 
clr .w 
muls. 
lsr.l 
add.w 
muls 
lsr.l 
add.w 
rts 

kv,aO 
#14,d7 
speed,dO 
#4,dO 
do ,dl 
d0,d2 
(aO),dO 
d7,d0 
dO,oposx 
adjl 
oposx 
2(a0),dl 
d7,dl 
dl,oposy 
4(a0),d2 
d7,d2 
d2,oposz 

pointer view frame base vector kv 
3 elements to kv 
reset view pointer 
next view element 

/ 
2"14 
next element in base vector 
next column in view matrix 
for all elements in this base vector 
all done 

ready to divide by 2A14 

scale it 

v*VZx 
/2"14 
xw speed component 

oposx must be >0 
v*VZy 

yw speed component 
v*VZz 

zw speed component 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* bss_07. s * 
* variables for Chapter 12 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

i nc1ude bss_0 6.s 
* observer position in world (mod4096) 
oposx ds.w 1 
oposy ds.w 
oposz ds.w 

* Tile offset in 16*16 patch 
Ty ds.w 1 
Tz ds.w 

* Tile lists 
patch_lst 
vis_lst 

* List vars 
vis_cnt ds.w 
srt_flg ds.w 

ds.l 
ds.l 

32 
32 

records (8 byte) of 16 tiles in patch 
records of visible tiles 

number of visible tiles 
set during sorting in depth order 
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* * * * * 
* data_06.s * 
* Data file for Chapter 12 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

include data_03.s 
include data_05.s 

* the vector table of graphics primitives 
primitive: 

d c . 1 p r i m O , p r i m l , p r i m 2 , p r i m 3 , p r i m 4 , p r i m 5 

* t h e v e c t o r t a b l e f o r p r i m i t i v e #0 . A s i m p l e b l o c k . 
primO d e l c o l r s 0 , n p o l y 0 , nedg0 ,edg l s t0 ,p rm0x ,p rmOy ,prmOz , n p t s 0 

t h e t a O 
1 , 1 , 1 , 1 , 1 8 shades of 1 c o l o u r 
5 b lock 

• 4 4 4 4 4 
0 , 1 , 2 , 3 , 0 , 3 , 2 , 4 , 5 , 3 , 5 , 4 , 6 , 7 , 5 , 7 , 6 , 1 , 0 , 7 , 1 , 6 , 4 , 2 , 1 
0 , 5 0 , 5 0 , 0 , 7 0 , 0 , 7 0 , 0 
— 6,— 6 , 6 / 6 , 6 , 6 ,~6 ,"~6 
—6 , "*6 ,—6 , ~6 , 6 , 6 , 6 , 6 

d e l 
c o l r s O d e w 
npolyO d e w 
nedgO d e w 
e d g l s t o d e w 
prmOx dc.w 
prmOy d e w 
prmOz d e w 
nptsO d e w 
t h e t a O d c . 1 $10000 

* the vector table for primitive #1. An inverted pyramid. 

p r i m l d e l 
d e l 
d e w 
d e w 
d e w 

c o l r s l 
n p o l y l 
nedg l 
e d g l s t l d e w 
prmlx d e w 
prmly d e w 
prmlz d e w 
n p t s l d e w 
t h e t a l d c . 1 

* the vector 

colrsl, npolyl, nedgl, edglstl, prmlx, prmly, prml z, nptsl 
thetal 
1,1,1,1,0 sides and top differ in colour 
5 
3,3,3,3,4 
0,1,2,0,0,2,3,0,0,3,4,0,0,4,1,0,1,4,3,2,1 
0,75,75,75,75 
0, 
0, 
5 
$10000 

32,32,32,-32 
32,-32,32,32 

p n m 2 

colrs2 
npoly2 
nedg2 

d e l 
d e l 
d e w 
d e w 
d e w 

e d g l s t 2 d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e w 
d e l 

prm2x 
prm2y 
prm2z 
npts2 
theta2 

table for primitive #2. A nugget. 
colrs2,npoly2,nedg2,edglst2,prm2x,prm2y,prm2z,npts2 
theta2 
1,1,0,1,0,0,1,0,1,1,0,1,0,1 
14 
4,4,4,4,4,4,4,4,4,4,4,4,4,4 
1,6,4,2,1,0,1,2,3,0,3,2,4,5,3,4,6,7,5,4,6,1,0,7,6 
8,0,3,11,8,3,5,10,11,3,5,7,9,10,5,7,0,8,9,7,8,11,13,12,8-
11,10,14,13,11,10,9,15,14,10,9,.8,12,15,9,12,13,14,15,12 
40,60,60,40,60,40,60,40,20,20,20,20,0,0,0,0 
-30,-10,10,30,10,30,-10,-30,-30,-30,30,30,-10,10,10,-10 
-30,-10,-10,-30,10,30,10,30,-30,30,30,-30,-10,-10,10,10 
16 
$70000 
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* t h e v e c t o r t a b l e f o r p r i m i t i v e #3 . A Tee . 
prim3 d e l c o l r s 3 ,npo ly3 ,nedg3 , e d g l s t 3 ,prm3x,prm3y ,prm3z , n p t s 3 

d e l t h e t a 3 
c o l r s 3 d e w 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 
npoly3 d e w 10 
nedg3 d e w 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 
e d g l s t 3 d e w 0 , 1 , 2 , 3 , 0 , 3 , 2 , 4 , 7 , 3 , 4 , 5 , 6 , 7 , 4 , 5 , 1 , 0 , 6 , 5 

d e w 8 , 1 1 , 1 4 , 1 5 , 8 , 1 3 , 1 4 , 1 1 , 1 0 , 1 3 , 1 2 , 1 3 , 1 0 , 9 , 1 2 , 8 , 1 5 , 1 2 , 9 , 8 
d e w 1 2 , 1 5 , 1 4 , 1 3 , 1 2 , 1 0 , 1 1 , 8 , 9 , 1 0 

prra3x d e w 0 , 4 5 , 4 5 , 0 , 4 5 , 4 5 , 0 , 0 , 7 0 , 4 5 , 4 5 , 7 0 , 4 5 , 4 5 , 7 0 , 7 0 
prm3y d e w - 1 0 , - 1 0 , 1 0 , 1 0 , 1 0 , - 1 0 , - 1 0 , 1 0 , 1 2 8 , 1 2 8 , 1 2 8 , 1 2 8 , - 1 2 8 , - 1 2 8 

d e w - 1 2 8 , - 1 2 8 
prra3z d e w - 1 0 , - 1 0 , - 1 0 , - 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , - 1 0 , - 1 0 , 1 0 , - 1 0 , - 1 0 , 1 0 
n p t s 3 d e w 16 
t h e t a 3 d e l $10000 

* t h e v e c t o r t a b l e f o r p r i m i t i v e #4. A r o l l e r . 
prim4 d e l c o l r s 4 ,npoly4 , n e d g 4 , e d g l s t 4 , p r m 4 x , p r m 4 y ,prm4z , n p t s 4 

d e l t h e t a 4 
c o l r s 4 d e w 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 
npoly4 d e w 8 
nedg4 d e w 4 , 4 , 4 , 4 , 4 , 4 , 6 , 6 
e d g l s t 4 d e w 1 , 2 , 8 , 7 , 1 , 0 , 1 , 7 , 6 , 0 , 5 , 0 , 6 , 1 1 , 5 , 4 , 5 , 1 1 , 1 0 , 4 , 3 , 4 , 1 0 , 9 , 3 

d e w 2 , 3 , 9 , 3 , 2 , 4 , 3 , 2 , 1 , 0 , 5 , 4 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 6 
prm4x d e w 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0 , 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0 
prm4y d e w - 3 2 , - 3 2 , - 3 2 , - 3 2 , - 3 2 , - 3 2 , 3 2 , 3 2 , 3 2 , 3 2 , 3 2 , 3 2 
prm4z d e w - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0 , - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0 
n p t s 4 d e w 12 
t h e t a 4 d e l $20000 

* t h e v e c t o r t a b l e f o r p r i m i t i v e #5 . Another r o l l e r . 
pr im5 d e l C o l r s 5 , n p o l y 5 , n e d g 5 , e d g l s t 5 , p r m 5 x , p r m 5 y , p r m 5 z , n p t s 5 

d e l t h e t a 5 
c o l r s 5 d e w 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 
npoly5 d e w -8 
nedg5 d e w 4 , 4 , 4 , 4 , 4 , 4 , 6 , 6 
e d g l s t 5 d e w 1 , 2 , 8 , 7 , 1 , 0 , 1 , 7 , 6 , 0 , 5 , 0 , 6 , 1 1 , 5 , 4 , 5 , 1 1 , 1 0 , 4 , 3 , 4 , 1 0 , 9 , 3 

d e w 2 , 3 , 9 , 8 , 2 , 4 , 3 , 2 , 1 , 0 , 5 , 4 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 6 
prm5x d e w 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0 , 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0 
prm5y d e w - 8 , - 8 , - 8 , - 8 , - 8 , - 8 , 8 , 8 , 8 , 8 , 8 , 8 
prm5z d e w - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0 , - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0 
n p t s 5 d e w 12 
t h e t a 5 d e l $40000 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* da t a_07 * 
* control matrices for rotation * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* +ve rotation about the view frame x axis (left) by.5 degrees 
rot_x_pos: 

dew 16384,0,0,0,16322,1428,0,-1428,16322 

* - v e r o t a t i o n abou t t h e xv a x i s ( r i g h t ) 
r o t _ x _ n e g : 

d e w 1 6 3 8 4 , 0 , 0 , 0 , 1 6 3 2 2 , - 1 4 2 8 , 0 , 1 4 28,16322 

* +ve r o t a t i o n abou t t h e yv a x i s (up) 
r o t _ y _ p o s : 

d e w 1 6 3 2 2 , 0 , - 1 4 2 8 , 0 , 1 6 3 8 4 , 0 , 1 4 28 ,0 ,16322 

* - v e r o t a t i o n abou t t h e yv a x i s (down) 
r o t _ y _ n e g : 

d e w 163 2 2 , 0 , 1 4 2 8 , 0 , 1 6 3 8 4 , 0 , - 1 4 2 8 , 0 , 1 6 3 2 2 

* +ve rotation about the zv axis (roll-right) 
rot_z_pos: 

dew 16322,1428,0,-1428,163 22,0,0,0,16384 

* -ve rotation about the zv axis (roll-left) 
rot_z_neg: 

dew 16322,-1428,0,1428,16322,0,0,0,16384 
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* * * * * * * * * * * * * * * * * * * * * * * * * 
data_08.s * 

