
MAL-TIME
SD GRAPHICS

FOR THE
ATARI ST

- a practical guide to 68000

assembler programming

Andrew Tyler

SIGMA PRESS - Wilmslow, United Kingdom

Copyright ©, Andrew Tyler, 1991

All Rights Reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission.

First published in 1991 by

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN: 1-85058-217-3

Typesetting and design by

Sigma Hi-Tech Services Ltd

Printed in Great Britain by
Manchester Free Press, Paragon Mill, Jersey St., Manchester M4 6FP.

Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgement of copyright names

Within this book, various proprietary trade names and names protected by copyright
are mentioned for descriptive purposes. Full acknowledgment is hereby made of all
such protection.

Cover Picture

We are grateful to Database Interactive Ltd for their help in producing the cover
photograph, which is an illustration from th "Hying Around the World" program
described in this book.

Disclaimer

Whilst every effort has been made to ensure that the programs in this book work as
described, it is not possible to test them under all possible conditions. Therefore, the
programs are provided "as is" without warranty of any kind either express or implied.
Neither the author nor the publisher assume any responsibility for their use nor for
any infringements of patents or other rights of third parties which would result.
Likewise neither the author nor the publisher accept responsibility for the accuracy of
the information contained in this book.

Preface
"A picture is worth a thousand words". This statement sums it all up.

A few years ago, when I first opened a book on computer graphics, I was stunned
by the beautiful simulations of life-like objects generated by computers. But these
were from state-of-the-art machines, far more powerful than the popular personal
microcomputers of the time, which were almost exclusively 8-bit

With the advent of 16-bit micros things changed markedly. Their extra power and
memory had an immediate impact on all graphics applications, from painting
programs to fast flight simulators sporting solid 3D primitives (objects). The low
price and high power of micros such as the Atari ST and the Commodore Amiga
meant that anyone could enjoy high quality computer graphics (especially in
games) for a few hundred pounds. But enjoying other peoples programs is Only
half the fun. Surprisingly, writing them is not really as difficult as it looks. Of
course there is a fair amount of technology to be learnt along the way, but a good
deal of the dramatic effect comes from the speed of the machines themselves,
performing fairly standard algorithms very fast.

When I first became interested in graphics programming and wanted it to be as fast
as possible in machine code, it seemed to me that essential information was spread
thinly in the literature. There were certainly books on machine code programming
and on computer graphics; there were even a few books on machine code graphics
programming. But somehow I could never quite find the balance I was looking for.
Standard texts on computer graphics seemed amazingly obscure on certain aspects
of transforms, in particular how to picture a scene from an arbitrary view point I
felt, quite unreasonably perhaps, that there was a tendency to hide it all behind a
smokescreen of professional mystique; certainly it helped considerably to
understand the mathematics of vectors and matrices, but surely all this had been
worked out years ago and ought to be fairly straightforward? Perhaps it was just

iv Real-Time 3D Graphics for the Atari ST

me! Anyway I wanted to write 3D solid graphics programs that would run in real
time (like a flight simulator), and couldn't find anyone who would tell me how to
do it. For sure the people who write commercial games knew, but they weren't
telling - for obvious reasons! There were a few very useful serialised articles in
magazines but, by necessity I'm sure, these were often too brief and not exactly
what I wanted.

Things came to a head when I was assigned to give a college course on Advanced
Microcomputer Software (which was another way of saying "Assembly Language
Programming on the 68000"). Teaching programming, especially in assembly
language, can be a very sterile pastime unless the application is interesting. What
better application than graphics? and what better machine (for the price) than the
Atari ST?

This book arose from my efforts to penetrate the world of computer graphics and
make some of the basics understandable (I hope) to non-specialists. It is about fast
3D (so-called vector) graphics in assembly language. There is certainly no
guarantee that the programs in this book are the most efficient, most elegant and
fastest of their kind. But they are reasonably fast. Certainly as fast as some
commercial programs! The astute reader will undoubtedly be able to make
improvements (and tell me, I hope).

There is no assumption that the reader has any prior knowledge of any of the
following subjects, all of which eventually figure heavily in the graphics process:
the ST operating system, vectors and matrices. It helps enormously to have some
knowledge of them, but those aspects which are important for the programming are
explained in the text when they are used. There are further explanations in the
Appendices. That is not to say that the book contains exhaustive discussions of
these subjects, only sufficient for the purpose in hand. The enthusiast will
undoubtedly wish to add to them.

As regards the assembly language, although an Appendix contains a list of the
instruction set and (most important) the addressing modes, it is assumed that the
reader who wishes to fully understand what is going on will have on hand a 68000
code reference book (they are available in pocket form very cheaply).

For the writing, assembly, debugging and running of the programs in the book the
powerful and friendly Devpac ST 2 assembler from Hisoft has been used. This
comes as an integrated package within which all functions can be performed. There
are several good assemblers/debuggers available but I like this one best. It's an
excellent workhorse for the development of assembly language programs. A
demonstration version of it was provided on Cover Disk 10 of ST Format. A full
working version of DevpacST 1, the first version of the assembler, but without the
debugger, has been made available on the cover disk of the March 1991 issue of
Atari ST User. It can be used to assemble the programs in this book, providing the
headings SECTION TEXT, SECTION DATA and SECTION BSS are deleted

Preface v

from them (or marked with an asterisk, *). Further information on the assembler is
given in Appendix 2.

The book is laid out in serial form. Each chapter deals with a different topic and
illustrates its application with example programs. To the experienced reader the
early chapters will seem pedestrian. To the newcomer they will not. There is really
no easy introduction to the overall process and so each stage (a somewhat artificial
division) is dealt with in detail separately. Each stage of the graphics "pipeline"
does a specific task and has its own algorithm and strategy. The chapters are laid
out to reflect the build up of the overall process. Each chapter has its own example
programs and the programs saved from the earlier chapters are used in later ones
so that they don't have to be entered more than once. In this way the example
programs at the end of the book end up being the largest and most complex,
though the amount of code you have to enter for each new chapter doesn't really
increase very much. The programs are written for the Atari ST but can be modified
to run on any 68000 based computer since, with the exception of certain specifics
concerned with the screen and operating system, the graphics routines are entirely
independent and self-contained.

Computer graphics is a vast subject; a book of this length can only cover a small
part. Especially since it is not just descriptive but contains working programs.
Techniques such as Ray Tracing and Radiosity methods are perhaps better suited
to a future, more powerful generation of personal computers. But that will come; it
is likely that many of the software routines discussed here will be replaced in
future machines by hardware "geometry engines".

Until then, 3D graphics will have to be done by "bashing the bytes". Good luck.

Andrew Tyler

vz Real-Time 3D Graphics for the Atari ST

THE DISK
The programs listed in this book are available on disk. The disk contains all the
source files listed here together with the assembled binary program files ready to
run. The disk can be obtained from:

LIVE GRAPHICS
PO BOX 19
ALDERLEY EDGE
CHESHIRE SK9 7XY

The price (at April 1991) is £4.99 inclusive in the UK.

CONTENTS
1. An Overview 1

1.1 A New Medium 2
1.1.1 Is it Art, or What? 2

1.2 What Can You Do With A 16-bit Micro? 5
1.3 Assembled for Speed 6
1.4 Writing for a 16 bit Micro 7
1.5 The Programs 8
1.6 The ST Operating System 8

2. Drawing on the Screen. 10
2.1 The Screen . 10

2.1.1 High Resolution 11
2.1.2 Low Resolution 12
2.1.3 Medium Resolution 13

2.2 The Line A routines 13
2.3 Example Programs 14

2.3.1 put_pixl.s • 14
2.3.2 serpixhs 15
2.3.3 systm_00.s 15
2.3.4 data_00.s 16
2.3.5 polyfil0.s . . : 16
2.3.6 polyfilLs 16

3. Modelling a 3D World 25
3.1 3-D Modelling 26
3.2 Transformations and Frames of Reference 27

3.2.1 The Object Frame 27
3.2.2 The World frame 28
3.2.3 The View Frame 29
3.2.4 The Screen 29

3.3 Coordinate Systems 30
3.4 Vectors and Matrices 31
3.4.1 Vectors 32
3.5 Data Structures 32

3.5.1 Variables and Labels 32
3.5.2 Lists 33

3.6 Summary 35

viii Real-Time 3D Graphics for the Atari ST

4. Fast Filling a Polygon 36
4.1 Bresenham Algorithm for Drawing Lines 38
4.2 Tailoring Bresenham to the Polygon Fill 40
4.3 Example Programs . 41

4.3.1 polyfil2.s 41
4.3.2 core.OO.s 42
4.3.3 bss_00.s 43
4.3.4 systm_01.s 43

5. Windowing 51
5.1 Sutherland-Hodgman Clipping Algorithm 52
5.2 Example Program 55

5.2.1 clipfrme.s 55
5.2.2 core_01.s 56
5.2.3 bss_01.s 56

6. Getting Things Into Perspective 65
6.1 The Perspective Transform 65
6.2 Homogeneous Coordinates 68
6.3 Example program 70

6.3.1 perspect.s 71
6.3.2 data_01.s 71
6.3.3 data_02.s 72
6.3.4 bss_02.s 73
6.3.5 core_02.s 73

7. Simple Rotations 81
7.1 Geometric Transforms 81
7.2 Rotations About the Principal Axes 82

7.2.1 Rotation about the x-axis 83
7.2.2 Rotation about the y-axis 83
7.2.3 Rotation about the z axis 83
7.2.4 Composite Rotations 84

7.3 The Object-to-World Transform 85
7.4 Example Program 87

7.4.1 otranw.s 87
7.4.2 data_03.s 88
7.4.3 core_03.s 89
7.4.4 systm_02.s 89
7.4.5 bss_03.s 89

8. Keyboard, Joystick and Mouse 100
8.1 "Quick and Dirty" 100
8.2 Stricdy by the Book 102

8.2.1 The Keyboard 102
8.2.2 The Joystick 102
8.2.3 The Mouse 103

8.3 Talking to the IKBD 103
8.4 Example Programs 104

8.4.1 ramview.s 104

Contents ix

8.4.2 key_j)eek.s 104
8.4.3 systm_03.s 104
8.4.4 joy_test.s 104

9. Hidden Surfaces and Illumination 110
9.1 Hidden Surface Removal I l l
9.2 Calculating the Surface Normal Unit Vector 113
9.3 Illumination and Colour 115

9.3.1 The Colour Palette 116
9.4 Example Programs 118

9.4.1 illjiide.s 118
9.4.1 coreJM.s 118
9.4.3 data_04.s 119
9.4.4 bss_04.s 120

10. General Transforms in 3D 129
10.1 Geometric Transforms 129

10.1.1 Rotations 130
10.1.2 Seating 133
10.1.3 Shear 133

10.2 Instance Transforms 136
10.3 Physical Realism 137
10.4 Example Program 137

10.4.1 trnsfrms.s 137
10.4.2 core_05.s 138
10.4.3 bss_05.s 139
10.4.4 data_05.s 139

11. Flying Around The World 151
11.1 Introduction 151
11.2 Coordinate Transforms and Direction Cosines 153
11.3 Base Vectors and Direction Cosines 156
11.4 Rotating the Base Vectors: Rotation About an Arbitrary Axis 157
11.5 Accumulating Errors 159
11.6 Clipping in 3D 161
11.7 Velocity of the Observer 162
11.8 Example Programs 163

11.8.1 wrld_vw.s 163
11.8.2 core_06.s 163
11.8.3 bss_06.s 164

12. A World Scene 176
12.1 A Database 176

12.1.1 A Map 177
12.2 Sorting 178

12.2.1 A Bubble Sort. 179
12.3 The Viewing Transform 180
12.4 Running Times 182
12.5 Example Program 183

12.5.1 wrld_scn.s 183

x Real-Time 3D Graphics for the Atari ST

12.5.2 data_06.s 183
12.5.3 data_07.s 184
12.5.4 data_08.s 184
12.5.5 core_07.s 184
12.5.6 bss_07.s 185
12.5.7 systm_05.s 185

12.6 Epilogue 186

Appendix 1. 68000 Instruction Set 209
Al.l Registers 210
A1.2 Addressing Modes 210

Appendix 2. Devpac Assembler 214
GENST 214

The Editor 215
Assembly 216
Hunting for Bugs 217

Appendix 3. Number Systems 218
Binary 218
Hexadecimal (hex for short) 219
Negative Numbers 219

Appendix 4: ST Operating System 221
Calls to the Operating System 221

BIOS calls (trap #13) 222
XBIOS calls (trap #14) 223

VT52 Terminal Escape Codes 224

Appendix 5: Line A (A-Line) Routines 226
Initialization $A000 227
Line A Variable Structure 227
Line A Routines 229

Appendix 6: Vectors and Matrices 236
Vectors 236
Matrices 237
Products of Vectors 239

The Scalar (Dot) Product 239
The Vector (Cross) Product 240
Surface Normal Vectors 241
Base Vectors 242

Matrices 242
Homogeneous Coordinates 242

Appendix 7: Geometric and Coordinate Transforms 243
Coordinate Systems and Frames of Reference 244

Appendix 8: Colour Palette and Key Scan Codes 248
Standard Colour Palette 248
GSX standard keyboard mapping 249

An Overview
Computer graphics is not a minority interest of computer freaks. It is a
multi-billion dollar industry. Even in 1982 when Hollywood spent 3 billion dollars
on movie production, the world commercial computer graphics industry spent 2
billion dollars and was growing at the rate of 30% a year. In the same year in the
U.S. 10 billion dollars were spent on video games. There has been no halt since
that time. Computer graphics is very big business indeed.

The microcomputer owner meets some of the best graphics for his machine in
games, many of which use advanced concepts straight out of the professional
computer journals. For small machines there are always limitations on what can be
achieved, determined by the speed of the processor and the size of RAM. But in
recent years the popular microcomputer has been extremely good value for money,
having considerable computational power at very low price and providing complex
graphics at minimal cost. The Atari ST is just such a computer. So is the
Commodore Amiga. This explosion in the power/price ratio of computer hardware
has put immense computing capability in the hands of the popular micro owner
and made advanced graphics techniques, which were the domain of the
professional, available to anyone.

The aim of this book is to develop fast 3D solid graphics routines which run in
real time and include features such as windowing (clipping), hidden surface
removal, illumination from a light source, joystick control and full perspective and
rotational transforms. The programs are written in 68000 machine code to run on
an Atari ST but the algorithms are valid for any machine. In short, everything
needed to get started on a flight simulator.

The programs are written in assembly language for maximum speed and have been
tested and run using the Hisoft Devpac assembler. There are many excellent
commercial assemblers available at modest expense, and even some in the public

2 Real-Time 3D Graphics for the Atari ST

domain. The Devpac assembler has been used here because it is excellent. There is
nothing more irritating when looking for a persistent and obstinate bug in a
program than an unfriendly assembler. The Devpac assembler has been a friendly
and helpful companion through the many hours required to develop the programs
in this book.

1.1 A New Medium
What is 'computer graphics'? It is certainly shrouded in mystique to some degree.
Because it is still a relatively young subject its evolution is continuing apace, and
is intimately linked to the power of current computers and the special graphics
hardware incorporated in them. The solutions to many of the problems of
yesterday, once based in software, are now provided at great speed in hardware. It
is likely that much of the software of the kind developed in this book will be
replaced in future machines by dedicated 'geometry engines'.

1.1.1 Is it Art, or What?

Humans are very good at generating and recognising complex visual patterns but
not very good at doing arithmetic. By contrast, digital computers were designed to
be perfect at binary arithmetic. What else they can do depends on how well
complex mathematical functions can be constructed from basic binary arithmetic.
There is a limitation here since numbers in a computer cannot be more accurate
than the number of bits assigned to them but, apart from that, it is clear that
complex mathematical calculations can be done quickly on even very modest
microcomputers.

In computer graphics, the computer adds tremendous speed to any calculation
associated with geometry, which is the mathematics of drawing. Because geometry
is concerned with the exact mathematical relations between lines and surfaces, it is
ideally matched to the way the computer works. This is the good and the bad news
of drawing with computers: precise mathematical functions can be expressed
graphically at lightning speed but making them look like natural objects requires
considerably more work. In fact much of the effort in computer graphics is now
concerned with 'messing up' the perfect but sterile images of geometry to make
them fit for human consumption. Doing this has less to do with computers and
more to do with the traditional skills of animation discovered many years ago by
Walt Disney.

It is very easy to draw precise mathematical shapes with a computer because such
shapes can be generated from a formula. A circle is an example of a simple
mathematical function. For a circle centred at the the origin of an x-y coordinate
system the formula is

x2 + y2 = r2

An Overview 3

Such a function is a good starting point for a billiard ball but a poor starting point
for an apple, although superficially the difference is not all that great (both have an
overall spherical shape with a shiny exterior). Let's consider how we might use a
computer to draw an apple.

First of all there has to be a good starting point There is no such thing as a
mathematical formula for an apple. All apples are different. However, apples do
have a typical shape and that is what the human artist knows from experience. But
an artist would not draw all the apples in a still life with the same shape, it would
be too boring. Programming a computer to avoid repetition and simplicity is
difficult.

One way to draw apples would be to use equations of curves having the apple
shape. By choosing functions with high powers of x, y and z, as much sharpness or
flatness as desired can be included. This is the world of bicubic patches, Bezier
functions and beta-splines. This would certainly allow variation, but with
considerable computatational effort. One way to do this would be to hold different
apple outlines as (x,y) coordinate pairs in a data base and then use curve and
surface fitting techniques to connect then as in a "join the dots" picture. This is
how the famous teapot of Martin Newell, which was a prototype in the early
development of modelling solid surfaces, was constructed. In technical language it
can be constructed from an outline consisting of three Bezier curves. Since the
teapot is symmetrical, its surface (with the exception of the spout) is then
generated by rotating the outline about the central vertical axis.

Another way is to avoid curves altogether, and instead subdivide the surface of the
apple into many flat facets like a gemstone. By making the facets sufficiently small
and numerous, an apple of any shape can be modelled. The little facets, being flat
and many sided, are polygons and the surface of the apple is a polygon mesh. This
approach is less time consuming than using curved patches but there remains the
problem of disguising the sharp boundary edges between polygons.

This leads to the next level of refinement in producing a convincing image. A
mathematical function on its own knows nothing of the laws of physics. These are
so familiar to us that we take them for granted: glass is transparent but wood is
opaque, metals look bright and shiny but human skin is dull and diffuse. Somehow
these subtle but essential clues must be included. The most important first step is
to make the rear surfaces of opaque objects invisible. This is called hidden surface
removal which, despite the apparent simplicity of the task, turn out to be quite
difficult. Much time has been spent investigating efficient and thorough ways of
doing this. Next there must be visual clues to the surface structure. One obvious
step is to illuminate it with a light source so that one side is brighter than the other.

At the next level of refinement the surface must be textured and patterned in a
"natural" way to look real. In this the programmer is aided by the mathematics of
fractals, developed and promoted by Benoit Mandelbrot. This is the geometry of

4 Real-Time 3D Graphics for the Atari ST

self-similar structures and quite different from the geometry of Euclid where
structures are built from perfect lines and surfaces. Natural objects appear to have
a lot in common with self similar structures and even if the similarity is not exact,
they are convincingly modelled by them. A self-similar structure is one which has
the same appearance at any level of magnification. Of course natural objects may
only satisfy this definition over a limited range of dimensions but it often produces
very convincing results. For example, the side branch of a fern when magnified
looks like the main branch and small pebbles under magnification look like
boulders. Nature is full of such structures. An additional bonus is that algorithms
have been discovered which allow self-similar structures and landscapes to be
generated from a relatively small amount of information. This relieves the
programmer of carrying a colossal database from which to generate each separate
detail of a complex scene.

All of these steps are essential to give a convincing image. The fact that so much
visual richness is required to make an image look real testifies to the very
advanced pattern recognition capability of human beings.

When all this is done, what have we got? Just a very roundabout way of painting
an apple? The difference is that once created in software the graphic entity has an
independent existence. The picture on the screen is just the final stage. Even if not
being currently displayed, it can evolve according to rules included in the program.
There is not even the constraint to create objects which are modelled on real life. It
is possible to invent new "lifeforms" inside the computer. In Computer Aided
Design (CAD) this is what happens all the time. Machines are designed, built and
tested inside the computer long before they exist as material objects. In simulators
and games this aspect is pushed as far as possible. Computer games specialise in
generating artificial realities; the more exotic the better.

Future developments in input-output devices will undoubtedly have a major impact
on what is currently called computer graphics. At the moment the emphasis is on
generating realistic images. But images are only computer output designed for
human input through the eyes. What will it be called when all of the senses are
involved? Already, with the aid of spectacles which give separate input to each eye
and tactile stimulators on the hands, it is possible to enter totally into the world
inside the computer. What will it be like when computer couples directly into the
human nervous system without the need for an intermediate interface?

Computer graphics is the thin end of a very long wedge which started when
computers first produced a visual output in response to human input. Where it will
end is unknown, but along the way it is sure to be lots of fun.

An Overview 5

1.2 What Can You Do With A 16-bit Micro?
The answer to this question is best illustrated by looking at what is achievable on a
powerful commercial system, of which a good example is the Reyes system
developed at Lucasfilm Ltd and currently in use at Pixar. This has been used to
make a number of well known short film sequences including "The Adventures Of
Andre and Wally B", "Luxo Jr.", "Red's Dream" and the animated knight
sequence from "Young Sherlock Holmes". The Reyes system was set up to
compute a full length feature film in about a year, incorporating graphics as
visually rich as real life. Assuming a movie film lasts about 2 hours and me film
runs at 24 frames per second, this means each frame must be computed (rendered)
in approximately three minutes.

The basic strategy in this system is to represent each object (geometric primitive)
in a scene by a mesh of micropolygons which are subpixel-sized quadrilaterals
with an area of ty4 of a pixel (the smallest visible unit on the screen). All the
shading and visibility calculations are done on these micropolygons.The overall
picture is constructed like a movie set with only the visible parts actually being
drawn. Micropolygons are deemed to be invisible if they lie outside a certain
viewing angle or are too close or too far away. The final system includes subtleties
such as motion blurring, the effect whereby objects in motion appear to be blurred
at their trailing edges. This is one of the devices used to enhance the impression of
motion and is another lesson learned from traditional cartoonists.

A very complex picture in this system typically uses slightly less than 7 million
micropolygons to render a scene of resolution 1024x612 pixels. With 4 light
sources and 15 channels of texture a picture takes about 8 hours of CPU time to
compute on a CCI 6/32 computer which is 4-6 times faster than a VAX 11/780.
Frames from "Young Sherlock Holmes" were the same resolution and took an
hour per frame to compute, slightly more than me 3 minutes per frame aimed for.
In the final movie all the stored frames are played back as in a conventional film.
We can conclude that computational time is still a little too extended.

But it's not necessary to go as far as this to produce high quality pictures. There
are now (1990) "personal" graphics stations available at prices almost within the
reach of mortals. The Personal Iris machines manufactured by Silicon Graphics are
good examples. They offer 256 colours (8 planes) from a palette of 4096 and,
using a hardware "geometry engine", are able to perform transforms such as
scaling, rotation, hidden-line removal and lighting, amongst others, to produce 3D
motion in real-time. The CPU is a 20MHz R3000 RISC processor with a R3010
FPU (floating point unit). Here RISC technology has been used to maximise the
speed, but it is interesting to note that before 1986 Silicon Graphics used the 68000
processor. It will not be long before machines such as these drop into the personal
computer market

6 Real-Time 3D Graphics for the Atari ST

What about a micro with 512 kbytes of RAM and a CPU working at 8 MHz? The
potential for detailed graphics is somewhat less, especially if frames are to run in
real time, sufficiently fast to avoid intolerable flicker. But it is surprising how
much can be achieved. For speed, building up solid objects using polygon meshes
is most attractive since it only requires that the vertices be stored, and a large
object can be described by a very small amount of information. Moreover, since
polygons are sets of vertices joined by straight lines, the most complex algebra
involved will be that of simple geometry. This is the strategy we will use.

1.3 Assembled for Speed
There are many computer languages but assembly language gives the the best
opportunity of getting as close to the hardware as possible and tailoring to the
application in hand. All the programs in this book are written in 68000 assembly
language and except for "housekeeping chores" and a few Line A examples in the
first chapter, do not use any of the routines in the ST operating system. The
programs could therefore easily be rewritten to run on a processor other than the
68000 since the most difficult thing is the overall program structure. Language
details are secondary.

Assembly language is very exacting and unforgiving with a masochistic charm all
of its own. It really has very little grammatical structure beyond the syntax of the
instructions themselves, and the main criteria for efficient programming are speed,
economic use of registers and memory, and efficient parameter passing. Sometimes
there is conflict between these, especially where there is no shortage of memory.
Where speed is all important, programs often sacrifice brevity in order to avoid
time-consuming subroutine calls.

The programs in this book have been assembled and run using the very popular
Devpac ST assembler from Hisoft. The Hisoft assembler has been used because it
is powerful and friendly. It provides an excellent and relatively inexpensive
workbench for program development. In particular the simple but powerful
INCLUDE directive allows files to be pulled together at assembly time without the
need to define global variables. The INCLUDE directive can be nested to any
depth that memory will allow so that each chapter can INCLUDE the programs
from earlier ones. In this way there is hardly any duplication, and a program file,
once entered, can be used later. The overall program therefore grows steadily in
size as the book progresses and practically no programming effort is wasted. The
final program INCLUDE's all earlier parts. This is the only linking which needs to
be done and it is painless.

Appendix 2 gives a brief description of assembler usage in general and the Devpac
assembler in particular, including those commands which have been found to be
most useful.

An Overview 7

1.4 Writing for a 16 bit Micro
Writing programs in assembler for a 16 bit micro is quite different from writing for
an 8 bit micro. Apart from the more powerful addressing modes available, there is
a fundamental difference which centres on the ideas embodied in position
dependent and independent code. The picture is somewhat confused by other
similar sounding terms such as absolute and relocatable code. We shall discuss
what these mean because they have a profound effect on how a program is written
in assembler.

In an 8-bit micro usually only one program at a time is loaded in RAM and at a
fixed location. Of course where an operating system oversees the running of
programs, such as CP/M, things are more complicated. But in small micros with
built in BASIC and very little else, the operating system reserves fixed space for
its variables area and frees everything else for the current program. Knowing
where the program resides in memory makes life simple for the programmer since
fixed addresses can be assigned for variables and these will never change. A
program which directly addresses fixed memory locations is said to be written in
position dependent or absolute code.

Though such code can be written for computers with operating systems, there is
another way of doing things which gives much greater flexibility, and allows
several programs to reside in memory simultaneously. A consequence of this is
that the actual position in memory of a particular program will not be known until
run time. As a result, no actual actual numerical address can be referred to in the
program since it is not fixed until the program is loaded and run.

There are several ways of overcoming this problem. One way is to use an
addressing mode of the processor specifically designed to generate position
independent code. This is called PC (program counter) relative addressing. What it
does is locate an address not as an absolute value but relative to the value of the
program counter where the reference is made. The assembled code will tell the
processor to calculate the actual address by adding or subtracting a displacement to
die current value of the program counter, which will always have a fixed value
relative to the start of the program.

Another way is to calculate all addresses from a base address, or pointer, held in
an address register. The program will then constandy refer to offsets from the
address register but no actual value for the address need be specified when the
program is being written. The register cannot, of course, be used for anydiing else
while it is reserved in this way. The special register will have to be set up at the
start of die program with die correct pointer. A good pointer is the address of the
end of the program.

8 Real-Time 3D Graphics for the Atari ST

Another way is to allow the assembler take care of everything and generate
relocatable code. This is code where no reference to specific addresses is made, but
instead labels are used. The label name is chosen to be informative and of
assistance to the programmer. For example, COLOUR might be the label for die
long word address where die byte lengdi value of die current colour of a polygon
is held. The assembler will mark such a label as relocatable and its address will
finally be fixed by the computer operating system when die program is loaded.

All of the programs in diis book use relocatable code generated by die Devpac
assembler. It is simple to write.

The instruction set of die 68000 is long and complex. To fully appreciate its power
and elegance the reader should refer to die Motorola 16-Bit Microprocessor User's
Manual. A brief listing is given in Appendix 1.

1.5 The Programs
The programs in diis book have been written using die Devpac assembler and are
ready to run. Once a program has been entered all diat is necessary is to assemble
it from witiiin die editor and it will run as described. The program files all have die
extension .s since they are source files. If a program is to run independendy it can
be assembled to disc with die file extension .prg.

The programs have all been run extensively to ensure tiiey are as bug free as
possible, and die listings have been obtained from witfiin the assembler Editor
using die PRINT BLOCK facility to ensure tiiat tiiere are no further stages of
transcription during which errors might creep in. However as witii all human
endeavours, tiiere can be no guarantee tiiat the programs are completely bug free.

The programs are undoubtedly neidier die fastest nor most elegant examples of
tiieir kind in existence but, in a tutorial of this kind where die emphasis is on
teaching, die main point is to understand how tilings are done. The astute reader
will quickly discover clever ways of improving diem. In any case die best
commercial programs are proprietary and kept secret from us.

1.6 The ST Operating System
The ST operating system is large and complex and operates at many levels. There
are often many ways of doing die same thing depending on the level of entry.

At the top are die device-independent parts: VDI (virtual device interface) and
AES (applications environment services). In die middle are die device dependent
parts: BIOS (basic input-output system), XBIOS (bios extension), BDOS (basic
disc operating system). Collectively, these middle level calls are called GEMDOS.
At the bottom are die A-Line or Line A routines which provide a fast interface to

An Overview 9

the low-level graphics primitives as provided in all ST computers with TOS in
ROM. TOS is the name given to the overall Operating System.

Using the device independent routines ensures that programs are portable, i.e. they
are shielded from hardware details and in principle work on any machine with die
same operating system. The penalty is one of speed. Generally the closer you get
to the hardware, die faster tilings run. Using the Line A routines for speed means
that the programs are not portable to other machines. This is not important if the
programs are being written exclusively for the ST.

In this book we will occasionally use BIOS, XBIOS and Line A routines. In
particular they are used to make "legal" calls to the operating system, particularly
where system variables addresses are required in order to make the programs
"future proof against low level modifications at some later time.

Apart from this all the programs are "original" (if there is such a thing in
programming) and tailored closely to the graphics applications.

Drawing on the Screen
In this chapter we look at how the ST screen is addressed. This is detail which is
highly specific to the ST but of great importance for fast graphics, since our
intention is to bypass the routines of the operating system and draw 3D solid
objects in real time. A very important aspect of this will be filling in polygonal
shapes quickly.

No matter how complex graphics programs are, ultimately their output must appear
on the screen. Actually, to be precise, on the physical screen. There is a distinction
between the physical screen, which is that part of RAM which holds the picture
frame currently being displayed on the monitor, and the logical screen, which is
where the output of the program is currently directed. These are just two 32 kbyte
blocks of RAM and the distinction between them is that the hardware thinks it
should display the one called the physical screen. To produce flicker-free graphics,
the usual scheme is to alternate the names of these two screens so that one of them
is being displayed whilst the other is being drawn. This is often called 'screen
buffering'. The switch from one to the other is naturally synchronised to the
program; the program doesn't ask for the switch until the new frame is complete
and the hardware doesn't change the display until the raster on the screen has
reached the bottom right-hand comer and is ready to fly back to the top. The short
time for this to occur - called the vertical blank - is more than sufficient for the
hardware to switch the screens. There is even a routine in the operating system
which will do all this in one go. To start with, for simplicity, we will use only one
screen. The switch to two screens is not difficult.

2.1 The Screen
What then is a screen? Well this depends on the resolution. All resolutions have
one thing in common though. They all consist of a single block of RAM 32 kbytes

Drawing on the Screen 11

in length. How this is used is quite different in the different resolutions. Of the
three resolutions, high, medium and low, it is really only the low resolution which
offers the extensive use of colour. High resolution is very poor indeed for colour -
there isn't any, but it does give very clear pictures in monochrome. Medium
resolution is somewhere in between but is not widely used.

To understand the problem, think of the differences between the actual monitor
screen and the block of RAM holding the image. The actual screen is a rectangular
end of a cathode ray tube on which an electron beam writes. To make this look
like a picture the beam moves very quickly from left to right and top to bottom in
a series of 'raster' scans; the picture is made up of closely spaced horizontal lines.
There isn't really a solid picture at all, it just looks that way from a distance.
Memory, on the other hand, is laid out as a contiguous line of bytes, which are the
smallest elements the microprocessor can directly address. Of these, the smallest
resolvable unit is the bit (8 bits = 1 byte). Somehow each bit in memory must
directly relate to the smallest 'spot' or pixel on the screen. Let's look at how this is
done in high resolution which is die simplest case.

2.1.1 High Resolution
In high resolution there is a very simple relation between each memory bit and
each screen pixel. Figure 2.1 shows the 'mapping' from one to the other. Very
simply, if a bit in memory is set then a screen pixel is on. There are 640 pixels
horizontally and 400 vertically. Multiplying these two numbers and dividing by
eight gives the total number of bytes in the screen RAM, 32000. The 68000 does

nenory
long word 0

word 0 word 1

i byte 0 byte 1 i byte 2 byte 3

ES 4 3 2 1 QU.514131Z11L0

\ word bi t nunber

pixel no. 3 tOU.1 LZ L314 L5 L6 L718 L9 2fl 21Z2 23 24 25 26 27 28 29 50 31

screen

Figure 2.1 High resolution screen memory map

12 Real-Time 3D Graphics for the Atari ST

not directly communicate with bits however. It can directly address bytes and
groups of them: words (1 word = 2 bytes) and long words (1 long word = 2 words
= 4 bytes). Note also that the origin of the screen coordinates is at the top left-hand
corner and how the bit number in each word in memory increases to the left
whereas the pixel position increases towards the right. Although the smallest
addressable unit of memory is the byte the designers of the ST decided to use the
word as the basic building block in screen RAM. In high resolution this is hardly
important but in low resolution, the word rules, O.K.

2.1.2 Low Resolution

In low resolution, things get complicated because of colour. The problem is that
each pixel can have one of the 16 different colours currently set in the colour
palette. This does not mean that there are only 16 specific colours available. It
means that at any given instant only one of the palette colours can be selected.
While no change is made to the colour palette the colours are fixed, but the palette
can be altered, at a convenient moment, to contain 16 new colours out of a
maximum of 512. A good time to do this is during the fly-back of the electron
beam from the bottom right-hand corner of the screen to the top left-hand corner
(the vertical blank) and it is even possible to change it during the short time it
takes for the fly back from the end of one line to the beginning of the next (the
horizontal blank) so that up to 512 colours can be displayed simultaneously.

nenory
IS b i t no. 9
• ',','.'A'.','. l l, l t777XI word B -

word 1 iVijjiijiiLnTTji

word 2 -

word 3 fi'i'fiYQTiYi

- — i Mi inM11rrrm -

'HI

I J 1 I

- word 4

- w o r d 5

- word 6•

m — word 7

• M I I.I.I 11111111111 plane 1

• nViViiii11m-m plane 2

IJX'jj 11' 11111111 plane 3

I,I. i ij 111111111111 plane 4

i \\\

pixel B 1 2 3 4 5 6 7 8 9 L8 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

screen

Figure 2.2 Low resolution screen memory map

Drawing on the Screen 13

Somehow then the pixel colour, as a number between 0 and 15 must be specified.
This has been done in a way which keeps the total screen RAM fixed at 32000
bytes. Obviously there has been a trade-off of colour against resolution. A number
between 0 and 15 can be written in a nibble (4 bits) and this is the key to how the
screen RAM is laid out in low resolution. Each bit in this nibble is referred to as a
'colour plane'. So the first word of memory is the first colour plane, the second
word is the second colour plane, the third word is the third plane and the fourth
word is the fourth plane of the first 16 pixels. Then the pattern is repeated for the
second 16 pixels and so on. In this way each pixel has a nibble all to itself to
specify its colour. This arrangement is shown in figure 2.2. The need to reserve a
nibble for the colour means that the overall number of pixels that can be written is
reduced to one quarter of that in high resolution. Hence the halving of both the x-
and y-resolutions to 320 by 200 respectively. For the moment we will use the ST's
standard palette. Later on we will change it to simulate different levels of
illumination. A list of the colours of the standard palette is given in Appendix 8.

2.1.3 Medium Resolution

Medium resolution is not of much interest to us but it uses memory in a way
somewhat intermediate between that of high and low resolution. There are two
colour planes which means that 4 colours can be specified (numbers 0 to 3). The
penalty is that the number of pixels is halved to give screen resolutions of 640 and
200 for x and y respectively. The screen looks rather squashed in the x-direction.

2.2 The Line A routines
The ST comes armed with an arsenal of built-in graphics routines. Some of them
are very useful. Others look useful but are not very fast. The example programs
included in this chapter illustrate the use of two of them. They are called Line A
routines because the instruction word which triggers them has the value $a00n in
hexadecimal, where n is the number of the routine. The routine which draws
horizontal lines, for example, has the code $a004. It is the fourth routine in the list.
The way these work exploits a design feature of the 68000 processor in which
unusual (or non-legal) and illegal instruction codes, which on other processors
might lead to a system crash, are brought within normal operation by calling them
'exceptions'. The 68000 recognises exceptions for what they are and has a special
way of dealing with them. The Line A instructions cause an exception because of
the hex $a which starts the code. When this is spotted by the processor it
immediately jumps into supervisor mode and uses the "n" at the end of the word
as an index to find which routine to jump to. When the routine has been executed
control returns to the user. Such routines are like subroutine calls but much safer
for the system since they are processed in supervisor mode and can't easily be
meddled with.

14 Real-Time 3D Graphics for the Atari ST

The advantage of using them is that they come 'ready made' and take care of all
the messy details like converting screen coordinates to bits to set in screen RAM
appropriate to the current resolution. In a sense they make the graphics more 'idiot
proof since programs can't crash on basic technical details. The disadvantage is
that because they must be very flexible they "worry" about too much and are
consequently slightly slower than routines dedicated to a particular resolution. If
only one screen resolution is being used, they can be tailored to this and speeded
up a bit. The program examples at the end of the chapter illustrate their use in
plotting pixels and drawing lines. The line A routines offer a wide range of options
and although they are not used in this book, their potential is such, particularly in
sprite graphics, that they are discussed extensively in Appendix 5.

2.3 Example Programs
The example programs included in this chapter explore simple drawing operations
direct to the physical screen: plotting a point and filling a polygon. These are done
in two different ways: either using Line A routines or using customised software. It
is not claimed here that these programs are the fastest possible. Other versions may
be more elegant and faster. But these programs are fast and do the job adequately.
Besides, they do have an educational value, illustrating various aspects of assembly
code programming. When you have studied how they work you are encouraged to
make your own improvements.

Here is a brief outline of each self contained program, with a discussion of its
salient features. The programs themselves are listed on the succeeding pages. They
are ready for assembly by DevpacST. If another assembler is used, modifications
to the syntax may be necessary as specified in its manual.

2.3.1 put^pixls

This program illustrates the use of the $a001 routine to plot a point. It is "quick
and dirty" in that no attempt is made to clear the screen and there is no orderly
exit from the program. It just keeps plotting the same point over and over and to
stop it you will have to switch off the computer. It is set up this way to show how
little preparation is needed to produce an output on the screen. If your monitor
isn't too good you may have to peer rather hard to see the dot.

The routine itself establishes what resolution is currently being used. As with all
Line A routines, it must be preceded by the system initialisation call to $a000.
This returns the addresses of the table of routines and the location of the variables
table to which parameters must be passed. This table also itself contains addresses
of further tables, the PTSIN and INTIN arrays. A further discussion of these arrays
is give in appendix 5.

Drawing on the Screen 15

2.3.2 set_pixls
This is the equivalent of put_pixl.s but with the routine $a001 replaced by a low
resolution screen driver routine. The convenience of using $a001 is clear. This
program spends much of its time converting the x and y coordinates of the pixel to
a bit location in memory and is only valid in low resolution. In addition it must
first find where the physical screen starts in memory which it does with a call to
that part of the ST's operating system called the XBIOS. The various parts of the
operating system are discussed in greater detail in Appendix 4.

All 'housekeeping' subroutines, including calls to the operating system are
contained within a separate file called systm_oo.s. This must be present when the
program is assembled so that it can be INCLUDED at that time. This is
accomplished by the assembler directive INCLUDE which appears at the top of the
listing. A fuller explanation of the Devpac assembler is given in Appendix 2.
Another housekeeping subroutine included in systm_oo..s is wrt_phys_tbl. This is
used to avoid a multiplication in finding the address in RAM of the start of the
row corresponding to the current y-coordinate. Since this is a calculation that must
be done each time, it makes sense to do the work beforehand and record the results
in a 'look-up' table which can easily be accessed using the value of y as an index.
Look-up tables are frequently used to avoid multiplications and divisions during
the program. These are among the most time-consuming instructions in the set.

2.3.3 systmjOO.s

This is the general housekeeping file referred to in the previous section. It will not
assemble and run on its own but is meant to be included in other programs at
assembly time. The directive INCLUDE takes care of this. The file contains
frequently used subroutines of a utility nature; at present it contains three routines:

flnd_phys - find the address of the start of the physical screen,

wrtj?hys_tbl - write a look-up table of the screen row addresses

hlineju - write a look-up table of masks for horizontal line drawing.

The first of these uses an Operating System call to an XBIOS (extended BIOS)
routine to find the starting (base) address of the 32kbyte section of RAM, the
physical screen, the contents of which are being displayed on the screen. The call
uses one of the exception modes triggered by the TRAP instruction.

The second lays out a table of long word start addresses of the 200 raster scan
screen rows, one for each value of the y-coordinate in low resolution. This helps to
speed up drawing.

The last routine is also discussed later in the description of polyfill .s. It also sets
up a table which is used to speed up drawing but in this case the table contains a

16 Real-Time 3D Graphics for the Atari ST

set of bit patterns or "masks". These masks are a block of l's to set within a word
when a line is to be drawn between two pixels.

At present there are only three housekeeping routines, but more will be added later.

2.3.4 data_00.s

This also is not meant to be assembled on its own, but is another INCLUDE file to
be added in at assembly. It contains lists of permanent data, mosdy the assembler
directive EQU which allows us to replace Line A variable offsets by informative
labels in the code and thus make it more readable.

2.3.5 polyfilO.s

This program illustrates the repetitive use of the $a004 horizontal line drawing
routine to fill a polygon, although the polygon is simply a rectangle here. This is
obviously important since in solid 3D graphics a lot of time is spent shading in die
polygonal surfaces of objects. Also it introduces the method we will use to feed
data to the horizontal routine. There are many ways of doing tiiis but we will
calculate ahead of time the start and end x-coordinates of each scan line to fill in
the polygon and store die data in a buffer which starts at die address labelled xbuf.
How tiiis is done for a polygon which is not a rectangle is anodier story to be
explained later, but for the moment we can use it to see how fast a polygon can be
filled. As before, die Line A routine works out all die details concerning die
screen, and life is quite simple.

2.3.6 polyfill.s
In this a polygon is filled as in the previous program, but die Line A routine is not
involved. Instead the screen is directly addressed, so much of die program is
concerned with taking care of screen details. Once again a look-up table is used to
avoid a repetitive determination of a mask which is used in die horizontal line
drawing subroutine. It isn't really necessary to use such a table since the result can
be arrived at speedily using shift instructions, but it falls in witii die philosophy of
relegating awkward calculations to look-up tables. The task which it performs is to
produce the pattern of bits which must be set to draw sections of a horizontal line
witfiin words and is used in die following way.

All horizontal lines are split into tiiree sections: die start of die line to die end of
die first word in screen RAM, a run of completely filled words and from the end
of die last filled word to the end of die line. Hence tiiere may be incompletely
filled words at die start and end of the line; this is where die mask look up table is
used. It quickly finds die pattern of bits to put in these words. The run of filled
words is easy to handle (of course we mean filled by the colour; some colour
planes may have all zeros). The line routine chops lines up into these categories
and deals witii each one separately.

Drawing on the Screen 17

*
* put_pixl.s *

* *
* A program to plot a pixel using the Line A routine number $a001 *
* with the minimum of fuss. Pull the plug to stop it. *
* The system takes care of the screen resolution. *
*

SECTION TEXT

put_pix:
* Initialization: get the pointer to the Line A Variable Structure.

d e w $a000 set up the Line A table pointer
* The address of the table is in aO. Get the pointers to the arrays.

move.l 8(a0),a4 pointer to intin array
move.l 12(a0),a5 pointer to ptsin array

* Enter the x and y coordinates of the pixel in screen coordinates.
move.w #200,(a5) x = 200, first ptsin word
move.w #100,2(a5) y = 100, second ptsin word

* Set the colour number - only the lowest bit works in high resolution.
* In low resolution this is the standard palette no. for red.

move.w #l,(a4) colour red, first intin word
* Set the pixel

d e w $a001 Line A Put Pixel
bra put_pix repeat

END

18 Real-Time 3D Graphics for the Atari ST

*
* polyfilo.s *
* A program to fill a polygon using the Line A routine Sa004 . *
* *** * * * * * * * * * * *

SECTION TEXT

bsr
bsr
bra

poly
a004
main

fill the buffer with x coordinates
use the x coords to draw the lines
keep going to cover the mouse

A subroutine to fill the buffer with x values 16 and 256 to scan fill
* a rectangle between the limits x=16 to x=256 and y=50 to y=150.

polyl

xbuf,a0
#50,dO
#2,do
d0,a0
#$00100100,dO
#100-1,d7
d0,(a0)+
d7,polyl

point to start of buffer
initial y=50
*4 for the offset into the table
pointer to the initial long word
high word=16,low word=256
fill 100 lines (up to y=150)
fill the next long word
for all the y values

poly lea
move
lsl
adda.w
move.1
move
move. 1
dbra
rts

* Initialise the a-line parameter block. Find its address.
a004 dew init returns the address in aO
* Set the constants for a horizontal line

move.w #l,fg_bpl(a0) Set
clr.w fg_bp2(a0) for
clr.w fg_bp3(a0) mono-
clr.w fg_bp4(a0) chrome
clr.w wrt_mod(a0) overwrite.
lea fill,a2 Here is
move.l a2,patptr(a0) the fill pattern
move.w #4-l,patmsk(a0) consisting of 4 lines.
clr.w multifilea0) The pattern is for one plane.

* Fill a line at a time using the $a004 routine.
lea xbuf,al pointer to base address
move #50,dl start at y=50
move dl,d2 save it
lsl.w #2,dl y*4 is the offset into the table
adda.w dl,al here is the first line
move #100-l,d7 draw 100 lines (counter is 1 less)
subq #l,d2 reduce initial y
move.w d2,yl(a0) for the loop

* Here is the loop which fills each scan line in succession
poly2 addq.w

move.w
move.w
movem.l
dew
movem.1
dbra
rts

#i,yi(ao)
(al)+,xl(a0)
(al)+,x2(a0)
d7/a0-al,-(sp)
hline
(sp)+,d7/a0-al
d7,poly2

next y in the loop
next xl
next x2
save the registers
draw the line
restore the registers
repeat for all y values

xbuf

SECTION DATA
include data_00.s

SECTION BSS
ds.l 100

add in the data file

all the scan line x-coords.

END

Drawing on the Screen 19

* p o l y f i l l . s *
* A program to fast fill a polygon. The start and end x coordinates *
* of each horizontal line are the high and low words stored at xbuf.*
*

SECTION TEXT
opt d+
bra main
include systm_00.

bsr
bsr
bsr
bsr
bra

find_phys
wrt_phys_tbl
hline_lu
poly
main

put in labels for debugging
don't try to execute the include
the housekeeping file

locate the physical screen
where the rows start
the masks for filling words
set up the buffer and fill it
keep going to cover the mouse

Fill the buffer from y=50 to y=150 with the values 16 and 256 to
* fill
poly

polyl

poly2

a rectangle between the limits x=16 to x=256 and y=50 to y=150.
xbuf,a0 point to start of buffer
#50,dO initial y=50
#2,do *4 for the offset into the table
d0,a0 pointer to the initial long word
#$00100100,dO high word=16,low word=256
#100-1,d7 fill 100 lines (up to y=150)
d0,(a0)+ fill the next long word
d7,polyl for all the y values
xbuf,al pointer to base address
#50,dl start at y=50
dl,d3 save it
#2,dl y*4 is the offset into the table
dl,al here is the first line
#100-1,d7 draw 100 lines (counter is 1 less)
#l,d3 reduce initial y
#l,d3 next y
(al)+,d2 next xl
(al)+,dl next x2
d2,dl x2-xl
#l,dl N= no to do
#l,d4 system colour #1 - red
phys_tbl_y,a4 where the screen starts
d0-d7/a0-a6,-(sp) save all registers (why not!)
holine draw the line

lea
move.w
lsl.w
adda.w
move.1
move.w
move.1
dbra
lea
move.w
move
lsl.w
adda.w
move.w
subq
addq
move.w
move.w
sub
addq
moveq
lea
movem.1
bsr
movem.1
dbra
rts

(sp)+,d0-d7/a0-a6 restore the registers
d7,poly2 repeat for all y values

•HOLINE. A horizontal line
* passes: xl=d2.w, yl=d3.w,
* First find the address of
holine
hlineO

lea
lsl.w
movea.1
move
andi
lsr .w
adda.w
andi
move

hln tbl,a3
#2,d3
0(a4,d3.w),
d2,d5
#$fff0,d5
#l,d5
d5,a4
#$000f,d2
d2,d0

is drawn from left to right.
N=dl.w, colour=d4.w, phys-screen:a4.1
the word at which the line starts.

pointer to mask table
there are y long words before the

a4 current row address in the table
save xl
go in steps of 8 bytes
to point to plane #1 word
at this address
which pixel from the left?
save it

20 Real-Time 3D Graphics for the Atari ST

* does the entire line lie within one word?
subi
neg
cmp
bmi

#16,dO
do
dl,do
long_line

are there more pixels to the word end
than we have to draw?
no, so it's a long line

* The line is entirely within one word. Get the mask and draw it.
move dl,dO
bsr draw_it
rts and that's all.

* complete 1st word in a long line
long_line:

sub dO,dl
bsr draw_it

* Now fill all the solid words.

number left

hline6 clr
not
move
lsr
beq

dO
do
dl,d2
#4,d2
last word

* a long stretch of filled words
subq
move
not
moveq
move
subq

inc_plane:
addq
movea.
move
lsr.w
bcc

set_word:
or.w
adda
dbra
bra

clr_word:
and
adda
dbra

new_plane:
dbra
subq

#l,d2
d0,d3
d3
#4-1,d5
d4,d6
#2,a4

#2,a4
a4,a5
d2,d7
#l,d6
clr_word

d0,(a5)
#8,a5
d7,set_word
new_plane

d3,(a5)
#8,a5
d7,clr_word

save number of pixels left to do
how many are whole words?
none are

no need to read the table
this many full words but one
which are all l's
or all O's, depending on the colour
4 colour planes

offset for next plane
save the address
initialise the word count
next colour bit

next word.in this plane

next word in this plane

for all the -colour planes
pointer to next plane 1
update pointer

It will start at pixel 0

d5,inc_plane
#6,a5

movea.1 a5,a4
* it only remains to do the last word
last_word:

andi #$f,dl low nibble
cmpi.w #0,dl any to do ?
beq holine_end no - finished.

* In finding the mask,the row offset is zero this time.
1st pixel at extreme left

completely finished

clr
move
bsr

holine_end:
rts

d2
dl,dO
draw it

Drawing on the Screen 21

* Draw in a section of a word which starts at pixel a and ends at pixel b

the mask row offset=a*32
plus
column
offset of (15-b)*2 gives
the total offset
to fetch the mask
and
its l's compliment
(4-1) colour planes
save colour

is this colour bit set?
no
yes, also set the bits

clear the bits

draw it
lsl
move
subq
lsl
add
move.w
move
not
moveq
move

next plane:
lsr
bcc
or .w
dbf
rts

not set and.w
dbf
rts

SECTION
xbuf ds.1
phys_screen
phys tbl y
hln_tbl

END

#5,d2
d0,d5
#l,d5
#l,d5
d5,d2
0(a3,d2.w),d0
d0,d3
d3
#3,d5
d4,d6

#l,d6
not_set
d0,(a4)+
d5,next_plane

d3,(a4)+
d5,next_plane

BSS
400
ds.l 1
ds.l 200
ds.w 256

the buffer of x word pairs
the address of the physical screen
pointers to the row y's
the masks for filling words

22 Real-Time 3D Graphics for the Atari ST

* data_OO.s *

* *
* The data file *
*
* A list of the Line A variables offsets.
* Their meanings are given in Appendix 5.
fg_bpl
fg_bp2
fg_bp3
fg_bp4
wrt_mod
xl
yi
X2
patptr
patmsk
multifi

egu
equ
equ
equ
equ
equ
equ
equ
equ
equ
1

24
26
28
30
36
38
40
42
46
50
equ 52

* and the routine names
init equ $a000
hline equ $a004
* The fill pattern for the $a004 routine
fill:

d e w %1111111111111111
dew %1010101010101010
dew %1001100110011001
dew %llllllllllllllll

Drawing on the Screen 23

*
* systm_OO.s *
Calls to the operating system and frequently used subroutines. *

find_phys:
* A call to the operating System to find the physical screen address

move.w #2,-(sp) xbios _physbase
trap #14 xbios call
addq #2,sp tidy stack

* the base address is returned in do and saved
move.1 do,phys_screen
rts

*
wrt_phys_tbl:
* Write a look-up table of the addresses of the start of physical each
screen row in low resolution,

move.l phys_screen,dO
#200-1,dl
phys_tbl_y,aO
d0,(a0)+
#160,do
dl,luloop

luloop

move
lea
move.
add
dbra
rts

The product 4*y is an offset to row y.
where screen location is kept
200 rows
where the table is
the next row in the table
there are 160 bytes/row
for all rows

*
hline_lu:
* Set up a look-up table for low resolution horizontal line drawing.
* Each mask in the table is the word to set between pixel a and b.

lea hln_tbl,a0 pointer to the table base
move.w #16-1,dl 16 rows, dl is the counter

hloop2 clr.w do new row
move.w #16-1,d2 16 columns, d2 is the counter
bset dl,d0 set the 1st column bit

hloop3 move.w d0,(a0)+ next column
move.w d0,d3
lsr.w #l,d3 shift
or.w d3,d0 add back
dbra d2,hloop3 complete this row
dbra dl,hloop2 for all rows
rts

24 Real-Time 3D Graphics for the Atari ST

*
* set_pixl.s *

* *
* A program to set a pixel in low resolution using a low *
* resolution screen driver. The Operating System is used to find *
* the address of the physical screen. Also a look-up table is *
* constructed to quickly find screen row adreses from y coords. *
* opt d+ write in labels for debugging

SECTION TEXT
bra main
include systm_OO.s

* Here is the main program
main:

bsr
bsr
move
move
moveq
bsr
bra

find_phys
wrt_phys_tbl
#160,do
#100,dl
#l,d2
set_pix
main

don't try to execute the include
include the file of subroutines

locate the physical screen address
construct the row address look-up
plot the pixel at x=160
and y=100
with colour red
plot a point
avoid being covered by the mouse

set_pix:
* The subroutine to plot a pixel at'x,y in low resolution
* Entry: x=d0.w,y=dl.w,colour=d2.w. Corrupted: d0,dl,d2,d3,d4,d7,a0.

lea
lsl
movea.1
move
andi
lsr.w
adda.w
and
subi
neg
clr
bset
move
not
move

phys_tbl_y,aO
#2,dl
0(a0,dl.w),a0
d0,d5
#$fff0,d5
#l,d5
d5,ao
#$000f,d0
#15,dO
dO
dl
d0,dl
dl,d3
d3
#4-1,d7

the screen base address is here
4*y is the row offset
to this row address
save x
go in steps of 4 words
to the first word in the group
at this address
this is the pixel number in the word

this is the bit

this is the mask

and its complement
the counter for the

* Use the colour nibble to set the four colour planes
next_plane:

#l,d2
clear_bit
dl,(a0)+
d7,next_plane

4 colour planes

lsr
bcc
or.w
dbra
rts

clear_bit:
and.w
dbra
rts

is this bit set?
no
it is, so set the plane
for all planes

d3,(a0)+
d7,next_plane

the bit is zero so clear the plane
for all planes

' SECTION BSS
* Where uninitialised data (that calculated by the program) is stored
phys_screen ds.l 1 the address of the physical screen
phys_tbl_y ds.l 200 pointers to the rows in low resolution
hln_tbl ds.w 256 (not used just yet)

END

Modelling a 3D World
One of the most fascinating things aspects of computers is the way they can be
used to build life-like models. The great attraction of realistic computer games and,
at the more serious end, simulators stems from the way the computer screen can be
made to look like a window onto an invented universe. Some famous scientists,
impressed with the similarity to the process of creation, have even gone so far as
to consider theories of reality based on a real Universe built up from 'bits' of
information. Whatever the fundamental significance of it all, the fact remains that
computers offer a new dimension for human expression and experience. Simply
put, they provide the possibility to create alternative realities where the laws of
Nature may or not apply. All sorts of strange and exotic situations can be invented
and investigated. For human beings, who relate most easily to objects and
situations met in everyday life (and dreams), what appears on the computer screen
should look familiar. Great effort has gone into constructing models of this kind. In
a simulator which is supposed to accurately depict reality, the emphasis is on
models which obey the laws of Nature precisely.

In this chapter we will look at a way of modelling which provides a very fast and
reasonably accurate picture of real objects. For the most part, but not completely,
this involves polyhedral structures with polygonal faces as the building blocks, the
so-called 'vector' graphics. Spheres and other objects with a high degree of
symmetry can also be drawn quickly. Actually, to set the record straight, vector
graphics originally meant something else. It was a name given to a mode of
display where points on the monitor were joined directly by an electron beam that
could be switch quickly from one part of the screen to another. This did not
require much memory devoted to the screen and gave very fast 'wire-frame'
pictures. The displays on monitors today do not use this technique. Instead, the
image is built up from horizontal raster scans from one side of the image to the
other. It is called raster scan (or scan conversion) graphics and we have already

26 Real-Time 3D Graphics for the Atari ST

used it to fill polygons. The speed with which an outline can be filled by raster
scans makes it a very useful technique. However the name vector graphics has
become commonly used to describe the graphics modelling technique itself, not the
display technology. The adjective "vector" here really refers to the extensive use
made of vector geometry in the programs.

One other important technique is the BITBLT (Bit Block Transfer) type of
graphics, in which SPRITES play an important role. The Atari STE has a piece of
hardware on board, the BUTTER, which handles such operations very quickly,
whilst on the 520ST it is done entirely by software. In BITBLT graphics, blocks of
memory are manipulated as a whole, which is very useful since, once laid out in
RAM, scan conversion need not be done a second time. The block of bytes is
simply moved to the screen area. Some very clever and fast things can be done this
way, particularly with sprites, but the relationships between the parts of the image
are essentially determined by how the block is initially laid out in RAM. Sprite
graphics is not discussed any further in the main text of this book, but Appendix 5,
which lists all the Line A routines, contains an extensive coverage of the powerful
sprite routines contained within the ST operating system.

Having said that, it is likely that the next generation of popular computers will
have hardware implementation of all the common graphics functions including the
'vector' graphics we are about to discuss. It is very probable that soon all graphics
functions will be done by very fast hardware 'geometry engines'.

3.1 3-D Modelling
"Real-time" 3D modelling has to be very fast This is because humans can spot
the flicker of the picture if it changes more slowly than about once every 50
milliseconds. In order to work in real time, the viewer has to be able to enter new
data through the keyboard, joystick or mouse and see its effects immediately. The
solid 3D structures which can be transformed and drawn on this time scale most
easily are polyhedra.

Polyhedra are very good graphics building blocks or 'primitives' for several very
good reasons:

• they are completely defined by their vertices,

• the faces are polygons with straight edges,

• in any transformation only the vertices need to be recalculated,

• a transformed polygon is also a polygon

• polygons can quickly be filled in to look 'solid' using raster scans.

Modelling in a 3D World 27

What all this means really is that it's very hard to draw and shade in curved
surfaces which don't have high symmetry (like circles) and the only 3D objects
without curved surfaces are polyhedra.

In fact computer graphics does not have a monopoly on the use of polyhedra as
basic building blocks. The real world uses them extensively; all houses are made
from bricks, which are six-sided polyhedra.

3.2 Transformations and Frames of Reference
All of die above statements concerning polyhedra can be translated into a definite
mathematical framework called vector algebra, which is a very elegant and precise
formulation of the mathematics of lines and planes. It becomes even move useful
when presented in matrix form and it is this approach which usually appears in text
books on computer graphics. For someone with little knowledge of advanced
mathematics this looks very intimidating. Actually it's not. Many secondary school
syllabuses handle simple rotations using 2x2 matrices, and it really isn't much
more complicated than that. For those of us who do not wish to blaze new trails in
the world of mathematics it is simply a case of understanding the general method
and taking the results on trust. After all, once you've seen the transforms working
you can use them in your programs and forget about them. There's no need to
re-invent the wheel.

For the moment though, in order to see the problem laid out in its entirety, let's
consider all the various stages of transforms, as shown in figure 3.1. The
distinction between the view frame and the world frame, and transformations
between them, is discussed in further detail in Appendix 7.

3.2.1 The Object Frame

An object which exists inside the computer has quite a complicated life before it is
seen on the screen. Most of this complication arises from the various transforms
required to make it 'lifelike'. But whatever they are (rotations, translation or even
something more exotic), the object must preserve its original identity, i.e. its
relative dimensions. What this means.is that no calculation can be absolutely
precise and, with the picture being recalculated faster than 20 times each second, if
the original definition were not continually referenced, it would not be long before
accumulative errors would make it unrecognisable (this problem crops up in all our
calculations which, for speed, are done in only limited accuracy). Therefore it is
necessary to constantly refer back to the original data which define the object. We
call this place, in which the object is defined, the object frame (there is nothing
sacrosanct about this name, other people have invented other names). Of course it
doesn't 'exist' in any real sense, it's just that the numbers which fix the positions
of the vertices are coordinates measured from some origin. This origin is where the

28 Real-Time 3D Graphics for the Atari ST

object frame is said to be located. The object frame can be positioned so as to
reflect the symmetry of the object. For example, the natural object frame of a cube
could be a cartesian (x,y,z) coordinate system centred at the centre of symmetry
(centre of gravity) of the cube, with the sides of the cube parallel to the x, y and z
axes of the coordinate system as shown in Figure 3.1.

Figure 3.1 Frames of reference

There may be several object frames combined together, particularly when a
complex object is made up of several simpler objects. The process of sticking
together simple objects (primitives) to make a complex one involves just the kind
of transforms we have been talking about. These transforms are sometimes referred
to as instance transforms.

3.2.2 The World frame

Having constructed a complex object - which can be thought of as an 'actor' in the
scenario we are about to create - it is necessary to place it in the arena with all
other 'actors'. This common space, inhabited by all objects is called the world
frame. It is the place where the Laws of Nature play a role. For example, objects
which are not subject to any force either remain at rest or move at constant

Modelling in a 3D World 29

velocity. That's Newton's First Law. Since this world is our creation, we do not
have to stick to these laws, if we wish. This is the place where collisions are tested
for. We will call the transform which moves the object into its final position in the
world frame the object-to-world transform. It will consist of some combination of
rotation and translation.

3.2.3 The View Frame

Everyone in the real world has a different view of it, and the same thing, applies to
the world we are creating inside the computer. The only difference is that there is
only one screen and therefore only one viewer. The view of the world depends on
where the observer is standing and looking.

The view of the world seen by the observer is most easily represented by the view
frame. This is a set of x, y, and z-axes which follow the gaze of the observer.
Usually the z-axis points forward and in our convention the x-axis points vertically
up. In this picture, an object which is straight ahead at a distance of 100m will
have the coordinates (0,0,100) in the view frame and if the observer rotates to the
left by 90 degrees it will have view frame coordinates (0,100,0). In general the
view frame's position in the world frame will be changing continuously. In a flight
simulator, for example, the view frame is the view from the cockpit.

It might appear at first sight that there is an unnecessary duplication of points of
view in all these frames of reference. However they define a natural hierarchy
within which .the overall picture can be constructed to make it easy to take account
of the relative motions of the observer and graphics primitives (objects).

One thing in particular is worth noting. Rotating the view frame to the left or
moving the scene to the right results in the same relative motion and gives the
same picture on the screen. This suggests that there is a simple connection between
two motions. In the language of mathematics, one is said to be the the inverse of
the other. We will return to this again when we look at the rotations in detail. This
point is examined in detail in Appendix 7.

3.2.4 The Screen

This is the logical screen, the block of RAM on which pictures are drawn before
being displayed. It is mapped out following the way RAM is allocated to the
screen, which in turn depends on the screen resolution, as described in Chapter 2.
This results in the origin (the point with screen coordinates (0,0)) being right at the
top left hand corner of the screen. To get from the view frame to the screen we
must make a 'projection' onto a plane, called the view plane, of the objects which
we wish to display. This is called a perspective transform and must preserve the
ordering in space, so that objects which are farther away look smaller. It is done by
tracing "rays" from objects to the view point, which is the location of the

30 Real-Time 3D Graphics for the Atari ST

observer's eye. The intersection of these rays with the view plane defines the
outlines as they will appear on the screen.

The transform to the screen coordinate system is almost the last stage, but not
quite; the screen has limits. It may turn out that parts of the picture lie outside the
screen RAM; that part of memory allocated to the screen. If no attempt is made to
restrict points to appear on the visible screen then the program will attempt to plot
them outside screen RAM, which could lead to a system crash. For this reason,
unless it is absolutely certain that no point to be displayed will ever lie outside the
screen RAM, only part of what is visible on the view plane will reach the screen.
This is "windowing". What is not visible must be "clipped" away. The outline
which defines the window on the display is called a view port. To express clearly
the effort that has gone into producing the final image, this is sometimes also
called the clip frame.

There is even a need to clip in three dimensions in the view frame itself. Objects
which are a long way away from the observer should not be displayed, and no time
should be wasted worrying about them. It is a consequence of having a finite
drawing resolution on the screen that small objects become badly distorted.
Ultimately all very distant objects will end up as single pixels and the horizon
could have a cluster of dots all over it. Sets of parallel lines will ultimately
converge to a single line which will then never diminish in intensity. To stop all of
this it makes, sense to clip out altogether objects which are more than a certain
distance from the origin of the view frame.

3.3 Coordinate Systems
When we try to put all of these transforms on a mathematical basis we
immediately run into a sticky and irritating problem - how to define the coordinate
systems. It is standard in engineering, science and most of mathematics to work in
right-handed cartesian coordinates. A right-handed and a left-handed cartesian
coordinate system are both shown in figure 3.2. In keeping with this convention we
will also always use a right-handed Cartesian coordinate system. However, be
warned, this is not standard in the world of computer graphics. Left-handed
systems abound and sometimes both conventions are used at the same time!

There is another frequently used convention within computer graphics which, if we
are to stick with it, forces the orientation of the axes in the view frame. It is that
the positive z axis points forward into the picture, along the direction in which the
observer is looking.

Putting all this together, we have chosen to end up with the various coordinate
systems shown in figure 3.1. Positive x is up and in the world frame the y-z plane
defines ground level.

Modelling in a 3D World 31

Coordinate systems and frames of reference are also discussed in Appendix 7.

right-handed

x
left-handed

x

Figure 3.2 Right-handed and left-handed coordinate systems

3.4 Vectors and Matrices
For someone who loves computing but not madiematics, the introduction of
matrices and vectors is not very welcome. Although it is possible to do all of the
required mathematics by straightforward algebra, vectors and matrices establish an
elegant and consistent framework within which to work. In addition there are
properties of matrices which make them especially useful. An example is when a
series of transforms take place in succession, such as when a rotation of an object
about the x-axis is followed by a rotation about the y-axis. Instead of calculating
the coordinates of the object twice, after each rotation, it is possible to concatenate
(multiply together) the two transformation matrices and then perform the combined
transform once only. This can save a lot of time when there are many points to
transform.

We will discuss the various types of transforms in detail as they come up.
Appendix 6 also explains matrices and vectors.

32 Real-Time 3D Graphics for the Atari ST

3.4.1 Vectors
Vectors are a mathematical shorthand notation which tell you how far to go in a
given direction. Vectors go together with matrices. Here again there are two
conventions concerning vectors. Vectors can be row vectors or column vectors.
This doesn't mean very much, except that it changes how a vector looks when it is
written down and the arrangement of elements inside the transformation matrices.
In the teaching of engineering and science it is more usual to write vectors in
column form and we will adhere to this convention exclusively throughout the
book.

3.5 Data Structures

3.5.1 Variables and Labels
One of the most difficult things to get used to when first using assembly language
is that there are no algebraic variables, just data stored in registers and at memory
locations. You can't add x to y but you can add the contents of register dO to the
contents of register dl. In a 16 bit system such as the ST even memory locations
become hard to locate because they are not always known when the program is
written. This is in contrast to simpler 8 bit micros where PEEFCmg and POKEing
allows access to anywhere in RAM at addresses which will be fixed and always
available to the program. The problem with a micro with an advanced operating
system, like the ST, is that until a program is actually loaded in the machine and
ready to run, its exact location will not be known. There is a way of forcing the
Operating System to load the program at a particular memory location by the use
of absolute code (set by the assembler directive ORG) but that builds inflexibility
into the program and may lead to clashes with other software. That may not be a
problem with a game which will tie up the computer all to itself, though it may fall
victim to later modifications in the operating system.

The general philosophy is to produce programs which are insulated from all of this
and come as complete self-contained packages which can be located and run
anywhere in RAM. At first sight there appear to be insurmountable problems with
this approach: how can you set up a table of data and later find it and how can you
set up a table of addresses (JumP vectors) of subroutines to execute depending on
the outcome of a test? There are various solutions to these problems, some of
which utilise particular addressing modes of the processor and others of which rely
on the assembler, as we have already mentioned in the discussion of position
independent and relocatable code in Chapter 1. The problem is solved by the
extensive use of labels which are temporary substitutes for addresses which will be
calculated later.

Modelling in a 3D World 33

Labels play a very prominent part in any assembler program. The way they appear
in the code makes them look like algebraic variables but they are not. A label is a
pointer to a memory location where the current value of a variable is held, or it is a
pointer to another part of the program. This is where much of the difficulty arises.

3.5.2 Lists

Finding ways of efficiently storing and accessing data has been the subject of
intense study in computing. In computer graphics it is very important, particularly
where speed matters. The important thing is to store data in a form such that is
easy to get at for the problem in hand. It may not always be in the best form for all
applications all the time, and some manipulation may be required along the way.

In vector graphics where primitives are modelled by polyhedral structures with
polygonal faces, what is most important are lists of vertices (corners) and the
straight line edges joining them. Figure 3.3 illustrates a house modelled in this
way. There is more than one way of setting up a data list to describe this structure,
but the one we will most commonly use has at its centre the list of connections
which describe the surfaces uniquely: the edge list. One tiling to avoid is having to
repeat the actual coordinates of the vertices more than once. It is better to give
each vertex a number and instead refer to this. When the x, y and z-coordinates of
a vertex are required they can be drawn from the list of coordinates by the
powerful indexed addressing modes of the ST, providing the position in the list is
simply related to the vertex number. To make this point clear, here are the lists
which are needed to draw the house. There will be other lists as well, containing
other attributes such as the colour of each surface and so on, but they are not
shown here. The house is not very complicated, but sufficiently so to show how
long the lists might become for a really complex object.

First the number of polygons in the house as a whole must be specified. Each
plane face qualifies: four walls, two sloping roofs, one floor, one door, so we have:

surface number: 8

There is only one entry here but if there were other buildings it would be a list

Then the number of edges in each surface is given, where the entry has the same
position as the number (circled) of the surface as shown in the figure:

edge numbers: 5, 4, 5, 4, 4, 4, 4,4

After this the ordered list of vertex numbers going clockwise round the exterior
face makes up the edge list. To make the data most useful to the program, the first
vertex for each surface is again repeated at the end of its group to make a closed
loop.

34 Real-Time 3D Graphics for the Atari ST

edge list: 7,8,9,2,1,7,1,2,3,4,1,4,3,10,5,6,6,5,8,7,6,5,10,9,8,5,2,9,10,3,2
1,4,6,7,1,11,12,13,14,11

Finally the actual coordinates, in whatever scale is being used, are given for x, y
and z in the order of vertex numbers:

x coordinates: 0,100,100,0,100,0,0,100,150,150,0,50,50,0

y coordinates: 50,50,50,50,-50,-50,-50,-50,0,0,50,50,50,50

z coordinates: -100,-100,100,100,100,100,-100,-100,-100,100,-10,-10,10,10

These data would be used to define the house in the object frame. Following the
transformation to the world frame some of the lists, the edge list, the edge numbers
and the surface number would all be unchanged but the coordinates in the world
frame would be different.

Figure 3.3 A house modelled as a polygon mesh

Modelling in a 3D World 35

3.6 Summary
What should be one's attitude towards these very mathematical aspects of 3D
graphics? If you are mathematically inclined, then it makes sense to try to
understand what's going on in detail. This gives you the power to write your own
transforms and explore some of the very interesting effects that can be produced. If
you are not mathematically inclined then just regard die mathematical transforms
as software "black boxes" to be "plugged in" as required. The transforms in this
book are structured to allow you to do this. You only have to understand how to
present data to them.

Fast Filling a Polygon
At the heart of our fast graphics program is the the routine which fills in a
polygon. Using polyhedra as models for solid 3D objects will produce many
polygonal surfaces to fill in. Because speed is of the essence, this is done in a way
which fits in most easily with the way the computer works. The polygon is filled
in a series of raster scans, or horizontal lines, starting at the top and progressing a
line at a time to the bottom. Chapter 2 has already shown examples of fast fill
routines using this method. This task naturally divides into two parts. In the first
part the x coordinates of the polygon boundary are calculated and stored in a
buffer (at xbuf) of long-words in order of increasing y. Each long-word holds in its
high word the start x coordinate of the line and in its low word the end x
coordinate of the line. In the second part these coordinates are passed in succession
to the horizontal line drawing routine which connects them. Such an approach is
called a raster scan conversion.

The first part looks, at first sight, as if it will require considerable calculation,
especially if the mathematical equation of a straight line is used to find the
coordinates of each (x,y) pair along it. Fortunately the solution to this problem was
solved many years ago in 1962 by JJE. Bresenham. The problem at that time was
to control a digital plotter which could neither multiply nor divide. Such operations
are available on the 68000 but they are time consuming and we want to avoid them
where possible. The great advantage of the Bresenham algorithm is that it can find
all the screen coordinates of a line using only additions and subtractions. When
described in algebraic terms the Bresenham algorithm looks intimidating but, like
all great ideas, is really very simple. Of course some (though not all) commercial
programs use algorithms which draw lines and fill polygons faster than the the
Bresenham method will allow, but having understood it you can try to do better. In
any case it is very elegant and very fast.

Fast Filling a Polygon 37

The problem facing us is to find the (x,y) coordinate pairs along the sides of a
polygon so that we can use them as the start and end points for horizontal lines to
do a fill. The fill of a very small area, chosen so to exaggerate the irregularity
caused by the pixels, is shown in figure 4.1. Regarding the boundary as a line, we
see that it looks different in different screen resolutions. At the highest resolution,
the position of a pixel on the screen is specified by an integer value between 0 and
639 horizontally and between 0 and 399 vertically. With this limitation any line
(unless it is either horizontal or vertical) will, under a magnifying glass, look like a
staircase. This is shown in figure 4.2. In low resolution, which is the one we shall
concentrate on, x has integer values between 0 and 319 and y has integer values
between 0 and 199 so the staircase is easily visible. There is clearly no need for us
to try to calculate the coordinates of a point to better accuracy than the screen
resolution will allow, which means that integer arithmetic is quite adequate. There
is no point in calculating the position of a point on the screen to 4 places of
decimals because it can only be plotted to no places of decimals. The Bresenham
strategy owes its success to the way it fits in with the pixel layout of the screen.
Here is the way it works.

star t pixe 1 —

II

ill
:;:::: >:¥:*:*

ill

liii!
: • : • : • : * : * : • ; • : * : • :

111
I ill:
¥:•: j g g :

111
• : - : • : • : • : • : • : • • : • : • ;

mi
:

• : • • : • : • : • : • : • : • : • : • :

III
III
11
Up­

end pi YPI

X 7

Figure 4.1 A small polygon enlarged to show pixels

38 Real-Time 3D Graphics for the Atari ST

4.1 Bresenham Algorithm for Drawing Lines
Let us suppose that we are plotting a line on the screen which starts at the point
S(xl,yl) and ends at point T(x2,y2) as shown in figure 4.2. These points will, of
course, lie precisely on the line. Now we could take a pencil and ruler and draw an
ideal mathematical line between the two end points and then shade in those pixels
which lie closest to the line. This is how our line will look on the screen. The
result is shown in the figure where the pixels are represented by squares. We want
an algorithm to do what the human brain does automatically in deciding which
points to shade.