The world layout for Chapter 12 * 

* The map of the world. 
* Each byte gives the attributes of a size 256*256 "tile" in a 
* 16*16 tile world. The attribute is broken down: 
* high nibble = background colour (1-7) 
* low nibble = primitive type (0-5) 
map_base: 

dc.b $62,$62,$62,$50,$41,$35,$35,$35 
dc.b $35,$35,$35,$43,$45,$54,$54,$64 
dc.b $62,$62,$62,$55,$42,$33,$35,$35 
dc.b $35,$35,$32,$44,$45,$54,$54,$64 
dc.b $52,$52,$52,$52,$44,$35,$34,$35 
dc.b $35,$30,$35,$41,$44,$54,$54,$64 
dc.b $45,$41,$42,$42,$42,$35,$22,$23 
dc.b $23,$20,$25,$25,$44,$44,$40,$65 
dc.b $33,$35,$30,$32,$32,$22,$25,$25 
dc.b $25,$23,$24,$24,$35,$32,$35,$31 
dc.b $35,$32,$35,$35,$32,$22,$11,$11 
dc.b $10,$10,$24,$24,$33,$35,$32,$34 
dc.b $20,$25,$25,$25,$20,$21,$13,$13 
dc.b $13, $13, $20, $'25, $25, $25, $20, $25 
dc.b $24,$25,$25,$25,$21,$21,$13,$13 
dc.b $13 ,$13,$20,$20,$25,$25,$20,$25 
dc.b $20,$25,$25,$25,$22,$22,$13,$13 
dc.b $13,$13,$14,$24,$25,$25,$22,$23 
dc.b $25,$23,$25,$25,$23,$22,$13,$13 
dc.b $13,$13,$14,$23,$25,$25,$25,$25 
dc.b $31,$35,$30,$35,$31,$21,$22,$22 
dc.b $20,$20,$20,$20,$35,$35,$34,$33 
dc.b $45,$40,$40,$40,$41,$41,$22,$22 
dc.b $22,$25,$30,$40,$40,$42,$45,$41 
dc.b $40,$40,$41,$41,$44,$45,$30,$35 
dc.b $35,$35,$32,$45,$40,$50,$55,$55 
dc.b $61,$61,$61,$51,$53,$45,$35,$32 
dc.b $35,$35,$31,$45,$40,$50,$60,$60 
dc.b $61,$61,$61,$52,$55,$44,$33,$35 
dc.b $33,$35,$30,$45,$40,$50,$60,$60 
dc.b $61,$61,$61,$55,$51,$45,$30,$35 
dc.b $32,$35,$35,$41,$45,$50,$60,$60 
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* * * * * * * * * * * * * * * * * * * * 
* systm_05.s 
* routines for Chapter 12 
* * * * * * * * * * * * * * * * * * * * 

include systm_02.s 
include systm_03.s 
include systm_04.s 

init_vars: 
* set up the screens 

bsr set_up 
* set the view point 

move.w #100,oposx 
clr.w oposy 
clr.w oposz 

* and the clip frame 
move.w #50,xmin 
move.w #270,xmax 
move.w #30,ymin 
move.w #170,ymax 

* Set up view frame base vectors 
* 1. iv 

* * * * * * * 

* * * * * * * 

y 

lea 
move.w 
move.w 
move.w 

lea 
clr.w 
move.w 
clr.w 

lea 
move.w 
clr.w 
move.w 

iv,aO 
#16384,(a0)+ 
#0,(a0)+ 
#0,(a0) 

jv,aO 
(a0) + 
#16384,(a0)+ 
(aO) 

kv,aO 
#0,(a0)+ 
(a0) + 
#16384,(aO) 

align 
view 

axes 

with 
the 
world 
frame 

axes 

frame 

* 3. kv 

flg_init: 
* Initialize flags and other variables 

clr.w speed start off at rest 
clr.w screenflag 0=screen 1 draw, l=screen 2 draw 
clr.w viewflag 

* Move the view point to -300 on the view frame z axis 
lea 
move.w 
move.w 
move.w 
move.w 
rts 

swap sen: 
tst.w 
beq 
bsr 
bsr 
clr.w 
bra 

screen_l: 
bsr 
bsr 
move.w 

screen 2: 
rts 

persmatx,aO 
#300,dO 
d0,(a0) 
d0,10(a0) 
dO,30(aO) 

screenflag 
screen_l 
draw2_displ 
clear2 
screenflag 
screen_2 

drawl_disp2 
clearl 
#1,screenflag 

screen 1 or screen2? 
draw on screen 1, display screen2 
draw on screen 2, display screenl 
but first wipe it clean 
and set the flag for next time 

draw on 1, display 2 
but first wipe it clean 
and set the flag for next time 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* eulr_scn.s * 
* A multi-object scene * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* A world scene consisting of various types of graphics primitives 
* in motion. The viewer is free to "fly" to any location with 
* flight simulator type control from the joystick. At any 
* position a patch consisting of 4*4 "tiles" is visible. 

SECTION TEXT 
opt d+ 
bra main 
include systm_05.s 
include core_08.s 

main: 
* Initialize the system. 

bsr init_vars initialise view transform 
bsr flg_init initialize flags 

loop: 
* Read input and make adjustments. 

swap the screens 
see' which "direction to move 
change the euler angles 
construct the view transform 
move it to the base vectors 
update the speed 
adjust the velocity 

everything to complete the picture 

Draw the next frame 
bra loop 

SECTION DATA 
include data_06.s 
include data_07.s 
include data_08.s 
SECTION BSS 
include bss 07.s 

bsr 
bsr 
bsr 
bsr 
bsr 
bsr 
bsr 

swap_scn 
joy_look 
angle_update 
wtranv_l 
vtran_move 
in_key 
adj_vel 

Draw the scene 
bsr scne_drw 

END 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* core_08.s * 
* Subroutines for eulr_scn, Chapter 12 * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
include core_07.s previous subroutines 

joy_look: 
* Change the euler angles etheta and ephi (vtheta and vphi from 
* Chapter 10 are same thing) 
* Read the joystick and update the variables accordingly 
* The data packet containing the FIRE bit (7) and the position 
* bits (0-2) is saved in the variable joy_data 

clr.w joy_data 
move.w 

ejoy_more: 
bsr 
dbf 
move. w 
move 
andi.w 
bne 

#10,d6 

rd_joy 
d6,ejoy_more 
joy_data,dO 
d0,dl 
#$f0,d0 
ejy_press_fire 

andi.w #$f,dl 
bne ejoy_dr 

ejump_joy,a0 
#2,dl 
0(a0,dl.w),a0 
(aO) 

rts 
ejoy_dr lea 

l s l . w 
move.1 
jmp 

ejump_joy: 
d e l 
d e l 

eup_jy b s r 
r t s 

edown_jy 
r t s 

e l e f t _ j y 
rts 

eright_jy: 
bsr 
rts 

eup_left_jy 
edown_left_jy 
eup_right_jy 
edown_right_jy rts 
ejy_press_fire: 

move.w #l,fire 
rts 

read joystick 
give it time to think 
here's the result 
save it 
fire pressed ? 
yes 
what direction is the stick? 

nothing doing 
base address 
offset into jump table 
the jump address 
go for it 

0, eup_ jy, edown_ jy, 0,eleft_jy, eup_lef t_ jy, edown_left_jy 
0,eright_jy,eup_right_jy,edown_right_jy 
erot_down rotate view frame down about vy axis 

bsr 

bsr 

erot_up rotate up about vy axis 

erot left rotate left about wx axis 

erot_right 

rts 
rts 
rts 

rotate right about wx axis 

do nothing for now 

erot_down: 
* Rotate down about the yv axis. Decrement ephi (same as vphi) 

move.w #-5,vphi_inc 
rts 

erot_up: 
* Rotate up about the yv axis. Increment ephi (same as vphi) 

move.w #5,vphijnc 
rts 
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erot_left: 
* Rotate left about the xw axis . Increment etheta 

move.w #5,vtheta_inc 
rts 

erot_right: 
* Rotate right about the xw axis. Decrement etheta 

move.w #-5,vtheta_inc 
rts 

vtran_move: 
* move the view transform matrix to the base vectors 
* (really just a change of label) 

lea 
lea 
lea 
lea 
move 
move 
move 
move 
move 
move 
move 
move 
move 
rts 

.w 

.w 

.w 

.w 

.w 

.w 
• w 
.w 
.w 

iv,aO 
jv,al 
kv,a2 
w vmatx,a3 
(a3)+,(a0)+ 
(a3)+,(a0)+ 
(a3)+,(a0) 
(a3)+,(al)+ 
(a3)+,(al)+ 
(a3)+,(al) 
(a3)+,(a2)+ 
(a3)+,(a2)+ 
(a3),(a2) 

all 
iv 

all 
jv 

all 
kv 
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68000 Instruction Set 
Entire books have been written concerning the 68000 instruction set. There is 
insufficient space here to do more than outline the essentials. A succinct but 
thorough discussion is given in the Motorola 16-Bit User's Manual. 

The central feature of assembly language programming is that there are no abstract 
algebraic variables as in regular mathematics or high level languages such as 
BASIC. It is not possible to make statements such as 

LET x=y+z 

though it is possible to effect equivalent manipulations of data. 

In assembly language, names such as x, y or z are labels representing addresses in 
RAM. At these addresses can be found binary numbers which are the current 
values of the parameters associated with the labels. There is a similarity to 
algebraic variables but at every stage it is the binary number itself which is 
manipulated either in memory or in the processor registers. The addressing modes 
of the 68000 are designed to deal with all the ways data needs to be addressed or 
directed through the system during the execution of the various instructions. 

The 68000 instruction set is extensive and powerful. It has two important aspects: 
the instructions themselves and their addressing modes, which form the basic 
framework for data acquisition and manipulation. 

Al.l Registers 
The 68000 processor has eight 32-bit data registers (D0-D7) dedicated to data, 
seven 32-bit address registers which can be used for data and addresses (A0-A6), 
two 32-bit stack pointers (both called A7 but used separately, one for the system 
and one for the user) set to point to last-in, first-out temporary storage areas of 
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RAM (stacks), one 32-bit program counter to keep count of program progress and 
one 16-bit status register of flags to record results of operations. The 32-bit 
registers can be used to handle the five basic data types: bits, bed digits, bytes 
(8 bits), words (16 bits) and long words (32 bits). 

A1.2 Addressing Modes 
Each instruction is concerned with the manipulation of data of some kind 
somewhere in the microcomputer system: in the processor, in memory or from 
external hardware. The addressing modes are designed for the many ways data is 
accessed. There are six basic types: Register Direct, Register Indirect, Absolute, 
Immediate, Program Counter Relative and Implied, which encompass the 14 modes 
listed below. For each instruction, the data (which can be an address) which is 
about to be manipulated, is located somewhere in the system. The addressing 
modes give the ways this location is to be found. In its most general form this 
to-be-determined address is called an effective address (ea). 

Addressing Modes 

Immediate Data Addressing 
Immediate the data is the next word 
Quick Immediate the data is included with the instruction 

Implied 
ea = SR, SP or PC 

Register Direct 
Address Register Direct ea = An 
(data contained in named address register) 
Data Register Direct ea = Dn 
(data contained in named data register) 

Absolute Data Addressing. 
Absolute Short ea = (next word) 
(data is at address given at next word following instruction) 
Absolute Long ea = (next 2 words) 

Register Indirect Addressing 
Register Indirect ea = (An) 
(data is at address given in named 
address register) 
Postincrement Register Indirect ea = (An)+ 
(as (An), then increment register) 
Predecrement Register Indirect ea = -(An) 
(as (An) but predecrement register) 
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Register Indirect with Offset ea = dl6(An) 
(as (An) plus a word length addition) 
Indexed Register Indirect with Offset ea = d8(An,Xn) 
(As (An) plus a byte length addition 
together with the contents of an address 
or data register acting as an index) 

An important version of register indirect addressing is PC relative, where the 
program counter is used instead of An in dl6(An) and d8(An,Xn). This allows 
reference to memory locations relative to the current program counter and is used 
to generate position independent code. It is not used in this book since the 
assembler generates relocatable code which achieves the same end. 