Figure 4.2 Pixel positions along a line

Here is the Bresenham algorithm which does this. To make the picture simpler we
replace each pixel by a dot at its centre which makes very clear the degree to
which each pixel misses the ideal line. Suppose we have just reached the point A,
which didn't lie precisely on the line, and we have to choose which point to do
next The next point could be B(x+l,y) or C(x+l,y+l). It seems an obvious choice;
point C because it is closer. Closer in this sense means a shorter vertical distance
to the line at the point E from the centre of the pixel. We can call this the error.

Fast Filling a Polygon 39

On the diagram, error t is less than error s. Notice that somehow we didn't
consider point H in this decision. That's because the angle of the line is less than
45°. If the angle had been greater than 45°, we would have considered the points H
and C. Already it is clear that lines of slope less than 1 (angle less than 45°) are a
different case from lines of slope greater than 1 (angle greater than 45°). We will
come back to this later.

Well it looks like the problem is solved! Just inspect the next two points ahead,
like B and C, calculate the vertical distance of each to the line and choose the
shorter. In principle that's it. If the vertical distance up to the ideal line is taken as
a positive error (like s) and a vertical distance down to the line is taken as a
negative error (like t) then the overall quantity on which the choice is based is
(s-t):

if (s-t) = D is positive, the next point is C

if (s-t) = D is negative, the next point is B.

The quantity (s-t) is called the decision variable D for obvious reasons.

Bresenham's great innovation was to spot two tricks to make this a simple
operation. The first is that since only the sign of (s-t) matters, any quantity which
is proportional to (s-t) will do. The second is that there is no need to re-do this
calculation each time. The value of D used for the present choice can be quickly
corrected to find the value of D for the next choice.

So it goes like this. The updated decision variable, D, is tested to see if it is
positive or negative. If it is negative the next point to set is B. Then D is updated
accordingly. If it is positive, the next point to set is C. Then D is updated
accordingly. We just have to find out what these updates are and what the value of
D at the very start of the line should be.

The key to answering these questions is to look at how to get from A to B or from
A to C. To get from A to B do a horizontal move; to get from A to C do a
horizontal followed by a vertical move. To calculate the errors associated with the
individual horizontal and vertical moves it is simpler to look at point S. From this
a horizontal move produces an error of AF, but a simple vertical move to G
produces an error of -SG (points below the ideal line have a positive error and
points above have a negative error). But SG is equal to SA, so we really only have
to consider the relative lengths of the vertical and horizontal sides of the triangle
SAF. But, very important, triangle SAF is similar to the overall triangle SUT and
the sides are in proportion:

AF/SA = TU/SU = (y2-yl)/(x2-xl) = dy/dx

where dy is the overall distance in y and dx is the overall distance in x from the
start to the end of the line.

40 Real-Time 3D Graphics for the Atari ST

As we have said, anything in proportion will do, so the errors could be taken as dy
and -dx. A further factor of 2, which still keeps everything in proportion, will bring
us into line with Bresenham's original scheme:

simple horizontal move: error = 2dy

simple vertical move: error = -2dx

For the actual moves from A to B or from A to C:

horizontal move (AB): errorl = 2dy

horizontal plus vertical move (AC): error2 = 2dy-2dx

These are the updates which must be made to the decision variable D, for the next
choice.

Finally, what value of D should we start with? Everything works fine if we take
the starting value Dl as the average error of errorl and error2

Dl = (errorl + error2)/2 = 2dy-dx

To summarise, here's the algorithm

1. initialize the first point to xl.yl and the initial value of D to Dl,

2. if Dl is -ve, increment x but don't increment y and make D = D + errorl,

if D is +ve, increment both x and y and make D = D + error2

3. repeat step 2 until x = x2.

Now what about lines which have a slope greater than 1? The solution is very
simple. To see it clearly, just draw a line with slope greater than 1 on a piece of
tracing paper and clearly label the x and y axes. Now turn the tracing paper over.
With the y axis horizontal and the x axis vertical, it now looks like our original
line of slope less than 1 except that the x and y axes have been interchanged.
Everything therefore works exactly as before if x and y are interchanged in the
formulae.

4.2 Tailoring Bresenham to the Polygon Fill
The procedure we have described will certainly generate points along a line, but
for our purpose we do not need them all. When considering lines of slope less then
1, points which lie on the horizontal part of the "staircase", such as S and A, all
have the same y coordinate but different x coordinates. Only the x-coordinate of
the first one, S, is required since the others, like A, will be filled in by the
horizontal raster scan anyway. The first one in the line follows immediately the

Fast Filling a Polygon 41

change in sign of D . Our version of the Bresenham algorithm is modified to
generate only' the start and end coordinates of horizontal lines for raster scans to
fill a convex polygon. It is not exactly a Bresenham algorithm in the usual sense
since the coordinates it generates would, if plotted alone, produce a line full of
holes along horizontals.

4.3 Example Programs
There is really only one example program here but it is split up into several parts
for convenience and to emphasise their different functions. There is the control file
with a name that reflects the function of the new program, together with a
housekeeping file (systm_01 .s), a file with the names of the variables (bss_00.s)
and a file which contains the main subroutines. They are all linked together in the
assembled program by means of the powerful INCLUDE directive. In the chapters
that follow, new files of a similar kind are introduced. They bear the same name as
the current ones but with a higher number. The new file contains the contents of
the old file indirectly in the form of an INCLUDE directive. This way each new
file does not waste space repeating previous code. You just have to refer back to
earlier chapters to see what the earlier code does.

The main objective here is to fast fill a polygon defined only by its vertices, using
the modified Bresenham routine discussed above to work out the outline. It is done
in low resolution (maximum colour) and without windowing (next chapter). The
polygon is shown in figure 4.3 with the coordinates of the vertices written in and
the direction of ordering in the edge list indicated. For this routine the data list is
actually the coordinate pairs themselves. Although the direction looks clockwise, it
is in fact anticlockwise in terms of the conventional layout of an x-y graph
because, in screen coordinates the origin is at the top left hand corner of the
screen.

4.3.1 polyfil2.s

This is the main control program. It makes calls to everything else. It loads a set of
coordinates of the vertices of a polygon into the variables required by the
Bresenham routine. The Bresenham routine and the horizontal line drawing routine
are now joined into a singe routine called polyjil which is contained in the
core_00.s file. You can change these coordinates to suit yourself but just make
sure they don't go outside the boundary of the screen. As yet there is no 'clipping'
to take care of this.

One new feature is the use of a a key-scan routine to terminate the program in an
orderly fashion. This uses an Operating System BIOS call to see if any key at all
has been pressed. If it has, anomer call shuts down the program and returns control
to the calling program, in this case the assembler.

42 Real-Time 3D Graphics for the Atari ST

Another is the use of the Line A routine $aO0a to get rid of the mouse icon
directly.

Figure 4.3 Coordinates of filled polygon

4.3.2 corejDO.s
This is where all the work is done. It contains the Bresenham and the scan
conversion programs together as a single routine polyjil. The scan conversion is
that used in polflll.s. Let's find out how the Bresenham routine works.

Pairs of vertices, defining the start and end of each polygon edge are taken from
the list (xl,yl,x2,y2,...xl,yl) of coordinates, in order, going anticlockwise round
the face (the direction of the arrows in figure 4.3). Notice how the first pair are
repeated at the end to close the polygon. To start with, the maximum y and
minimum y are saved for later use. This is a useful thing to do since this way the
range of y of the polygon is found out very quickly. Then a buffer (xbuf) of long
words is filled. Each long word contains two words which are the start and end
x-coordinates of a horizontal line going from left to right across the screen. The
low x is in the high word and the high x is in the low word. The position of the
long word in the buffer has the value of the y-coordinate associated with the
horizontal scan which is therefore an index into the buffer. Structured this way, it
is clear why the maximum and minimum y of the polygon are recorded.They give
the range of long words to be accessed from the buffer by the scan conversion
program. With the special cases of vertical and a horizontal lines treated
separately, there are really only two parts to the program: lines of slope less than 1

Fast Filling a Polygon 43

(angle less than 45 degrees) and lines of slope greater than 1 (angle greater than 45
degrees). These are different cases and so have to be dealt with separately.

In the case of lines of low slope, (<1), both positive and negative sloping lines are
catered for with by changing the direction that x moves. For lines of positive slope
(sloping forwards) x is incremented at each step and for lines of negative slope
(sloping backwards) x is decremented at each step. At each step D is examined to
see if it is positive or negative. If it is negative, only x is incremented and nothing
is stored in the buffer at xbuf. If it is positive, both x and y are incremented and
the value of x is saved in the buffer at the position dictated by y.

For lines of high slope (>1), y is incremented each time and the decision parameter
tested to see if x should also be incremented. Whatever happens the value of x is
saved in the buffer.

In this way the entries in the buffer fix the start and end x coordinates of the
horizontal lines that fill the polygon. They are used by the routine h o l i n e which
actually draws the lines.

4.3.3 bss_00.s

This is an ever increasing file of variables: quantities which are calculated during
the program. This file opens space to store them.

4.3.4 systmjOl.s

This contains three useful routines from the Operating System. Two to read the
keyboard and one low level Line A routine to remove the mouse icon. The
keyboard routines differ in that one only detects whether a key was pressed whilst
the other records which key it was. The code for the keys are listed in Appendix 8.

44 Real-Time 3D Graphics for the Atari ST

*
* polyfil2.s *
* A program to fast fill a polygon from a set of vertex coordinates *
* using the Bresenham algorithm to determine the outline. *

*
SECTION TEXT
opt d+
bra main
include systm_01.s
include core 00.s

bsr
bsr
lea
move. 1
bsr
bsr

find_phys
wrt_phys_tbl
phys_tbl_y,aO
aO,screen
hline_lu
hide_mse

put in labels for debugging
here's the main program
include the housekeeping file
and the subroutines

locate the physical screen
set up the screen table
pointer to screen table
pass it
set up masks for filling words
exterminate the mouse

* Transfer my polygon data to the program data block
move.w #12-1,d7 6 pairs of points for the vertices
lea crds_in,a0 to be moved here
lea my_data,al from here,

loop move.w (al)+,(a0)+ Transfer
dbra d7,loop them all.

move.w #5,no_in 5 sides to this polygon
move.w my_colour,colour set the colour

* Generate a polygon outline in xbuf, then scan fill it.

* If
bsr poly_fil

a key is being pressed.
bsr
tst
beq
clr.w
trap

loop_again:
bra

scan keys
dO
loop again
-(sp)
#1

main

set up the buffer and fill it
control returns to the desktop,

has a key
been pressed?
no, execute again
gemdos call TERM - terminate
back to calling program

keep going to cover the mouse (bee)

SECTION DATA

* A five-sided polygon (pentagon)
* Here are the vertices (first repeated at the end) in screen coords
* going anticlockwise.
my_data d e w 20,100,200,20,300,80,260,180,140,180,20,100
* Here is the colour - blue
my_colour d e w 4

SECTION BSS
include bss 00. variables calculated by the program

END

Fast Filling a Polygon 45

*
* core_OO.s
* Program core. Important subroutines for Chapter 4.

* * * * * * * * * * * * * * *
poly_fil:
* This fills a polygon.
* It consists of 2 parts:
* part 1 - the the x-coordinates of all boundary points are entered in xbuf
* part 2 - the holine routine fills the polygon, from the values in xbuf

* PART 1. Fill the buffer.
* Regs:
* a3: pointer to crds_in - coords, list (xl,yl,x2,y2,....xl,yl)
* a2: pointer to xbuf
* do(xl),dl(yl),d2(x2),d3(y2),d4(vertex no)/(decision ver.,
* d5(lowest y),d6(highest y)/(the increment),d7(edge counter)
* polygon vertices are ordered anticlockwise

* Initialise all variables
filxbuf:

move.w
beq
lea
subq.w
move.w
clr.w

filbufl lea
addq.w
move.w
move.w
move.w
move.w
subq.w

no_in,d7
fil_end
crds in,a3
#l,d7
#399,d5
d6
xbuf,a2
#2,a2
(a3)+,d0
(a3)+,dl
(a3)+,d2
(a3)+,d3
#4,a3

* Find the lowest and highest
cmp.w
bge
move.w

filbuf3 cmp.w
bge
move.w

d5,dl
fiibuf3
dl,d5
dl,d6
filbuf5
dl,d6

no. edges in polygon
quit if none to do
pointer to the coords, of vertices
the counter
initial minimum y
initial maximum y
init. buffer pointer
point to ascending side (low word)
next xl
next yl
next x2
next y2
point back to x2

y values: the filled range of xbuf
test(yl-miny)
minimum y unchanged
minimum y is yl
test(maxy-yl)
unchanged
maximum y is yl

filbuf5 exg d5,a5
exg d6,a6
clr.w d4
moveq #l,d6

save minimum y
save maximum y
init. decision var
init. increment

* All lines fall into two catagories: [slope]<1, [slope]>1.
* The only difference is whether x and y are increasing or decreasing.
* See if line is ascending (slope > 0) or descending (slope < 0).

cmp.w dl,d3 (y2-yl)=dy
beq y_limits ignore horizontals altogether
bgt ascend slope > 0

* It must be decending. Direct output to LHS of buffer. a2 must
* be reduced and we have to reverse the order of the vertices.

exg d0,d2 exchange xl and x2
exg dl,d3 exchange yl and y2
subq.w #2,a2 point to left hand buffer

ascend sub.w dl,d3 now dy is +ve

46 Real-Time 3D Graphics for the Atari ST

* Set up yl as index to "buffer
l s l . w # 2 , d l
add.w d l , a 2

* Check the sign of the slope
sub.w d0,d2 (x2-xl)=dx
beq vertical if it's vertical its a special case
bgt pos_slope the slope is positive

* It must have a negative slope but we deal with this by making the
* increment negative

neg.w d6 increment is decrement
neg.w d2 and dx is positive

* now decide whether the slope is high (>1) or low (<1)
pos_slope:

cmp.w d2,d3 test(dy-dx)
bgt hislope slope is >1

* The slope is less than 1 so we want to increment x every time and then
* check whether to also increment y. If so this value of x must be saved.
* dx is the counter. Initial error Dl=2dy-dx
* If last D -ve, then x=x=inc, don't record x, D=D+errl
* If last D +ve, then x=x+inc,y=y+inc, record this x, D=D+err2
* errl=2dy; err2=2dy-2dx
* dx in d2, dy in d3, incx in d6, x in do

dx-1 is the counter
2dy>Ferrl
2dy
-dx
2dy-dx = Dl
2dy-2dx=err2
save first x
x=x+incx
what is the decision?
don't inc y, don't record x
inc y so record x; find next buffer place
save this x
update decision D=D+err2
next one
D=D+errl
increment x again

inc_x

no_stk
next_x

move.w
subq.w
add.w
move.w
neg.w
add.w
add.w
move.w
add.w
tst.w
bmi
add.w
move.w
add.w
bra.s
add.w
dbra
bra

d2
#1
d3
d3
d2
d2
d4
dO
d6;
d4
no
#4
dO,
d2,

,d5
,d5
rd3
,d4

,d4
,d2
,(a2)
,d0

stk
,32
.(a2)
,d4

next x
d3.
d5,

,d4
,inc_x

y_limits

* The slope is >1 so change the roles of dx and dy
* This time we must increment y each time and record the value of x after
* having done so.
* Init error Dl = 2dx-dy
1F If last D -ve, then y=y+inc, D=D+errl, record x
* If last D +ve, then x=x+inc, y=y+inc, D=D+err2, record x
* errl=2dx, err2=2(dx-dy)
* dx in d2, dy in d3, inc in d6, x in do

dy-1 is counter
2dx=errl
2dx
-dy
2dx-dy=Dl
2dx-2dy=err2
save 1st x
next place in buffer (equivalent to incrementing y)
what is the decision?
don't inc x

hislope

inc_y

move.w
subq.w
add.w
move.w
neg.w
add.w
add.w
move. w
addq.w
tst.w
bmi

d3,d5
#l,d5
d2,d2
d2,d4
d3
d3,d4
d4,d3
d0,(a2
#4,a2
d4
same_x

Fast Filling a Polygon 47

m e x
D=D+err2

add.w <16,d0
add.w d3,d4
bra.s next_y

same_x add.w d2,d4 D=D+errl
next_y move.w d0,(a2) save the x value

dbra d5,inc_y
bra y_limits

* the special case of a vertical line, x is constant, dy is the counter
vertical:

save next x
next place in buffer

for all y

move.w d0,(a2)
addq.w #4,a2
dbra d3,vertical

* Restore the y limits
y_limits:

exg d5,a5
exg d6,a6

next_line:
dbra

next_poly:
d7,filbufl do all lines in this polygon

* This part ends with minimum y in d5 and maximum y in d6

* * * * * * * * * * * * *
* PART 2
* set up the pointer

*

poly2

poly4
poly3

lea
sub.w
move.w
beg
move.w
lsl.w
add.w
move.w
subq
addq
move.w
move.w
sub.w
bmi
addq
move.1
movem.1
bsr
moliem. 1
dbra
rts

xbuf,al
d5,d6
d6,d7
poly3
d5,d3
#2,d5
d5,al
colour,d4
#l,d3
#l,d3
(al)+,d2
(al)+,dl
d2,dl
poly4
#l,dl
screen,a4
d0-d7/a0-a6,
holine
(sp) + ,d0-d7/i
d7,poly2

base address
no. lines to do-1
is the counter
quit if all sides are horizontal
minimum y is the start
4*minimum y = offset into xbuf
for the address to start
the colour
reduce initial y
next y
next xl
next x2
x2-xl

N = no to do in this line
where the screen table starts

-(sp) save the registers
draw the line

a0-a6 restore the registers
repeat for all y values

*HOLINE. A horizontal line is drawn from left to right.
* passes: xl=d2.w, yl=d3.w, N=dl.w, colour=d4.w, screen y table:a4.
* First find the address of the word at which the line starts.
holine lea

lsl.w
movea.1
move
andi
lsr.w
adda.w
andi

hln_tbl,a3
#2,d3
0(a4,d3.w),a4
d2,d5
#$fff0,d5
#l,d5
d5,a4
#$000f,d2

pointer to mask table
there are y long words before the
current row address in the table
save xl
go in steps of 8 bytes
to point to plane #1 word
at this address
which pixel from the left?

48 Real-Time 3D Graphics for the Atari ST

move d2,d0 save it
* does the entire line lie within one word?

subi
neg
cmp
bmi

* The line is
move
bsr
rts

* Complete the 1st word
long_line:

sub
bsr

#16,dO
do are there more pixels to the word end
dl,dO than we have to draw?
long_line no, so it's a long line

entirely within one word. Get the mask and draw it.
dl,dO
draw_it

and that's all.
in a long line

dO,dl
draw_it

number left

* Now fill all the solid words.
clr
not
move
lsr
beq

dO
do
dl,d2
#4,d2
last word

save number of pixels left to do
how many are whole words?
none are

* a long stretch of filled words - no need to read the table
subq
move
not
moveq
move
subq

inc_plane:
addq
movea
move
lsr.w
bcc

set_word:
or .w
adda
dbra
bra

clr_word:
and
adda
dbra

new_plane:
dbra
subq
movea

#l,d2
d0,d3
d3
#4-1,d5
d4,d6
#2,a4

#2,a4
a4,a5
d2,d7
#l,d6
clr_word

d0,(a5)
#8,a5
d7,set_word
new_plane

d3,(a5)
#8,a5
d7,clr_word

this many full words but one
which are all l's
or all O's, depending on the colour
4 colour planes

offset for next plane
save the address
initialise the word count
next colour bit

next word in this plane

next word in this plane

for all the colour planes
pointer to next plane 1
update pointer

It will start at pixel 0

d5,inc_plane
#6,a5
a5,a4

* it only remains to do the last word
last_word:

andi #$f,dl low nibble
cmpi.w #0,dl any to do ?
beq holine_end no - finished.

* In finding the mask,the row offset is zero this time.
d2 1st pixel at extreme left
dl,dO
draw_it

clr
move
bsr

holine_end:
rts completely finished

Fast Filling a Polygon 49

* Draw in a section of a word which starts at pixel a and ends at pixel b
draw_.it

lsl
move
subq
lsl
add
move.w
move
not
moveq
move

next plane:
lsr
bcc
or .w
dbf
rts

not set and.w
dbf

fil_end rts

#5,d2
d0,d5
#l,d5
#l,d5
d5,d2
0(a3,d2.w)
d0,d3
d3
#3,d5
d4,d6

#l,d6
not_set
d0,(a4)+

,d0

d5,next_plane

d3,(a4)+
d5 ,'next_plane

the mask row offset=a*32
plus
column
offset of (l5-b)*2 gives
the total offset
to fetch the mask
and
its l's compliment
4-1 colour planes
save colour

is this colour bit set?
no
yes, also set the bits

clear the bits

finished

http://draw_.it

50 Real-Time 3D Graphics for the Atari ST

*
* systm_01.s *
* *
* Subroutines and calls to the operating system in Chapter 4. *
*

include systm_OO.s
scan_keys:
* See if a key has been pressed; don't wait (BIOS call BCONSTAT).
* returns -1 in do if a key was pressed

move.w #2,-(sp) look at the keyboard
move.w #l,-(sp) was a key pressed?
trap #13 bios call
addq.l #4,sp tidy stack
rts

read_key:
* Read a character from the keyboard; wait for it (BIOS call BCONIN).
* returns the code in the lower byte of the upper word of do

move.w #2,-(sp) look at the keyboard
move.w #2,-(sp) wait for a key press
trap #13 bios call
addq.l #4,sp tidy stack
rts

hide_mse:
* Exterminate the mouse

d e w $a000
dew $a00a
rts

init. a-line
hide mouse

*
* bss_OO.s
* A file of variables locations used in chapter 4.
*

xbuf

SECTION

phys_screen
log_screen
phys tbl
hln_tbl
screen
crds_in
noLin
colour

_y

BSS

ds.l
ds.l
ds.l
ds.l
ds.w
ds.l
ds.w
ds.w
ds.w

400
1
1
200
256
1
100
1
20

the buffer of x word pairs
the address of the physical screen
the address of the logical screen
pointers to the row y's
the masks for filling words
the screen address
coords, list (xl,yl,x2,y2....xl.yl)
number of sides to polygon
list of polygon colours

Windowing
If a picture is larger than the limits of the screen then there is a problem with what
happens to the excess. Unless some provision is made for this possibility, the
program will attempt to write to addresses outside of the section of RAM reserved
for the screen - the screen RAM. This could be the physical screen, the 32K block
of memory which is currently being displayed on the monitor or, if screen
buffering is being used to produce a flicker-free picture, another 32K block, the
logical screen, which is currently being drawn on and will be displayed next.
Whatever the arrangement, unless we are sure that everything will always lie
within the screen size, some provision must be made to clip off those sections of
the picture which lie outside. Confining a picture in this way is called widowing
because of the obvious analogy to someone looking out of a window. The screen is
a window onto the internal world of the computer. This window could be the
maximum allowed on a given resolution or something smaller (one obvious way to
make graphics fast is to keep the picture small so that not much has to be drawn).
The freedom to vary the size of the visible image can even give rise to special
effects - an aperture opening, for example. Because of the 'clipping off of the
unwanted parts of the picture that takes place, we shall call outline of this window
the clip frame.

The algorithm we need is one which will handle filled polygons. It is not sufficient
to just chop off vertices where they exceed the clip frame. The line left by the
chop must become an additional edge to close the polygon. Once again an elegant
solution to this problem was found many years ago by Sutherland and Hodgman.
Before we proceed to discuss the Sutherland-Hodgman Algorithm, it is worth
mentioning that there are always shortcuts to solving problems of this kind in
situations where some degree of constraint is placed on the size of graphics
primitives. The way we have saved the outline of a polygon in the buffer, xbuf,
suggests a very fast way of clipping down to a smaller frame. To provide clipping

52 Real-Time 3D Graphics for the Atari ST

within smaller y limits, the values of ymax and ymin can be decreased and
increased respectively. Likewise a fast scan of the high and low word sides of the
buffer would immediately reveal those values which exceeded the x limits, which
could then be reset to the limits themselves. To stand alone, such a strategy would
require that nothing ever exceeded the maximum allowed by the buffer size (which
could be larger then the screen). Even if overall clipping were done separately,
such a method would allow special effects such as the picture unfolding from the
centre. It is always possible to achieve fast special effects by exploiting the
symmetries of data structures.

5.1 Sutherland-Hodgman Clipping Algorithm
The Sutherland-Hodgman algorithm is actually more powerful than we require; it
can handle polygons of any shape. In this book, for speed, only convex
(round-shaped, all external angles greater than zero) polygons are filled. The
requirement to be convex is a consequence of a later constraint; the need to keep
the hidden-surface-removal algorithm simple. This is something we will meet at a
later stage.

clip fran
i

A

/ \

R \ \ /

1 \
1 B\
1 \
i \ y

i \ /

e

— y nax

— y nin

i \ /
x nin v x nax

^ RI
s \

B\

\ /

Figure 5.1 Windowing a polygon

Windowing 53

Strictly speaking, Sutherland-Hodgman does not require polygons to be convex nor
does it require the clipping frame to be a rectangle. But, for simplicity, the version
given here does use a rectangular clipping frame parallel with the monitor screen.
The boundaries of the clipping frame are defined by xmin, xmax, ymin and ymax
and are shown for a general polygon in Figure 5.1. The Sutherland-Hodgman
strategy is to find the intersections in turn of all of the edges of the polygon with
each boundary. Since our boundary has four sides this means that four cycles of
the polygon will be made. On each cycle some of the original edges may be lost
and new ones added.

As each new vertex is examined, various actions are taken which depend on the
position of it and the previous vertex. These cases are illustrated in the Figure and
examined below:

1. If the next vertex is outside the frame, (A), check the position of the previous
vertex, (C). If that was in, find the point of intersection, (S), of the edge joining
them with the clip frame and save it. Don't save the next vertex (A).

2. If the next vertex is inside the frame, (B), check the position of the previous
vertex, (A). If that was out, find the point of intersection of the edge joining them
with the clip frame, (R) and save it. Also save the next vertex, (B).

This is the algorithm applied to all the vertices going round the polygon.

Once again it might appear that calculating points of intersection of sloping lines
with the clip frame requires a lot of mathematical computation involving divisions
and multiplications. Surprisingly this is not so. As usual in assembly language
programming, where variables are not abstract algebraic symbols, but contents of
memory locations or registers, it is possible to find answers using only addition
and subtraction and, where it occurs, to use division and multiplication by powers
of two which can quickly done by right and left shifts.

To illustrate this consider the case where the previous point was outside but the
next point is inside the frame limit xmin. This is shown in more detail in Figure
5.2 where the two possible cases, depending on which point is closest to the limit,
are examined. As part of the process to determine that B(x2,y2) lies inside and
A(xl,yl) lies outside the limit, it is necessary to compare both xl and x2 with
xmin. But instead of just using the COMPARE instruction, the actual differences
(xmin-xl) and (xmin-x2) are calculated and the sign of the result used as the basis
for decision. Note that (xmin-xl) is positive and (xmin-x2) is negative. Having
then decided that there is a point of intersection to determine and save, these
differences are used as the stating point for calculating the point of intersection in
the following way.

One of the coordinates of the point of intersection is already known; it is xmin, the
limit itself; it remains to find the y value at the intercept. This is done iteratively in

54 Real-Time 3D Graphics for the Atari ST

the following way. The average of A and B is calculated by adding coordinates
and dividing by 2. The result Tl is closer to the intercept than either A or B and
we can see what side of the boundary it lies by following the sign of the average
of (xmin-xl) and (xmin-x2). More important, the average of yl and y2 will be the
intercept value itself if the average of (xmin-xl) and (xmin-x2) is zero, because
when this happens the two points are either evenly spaced on either side of the
boundary, or coincident with it. This is the basis of the iterative algorithm used in
the example program.

case 1 case 2

y

Ti (first iteration) \ + v e i
U

(xnin-x) -ve B

xnin xnin

->*

Figure 5.2 Intersection of the boundary by iteration

What happens the first time is that the average of yl and y2 and the average of
(xmin-xl) and (xmin-x2) are calculated by means of an addition and a shift right (a
quick divide by two). This yields the y coordinates of the point Tl. If the average
of (xmin-xl) and (xmin-x2) is zero then the intercept has been found. If the
x-average is negative, as at point Tl in case 1, then it lies inside the boundary and
the next average must be taken between (xmin-xl) and(xmin-xTl). Likewise, the
next y-average must be taken between yl and yTl. If, on the other hand, the initial
average of (xmin-xl) and (xmin-x2) is positive, as case 2, the next average must
be taken between (xmin-xTl) and (xmin-x2) and the next y-average between yTl
and y2. This iterative process continues until the x-average is zero, at which point

Windowing 55

the current y-average is the y coordinate of the point of intersection, which is then
saved.

5.2 Example Program
The example program clips a polygon using a version of the Sutherland-Hodgman
algorithm and then fills it. The polygon is that shown in Figure 4.3. What it looks
like after the windowing is shown in Figure 5.3.

140,180 2^0,180

Figure 5.3 Windowed polygon

5.2.1 clipfrme.s

This is the control program plus the data for the polygon vertices. The coordinates
in my_data are, as usual in the order xl,yl,x2,y2 xl.yl, with the first coordinate
repeated at the end. The clip frame limits are also given in the data and you can
change them to suit yourself. The program will keep going until you press a key,
when it will stop.

56 Real-Time 3D Graphics for the Atari ST

5.2.2 core_01.s
Here is where the actual clipping routine resides (together with all the other
routines used so far by means of the include core_00.s directive at the end). Most
of the work is done by the subroutine clip. It looks rather long but that is to try to
make it more readable. Because many of its parts are very similar, it would be
possible to make it shorter with inner subroutine calls, but then it would be harder
to follow. It is a complicated routine but that is a consequence of the rather
difficult task it does, which has been described above.

It is laid out in the order that it clips against boundaries: xmin first followed by the
others. In all four complete traversals of the data are made with new vertices being
added each time. The data for the vertices is input on the first traversal from
crdsjn and output to crds_out. The next traversal reverses the order. Because
there are four traversals, the data ends up back where it started in crdsjn, ready
for the next part of the program, to follow in later chapters.

5.2.3 bss_01.s

As the number of variables gets larger, so does this file. So far it hasn't become so
large that it has been added to with an INCLUDE directive.

Windowing 57

* * * * * * * * * * * * * * * *
* clipfrme.s *
* A program to clip and fast fill a polygon to a window (clip frame)*
* defined by the limits stored at xmin, xmax, ymin and ymax. *
*

SECTION TEXT
opt d+
bra main
include systm_01.s
include core_01.s

debugging info

the housekeeping file
and the subroutines

main bsr
bsr
lea
move
bsr
bsr

* Set up the
move
lea
move
lea

clp_loop
move
dbra

move
move
move
move
move
move
bsr
bsr

loop_again:
bsr
tst
beq
clr .w
trap

find_phys
wrt_phys_tbl
phys_tbl_y,aO

1 aO,screen
hline_lu
hide_mse

data
w #12-1,d7

crds_in,aO
1 a0,a3

my_data,al

w (al)+,(aO)+
d7,clp_loop

locate the physical screen
where the rows start
the row look-up table pointer
pass it
the masks for filling words
exterminate the mouse

6 pairs of points for the vertices
destination
ready for drawing
from here

transfer
them all

#5,no_in 5 sides to this polygon
my_colour,colour set the colour
my_xmin,xmin
my_xmax,xmax
my_ymin,ymin
my_ymax,ymax
clip
poly_fil

scan_keys
dO
loop_again
"(SP)
#1

set the
clip
frame
limits
window it
fill it

has a key been pressed?

no, try again

SECTION DATA
* A pen tagon
my_data d c . w
* which i s b l u e
my_colour d e w
my_xmin d e w
my_xmax d c . w
ray—ymin d e w
my_ymax d c . w

20,100,200,20,300,80,260,180,140,180,20,100

4
50
270
50
150

SECTION BSS
include bss_01.s

END

58 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * *
core_01.s

* Program core for Chapter 5.

* * * * * * * * * * * * * * * *
* A version of the Sutherland-Hodgman clipping algorithm.
* It goes round the polygon clipping it against one boundary at
* a time; it goes round four times in all.
* regs:
* aO(crds_in),al(crds_out).a2(no_out),a3((saved) crds_out)
* dl(xl),d2(yl),d3(x2),d4(y2),d5(saved x2), d6(saved y2)
* do(current limit)
clip:
* first clip against xmin

bsr clip_ldl
tst.w d7
beq clip_end

* do 1st point as a special case

set up pointers
any sides to clip?
quit if none

move.w
move.w
move. w
cmp.w
bge
bra

(a0)+,d5
(a0)+,d6
xmin,do
d0,d5
xmin_save
xmin_update

1st x
1st y
this limit
test(xl-xmin)
inside limit
outside limit

* do successive vertices in turn
xminnext:

move.w (a0)+,d3
move.w (a0)+,d4
move d3,d5
move d4, d6

now test for position
sub.w d0,d3
bge xmin_x2in

x2 is outside, where is xl?
sub.w dO,dl
bit xmin_update

x2
y2
save x2
save y2

x2-xmin
x2 is in

xl-xmin
both x2 and xl are out

* x2 is out but xl is in so find intersection,
* needs dxl(+ve) in dl, dx2(-ve) in d3, yl in d2 and y2 in d4
* finds the y-intercept and save it

bsr y_intercept
* but because its out, don't save x2

bra xmin_update
xmin_x2in:
* x2 is in but where is xl?

sub.w dO,dl xl-xmin
bge xmin_save both xl and x2 are in

* x2 is in but xl is out so find intercept
* but must have the -ve one in d3, so switch

exg dl,d3
exg d2,d4
bsr y_intercept

xmin_save:
move.
move,
addq,

xmin_update:
move
move
dbf

,w
,w
• w

as,
d6,
#1,

d5,
d6,
d7,

,(al)+
,(al)+
,(a2)

,dl
,d2
,xmin_next

save x
save y
inc count

xl:=x2
yl:=y2

Windowing 59

* the last point must be the same as the first
movea.l a3,a4
subq
cmpm.1
beq
move.1
bra

in dec:
tst.w
beq

#4,al
(a4)+,(al)+
xmin dec
(a3),(al)
clip xmax

(a2)
clip_xmax

subq.w #l,(a2)

pointer to first x
point to last x
check 1st and last x and y
already the same
move first to last

if count
is not already zero
reduce it

clip_xmax:
* Now clip against xmax. Essentially the same .as above except that
* the order of subtraction is reversed so that the same subroutine
* can be used to find the intercept.

bsr clip_ld2 set up pointers
tst.w d7 any to do?
beq clip_ymin no

* do 1st point as a special case
move.w
move.w
move.w
cmp.w
bge
bra

(a0)+,d5
(a0)+,d6
xmax,do
d5,d0
xmax_save
xmax_update

1st x
1st y

test(xmax-xl)
inside limit
outside limit

* do successive vertices in turn
xmax_next:

move.w (a0)+,d3
move.w (a0)+,d4
move d3,d5
move d4, d6

now test for position
sub.w d0,d3
neg.w d3
bge xmax_x2in

x2 is outside, where is xl?
sub.w dO,dl
neg.w dl
bit xmax_update

x2
y2
save x2
save y2

xmax-x2
x2 is in

xmax-xl
both x2 and xl are out

* x2 is out but xl is in so find intersection
* needs dxl(+ve) in dl, dx2(-ve) in d3, yl in d2 and y2 in d4
* find the intercept and save it

bsr y_intercept
* but because its out, don't save x2

bra xmax_update
xmax_x2in:
* x2 is in but where is xl?

sub.w dO,dl
neg.w dl
bge xmax_save

* x2 is in but xl is out so find intercept
* but must have the -ve one in d3, so switch

exg dl,d3
exg d2,d4
bsr y_intercept

xmax-xl
both xl and x2 are in

60 Real-Time 3D Graphics for the Atari ST

xmax_save:
move.w
move.w
addq.w

xmax_update:
move
move
dbf

d5, (al) +
d6,(al) +
#1,(32)

d5,dl
d6,d2
d7,xmax_next

* the last point must be the
movea.1
subq
cmpm.1
beq
move.1
bra

xmax_dec:
tst.w
beq
subq.w

clip_ymin:
* clip against

bsr
tst.w
beq

* do 1st point
move.w
move. w
move.w
cmp.w
bge
bra

* do successive
ymin_next:

move. w.
move.w
move
move

* now test for
sub.w
bge

a3,a4
iC4,al
(a4)+,(al)+
xmax dec
(a3),(al)
clip_ymin

(32)
clip ymin
#1,(32)

ymin
clip ldl
d7
olip_ymax
as a special
(a0)+,d5
(ao)+,d6
ymin,do
d0,d6
ymin_save
ymin_update

: vertices in

(ao)+,d3
(ao)+,d4
d3,d5
d4,d6
position
d0,d4
ymin_y2in

save x
save y
inc count

xl:=x2
yl:=y2
r

same as the first
pointer to first x
point to last x
check 1st and last :
already the same
move first to last

if count
is not already zero
reduce it

set up pointers
any to do?
no

case
1st x
1st y
this limit
test(yl-ymin)
inside limit
outside limit

turn

x2
Y2
save x2
save xl

y2-xmin
y2 is in

x and y

yl-xmin
both y2 and yl are out

* y2 is outside, where is yl?
sub.w d0,d2
bit ymin_update

* y2 is out but yl is in so find intersection
* needs xl in dl, x2 in d3, dyl in d2 and dy2 in d4
* find the intercept and save it

bsr x_intercept
* but because its out, don't save y2

bra ymin_update
ymin_y2in:
* y2 is in but where is yl?

sub.w d0,d2
bge ymin_save

* y2 is in but yl is out so find intercept
* but must have the -ve one in d4, so switch

exg dl,d3
exg d2,d4
bsr x_intercept

yl-ymin
both yl and y2 are in

Windowing 61

ymin_save:
move.w
move.w
addq.w

ymin_update:
move
move
dbf

d5,(al)+
d6, (al) +
#l,(a'2)

d5,dl
d6,d2
d7,ymin_next

* the last point must be the
movea. 1
subq
cmpm.1
beq
move.1
bra

ymin_dec:
tst.w
beq
subq.w

a3,a4
#4,al
(a4)+,(al)+
ymin dec
(a3),(al)
clip_ymax

(a2)
clip ymax
#l,(a2)

save x
save y
inc no

xl:=x2
yl:=y2

same as the first
pointer to first x
point to last x
check 1st and last :
already the same
move first to last

if count
is not already zero
reduce it

clip_ymax:
* Now clip against ymax. Essentially the same as above except
* the order of subtraction has been reversed so that the
* same subroutine can be used.

bsr clip_ld2 set up pointers
tst.w d7 any to do?
beq clip_end no

* do 1st point as a special case
move.w
move.w
move.w
cmp.w
bge
bra

* do successive
ymax_next:

move.w
move.w
move
move

* now test for
sub.w
neg.w
bge

(a0)+,d5
(a0)+,d6
ymax,do
d6,d0
ymax_save
ymax_update
vertices in

(a0)+,d3
(a0)+,d4
d3,d5
d4,d6
position
d0,d4
d4
ymax_y2in

1st x
1st y

test(ymax-yl)
inside limit
outside limit

turn

X2
y2
save x2
save y2

ymax-y2
y2 is in

y2 is outside, where is yi?
sub.w d0,d2
neg.w d2
bit ymax_update

ymax-yl
both x2 and xl are out

* y2 is out but yl is in so find intersection
* needs xl in dl, x2 in d3, dyl(+ve) in d3 and dy2(-ve) in d4
* find the intercept and save it

bsr x_intercept
* but because its out, don't save y2

bra ymax_update
ymax_y2in:
* y2 is in but where is yl

sub.w d0,d2
neg.w d2
bge ymax_save

ymax-yl
both yl and y2 are in

62 Real-Time 3D Graphics for the Atari ST

* y2 is in but yl is out so find intercept
* but must have the -ve one in d4, so switch

exg dl,d3
exg d2,d4
bsr x_intercept

ymax_save:
move.w
move.w
addq.w

ymax_update:
move
move
dbf

d5,(al)+
d6,(al)+
#l,(a2)

d5,dl
d6,d2
d7,ymax_next

* the last point must be the
movea.1
subq
cmpm.l
beg
move.1
bra

ymax_dec:
tst.w
beg
subq.w

clip_end:

a3,a4
#4,al
(a4)+,(al)+
ymax dec
(a3),(al)
clip_end

(a2)
clip end
#l,(a2)

save x
save y
inc no

xl:=x2
yl:=y2

same as the first
pointer to first x
point to last x
check 1st and last
already the same
move first to last

if count
is not alrsdy zero
reduce it

rts

clip_ldl:
* first set up the pointers for the first snd third pssses

pointer to vertex coords, before clip
snd sfter the this clip
saved
this many sides before
where the number after is stored

lea
lea
move.1
move.w
lea
clr .w
rts

crds in,aO
crds_out,al
al,a3
no_ln,d7
no_out,s2
no out

clip_ld2:
* set up the pointers for the second snd fourth passes
* ensures the final output is 3t the same place as initial input

pointer to vertex coords before clip
and after this clip
saved
this many sides before
where the number after is stored

lea
lea
move.1
move.w
lea
clr.w
rts

crds_out,aO
crds_in,al
al,33
no_out,d7
no_in,s2
no in

Windowing 63

y_intercept:
* Find the y-i
* line joining
* entry:
* dl: (xl-k) -
* d3: (x2-k) -
* d2: yl, d4:

tst.w
beq
tst.w
beq
movem

yint_in move.w
add.w
asr.w
move
add.w
asr.w
beq
bgt
move
move
bra

yint_loop:
move
move
bra

yint_end:
move.w
move.w
addq.w
movem

yint_out:
rts

ntercept on the clipping boundary x = k
pl(xl,yl) to p2(x2,y2).

of the

y2

positive number
negative number

dl
yint_out
d3
yint_out
d5/d6,-(sp)
d2,d6
d4,d6
#l,d6
dl,d5
d3,d5
#l,d5
yint_end
yint_loop
d5,d3
d6,d4
yint_in

d5,dl
d6,d2
yint_in

do,(al) +
d6,(al)+
#l,(a2)
(sp)+,d5/d6

point on boundary
already saved
point on boundary
will be saved
save x2, y2
yi
yl+y2
(yl+y2)/2 = <y>, a possible intercept
dxl
dxl+dx2
()/2 = <dx>
if <dx>/2=0, boundary reached
if not loop again
unless <dx> is -ve, and becomes new dx2
and <y> is new y2
and try again

<dx> is new dxl
<y> is new yl

store x boundary
and <y> as the coords of a new vertex
and increment the vertex count
restore regs

d2:
d4:

x_intercept
* Finds the
* line joining
* entry:
* dl: xl, d3:

(yl-k) -
(y2-k) -
tst.w
beq
tst.w
beq
movem

xint_in move
add.w
asr.w
move
add.w
asr.w
beq
bgt
move
move
bra

intercept on the clipping boundary y
pl(xl,yl) to p2(x2,y2)

k of the

x2
a positive
a negative
d2
xint_out
d4
xint_out
d5/d6,-(sp
dl,d5
d3,d5
#l,d5
d2,d6
d4,d6
#l,d6
xint_end
xint_loop
d6,d4
d5,d3
xint_in

number
number

point on boundary
already saved
point on boundary
wil be saved

) save x2, y2
xl
xl+x2
()/2 = <x> a possible intercept
dyl
dyl+dy2
(dyl+dy2)/2 = <dy>
if <dy> = 0, boundary reached
if not loop again
unless <dy> is -ve and becomes dy2
and <x> becomes x2
and try again

64 Real-Time 3D Graphics for the Atari ST

xint_loop:
move
move
bra

d5,dl
d6,d2
xint_in

<x> is new dxl
and <dy> is new dyl

xint_end:
move.w d5,(al)+
move.w dO,(al)+
addq.w #l,(a2)
movem (sp)+,d5/d6

xint_out rts
* leaves with:
* a list of vertex coordinates at coords_in
* the number of polygon sides at no_in.

store intercept <x>
and the boundary y as new vertex coords
and increment the vertex count
restore regs
next vertex

include core_OO.s add on the previous core

*
* bss_01.s
* A file of variables used in chapter 5.
*

SECTION BSS

* System variables
xbuf
phys_screen
log_screen
phys tbl y
hln_tbl
screen

ds.l
ds.l
ds.l
ds.l
ds.w
ds.l

* Polygon atributes
crds_in
crds_out
no_in
no_out
colour
xmax
xmin
ymin
ymax

ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w

400
1
1
200
256
1

100
100
1
1
20
1
1
1
1

the buffer of x word pairs
the address of the physical screen
the address of the logical screen
pointers to the row y's
the masks for filling words
address of current screen

input coords, list (xl,yl,x2,y2....xl.yl)
output ditto
input number of sides to polygon
output ditto
list of polygon colours
clip frame limit
ditto
ditto
ditto

Getting Things Into
Perspective
It is a curious thing that distant objects look smaller than ones which are close.
They aren't smaller, but they do subtend a smaller angle at the eye. For any scene
to look real therefore, the size of primitives must diminish as they recede into the
distance. All of this is done by the eye and the brain. Simulating the same effect
on the computer screen is what the perspective transform is all about.

You don't really need to understand much maths to use the transforms in this
book. The maths and the transforms have all been worked out; you only have to
understand how to feed data to them. The perspective transform is just such an
example. However, to understand and use transforms fully requires some
understanding of maths and matrices. We will introduce these as the need arises.
The Appendices also contain information on these topics

6.1 The Perspective Transform
The perspective transform is a set of mathematical operations which project an
image of an object from the world reference frame onto the screen. This has a
similarity to the way in which a shadow is formed, except that in that case the
shadow falls behind the object and is larger, whereas in the perspective projection
it is between the viewpoint and screen and smaller. This is shown in Figure 6.1.

One aspect that crops up repeatedly in transforms and matrices is die use of
homogeneous coordinates. Yet it is possible to avoid using them altogether and in
many cases it is an inconvenience to use them at all. What do they mean? Do they
matter? In this chapter we find out about homogeneous coordinates and how to use
them in the perspective transform which is done using matrix multiplication just to

66 Real-Time 3D Graphics for the Atari ST

illustrate the method. At the same time it will be clear how to do the transform
without using matrix multiplication at all. It just turns out that the perspective
transform is a good opportunity to try it out.

Figure 6.1 Perspective projection of a cube

Figure 6.1 shows me an object, in this case a cube, defined inside the computer in
the world frame and seen from the view point. The view plane lies in the xv-yv
plane of the view frame and the projected image is defined by the points where the
'rays' from the view point (also called the centre of projection, at -d along the zv
axis) pierce the view plane. The window is the area of the view plane which is
visible on the screen. That's really all there is to it. The view point plays a very
important role in this scheme and could be placed anywhere. Placing it along the -z
axis makes the algebra simple and centres the projection about the view frame
origin. This is a very simple type of projection; draughtsmen use many other kinds.
But it works fine and the algebra associated with it is minimal.

To make life simple, take the case where the window entirely fills the monitor
screen. Then the distinction between the two disappears. Let's look at how a very
simple object projects onto the screen. This is shown in Figure 6.2. As part of the
transform it is also necessary to adjust to the screen coordinate system, where the
origin is at the top left-hand corner. There are three coordinate systems shown in

Getting things into Perspective 67

the. diagram: the view frame (xv,yv,zv), the screen frame (xs,ys), and the projected
coordinates (Xv.Yv). This projected coordinate system is an intermediate one,
introduced for convenience and centred at the view frame origin.

centre of
projection ̂

(0,0,-d)

Figure 6.2 Perspective projection of a line

From the similar triangles ABC and ADE and the similar triangles ABF and ADG
we get the results:

Xv/xv = d/(zv+d) and Yv/yv = d/(zv+d)

or

Xv = xv.d/(zv+d) and Yv = yv.d/(zv+d).

It only remains to choose where to centre the projection on the visible screen. If it
is to be centred half-way across at the bottom then in screen coordinates, then

xs = Yv+Wx/2 and ys = Wy-Xv

where Wx and Wy are the width and height of the screen in the current resolution.

68 Real-Time 3D Graphics for the Atari ST

In low resolution Wx=320 and Wy=200. In what follows we shall only consider
low resolution, though a conversion from one resolution to another is
straightforward.

In low resolution the perspective transform becomes, for display in screen
coordinates:

xs = 160+yv.d/(zv+d) ys = 200-xv.d/(zv+d)

These transforms can be worked out using straightforward algebra. The only thing
to look out for is that the denominator doesn't ever become zero because this will
cause a 'divide by zero' exception. The program can be set up to watch out for
this.

6.2 Homogeneous Coordinates
The perspective transform, above, is quite simple but has a serious disadvantage if
it is to be concatenated with several other types of transform. Remember, in the
jargon of matrix transforms, concatenation simply means multiplying matrices
together. That is die advantage of writing transforms as matrices. Where several
transforms (rotations etc.) take place in succession, the overall transform can be
constructed by multiplying the individual transforms and then applied to the
coordinates in one go. The problem with this perspective transform is that as it
stands it cannot be written as a matrix at all.

Basically, a matrix can represent any transform which is linear, which means there
is a proportional relation between the initial and the transformed coordinates. What
we would like to see for the transforms between Xv,Yv and xv,yv,zv are equations
like

Xv = a.xv + b.yv + czv

Yv = d.xv + e.yv + f.zv

where the coefficients a,b,c,d,e and f are simple numbers.

Then it could be written as a matrix product (see Appendix 6 for more information
on matrices)

Xv* /a b c \ / x v \

Yv I I d e f I yv

\ zv

Getting things into Perspective 69

Unfortunately the perspective transform we have derived does not have this form.
What messes it up is the (zv+d) in the denominators; the coordinates themselves
have to be in the numerators. Therefore as it stands our transform cannot be put
into 3x3 matrix form. The perspective transform isn't the only one to suffer from
this problem. Simple translations do as well. The way out of the problem is to go
to homogeneous coordinates.

As far as we are concerned the use of homogeneous coordinates is just a trick to
get round this problem. The trick is to introduce another dimension, temporarily, to
give more "space". That's all this extra dimension does because in this extra
dimension all vertices have the same value, 1. In homogeneous coordinates the
point (xv,yv,zv) becomes (xv,yv,zv,l).

How does this help? Now the transform can be written as a product but there are
penalties' to pay: the matrix product will generate an extra term which must be
divided into the others. Also all matrices are now bigger (4x4). Here's how it
works.

First do the perspective transform in homogeneous coordinates to give an
intermediate result:

/d.xv \ / d 0 0 0 \ / xv \

d.yv 0 d 0 0

\

0

zv+d \

0 0 0 0

0 0 1 d

yv

zv

/ ,

Then divide by the fourth element (zv+d) to give

Xv = xv.d/(zv+d)

Yv = yv.d/(zv+d).

Finally translate to the screen centre (this translation can also be done as a matrix
multiplication in homogeneous coordinates but that would be making work for the
sake of it):

xs = 160 + yv.d/(zv+d)

ys = 200 - xv.d/(zv+d).

The perspective matrix has zeros for most of its elements and so many of the
multiplications are a waste of time. In the program at the end of this section which
illustrates the transform, we have used the homogeneous form. It serves as a useful

70 Real-Time 3D Graphics for the Atari ST

introduction to matrix multiplication in assembly language and allows us to try a
few little-used assembler instructions.

6.3 Example program
The example program shows a view of a plane with the letters "ST" (an ST
monolith) sloping forwards in the world frame. When the perspective transform is
done (together with windowing and everything else) it appears on the screen like

Figure 6.3 ST monolith

Figure 6.4 Screen picture of ST monolith

Getting things into Perspective 71

the opening logo in a movie, where the words diminish into the distance. Figure
6.3 shows how the plane is set up in the view frame. Figure 6.4 shows how it
looks on the screen.

You can look at the coordinates in the data file and change them if you wish to see
how it looks in different orientations. If you want, you can change the data
altogether to draw something different, but first read Carefully how the data is laid
out. This is explained more fully below in the data file. Be careful to join up the
characters and label the vertices properly.

6.3.1 perspect.s

This is the control program. Its function is to load up the data, draw the picture
and terminate with a key press. The data are stored in the file data_01 .s, described
below.

6.3.2 data_01.s

This is discussed next because it contains lists of the data. Understanding how
these are used is essential to understanding how the program works. Since we start
off with an object drawn in 3D in the view frame, each of its vertices must be
fixed by three coordinates (xv,yv,zv). The lists of these are held at myjiatax,

0 , , 1

4

1?

15

7

8

11
13

14

5

9

10

6

IS

19
20 21

23 22

17

18

Figure 6.5 Vertex numbers of ST monolith

72 Real-Time 3D Graphics for the Atari ST

my_datay and my_dataz. There is a scheme to identify each vertex in these lists.
Each vertex has a number as shown in Figure 6.5. To find its coordinates simply
read in from the start counting the first coordinate as number zero. The number of
vertices in each polygon is given at vectors.

More data than this is required to actually draw the picture. The connections
between the vertices are specified in my_edglst. For each polygon there is a list of
connections in this table. The overall object is split into 6 polygons, all of which
lie in the same plane. The vertex connections for these, going clockwise and
closing the polygon, are

polygon 0: 0,1,2,3,0

polygon 1: 4,5,6,7,4

polygon 2: 8,9,10,11,8

polygon 3: 12,13,14,15,12

polygon* 16,17,18,19.16

polygon 5: 20,21,22,23,20.

Arranged in this way all the information required to draw the object is readily
available. To colour in the polygons a list of individual colours is held at
my_colour. Notice that in this picture it was decided to construct the " S " by
drawing an outline (polygon 1) and masking out the open parts (poly's 2 and 3)
with the background Colour, rather than by drawing each segment separately. This
is also evident from the actual colour list, my_colour where it can be seen that the
background is red and the letters are blue. Doing it this way saves a bit of time but
may lead to problems when the blue boundaries at 9-10 and 12-15 don't quite
match up. To supplement these lists the total number of polygons is given at
myjipoly. These are the data blocks must be loaded up at initialisation. Other
variables are calculated by the various parts of the program as it goes.

You can change these lists to draw anything you wish. Just remember it is a 3D
object in the view frame and coordinates are easiest to determine from views along
the different axes. It must also be placed in front of the view plane as shown in
Figure 6.3.

6.3.3 dataj02.s

The 4x4 matrix for the perspective transform is stored here, a row at a time, with a
viewpoint at -100 on the view frame z axis. It isn't included with data_01.s since
that file will only be used once

Getting things into Perspective 73

If you can't follow the matrix multiplication used in the transform, don't worry.
Just think of the transform as a piece of 'machinery' to perform a function. If you
want to alter the angle of view, change each of the numbers 100 to the new
position of the view point. Remember 100 here is the distance of the view point
along the negative zv axis.

6.3.4 bss_02.s

This contains a list of the variables used by the programs. Data is loaded into the
variables blocks from the data file data_01.s by the control program. What goes
where is clear from the control program. It consists of the lists of the x, y, and z
coordinates of the vertices in the view frame, and other attributes as described in
the previous sections.

6.3.5 core_02.s

This has two parts: the perspective transform, and polydraw which takes care of
clipping and the actual drawing.

The perspective transform is done by matrix multiplication in homogeneous
coordinates. It could be done by direct algebra but it is done this way to illustrate
the use of homogeneous coordinates and matrix multiplication in a very compact
way. Also it utilises a useful but little-used assembler instruction, LINK. When
invoked, this causes the processor to open a space on the stack, called a frame,
where data can be stored without interfering with the main stack. The pointer to
the frame, one of the address registers, is declared in the LINK instruction together
with the space required. The processor takes care of adjusting the regular stack
pointer clear of the frame. In the present case it's where the intermediate
perspective calculations are stored. When finished with, the frame is closed by
means of the UNLK instruction and the tidying up of the stack pointer is taken care
of by the processor.

The perspective transform calculates the projections of the vertices on the view
plane and stores them in two lists: scoordsx and scoordsy.

Polydraw is the final part. It contains all the previous subroutines necessary to
complete the drawing. It also contains at the start a test for the visibility of each
polygon. This is in anticipation of things to come. The test is to look for a negative
colour number. Such a value would have been set earlier if the polygon was found
to be facing away from the view point.

74 Real-Time 3D Graphics for the Atari ST

*
* perspect.s *
* A perspective view of an ST monolith *
*

SECTION TEXT
opt d+
bra main
include systm_01.s
include core_02.s

housekeeping file
core subroutines

main bsr
bsr
lea
move.1
bsr
bsr

* Transfer the

loopO

move.w
beq
move.w
subq.w
move.w
lea
lea
lea
lea
move.w
move.w
dbra

find_phys
wrt_phys_tbl
phys_tbl_y,aO
ao,screen
hline_lu
hide_mse
data. First the
my_np°iy>d7

term
d7,npoly
#l,d7
d7,d0
my._nedges,aO
snedges,al
my_colour,a2
col lst,a3
(aO)+,(al)+
(a2)+,(a3)+
dO,loopO

set
up
screen
routines

edge numbers and colours
no. of polygons?
if none, quit
or becomes
the counter
save it
source
destination
source
destination
transfer edge nos.
transfer colours

* Second the edge list and coordinates

loopl

loop2

loop3

move.w
lea
clr
clr
add.w
add.w
addq
dbra

subq
lea
lea
move. w
dbra
move.w
subq
lea
lea
lea
lea
lea
lea
move.w
move.w
move.w
dbra

d7,d0
my nedges,a6
dl
d2
(a6)+,dl
dl,d2
#l,d2
do,loopl

#l,d2
my_edglst,aO
sedglst,al
(aO)+,(al)+
d2,loop2
dl,vncoords
#l,dl
vcoordsx,al
my_datax,aO
vcoordsy,a3
my_datay,a2
vcoordsz,a5
my_dataz,a4
(a0)+,(al)+
(a2)+,(a3)+
(a4)+,(a5)+
dl,loop3

restore count

last one repeated each
= total no. of vertices

the counter
source
destination
pass it

the counter

Getting things into Perspective 75

* The clip frame boundaries
raove.w my_xmin,xmin ready
move.w my_xmax,xmax for
move.w my_ymin,ymin clipping
move.w my_ymax,ymax

* Calculate the perspective view and draw it
bsr perspective
bsr polydraw

* Test for a key press to finish
loop4 bsr

tst
bne

scan_keys
dO
term

test for a key press to quit

term
bra loop4
clr.w -(sp)
trap #1

keep testing
terminate - return to calling program

SECTION DATA
include data_01.s
include data_02.s
SECTION BSS
include bss_02.s

END

76 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * * * * *
* core_02.s
* Program core for Chapter 6

* perspective
* A subroutine which uses the perspective transform matrix at
* persmatx to transform a set of viewframe coords at vcoordsx,
* vcoordsy and vcoordsz into screen coords at pcoordsx and pcoordsy
* by matrix mutiplication.
* Regs:
* aO: pointer to view frame x-coords list vcoordsx
* al: ditto y vcoordsy
* a2: ditto z vcoordsz
* a4: pointer to screen x-coords list scoordsx
* a5: pointer to screen y-coords list scoordsy
* Just to be tricky we use the link instruction to open a frame on the
* stack to temporarily store the results of the calculation.

any points to do?
if none, quit
otherwise this is the count
the
source
coords.
the
destination.
open a frame with space for 16 words

perspective:
move.w vncoords,d7
beq prs_end
subq.w #l,d7
lea vcoordsx,aO
lea vcoordsy,al
lea vcoordsz,a2
lea scoordsx,a4
lea scoordsy,a5
link a6,#-32

prs_crd:
* set up the perspective matrix pointer to transform the next vertex

moveq #3,d6 4 rows in the transform matrix M
lea persmatx,a3 init matrix pointer

prs_elmnt:
* calculate the next column vector element i

move.w (aO),dO next view frame coord xv
move.w (al),dl next yv
move.w (a2),d2 next zv
muls (a3)+,d0 the matrix products xv*Mil
muls (a3)+,dl yv*Mi2
muls (a3)+,d2 zv*Mi3
add.l dl,dO a long word product
add.l d2,d0

4jioveqTwZ#i3ri
muls (a3)+,dl
add.l dl,dO

and the extra homogeneous term

the new element

prs_ok

move,

dbf

move.
bne
addq
addq.
move.
divs

,1

1

,1
1

add.w
move. w

d0,-(a6)

d6,prs_e

(a6)+,d3
prs ok
#l,d3
#4,a6
(a6)+,d4
d3,d4
#160,d4
d4,(a4)+

save it

repeat for 4 elements

restore 4th

avoid divide by zero
point to 2nd
restore 2nd
next Yv=yv/(zv/d+l)result in lw
centre at bottom, middle of screen
becomes next xs

Getting things into Perspective 77

move.1
divs
sub.w
neg.w
move.w

addq.1
addq.1
addq.1

dbf
unlk
rts

(a6)+,d4
d3,d4
#199,d4
d4
d4, (a5) +

#2,a0
#2,al
#2,a2

d7,prs_crd
a6

restore 1st
next Xv=xv/(zv/d+l)
Xv-199
199-Xv=next
ys

point to next xv
yv
zv

repeat for all coords
close frame
and quit

polydraw:
* This draws the visible surfaces of a polyhedron.
* It follows the perspective transform and first converts coords
* from the form of two arrays accessed from an edge list to the
* actual sequence of coord, pairs (xl,yl,x2,y2..-xl,yl) needed for
* windowing and all that follows.
* Input: scoordsx pointer to list of x coords
* scoordsy " y
* sedglst - the list of edge connections (1,2,3,4,..1)
* snedges - the number of edges in each polygon
* npoly - number of polygons
* col_lst - list of colours (colour > $f means hidden)
* init. all addresses

move.w npoly,d7 number to do
beq polydraw5 there are none
subq #l,d7 the polygon counter

*Set up the pointers
lea scoordsx,aO list (xl,x2,....xn)
lea scoordsy,al list (yl,y2,....yn)
lea sedglst,a2 list (1,2,3 1)
lea snedges,a3 list (nl,n2,)
lea col_lst,a4 list (cl,c2 en)

* start the loop
polydraw2:

move.w (a4)+,d0 colour of next polygon
cmp.w #$f,dO is it visible?
ble polydraw3 yes

* it's hidden - update the pointers
move.w (a3) + ,d0 no. edges in next poly
addq.w #l,dO last vertex repeated
add do,do 2 bytes/word
adda.w d0,a2 update edge list pointer
bra polydraw4 go on

polydraw3:
move.w do,colour the current colour
move.w (a3)+,d0 no edges in next polygon
beq polydraw3 none to do
move.w d0,no_in clip this number of edges
lea crds_in,a5 from this list

78 Real-Time 3D Graphics for the Atari ST

* set up the coords for this polygon for clip and all that follows
polydrawl:

move.w (a2)+,dl next vertex no
lsl #l,dl for index
move.w 0(aO,dl.w),(a5)+ next x
move.w 0(al,dl.w),(a5)+ next y
dbf do,polydrawl one more coord than the count
movem.l d7/a0-a4,-(sp) save these
bsr clip window it
bsr poly_fil draw the filled polygon
movem.l (sp)+,d7/a0-a4 restore

polydraw4:
dbra d7,polydraw2 for all the polygons

polydraw5:
rts all done

include core_01.s all the previous subroutines

Getting things into Perspective 79

.
*
* data_01.s *
* The data file for chapter 6 *
*
* Data for current program. A large ST in perspective.

115,115,25,25,100,100,40,40,92,92,81,81
70,70,55,55,100,100,81,81,81,81,40,40
-100,100,100,-100,-80,-20,-20,-80,-60
-20,-20,-60,-80,-40,-40,-80,0,80,80
0,25,55,55,25
120,120,0,0,100,100,20,20,90,90,75,75
60,60,40,40,100,100,75,75,75,75,20,20
0,1,2,3,0,4,5,6,7,4,8,9,10,11,8,12,13,14,15,12
16,17,18,19,16,20,21,22,23,20
4,4,4,4,4,4
6
1,4,1,1,4,4
0
319
0
199

my_datax

my_datay

my_dataz

my_edg l s t

my_nedges
m y _ n p ° i y
my_colour
my_xmin
my_xmax
my_ymin
my_ymax

d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e w

V
*
* data_02.s *
* A data file for chapter 6. *
*

* Here is the matrix for the perspective transform. The
* distance to the viewpoint along the -z axis in the viewframe
* is 100.
* The elements are given a row at a time,
persmatx:

d e w 100,0,0,0,0,100,0,0,0,0,0,0,0,0,1,100

80 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * * * * * *
* b s s _ 0 2 . s
* Variables locations used in chapter 6.
*

* * * * * * * * *

SECTION BSS
System variables

xbuf
phys_screen
phys tbl y
hln_tbl
screen

ds.l
ds.l
ds.l
ds.w
ds.l

* Polygon atributes
crds_in
crds_out
no_in
no_out
colour
xmax
xmin
ymin
ymax
* Screen lists
scoordsx
scoordsy
sedglst
snedges
npoly
col_lst
* View frame li
vcoordsx
vcoordsy
vcoordsz
vncoords

ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w

ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
sts
ds.w
ds.w
ds.w
ds.w

400
1
200
256
1

100
100
1
1
1

l-t

1
1
1

100
100
100
20
1
20

100
100
100
1

the buffer of x word pairs
the address of the physical screi
pointers to the row y's
the masks for filling words
the current screen pointer

input coords, list (xl,yl,x2,y2.
output ditto
input number of sides to polygon
output ditto
current polygon colour
window limit
ditto
ditto
ditto

x coordinates
ditto y
edge connections
no. edges in each polygon
no. polygons in this polyhedron
colours of polygons

x coords
y coords
z coords
no. of vertices

-•xl,yl)

Simple Rotations
What we want to do here is rotate an object in the world frame. In our world
model this is part of what happens when an object is moved from its object frame
to the world frame. In addition, in general, there will be an associated translation
as it is moved to its current location. As an example of simple rotations in action,
the object-to-world transform is a good thing to do next. In a complex world with
several different objects, each one would have different translations and rotations
to bring them all together to make the world picture.

Let's take a simple world with just one object to start with. We already have a
good example to work on - the monolith with the ST written on it, which was used
to illustrate the perspective transform. The data is already entered and ready to go.
What we would like to see is the monolith rotating in the centre of the screen.
That's what we'll do next.

7.1 Geometric Transforms
Geometric transforms are those which change the coordinates of objects. Are there
any other kinds? Yes, those which change frames of reference, called coordinate
transforms. In mathematical language a geometric transform is the inverse of a
coordinate transform (this topic is also discussed in Appendix 7). An example of
the latter kind is the transform from world frame to view frame. Remember, the
view frame is the set of axes attached to the observer (you) moving through the
world frame. Seen from the view frame of an observer on the move, the
coordinates of all objects are continuously changing. Although coordinate and
geometric transforms are two sides of the same coin, the viewing transform is a bit
more difficult to follow and is done later in Chapter 11.

82 Real-Time 3D Graphics for the Atari ST

In this section simple rotations about the x, y and z axes are presented without
mathematical derivation. Turn to Appendix 7 for an additional mathematical
description.

7.2 Rotations About the Principal Axes
A spinning top is a good example of an object undergoing geometric rotation about
the vertical axis. As far as we are concerned here, the mathematics used to do this
is just 'heavy machinery'. There is no real need to know how it is derived in order
to use it. The transforms we are about to discuss are illustrated in Figure 7.1.

Figure 7.1 Rotations about the x, y and z axes

Simple Rotations 83

7.2.1 Rotation about the x-axis
This is illustrated in Figure 7.1(1) by a point P with coordinates (x,y,z) being
rotated about the x-axis by an angle 0 to arrive at the point P' with coordinates
(x' ,y' ,z ') . Representing the points by vectors clearly shows the rotation. Notice
how the sense of the rotation is defined. It is clockwise when looking along the
positive x-axis from behind the y-z plane. In terms of the column vectors, the
transform can be written as a matrix product

/ x ' \

r
\ z ' /

/ l 0 0
/ X \

0 cos0 -sin9

\ 0 sinO cos6 / \ z /

In simple algebra, with the matrix product multiplied out:

x' = x

y' = y.cos6 - z.sin9

z' = y.sine + z.cos6

For conciseness, the matrix is abbreviated to R'(6) and the transform is then
abbreviated to

P' =R'(0).P

7.2.2 Rotation about the y-axis

In this case the the point P is rotated about y-axis by an angle (j) as shown in
Figure 7.1(2). As before, the rotation R' (<))) is clockwise looking along the positive
y-axis from behind the x-z plane. Expressed as a matrix product, the transform is

1 x'\
r

\ z ' /

=

/ cos<I>

0

\ -sine))

0

1

0

sincj) \

0

COS<(> /

/ x \

y

\ z /

7.2.3 Rotation about the z axis

In Figure 7.1(3) the point P is rotated about the z-axis by an angle y. The rotation
R' (y) is clockwise looking along the z axis from behind the x-y plane.

84 Real-Time 3D Graphics for the Atari ST

/ X ' \

y ' l =
Iw

/ cosy

siny

\o

-siny

cosy

0

0

0

1

7.2.4 Composite Rotations

When all three types of rotation are done simultaneously things become a good
deal more complicated. This is because the order of rotation matters; rotating first
by 9, second by <|> and third by y does not end up with P in the same place as with
any other order. This may seem to be a surprising result. In mathematical jargon,
three dimensional rotations are said to be noncommutative. To illustrate the point
look at Figure 7.2.

This has two parts to it. In part 1 a vector which lies along the z axis to start with
is first rotated about the x axis by 90° and then about the z axis by 90°. It ends up
pointing along the x axis. In part 2 the order of rotations is reversed. Consequendy

Figure 7.2 The order of the rotations matters

Simple Rotations 85

the first rotation does nothing and the second leaves it pointing along the -y axis.
Clearly, changing the order of rotation alters the end result

A consequence of this is that keeping count of the individual rotations 0, <(> and y
separately provides insufficient information to get to the final position. The order
of rotation must also be given. Where the individual rotations are small and
frequent, such as in an object following a complex path, a different strategy must
be found to keep track of the orientation.. This is discussed in Chapter 12.

For the moment this is not such a problem. Performing a simple sequence of
rotations in the world frame, or as part of the object-to-world transform, may only
require three rotations about the individual axes in a simple order. To have a
consistent scheme, we rotate first by y, second by <j> and third by 9. In shorthand
me overall transform when all these rotations take place in this order is:

P ' =R'(8).R'(<t>).R'(Y).P

Notice how the first rotation appears next to the original point P, and later rotations
appear farther to the left. This is the order of matrix multiplication with column
vectors.

There is no need to perform the matrix products on the vector separately. Their
product can be found beforehand to produce one resultant matrix, which can the be
multiplied by the vector in one single operation. This combined (concatenated)
rotation is denoted by R' (0,<|>,Y)-

R' =

/ COS<1>COSY -cos4»siny sin<|)

sin6sin<t>cosy + cosBsiny -sin0sin<|>sinY + COS0COSY -sin0cos<))

\ -cos0sin<|)cosY + sinBsiny eos0sin<|>sinY + sin0cosY cos0cos<t>

7.3 The Object-to-World Transform
This is a good transform to illustrate what we have been talking about.

The point of this transform is to move an object from its object reference frame to
the world frame where it appears in the cluster of all the other objects which make
up the world picture. The object-to-world transform is illustrated in Figure 7.3 for
the general case of all three rotations and a translation. In this case the angles are
specific to the transform and are called o0, o<|> and oy to distinguish them from

86 Real-Time 3D Graphics for the Atari ST

other angles which will appear later in other transforms and the displacement is
(Oox,Ooy,Ooz) or, written in vector notation:

x'\ r\
r

VI

= R' y

w

'Oox\

Ooy

tOoz/

Notice that the translation has not been implemented as a matrix multiplication, but
has been left as a vector addition. Like the perspective transform, the translation
can be converted to a matrix product in homogeneous coordinates to put it on the
same footing as everything else and allow it to be included in concatenation. This
is not done here because it can be incorporated simply as an addition following the
rotation transform. Further information on homogeneous coordinates is given in
Appendix 6.

Figure 7.3 General geometric transform in the world frame

Simple Rotations 87

One way to think of the object frame is as a set of axes centred on the world frame
origin. This is certainly a valid picture since without any rotation or translation, the
object would appear at the world frame origin. The translation is essential to avoid
superimposing all objects at the world frame origin. If the angles are continuously
changed between frames then the object will rotate in the world frame. Since we
already have the perspective transform in place from the previous chapter we can
watch this happen.

7.4 Example Program
This is a program to set up the object-to-world transform and use it to show the ST
monolith rotating about the z-axis of the world frame. To give a flicker-free
picture, screen buffering is used. Also the sines and cosines of angles must be
calculated for the rotation matrices. How these are done is discussed below in the
example programs.

7.4.1 otranw.s

This is the main control program. This time the initialisation is more extensive
because of the screen buffering and a lot of data transfer takes place. The data to
draw the ST monolith is in the file datajOl.s as before, but now it has to be
transferred to the object variables list. The rotation takes place as it is transferred
from the object frame to the world frame.

At the moment we can only show rotation by an angle oQ about the xw axis. This
is because rotations <?<)) and oy about the other axes would try to display the rear
side of the monolith. This cannot be done because of the way the polygon filling
routine is set up to expect polygons in the screen frame to have an anticlockwise
connected edge list . The rear side has this order reversed and in trying to cope
with this the routine draws garbage. Normally the rear side of an object is not
visible and would be dealt with in that way. As yet we do not have the capability
to test for visibility. This is done in Chapter 9. If it were desired to show the back
of the monolith it would have to be entered in the data as a separate object in a
back-to-back arrangement.

Screen buffering is used to eliminate flicker effects which arise from the drawing
and displaying of the picture being two separate operations, not usually in
synchronisation. The problem is solved using two screens; screenl and screen2
here. These alternately play the roles of the logical and physical screens. The
logical screen is where the next frame is being drawn while the last picture is
being displayed on the physical screen. The switch in the identities of these screens
is made to occur when the electron beam flies back from the bottom of the screen
to the top to begin drawing the next frame , called the vertical blank interrupt (or
vblank for short). There is enough time for the switch to occur whilst this is

88 Real-Time 3D Graphics for the Atari ST

happening. A flag, screenflag, is updated each frame to keep track of the which
screen is currently performing which function..

The program shows the rotation of the ST monolith about the zw axis in the world
frame through the range of angles 0° to 360° in 10° steps. You can alter the
angular increment between each frame and the displacement (Oox,Ooy,Ooz) to see
what effect these have. For very large objects it is a good idea to have a small
window so that only a small fraction of a large object will actually get drawn so
that speed is maintained without losing the impression of size. This explains why
many games have a very small window, which is the only part that needs to be
re-drawn each frame, surrounded by a large static control panel which is drawn
only once at the beginning.

7.4.2 data_03.s

The rotation transform uses the sines and cosines of the angles o0, o<)) and oy. For
a program operating in Basic these would be calculated to many significant digits
using a series approximation. There is no time for that here. We have to resort to
the method used before hand calculators were invented - tables. The table in this
file contains the sines of all the angles between 0° and 90° in 1° increments each
multiplied by the factor 16384, which is 214. The reason for this is straightforward.
It moves the decimal point 14 places to the left in binary and allows us to work in
units of 1/16384 so that products can be determined to high accuracy. However it
must be remembered that at the end of the calculation of a new coordinate the
result must be divided by 16384 to restore it to its correct size. There is no point in
knowing the final coordinate to greater accuracy than plus or minus 1 since this is
the smallest increment which can be displayed on the screen. Also if all the
trigonometric functions were not multiplied by 16384, all products would fall in
the range 0 to 1 and in the approximation of binary would be approximated to one
or other of these values which would then give either zero or the same result for all
products. The point of choosing 214 as a factor is that it can introduced or removed
very quickly by 14 left or right shifts. Greater accuracy could be obtained using a
larger factor, but 16384 is quite adequate for our purposes providing steps are
taken to correct for errors where they occur.

For greatest speed it makes most sense to have separate tables for both sines and
cosines. This is not done here mainly to illustrate how the symmetry of sine and
cosines allows any value in the entire range 0° to 360° degrees to be calculated
from the range 0° to 90° degrees. The time to do this is very small compared, for
example, to the time taken to actually fill the polygon, but for greater speed
separate tables should be used.

Simple Rotations 89

7.4.3 core_03.s
The first part of the subroutine here uses the look-up table in data_03.s to find the
sines and cosines of the angles used in the rotation, ready for use in the transform
matrix. This uses the result that the sine or cosine of any angle in the range 0° to
360° can be found from that of an equivalent angle in the range 0° to 90°. Finding
this equivalent angle is what the start of the first part is all about.