Instruction Set 
In general instructions have associated with them a source operand and a 
destination operand. What these actually mean depends specifically on the 
instruction, for example in a MOVE instruction they do exactly what they imply -
supply the source and destination effective addresses. In an ADD instruction they 
give the addresses of the two numbers to be added. These operands follow the 
instruction, on the same line. The instruction itself is like the verb of the sentence. 

In addition the instruction has attributes. These are the permitted data sizes, which 
can be one or more of the types: byte, word or long word depending on the 
instruction. Also as a consequence of die instruction certain flags will be set or 
cleared in the condition code (status) register. 

The list below gives the assembler mnemonics for the main instruction types. 

Mnemonic Action Mnemonic Action 

ABCD add decimal with extend ADD add 
AND logical and ASL arithmetic shift left 
ASR arithmetic shift right Bcc branch conditionally* 
BCHG bit test and change BCLR bit test and clear 
BRA branch always BSET bit test and set 
BSR branch to subroutine BTST bit test 
CHK check register against CLR clear operand 

bounds 
CMP compare DBcc test condition, 

decrement 
and branch* 

DIVS signed divide DIVU unsigned divide 
EOR exclusive OR EXG exchange registers 
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EXT 
JSR 
LINK 
LSR 
MOVEM 
MULS 
NBCD 

NOP 
OR 

RESET 
ROR 
ROXR 
RTR 
SBCD 

STOP 
SWAP 
TRAP 
TST 

sign extend 
jump to subroutine 
link stack 
logical shift right 
move multiple registers 
signed multiply 
negate decimal with 
extend 
no operation 
logical or 

reset external devices 
rotate right with extend 
rotate right with extend 
return and restore 
subtract decimal with 
extend 
stop 
swap data reg. halves 
trap 
test 

JMP 
LEA 
LSL 
MOVE 
MOVEP 
MULU 
NEG 

NOT 
PEA 

ROL 
ROXL 
RTE 
RTS 
Sec 

SUB 
TAS 
TRAPV 
UNLK 

jump 
load effective address 
logical shift left 
move 
move peripheral data 
unsigned multiply 
negate 

ones complement 
push effective 
address 
rotate left with extend 
rotate left with extend 
return from exception 
return from subroutine 
set conditional* 

subtract 
test and set operand 
trap on overflow 
unlink 

*A list of condition codes is shown below: 

Condition Codes 

cc 
EQ 
GE 
HI 
LS 
Ml 
PL 
VC 

carry clear 
equal 
greater or equal 
high 
low or same 
minus 
plus 
no overflow 

CS 
F 
GT 
LE 
LT 
NE 
T 
VS 

carry set 
false (never true) 
greater than 
less or equal 
less than 
not equal 
always true 
overflow 

The condition codes follow instructions such as DBcc and Bcc, but be careful! The 
codes test the result of a calculation in the order 

(destination operand) - (source operand), 

placing the result (if any) in (destination). 

DBcc (which is used for loop processing) will go to the next instruction if the 
condition is true, whereas Bcc (used for a straight branch) will branch if the 
condition is true (and go to the next instruction if it is false). 
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The most obvious loop instruction DBRA (decrement a counter and branch until it 
is -1) is actually absent from the 68000 set. But instead DBF (decrement and 
branch, never true) achieves the same result. Most assemblers implement DBRA 
anyway (but convert it to DBF on assembly), as a service to mankind. 

Variations of Instruction Types 
Here are additional variations of the main types. Most important are the endings -Q 
and -I which refer to faster "Quick" and "Immediate" versions; Quick being the 
faster of the two. 

ADDA 
ADDI 

ANDI 
ANDI to CCR 
ANDI to SR 

add address ADDQ 
add immediate ADDX 

AND immediate 
AND immediate to cond. code 
AND immediate to status reg. 

add quick 
add with extend 

_ _.... 

CM PA compare address 
CMPI compare immediate 

CMPM compare memory 

EORI exclusive OR immediate 
EORI to CCR exclusive OR immediate to condition codes 
EORI to SR exclusive OR immediate to status register 

MOVEA move address 
MOVE to CCR move to condition codes 
MOVE to SR move to status register 
MOVE from SR move from status register 
MOVE to USP move to user stack pointer 

MOVEQ move quick 

NEGX negate with extend 

ORI OR immediate 
ORI to CCR OR immediate to condition codes 
ORI to SR OR immediate to status register 

SUBA 
SUBQ 

subtract address 
subtract quick 

SUBI subtract immediate 
SUBX subtract with extend 
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Devpac Assembler 
There are many good assemblers available. The Devpac ST Assembler/Debugger 
by Hisoft has been used to develop the programs in this book because it is 
powerful, friendly and popular; there are many commands available. What is 
included in this appendix is the small subset which has been found to be especially 
useful. 

The more recent version, DevpacST version 2, provides the option of editing, 
assembling, running and debugging a program all within the one environment. This 
gives the speediest development of programs. But the earlier version 1, which edits 
and assembles separately from debugging, is still entirely adequate for the job. The 
notes here apply mostly to version 2. If version 1 is used it will be necessary to 
delete the section headings SECTION TEXT, SECTION DATA and SECTION 
BSS (or precede them with an asterisk, *) from the main control programs. In 
addition, version 1 only allows assembly to a binary file on disk, whereas version 
2 allows assembly to memory, within the Editor. This difference only matters 
when the GEMDOS call #o, TERMINATE, is invoked. In these programs, 
control will return to the Editor in version 2 but not to the Desktop in version 1. 
In the latter case the computer must be reset by turning it off for 10 seconds. 

One last general point. It helps to have a high resolution monitor (SM124) 
available for program development; the Editor displays a complete page and the 
Debugger gives a more extensive view of memory contents. In low resolution less 
is visible on the screen. 

GENST 
This is the combined editor, assembler and debugger. You can write programs, run 
and debug them all within GENST2. 
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The Editor 
This is a friendly screen editor, allowing you to roam freely through the entire 
program. Tabs can be set to convenient column positions in the instruction line 
which will consist of the following fields separated by spaces: 

label mnemonic operand(s) comment 

The label is actually an address in RAM though it appears in the program as a 
user-friendly word, usually having a meaning which is relevant to the program. For 
example if it is the point to which the program returns in a repetitive loop, it might 
be simply "loop". Instruction mnemonics and operands have been discussed in 
Appendix 1. The comment field should explain in an informative way what is 
going on so that the progress of the program can be easily understood. An example 
might be 

loop move.w dO, (aO) save the f l a g 

Moving About the File 

Gross movements about a file are easily done by using the mouse to drag the slider 
on the scroll bar. To go to the start (top) or end (bottom) of a file press Alternate-T 
or Alternate-B, respectively. 

The cursor keys can be used to control movement within the screen. 

Editing Text 

Whole lines can b.e deleted by pressing Control-Y, and restored by pressing 
Control-U (useful for repeating lines). Deleting within a line can be done by 
pressing Backspace (backwards) or Delete (forwards). 

Text Movement 

Among the most useful facilities are those which handle blocks of text. First move 
the cursor to the start of the block and press Fl. Go to the end of the block and 
press F2. A marked block can be manipulated in several ways (Help lists these): 

F3 saves a block; F4 copies it (to where the cursor is), 

Shift-f4 saves it to the block buffer (a speedier version of F3), 

Shift-F5 deletes it (but also saves it in the block buffer!), 

F5 pastes in the block (at the cursor). 

Alternate-W prints it out. 
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Assembly 
A program can be assembled in several ways. Just to see whether it will assemble 
choose the Output to None option. This is the best thing to try on the first attempt. 
To run and debug a program choose the Output to Memory option. To save the 
assembled program to run independently choose the Output to Disk option and 
name it with the file extension .PRG (or TOS). 

Options 

There are many options available which affect how the assembly should take place. 
The option OPT-D (written at the top of the source file but after a BRA to the 
actual program) is very useful and will retain labels in the debugger, which helps 
enormously to follow the program. 

Directives 

Assembler directives, which have a similar appearance to assembler instruction 
mnemonics but which are unique to the assembler, are fairly standard. The 
common ones, such as EQU, DC, DS, used to fix the values of labels, set up 
(tables of) constants and to set up variables space, respectively, are used 
extensively throughout the example programs. Also used extensively to pull in files 
at assembly is the INCLUDE directive. This has made it possible to build up the 
book and the overall program by stages. The programs themselves show best how 
the directives are used. 

Debugging 

All assembly language programs have errors. Often, more time is spent debugging 
programs than writing them and so it helps to have a good debugger. 

The debugger is actually called MonST and is available as a free standing program 
or within the Editor. Using it within the Editor makes the cycle of editing, 
assembling, running, debugging complete. Most likely you will want to single step 
through a program and watch what happens in the 68000 registers and in memory. 
Three windows display the register contents, a disassembled section of program 
around the current address of the program counter and the contents of a selected 
part of memory. A fourth small window passes messages. For the purpose of 
changing addresses and register contents, any one of the display windows can be 
made active by toggling Tab. 

Executing Programs 

There are many ways of monitoring a program. Here are some of them: 
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Control-Z 
Control-T 
Control-A 

Run 

Breakpoints 

single step; every instruction executed 
single step; skips BSR's, JSR's, LineA, Traps 
single step; places a breakpoint after next instruction 
(useful for by-passing DBF's (DBRA's) 
produces a prompt for the type of run: 
G run at full speed to next breakpoint 
S run at reduced speed 
I run for (specified) count 
U run until condition is true (evaluate arexpression) 

These allow you to stop the program at specific addresses. They control the flow 
of the program in the different running modes. Here are simple controls: 

Alternate-B 
Control-K 
U 
Help 

Miscellaneous 
Control-C 
L 
P 
M 
Alternate-A 
Alternate-R 
S hift-Alternate-Help 

set a breakpoint at an address (and clear if followed by -) 
clears all set breakpoints 
asks for an address to run to. 
show Help and breakpoints 

terminate MonST 
list labels 
print out (active window) 
modify address 
set the starting address (active window) 
change contents of named register 
interrupt running program 

Hunting for Bugs 
This is a skill learned through experience. The most useful tip is to check programs 
thoroughly before trying them. Try to construct programs in a structured way, in 
modules, each of which can be thoroughly tested independently before joining 
them all together. Do not rely on the Debugger to find the mistakes. By that time 
you'll have forgotten what each part of the program was for. Don't be in a hurry; 
don't spend one hour "bugging" and ten hours debugging! 

A most common error is a bus error. This is when the program counter finds itself 
pointing to a wrong part of memory. This is often caused by the Stack getting out 
of order, particularly when a return address from a subroutine is required. Look to 
see how you have been using the Stack during the subroutine. 
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Number Systems 

Binary 
Computers are made from electronic switches which are either off (0) or on (1). 
The number system which can be constructed out of such units is called binary 
(base 2), meaning out of 2; the system which goes in powers of 10 is called denary 
(base 10). In the binary system numbers are assembled from powers of 2. For 
example: 

13(base 10) = 1*23 + i*22 + 0*2* + 1*2° 

Instead of writing numbers out in this long form it is usual to arrange only the 
coefficients of the powers of 2 in columns. The column number, labelled from the 
right, gives the power of 2. Hence the number 11 is written as 

13,O- 10H2 

Each one of the units in the binary number is called a binary digit, or bit for short. 
The group of four bits is called a "nibble", especially loved by assembly language 
programmers who have frequent use of it. 

A group of 8 bits also has a special name, a "byte", whose common use largely 
dates from the age of 8-bit microcomputers, which transferred data in bytes. In 
more recent 16-bit microprocessors (this microprocessor labelling scheme refers to 
the size of the data bus) such as the 68000, groups of 16 and 32 bits are commonly 
used, these are called "words" and "long words" respectively. 
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Hexadecimal (hex for short) 
Humans count in powers of 10 (probably because they have 10 fingers), and find it 
unnatural to count in powers of 2. But some link with the binary system is 
necessary for assembly language programmers, especially when memory locations 
are being inspected. To this end the hexadecimal number system is commonly 
used. In it nibbles are abbreviated into single symbols. For the values up to 9 
ordinary denary numbers are used but for the values 10 to 15 (the maximum value 
of a nibble) new symbols are needed. Here a great opportunity has been lost. 
Instead of inventing new computer age symbols, the letters of the alphabet A, B, 
C, D, E, F have been hijacked. Hexadecimal means base 16. 

In the three systems binary, denary and hexadecimal respectively, the equivalence 
is: 

Binary 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Denary 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

He 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Negative Numbers 
Negative numbers in binary are hard to get the hang of. This is because there is no 
special symbol reserved for the minus sign and it must be encoded within the 
number itself. It is done in the following way. 

For simplicity, suppose we are working only in nibble size numbers (in fact there 
aren't any instructions to handle only numbers of this size on the 68000, a nibble 
must be part of a larger number). To deal in negative numbers the total possible 
range, 0-15, is split equally. The interval 0-7 inclusive (8 numbers) is reserved for 
positives and the range 15-8 inclusive (also 8 numbers) is reserved for negatives 
(the range -1 to -8). It's not as daft as it sounds. A negative number is obtained by 
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counting backwards from 0. If there is nothing below 0 the next best to do is to go 
to the top and count down. In a practical sense this is a good method because all 
the negative numbers have their top bit set. The top bit is like a minus sign turned 
vertical. There is a fancy name for this convention: 2's complement 

There is a simple recipe for getting the negative of a number: write it in binary, 
switch all the Ts to 0's and 0's to l's and then add 1. Let's try it. We know that 
-2 is in fact 14 so here's the check: 

Step 1 

+2 is 0010 

Step 2 (2's complement) 

change bits 1101 

and add 1 to give 1110 

which is 14 and therefore correct. 

The 2's complement method of labelling negative numbers works for any size: 
bytes, words and long words. But be warned, only you know that the number is -2 
and not 14, the computer doesn't! To help you keep track of what is going on the 
68000 has instructions, called signed instructions which treat the top bit as a sign 
bit. There are other, unsigned instructions, which treat numbers as positive only. 
These help, but there are many occasions where the programmer must watch that 
numbers do not exceed their allotted range and flip sign, usually with pathological 
consequences. 

In assembly language the different number types are distinguished by their 
different prefixes: 

denary - none ; binary - % ; hex - $ . 
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ST Operating System 
As they say at the start of "A Hitchhiker's Guide to the BIOS" (1985 Atari 
Corp.): DON'T PANIC. 

The Operating System of the ST is big and complex. It is called TOS. It is 
basically split into two parts: one which depends on the hardware details of the ST 
and is called machine dependent (BIOS, XBIOS and Line A routines), and another 
which is machine independent (BDOS, XBDOS, VDI and AES) and will work on 
any computer which runs on the same operating system. A crude breakdown of 
their functions is 

BDOS and XBDOS basic disc operating system 
VDI graphics, particularly input 
AES graphics, particularly output 
BIOS basic input and output to all devices 
XBIOS bios extension to mouse, joystick sound and screen 
Line A very fast graphics primitives to screen. 

Calls to the Operating System 
BDOS Push parameters onto the stack in the given order. Push the function 

number and call trap #1. Afterwards the stack must be tidied (the 
pointer returned to its precall value). Any returned parameter will be 
in DO. 

XBDOS An address pointer (to a parameter block) is placed in Dl, the 
function code in DO and trap #2 is called. A returned parameter (if 
any) is passed in DO. Access to AES and VDI is through this route. 
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BIOS Push parameters onto stack and call trap #13. Reply is passed in DO. 
Tidy stack. 

XBIOS Push parameters onto stack and call trap #14. Reply is passed in DO. 
Tidy stack. 

LINE A Declare constant $AOO0. Set up parameter blocks. Declare constant 
SAOOn, where n is the routine to be called. 

The Line A functions are described in greater detail in Appendix 5. 

The following describes some of the Operating System calls that have a relevance 
to the programs in this book. The reader who wants more detail should consult the 
references given at the end. 

BIOS calls (trap #13) 

1 - bconstat (return character_device input status) 
push: WORD bconstat; WORD character_device number, tidy #4 
Returns character_device input status: 
D0.L = $0000 if none; $ffff if some characters waiting. 

device can be one of: 
0 - prt (parallel port printer); 1 - aux (aux, RS232 port) 
2 - con (console.the screen); 3 - midi; 4 - keyboard port; 
5 - raw console (to screen without control) 

Other functions also use character device so a table can be made: 

operation 
bconstat 
bconin 
bconout 
bcostat 

prt 
no 
yes 
yes 
yes 

aux 
yes 
yes 
yes 
yes 

con 
yes 
yes 
yes 
yes 

midi 
yes 
yes 
yes 
yes 

kbd 
no 
no 
yes 
yes 

raw 
no 
no 
yes 
no 

The keyboard device is output-only, and can be used to configure the intelligent 
keyboard (ikbd) (or drive it insane). 

2 - bconin (input character from device - wait for it) 

As bconstat. 
Waits for a character to be input. Returns with code in low word of DO.L. 
For the console (dev. 2) returns the IBM-PC compatible scan code in low 
byte of upper word and the ASCII character in the low byte of low word 
(see Appendix 8). 
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3 - bconout (output character to device) 
push: WORD bconout; WORD device; WORD character, tidy #6 
returns when the character has been written (see Appendix 8). 

8 - bcostat (return character device output status) 
push: WORD bcostat; WORD device, tidy #4 
returns status: 0 = not ready; -1 = ready to send 

XBIOS calls (trap #14 ) 

2 - _physbase (get address of physical screen (start of 32K block)) 
push WORD _physbase. tidy #2 
returns address in D0.L (at next vertical blank) 

3 - Jogbase (get address of logical screen; right away) 
push WORD Jogbase. tidy #2 
returns immediately die address in D0.L 

4 - getrez (get the screen's current resolution (0,1 or 2) 
push WORD _getrez. tidy #2 
returns result in DO.W 

5 - setscreen (set up all (or some) of screen parameters) 
push: WORD rez; LONG physbase; LONG logbase; 

WORD _setscreen 
tidy #12 
(negative parameters are ignored allowing partial changes) 

6 - setpalette (set up the hardware colour palette) 
push: LONG palettePtr; WORD -_setpalette. tidy #6 
set the contents of the hardware palette register (all 16 entries) 
from the 16 words pointed to by _palettePtr (at next Vblank). 

7 - setColour (set a colour register in the colour palette) 
push: WORD colour; WORD colourNum; WORD _setColour. tidy #6 
set the colour number "colourNum" in die palette to the value 
"colour", return old value in DO.W, no change if negative. 

25 - ikbdws (write a string to the intelligent keyboard) 
push: LONG ptr; WORD cnt; WORD ikbdws. tidy #8 
ptr is the pointer to the string, cnt is the number of characters minus 1. 

34 - kbdvbase (find the vector table for intelligent keyboard) 
push WORD kbdvbas. tidy #2 
returns in D0.L die pointer to the base (kbdvbase) of the table of vectors to 
ikbd routines called packet handlers that process the data packets received 
from the intelligent keyboard controller. The structure of long words is: 
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midivec 
vkbderr 
vmiderr 
statvec 
mousevec 
clockvec 
joyvec 
midisys 
ikbdsys 

midi input 
keyboard error 
midi error 
ikbd status packet 
mouse packet 
clock packet 
joystick packet 
system MIDI vector 
system IKBD vector 

The user can substitute his own vectors in this table so as to provide mouse and 
joystick control of programs. 

VT52 Terminal Escape Codes 
Text can easily printed on the screen using the VT52 terminal emulator routine in 
the BDOS. The program f i l e j o y _ t e s t . s in Chapter 8 illustrates this. Here 
are the control codes, each one of which must be preceded by the ESCAPE code 
27: 

CODE 
A 

B 

C 

D 
E 

H 
1 

J 

K 
L 

M 

Y,m,n 

b,f 
c,b 

FUNCTION 
cursor up 

cursor down 

cursor right 

cursor left 
clear home 

home cursor 
cursor up 

clear below 

clear to eol 
insert line 

delete line 

position at m,n 

foreground f 
background b 

DESCRIPTION 
move cursor up a line (no effect 
at top) 
move cursor down a line (no 
effect at bottom) 
move cursor to right one 
column 
move cursor to left one line 
erase screen and return cursor 
to (0,0) (top LH) 
return cursor to (0,0) (top LH) 
move cursor up a line (scrolls 
at top) 
the screen below the cursor is 
erased 
erase to end of line 
insert blank line above present 
one 
erase current line and close up 
space 
position cursor at row m, 
column n 
select character colour f 
select background colour b 
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d clear to cursor erase screen to cursor, 
inclusive 

e show cursor make cursor visible 
f hide cursor make cursor invisible 
j save cursor save cursor position 
k restore cursor restore it to saved position (or 

(0,0)) 
I erase line keep the current line but erase 

characters 
o clear to sol erase to start of line, inclusive 
p reverse video exchange foreground and 

background colours 
q normal video restore fg and bg colours 
v wrap on continue text onto next line 
w wrap off characters pile up in last 

column position. 

References 
The Concise Atari ST Reference Guide. K.D.Peel, Glentop Press 

Atari ST Internals. A Data Becker Book, Abacus Software 

A Hitchhiker's Guide to the BIOS, Atari Corp. 
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Line A (A-Line) Routines 
The ST has a set of fast graphics routines available in User or Supervisor mode. In 
User mode they are triggered by any instruction which has the hexadecimal form 
$A00n where n is the number of the routine which can be from 0 to $F. Any 
instruction which begins with $A000 triggers an exception which is a special 
design feature of the 68000 incorporated to handle interrupts and exceptions of 
various kinds. This so called Line A "emulator" is to allow the user to set up 
customised routines which do not have to be called as subroutines. 

When the code is detected, the processor switches to supervisor mode and selects 
the appropriate exception handler routine address from the list of addresses (JumP 
vectors) at the start of RAM and is directed to the particular routine to execute 
according to the value of n. When the routine is completed, control again returns to 
the user at the instruction following the Line A code. Prior to calling any of the 
other Line A routines the very first one, $A000, must be called as an initialisation 
in order to find the addresses of parameter blocks, which then have to be set up 
before the routine is called. 