In the second part, the matrix is constructed and then used to transform the object
coordinates by matrix multiplication as was done in the earlier perspective
transform. Although only rotations about the x axis are done in this example, the
matrix can handle rotations about all three axes as described above. At the end of
the rotational transform, the displacements Oox, Ooy and Ooz are added to place
the object at the desired location in the world frame.

7.4.4 systm_02.s

This contains the new routines needed for screen buffering. Since two screens are
now used alternately, one to draw on and one to display, the switching between
them must coincide with the vertical blank interrupt to avoid flickering. In fact in
botii drawl_disp2 and draw2_displ, the system is made to stop and wait for this to
happen by the XBIOS call number $25.

Clearing the logical screen (the one about to be written on) before it is used is a
time consuming operation. It can be speeded up by clearing blocks of long words,
ten at a time, using the MOVEM instruction. Also since there are two screens, there
are two look-up tables for row addresses.

7.4.5 bss_03.s

New variables lists.

90 Real-Time 3D Graphics for the Atari ST

otranw.s
Simple Rotations

*

* * * * * * * * * *

* * * * * * *

SECTION TEXT
opt d+
bra main
include systm_02.s
include core_03.s

housekeeping file
important subroutines

find the addresses of the two screens
write a row address table for screenl
ditto screen2

exterminate the mouse
*

bsr
bsr
bsr
bsr
bsr

find_screens
wr t_scrnl_tbl
wrt_scrn2_tbl
hline_lu
hide_mse

transfer all the data
move.w my_npoly,d7

loopO

beq
move.w
subq.w
move.w
lea
lea
lea
lea
move.w
move.w
dbra

term
d7,npoly
#l,d7
d7,d0
my_nedges,aO
snedges,al
my_colour,a2
col_lst,a3
(aO)+,(al)+
(a2)+,(a3)+
do.loopo

no. of polygons
if none quit
pass it
the counter
save it
source
destination
source
destination
transfer edge nos.
transfer colours

* Calculate the number of vortices altogether

loopl

move.w
lea
clr
clr
add.w
add.w
addq
dbra

d7,d0
my_nedges,a6
dl
d2
(a6),dl
(a6)+,d2
#l,d2
do,loopl

restore count

no more than this
total number of vertices
and with last one repeated each time

* Move the edge list
subq #l,d2
lea my_edglst,aO
lea sedglst,al

loop2 move.w (aO)+,(al)+
dbra d2,loop2

* and the coords list
move.w dl,oncoords
subq #l,dl the counter

the counter
source
destination
pass it

loop3

lea
lea
lea
lea
lea
lea
move.w
move. w
move. w
dbra

#l,dl
ocoordsx,al
my_datax,aO
ocoordsy,a3
my_datay,a2
ocoordsz,a5
my_dataz,a4
(aO)+,(al)+
(a2)+,(a3)+
(a4)+,(a5)+
dl,loop3

Simple Rotations 91

and the window limits
move.w my_xmin,xmin ready
move.w my_xmax,xmax for
move.w my_ymin,ymin clipping
move.w my_ymax,ymax

*
place it in the world frame

move.w #300,Oox
move.w #200,Ooz
clr.w Ooy

Initialise for rotation
clr.w otheta
move.w #50,ophi
clr.w
clr.w
bsr
bsr

ogamma
screenflag
clearl
clear2

* Start the rotation about the
* or we'll see the back of it).
loop5
100p4

move.w #360,d7

move.w
move.w
tst.w
beq
bsr
bsr
clr.w
bra

d7,ogamma
<J7,-(sp)
screenflag
screen_l
draw2_displ
clear2
screenflag
screen 2

screen!:
drawl_disp2
clearl
#1,screenflag

otranw

bsr
bsr
move.w

screen_2:
bsr

* pass on the new coords
move.w oncoords,d7
move.w
subq.w
lea

loop6

lea
lea
lea
lea
lea
move.w
move.w
move.w
dbra

d7,vncoords
#1,<J7 .
wcoordsx,a0
vcoordsy,al
wcoordsz,a2
vcoordsx,a3
vcoordsy,a4
vcoordsz,a5
(a0)+,(a3)+
(al)+,(a4)+
(a2)+,(a5)+
d7,loop6

* Complete the picture
bsr perspective
bsr polydraw
move.w (sp)+,d7

* Test for terminate
bsr
tst
bne
sub.w
bgt
bra

scan keys
dO
term
#10,d7
loop4
loop5

300 in the air
200 in front
dead centre

init angles
tilt it up 50 degrees

Onscreen 1 draw, l=screen 2 draw
clear the screens

zw axis (can't rotate about the others

a cycle

next angle gamma
save the angle
screen 1 or screen2?
draw on screen 1, display screen2
draw on screen 2, display screenl
but first wipe it clean
and set the flag for .next time

draw on 1, display 2
but first wipe it clean
and set the flag for next time

rotational transform

perspective
finish the picture

has a key been pressed?
if so
back to caller
otherwise
next angle
or repeat the cycle

92 Real-Time 3D Graphics for the Atari ST

term clr.w -(sp) terminate and
back to caller

clr.w
trap

SECTION
include
include
SECTION
include

-(sp)
#1

DATA
data 01.s
data 03. s
BSS
bss_03.s

END

/
V

*
* d a t a _ 0 3 . s *
* A s i n e l o o k - u p t a b l e *
* * * * * * * * * * * * * * * ' *

* A t a b l e of s i n e s from 0 t o 90 d e g r e e s in i n c r e m e n t s of 1 d e g r e e
* m u l t i p l i e d by 2A14 (1 6 3 8 4) . I t can be used t o f i n d t h e s i n e o r c o s i n e
* of any a n g l e ,
s i n t a b l e :

d e w 0,286 ,572 , .857 ,1143 ,1428 ,1713 ,1997 , 2 280, 2563 , 2845 , 3126
d e w 3 4 0 6 , 3 6 8 6 , 3 9 6 4 , 4 2 4 0 , 4 5 1 6 , 4 7 9 0 , 5 0 6 3 , 5 3 34 ,5604 ,5872 ,6138
d e w 6 4 0 2 , 6 6 6 4 , 6 9 2 4 , 7 1 8 2 , 7 4 3 8 , 7 6 9 2 , 7 9 4 3 , 8 1 9 2 , 8 4 3 8 , 8 6 8 2 , 8 9 2 3
dc.W 9162 ,9397 ,9630 ,9860 ,10087 ,10311 ,10531 ,10749 ,10963 ,11174
d e w 11381 ,11585 ,11786 ,11982 ,12176 ,12365 ,12551 ,12733 ,12911
dc.W 13085 ,13255 ,13421 ,13583 ,13741 ,13894 ,14044 ,14189 ,14330
dc.W 14466 ,14598 ,14726 ,14849 ,14968 ,15082 ,15191 ,15296 ,15396
dc.W 15491 ,15582 ,15668 ,15749 ,15826 ,15897 ,15964 ,16026 ,16083
dc.W 16135 ,16182 ,16225 ,16262 ,16294 ,16322 ,16344 ,16362 ,16374
dc.W 16382,16384

include data_02.s the perspective transform

Simple Rotations 93

* * * * *

* * * * * * * * * * * * *
core_03.s

Subroutines for Chapter 7
* * * * * * * * * * * * *

* * * * *

include core_02.s all the previous subroutines

sincos:
* The sine and cosine of an angle are found.
* The sintable covers the positive quadrant 0 to 90 degrees
* and can be used to generate any sine or cosine in the range 0 to 360
* Entry: angle in degrees in dl
* Returns: sine in d2, cosine in d3

lea
cmp
bmi
sub

less360 cmp
bmi
bsr
rts

less270 cmp
bmi
bsr
rts

lessl80 cmp
bmi
bsr
rts

less90 add
move. w
subi
neg
move. w
rts

over270 subi
neg
add
move.w
neg
subi
neg
move.w
rts

overl80 subi
add
move.w
neg
subi
neg
move. w
neg.w
rts

sintable,a5
#360,dl
less360
#360,dl
#270,dl
less270
over270

#180,dl
lessl80
overl80

#90,dl
less90
over90

dl,dl
0(a5,dl.w),d2
#180,dl
dl
0(a5,dl.w),d3

#360,dl
dl
dl,dl
0(a5,dl.w),d2
d2
#180,dl
dl
0(a5,dl.w),d3

#180,dl
dl,dl
0(a5,dl.w),d2
d2
#180,dl
dl
0(a5,dl.w),d3
d3

pointer to the table base
test(angle-360)
it's < 360
make it less than 360 degrees
test(angle-270)
it's < 270
angle is over or equal to 270

test(angle-180)
it's < 180
angle is over or equal to 180

test(angle-90)
it's < 90
angle is over or equal to 90

*2 for offset into table for sine
the sine
cos(angle) = sin(90-angle)
offset into table for cosine
the cosine

360 - angle
*2 for offset

the sine

offset for cosine

angle-180

*2 for offset

the sine

offset for cosine

the cosine

94 Real-Time 3D Graphics for the Atari ST

over90 subi
neg
add
move.w
subi
neg
move.w
neg
rts

#180,dl
dl
dl,dl
0(a5,dl.w),d2
#180,dl
dl
0(a5,dl.w),d3
d3

angle-180

*2 for offset
the sine

offset for cosine

the cosine

otranw:
* This is the subroutine for transforming object coords to world coords.
* It includes rotations determined by otheta, ophi and ogamma about the
* world axes wx,wy and wz and a displacement of Oox, Ooy and Ooz relative
* to the world origin.
* PART 1.
* The matrix for the rotations is constructed.
* Convert object rotation angles to sin & cos and store for rot. matrix

move. w
bsr
move.w
move.w
move.w
bsr
move.w
move.w
move.w
bsr
move.w
move.w

* Construct the

* do

* do

* do

lea
lea
lea
lea
lea
lea
lea

otheta,dl
sincos
d2,stheta
d3,ctheta
ophi,dl
sincos
d2", sphi
d3,cphi
ogamma,dl
sincos
d2,sgamma
d3,cgamma

theta

store for mat

phi

gamma

transform matrix otranw remenT
stheta,a0
ctheta,al
sphi,a2
cphi,a3
sgamma,a4
cgamma,a5
o_wmatx,a6

element 0M11
move.w
muls
lsl.l
swap
move.w

0M12
move.w
muls
neg.l
lsl.l
swap
move.w

0M13
move.w

(a3),d0
(a5),d0
#2,do
dO
d0,(a6)+

(a3),d0
(a4),d0
dO
#2,dO
dO
dO,(a6)+

(a2),(a6)+

sin theta
cos theta
sin phi
cos phi
sin gamma
cos gamma
the matrix

cphi
cphi x cgamma

/2*14
0M11

cphi
cphi x sgamma

ii

/2A14
0M12

sphi

Simple Rotations 95

* do OM21
move.w
muls
move. w
muls
lsl.l
swap
muls
add.l
lsl.l
swap
move.w

* do OM22
move. w
muls
move.w
muls
lsl.l
swap
muls
sub. 1
lsl.l
swap
move.w

* do OM23
move.w
muls
neg.l
lsl.l
swap
move.w

* do 0M31
move.w
muls
move.w
muls
lsl.l
swap
muls
sub.l
lsl.l
swap
move.w

* do OM32
move.w
muls
move.w
muls
lsl.l
swap
muls
add.l
lsl.l
swap
move.w

* dO OH33
move.w
muls
lsl.l
swap

(al),d0
(a4),d0
(aO),dl
(a2),dl
#2,dl
dl
(a5),dl
dl,dO i
#2,dO
dO
d0,(a6)+

(al),d0
(a5),d0
(a0),dl
(a2),dl
#2,dl
dl
(a4),dl
dl,dO i
#2,dO
dO
dO,(a6) +

(aO),dO
(a3),d0
dO
#2,dO
do
d0,(a6)+

(aO),d0
(a4),d0
(al),dl
(a2),dl
#2,dl
dl
(a5),dl
dl,d0 :
#2,do
do
d0,(a6)+

(aO),dO
(a5),d0
(al),dl
(a2),dl
#2,dl
dl
(a4),dl
dl,dO
#2,d0
dO
dO,(a6)+

(al),dO
(a3),d0
#2,d0
dO

stheta x sgamma

ctheta

ctheta
ctheta x sgamma
stheta
stheta x sphi

stheta x sphi x cgamma
x sphi x cgamma + ctheta

ctheta
ctheta x cgamma
stheta
stheta x sphi

stheta x sphi x sgamma
x cgamma - stheta x sphi x sgamma

stheta
stheta x cphi

stheta
stheta
ctheta
ctheta

x sgamma

x sphi

stheta
ctheta 3

x sgamma
sphi x cgamma
- ctheta x sphi x cgamma

stheta
stheta x cgamma
ctheta
ctheta x sphi

ctheta x sphi x sgamma

" + stheta x cgamma

ctheta
ctheta x cphi

96 Real-Time 3D Graphics for the Atari ST

move.w do,(a6)+
PART 2
now the object coords are transformed to world coords
Remember matrix elements are *2~14 and must be corrected at the end

move.w oncoords,d7 the number
ext.l d7 any to do ?
beq otranw3 if .not quit
subq.w #l,d7 or this is the count

lea
lea
lea
lea
lea
lea
exg
link

ocoordsx,aO
ocoordsy,al
ocoordsz,a2
wcoordsx,a3
wcoordsy,a4
wcoordsz,a5
a3,d3
a6,#-6

the
source
coords.
the
destination

save this address-shortage of regs.
3 words to store

otranwl:
#2,d6
o_wmatx,a3

* calculate the next wx, wy and wz
otranw2:

moveq.
lea

3 rows in the matrix
init matx pointer

move. w
move.w
move.w

muls
muls
muls

add.l
add.l
lsl.l
swap
move.w
dbf

move.w
add.w
move.w
move.w
add.w
move.w
exg
move.w
add.w
move.w
exg
addq. 1
addq.1
addq.1

dbf
unlk

otranw3 rts

(aO),d0
(al),dl
(a2),d2

(a3)+,d0
(a3)+,dl
(a3)+,d2

dl,d0
d2,d0
#2,dO
dO
d0,-(a6)
d6,otranw2

(a6)+,d0
Ooz,d0
d0,(a5)+
(a6)+,d0
Ooy,dO
d0,(a4)+
a3,d3
(a6)+,d0
Oox,do
d0,(a3)+
a3,d3
#2,a0
#2,al
#2,a2

d7,otranwl
a6

ox
oy
oz

ox*Mil
oy*Mi2
oz*Mi3

/2A14
save it .
repeat for 3 elements

off my stack
add the displacement
becomes wz

becomes wy
restore address wx, save matx pointr

becomes wx
save address wx, restore matx pointr
point to next ox

oy
oz

repeat for all ocoords
close frame
and quit

Simple Rotations 97

*
systm_02.s

Calls to the Operating System

*
include systm_01.s the earlier routines

* find the screen addresses
find_screens:

move.w #2,-(sp) xbios _physbase
trap #14 xbios call
addq.w #2,sp tidy stack

* the physical screen base address is returned in do and saved
move.l d0,screen2 as screen2

* calculate the address of the logical screen and save it
sub.l #$8000,do another 32k screen to draw on
move.l dO,screenl called screenl
rts

drawl_disp2:
* DRAW ON SCREEN 1, DISPLAY SCREEN 2 (AT VBLNK)

* wait

move.w
move.1
move.1
move.w
trap
add.l
lea
move.1
for it
move.w
trap
addq.1
rts

draw2_displ:
* DRAW

* wait

#-l,-(sp)
screen2,-(sp)
screenl,-(sp)
#5,-(sp)
#14
#12,sp
scrnl_tbl,aO
aO,screen

#$25,-(sp)
#14
#2,sp

ignore resolution
display 2
draw on 1
xbios_setscreen

tidy
tell the program

xbios wait for vb

trap 14

ON SCREEN 2, DISPLAY SCREEN 1
move.w
move.1
move.1
move.w
trap
add.l
lea
move.1
for it
move.w
trap
addq.1
rts

#-l,-(sp)
screenl,-(sp)
screen2,-(sp)
#5,-(sp)
#14
#12,sp
scrn2_tbl,aO
aO,screen

#$25,-(sp)
#14
#2,sp

ignore resolution
display 2
draw on 1
xbios_setscreen

tidy
tell the program

98 Real-Time 3D Graphics for the Atari ST

* CLEAR SCREEN
clear1 raove.l

adda.1
move.w
raoveq.1
move.1
move. 1
move.1
move.1
move.1
move.1
movea.1
movea.1
movea.1

clrl_l movem.l
dbf
rts

* CLEAR SCREEN
ciear2 move.l

adda.1
move.w
moveq.1
move.1
move. 1
move. 1
move. 1
move.1
move.1
movea.1
movea.1
movea.1

clr2_l movem.l
dbf
rts

1 (by wiping out 10 long words at a time)
screenl,a3 screenl base
#32000,a3 point to top
#799,d7
#0,d0
d0,dl
dl,d2
d2,d3
d3,d4
d4,d5
d5,d6
d6,a0
a0,al
al,a2
d0-d6/a0-a2,-(a3)
d7,clrl_l

screen2,a3
#32000,a3
#799,d7
#0,d0
d0,dl
dl,d2
d2,d3
d3,d4
d4,d5
d5,d6
d6,a0
a0,al
al,a2
d0-d6/a0-a2,-
d7,clr2_l

screen 2 base

(a3)

* Write a table of row addresses for screenl
wrt_scrnl_tbl:

mbve.l screenl,do
move.w #200-1,dl
lea scrnl_tbl,aO

lulloop move.J. d0,(a0) +
add #160,do
dbra dl,lulloop
rts

* Write a table of row addresses for screen2
wrt_scrn2_tbl:

move.1
move.w
lea

lu21oop move.l
add
dbra
rts

screen2,d0
#200-1,dl
scrn2_tbl,a0
d0,(a0)+
#160,dO
dl,lu2loop

Simple Rotations 99

*
* bss_03.s *

*
include bss_02.s

Object frame variables
otheta
ophi
ogamma
ocoordsx
ocoordsy
ocoordsz
oncoords
Oox
Ooy
Ooz

ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w

1
1
1
200
200
200
1
1
1
1

* World frame variables
wcoordsx ds.w
wcoordsy ds.w
wcoordsz ds.w
* Variables for the o_w
o wmatx ds.w

the rotation of object coords about wx
ditto wy
ditto wz
vertex x coords
ditto y
ditto z
number
object origin x coord.in world frame
ditto y
ditto z

200
200
200
transform

the matrix elements

* General
screenl
screen2
scrnl_tbl
scrn2_tbl
screenflag
stheta
ctheta
sphi
cphi
sgamma
cgamma

ds
ds
ds
ds
ds
ds.w
ds.w
ds.w
ds.w
ds.w
ds.w

1
1
200
200
1
1
1
1
1
1
1

where the screenl address is stored
ditto 2
table of row addresses for 1
ditto 2
0 to display screenl, 1 for screen2
trig functions of the current angle

Keyboard, Joystick and
Mouse
These three input devices provide a simple way of injecting data into a running
program. Getting to grips with program input from these devices is straightforward
but a litde confusing, largely as a consequence of the number of ways of achieving
similar results. There are 'standard' ways using the higher levels of the operating
system, low level assembler routines which use the machine-dependent BIOS and
XBIOS and 'quick and dirty' methods which spy on system variables.

Reporting what keys are pressed, how far the mouse has moved or where the
joystick is pointing is all done by the intelligent keyboard (IKBD) controller. It is
'intelligent' because it is a computer in its own right and operates quite
independently of the main processor. In the default setting, every time something
changes on one of the input devices the IKBD passes the decoded information onto
the 68000 in an interrupt. This relieves the main processor of the chore of
repeatedly scanning them. The technicalities arise for us in 'grabbing' this
information and using it for our own nefarious purposes. As you will see, there are
some very "sneaky" ways of doing this.

8.1 "Quick and Dirty"
There are always quick ways of doing things which bypass the cumbersome but
thorough routines of the operating system. When it comes to identifying what keys
are being pressed or how much the mouse has moved, it's important to remember
that GEM is keeping track of such things all the time. The problem is to locate
where the operating system stores its findings and how to interpret them. This
looks like a 'needle-in-a-haystack' problem, but it isn't. We can use a talent

Keyboard, Joysticks and Mouse 101

possessed by humans but not shared by computers to quickly solve the problem:
humans are good at recognising patterns and changes in them. This can be
exploited by displaying the System Variables area of RAM visually and watching
how the patterns change as the input devices are operated. The only disadvantage
with using System Variables this way is that, due changes in the Operating System,
they may be at different locations in machines produced at different times. If you
only want to write programs for yourself, this method is O.K.

To get a visual representation of the variables area, we can use the xbios routine
SETSCREEN (#5) to make this area of RAM the physical screen. Then the
contents of the memory locations are visible as set pixels on the screen. The
program ramview.s listed at the end of the chapter does this. When the program is
running you can press keys, waggle the joystick or move the mouse and see which
pixels flicker. Calculating their locations in RAM can then be found fairly
accurately in the following way.

Take a good ruler and measure the height of the screen - call this length Y.
Measure the distance from the top of the screen to the row containing the
flickering pixel - call this y. Then remembering that the overall length of the
screen is 32kbytes and that it starts at the beginning of user RAM, 2049, the
address you're interested in is the vicinity

address = ((y/Y)*32000) + 2049.

This is best done in high resolution.

You will see different locations for the keyboard, mouse and joystick. Try holding
down a key and watching a key buffer fill up, or move the mouse around and
watch the resulting frenetic activity. Apart from these input registers, it's fun to see
all the other functions, particularly counters and clocks, being updated in this
"bird's eye view" of the System.

Obviously this isn't an accurate enough result to use directly in a program, it will
only be approximate. The exact location will have to be pinned down by
examination of specific addresses. This is helped by the way input devices are read
by the IKBD controller independent of what else is going on. The default settings
of the System are such that whenever an input change is detected the result is
passed on regardless. So, for example, you can use a debugger to single-step
through a trivial program whilst watching memory locations at the same time as
the joystick is operated. The program key_peek.s does this. Type in the program
and assemble it to memory. Then enter the debugger and run the program by
pressing the keys CTRL-Z. This will fill the buffer sufficiently to keep it going
whilst you press other keys and look for a response in the registers.

102 Real-Time 3D Graphics for the Atari ST

The address to start with is $e40. The variables will be somewhere in this vicinity.
Once the locations of variables are known you can read them into your programs
whenever you want.

8.2 Strictly by the Book
The operating system is packed with routines to look at the keyboard but finding
out what the mouse or joystick are up to is a little more difficult. We'll look at the
keyboard first.

8.2.1 The Keyboard

Actually it has already been done. The routines in systm_01.s are all that are
required and have already been used to quit programs. The routine readjcey
returns the GEM standard codes of the keys pressed. You can run this in a loop as
an independent program and using the monitor to watch dO, find the codes for all
the ST keys. The codes are also listed in Appendix 8.

8.2.2 The Joystick

To read the joystick and the mouse, subterfuge is required. It will appeal to the
latent hacker present in all of us!

The IKBD has to report which joystick is being operated, whether the fire button
has been pressed and in what direction the stick has moved. There is more than
one piece of information here and so several bytes are passed together as a data
packet. Since the IKBD works independently, it tells the main processor when a
data packet is coming. The packet is then intercepted by a routine called the packet
handler. The addresses of the handlers for data packets from all input devices is
located in a table. This table of pointers to subroutines is called a vector table. The
trick is to find the location of this table and the joystick vector within it, and then
substitute our own vector, i.e. write our own joystick handler routine and place its
address in the table. This way, whenever a joystick packet is sent out it will be
intercepted by our own routine ready for our use. The original System vector can
of course be saved and replaced when we're finished. It will not surprise you to
learn that there is an XBIOS routine (KBDVBASE) which returns the base address
of the vector table. The joystick vector is number six up in this table. The
subroutine to make the substitution is given in the file systm_03.s. and is called
initjoy. Once in place, the new handler takes the second byte in the packet and
stores it in the location joy_data for our later use. The first byte in the packet is $ff
for joystick 1 and $fe for joystick 2. This byte is of no further interest to us.

Keyboard, Joysticks and Mouse 103

The byte which is saved contains in its lowest nibble the number signifying the
direction in which the stick has been moved. This is : up - 1, down - 2, left - 4,
right - 8, up-left - 5, down-left - 6, up-right - 9, down-right - 10.

There is a further complication to the business which we can avoid by setting the
system up properly. It arises from the fact that at any given time both the joystick
and the mouse are active and cause data packets to be generated. If no attempt is
made to inspect the header byte then data from the mouse can be confused with
that from the joystick. We have made no attempt to do this in our handler but the
problem is simply solved by turning off the mouse altogether. To do so means
sending instructions to the IKBD and we discuss how to do this at the end.

8.2.3 The Mouse

Like the joystick, this has its own data packet handler. Again, we can write our
own and substitute its address in the vector table. How this is done is shown in the
file systm_03.s. This time the vector is number four in the table.

There is more than one way of setting up the mouse and we will use the most
common which is called relative mode. There are three bytes in the mouse data
packet and each one contains something useful. The first byte is $f8 plus either (or
both) of the two lowest bits set depending on which of the two buttons has been
clicked. The second byte is the signed x-displacement and the third is the signed
y-displacement since the last report. Signed means 2's complement so that for
backward movements the top nibble is $f. But remember the displacement is
measured in screen coordinates with the origin at the top left-hand corner of the
screen and positive y is down.

8.3 Talking to the IKBD
Although the IKBD mainly concerns itself with reporting keyboard, joystick and
mouse events, it is also able to receive instructions. These are necessary to
configure it and select its reporting mode from the many options available. The
way this is done is simple but not particularly obvious. It is done through the xbios
call IKBDWS (intelligent keyboard write string) #25, in the following way. The
instruction code to be sent to the IKBD is written as a string. The pointer to the
string and the number of bytes minus one in the string are placed on the stack.
Then the XBIOS function is called. How this is done for the specific cases of
turning off the mouse, interrogating the joystick, turning off the joystick and
setting up the mouse is shown in systm_03.s

104 Real-Time 3D Graphics for the Atari ST

8.4 Example Programs

8.4.1 ramview.s

This is the program to spy on the GEM variables area of RAM by making it the
physical screen RAM. It uses the XBIOS routine SETSCREEN to do this. When
the program is running you can operate the keyboard, joystick or mouse to see
where pixels change, and calculate the approximate locations of the registers in
RAM.

8.4.2 keyjieek.s

Having found the approximate location of variables with ramview.s, now pin them
down with the Devpac ST's monitor or debugger. Run this program (it's hardly a .
program at all) after having assembled it in the debugger. When the debugger is
first entered switch to memory 3 (the block view) and modify the block address to
something around $e40. Press CONTROL-Z to single step through the program
and hold it down for a few seconds. This will fill the buffer and keep the program
running for a short time. Whilst the program is running you can waggle the
joystick, or whatever, and see which registers change. It will probably be necessary
to search memory before and after this address to find the right area.

8.4.3 systm_03.s

This contains the subroutines for substituting ikbd data packet handlers and passing
instructions to the IKBD.

Usually the joystick and mouse operate in the default mode of automatically
reporting changes to their settings. Routines in this file stop this. When information
is then required regarding these devices, it must be asked for. Part of the reason for
doing it this way is to stop unwanted reporting from devices and the other is to
illustrate how to communicate through the IKBD controller.

Note that communication with the controller is done in a roundabout way, with the
address of the function number being pushed onto the stack before making the
XBIOS call IKBDWS (write string).

8.4.4 joyJests

This uses the subroutines to show movements of the joystick. In particular it uses
the VT52 terminal emulator routines in the operating system to write text. When
the program is run, text will appear on the screen in response to movements of the
joystick. The VT52 emulator routines provide a very powerful and simple method
of displaying text in a variety of ways. A full list of functions available is given in
Appendix 4.

Keyboard, Joysticks and Mouse 105

*
* ramview.s *

*
* A look at what goes on in the GEM variables area
* Display the bottom 32K of user RAM on the screen
* While it's on view you can use the keyboard, joystick or mouse
* to see where data is being altered. The screen is 32k long and
* starts at 2049 so with a ruler you can measure where in RAM the
* variables are located.
* set up the screen

main move.w #-l,-(sp) ignore resolution
move.l #2049,-(sp) physical screen = bottom of user RAM
move.l #-l,-(sp) forget the logical screen
move.w #5,-(sp) xbios_setscreen
trap #14
add.l #12,sp tidy
bra loop idle loop

* „
* key_peek.s *
* A program to find where the codes from the keyboard, joystick *
* and mouse are kept. *
*

* This is a very long program!
* Run it in the monitor or debugger and having selected the part of RAM
* to look at (around $e40) press the CONTROL and Z keys simultaneously.
* While the program is running you can also press any key or mouse button,
* or waggle the joystick and see where data appears. Then you know where
* to find it for your programs.

main bra main
END

106 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * * * * * * *
* systm_03.s
* Joystick and mouse routines
* * * * * * * * * * * * * * * * * *

* End automatic reporting from the joystick
joy_of£

*

pea
move.
move.
trap
addq.
rts

,w
,w

,1

joyoff str
#0,-<sp)
#25,-(sp)
#14
#8,sp

* Interrogate the joystick
rd_joy

* Turn
mse_off

pea
move.
move.
trap
addq.
rts

,w
w

1

rdjoy str
#0,-(sp)
#25,-(sp)
#14
#8,sp

the mouse off
pea
move,
move.
trap
addq.
rts

w.
w

(-•

mseoff str
#0;-(sp)
#25,-(sp)
#14
#8,sp

pointer the instruction string
1 less than length of string
function ikbdws
xbios
tidy

ditto

ditto

* Set up the mouse for reporting in relative mode i.e.
mse_rel

pea relmse_str ditto
move.w #0,-(sp)
move.w #25,-(sp)
trap #14
addq.l #8,sp
rts

position change

* Intercept GEM joystick routine with our own
init_]oy:

move.
trap
addq,
move.
move.
lea
move.
rts

#34,-(sp)
#14
#2,sp
dO,aO
24(aO),gem_joy
joy_handle,al
al,24(a0)

find the table of vectors
using xbios call kbvbase: address in do
tidy stack
base pointer
hijack GEM vector

substitute mine
and sneak off

* This is my joystick data packet handler. Now when an interrupt occurs
* my handler will be activated with aO pointing to the data packet.
joy_handle:

clr.w do
move.b l(aO),d0
move.w dO,joy_data the second data byte has the info
rts

Keyboard, Joysticks and Mouse 107

* When I've finished, put back the GEM handler as if nothing happened
]oy_t< srm:

move,
trap
addq,
move.
move.
move,
rts

w

.1

.1

.1

.1

#34,-(sp)
#14
#2,sp
dO,aO
gem_joy,al
al,24(a0)

call xbios kbvbase

tidy
base pointer
dust off GEM's
and return it
before I'm spotted

* Intercept the mouse packet handler with our own
ihit_mse:

#34,-(sp)
#14
#2,sp
dO,aO
16(aO),gem_mse
mse_handle,al
al,16(a0)

move.w
trap
addq.1
move.1
move.1
lea
move.1
rts

find the table of vectors
using xbios call kbvbase: address in do
tidy stack
base pointer
hijack GEM vector

substitute mine
and sneak off

* This is my mouse data packet handler. Now when an interrupt occurs
* my handler will be activated with ao pointing to the data packet,
mse handle:

clr.w
move.b
move.w
move. b
move.w
move.b
move.w
rts

dO
(aO)+,dO
dO,mse_click
(aO)+,dO
do,mouse_dx
(aO),dO
do,mouse_dy

1st byte is the header
save it
next byte is
the x displacement relative to last position
last byte is
ditto y

* When I've finished, put back the GEM handler as if nothing happened
mseterm:

move.w
trap
addq. 1
move. 1
move. 1
move. 1
rts

#34,-(sp)
#14
#2,sp
dO,aO
gem_mse,al
al,24(a0)

call xbios kbvbase

tidy
base pointer
dust off GEM's
and return it
before I'm spotted

* The strings to be sent to the ikbd are just the command numbers
* Each string is 1 byte long
mseoff_str dc.b $12 turn off the mouse
joyoff_str dc.b $15 turn off default automatic joystick reporting
rdjoy_str dc.b $16 interrogate the joystick
relmse_str dc.b $08 put the mouse in relative mode automatic report

108 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * * *
* joy_test.s
* A routine to test the ikbd joystick function
*
* The joystick is interrogated and our own packet handler used to
* grab the data packet containing the FIRE bit (7) and the position
* bits (0-2) which is saved in the variable joy_data.

opt d+
bra main
include systm_03.s
even

main
* Set up joystick for standard

mainl

the important subroutines

reporting.

up

down

left

right

bsr
bsr
bsr

clr.w
bsr
move.w
move
andi.w
bne
andi. w
beq
cmp.w
beq
cmp.w
beq
cmp.w
beq
cmp.w
beq
bra
le VT52
pea
move.w
trap
addq.1
bra
pea
move.w
trap
addq.1
bra
pea
move.w
trap
addq.1
bra
pea
move.w
trap
addq.1
bra

init_joy
joy_off
mse_off

joy_data
rd_joy
joy data,do
d0,dl
#$f0,d0
fire_press
#$f,dl
joy out
#l,dl
up
#2,dl
down
#4,dl
left
#8,dl
right
diagonal
subroutines for
up text
#9,-(sp)
#1
#6,sp
joy_out
down text
#9,-(sp)
#1
#6,sp
joy_out
left text
#9,-(sp)
#1
#6,sp
joy_out
right text
#9,-(sp)
#1
#6,sp
joy_out

set up our packet handler
end automatic reporting
turn off the mouse

read joystick
here's the result
save it
fire pressed ?
yes •
what direction is the stick?
no direction
up?
yes
down?
yes
left?
yes
right?
yes
only possibility left

messages
pointer to text
VT52 emulator
GEM call
tidy

Keyboard, Joysticks and Mouse 109

diagonal:
pea
move.w
trap
addq.1
bra

fire_press:
pea
raove.w
trap
addq.1

joy_out clr.w
bra

SECTION

gem_joy
joy_data
gem_rase
mse_click
mouse_dx
mouse_dy

diag text
#9,-(sp)
#1
#6,sp
joy_out

fire
*9,-(sp)
#1
#6,sp
joy_data
mainl

BSS

ds.l 1
ds.w 1
ds.l 1
ds.w 1
ds.w 1
ds.w 1

SECTION DATA
* Here are the messages to be printed. The number 27 is the ESCAPE
* code. In low res.Text can be positioned at any row (0 to 24)
* or column (0 to 39) but the number 32 must be added. Text must end in

clear screen
type at row 1 (+32) and column 18 (+32)
the word "up"
end of text

up text dc.b
dc.b
dc.b
dc.b

down text:
dc.b
dc.b
dc.b
dc.b

left text:
dc.b
dc.b
dc.b
dc.b

right text:
dc.b
dc.b
dc.b
dc.b

fire dc.b
dc.b
dc.b
dc.b

diag text:
dc.b
dc.b
dc.b
dc.b
END

27,"E"
27,"Y",3 3
"up"
0

27,"E"
27,"Y",56
"down"
0

27,"E"
27,"Y",44
"left"
0

27,"E"
27,"Y",44
"right"
0
27,"E"
27,"Y",44
"FIRE"
0

27,"E"
27,"Y",44

50

50

32

62

50

50
"diagonal"
0

o

Hidden Surfaces and
Illumination
A computer is a fast number cruncher, but it doesn't know anything about the real
world. When it comes to conveying simple everyday experiences like not being
able to see through solid opaque objects, the computer is a real loser. There are no
codes in the processor instruction set which allow us to easily convey such
information. It seems obvious to us that the rear sides of opaque objects are not
visible and that an opaque object will obscure those behind it. Making the
computer show this simple fact of life is hard work. It is called the hidden surface
problem and it is the basis of some very time-consuming algorithms in computer
graphics.

For any micro without dedicated graphics hardware, this becomes a severe problem
since the burden of computation falls on the main processor, and of necessity
therefore, any strategy we adopt to deal with hidden surfaces cannot be too time
consuming. As a consequence, the geometry of the objects themselves cannot be so
complex as to require a time consuming hidden surface algorithm. The simplest
solution is to require that all polyhedra be convex, i.e. each surface polygon looks
outward and not towards another polygon. It is possible to deal with simple
polyhedra which are not convex but we shall only consider ones which are convex.
It is always possible to construct complex objects out of several convex polyhedra
and the strategy then is to draw the furthest ones first and the nearest ones last.
This is the so called 'painter' algorithm by which objects in the background are
naturally obscured by those in the foreground. More of this later.

The procedure for deciding whether a surface is visible, combines naturally with
the calculation to decide how brightly it is illuminated by a distant light source, a
necessary attribute if the object is to look real. Surfaces which face towards the

Hidden Surfaces and Illumination 111

light source must be brighter than those which face away. We shall combine both
of these into a single algorithm in this chapter.

9.1 Hidden Surface Removal
In the simple strategy for convex polyhedra adopted here, deciding whether a
surface is visible requires a substantial amount of vector algebra (which can be
minimised by pre-calculating certain surface parameters) . The procedure is
straightforward: a polygonal surface is visible if it faces the view point. The
problem is how to-convert the word "faces" into a mathematical expression. This
is done in the following way.

Each surface has associated with it a vector which points out at right angles from
the surface so that the polyhedron as a whole looks like a porcupine. All such
vectors have the same length, which is chosen to be unity. They are called surface
normal unit vectors. The only difference between two unit vectors is their
direction, which reflects the different directions in which the surfaces face as
shown in Figure 9.1. Of course, for the purposes of calculation, 1 is not a useful
size for a vector and so it is multiplied by the factor 16384 (214). This keeps
quantities wiuiin word size and makes multiplication and division simple.

i t vector

n

Figure 9.1 A convex polyhedron showing surface normal vectors

112 Real-Time 3D Graphics for the Atari ST

To see whether a surface is visible from the view point now consists of testing
whether its unit vector is in the same or.opposite direction to a vector (the view
vector) drawn from the viewpoint to the surface. There is a basic vector product
which performs this test. It is called the scalar or dot product. Appendix 6 explains
products involving vectors. In the language of mathematics, where the view vector
is V and the surface normal vector is n, the scalar product will yield a positive
result if the surface is hidden and a negative result if it is visible:

hidden: scalar product V,n is positive

visible: scalar product V.n is negative.