The following details of the Line A routines are taken from S.A.L.A.D. (Still 
Another Line A Document) made available by Atari Corporation, U.K. and used by 
their kind permission. The 15 opcodes are: 

Return Line A pointers 
Draw a pixel 
Return the value of a pixel 
Draw an arbitrary line 
Draw a horizontal line 
Draw a filled rectangle 
Draw a horizontal, line of filled 
rectangle 

Initialization $A001 
Put Pixel $A001 
Get Pixel $A002 
Arbitrary Line $A003 
Horizontal Line $A004 
Filled Rectangle $A005 
Filled Polygon $A006 
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BitBIt 

TexBIt 
Show Mouse 
Hide Mouse 
Transform Mouse 
Undraw Sprite 
Draw Sprite 
Copy Raster 
Seedfill 

$A007 

$A008 
$A009 
$A00A 
$A00B 
$A00C 
$A00D 
$A00E 
$A00F 

Move/copy a section of 
memory 
Move text to the screen 
Show the mouse pointer 
Hide the mouse pointer 
Transform the mouse pointer 
Undraw software "sprite" 
Draw software "sprite" 
Copy raster form 
Seedfill 

Initialization $A000 
This constant must be declared before any other. It returns several useful pointers 
including the one to the Line A Variables Structure. Returned registers contain: 

dO - pointer to variables structure 
aO - ditto 
al - pointer to null terminated array of pointers to system font headers letting you 
to point to custom fonts in TexBIt call. 
a2 - pointer to null terminated array of pointers to Line A routines so they can be 
called direcdy in supervisor mode. 

This routine, like all the others is called by declaring the constant 

d e w $A000 

This only needs to be done once so that the pointers can be stored for later use. 

Line A Variable Structure 
After initialization ($A000) both DO and AO point to the start of the variables 
structure. This is a long table into which the user must enter values before calling 
other Line A routines. Some of the entries contain pointers to secondary variables 
structures. The list is very long. Most of the lower address variables are concerned 
with the more complicated functions beyond $A007. Only the part concerned with 
simple graphics is given here. The variables are listed in order of their addresses, 
given as an offset from the base address returned by $A000. 
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Variables Concerned with Simple Graphics 

NAME 
PLANES 
WIDTH 

CONTRL 
INTIN 
PTSIN 
PTSOUT 
COLBITO 
COLBIT1 
COLBIT2 
COLBIT3 

LSTLIN 

LNMASK 
WMODE 

X1 
Y1 
X2 
Y2 
PATPTR 

PATMSK 

OFFSET 
+000 $000 
+002 $002 

+004 $004 
+008 $008 
+012$00C 
+020 $014 
+024 $018 
+026 $01A 
+028 $01C 
+030 $01E 

+032 $020 

+034 $022 
+036 $024 

+038 $026 
+040 $028 
+042 $02A 
+044 $02C 
+046 $02 E 

+050 $032 

SIZE 
word 
word 

long 
long 
long 
long 
word 
word 
word 
word 

word 

word 
word 

word 
word 
word 
word 
long 

word 

MFILL 

CLIP 

XMINCL 
YMINCL 
XMAXCL 
YMAXCL 

+052 $034 

+054 $036 

+056 $038 
+058 $03A 
+060 $03C 
+062 $03 E 

word 

word 

word 
word 
word 
word 

FUNCTION 
number of bit planes in current resolution 
width of destination memory form in bytes; 
low and medium res: $a0(160 decimal); 
high res: $50 (80 decimal) 
pointer to CONTRL array 
pointer to INTIN array 
pointer to PTSIN array 
pointer to PTSOUT array 
current colour bit value for colour plane 0 
ditto 1 
ditto 2 
ditto 3 
these are the four bits of the colour nibble 
which selects one of 16 coloursfrom the 
palette 
used in line drawing;iif zero last pixel 
drawn: nonzero last point undrawnfor 
conflicts e.g. connecting lines in XOR mode 

equivalent to the VDI writing mode 
0-replace, 1-transparent, 2-XOR mode, 
3-reverse transparent 
x1 coordinate start of line 
yi 
x2 coordinate end of line 
y2 
pointer to fill pattern e.g. in horizontal line 
and filled rectangle 
"mask" for fill pattern.maintains alignment of 
pattern on the screenjs ANDed with Y1 
to give offset into pattern.most often is 
length of pattern minus 1,usually pattern is 
power of two in length 
multi-plane fill flag, 
0 - fill pattern is single plane 
nonzero - multiplane 
clipping flag: zero = no clipping, 
nonzero = clipping 
minimum x clipping value 
minimum y 
maximum x 
maximum y 
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Line A Routines 
$A000 - i n i t i a l i z a t i o n 

Returns pointers to variables arrays 
INPUT: none 
RETURNS: DO = pointer to variables structure base address 

AO = ditto 
Al = pointer to null terminated font headers 
A2 = pointer to null terminated array of Line A pointers 

$A001 - P u t P i x e l 

Plot a single pixel 
INPUT: INTIN[0] = pixel colour 

PTSIN[0] = x coord, of pixel 
PTSIN[1] = y coord, of pixel 

RETURNS: nothing 

Set up the INTIN and PTSIN arrays as shown above and then load their addresses 
at 8(A0) and C(A0) respectively. 

$A002 - Get P i x e l 

Gets the value of a single pixel 
INPUT: PTSIN[0] = x coordinate of pixel 

PTSIN[1] = y 

RETURNS: value of pixel in DO 

Set up the arrays and pointers to the arrays as in $A001 

$A003 - A r b i t r a r y l i n e 

Draws line between two points 
INPUT: COLBITO, COLBIT1, COLBIT2, C0LBIT3, LISTLIN, 

LNMASK, WMODE 
X1,X2,Y1,Y2. 

RETURNS: nothing 

LINMASK is rotated to align with the rightmost end point. 

$A004 - H o r i z o n t a l l i n e 

Draw a horizontal line. Slightly faster than $A003 
INPUT: COLBITO, COLBIT1, COLBIT2, COLBIT3, WMODE, XI, 

Yl, X2PATPTR, PATMSK, MFTLL 
RETURNS: nothing 
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PATPTR points to an array of line patterns Which one is chosen depends on YI 
and PATMSK. If MFDLL is nonzero, all planes will be filled with the values in the 
colour bits. This overrides WMODE. 

$A005 - F i l l e d rectangle 

Draw a filled rectangle between the limits of XI, X2 and Yl, Y2. 
INPUT: COLBITO, COLBIT1, COLBIT2, COLBIT3, WMODE, XI, 

X2, Yl, Y2PATPTR, PATMSK, MFTLL, CLIP, XMTNCL, 
XMAXCL, YMINCL, YMAXCL 

RETURNS: nothing 

The pattern length, PATMSK, should be 1 less than the length of the number of 
words in the pattern block. 

$A006 - F i l l e d polygon 

This is not a substitute for fast polygon filling routines since it fills only one line at 
each call of $A006. To fill the entire polygon the value of y must be incremented 
and entered at Yl in a loop. 
INPUT: PTSINQ (the array must be filled with the list of wordlength 

polygon vertices with the first one repeated at theend: 
xl,yl,x2,y2 xn,yn,xl,yl) 
CONTRLtl] (number of verticesX^OLBITO, COLBIT1, 
COLBIT2, COLBIT3, WMODE, Yl (current scanline y value), 
PATPTR, PATMSK, MFTLL, CLIP, XMTNCL, XMAXCL, 
YMINCL, YMAXCL. 

RETURNS: nothing 

$A007 - BitBlt 

Perform a BIT BLock Transfer. This can be used to create a 'sprite'. It transfers a 
prepared bit pattern from one part of memory (called the source form memory) to 
another (called the destination form memory). The destination memory may be the 
screen, or some other part of RAM. In these memory 'spaces' the block of pixels 
to blit is located by the coordinates of its top left-hand corner (minimum x and y) 
called the anchor point and the size by its height and width. The BitBlt routine has 
its own dedicated parameter block into which data must be loaded before the call. 
The block must be 76 bytes long with the last 24 bytes being kept free for use by 
the routine itself. The pointer to this parameter block must be loaded into A6 
before the routine is called. Variables marked (D) may be destroyed during the blit. 
Further explanations of the meanings of some of the variables are given at the end. 

B_WD +00 $00 word width of block to blit in pixels 
B_HT +02 $02 word height of block to blit in pixels (D) 
PLANE_CT +04 $04 word number of consecutive planes to blit 

(D) 
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FG_COL 

BG_COL 

OP_TAB 

S XMiN 
S YMIN 
S FORM 
S NXWD 
S NXLN 
S_NXPL 

D XMIN 
D YMIN 
D_FORM 

D NX WD 
D NXLN 
D_NXPL 

P_ADDR 

P NXLN 
P NXPL 
P MASK 
SPACE 

+06 $06 

+08 $08 

+10 $A 

+14 $E 
+-16 $10 
+18 $12 
+22 $16 
+24 $18 
+26 $1A 

+28$1C 
+28$1C 
+32 $20 

+36 $24 
+38 $26 
+40 $28 

+42 $2A 

+46 $2E 
+48 $30 
+50 $32 
+52 $34 

word 

word 

long 

word 
word 
long 
word 
word 
word 

word 
word 
long 

word 
word 
word 

long 

word 
word 
word 
24 bytes 

foreground colour (logic op index: hi 
bit) (D) 
background colour (logic op index: lo 
bit) (D) 
logic ops for all fore and background 
combos 
minimum x: source 
minimum y: source 
source form base address 
offset in bytes to next word in line 
offset in bytes to next line in plane 
offset from start of current plane to 
next plane 
minimum x: destination 
minimum y: destination 
destination form base address 
(screen address) 
offset in bytes to next word in line 
offset in bytes to next line in plane 
offset from start of current plane to 
next plane 
address of pattern buffer (0=no 
pattern) 
offset in bytes to next line in pattern 
offset in bytes to next plane in pattern 
pattern index mask 
workspace required by routine 

NOTES 

The prefixes S_ and D_ refer to the bit pattern in memory and when it is copied 
onto the screen respectively. 

S_FORM is the pointer to the block of memory defining the sprite and D_FORM 
is the pointer to the base address of the screen. These addresses must be on word 
boundaries (start at the next word). S_NXWD and D_NXWD are the offsets, in 
bytes, to the next word in a particular colour plane (see Chapter 2) for the source 
and destination and are: monochrome = 2, medium = 4, low res. = 8. S_NXLN and 
D_NXLN are the number of bytes between each y value which are 80 in high 
resolution (monochrome) and 160 in medium and low resolution. S_NXPL and 
D_NXPL are the number of bytes between colour planes. On the ST screen this 
value is always 2, but it could be different for the source. 

There is no clipping in this routine so care must be taken to ensure the blit does 
not spill outside the destination memory space. 
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Logic Operations 
There is a complicated set of logic operations associated with the blitting process 
which combine the pixels about to be copied (source) with those already there 
(destination). What logic operation applies to each colour plane is calculated from 
the contents of OP_TAB (see below). 

This routine is complicated and powerful due to the variety of different options 
available. Its basic function is to move bit images defined within a rectangle from 
one part of memory to another. If the destination is the screen then it provides a 
very versatile framework within which to manipulate 2D pictures or 'sprites'. 

There are other Line A functions ($A00C and $A00D) dedicated to handling small 
sprites of size 16x16 pixels but there is no such limit on $A007. They do however 
take care of the housekeeping associated with preserving the underlying image 
when the sprite is removed. There are three principal entities involved in this 
function having similar sets of variables but with different prefixes: source, 
destination and pattern. They represent the transfer of an image from the source to 
the destination with the possibility of including a pattern in the process. 

There are many alternative settings of the variables to cope with the range of 
options available and ample opportunity for experimentation (which is probably the 
only way of finding out how it all works). Some of the more impenetrable are 
concerned with the way in which the foreground and background colours of the 
source interact with the destination especially when there are different numbers of 
planes in the source and destination. There are 16 logical operations, called 
RASTER OP codes, between the source, S, and destination, D, to give the 
following results: 

OP CODE Combination Rule 
0 0 
1 SANDD 
2 S AND [NOT D] 
3 S (replace mode) 
4 [NOT S] AND D (erase mode) 
5 D 
6 S XOR D (XOR mode) 
7 SORD 
8 NOT [S OR D] 
9 NOT [S XOR D] 
A NOTD 
B S OR [NOT D] 
C NOTS 
D [NOT S] OR D 
E NOT [S AND D] 
F 1 
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For each colour plane the logical operation is chosen from a table (at OP_TABLE) 
of 4 byte length codes which is indexed from the appropriate plane bits in the 
foreground colour (FG_COL) and background colour (BG_COL). The entries in 
this table depend strongly on how you want the foreground and background 
colours to interact with the destination The foreground bit is the high bit and the 
background bit is the low bit in a two bit number to index into the table. 

Patterns 

Patterns can be included in the blit unless the pointer, P_ADDR, is zero. The 
pattern is word-wide, an integral power of 2 in height (and vertically repeated at 
that spacing) and word aligned. Since the pattern is anchored to the coordinate 
(0,0) (upper left hand corner) of the destination memory form and is logically 
ANDed with the source prior to logical combination with the destination, the final 
pattern depends on the destination coordinates. P_NXLN is the offset in bytes (an 
integral power of 2) between consecutive bytes in the pattem.P_NXPL is the offset 
in bytes between consecutive pattern planes and a single plane pattern can be used 
to set all destination planes with the same pattern by setting the plane offset to 
zero. P_MASK works with P_NXLN to specify the length of the pattern which (in 
words) must be an integral power of 2. The relation between these two is 

if P_NXLN = 2**n 
then P_MASK = (length in words-l)<n. 

Some Examples 

1. To BLT from a single plane source to a multiplane destination set S_NXPL=0. 
The same source plane is BLTed to all destination planes. To map l's to 
foreground colour and 0's to background colour set OP_TAB to: 

Offset logic Op 
+00 00 all zeros 
+01 04 [NOT S] AND D 
+02 07 S OR D 
+03 15 all ones 

To map l's to foreground colour and make 0's transparent set S_NXPL to zero 
and OP_TAB to: 

+00 04 [NOT S] AND D 
+01 04 
+02 07 S OR D 
+03 07 

2. To BLT a pattern without Source to the Destination, define a word of l's and 
set S_FORM to point to it. Set S_NXLN, S_NXPL, S_NXWD, S_XMIN, and 
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S_YMIN to zero. Set up the pattern and the BLT will create a pattern filled 
rectangle. 

3. To create a simple sprite-like device, build a monoplane mask. Everywhere 
there is a 1 in the mask the background will be removed. Everywhere there is a 0 
the background is left intact. Set OP_TAB to: 

+00 
+01 
+02 
+03 

04 
04 
07 
07 

[NOT S] AND D 

S O R D 

It is not necessary to enter a background colour BG_COL. Take a monoplane form 
(or a multiplane form) and "OR" it (OP7) into the area that you just scooped out 
with the mask. 

Example: BitBIit a monochrome invertebrate to the screen 

move.w #2,-(sp) 
trap 
addq 
move.I 
lea 
dew 

*BitBlit parameter block 
blit: dew 

dew 
dew 
dew 
dew 
del 
dew 
dew 
del 
dew 
dew 
dew 
dew 
dew 

screen del 
dew 

find the screen 
#14 
#2,sp 
dO.screen 
blit,a6 
$a007 

$0030 
$0014 
$0001 
$0001 
$0000 
07070707 
$0000 
$0000 
slug 
$0002 
$0006 
$0002 
$00ff 
$0064 
$00000000 
$0002 

pointer to parameter block 
Bitot 

width of source in pixels 
height of source in pixels 
number of planes to blit 
fg colour (logic op index: hi bit) 
bg colour (logic op index: lo bit) 
logic ops for all fg and bg combos 
minimum X: source 
minimum Y: source 
source form base address 
byte offset to next word in line 
byte offset to next line in plane 
offset to next plane (in bytes) 
minimum X: destination 
minimum Y: destination 
destination form base address 
byte offset to next word in line 
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dew 
dew 
del 
dew 
dew 
dew 

$0050 
$0002 
$00000000 
$0000 
$0000 
$0000 

byte offset to next line in plane 
offset to next plane (in bytes) 
address of pattern buffer 
byte offset to next line in pattern 
byte offset to next plane in pattern 
pattern index mask 

* working space 
dew $0000,$0000,$0000,$0000 
dew $0000,$0000,$0000,$0000 
dew $0000,$0000,$0000,$0000 

* the image 
slug: 
* $30 pixels/scanline, $14 scanlines 
* monochrome mask (1 plane: background = 0, foreground = 1) 

dew $0000,$0000,$0030,$0000,$0000,$0066,$0000,$0000 
dew $006e$0000,$0000l$00ce1$0000,$0000,$00cc,$0000 
dew $0000,$0198,$0000,$0000,$03b0,$0000,$0000,$0770 
dew $0000,$0000,$0760,$0000,$0000,$0ee0,$0000,$0000 
dew $7fc0>$0000,$0003,$ffc0,$0000,$003f,$ffc0,$0000 
dew $00ff,$ffe0,$0000,$1fff,$fff0,$01ff,$ffff,$fef0 
dew $0fff ,$ffff ,$ff70,$1 fff ,$ffff ,$ff80,$ffff ,$ffff 
dew $ffe0,$ffff,$ffff,$ffc0 

* note: this program changes "constants" in "dew'"s; it would 
* be better practice to use the "ds.w" directive in the bss section. 



Vectors and Matrices 
Vectors and matrices go together. Whatever convention is chosen for vectors 
determines the convention for matrices. 

Vectors 
A vector is a concise way of specifying a position in space. The position is 
measured from a fixed position called the origin. Since space is 3-dimensional the 
position is determined by moving specified distances forward, sideways right and 
up from the origin (negative distances account for backward, left and down 
respectively). In mathematical language this means measuring all displacements in 
a Cartesian coordinate system. A position in space is then specified by the 
distances along the three axes at right angles one has to travel to reach it. The 
vector notation arises from the way this information is presented. If the 
displacements along the three axes to the point, P, are x,y and z respectively, then 
the vector r which stretches from the origin to P, as shown in Figure A6.1, can be 
expressed in vector notation as 

r = xi + yj + zk 

It is common to write vectors (which have both size (magnitude) and direction) in 
boldface to distinguish them from ordinary numbers which have only size. Here i, j 
and k, called the unit or base vectors, are signposts pointing along the x, y and z 
axes and the term xi means "go a distance x in the direction of the x axis" and so 
on. They are vectors in their own right with size (magnitude) equal to unity. 

Since i, j and k really serve only to distinguish the three components of die 
displacement, we could omit them from the scheme providing the order is retained. 
The three components can be included in order inside brackets ready for 
multiplication with matrices in the column vector notation 
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Figure A6.1 A vector in Cartesian coordinates 

I X 
r = y 

\ z 

This is not the only way to represent vectors. In computer graphics it is common to 
represent them in the row notation 

r = (x y z) 

The convention used determines the way matrices are written. In this book column 
vectors are used because this is more common in science and engineering and 
therefore, likely to be more familiar to the general reader. Switching between the 
conventions is tiresome but fairly painless. 

Matrices 
As a result of rotational transforms which occur frequently in computer graphics, 
the coordinates of objects change in a particular way. A point P(x,y,z) will move to 
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a new position P' (x' ,y' ,z') as a result of a rotation about some axis as shown in 
Figure A6.2. Each one of the new components is related to all the old components 
in a set of linear equations: 

x' =Mll.x + M12.y + M13.z 

y' = M21.x + M22.y + M23.Z 

z' = M31.x + M32.y + M33.z 

where the M's are numbers giving the proportions of the original components and 
are the elements of a matrix M. The important thing is that the matrix elements are 
related uniquely to the rotation, so that any other point rotated in an identical way 
about the same axis would have its new components determined by the same 
matrix M. Using the rules of multiplication of matrices and vectors, we can 
emphasise this by disentangling the elements of M from the components x, y and z 
of the vector. The product is written as: 

x' = / Mil M12 M13 

y' = M21 M22 M23 

z' = \ M31 M32 M33 

The matrix product written this way is just shorthand notation for the set of linear 
equations which really matter when we actually come to work out the new 
coordinates. But writing it this way makes it clear that, once calculated, the matrix 
M can be used to rotate any point in the same way. In an even more concise 
shorthand we can summarise the transformation by: 

r ' =M.r 

where the product here is the matrix product and not an ordinary product of 
numbers. 

To convert this shorthand product back into the set of equations observe that the 
vector has three rows and one column and the matrix has three rows and three 
columns. To form the top row (x') of the transformed vector r ' , multiply in turn 
each of the elements in the top row of M by each of the rows of the vector r and 
add them. The second row of r ' is calculated from die product of each elements in 
die second row of M with die rows of r and so on (if we were working in the row 
representation of vectors everything would be the other way round). This meaning 
of matrix multiplication is somediing that just has to be learned. 
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Figure A6.2 Point P transferred to point P' 

Products of Vectors 

The Scalar (Dot) Product 
Vectors are really just a shorthand and highly suggestive way of doing geometry. 
A point P(x,y,z) in a Cartesian system looks much more important when 
represented by a vector r which stretches from the origin to the point P. Another 
point P ' (x' ,y' ,z') is similarly represented by the vector P ' . 

Very often we wish to know the angle, 0, between these two vectors (referring 
back to the previous section it could be the angle of rotation of the vector P). It 
turns out that what is simplest to find is the cosine of 0 which is 

cos0 = (x.x' + y.y' + z.z') / V((x2+y2 +z2).(x'2+y'2+z'2)) 

The factors in the denominator look complicated but are just the magnitudes of the 
two vectors calculated using a 3D version of Pythagoras' theorem. The numerator 
is the sum of the products of the components of the two vectors taken together. 
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Because such a product occurs frequently in geometry it is given a special symbol 
and name. It is called the scalar or dot product and is written as 

r.r' = x.x' + y.y' + z.z' 

It is called the scalar product because it produces a scalar answer from two vectors. 
Instead of writing the magnitude of a vector as a square root of a sum of squares 
all the time, which is tiresome, it is usual to represent it by the same symbol as the 
vector but without boldface. Hence the cosine is given by 

cos0 = (r.r')/r.r' 

where r = Irl = V(x2+y2+z2) and likewise for r ' . 

The operation Irl means 'the magnitude of r.' 

Notice that the scalar product r.r' is proportional to cos0 and, most important, has 
the same sign as cosG. The sign of the cosine turns out to be a very useful test of 
whether two vectors are parallel (pointing in the same direction) or antiparallel 
(pointing in opposite directions) and plays an important part in testing for the 
visibility of surfaces. 

The Vector (Cross) Product 
This is a product of two vectors which produces a new vector. Once again it is 
based on a useful application. In this case it generates the vector which is normal 
(at right angles) to both the original vectors. Another way of stating this is to say 
that the new vector is normal to the plane containing the two product vectors. This 
is shown in Figure A6.3. The new vector r ' ' and the vector product are defined 
by: 

r ' ' = r x r ' 

The vector r ' ' is normal to the plane containing r and r ' and its magnitude is 
equal to r.r' .sin(0). The components of r ' ' are 

x ' ' = y.z' - z.y' 

y ' ' = z.x' - x.z' 

z ' ' = x.y' - y.x' 

There is one important aspect of vector products which is also true of matrix 
products, the order of multiplication matters; the product r x r ' is not the same as 
r ' x r. In fact 

r ' x r = -r x r ' 

The direction of r ' ' is obtained by twisting r into r ' through the smallest angle. 
The direction in which this is seen as a clockwise rotation is the direction of r ' ' . 
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T~v r 

r / 

Figure A6.3 Vector cross product 

The vector product is complicated but very useful in computer graphics. It is used 
to construct vectors which are normal to surfaces. We discuss this next. 