The scalar product itself is really nothing more than the distance from the view
point to the surface times the cosine of the angle between the view vector and the
surface normal. The sign of the product naturally follows therefore from the fact
that the cosine of an angle less than 90° is positive whereas the cosine of an angle
between 90° and 180° is negative. Figure 9.2 shows the directions of the vectors
for a visible and a hidden surface. All this is very satisfactory except for one thing;
the surface normal unit vector must be calculated and that is not so simple. Here
the unit vector is calculated in view frame coordinates.

Figure 9.2 Visible and hidden surfaces

Hidden Surfaces and Illumination 113

As a brief digression, it's worth mentioning that the test for visibility can be done
without any reference to vector products. The way that data lists have been set up,
with the list of edge connections of a polygon going clockwise when viewed from
the front, can be used to give a simple test for visibility. When converted to screen
coordinates by the perspective transform, visible polygons have their edge list
going anticlockwise. Projected polygons with clockwise screen edge lists will
therefore have come from polygons facing away from the screen and which should
be hidden. A test for this can easily be constructed.

We choose to use the scalar product here because the normal unit vectors, once
calculated, can also be used to determine the level of illumination of each surface.

9.2 Calculating the Surface Normal Unit Vector
The procedure to calculate the normal unit vectors requires quite a lot of vector
algebra and time consuming multiplications. It can be minimised by working out
some relevant quantities beforehand and storing the data in a list in the usual way.
In fact the normal vectors themselves could be completely worked out in the object
frame and transformed together with the vertices at each stage. There are
substantial advantages to doing it this way.

Instead, we choose to calculate the vectors in view frame coordinates because of
the way it fits in nicely with the evolution of our program and the tutorial objective
of the book. The particular vector product which allows us to calculate the normal
vector is called a cross product. It's more difficult to understand than the scalar
product but it's precisely what we want. Appendix 6 also covers this topic.

A vector product is illustrated in Figure 9.3. for a single polygon. Going round the
perimeter of the polygon, the first two edges we meet are from vertices 1 to 2 and
2 to 3. Let us call the vectors associated with these edges A12 and A23. The
normal vector B is then calculated as the cross product between them:

B = A23 x A12.

This shorthand notation is all fairly meaningless until translated into a set of
mathematical operations. The x, y and z components of A12 and A23 are:

A12x = x2-xl, A12y = y2-yl, A12z = z2-zl

A23x = x3-x2, A23y = y3-y2, A23z = z3-z2

and the components of B are:

Bx = A12z.A23y-A12y.A23z

By = A12x.A23z-A12z.A23x

Bz = A12y.A23z-A12x.A23y

http://A12z.A23y-A12y.A23z
http://A12x.A23z-A12z.A23x
http://A12y.A23z-A12x.A23y

114 Real-Time 3D Graphics for the Atari ST

xl ,yi_ .

X

fll2

L

A

x2;y2

B

\
L & J

\ ^V-*x3,y3

Figure 9.3 The vector product of two vectors

These multiplications constitute the bulk of the calculation.

There is one final step. What we want is the unit vector. The vector B is in the
right direction but its size is too large. To get the unit vector, each of the
components must be divided by the magnitude of B. This provides an additional
chore because the magnitude of B is calculated from:

B = V(Bx2+By2+Bz2)

which requires taking a square root. How this is done is explained in. the example
program.

Once the magnitude B has been calculated, the components of the unit vector are

bx = Bx/B, by = By/B, bz = Bz/B.

After this the line-of-sight vector (view vector) from the view point to the first
vertex of the surface in the edge list is then found and the scalar product taken
with the normal vector. On the basis of this test, the surface is either flagged as
hidden or else its level of illumination calculated. We discuss illumination next.

Hidden Surfaces and Illumination 115

9.3 Illumination and Colour
It is possible to employ the most elaborate computations to construct geometrically
accurate 3D models, and yet the attributes which make them look real may be very
subtle and less obvious. In sprite graphics, the shadow on the ground which
follows the motion of a projectile is a small but essential clue to its altitude. In
3-D, one of the easiest and dramatic improvements to add realism to a model is
illumination by a light source. Facets which face the light source are more brightly
illuminated than those which face away. As the object changes its orientation, so
the changes in illumination give additional visual clues to its shape and structure.
This is what we shall try to simulate next. There are limitations to what can be
achieved on a the ST, not so much a consequence of software constraints, but
mainly resulting from the way colour is implemented in the colour palette. The
way in which illumination is determined is very similar to the way visibility is
tested for, but in this case an actual number must be generated, depending on the
angle of the surface to the light source.

The direction of the beam of light emanating from a light source is specified by a
vector, called the illumination vector. It would be possible to simulate a diverging
or converging beam by having this vector change its direction across the field of
illumination, but for simplicity the beam is taken to be parallel". Consequently a
single vector is sufficient to define to direction of the beam. Likewise, the intensity
of the light is taken to be constant everywhere. These approximations are valid for
a distant light source such as the Sun, but the difference for a near light source is
hardly noticeable. This illumination vector is also a unit vector, (i.e. it has a
magnitude of unity.)

Because we have already calculated the surface normal unit vectors, everything is
set up to find the level of illumination of each facet on the surface. Figure 9.4
illustrates the calculation. It is nothing more than the scalar product of the
illumination vector and the normal vectors. This is a realistic calculation since the
level of illumination does depend on the cosine of the angle between the two
vectors.

There is one minor modification we will use in the calculation. Consider how the
earth is illuminated by the Sun: the side which faces the Sun is brightly lit but the
side which faces away would be pitch black if it weren't for the reflected light of
the Moon (forgetting the light from die stars). In a room a single light source is
sufficient to illuminate everything, though much of this is back-reflected light from
the walls and all the objects in the room. This is the basis of the Radiosity method
of illumination calculation which is used in very advanced graphics to simulate
realism to a high degree. We can incorporate a very rudimentary version of this
into our method, using the scalar product to set an illumination level even where it
is negative, so there is some illumination even on the dark side of objects.

116 Real-Time 3D Graphics for the Atari ST

n

<
il lunination

vector

Figure 9.4 Surface illumination

Here then is the method in outline: for each surface, take the scalar product of the
illumination vector with the normal unit vector; since both vectors are 1 in
magnitude, this will yield a result between +1 (minimum illumination) and -1
(maximum illumination). If you're confused by the sign, remember in our
geometry the illumination vector points away from the light source. Since in our
method all unit vectors are multiplied by 214(16384), the scalar product will
actually yield a result somewhere in the range -228 to H-228. Adding 2^ to this
result and dividing by 225(by right shifting) reduces this to the range 0 to 16. This
result can then be used to index 16 different colour shades. How this is done
requires a brief explanation of the colour palette.

9.3.1 The Colour Palette

In low resolution, which is the most colourful, 16 different colours can be
displayed simultaneously out of a possible 512. This selection of 16 is called the
colour palette. There are tricks to exceed 16 for the screen as a whole by changing
the colour palette frequendy whilst a picture is being drawn (during the horizontal
blank, for example). We will use the basic 16. For what follows Figure 9.5 will be
of assistance. The ST standard palette settings are listed in Appendix 8.

Hidden Surfaces and Illumination 117

' ' . ' • ' • • • • . • • : • • . • • . . • : . • • • . • : . •

. • ' . . • : .

fcoiiTROL'PfiHEl

Figure 9.5 The control panel and the colour palette

An excellent aid to understanding how the colour palette works is found in the
Control Panel Accessory which comes with the ST. This shows three sliders of red,
green and blue, each with 8 possible settings in low resolution. This means there
are 8.8.8 = 512 possible combinations. Have a play with the sliders to see what
colours can be obtained. At any one time 16 of these 512 can be displayed on the
screen simultaneously. Why sixteen? Because there are 4 colour planes in low
resolution, as we have seen in Chapter 2, and each plane is represented by a bit in
the colour nibble so that up to 16 combinations are available. The value of the
colour nibble is used to index a 'pot' from the colour palette which contains the
word number of the colour. Simple isn't it!

All that remains is to find out how to generate the colour word in the palette from
the red, green and blue settings in the control panel. In fact the nibbles follow
exactly as they are presented in the control panel when written in hexadecimal. A
setting of $0777 (white) means red=7, green=7 and blue=7. If you want to write
them in decimal, the recipe is:

colour value = 256*(red setting) + 16*(green setting) + l*(blue setting)

The chosen colours must then be loaded into the palette with an Operating System
call. This is what is done in the example program.

118 Real-Time 3D Graphics for the Atari ST

For our purposes, in order to simulate lighting, the colours will be different shades
of the same colour. There is obviously going to be a trade off here. With a
maximum of 16 colours the following combinations are possible:

mode 0 16 shades of one colour

mode 1 8 shades of 2 colours

mode 2 4 shades of 4 colours

mode 3 2 shades of 8 colours.

The last of these isn't worth considering but the other three possibilities are
implemented in the programs.

9.4 Example Programs
The example programs show the ST monolith in rotation with hidden surface
removal and illumination. The program is set up with rotation about the x axis but
this can be altered as desired. The monolith is coloured in red and blue but, once
again, it is good fun to set up alternative palettes in different colours following the
colour recipe, above.

9.4.1 illjiide.s

This is the control program. It still uses the data for the ST monolith to display it
rotating about any, or all three of the object frame axes. Because we now have
hidden surface removal, it doesn't matter if the angles become large enough to
display the back. Nothing will be displayed because the back is hidden. The
program is set for rotation about the x-axis of the object frame.

The colour palette has been set up to use 7 shades of blue and 8 shades of red. The
first colour in the palette has the value 0 which is black and is used by the system
to provide the background. The shading mode is flexible and is set up by means of
a key, called illkey, which has a value equal to the mode number, above. The
program is set up in mode 1.

9.4.1 core_J)4.s

This calculates surface normal vectors, determines whether a surface is visible and
if so calculates the level of illumination and the final palette colour as outlined in
the text. Because of the limitations of word multiplication in the calculation of
normal vectors, objects are restricted to linear dimensions of less than about 200.

First of all the surface normal vectors are calculated as described above. In the
subroutine nrm_vec the normal vector is converted to a unit vector by dividing

Hidden Surfaces and Illumination 119

each of its components by the magnitude of the vector. The magnitude is
calculated by Pythagoras' theorem in 3D and requires a square root operation
which is done in the subroutine sqrt by an iterative process.

The square root algorithm works in the following way. Suppose the square root of
a number, N, is known approximately; call it sqrtl. Then a better approximation,
sqrt2, can be found by dividing the number by sqrtl, adding this to sqrtl and
dividing by 2, i.e.

sqrt2 = l/2(sqrtl + N/sqrtl).

Sqrt2 is a better approximation than sqrtl. Then starting with sqrt2 an even better
approximation, sqrt3, can be found in the same way. Each one of these
recalculations is. called an iteration. Starting with a modest approximation, only
three iterations are needed in the routine to calculate a square root accurate to 1
part in 216, i.e. as accurate as a word will allow.

The line-of-sight vector used to determine visibility in visjll is taken from the
view point to the first vertex on a surface. There is no ambiguity here since at the
point where a surface just ceases to be visible all vertices give a line-of-sight
vector perpendicular to the surface normal. The illumination vector is specified by
its components illjvecx, ill_yecy and ill_vecz each multiplied by 214 for accuracy,
as usual.

If a surface is invisible, the illumination is set to the value $f0. Otherwise the
intrinsic colour, 0 or 1 in mode 1 (the mode used here), is then combined with the
shading to produce a number to index the colour palette. This is a tricky
calculation and best understood by following the algorithm through.

Depending on whether the colour is 0 or 1, either the colours fron 1 to 7 (blue) (0
is reserved for black, the background) or from 8 to 15 (red) are selected. The
actual shading level then fixes which colour in the group is chosen, with the
lightest being 1 (blue) and 8 (red) and the darkest being 7 (blue) and 15 (red).

The colour palette is set up by XBIOS call number 6, with a pointer to the list of
colours.

9.4.3 data_04.s

This contains the illumination vector components, which in this example define a
light source shining from right to left in the view frame. This is clearly no good in
general since the light source should be fixed in the world frame and transformed
like everything else to the view frame.

Following this are the intrinsic colours (red or blue in this case) corresponding to
the two posibilities, 0 or 1, in mode 1. The colours for the palette are listed in

120 Real-Time 3D Graphics for the Atari ST

hexadecimal, as the settings appear on the control panel, giving 7 shades of blue
and 8 shades of red.

9.4.4 bss_04.s

Additional variables from Chapter 9.

Hidden Surfaces and Illumination 121

* * * * *
* ill_hide.s *
* A program to illustrate illumination and hidden surface removal *

* * * * * * * *

SECTION TEXT
opt d+
bra main
include systm_02.s
include core_03.s
include core 04.s

bsr
bsr
bsr
bsr
bsr
bsr

find_screens
wrt_scrnl_tbl
wrt_scrn2_tbl
hline_lu
hide_mse
palette_set

housekeeping file
subroutines
illumination, hidden surface removal

find the addresses of the two screens
write a row address table for screenl
ditto screen2

exterminate the mouse
set up the shades of blue and red

* transfer all the data from my lists to program lists
bsr transfer

* place it in the world frame
move.w #0,Oox on the ground
move.w #100,Ooz 100 in front
clr.w Ooy dead centre

* Initialize angles for rotation
clr.w otheta
move.w #50,ophi tilt it forward
clr.w ogamma

* Initialize screens
clr.w screenflag 0=screen 1 draw, l=screen 2 draw
bsr clearl clear the screens
bsr clear2

* Start the rotation about the
loop5
loop4

screen.

screen.

move.w
move.w
move.w
tst.w
beq
bsr
bsr
clr.w
bra

.1:
bsr
bsr
move.w

-2:
bsr

#360,d7
d7,otheta
d7,-(sp)
screenflag
screen_l
draw2_displ
clear2
screenflag
screen_2

drawl_disp2
clearl
#1,screenflag

otranw

xw axis
a cycle
next theta
save the angle
screen 1 or screen2?
draw on screen 1, display screen2
draw on screen 2, display screenl
but first wipe it clean
and set the flag for next time

draw on 1, display 2
but first wipe it clean
and set the flag for next time

object-to-world transform

122 Real-Time 3D Graphics for the Atari ST

pass on the new coords
move.w oncoords,d7

loop6

move
subq.
lea
lea
lea
lea
lea
lea
move,
move,
move,
dbra

,w
,w

,w
,w
,w

d7,vncoords
#l,d7
wcoordsx,aO
wcoordsy,al
wcoordsz,a2
vcoordsx,a3
vcoordsy,a4
vcoordsz,a5
(a0)+,(a3)+
(al)+,(a4)+
(a2)+,(a5)+
d7,loop6

* Test for visibility and lighting
bsr illuminate

* Complete the drawing
bsr perspective
bsr polydraw
move.w (sp)+,d7

* Check for termination

term

if it's visible find the shade

perspective
finish the picture

bsr
tst
bne
sub.w
bgt
bra
clr.w
trap

scan keys
do
term
#10,d7
loop4
loop5
-(sp)

n

has a key been pressed?
if so
back to caller
otherwise increment in 10 degree steps
next angle
or repeat
terminate and
back to caller

SECTION DATA
include data_01.s
include data_03.s
include data_04.s
SECTION BSS
include bss_03.s
include bss_04.s
END

Hidden Surfaces and Illumination /*

* * * * * * * * * * * * * * * * * *
core_04. s

Subroutines for chapter 9
* * * * * * * * * * * * * * * * * * *

illuminate:
* New subroutines:
* calc_nrra - calculate the polygon normal unit vectors
* calc_ill - calculate the level of illumination 0 - 7
* vis_ill - convert this to a palette colour
* transfer - move my data to program data
* Calculate the normal unit vectors. All components are *2A1
calc_nrm:

any to do?
quit if none
ready to loop
coords

connections
no. edges per poly
surface normals pointer

unit vectors

save pointer to normals list
rertex of the next surface
second vertex
*2 for offset
ditto

*

move.w
beq
subq
lea
lea
lea
lea
lea
lea

Calculate the
next_nrm:

move.1
move.w
move.w
add
add
move.w
sub.w
move.w
sub.w
move. w
sub.w
move
move.w
add
move.w
sub.w
move.w
sub.w
move. w
sub.w

movea.w
muls
movea.w
muls
sub. 1
move.1
move.w
move.w
movea.w
muls
movea.w
muls
sub.l
move. 1
move.w

npoly,d7
nrm out
#l,d7
vcoordsx,a0
vcoordsy,al
vcoordsz,a2
sedglst,a3
snedges,a4
snormlst,a5
surface normal

a5,-(sp)
(a3),a5 first
2(a3),a6
a5,a5
a6,a6
0(a0,a6.w),dl
0(a0,a5.w),dl
0(al,a6.w),d2
0(al,a5.w),d2
0(a2,a6.w),d3
0(a2,a5.w),d3
a6,a5
4(a3),a6
a6,a6
0(a0,a6.w),d4
0(a0,a5.w),d4
0(al,a6.w),d5
0(al,a5.w),d5
0(a2,a6.w),d6
0(a2,a5.w),d6

d2,a5
d6,d2
d3,a6
d5,d3
d2,d3
d3,-(sp)
a5,d2
a6,d3
d3,a5
d4,d3
dl,a6
d6,dl
d3,dl
dl,-(sp)
a6,dl

X2
x2-xl
y2
y2-yl
z2
z2-zl

= A12X

A12y

A12Z

third vertex
*2 for offset
x3
X3-X2 = A23x
y3
y3-y2 = A23y
z3
Z3-Z2 = A23z

save

save
ditto
Bx
save it on stack
restore
restore
save

save

By
save it
restore

124 Real-Time 3D Graphics for the Atari ST

* last component, no need to save values
muls d5,dl
muls d4,d2
sub.l dl,d2 Bz
move.l d2,-(sp) save it

novel.1
nrm_cmpt:

lsr.l
lsr.l
lsr.l
move.w
move.w
move.w
move. 1
bsr
move.1
move.w
move.w
move.w
move.1
move.w
move.w
move.w

move.w
addq
add
adda.w
dbra

nrm_out:

(sp)+(d4-d6

#2,d4
#2,d5
#2,d6
d4,d0
d5,dl
d6,d2
d7,-(sp)
nrm_vec
(sp)+,d7
d0,d4
dl,d5
d2,d6
(sp)+,a5
d6,(a5)+
d5,(a5)+
d4,(a5)+

(a4)+,d0
#l,dO
do, do
d0,a3
d7,next_nrm

Bx in d6, By in d5 and Bz in d4

/4 to prevent overspill

save
calculate the unit vectors bx, by, bz
restore

restore pointer to normals list
save nx
save ny
save nz

number of vertices in this surface
the edge list always repeats the first
*2 for offset
adjust edge list pointer to next surface
do all the surfaces (polygons)

vis_ill:
* Find the visibility and level of illumination of a surface by taking
* the scalar product of the surface unit normal vector with the
* line of sight vector from the viewpoint and with illumination vector
* respectively.

move.
subq
lea
lea
lea
lea
lea
lea
lea
move,
move,
move,

,w

w
,w
,w

npoly,d7
#l,d7
vcoordsx,aO
vcoordsy,al
vcoordsz,a2
snedges,a3
sedglst,a4
snormlst,a5
slumlst,a6
i1l_vecx,do
ill_vecy,dl
ill_vecz,d2

surface unit normals list
surface illumination and visibility list
illumination vector x-component
ditto y
ditto z

Hidden Surfaces and Illumination 125

* The line-of-sight vector is
* surface and the view point,
next ill:

move. w
add
move.w
move.w
move.w
sub.w
muls
muls
muls
add.l
add.l
bmi

* It is hidden
move.w

ill_tidy:
addq.w
move. w
addq
add
adda.w
dbra
bra

(a4) ,d'6
d6,d6
0(a0,d6.w),d3
0(al,d6.w),d4
0(a2,d6.w),d5
vwpointz,d5
(a5),d3
2(a5),d4
4(a5),d5
d4,d3
d5,d3
visible

#$f0,(a6)+

#6,a5
(a3)+,d5
#l,d5
d5,d5
d5,a4
d7,next_ill
set_colr

taken between the first vertex on the

1st point on next surface
offset
is the line-of sight x-cmpt., xls
yls
z
zls :view point lies along -zv axis
nx*sx
ny*sy
nz*sz

scalar product
is negative if surface visible

set illumination for hidden and move on

update normals pointer
current no. edges
first vertex is repeated
2 bytes/word
update edge list pointer

for all surfaces
go on to set the colours

* The surface is visible so find the illumination level.
* Remember all vectors are *2A14
visible:

vis_l

ill_save:

move.w
move.w
move.w
muls
muls
muls,
add.l
add.l
add.l
move.w
lsr.l
cmp.w
ble
move. w
bra
cmp.w
bge
clr

move.w
bra

d0,d3
dl,d4
d2,d5
(a5),d3
2(a5),d4
4(a5),d5
d4,d3
d5,d3
#$11100000,d3
#25,d4
d4,d3
#$f,d3
vis_l
#$f,d3
ill_save
#0,d3
ill_save
d3

d3,(a6)+
ill_tidy

copy the illumination vector

nx*illx
ny*illy
nz*illz

-2*28 < scalar product < +2*28
0 < scalar product < 2A29

keep in range
correct
for
errors

0 to $f

save
next

it
one

126 Real-Time 3D Graphics for the Atari ST

set_colr:
* The illumination level is combined with the intrinsic colour to produce
* the final displayed colour.
* Illkey is used to determine the number of shades per colour so that
* different lighting levels can be simulated:
*.illkey = 2 gives 4 shades of 4 colours: 0, 1, 2, 3
* illkey = 1 gives 8 shades of 2 colours: 0, 1
* illkey = 0 gives 16 shades of 1 colour: 0

move.w npoly,d7
subq.w #l,d7 the counter
move.w illkey,do how many shades per colour
lea slumlst,aO the levels of illumination
lea srf_col,al raw intrinsic colours: 0 or 0,1 or 0,1,2,3
lea col_lst,a2 final colours for display
moveq.w #4,d6
sub.w d0,d6

next_col:
move.w
cmp.w
ble
move.w
addq.1
bra

set_col lsr.w
move.w
rol.b
add.w
bgt

(a0)+,dl
#$f,dl
set_col
#$f0,(a2)+
#2,al
set_next
d0,dl
(al)+,d2
d6,d2
dl,d2
pass_col

4-illkey

next illumination
is it hidden?
no
it is, set flag
point to next intrinsic colour
and go on
divide by 0, 2, or 4
the intrinsic colour
0 or 0,8 or 0,4,8,12 = colour base
illumination + colour base

moveq.w #l,d2

d2,(a2)+

d7,next_col

palette
#6,-(sp)
#14
#6,sp

pass_col
move.w

set_next:
dbra
rts

* Set the colour palette
palette_set:

pea
move.w
trap
add.w
rts

* Transfer my data to program data
transfer:

move.w my_npoly,d7
move.w d7,npoly
subq.w #l,d7
move.w d7,d0
lea my_nedges,a0
lea snedges,al
lea intr_col,a2
lea srf_col,a3

loopo move.w (a0)+,(al)+
move.w (a2)+,(a3)+
dbra do,loopO

avoid background

= final colour

for all surfaces

here's my palette
setpalette function
xbios
tidy

no. of polygons
pass it
the counter
save it
source
destination
my intrinsic colours
program intrinsic colours
transfer edge nos.
transfer intrinsic colours

Hidden Surfaces and Illumination 127

* Calculate the number of vertices altogether

loopl

move.w
lea
clr
clr
add.w
add.w
addq
dbra

* Move the edge list

d7,d0
my_nedges,a6
dl
d2
(a6),dl
(a6)+,d2
#l,d2
do,loopl

loop2

subq
lea
lea
move.
dbra

#l,d2
my^edglst,aO
sedglst,al
(aO)+,(al)+
d2,loop2

* and the coords list
move.w dl,oncoords
subq #l,dl
lea ocoordsx,al
lea my_datax,aO
lea ocoordsy,a3
lea my_datay,a2
lea ocoordsz,a5
lea my_dataz,a4

loop3 move.w (aO)+,(al)+
move.w (a2)+,(a3)+
move.w (a4)+,(a5)+
dbra dl,loop3

* and the window limits
move.w my_xmin,xmin
move.w my_xmax,xmax
move.w my_ymi n,ymi n
move.w my_ymax,ymax
rts

restore count

no more than this
total no. of vertices
and with last one repeated each time

the counter
source
destination
pass it

the counter

ready
for
clipping

nrm_vec
* normalise a vector: unormalised components in d0,dl,d2
* normalised components returned

move
move
move
muls
muls
muls
add.l
add.l
bsr
move.w
ext.l
ext.l
ext.l
lsl.l
lsl.l
lsl.l
divs
divs
divs
move.w
move.w
move.w
rts

d0,d3
dl,d4
d2,d5
dO, dO
dl,dl
d2,d2
dl,dO
d2,d0
sqrt
#14,d7
d3
d4
d5
d7,d3
d7,d4
d7,d5
d0,d3
d0,d4
d0,d5
d3,d0
d4,dl
d5,d2

save
the
components
squares

sum of squares
calculate the magnitude
multiply
the
components
by
2A14

divide by
the magnitude
to derive
the
normalised
components

128 Real-Time 3D Graphics for the Atari ST

sqrt:
* A routine to find the square root of a long word N in do
* in three iterations using the formula
* squrt = l/2(squrt + n/squrt)
* An approximate starting value is found from the highest bit in do
* Result passed in dO.w

sqrtl

sqrt2

tst.l
beq
move.w
btst
dbne
lsr.w
bset
move.1
divs
add
lsr.w
move.1
divs
add
lsr.w
move.1
divs
add
lsr.w
move.w
rts

do
sqrt2
#31,d7
d7,d0
d7,sqrtl
#l,d7
d7,d7
d0,dl
d7,dl
dl,d7
#l,d7
dO,dl
d7,dl
dl,d7
#l,d7
d0,dl
d7,dl
dl,d7
#l,d7
d7,d0

quit if 0
31 bits to examine
is this bit set?

this bit is set and 2"d7/2 is approx root
raise 2 to this power
N
n/squrt
squrt+N/squrt
/2 gives new trial value
N

second result

final result

*
* data_04.s *

*

-16384 l i g h t s h i n i n g from +y t o - y
i l l _ v e c x d e w 0
i l l _ v e c y d e w
i l l _ v e c z d e w
vwpointz d e w -100
i l l k e y d e w 1
i n t r _ c o l d e w 0 , 1 , 0 , 0 , 1 , 1
p a l e t t e d e w 0 , $557 ,$446, $336, $226, $225, $114, $113

d e w $756, $745, $734, $723 , $713, $702, $502, $401

* * * * * * * * * * * * * * * *
* bss_04.s

*
* Variables for surface illumination and colour
snormlst ds.w 100
slumlst ds.w 40
srf_col ds.w 40

* * * * *

* * * * * * * * * *

General Transforms in 3D
In this chapter we investigate a number of transforms of various kinds involved in
the manipulation of 3D structures.

10.1 Geometric Transforms
Combinations of simple rotations and displacements are extensively used in the
construction of a complex scene consisting of several graphics primitives in
different locations and with different orientations. Besides these instance
transforms, there are other more exotic distortions that can be used. Structures can
be manipulated in a variety of ways:

rotation - a change of orientation,

shear - distortion,

scaling - change in size,

reflection - replacement by a mirror image,

inversion - inside out and back to front,

In general, any 3x3 matrix will produce a combination of scaling and shear. In the
special case that there is no change in volume, what results is a pure rotation.
Sometimes shears with fixed (simple) matrix elements are used to simulate rotation
by fixed angles. The first three of these transforms are illustrated in this chapter,
with input and control from the keyboard and joystick.

Transformations of these kinds are easily implemented using matrices and several
of them can be combined by concatenation (multiplication) of the individual
matrices prior to actually transforming the points. Where a large number of points

130 Real-Time 3D Graphics for the Atari ST

is concerned, this saves a lot of time compared to performing each transform
separately. An example of this is shown in the programs.

10.1.1 Rotations

When the joystick is moved or a key is pressed we want to see a corresponding
rotation on the screen. In principle, doing this is very simple. For example, a
movement of the joystick to the left could cause a positive rotation about the
x-axis and a movement to the right could cause a negative rotation. Other joystick
movements could produce rotations about other axes; The matrices for simple
rotations about the x, y, and z axes have all been listed in Chapter 7.

Following each movement of the joystick, a new set of object vertices could be
generated by multiplying the old vertices by the appropriate rotation matrix. In this
way the results of the previous rotation would be used as the starting point for the
next. The problem with doing this is that errors in the accuracy with which binary
arithmetic is done in the transformations accumulate from frame to frame and
eventually reduce the picture to chaos. A solution to this problem is to redraw the
object each time from a reference position (like die object frame) with information
stored in a set of "signposts" (unit vectors again) which have been continuously
rotated with the object to keep up with joystick movements. Then the object is
only transformed once each time. This method is essential in the viewing transform
when die observer is moving freely. This is discussed extensively in the next
chapter.

Alternatively, there is a simple way to implement rotations, but witii a motion
determined by a scheme similar to that involving lines of longitude and latitude,
where rotations about the y and x axes are added up separately and finally put
together at the end. In this scheme, several movements of die joystick (say) may
have taken place both left or right (rotation about the x axis) and up and down
(rotation about the y axis) in any order, but only the separate totals are recorded. A
single movement of the joystick may correspond to a 1° increment in mat
direction.

As an example, suppose the total rotation about the y-axis is 40° and the total
rotation about the x-axis is 83°. Then die overall rotation is taken to be a single
rotation about me y-axis of 40° followed by a single rotation about the x-axis of
83°. Note that this isn't the same as rotating about the x-axis first and men the
y-axis second which gives a different result. The fact that die order is important is
a peculiar property of rotations. The fact mat rotations can be written as matrices
means that the order of multiplication is also a property of matrices.

Doing a rotation about the y axis first, followed by a rotation about the x axis,
does provide a recipe for always getting to the same orientation every time. This is
just like finding a position on die globe uniquely using circles of longitude and

General Transforms in 3D 131

latitude. The first rotation about the y axis gives the angle of latitude, and the
second rotation about the x-axis gives the angle of longitude. This results in a
simple scheme to orientate an object but, as we will see, the joystick response
seems strange since what happens on the screen depends on the total current angles
of rotation.

If this seems confusing then consider the complementary scheme of leaving the
object stationary and moving the observer to different orientations at some fixed
distance from the object. This is what has been done in the example program in
this chapter. Figure 10.1 illustrates what is going on in the world frame. You can
imagine a long pole, AB, between the object and the observer, with the observer
looking down the pole towards the object. The rotations which take place change
the orientation of the pole. In the example program, movement of the joystick left
or right changes 8 and movement up or down changes <j>. We are now dealing with
things the other way round to just rotating the object.

A
/ " /

!M

/ /
yw'

c

A s

fy-
/

XV

" / ' observer

/yl8Q-B

Figure 10.1 Rotating the observer about the object

The observer is at the angles shown in the figure and we have to find out what
he/she sees. As drawn, the observer is closest to the vertex C and sees it pretty
well head-on, so in the observer's reference frame (where the pole is horizontal)
things appear as in Figure 10.2. How can this view be constructed from knowing

132 Real-Time 3D Graphics for the Atari ST

only the angles 9 and <j>, and the distance AB? Like most problems involving
rotations it is easier than it looks and has a lot to do witii the complementary
nature of geometric (moving the object) and coordinate (moving the observer)
transforms, which are discussed extensively in Appendix 7.

Figure 10.2 The view seen by the observer

The problem is solved by finding what rotations of the line AB about the world
axes bring it back into line with the zw axis. The sequence of rotations to do this is

1. rotate about xw by (-0) bringing it into the xw-zw plane,

2. rotate about yw by (-<(>) bringing it along the zw axis,

(3. rotate about zw by (-y) to make xw the "up" direction).

This last step is put in parentheses since it is not actually implemented in the
program, i.e. there is no "twist" of the observer involved.

If this sequence of rotations is actually applied to the object with the viewer fixed
in position along the world frame zw axis, then the overall result is the same. This
is precisely what is done in the example program. The sequence of rotations which

General Transforms in 3D 133

must be applied to object about its centre are, in order (remember the one at the
right acts first):

/ cosy

-sury

\°

siny

cosy

0

°\
0

1 i

/ cose)) 0

0 1

^ sin<|> 0

-sin<)) \

0

cos<|> j

/ 1 0 0

0 cos9 sin9

\ 0 -sin9 cosO

which when multiplied (concatenated) out give the single matrix whose elements
appear in the program. After transforming all the vertices with this matrix, all that
remains to do is to add on the distance AB (also called Ovz) to each z coordinate.

We will use this particularly simple transform to the observer's reference frame
again in Chapter 12 in a flight simulator where the angles (called Euler angles) can
be easily related to joystick movement. It's OK if you don't mind the restriction of
the way the angles are defined. In general, more freedom may be desired.

10.1.2 Scaling

Scaling is very straightforward. It simply makes the object larger or smaller. The
scale change occurs independently along the three axes. For a general scale
change, with different scale factors, a, b and c, along the three axes the
transformation matrix is

/ a

0

\o

0

b

0

°1
0

J
If both b and c are unity and a is greater than unity, then the resulting distortion is
a stretch along the x axis. This is what is implemented in the example program. It
is shown in Figure 10.3.

10.1.3 Shear

A shear distortion has the effect of displacing one face relative to its opposite. In
the simplest case, one of the coordinates is increased in proportion to one of the
others. If x increases in proportion to z, the matrix is:

134 Real-Time 3D Graphics for the Atari ST

/ l

0

0

0

1

0

1 \

0

1 /

and both y and z remain unchanged. This is illustrated in Figure 10.4 and included
in the example program.

!l

: :

>f%:;:

1
/

Figure 10.3 A stretch along the x axis

If x increases in proportion to both y and z the distortion becomes more exotic.
This is shown in Figure 10.5 and also included in the example program. The
matrix is

1

0

0

1

1

0

1 \

0

1

General Transforms in 3D 135

Figure 10.4 A shear in the x direction, proportioned to z

Figure 10.5 A sheer in the x direction proportioned to both y and z

136 Real-Time 3D Graphics for the Atari ST

10.2 Instance Transforms
Up till now, although motion has been 3-dimensional, the only structure displayed
has been the flat ST monolith. Now, six such monoliths are joined together to
make an ST cube.

Instancf transforms are usually taken to mean those changes of orientation and
position which set primitives in the world space and we use the term to describe
the set of operations which construct the ST cube. Once constructed, the cube can
be used as a basis to illustrate the transforms we have been discussing.

To construct a cube in this way, a monolith is first laid down in the yw-zw plane
and then successively rotated and displaced five more times to make up the other
sides. This is illustrated in Figure 10.6 where the sides are numbered. The angles
of rotation and displacements of the six sides are in the lists inst angles and
inst_disp in the data file data_05.s, and are in the order 0, <j>, 8 and x, y, z.

Figure 10.6 Construction of an ST cube

General Transforms in 3D 137

10.3 Physical Realism
Physical objects have more subtle attributes than shape and colour. This is
particularly evident when motion occurs. Real objects do not move instantaneously
from one place to another, nor do they achieve their final velocity the instant
motion begins. There is an acceleration period whilst the velocity builds up to its
maximum value. Likewise a real object cannot reduce its speed to zero
instantaneously. A period of deceleration is required. Acceleration and deceleration
are both evidence of an additional attribute of a physical object, its inertia or mass.
The mass of an object determines how rapidly it can be accelerated or brought to
rest. In building realistic computer models of physical objects it is important to pay
attention to these details. The role of the mass of a body in determining its motion
is really summarised in Newton's Laws of Motion. In essence, they say that if a
body is acted on by a force it will accelerate in proportion to the force and, if there
is no force, it remains at constant velocity (or at rest).

In the example programs, some attempt has been made to incorporate these laws
by modelling joystick movements as applied forces. The result is that motion of
the image does not follow immediately, but with an acceleration determined by its
inertia. In addition, the effect of friction is incorporated so that if the applied force
is removed the velocity drops to zero, and even when it is constantly applied there
is a maximum to the velocity. In the programs, the motion is purely rotational but
the same principles hold true.

10.4 Example Program
The program shows a cube with the letters ST written on each face in rotation
under the control of the joystick. In addition the cube can be subject to shear and
scaling transforms whilst the rotation takes place.

10.4.1 trnsfrms.s

This is the control program. After initializing variables, it reads the joystick and
keyboard settings to choose the rate of rotation, viewing distance and whether a
shear or scale change should take place. Both of these latter transforms are
accompanied by a size reduction to keep word-size variables within range.

Once input is complete the cube is assembled, unrotated or distorted, in the world
frame by the multiple object-to-world transform for all the sides. Following this the
distortion is concatenated with the viewing transform to produce the overall
transform which then converts the vertices for perspective projection.

138 Real-Time 3D Graphics for the Atari ST

10.4.2 core_05.s
Here are the new subroutines. The first part is concerned with constructing the
rotation transform from the viewing angles v0, v<|> and vy and then using it (after it
is concatenated with the shear) to transform the vertices. Following this the
routines are concerned with reading the joystick and keyboard and making
adjustments accordingly.

In order to simulate inertia, movements of the joystick are converted not to angles
of rotation themselves but as increments to the angles of rotation, up to a
maximum. These increments are added to the angles each time to give the total
angles to rotate. In addition, the increments are always decremented by 1 each time
to give built-in frictional slowing down. The procedure to implement joystick
alternatives uses a vector jump table to the various possible subroutines. This is an
elegant way of avoiding testing for each possibility in a long list. This technique is
also used for keyboard input.

There are seven possible keyboard inputs concerned entirely with the function keys
fl to f7:

fl- move closer (continuously) to a minimum distance,

f2- move away (continuously),

f3- implement shear 1 (x increases with z, called xshear),

f4- implement shear 2 (x increases with y and z, called yshear),

f5- implement a stretch (y and z reduced by 1/2),

f6- stop movement (of f 1 and f2),

f7- quit.

Input from f3, f4 and f5 is used to set the bottom three bits of a word length flag,
shearflg, in a toggle fashion using the bit-change instruction. This simply NOT's
the appropriate bit to provide a record of whether the transform should be
implemented. The routine which examines which flag bits are set also includes the
option of combinations of them which are not actually used for anything. They are
called userl to user4 and can be used to try other transforms (providing products
do not exceed word size in the concatenation products).

Finally the shear and rotation matrices are multiplied to produce the overall
transform to act on the cube.

General Transforms in 3D 139

10.4.3 bss_05.s
New variables for this chapter.