Surface Normal Vectors 

It is often necessary to construct a vector which is normal to two other vectors. 
This occurs in the calculation of surface normal vectors and coordinate transforms. 
In the case of a surface normal vector the objective is to construct a vector which 
is normal (at right angles) to the surface. 

What this amounts to is forming the vector product of two vectors which lie in the 
surface, as discussed in the previous section. Usually these two vectors are not 
presented as such but have themselves to be constructed from polygon vertex 
coordinate lists. Suppose three consecutive vertices of a convex polygon are 
Pl(xl,yl,zl), P2(x2,y2,z2) and P3(x3,y3,z3) and that these go clockwise round the 
perimeter. The two vectors which can be multiplied in a cross product to give a 
vector pointing out of the surface are 

r = (x3-x2)i + (y3-y2)j + (z3-z2)k 

r ' = (x2-xl)i + (y2-yl)j + (z2-zl)k 
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so , 

r ' ' = r x r ' 

Base Vectors 
Base vectors are unit vectors which point along the axes of the coordinate system. 
In Cartesian coordinates, i, j and k are the "base" vectors. They each have 
magnitude 1, so the only thing that distinguishes them is their direction. 

Matrices 
Matrices have already been discussed in the previous section. In computer graphics 
they represent a transformation of some kind. The matrices which are most 
straightforward to deal with are those associated with rotation and are discussed 
further in Appendix 7. 

The rule for multiplying two matrices in the same as that of multiplying a matrix 
and a vector (as discussed in the previous section) where the vector is taken as a 
matrix having one column and three rows. Adding extra columns to the vector 
makes it a matrix and produces extra columns in the product. For a product to be 
possible there must be as many columns in the first matrix as there are rows in the 
second matrix. 

The matrices which describe rotation about the three axes x,y and z all have three 
rows and three columns (unless they are in homogeneous coordinates): they are 
3x3 matrices. The act of building up a complex rotation from the separate matrices 
in some order is accomplished by multiplying the matrices together. This is called 
matrix concatenation. Just as with the vector cross product, the order of the matrix 
multiplication matters: the matrix farthest to theright is the first rotation and that 
closest to the left is the last rotation. 

Homogeneous Coordinates 
Unlike rotations, certain types of transform, such as translations and perspectives, 
cannot be written as 3 x 3 matrices and made to operate on vectors as a product. 
Since, for the purpose of concatenation, it is desirable to put all transforms on an 
equal footing, homogeneous coordinates are used to convert all transforms to 
4 x 4 matrices which can be multiplied. 

This means moving to a 4-D space (not real space, just a mathematical 
convenience) in which the additional dimension is always 1. The extra degree of 
freedom this gives is sufficient to convert all transforms to 4 x 4 matrices. 
Likewise all vectors must have a forth component, 1. Putting this fourth dimension 
to unity means we are working on a "plane" in the 4-D space which has the 
intersection 1. The "plane" is normal 3-D space. 
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Geometric and Coordinate 
Transforms 

There are two types of transform used widely in computer graphics: geometric and 
coordinate transforms. What is confusing is that they are really two aspects of the 
same thing and it is possible to achieve the same end result by either method. 
However in order to stay sane it helps greatly to think of them as different, chosing 
one or the other depending on the problem. Many clever shortcuts become possible 
once the distinction and connection between them is understood. 

Imagine that you are sitting in a swivel chair positioned at the centre of circular 
carpet in a room with black featureless walls. Since there is no external reference 
point (apart from remembering what actually happened) it is not possible to 
distinguish between rotating the chair to the right on a stationary carpet, or keeping 
the chair fixed and rotating the carpet to the left. The observer on the chair sees the 
same relative movement of chair and carpet and his view of the carpet pattern is 
the same in both cases. But we must be careful to establish a scheme of rotation of 
either the chair or the carpet which are consistent Let us decide that left rotations 
are positive and right rotations are negative. Then we can see that a positive 
rotation of the chair (the observer) is equivalent to a negative rotation of the carpet 
(the object): they are said to be the inverse of each other. 

Now we come to the formal definitions. Rotating the observer is called a 
coordinate transform and rotating the object is called a geometric transform. There 
are many times in computer graphics when we wish to do both of these. When an 
object is moved in the world frame, it is subject to a geometric transform. When 
we wish to see the world from a different point of view a coordinate transform 
must be done. When the observer is controlling his viewpoint orientation by means 
of a joystick it is useful to exploit the connection between the two transforms. 
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Coordinate Systems and Frames of Reference 
To some extent these terms are used interchangeably. For the most part the 
positions and vertices of objects are determined in Cartesian coordinates by a set of 
three x, y and z axes at right angles. The position of the zero of this set of axes is 
called the origin of the coordinate system. The whole constitutes a frame of 
reference to track subsequent motion of the various objects. As we have seen, there 
are two types of movement: a coordinate transform (when the observer moves) and 
a geometric transform (when an object moves). When the object moves it is easiest 
to keep track of what is going on by following the motion of the frame of 
reference attached to the object itself. We have called this the object frame. In the 
main text the object-to-world transform was made by selected rotations and a 
displacement of this object frame. Now we can see exactly how this works. 
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Figure A7.1 Rotation of an object 

Imagine a set of axes permanently attached to the object so that when it moves 
they also move. For simplicity, we consider a rotation by an angle 0 about the z 
axis, as shown in Figure A7.1. A transform matrix is now needed to relate the 
coordinates after the rotation (xl.yl.zl,) to those before (x,y,z). The beauty of this 
scheme is that we can construct this matrix by observing what happens to the base 
vectors. Remember, the base vectors are the unit vectors (of size 1) pointing like 
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sign posts along the x,y and z axes. The base vectors before the rotation are i, j , 
and k and after the rotation are il, j l and kl. 

Looking at the Figure we can see the relations between these: 

il = cosG.i + sinG.j 

j l = -sin0.i + cosG.j 

kl =k 

leading to a transform matrix for the base vectors: 

( cosG sinG 0 \ 

-sinG cosG 0 

0 0 1 / 

Now mis matrix as it stands cannot be used to transform the coordinates (x,y,z) to 
(xl,yl,zl), but curiously enough, its inverse can. Fortunately, the inverse of a pure 
rotation is simply obtained by switching (transposing) the rows and columns. In 
technical language, the inverse of a rotation is its transpose. Doing this yields the 
matrix: 

( cos8 -sin9 0 \ 

sinG cosG 0 

0 0 1 / 

so that, for example, in a rotation by 90 degrees, the point (0,1,0) becomes the 
point (0,0,1) and the point (0,0,1) becomes (0,-1,0). So we have found a way of 
rotating an object to a new orientation: perform that reorientation on the object 
base vectors and express the result in terms of the original base vectors; men 
transpose the matrix to produce the coordinate transform matrix. 

Can the original matrix be used for anything? Yes. As it stands, before it is 
transposed, it is a coordinate transform. If we were to leave the object stationary 
and just rotate the frame of reference, it gives us the transform to calculate what 
the object coordinates appear to be in the new rotated frame. This is shown in 
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Figure A7.2. Hence in the rotation of 90 degrees, the vertex (0,1.0) appears to be 
at (0,0,-1), and the vertex (0,0,1) appears to be at (0,1,0) when seen from the 
rotated frame. Note that in both of these rotations, of the object and reference 
frame respectively, the sense of the rotation was positive. 

Figure A7.2 Rotation of a frame of reference 

Now we can see the qualitative discussion concerning the observer on the swivel 
chair and the carpet expressed mathematically. The transform which calculates the 
coordinates of the object after its positive rotation is: 

/ cos6 -sin6 0 

sin9 cosG 0 

\ 0 0 1 

and the transform which calculates the new apparent coordinates of the stationary 
object after the reference frame has been moved in a positive direction is: 
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1 cos0 sin0 0 

-sin9 cosG 0 

\ 0 0 1 

They are different when both involve a positive rotation but become the same if 
the reference frame (the chair) is rotated negatively. Then the angle 0 is negative 
and because sin(-0) = -sin9 but cos(-0) = cos0 the terms involving sin0 change 
sign but those involving cos9 don't. 

This is only restating the fact that rotating the reference frame one way gives the 
same relative motion as rotating the object the other way. 
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Colour Palette and Key Scan 
Codes 

Standard Colour Palette 

RGB value (hex) Colour 
111 
700 
070 
770 
007 
707 
Oil 
555 
333 
733 
373 
773 
337 
737 
377 
000 

white 
red 
green 
yellow 
blue 
magenta 
cyan 
light grey 
grey 
light red 
light green 
light yellow 
light blue 
light magenta 
light cyan 
black 

GSX standard keyboard mapping 

The key scan codes returned by the ikbd are chosen to simplify the implementation 
of GSX. 
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Hex 
01 
02 
03 
04 
05 
06 
07 
08 
09 
0A 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
1D 
1E 
1F 
20 
21 
22 
23 

Keytop 
Esc 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
-
== 
BS 
TAB 
Q 
W 
E 
R 
T 
Y 
U 
I 
0 
p 
[ 
] 
RET 
CNTL 
A 
S 
D 
F 
G 
H 

Hex 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 

Keytop 
J 
K 
L 
) 
' 
( i 

(LEFT) SHIFT 
\ 
Z 
X 
c 
V 
B 
N 
M 
I 

/ 
(RIGHT) SHIFT 
(NOT USED) 
ALT 
SPACE BAR 
CAPS LOCK 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F10 
(NOT USED) 
(NOT USED) 

Hex 
47 
48 
49 
4A 
4B 
4C 
4D 
4E 
4F 
50 
51 
52 
53 
54 
5F 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 

Keytop 
HOME 
UP ARROW 
(NOT USED) 
KEYPAD 
LEFT ARROW 
(NOT USED) 
RIGHT ARROW 
KEYPAD + 
(NOT USED) 
DOWN ARROW 
(NOT USED) 
INSERT 
DEL 
(NOT USED) 
(NOT USED) 
ISO KEY 
UNDO 
HELP 
KEYPAD ( 
KEYPAD ) 
KEYPAD / 
KEYPAD * 
KEYPAD 7 
KEYPAD 8 
KEYPAD 9 
KEYPAD 4 
KEYPAD 5 
KEYPAD 6 
KEYPAD 1 
KEYPAD 2 
KEYPAD 3 
KEYPAD 0 
KEYPAD . 
KEYPAD ENTER 
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ENBEX 

2's complement, 220 
3D 

clipping in, 161 
Modelling, 26 
general transforms, 129 
order, 177 

68000 Instruction Set, 209 

A-Line routines, 226 
Absolute addressing, 210 
Absolute code, 32 
Address registers, 209 
Addressing modes, 209, 210 
AES, 8, 221 
Assembly language, 6, 32, 209, 214 
Atari ST, 1 
Atari STE, 26 
Attributes, 176 

Base vectors, 156, 242 
BDOS, 221 
BCD digits, 210 
Binary, 209, 218 
BIOS, 8, 9, 100, 221 
BIOS calls (trap #13), 222 
BITBLT graphics, 26, 26 
Bits, 208, 210 
BUTTER, 26 
Blurring, motion, 5 
Breakpoints, 217 
Bresenham algorithm, 36, 38, 40 
bss_00.s file, 41, 43, 50 
bss_01.sfile, 56, 64 
bss_02.s file, 73, 80 
bss_03.s file, 89, 99 
bss_04.s file, 120 
bss_05.s file, 139, 149 
bss_06.s file, 164, 175 
bss_07.s file, 187, 200 

Bubble sort, 179, 179, 180, 186 
Bugs, hunting for, 217 
Bytes, 210, 218 

Calls (to operating system), 221 
Cartesian (x,y,z) coordinate system, 28, 30 
Centre of projection, 66 
Clip frame, 30, 51 
clipfrme.s file, 55, 57 
Clipping in 3D, 161 
Clipping, 51, 55 
Colour, 115 
Colour Palette, 12,115- 119 
Colour Palette, standard, 248 
Colour planes, 13, 117 
Column vectors, 32 
Complex scene, 176 
Composite rotations, 84 
Computer Aided Design (CAD), 4 
Computer games, 4 
Computer graphics, 1, 2 
Concatenation, 68, 129 
Condition codes, 212 
Control matrices, 152, 180 - 182 
Control Panel Accessory, 117 
Convex polyhedra, 52, 111 
Coordinate systems, 30, 244 
Coordinate transforms, 81, 132, 153, 243 
core_00.s file, 42, 45 
core_01.s file, 56, 58 
core_02.s file, 73, 76 
core_03.s file, 89, 90, 93 
core_04.s file, 118, 123 
core_05.s file, 138, 142 
core_06.s file, 163, 167 
core_07.s file, 186, 190 
core_08.s file, 187, 207 
Cosine tables, 88 
Cosines, direction, 153, 156 
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crds_out, 56 
Cross product (vectors), 113 

Data 
packet, 102 
registers, 209 
structures, 32 

Database, 176 
data_00.s file, 16, 22 
data_01.s file, 71, 79 
data_02.s file, 71, 79 
data_03.s file, 88, 92 
data_04.s file, 119 
data_05.s file, 139, 150 
data_06.s file, 185, 201 
data_07.s file, 182, 186, 203 
data_08.s file, 185, 204 
Debugging, 214, 216 
Decision variable, 39 
Depth sorting, 176 
Devpac Assembler, 8, 214 
Direction cosines, 153, 156 
Directives, 216 
Displacements, 129 
Distant objects, 162 
Dot product, 112 

Edge list, 33 
Editor, 214, 215 
Effective address (ea), 210 
Errors, 159 
Euler angles, 151, 153, 156, 180, 185, 187 
eulr_scn, 183, 184, 185, 206 
Exceptions, 13 
Executing Programs, 216 

Fast filling, 36 
Field of view, 162 
Fields, 179 
find_phys, 15 
Fire button, 102 
Flicker-free pictures, 87 
Flight simulators, 29, 151, 153, 180, 184 
Fractals, 3 
Frame, 73 
Frames of reference, 27, 244 
Friction, 137 
Frustrum of visibility, 161 

GEM variables area, 104 
GEMDOS, 8 

General Transforms in 3D, 129 
GENST, 214 
Geometric transforms, 81, 127, 129, 153, 243 
Geometry engines, 5, 26 
Graphics primitives, 29 
GSX standard keyboard mapping, 248 

Hexadecimal, 219 
Hidden surface removal, 3, 110, 111, 118 
High resolution, 11 
High resolution monitor, 214 
Hisoft Devpac assembler, 1 
Hither plane, 162 
Homogeneous coordinates, 65 - 69, 86, 242 
Horizontal blank, 12 

IKBD, 100 - 104 
IKBDWS, 103, 104 
illkey, 118 
Illumination, 110, 114, 115, 118 
Illumination vector, 115 
ilLhide, 118, 121 
Immediate addressing, 210 
Implied addressing, 210 
INCLUDE directive, 6, 41 
Independent code, 7 
Indexed addressing, 33 
Inertia, 137, 138 
Initialization, $A000, 227 
Input devices, 100 
Instance transforms, 28, 129, 136 
Instruction set, 68000, 209, 211 
Instruction types, variations, 213 
Intelligent Keyboard Controller, see IKBD 
Interrupt, vertical blank, 87 
INTIN, 14 
Inversion, 129 

Joystick, 100 - 102, 130 
Joystick handler routine, 102 
Joystick vector, 102 
joy_test, 104, 108 
Jump vectors, 323 

KBDVBASE, 102 
Key Scan Codes, 248 
Keyboard mapping, standard GSX, 248 
key_peek.s program, 104, 105 

Labels, 8, 32, 33, 109 
Latitude, 130 
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Left-handed Cartesian coordinates, 30 
Light source, 110, 115 
Line A (A-Line) Routines, 8, 9, 13, 14, 226, 

229 
Line A variable structure, 227 
Line-of-sight vector, 114, 119 
Linear transform, 68 
LINK, 73 
Lists, 33 
Logical screen, 10, 29, 51, 87 
Long words, 210, 218 
Longitude and Latitude, 130 
Look up tables, 15 
Low resolution, 11, 12, 116 
Low resolution screen driver, 15 
Lucasfilm, 5 

Map, 176 
Mass, 137 
Matrices, 31, 321, 236, 237, 242 
Matrix concatenation, 242 
Matrix product, 68 
Medium resolution, 11, 13 
Micropolygons, 5 
Modelling, 25 
Monitor, high resolution, 214 
Motion blurring, 5 
Mouse, 100, 101, 103 
Mouse icon, 42 
my_data, 55 

Negative numbers, 219 
Newton's Laws of Motion, 29, 137 
Nibble, 218 
Noncommutative products, 84 
Number systems, 218 

Object frame, 27, 28, 87 
Object reference frame, 85 
Object-to-world transform, 29, 85, 87 
Observer, 29, 81 
Operating System, 101 
Operating System, calls to, 221 
Order of Rotation, 84 
ORG, 32 
otranw, 87, 90 

Packet handler, 102 
Painter's algorithm, 110, 178 
Patch, 186, 186 

PC (program counter) relative addressing, 7, 
210 

Personal Iris, 5 
perspect.s program, 71, 74 
Perspective transform, 29, 65, 69, 72 
Physical realism, 137 
Physical screen, 10, 51, 87 
Pilot, 152 
Pitch, 182 
Pixar, 5 
Pixel colour, 13 
Pixels, 37 
Plane, hither, 162 
Plane, Yon, 162 
polydraw, 73 
polyfilO.s program, 16, 21 
polyfill.s program, 15, 16, 18 
polyfil2.s program, 41, 44 
Polygon Fill, 40 
Polygon Mesh, 3 
Polygons, 52 
Polyhedral structures, 25, 26, 33 
Position dependency, 7 
Principal Axes, rotations about, 82 
Products of Vectors, 239 
Program Counter Relative addressing, 210 
Projection, centre, 66 
PTSIN, 14 
put_pixl.s program, 14, 17 

Radiosity, 115 
RAM, 209 
ramview.s program, 101, 104, 105 
Raster scan graphics, 25, 36 
Real-time, 26 
Records, 178, 179 
Reflection, 129 
Register Direct/Indirect addressing, 210 
Registers, 209 
Relocatable code, 7, 8 
Resolution, 11 
Reyes system, 5 
Right-handed Cartesian coordinates, 30 
Roll, 182, 183 
Rotation, 129, 130 
Rotation, about 

arbitrary axis, 152 
principal axes, 82 
x-axis, 83 
y-axis, 83 
z-axis, 83 



254 

Rotations, composite, 84, 129, 130 
Rotations, order of, 83 
Rotations, simple, 81, 129 
Row vectors, 32 
Running times, 184 

Scalar (Dot) Product, 112, 239 
Scaling, 129, 133 
Scan conversion, 25 
Screen, 10, 29, 51 
Screen buffering, 10, 87, 89 
Screen coordinate system, 30 
Screen frame, 67 
Screen pixel, 11 
Screen RAM, 30, 51 
Screens 1 and 2, 87 
screenflag., 88 
Self-similar structure, 4 
SETSCREEN, 104 
SETSCREEN (#5), 101 
set_pixl.s program, 15, 24 
Shear distortion, 133 
Simulators, 4 
Sines, tables of, 88 
Sorting, 178 
Sprite graphics, 115 
SPRITES, 26 
Square root, 114, 119, 164 
ST cube, 136 
ST monolith, 136 
ST operating system,.221 
Stack pointers, 209 
Standard palette, 13 
Status register, 210 
Surface Normal Unit Vector, 111, 113, 241 
Sutherland-Hodgman Algorithm, 5 1 - 5 5 
System Variables, 101 
systm_00.s file, 15, 23 
systm_01.s file, 41, 43, 50 
systm_02.s file, 89, 97 
systm_03.s file, 104, 106 
systm_05.s file, 187, 205 

Tables, 88 
Tile, 178 
Title, 177 
TOS, 9 
Transformations, 27 
Transforms, 31, 243 

general in 3D, 129 
geometric, 129 
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TRAP, 15 
Trigonometric tables, 88 
trnsfrm.s program, 137, 140 

UNLK, 73 

Variables, 32 
vblank, 87 
VDI, 8, 221 
Vectors, 25, 31,32, 111,236 
Vector (Cross) Product, 113, 160, 239, 240 
Vector graphics, 25, 26 
Vector table, 102 
Vertical blank, 10, 12, 87 
View frame, 29, 66, 67, 81 
View frame base vectors, 156, 182 
View plane, 66 
View port, 30 
View vector, 112, 114 
Viewing transform, 180 
Viewpoint, 66, 112 
Visibility, 111, 113 
Visibility sort, 186 
VT52 Terminal emulator, 104 
VT52 Terminal Escape Codes, 224 

Window, 66, 88 
Windowing, 30, 51, 55 
Wire frame, 25 
Words, 210, 218 
World frame, 28, 81, 85, 156 
World map, 186 
World picture, 81 
World Scene, 176 
wrld_scn.s program, 182, 184, 185, 189 
wrld_vw.s program, 163, 165 
wrt_phys_tbl, 15 

X-axis, rotation, 83 
XBDOS, 221 
XBIOS, 8, 9, 15, 100, 221 
XBIOS call number $25, 89 
XBIOS call number 6, 119 
XBIOS calls, 223 
xbuf, 16,42,51 

Y-axis, rotation, 83 
Yaw (bearing) pitch, 182, 183 
Yon plane, 162 

Z-axis, rotation, 83 


	Contents
	1: An Overview
	2: Drawing on the Screen
	3: Modelling a 3D World
	4: Fast Filling a Polygon
	5: Windowing
	6: Getting Things Into Perspective
	7: Simple Rotations
	8: Keyboard, Joystick and Mouse
	9: Hidden Surfaces and Illumination
	10: General Transforms in 3D
	11: Flying Around The World
	12: A World Scene
	Appendix 1: 68000 Instruction Set
	Appendix 2: Devpac Assembler
	Appendix 3: Number Systems
	Appendix 4: ST Operating System
	Appendix 5: Line A Routines
	Appendix 6: Vectors and Matrices
	Appendix 7: Geometric and Coordinate Transforms
	Appendix 8: Colour Palette and Key Scan Codes
	Index