10.4.4 data_05.s

New data for this chapter. In particular note that the 3x3 matrices for the shears
and stretch are arranged in column order to simplify the matrix concatenation
routine.

140 Real-Time 3D Graphics for the Atari ST

*
* trnsfrms.s *
* Various 3D transforms *
*

SECTION TEXT
opt d+
bra main
include systm_02.
include systm_03.
include systm_04.
include core 05.E

screens and tables
joystick
set up screens, palette, joystick
motion of the view frame

set up screens etc

main

bsr set_up
* transfer all the data

bsr transfer
move.w oncoords,vncoords
move.w vncoords,wncoords

* Initialise dynamical variables
move.w #-50,Ovx view frame initial position
move.w #0,Ovy
move.w #150,Ovz
clr.w vtheta
clr.w vphi
clr.w vgamma
clr.w shearflg
move.w #25,vtheta_inc
move.w #25,vphi_inc
clr.w speed
clr.w screenflag
bsr clearl
bsr clear2

loop4:
* Switch the screens each time round

initialize rotation angles to zero

set flag to no shear
initial rotation rates

0=screen 1 draw, l=screen 2 draw
clear the screens

drawl_disp2
clearl
#1,screenflag

screen 1 or screen2?
draw on screen 1, display screen2
draw on screen 2, display screenl
but first wipe it clean
and set the flag for next time

draw on 1, display 2
but first wipe it clean
and set the flag for next time

tst.w screenflag
beq screen_l
bsr draw2_displ
bsr clear2
clr.w screenflag
bra screen_2

screen_l:
bsr
bsr
move.w

screen_2:
* look for changes in the rotation angles

bsr joy_in
* see if the function keys have been pressed to change the speed
* or initiate a shear

bsr key_in
* Adjust to new rotation angles and speed

bsr angle_update
bsr speed_adj

* Construct the compound object from the same face at different positions
move.w nparts,d7 how many parts in the object
subq #l,d7
lea inst_angles,aO list of instance angles for each part
lea inst_disp,al ditto displacements

General Transforms in 3D 141

* Do one face at a time
instance:

move. w
move. w
move. w
move. w
move.w
move.w
move.w
movem.1
bsr
bsr
bsr
bsr
bsr
bsr
bsr
movem.1
move ..w
dbra
bra
SECTION
include
include
SECTION
include

d7,-(sp)
(aO)+,otheta
(aO)+,ophi
(aO)+,ogamma
(al)+,Oox
(al)+,Ooy
(al)+,Ooz
aO/al,-(sp)
otranw
wtranv_l
shear
wtranv_2
illuminate
perspective
polydraw
(sp)+,aO/al
(sp)+,d7
d7,instance
loop4
DATA
data_03.s
data_05.s
BSS
bss_05.s

save the count
next otheta
next ophi
next ogamma
next displacements

save position in list
object to world transform
construct the rotation transform
concatenate with shear (if flag set)
and transform .the points
if it's visible find the shade
perspective
draw this face
restore pointers
restore the parts count
for all the parts of the object
draw the next frame

END

742 Real-Time 3D Graphics for the Atari ST

*
core_05.s

Subroutines for Chapter 10

include core_04.s
include core 03.s

previous subroutines

* A set of subroutines for transforming world coords, including
* rotations of vtheta, vphi and vgamma about the x, y and z axes
* and x, y and z shears.

* The matrix for the rotations is constructed.
* First convert rotation angles to sin & cos and store for rot. matrix
wtranv_l:

bsr view_trig find the sines and cosines
* Construct the transform matrix wtranv remember, all elements end up *2*14

do

do

do

do

lea
lea
lea
lea
lea
lea
lea

stheta,aO
ctheta,al
sphi,a2
cphi,a3
sgamma,a4
cgamma,a5
w_vmatx,a6

element WMli
move. w
muls
lsl.l
swap
move.w

WM12
move.w
muls •
move. w
muls
lsl.l
swap
muls
add.l
lsl.l
swap
move.w

WM13
move.w
muls
move.w
muls
lsl.l
swap
muls
sub. 1
lsl.l
swap
move. w

WM21
move.w
muls
lsl.l
swap
neg
move.w

(a3'),d0
(a5),d0
#2,d0
dO
d0,(a6)+

(al),d0
(a4),d0
(a0),dl
(a2),dl
#2,dl
dl
(a5),dl
d0,dl stheta
#2,dl
dl
dl,(a6)+

(aO),d0
(a4),d0
(al),dl
(a2),dl
#2,dl
dl
(a5),dl
dl,dO stheta
#2, do
dO
d0,(a6)+

(a3),d0
(a4),d0
#2,dO
dO
dO
dO,(a6)+

sin theta
cos theta
sin phi
cos phi
sin gamma
cos gamma
the matrix

cphi
cphi x cgamma

/2*14
WM11

ctheta
ctheta x sgamma
stheta
stheta x sphi

stheta x sphi x cgamma
x sphi x cgamma + ctheta

stheta
stheta x sgamma
ctheta
ctheta x sphi

ctheta x sphi x cgamma
x sgamma - ctheta x sphi

cphi
ctheta x sgamma

/2*14

x sgamma

x cgamma

General Transforms in 3D 143

*

*

*

*

*

*
*
*

do

do

do

do

do

WM22
move.w
muls
move. w
muls
Isl.l
swap
muls
sub. 1
lsl.l
swap
move. w

WM23
move. w
muls
move. w
muls
lsl.l
swap
muls
add.l
lsl.l
swap
move.w

WM31
move. w

WM32
move.w
muls
lsl.l
swap
neg
move.w

WM33
move.w
muls
lsl.l
swap
move.w
rts

PART 2
Now the world
Remember matr

wtranv_2:
move.w
ext.l
beq
subq.w

lea
lea
lea
lea
lea
lea
exg
link

(al),dO
(a5),d0
(aO),dl
(a2),dl
#2,dl
dl
(a4),dl
dl,dO ctheta
#2,dO
dO
do,(a6)+

(aO),dO
(a5),d0
(al),dl
(a2),dl
#2,dl
dl
(a4),dl
dO,dl
#2,dl
dl
dl,(a6) +

(a2),(a6)+

(a3),d0
(aO),dO
#2,do
dO
dO
d©v(a6)+

(al),do
(a3),d0
#2,dO
dO
d0,(a6)+

ctheta
ctheta x cgamma
stheta
stheta x sphi

stheta x sphi x sgamma
x cgamma - stheta x sphi x sgamma

stheta
stheta x cgamma
ctheta
ctheta x sphi

ctheta x sphi x sgamma

" +stheta x cgamma

cphi
cphi*stheta

/2-14
—

ctheta
ctheta x cphi

coords are transformed to view coords
ix elements are

wncoords,
d7
wtranv3
#l,d7

wcoordsx,
wcoordsy,
wcoordsz,
vcoordsx,
vcoordsy,
vcoordsz,
a3,d3
a6,#-6

,d7

aO
,al
a2
,a3
,a4
,a5

*2'14 and must be corrected at thi

the number
any to do ?
if not quit
or this is the count

the
source
coords.
the
destination

save this address-short of regs.
3 words to store

144 Real-Time 3D Graphics for the Atari ST

wtranvl:
moveq.l #2,d6 3 rows in the matrix
lea w_vmatx,a3 init matx pointer

* calculate the next wx, wy and wz
wtranv2:

move.w
move.w
move.w

(aO),d0
(al),dl
(a2),d2

wx
wy
wz

sub.w #50,dO
sub.w #50,dl
sub.w #50,d2

wx-50
wy-50
wz-50

muls
muls
muls

add.l
add.l
lsl.l
swap
move.w
dbf

move.w
add.w
move.w
move.w
exg
move.w
add.w
move.w
exg
addq.1
addq.1
addq.1

dbf
unlk

wtranv3 rts
* Calculate the
view_trig:

move.w
bsr
move.w
move.w
move.w
bsr
move.w
move.w
move.w
bsr
move.w
move.w
rts

(a3)+,d0
(a3)+,dl
(a3)+,d2

dl,d0
d2,d0
#2,do
dO
d0,-(a6)
d6,wtranv2

(a6)+,d0
Ovz,d0
d0,(a5)+
(a6)+,(a4)+
a3,d3
(a6)+,d0
#100,dO
d0,(a3)+
a3,d3
#2,a0
#2,al
#2,a2

d7,wtranvl
a6

wx*Mil
wy*Mi2
wz*Mi3

wx*Mil+wy*Mi2+wz*Hi3

/2"14
save it
repeat for 3 elements

off my stack

becomes vz

restore address vx, save matx pointr

becomes vx
save address vx, restore matx pointr
point to next wx

wy
wz

repeat for all ocoords
close frame
and quit

sines and cosines of view angles

vtheta,dl
sincos
d2,stheta
d3,ctheta
vphi,dl
sincos
d2,sphi
d3,cphi
vgamma,dl
sincos
d2,sgamma
d3,cgamma

theta

sine
cosine
phi

gamma

General Transforms in 3D 145

J^Jy^
3oy_in:
* Read the joystick and update the variables accordingly
* The data packet containing the FIRE bit (7) and the position
* bits (0-2) is saved in the variable joy_data

clr .w
move.w

joy_again:
bsr
dbf

joy data
#10,d6

rd_joy
d6,joy_again

* convert the joystick reading
angle_speed:

move.w
move
andi.w
bne
andi.w
bne
rts

joy_dir lea
lsl.w
move.1
jmp

jump table:
del
del

joy_data,d0
d0,dl
#$f0,d0
fire_press
#$f,dl
joy_dir

jump table,aO
#2,dl
0(a0,dl.w),a0
(aO)

read joystick
give it time to think
to angle totals

here's the result
save it
fire pressed ?
yes
what direction is the stick?

base address
offset into jump table
the jump address
go for it

0 , up,down,0,left,up_left,down_left
0,right,up_right,down_right

* set up the increments to angl
up subg.w

rts
down addq.w

rts
left addq.w

rts
right subq.w

rts
up_left:

addq.w
subq.w
rts

down_left:
addq.w
addq.w
rts

up_right:
subq.w
subq.w
rts

down_right:
subq.w
addq.w
rts

fire_press:
move.w
rts

#2,vphi_inc

#2,vphi_inc

#2,vtheta_inc

#2,vtheta_inc

#2,vtheta_inc
#2,vphi_inc

#2,vtheta_inc
#2,vphi_inc

#2,vtheta_inc
2,vphi_inc

#2,vtheta_inc
#2,vphi_inc

#l,fire

es - +-10 is the limit

146 Real-Time 3D Graphics for the Atari ST

angle_u
•Check

vth_neg

chk_phi

vph_neg

chk_out

pdate:
the limits
move.w
bmi
beq
subq.w
cmp.w
ble
move.w
bra
addq.w
cmp.w
bge
move. w
move.w
bmi
beq
subq.w
cmp.w
ble
move.w
bra
addq.w
cmp.w
bge
move.w

* update vtheta

thta_l

thta_2:

move.w
add.w
bgt
add
bra
cmp.w
bit
sub

move.w
* update vphi

phi_l

phi_2:

move.w
add.w
bgt
add
bra
cmp.w
bit
sub

move.w
rts

vtheta_inc,dO
vth_neg
chk_phi
#1,vtheta_inc
#25,vtheta_inc
chk_phi
#25,vtheta_inc
chk_phi
#l,vtheta_inc
#-25,vtheta_inc
chk_phi
#-25,vtheta_inc
vphi_inc,dO
vph_neg
chk_out
#l,vphi_inc
#25,vphi_inc
chk_out
#25,vphi_inc
chk_out
#l,vphi_inc
#-25,vphi_inc
chk_out
#-25,vphi_inc

vtheta,do
vtheta inc,dO
thta_l
#360,do
thta_2
#360,dO
thta_2
#360,dO

dO,vtheta

vphi,do
vphi_inc,dO
phi 1
#360,dO
phi_2
#360,do
phi 2
#360,dO

dO,vphi

the previous angle
increase it by the increment
check it
lies
between zero
and 360 degrees

becomes the current angle

similarly for vphi

key_in:
* Read the keyboard

bsr scan_keys
cmp.w #-l,d0
beq key_read
rts

was a key pressed?

yes
no

General Transforms in 3D 147

key_read:
bsr read_key
tst.w do
beq key_rpt
rts

key_rpt swap do
sub #$3b,dO
and #7,dO
lea key_jump,aO
lsl.w #2,dO
move.l 0(aO,d0.w),a0
jmp (aO)

key_jump:
* The jump table for f keys

del fl,f2,f3,f4,f5,
fl move.w #-1,speed

rts
f2 move.w #1,speed

rts
f3 bchg.b #2,shearflg

rts
f4 bchg.b #l,shearflg

rts
f5 bchg.b #0,shearflg

rts
f6 move.w #0,speed

rts
f7 clr.w -(sp)

trap #1

which key?
f keys have $0 in the low word
only interested if f keys
something else
the code
fl is 3b : set it to zero for offset
first 7 f keys
jump table
key code is offset
to the routine address
go for it

f6,f7
reverse

forward

toggle x shear flag (reverse flag)

toggle y shear flag

toggle z shear flag

stop

quit altogether- return to caller

•Concatenate the shear with the rotation
shear clr do

move.b shearfig,dO
and #$f,d0

* there are 8 possibilities:
* the bit numbers refer to x,

lea shear_jump,aO
lsl.w #2,dO

the shear flags are the 3 low bits

shear.
* The

null
z

y

userl
X

user2
user3
user4

move.1
jmp

.jump:
jump tabl
del
rts
lea
lea
bsr
rts
lea
lea
bsr
rts
rts
lea
lea
bsr
rts
rts
rts
rts

0(a0,d0.w)
(aO)

e
null,z,y,u:
do nothing
zshear,a0
w_vmatx,al
concat

yshear,a0
w_vmatx,al
concat

xshear,a0
w_vmatx,al
concat

111,110,101,100,011,010,001,000
y and z shears respectively

jump table base
shear code is offset
to routine address
go for it

pointer to shear
pointer to rotation
concatenate them

148 Real-Time 3D Graphics for the Atari ST

concat:
* Concatenate (multiply) the two 3x3 matrices pointed to by aO and al.
* The order is (al)x(aO) with the result sent to temporary store at (a2).
* (aO) is in column order and (al) and (a2) are in row order,
* of word length elements. Finally (a2) is transferred to (al)

concl

conc2

lea
moveq.w
move. w
movea. 1
move. w
ext.l
lsr.l
move.w
ext.l
lsr.l
move.w
ext.l
lsr.l
muls
muls
muls
add.w
add.w
move. w
dbra
addq.w
dbra

tempmatx,a2
#2,d7
#2,d6
a0,a3
(al),dl
dl
#l,dl
2(al),d2
d2
#l,d2
4(al),d3
d3
#l,d3
(a3)+,dl
(a3)+,d2
(a3)+,d3
d2,dl
d3,dl
dl,(a2)+
d6,conc2
#6,al
d7,concl

temporary store
3 rows in al
3 columns in aO (shear)
reset shear pointer
next rot. element

/2

next product element
for all elements in this row
pointer to next row
for all rows

* transfer the result back to the rotation matrix
lea tempmatx,aO
lea w_vmatx,al
moveq.w # 8, d7

conloop move.w (aO)+,(al)+
dbra d7,conloop
rts

* Set the velocity components
speed_adj:

move.w
lsl.w
move.w
cmp.w
bgt
move.w

adj_out add.w
rts

speed,do
#3,do
Ovz,dl
#10,Ovz
adj_out
#10,0vz
dO,Ovz

temp, store of product
becomes new transform
9-1 elements in 3x3 matx
next element
for all elements

scale it

musn't come any closer

zw speed component

General Transforms in 3D 149

* bss_05.s
* Additional variables for Chapter 10

include bss_04.s
include bss_03.s

* world frame variable
wncoords ds.w 1
*view frame variables

surface illumination vars.

of vertices in world frame

vtheta
vphi
vgamma
Ovx
Ovy
Ovz

ds.w
ds.w
ds.w
ds.w
ds.w
ds.w

rotation of view frame about wx
ditto
ditto
view frame origin x
ditto y
ditto z

wy
wz

in world frame

* The general transform matrices
w_vmatx ds.w 9 t
tempmatx ds.w
* Variables for the intelligent keyboard

the matrix elements
temporary store for matx products

gem_]oy
joy_data
gem_mse
mse_click
mouse_dx
mouse_dy

ds.l
ds.w
ds.l
ds.w
ds.w
ds.w

* Dynamical variables
speed ds.w
vtheta_inc ds.w
vphi_inc ds.w
vgamma_inc ds.w
fire ds.w
shearflg ds.w

store gem joystick handler
jostick direction/fire
store gem mouse handler
click flag
x displacement since last
y ditto

mse fire flag
shear flags

150 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * * * * * *
* data_05.s
*

* Data for Chapter 10. An ST cube

*
my_datax

my_datay

my_dataz
my_edglst

my_nedges
my_npoly
nparts
inst_angles
inst_disp
my_xmin
my_xraax
my_ymin
my_ymax

ill_vecx
ill_vecy
ill_vecz
vwpointz
illkey
intr_col
xshear
yshear
zshear
p a l e t t e dew

d e w

dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
d e w
dew
dew
dew

dew
dew
dew
dew
dew
dew
dew
d e w
d e w

,100,0,0,85,85,15,15,75,75,65,65,50,50,40,40
85,70,70,70,70,15,15
00,100,0,10,40,40,10,20,40,40,20
30,30,10,50,90,90,50,60,80,80,60
,0
,2,3,0,4,5,6,7,4,8,9,10,11,8,12,13,14,15,12
17,18,19,16,20,21,22,23,20
,4,4,4,4

100
85,
0,1
10,
0,0
0,1
16
4,4
6
6
0,0
0,0
0
319
0
199

-16384 light shining from +y to -y

-100

,0,90,0,0,180,0,0,270,0,0,0,270,0,0,90,0
,0,0,100,0,0,100,100,0,0,100,100,0,0,0,0,100

0,1,0,0,1,1
1,0,0,0,1,0,1,0,1 1 shear
1,0,0,1,1,0,1,0,1 2 shear
2,0,0,0,1,0,0,0,1 3 stretch

0,$557,$446,$336,$226,$225,$114,$113
$756,$745,$734,$723,$713,$702,$502,$401

Flying Around The World

11.1 Introduction
A flight simulator? Well not exactly, but getting there.

In order to fully implement the simulation of independent motion of the observer,
we require a little more vector algebra. The task is to construct a view of the world
model from the point of view of an observer free to move in any direction. This is
different from the simple procedure we used in the previous chapter. We now wish
to operate a joystick and navigate our way through the assembly of objects
constructed in the world frame. We want the view on the screen to move up or
down when the joystick is pushed forward or pulled back and to move to the left
or right when the joystick is moved to the right or the left. In other words, all of
the motion on the screen must be relative to the observer's current position. Even
if the pilot of a plane is flying upside down, his perception of "up" is directed
towards the roof of the cockpit, which as far as someone on the ground is
concerned is "down". What matters is that all of the. movements corresponding to
"up", "down", "left" and "right" apply to the observer's reference frame,
which we have called the view frame. Unlike rotation by Euler angles, which we
used in the previous chapter, here we want the rotations to be about the view frame
axes.

To be specific, let's ask what we expect to happen when the joystick is pulled
back. We expect to see the picture move vertically upwards, and this must always
happen no matter what the orientation of the observer. Suppose we have got into
the position where the aircraft, or whatever it is being controlled, is flying
horizontally but with its wings vertically. Figure 11.1 shows this orientation. If the
joystick is pulled back, object A will come into view at the top of the screen and
the object B will go out of view at the bottom of the screen. The view seen by the

152 Real-Time 3D Graphics for the Atari ST

pilot of the plane is shown in Figure 11.2. Herein lies the problem. The pilot has a
very definite perception of what is "up" and what is "down" at any given
moment and, while this does not change in the cockpit, it is changing continuously
with respect to the world outside. In the previous chapter it was easy to relate
"up" to an increase of v<(> and left to an increase in vO, but when referenced from
the view frame all these motions depend on the orientation of the observer at any
given instant.

Figure 11.1 World view of observer (airplane)

There is more than one way of solving this problem. One method is to use control
matrices to perform rotations of coordinates after they have been transformed to
the view frame. The control matrices perform simple rotations about die view x, y
and z axes. This method is employed in the next chapter. Another way is to keep a
constant record of the position and orientation of the view frame in the world
frame and to generate movements of the view frame resulting from movements of
the joystick. This second method relies heavily on the notion of a set of view
frame axes undergoing rotations and translations following the path of the
observer. It also embodies the notion of rotation about an arbitrary axis that we
would also like to introduce in this chapter which is very useful for performing
rotations about any axis in the world frame.

Flying Around the World 153

We could, of course, decide to accept the limitations of Euler angles to fix the
view frame orientation in the simpler orbital-like fashion. In Chapter 12, we show
how a flight simulator works well by using each of these approaches.

w
\

V

< . \

A /
/ /

t
\

B

~r

- f - " ^ ~

Figure 11.2 Observer s view (from airplane)

11.2 Coordinate Transforms and Direction
Cosines

Here's a bit of maths. It's not as hard as it looks.

If you know the coordinates of the vertices of an object in one reference frame and
want to know what they are in another, it is necessary to do a coordinate
transform. (Remember the other type of transform is called a geometric transform,
which is what happens when the object itself is moved inside a single reference
frame). If a point has coordinates (xw,yw,zw) in the world frame, it will have
coordinates (xv^yv,zv) in the view frame. Thus the point A in Figure 11.3 has
coordinates (0,0,50) in the world frame, and coordinates (0,-50,0) in the view
frame (what is seen on the screen has later to be worked out by means of the

154 Real-Time 3D Graphics for the Atari ST

perspective transform). As far as rotations are concerned there is always a linear
relation between these two sets of coordinates, and for this case we can write in
general terms:

xv = nll.xw + nl2.yw + nl3.zw

yv = n21.xw + n22.yw + n23.zw

zv = n31.xw + n32.yw + n33.zw

where the n's are numbers that remain to be worked out. This relation can also be
written as a matrix product:

xv nil nl2 nl3 \ / xw \

yv

\ z v / -

n21 n22 n23

\ n31 n32 n33 /

xw

yw

zw

Figure 11.3 Point A seen in two coordinate frames

Flying Around the World 155

The n matrix is the transformation matrix. The elements nil , nl2, etc., are specific
to the relative orientation of the two reference frames and are called the direction
cosines.

To see how the direction cosines are related to the geometry, look at Figure 11.4.
The direction cosines are simply the cosines of the angles between the axes of the
reference frames. It is quite hard to draw a comprehensive diagram which is not
confusingly messy but, for example, nil is the cosine of the angle between vx and
wx, nl2 is the cosine of the angle between vx and wy, nl3 is the cosine of the
angle between vx and wz and so on:

Figure 11.4 Direction cosines

nil = cos(a), nl2 = cos(b), nl3 = cos(c).

If these direction cosines can be found, the problem of converting world frame
coordinates into view frame coordinates is solved. We are however still left with
the problem of converting movements of the joystick into changes in the direction
cosines. It is clear that we should solve the problem with a strategy that centres on
the direction cosines. Here is one way it can be done.

156 Real-Time 3D Graphics for the Atari ST

11.3 Base Vectors and Direction Cosines
Just for a moment let's forget all about the maths. Let's try to visualise what's
going from the point of view of a second, stationary, independent observer at rest
in the world frame and able to see both the world frame and the moving observer
simultaneously. This is the point of view of a man on the ground watching a plane
fly past. Think of the plane as the view frame but with the fuselage replaced by the
zv axis, the wings replaced by die yv axis and the vertical tail wing in the direction
of the xv axis. Although he is not in the plane, the stationary observer can
calculate the view according to the pilot if he knows the position and orientation of
the plane at any instant.

To see how that view would change when the pilot pulls back the joystick, for
example, he has only to rotate the plane about the axis of the wings (the angle
depends on how long the joystick is pulled back), which is a rotation about the yv
axis. Since the plane is moving forward during die rotation this has die added
complication of making it fly upwards. Like the stationary observer, we need to
keep a continuous record of die position' and orientation of the view frame as it
flies around the world.

To do this, imagine three unit vectors in the directions of the view frame axes. In
vector geometry these unit vectors are given a special name. They are called base
vectors. At the very start of the program let us suppose that die view frame is
positioned coincident with die world frame. This is equivalent to having a second
set of world frame base vectors at the airfield from where the plane has taken off.
(Actually it isn't really necessary to have them start off coincident and in general
tiiey don't, but it makes die argument easier to visualise).

Now at each stage of the subsequent motion it is necessary to record the position
and orientation of the view frame unit vectors. It is not possible simply to keep a
running total of how many degrees the plane rotated to die left (about vx) or up
(about vy) since we have no way of knowing how to translate this information into
die final orientation of the plane after many movements. In the method of Euler
angles used in die previous chapter it was possible to keep a running total since the
first angle referred to rotation about an axis of die static world frame. But now we
are using angles referred to the view frame which is moving all the time.

Here comes the big question. Suppose we can keep a record of die positions of die
view frame base vectors, what do they have to do with die original transform? The
answer is very simple: the components in die world frame of die view frame base
vectors are just the direction cosines that are the elements, nil to n33, of the
world-to-view transform matrix. In odier words, where iv, jv and kv are the view
frame base vectors and iw, jw and kw are die world frame base vectors, die
relation between them is:

Flying Around the World 157

iv = nll.iw + nl2.jw + nl3.kw

jv = n21.iw + n22.jw + n23.kw

kv = n31.iw + n32.jw + n33.kw.

Or, writing the view frame base vectors in terms of their world frame components

/ n i l \ /n21 \ I n3l \

iv= nl2

\ „ 1 3 /

jv n22

\ n 2 3 /

kv = n32

\ n33 /

At the start of the motion, when the view frame and world frame axes were
aligned, the view frame base vectors had components

IV = 0 jv = 1

\ u /
0

kv = 0

If we can keep a record of the view frame base vectors we therefore have the
direction cosines immediately available to construct the view from the cockpit. The
strategy is straightforward but there are some tricky problems to solve on the way.

11.4 Rotating the Base Vectors: Rotation About
an Arbitrary Axis

The base vectors which fix the current orientation of the view frame depend on
what movements have already taken place. Suppose at a given instant the view
frame is oriented with its base vectors in the positions shown in Figure 11.5. The
base vector of the vx axis, iv, has three components in the world frame nil , nl2
and nl3 (the other unit vectors jv and kv also have components but for clarity
these are not shown in the diagram). Now suppose a movement of the joystick
occurs corresponding to a rotation about the vy axis. To find the new components
of iv and kv (jv remains unchanged in this rotation) we must rotate them about vy.
The vy axis is the axis of rotation and is specified in the world frame by its
direction cosines. But we are in luck! This problem has already been solved. It is
known as rotation about an arbitrary axis. Since at this point yv can be pointing
anywhere in the world frame, the axis is very arbitrary. In fact the solution to the
problem is given in just the format most useful to us. It is in the form of a matrix
for rotation by an angle about an axis specified by its direction cosines. Just the
form we want. The transform can also be used for rotation about any other axis in
the world frame. All that is required are the three direction cosines.

158 Real-Time 3D Graphics for the Atari ST

Once constructed, the rotation matrix can be multiplied by iv and kv to yield the
new components of iv and kv, which then replace the old ones and are also used
directly to construct the world-to-view transform (there is a catch, which we'll
discuss shortly).

For rotation by an angle 8 about an axis with direction cosines nl, n2 and n3 (just
the last index in the cosine to show it can refer to any axis), the matrix is

/ nl.nl+(l-nl.nl)cos(5)

nl.n2(l-cos(8))+n3sin(S)

\ nl.n3(l-cos(8))-n2sin(8)

nl.n2(l-cos(8))-n3sin(8)

n2.n2+(l-n2.n2)cos(8)

n2.n3(l-cos(8))+nlsin(8)

nl.n3(l-cos(8))+n2sin(8)

n2.n3(l-cos(8))-nlsin(8)

n3.n3+(l-n3.n3)cos(8)

xv after rotation
about yv

,iv after rotation

zw

zv after
rotation

Figure 11J Rotation of base vector

Flying Around the World 159

11.5 Accumulating Errors
Broadly speaking, all the ingredients required to steer the view frame through the
world frame controlled by joystick movements are in place. Let us lay out the
algorithm as it stands at the moment:

• movement of the joystick specifies a rotation of the view unit vectors about one
of the view frame axes,

• construct the rotation matrix to rotate the other two unit vectors about this axis
and replace them with their new components,

• use the components of the unit vectors, now called direction cosines, to
construct the world-to-view transform,

• perform the transform and display the picture

• and repeat the cycle.

This is all O.K. and it works. For a while.

Eventually it will lead to a degenerating picture, or worse a chaotic mess, because
of accumulating errors. As it stands the program has a built-in pathological
self-distruct. Because calculations are done in integer arithmetic, and sines and
cosines are calculated to an accuracy no better than 1 in 16384, given enough
transforms, large errors will accumulate in the unit vectors and, as a consequence,
the world-to-view transform. In life nothing is perfect and this is a good example
of that adage. In addition, the algorithm has feedback in that joystick movements
are made on the basis of the picture on the screen that is generated, in turn, from
the transform constructed from the joystick movements. This has all the ingredients
necessary to create chaos, and so it does.

In order to beat the accumulation of errors, the cycle of error accumulation must be
broken. This is achieved by regenerating the base vectors afresh each time. This
requires more work but it solves the problem. Figure 11.6 shows the stages in the
regeneration of the view frame unit vectors.

The vectors that matter most are kv, the one that points in the direction of motion
and iv, the pointer to the "up" direction. Without these two it is not possible to
define either the direction of motion or which way is up as far as the pilot is
concerned. Let's suppose that, because of errors in the last transform, we have
three unit vectors iv', jv' and kv' which are slightly wrong. The errors will result
in the base vectors not being at right-angles to each other and not having size equal
to unity. As a first step, the vector kv' is normalised, i.e. its magnitude is made to
be unity. It becomes kv. This at least ensures that if its direction is slightly wrong,
its size isn't. The only effect a slightly wrong direction will have is that the view

160 Real-Time 3D Graphics for the Atari ST

will be slightly in error, but that hardly matters since the view is being constantly
adjusted by the joystick anyway. Second, the vector cross product of kv and iv' is
taken in order to generate a new vector at 90 degrees to them both. A vector cross
product has just this property (see Appendix 6). This new vector is in the direction
that jv would have if it weren't in error. The new vector is then normalised i.e. its
magnitude is made to be 1, and it becomes the new jv. Third, the vector cross
product of the new kv and the new jv is taken, and normalised, in order to
generate a new iv. In this way all three unit vectors are regenerated each frame and
errors do not accumulate (it is interesting to remove the regeneration stage in the
example program and watch the disintegration take place).

Figure 11.6 Regeneration of base vectors

The components of the new unit vectors then become the components of the
viewing transform matrix and the cycle is repeated.

The technical details are discussed as they appear in the example programs.

Flying Around the World 161

11.6 Clipping in 3D
No part of an object which lies behind the view plane (zv < 0) must be drawn. If
this is attempted, the program will not crash but what appears on the screen will be
garbage. This is because the polygon drawing routines expect to see the edge list
of vertices go clockwise round the perimeter of a polygon and this will be wrong
for polygons projected backwards onto the view plane. In addition, objects that lie
too far from the view plane should not be drawn either. This is because nothing
can be drawn smaller than a pixel, and very distant objects reduce to an incoherent
cluster of pixels.

Besides these obvious cases, there is no point in wasting time on objects that lie
too far outside the field of view. This field of view is defined by the frustum
(truncated pyramid) defined by the line of sight from the view point to the
viewport boundaries. This is illustrated in Figure 11.7.

frustun of visibility

\

,! ¥
D ;\ *
\ / i

\ i

'"A !
1 i

view port r

i)

"/
/ view

l! i

1 :/./...

point

/

/ C
"/:

hither plane U

yon plane

Figure 11.7 Windowing im 3D

In a more leisurely application it would be possible to clip polyhedra to the
boundary of the frustum in a 3D generalisation of the way polygons have been
clipped to the screen window. In this application that would be too time

162 Real-Time 3D Graphics for the Atari ST

consuming. Here, the centre of symmetry (Oox,Ooy,Ooz) is used to locate objects
in the field of view and the angle of the frustum is increased to lie beyond the
screen limit. This means that some time is wasted drawing distant objects which
cannot be seen, but objects that are close up are not abandoned the instant their
centres pass beyond the field of view. They are marked as visible but only part
will appear on the screen as a result of screen clipping.

The top and base of the frustum are called the hither and yon planes. In the
example program they are defined by the equations zv=100 (hither) and zv=2000
(yon). The sides of the frustum of the field of view, are defined (where the
viewport centre coincides with the view frame origin) by the planes

zv + 100 = xv side A

zv + 100 = -xv side B

(1.2).(zv + 100) = yv side C

(1.2).(zv+ 100) = -yv sideD

but the actual sides used in the program extend beyond this limit, for reasons
explained above, and are described by

8*(zv + 100) = ±xv sides A and B

8*(zv + 100) = ±yv sides C and D

11.7 Velocity of the Observer
The observer (you) does not only use the joystick to do rotations. The observer
also has a velocity that may be changing as time passes. To include velocity, all
that has to be done is to increment the observer's position in the world frame in
proportion to the velocity. The velocity is a vector, so it has direction as well as
size - speed is the magnitude of the velocity. The procedure is to change each
component of the observer's position, each frame, by an amount proportional to
the speed times the relevant component of the base vector kv.

In other words, if the view frame is pointing only in the direction of the zw axis,
only Ovz should be incremented each time. On the other hand if the view frame is
pointing along the xw axis, only Ovx should be incremented each time. For
anything between, Ovx, Ovy and Ovz should be incremented in proportion the
components of kv in those directions. This ensures that the direction in which the
observer is looking is the direction of motion. The details are explained in the
example program.

Flying Around the World 163

11.8 Example Programs
In this program it is possible to fly round the ST cube. The program starts with the
cube at mid-screen and with the observer stationary. Pressing f2 causes the view
frame to move towards the cube at constant speed (pressing fl causes it to retreat).
Thereafter motion is controlled by the joystick. It is possible to fly past the cube
and then do an about turn to return to it. Because of 3D clipping, the cube is not
displayed if it comes closer than 100 or is farther away than 2000 or is outside the
field of view (see above). Motion can be stopped by pressing f6 and the program
aborted by pressing f7.

11.8.1 wrld_vw.s

This is the control program. Much of it is similar to that of the previous chapter. It
draws an ST cube that can be flown around under the control of the joystick. This
time the joystick performs rotations about the axes of the view frame, i.e. the pilot.
When the joystick is pulled back the viewer looks upwards into the world and if
there is forward motion he/she follows a rising trajectory. Other motions of the
joystick produce corresponding motion as if the viewer were flying through the
world frame. In this way it is possible to fly past an object and then sweep through
an arc to return to it.

The program follows the sequence described above. First the view frame base
vectors are initialized. Following this the joystick is read and immediately the view
frame unit vectors in the world frame are rotated. Then the keyboard is read to see
if the speed has changed. Following this the new position of the view frame in the
world frame is calculated from the speed and the view frame z-axis base vector kv
which is now pointing along the new direction of motion. In motion that is not in a
straight line, the velocity is changing all the time (the velocity is a vector and so it
can change if its direction changes even if its size, the speed, doesn't). Finally the
unit vectors are themselves regenerated to avoid accumulating errors and passed on
directly as the elements of the world-to-view transform before drawing the picture
of the ST cube.

The function keys fl and f2 are reverse and forward respectively. f6 is stop and f7
returns to the calling program. Be careful to press the keys lightly and not hold
them down since the keyboard buffer is not cleared between frames.

There are no subtleties such as inertia in the motion but these could be
incorporated along the lines described in the previous chapter.

11.8.2 core_06.s

Here is where all the work is done. The subroutine dircosines regenerates the base
vectors and passes the new values to the viewing transform matrix. To do the

164 Real-Time 3D Graphics for the Atari ST

regeneration requires vector cross products and normalisation (i.e. scaling the size
of the vector to unity). To normalise a vector requires dividing each of its
components by the magnitude of the vector, which must be calculated as the
square root of the sum of the squares of the components. This is dealt with using
the nrm_yec routine used previously for the illumination calculation.

In the subroutine in Joy, the joystick is read and action taken immediately to rotate
the view frame base vectors about an axis in the world frame, which here is one of
the base vectors, but could be any axis defined by its direction cosines. The matrix
for rotation is constructed in v_rot_matx. The elements of this are quite large but
the overall work is minimised by calculating pairs of elements at a time due to the
similarity of elements with their row and column indices interchanged.

In vel_adj the new direction of motion, which is the direction pointed to by the kv
vector, is combined with the speed to produce a displacement of the view frame.
What this amounts to is simply multiplying the components of kv by the speed and
adding them to Ovx, Ovy and Ovz, the current value of the view frame origin in
the world.

The test for visibility of objects follows the criteria explained above, where the
object frame origin (Oox,Ooy,Ooz) is examined to see if it lies in the frustum
defined as the field of view. To do this, the origin itself is first transformed into
the view frame where it becomes (Vox,Voy,Voz).

One final routine, scrn_adj, is included to reset the centre of the screen at the
origin of the world frame. This is not the same as simply moving the view frame
in the world frame since it affects the appearance of perspective. Having the view
frame centred on the screen is more natural to "flying around in space"
experiences.

11.8.3 bss_06.s

This contains the few new variables introduced in this section: the base vectors and
the rotations resulting from movement of the joystick.

Flying Around the World 165

*
* wrld_vw.s *
* Joystick control of the view frame *
*

SECTION TEXT
opt d+
bra main
include systm_02.s screens and tables
include systm_03.s joystick
include systm_04.s set up screens, palette, joystick
include core_06.s new subroutines

set up screens etc
main:

bsr set_up
* transfer all the data

bsr transfer
move.w oncoords,vncoords
move.w vncoords,wncoords

* Initialise dynamical variables
move.w #0,Ovx view frame
move.w #o,Ovy starts off
move.w #-200,Ovz 200 behind world frame

* Set up view frame base vectors
* 1. iv

jv

* 3. kv

lea
move.w
clr.w
clr .w

lea
clr.w
move.w
clr.w

lea
clr.w
clr.w
move. w

iv,a0
#$4000,(a0)+
(a0) +
(a0)

jv,a0
(a0) +
#$4000,(a0)+
(aO)

kv,a0
(a0) +
(a0) +
#$4000,(aO)

align
view
frame
axes

with
the
world
frame

axes

clr.w
clr.w
clr.w
bsr
bsr

speed
screenflag
viewflag
clearl
clear2

loop4:
* Switch the screens each time

tst.w screenflag

screen_l:

beq
bsr
bsr
clr.w
bra
1:
bsr
bsr
move.w

screen_l
draw2_displ
clear2
screenflag
screen_2

drawl_disp2
clearl
#1,screenflag

start at rest
0=screen 1 draw, l=screen 2 draw

clear the screens

round
screen 1 or screen2?
draw on screen 1, display screen2
draw on screen 2, display screenl
but first wipe it clean
and set the flag for next time

draw on 1, display 2
but first wipe it clean
and set the flag for next time

166 Real-Time 3D Graphics for the Atari ST

screen_2:
* Look for changes in the view frame angles.

bsr in_joy read joystick and rotate the view frame
* See if the function keys have been pressed to change the speed.

bsr key_in
* Adjust to new velocity.

bsr vel_adj
* Recalculate the view frame base vectors and set up the world-view
* transform matrix.

bsr dircosines
* See if the object is within the visible angle of view.

bsr viewtest
tst.b viewflag is it visible?
beq loop4 no, try again

* Construct the compound object from the same face at different positions.
how many parts in the object

list of instance angles for each part
ditto displacements

save the count
next otheta
next ophi
next ogamma
next displacements

move.w
subq
lea
lea

nparts,d7
#l,d7
inst_angles,aO
inst_disp,al

* Do one face at a time
instance:

move.w
move.w
move.w
move.w
move.w
move.w
move.w
movem.1
bsr
bsr
bsr
bsr
bsr
bsr
movem.1
move.w
dbra
bra

d7,-(sp)
(a0)+,otheta
(aO)+,ophi
(a0)+,ogamma
(al)+,Oox
(al)+,Ooy
(al)+,Ooz
aO/al,-(sp)
otranw
w_tran_v
illuminate
perspective
scrn_adj
polydraw
(sp)+,aO/al
(sp)+,d7
d7,instance
loop4

save position in list
object to world transform
world to view transform
if it's not hidden find the shade
perspective
centre window
draw this face
restore pointers
restore the parts count
for all the parts of the object
draw the next frame

SECTION DATA
include data_03.s
include data_05.s
SECTION BSS
include bss_06.s

END

Flying Around the World . 167

* * * * * * * * * * * * * * * * * *

* * * *

core_06.s
Subroutines for Chapter 11

* * * * * * * * * * * * *

include core_05.s

dircosines:
* Find the direction cosines for the transform from the world frame
* to the view frame. These are components of the view frame base
* vectors in the world frame. To avoid accumulating errors they
* are regenerated and normalised to a magnitude of 2"14.

lea iv,aO here
lea jv,al they
lea kv,a2 are

* First kv is normalised
move.w (a2),d0
move.w
move.w
bsr
move.w
move.w
move.w

2(a2),dl
4(a2),d2
nrm_vec
d0,(a2)
dl,2(a2)
d2,4(a2)

normalise it
the
new
components

lea
lea
bsr
lea'
move
move
move

, w
,w
.w

jv,a2
kv,aO
AxB
iv,al
dO,(al)
dl,2(al)
d2,4(al)

Second vj is calculated from the cross product of vk
and vi using the subroutine AxB: requires A pointer in a2
B pointer in aO

bsr AxB
move.w dO,(al) regenerated
move.w dl,2(al) components
move.w d2,4(al)

Finally the cross product of kv and jv is used for iv

regenerated iv

* The components uf the view frame base vectors in the world frame
* are the elements of the transform matrix required for the world-
* to-view transform.

pointer to the w-to-v matrix
here are
the view base
vectors
and
here
are
the
matrix
elements
of the
view
transform

lea
lea
lea
lea
move.w
move.w
move.w
move.w
move.w
move.w
move.w
move.w
move.w
rts

w_vmatx,aO
iv,al
jv,a2
kv,a3
(al)+,(aO)+
(al)+,(aO)+
(al)+,(aO)+
(a2)+,(a0)+
(a2)+,(a0) +
(a2)+,(a0)+
(a3)+,(a0)+
(a3)+,(a0)+
(a3)+,(a0)+

168 Real-Time 3D Graphics for the Atari ST

AxB:
* calculate the vector product AxB: pointer to A in a2, pointer to B
* in aO. Returns x-cmpt in do, y-cmpt in dl, z-cmpt in d2.
first component

Ay
Bz*Ay
Az
By*Az
Bz*Ay-By*Ax

2(a2)
4(a0)
4(a2)
2(a0)
dl,dO

,d0
,d0
,dl
,dl

move.w
muls
move.w
muls
sub. 1

* second component
move.w 4(a2),dl
muls
move.w
muls
sub. 1

* third component
move.w (a2),d2
muls
move.w
muls
sub.l

(aO),dl
(a2),d2
4(a0),d2
d2,dl

2(a0),d2
2(a2),d3
(a0),d3
d3,d2

Az
Bx*Az
Ax
Bz*Ax
Bx*Az-Bz*Ax

Ax
By* Ax
Ay
Bx*Ay
By*Ax-Bx*Ay

* reduce them to < word size by dividing by 2A14
move
lsr.l
lsr.l
lsr.l

* normalise them
bsr
rts

#14,d7
d7,d0
d7,dl
d7,d2
n
nrmvec

back to caller

* Do a rotation of the view frame about one of the view frame axes
* in the world frame. The direction cosines for the axis are
* the base vector components.
rot_vx:
* A rotation about the view frame x-axis, vx

lea iv,aO the axis of rotation
move.w vxangle,dl the angle to rotate
bsr v_rot_matx construct the rotation matrix
jv and kv are affected

transform this first
only

lea
bsr
lea
bsr
rts

]v,aO
rot_view
kv,aO
rot_view

transform this second

rot_vy:
* A rotation about the view frame y-axis,

lea jv,aO
move.w vyangle,dl

vy

bsr vrotmatx
* only iv and kv are affected

lea
bsr
lea
bsr
rts

iv,aO
rot_view
kv,aO
rot_view

rot_vz:
* A rotation about the view frame z-axis, vz

lea kv,aO
move.w vzangle,dl
bsr v_rot_matx

Flying Around the World 169

* only iv and jv are affected
lea
bsr
lea
bsr
rts

IV, aO
rot_vdew
jv,aO
rot_view

rot_view:
* Rotate a view
* Since it is a
* which are the

moveq
lea
link

rot_vwl move.w
move.w
move.w
muls
muls
muls
add.l
add.l
lsl.l
swap
move.w
dbra
move.w
move.w
move.w
unlk
rts

frame base vector. The vector is pointed to by aO.
unit vector it is specified by three components
direction cosines (nx,ny,nz)
#2,d6 3 rows in the transform matrix
vrot_matx,a3 init matrix pointer
a6,#-6 3 words to store temporarily
(aO),dO nx component
2(a0),dl ny
4(a0),d2 nz
(a3)+,d0 nx*Mil
(a3)+,dl ny*Mi2
(a3)+,d2 nz*Mi3
dl,dO add them
d2,d0
#2,do divide by 2A14
do the new component
d0,-(a6) save it
d6,rot_vwl repeat for three components
(a6)+,4(a0) off my stack into z
(a6)+,2(a0) y
(a6)+,(a0) x
a6 release frame pointer

* Construct the rotation matrix for rotations about an arbitrary axis
* specified by a unit vector with components (direction cosines)
* (nl,n2,n3')
* Entry: pointer to direction cosines (nl,n2,n3), in aO,
* angle of rotation in dO.w

pointer to the rotation matrix
find the rotation sine and cosine
sine delta
cos delta

1
nl
nl*n2

v_rot_matx:
lea
bsr
move.w
move.w

* elements M12
move
move
move.w
muls
lsl.l
swap
sub.w
move
muls
lsl.l
swap
move
move.w
muls
lsl.l

vrot_matx,a6
sincos
d2,d6
d3,d7

and M21
#16384,d5
d5,d0
(aO),dl
2(a0),dl
#2,dl
dl
d7,d0
d0,d4
dl,dO
#2,dO
dO
d0,d2
4(a0),dl
d6,dl
#2,dl

1-cosdelta
save it

nl*n2(1-cosdelta)

n3
n3*sindelta

170 Real-Time 3D Graphics for the Atari ST

swap
sub.w
move.w
add.w
move.w

* elements M13
move
muls
lsl.l
swap
muls
lsl.l
swap
move
move.w
muls
lsl.l
swap
add.w
move.w
sub.w
move.w

* elements M23
move
muls
lsl.l
swap
muls
lsl.l
swap
move
move.w
muls
lsl.l
swap
sub.w
move.w
add.w
move.w

* element Mil
move.w
muls
lsl.l
swap
move
sub.w
muls
lsl.l
swap
add.w
move.w

•element M22
move. w
muls
lsl.l
swap
move
sub.w
muls

dl
dl,dO
d0,2(a6)
dl ,d2
d2,6(a6)
and M31
d4,d0
(aO),d0
#2,dO
dO
4(a0),d0
#2,d0
dO
d0,d2
2(a0),dl
d6,dl
#2,dl
dl
dl,dO
d0,4(a6)
dl,d2
d2,12(a6)
and M32
,d4,d0
2(a0),d0
#2,dO
dO
4(a0),d0
#2,dO
do
d0,d2
(a0),dl
d6,dl
#2,dl
dl
dl,dO
d0,10(a6)
dl,d2
d2,14(a6)

(aO),dl
dl,dl
#2,dl
dl
d5,d2
dl,d2
d7,d2
#2,d2
d2
d2,dl
dl,(a6)

2(a0),dl
dl,dl
#2,dl
dl
d5,d2
dl,d2
d7,d2

nl*n2(l-cosdelta)-n3*sindelta
M12
nl*n2(l-cosdelta)+n3*sindelta
M21

1-cosdelta
nl*(l-cosdelta)

nl*n3(1-cosdelta)

n2
n2*sindelta

nl*n3(l-cosdelta)+n2*sindelta
Ml 3
nl*n3(1-cosdelta)-n2*sindelta
M31

1-cosdelta
n2*(1-cosdelta)

n2*n3(1-cosdelta)

nl
nl*sindelta

n2*n3(1-cosdelta)-nl*sindelta
M23
n2*n3(1-cosdelta)+nl*sindelta
M32

nl
nl*nl

/2"14
1
l-nl*nl
(l-nl*nl)cosdelta

nl*nl +(l-nl*nl)cosdelta
Mil

n2*n2

/2~14
1
l-n2*n2
(l-n2*n2).cosdelta

Flying Around the World 171

lsl.l
swap
add .w
move .w

•element M33
move .w
muls
lsl.l
swap
move
sub.w
muls
lsl.l
swap
add.w
move.w
rts

#2,d2
d2
d2,dl
dl,8(a6)

4(a0),
dl,dl
#2,dl
dl
d5,d2
dl,d2
d7,d2
#2,d2
d2
d2,dl

dl

dl,16(a6)

n2*n2 +(l-n2*n2)cosdelta
M2.2

n3
n3*n3

/2"14

l-n3*n3
(l-n3*n3)cosdelta

n3*n3 +(l-n3*n3)cosdelta
M33

* The the world coords are transformed to view coords
* Remember matrix elements are *2'14 and must be corrected at the end
w_tran_v:

the number
any to do ?

if not quit
or this is the count

the
source
coords.
the
destination

save this address-short of regs.
3 words to store

3 rows in the matrix
init matx pointer

wx
wy
wz

wx-Ovx
wy-Ovy
wz-Ovz

wx*Mil
wy*Mi2
wz*Mi3

move.w
ext.l
beq
subq.w

lea
lea
lea
lea
lea
lea
exg
link

w_tranvl:
moveq.1
lea

* calculate the
w_tranv2:

move.w
move.w
move.w

sub.w
sub.w
sub.w

muls
muls
muls

add.l
add.l
lsl.l
swap
move.w
dbra

wncoords,d7
d7
w tranv3
#l,d7

wcoordsx,aO
wcoordsy,al
wcoordsz,a2
vcoordsx,a3
vcoordsy,a4
vcoordsz,a5
a3,d3
a6,#-6

#2,d6
w_vmatx,a 3
next vx, vy

(aO),d0
(al),dl
(a2),d2

Ovx,d0
Ovy,dl
0vz,d2

(a3)+,d0
(a3)+,dl
(a3)+,d2

dl,dO
d2,d0
#2,do
dO
d0,-(a6)
d6,w_tranv2

wx*Mil+wy*Mi2+wz*Mi3

/2A14
save it
repeat for 3 elements

172 Real-Time 3D Graphics for the Atari ST

move.w (a6)+,(a5)+ off my stack becomes vz
move.w (a6)+,(a4)+ becomes vy
exg a3,d3 restore address vx, save matx pointr
move.w (a6)+,(a3)+ becomes vx
exg a3,d3 save address vx, restore matx pointr
addq.l #2,a0 point to next wx
addq.l #2,al wy
addq.l #2,a2 wz

dbf
unlk

w_tranv3:
rts

d7,w_tranvl
a6

repeat for all ocoords
close frame

and quit

in_]oy:
* Read the joystick and update the variables accordingly
* The data packet containing the FIRE bit (7) and the position
* bits (0-2) is saved in the variable joy_data

clr .w
move.w

more_joy:
bsr
dbf
move.w
move
andi.w
bne
andi.w
bne
rts

dir_joy lea
l s l .w
move.1
jmp

table_jump:
d e l
d e l

jy_up move.w
bsr
r t s

jy_down move.w
bsr
r t s

jy_lef t move.w
bsr
r t s

jy_r igh t :
move.w
bsr
rts

jy_up_left
jy_down_left
jy_up_right
j y_down_r i ght
jy_fire_press:

nove.w
rts

joy_data
#10,d6

rd_joy
d6,more_joy
joy_data,d0
d0,dl
#$f0,d0
jy_fire_press
#$f,dl
dir_joy

table_jump,aO
#2,dl
0(a0,dl.w),a0
(aO)

read joystick
give it time to think
here's the result
save•it
fire pressed ?
yes
what direction is the stick?

nothing doing
base address
offset into jump table
the jump address
go for it

0, jy_up, jy_down,0, jy_left, jy_up_left, jy_down_left
0,jy_right,jy_up_right,jy_down_r ight
#350,vyangle
rot_vy

#10,vyangle
rot_vy

#10,vxangle
rot_vx

rotate up
about vy axis

rotate down
about vy axis

rotate left
about vx axis

#350,vxangle
rot_vx

rts
rts
rts
rts

#l,fire

rotate right
about vx axis

do nothing for now

Flying Around the World 173

* Set the velocity components
_ad j:

lea
moveq.1
move.w
lsl.w
move
move
muls
lsr.l
add.w
muls
lsr.l
add.w
muls
lsr.l
add.w
rts

kv,aO
#14,d7
speed,dO
#3,do
dO,dl
d0,d2
(aO),d0
d7,d0
dO,Ovx
2(a0),dl
d7,dl
dl,Ovy
4(a0),d2
d7,d2
d2,Ovz

ready to

scale it

v*VZx
/2-14
xw speed
v*VZy

zw speed
v*VZz

divide by 2*14

component

component

viewtest:
* Test whether the primitive is visible. See whether its centre
* (Oox,0oy,0oz) lies within the angle of visibility.
* Oox, Ooy and Ooz are transformed to view coords then tested.
* Remember matrix elements are *2A14 and must be corrected at the end

tranOv

moveq.1 #2,d6
lea
link
move.w
addi.w
move.w
addi.w
move.w
addi.w
sub.w
sub.w
sub.w
move
move
move
muls
muls
muls
add.l
add.l
lsl.l
swap
move.w
dbra

move.w
move.w
move.w
move.w
move. w
move.w
unlk

w vmatx,a3
a6,#-6
0ox,d3
#50,d3
Ooy,d4
#50,d4
0oz,d5
#50,d5
Ovx,d3
Ovy,d4
0vz,d5
d3,d0
d4,dl
d5,d2
(a3)+,d0
(a3)+,dl
(a3)+,d2
dl,d0
d2,d0
#2,dO
dO
d0,-(a6)
d6,tranOv

(a6)+,d3
(a6)+,d2
(a6)+,dl
d3,Voz
d2,Voy
dl,Vox
a6

3 rows in the matrix
init matx pointer
3 words to store temporarily
Oox the

Ooy

Ooz

object centre

Oox-Ovx relative to the view frame
Ooy-Ovy
Ooz-Ovz
restore

*Mil
*Mi2
*Mi3

*Mil+*Mi2+*Mi3

/2A14
save it
repeat for 3 elements

off my stack becomes Voz
becomes Voy
becomes Vox

close frame
* Clip Ovz. For visibility must have 100<Voz<2000

cmpi.w #100,d3 test (Voz-100)
bmi invis fail
cmpi.w #2000,d3 test(Voz-2000)

174 Real-Time 3D Graphics for the Atari ST

bpl invis fail
* Is it within the allowed angle of view?

addi.w #100,d3 Voz+100
add.w d3,d3 *2
add.w d3,d3 *4
add.w d3,d3 *8

* first test horizontal position
tst.w d2 is Voy +ve or -ve?
bpl pos_y it's +ve
neg.w d2 it's -ve so make it +ve for test

pos_y cmp.w d2,d3 Voy is +ve, test(8*(Voz+100)-Voy)
bmi invis Voy too big

* second test vertical position
tst.w dl Vox
bpl pos_x it's +ve
neg.w dl make it +ve

pos_x cmp.w dl,d3 test(8(Voz+100)-Vox)
bmi invis too high

* It is visible
st viewflag set the flag all l's
rts

* It's invisible, don't draw it
invis sf viewflag set the flag all 0's

rts

scrn_adj:
* adjust screen coords so that view frame (0,0) is at the centre

move.w vncoords,d7 the number
beq adj_end quit if none
subq.w #l,d7 count
lea scoordsy,a0 y coords pointer

adj_loop:
subi.w #100,(a0)+ adjust next ys
dbra d7,adj_loop for all points

adj_end rts

Flying Around the World 175

*
* bss_06.s *
* Variables for Chapter 11 *
*

include bss_05.s
* variables for rotating the view frame

view frame base vector components in world frame

rotation angles about these axes

9 rotation matx. about an arbitrary axis

1
object centre in view frame

iv ds.w
jv ds.w
kv ds.w
vxangle ds.w
vyangle ds.w
vzangle ds.w
vrot matx
* visibility
viewflag
Vox ds. w
Voy ds. w
Voz ds.w

3
3
3
1
1
1-
ds.w

ds.w
1
1
1

A World Scene
In this chapter a world containing many objects is constructed.

The transition from a single graphics primitive to a scene containing several brings
a host of new problems. For example, in the complex scene of many objects,
spatial relationships must be preserved; objects in the foreground must not be
obscured by those in the distance. Some form of depth sorting is required that
orders objects for drawing on the basis of their distance from the observer.

Just as important is a sound strategy for ignoring all objects outside the immediate
environment of the observer. In a world consisting of hundreds of objects spread
out over a landscape, it would be poindessly time consuming to attempt to draw
them all. As in real life, the observer need only be concerned with those that are
close by and affect current decisions. We examine these aspects of the multi-object
world in turn.

12.1 A Database
Associated with each object in the complex world will be a list of its attributes
(type, position, colour, rotation angles, etc.), and the set of lists of all the objects is
a database. It contains all information needed to draw the view seen by the
observer. Exacdy how this database is laid out in memory is very important in
determining the speed with which it can be accessed for graphics.

To explain this point further, consider the choices available in ordering the objects
in the database. Objects could be entered in the database in order of increasing x
(world) coordinate or increasing y coordinate or increasing z coordinate, or indeed
at random with no spatial order whatsoever. Objects could be listed according to
their type, colour or any one of their attributes. Of all the possibilities there will be

A World Scene 177

those that provide fast access to those objects which are going to be drawn, i.e.
those in the immediate vicinity of the observer. It is clear that some kind of
ordering in position is needed to achieve this.

12.1.1 A Map

The position of an object in the world is specified by its three coordinates in the
form (xw,yw,zw). It is clear that ordering the database in any one single coordinate
(xw or yw or zw) alone will not provide an immediate picture of where each object
is in relation to its neighbours.

What is needed is a database where the objects are arranged in 3D order. This is
difficult to visualise until it is realised that what is being described is nothing more
than a map. The similarity to an ordinary route map is fairly exact for the world
we will construct which consists of objects sitting on a surface, just like the surface
of the Earth. The advantage of a map of this kind, (which is a 2D array) is that all
the objects that lie in a particular region are immediately obvious in their spatial
relations.

i

w>

S:
• • .

'.|.\

s is tile y

/

Figure 12.1 Layout of world 'tiles'

178 Real-Time 3D Graphics for the Atari ST

What is actually done is shown in Figure 12.1. The world space is divided into a
16*16 array of "tiles" (just like on the bathroom wall) each one of which has the
dimensions 256*256. Each tile is a unit of space to be considered for display. It
can contain a collection of objects; in the example program it contains just one, for
simplicity. Of course this is not a very extensive world, but there is nothing in the
method which limits it to these dimensions; it could be a big as you like and the
individual tiles as small as you like. But, "wrap" occurs so that when the observer
strays off any edge he reappears on the opposite side; in this way the world is
effectively "infinite", like a sphere. For our purposes a 16*16 tile world is
sufficient to illustrate the method. Each tile defines a region of space which, for
the purposes of display, is a single entity. To construct the view seen by the
observer, all that has to be done is to find her/his position on the tile grid, select
the nearest-neighbour tiles, find which ones are in front of the observer and draw
the objects placed on them.

How can this 2D array be laid out in the ID contiguous RAM? There is nothing
new here. The screen itself is a 2D world which is represented in memory as a ID
database. The pixel is analogous to a tile and the four bits which specify its colour
are analogous to the data list specifying the attributes of the object on the tile. An
arrangement of information in this way, where each element is linked to its
adjacent ones is called a linked list. In this case, the links are permanent and
implied by the physical position in the array. The world database is thus a list of
256 bytes, each one holding the attributes of one tile in the 16*16 tile world. In the
example program it is held in the file data_08.s. The list starts at map_base and
every 16th byte starts a new tile in the z direction. The tile position in the list,
modl6, represents the 16 y values. In this model the world is flat and x does not
vary.

There is very little information needed for the attributes, since the position in space
is automatically included by the tile's position in the list. The first nibble gives the
colour of the background (1-15) and the second gives the type of object which is to
sit on the tile. At present only six are possible (listed in data_06.s), but in principle
there is no limit.

12.2 Sorting
As mentioned above, once the visible objects in the near vicinity to the observer
have been identified there is the problem of ordering them for drawing so that the
more distant ones are drawn first. This is commonly known as the painter's
algorithm, since in painting a picture the last brush stroke overlays earlier ones.

There are many well known algorithms for sorting data in order. Most of the more
exotic varieties have been developed to handle large databases with a large number
of entries (records). In our case it is necessary to sort a small number (<16) of

A World Scene 179

records in depth order. Sorting at this level is efficiently done by one of the
simplest sorting methods, called a bubble sort. Note that at this stage we are
referring to the attributes and other accumulated data about the objects to be drawn
as records. A record is a set of data of different types where each data type is
confined to specific parts or "fields". This is how data for visible objects is
carried around in the example programs. A record is constructed containing all the
relevant data to draw in the tile and during depth sorting the records are actually
sorted like a deck of cards. That way, although the depth field is the basis for
sorting, it carries with it other information for drawing, reducing the retrieval of
additional data at a later stage to a minimum. Of course, to avoid slowing things
down too much it's important to keep the record short. In the example program a
record consists of 2 long words divided into 7 fields.

12.2.1 A Bubble Sort

Let's illustrate the bubble sort by direct example from the program. In this we have
a short list of records for the visible objects to be displayed. The field on which the
sort is based is the second word in the record. It is the distance of the object from
the origin of the view frame in the positive z direction, i.e. the direction in which
the viewer is looking. The other fields are unimportant for the sorting. Figure 12.2

Figure 12.2 Depth ordering of objects

180 Real-Time 3D Graphics for the Atari ST

shows a possible arrangement of simple objects in front of the view frame. The
number on each object is its type, which is the content of the second field on its
record. A suitable order in which they should be drawn so that objects in the rear
lie behind those in the forefront is: 2,1,4,5,6,3- But this is unlikely to be the order
in which the tiles have been retrieved from the database. Let us suppose that they
have been withdrawn in the order 6,1,3,4,2,5. The sorting now begins.

The procedure in a bubble sort is to go through the list comparing each entry with
its successor and making a switch if necessary. In the present case we will order
the list with the objects to be drawn first at the top of the list, i.e. the list will be in
the order: distant objects - near objects. In the first sweep, first the first pair 6 and
1 are examined, found to be in the wrong order and exchanged. At the same time,
to record that the list was found to be out of order, a flag is set. This leaves 1 as
the first entry and 6 as the second. Then the next pair 6 and 3 are examined. The
order here is O.K so no switch is made. This is continued through the entire list.
Each time a switch is made the flag is set (of course it can only be set once so the
following swaps do nothing to the flag). The following lines show the progression
of the first sort:

6,1,3,4,2,5 start
1,6,3,4,2,5 1 st pair tested
1,6,3,4,2,5 2nd
1,6,4,3,2,5 3rd
1,6,4,2,3,5 4th
1,6,4,2,5,3 5th.

Notice how, like bubbles, the distant objects "float" to the top.

At the end of the list the flag is tested to see if a switch was made. If so the entire
list is tested again. This is repeated until a pass is made in which the flag was not
set, in which case the list in order and the sort is deemed to be complete.

12.3 The Viewing Transform
In this chapter we include two different ways of constructing the view seen by the
observer. The first uses control matrices and is a simpler version of the view
transform used in the previous chapter. The second is altogether different and
much simpler; it uses the Euler angles met in Chapter 10 and is widely used in
elementary flight simulators. It is slightly limited as a consequence of the way the
angles are defined. We discuss the application of control matrices first.

12.3.1 Control Matrices

Let us suppose that we have reached the stage where all the transforms have been
done to present a scene from the viewpoint of an observer. The vertices of all

A World Scene 181

visible objects will then be given in the frame of reference of the observer, i.e. the
view frame. If, as a consequence, for example, of a movement of the joystick the
observer moves his head to the left, all that is required to show the new view is to
rotate the vertices to the right. Rotation of the observer about any axis in his
reference frame can be implemented by rotating view frame vertices coordinates in
the opposite direction. Such a transform is called a coordinate transform since it
calculates the view seen from a different coordinate system, i.e. the rotated
coordinate system of the observer.

So it seems that all that is required to show the view of the observer, as he flies
through the world, is to multiply the view frame coordinates by the sequence of
rotation matrices representing his accumulated motion to date. It won't work! First
a record of the total sequence of rotations would have to be kept and then, for each
frame, they would have to be multiplied out in order. Not exactly an efficient
algorithm for fast graphics. After a while the picture would stop altogether as
hundreds of matrix multiplications were done for each frame. What is the solution?

The solution to this problem is very similar to the method used in the previous
chapter where the view frame base vectors were rotated and then used to construct
the view transform. In this case the procedure is done backwards. At any instant,
as a result of calculations done to display die previous frame, we know the view
transform matrix. This is the starting point for the next frame.'The sequence of
events at the end of the calculations will be to: 1) do the view transform to
convert vertices to the view frame, 2) do the rotations about view frame axes we
have been talking about, 3) finally, do the perspective transform and everytiiing
else that follows. Here is now the solution to the problem. Instead of regarding the
view transform, (V), and the view frame rotations, (C), as separate transforms, to
be done to the vertices, (PW), in the world frame in sequence to produce first the
view frame vertices (PV) and then the rotated vertices (PV).

(C)(V)(PW) = (C)(PV) = (PV).

we concatenate (multiply out) (C) and (V) separately beforehand

to produce a rotated view transform, (V)

(C)(V)(PW) m (V)(PW) = (PV).

In this scheme each rotation of the observer is brought about by pre-multiplying
the view transform by a "control" matrix appropriate to the rotation. The control
matrices for the separate rotations about the view frame xv, yv and zv axes are:

(Cx)

/ 1

0

\ °

0

cos9

-sinG

o \
sinG

COS0 ,

182 Real-Time 3D Graphics for the Atari ST

(Cy) =

/ cos<}>

0

\ sin(j)

f cosy

-siny

\ o

0

1

0

siny

cosy

0

-sin<(>

0

COS<|)

0 \

0

1 /

(Cz)

Notice that these are exactly the same as the geometric transforms of Chapter 7
except that the sine terms have the opposite sign. This is because

sin(-G) = -sin(9)

and shows that the coordinate transforms are the same as geometric transforms
with negative angles, i.e. they correspond to backward rotations. This is saying
mathematically what we know to be true: rotating the observer's head to the left
achieves the same end result as rotating the scene to the right (See Appendix 7).

The physical motions corresponding to the rotations are shown in Figure 12.3.
They are: yaw (rotation about the x axis), pitch (rotation about the y axis) and roll
(rotation about the z axis).

To speed things up the control matrices can be precalculated. If it is accepted mat
rotations always occur in 1 degree increments then the elements of the matrices
will be sine(l) and cos(l) (multiplied by 16384 as usual). This is indeed what is
done in the example program file dat_07.s where angle increments are taken to be
5, although here rotations only occur about the xv and yv axes.

There still remains the need to ensure that errors do not accumulate. So,
remembering that the rows of the view transform can be visualised as the view
frame base vectors, we regenerate the view matrix rows by vector products as was
done in Chapter 11.

The details of all these stages are shown in the example program, wrld_scn.

12.3.2. Euler Angles

We have already discussed these in section 10.1.1. Euler angles are a way of
specifying the orientation of one reference frame with respect to another using only
three angles but with some restriction as to how the angles are defined. Most
important is that they specify rotations about different axes in a fixed order. There
are many combinations possible. The sequence defined below is the one beloved

A World Scene 183

of aeronautical engineers and is called the 321 sequence because it describes
rotations about the x, y, and z axes in order. These correlate with motions of the
joystick and so describe yaw (bearing), pitch and roll but note that yaw here, being
an initial rotation about the world frame axis, wx, is different from that described
in section 12.3.1. The physical rotations of the observer are shown in Figure 12.3.

Figure 12.3 Aeronautical terms for viewframe rotations

Here is the sequence of rotations (displacements have already been subtracted off)
which carry the world reference frame into the observer's view frame. It is
illustrated in Figure 12.4. Both frames are coincident to begin with and rotations
are about view frame axes, wherever they are at the time:

1. rotate by 0 about the x axis - the same for both frames (yaw)
2. rotate by <|> about the y axis (pitch)
3. rotate by y about the z axis (roll)

The end product is the orientation of the view frame.

Looking back to section 10.1.1. it will be seen that this is precisely the sequence of
rotations done there and so the results, in particular the final matrix product, can be
used directly. The results are illustrated in the example program eulrjcn.

184 Real-Time 3D Graphics for the Atari ST

Figure 12.4 Rotation sequence ofEuler angles

12.4 Running Times

The example program in this chapter allows you to roam around a world
containing 256 different graphic entities under the control of the joystick as in a
rudimentary flight simulator. There is no limitation here; a larger world database
could be constructed with no additional time penalty. A world of this limited size
has been used because it is sufficient to illustrate the procedures involved without
involving excessively long listings.

Because of the serial way the book has introduced the different stages of getting a
moving picture on the screen, and the manner in which programs have been
included together to make an overall program of increasing power, there has been
an inevitable compromise in speed. The final program in this last chapter could be
rationalised and simplified to become substantially faster.

12,5 Example Program

12.5.1 wrld scn.s and eulr scn.s

There are two main control programs here. They both allow free flight through a
landscape of moving objects but differ in the type of viewing transform used. In

A World Scene 185

one of them, wrld_scri.s, motion is controlled through the joystick and keyboard by
means of rotations about the instantaneous axes of the observer's coordinate frame.
In the other, eulr_scn.s the joystick increments or decrements the Euler angles and
to vary the orientation of the observer's reference frame. The detailed controls are

wrldjscn: up, down, left, right = joystick
roll left = fl, roll right =f2

eulr_scn: up, down, left, right = joystick.

In both cases the other function keys are:

reverse=f3, slow forward=f4, fast forward=f5, stop=f6, abort=f7.

12.5.2 data_06.s

This is the data file of the graphics primitives, which are simple 3D structures.
They appear littered about the landscape according to the database in data_08.s
where the primitive associated with each tile is specified in the low nibble of the
attribute byte. There are 6 types (0-5) vectored from a jump table at the address
primitive. There is no limit to the variety or number; to include a new one simply
add one more label to the jump vectors and fill in the details at the end of the list.
The primary jump vectors at primitive point to a list of secondary vectors, which
are the tables of data for each particular type

For a particular type data is given in a series of lists:

• the secondary pointers,

• the intrinsic colours (0 or 1 for 8 shades of 2 colours),

• the number of faces on each polyhedral object,

• the list of edge numbers on each face,

• the list of vertex connections on all faces in order,

• the three sets of x, y and z coordinates of the vertices,

• the total number of vertices and

• the type of rotation which the object is undergoing.

The type of rotational motion which each type displays is specified in the lowest
nibble of the high word of the variable 0n (where n is the type number) and the
low word is used by the program to hold the current angle but appears as 0 in the
list. The type of rotation is given by the bit which is set in the nibble:

186 Real-Time 3D Graphics for the Atari ST

bit 0 - rotation about x axis of object frame

bit 1 - ditto y

bit 2 - ditto z

so that any combination of simultaneous rotations can be included.

12.5.3 data_07.s

Here are the four control matrices for positive and negative rotations about the
view frame x and y axes laid out in row order.

12.5.4 data_08.s

Here are the 256 bytes which make up the 16*16 tile world unit. In the program,
wrap-around occurs so that motion beyond the extreme left boundary returns the
viewer to the right boundary. In this sense, like a sphere, the world is "infinite".
In each byte the high nibble gives the actual colour of the background ((0-7), no
illumination) and the high nibble gives the object type (0-15) sitting on the tile.
Only 6 types are used in the program. The reader can easily invent new ones.

12.5.5 core_07.s

The first subroutine in the core, patch_ext first takes the observer's current position
and normalises it.to lie within the world map. This is.where the wrap-around
occurs. Following this the location in tile coordinates (Ty.Tz) is calculated by
dividing by the y and z positions by 256. Remember there are 16*16 tiles spread
out over the y-z plane. This is the vertical projection of the observer's position
onto the plane. Then the attributes of the 16 tiles centred about this position are
retrieved from the database and, for each tile, stored as the first byte of the first
word in the 4-word record which accompanies each one. The offset of each tile
from the observer's position is saved in the second byte of the first record word.
This collection of potentially visible tiles is called a patch.

Following this a visibility test is done on every tile in the patch. The test here does
not consider a frustum of visibility, but only whether the centre of the tile lies in
front of the observer. The central parameter calculated for each tile during this test
is its distance (zv) in front of the observer. This is also saved as the second word
in the record for depth sorting later. Less than half the tiles pass the visibility test.
The visibility sort, next, simply uses a bubble sort to place the records in order of
depth, that is in order of decreasing distance from the observer. The tiles with
records at the top of the list will be drawn first since they are farthest away.

The subroutine which follows, drwjt, sets up the data to draw each tile and its
resident object in the ordered list of visible tiles, and calls all the earlier

A World Scene 187

subroutines to draw the complete picture. There is a lot going on at this stage. The
background on each tile is just a cross of a particular colour so that all the tiles
together define a grid on which the objects sit. Since the background is the same
for every tile, it is entered directly from the program rather than being stored in a
data file. Also since it has a fixed colour without varying illumination, there is no
need to call the time-consuming illumination calculations.

The data lists for each object are pulled in from the data file and before it is drawn
its new angle in the world frame is determined for whatever mode of rotation is
active.

12.5.6 bss_07.s

New variables

12.5.7 systmjOS.s

Just a few routines to set up the system. In particular the view point is moved back
a bit to -300 on the zv axis to reduce the perspective distortion and eliminate the
possibility of parts of objects falling behind the observer, which would not cause
the system to crash but would produce a display of spectacular garbage as the
basic drawing routines attempt to cope with drawing backwards.

Also a bit of a cheat. The ST is being stretched to its limit with this program and it
helps to speed things up by reducing the size of the window (clip frame) on the
screen so that the picture is smaller (ever wondered why games show a tiny screen
surrounded by a lot of static ornamentation looking like a console?).

12.5.8 core_08.s

This is the core file for the Euler angle transform.

12.6 Epilogue
How far have we got? What's next?

For a start the overall program can be speeded up considerably by rationalising the
anomalies caused by the serial way in which programs have been introduced in this
book.

There also remains the inclusion of the third party (you, the world scene and the
alien). So far the graphic entities have been static in the sense that their^volution
has been determined by their attributes. To give entities life requires that their
actions evolve independent of the deterministic structure of the program. But there
is really only one truly random element in this scenario - you, the observer. Hence

188 Real-Time 3D Graphics for the Atari ST

to create life within the computer it is necessary to make the entities respond to
your actions. This is of course what happens in all games. Aliens head for the
target. To invent a third party is no more complicated than has already been done
in reading the movements of the joystick to follow the motion of the observer. In
the case of the third party there are no joystick movements, but rather, the response
to world conditions.

A World Scene 189

*
* wrld_scn.s *
* A multi-object scene *
*
* A world scene consisting of various types of graphics primitives
* in motion. The viewer is free to "fly" to any location. At any
* position a patch consisting of 4*4 "tiles" is visible.
* Joystick controls Yaw and pitch. Fl and F2 control roll
* Don't hold down keys as keyboard buffer is not cleared.

SECTION TEXT
opt d+
bra main
include systm_05.s
include core_07.s

main:
* Initialize the system.

bsr init_vars initialise view transform
bsr flg_init initialize flags

loop:
* Read input and make adjustments.

bsr swap_scn swap the screens
bsr dircosines regenerate view matrix
bsr joy_read see which direction to move
bsr in_key update the speed
bsr adj_vel adjust the velocity

* Draw the scene
bsr scne_drw everything to complete the picture

* Draw the next frame
bra loop

SECTION DATA
include data_06.s
include data_07.s
include data_08.s
SECTION BSS
include bss_07.s

END

190 Real-Time 3D Graphics for the Atari ST

* * * * * * * * * * * * * core_07.s
Subroutines for Chapter 12
* * * * * *

* * * * * * * * *

* * * *

include core_06.s

scne_drw:
* Draw the scene of several primitives

bsr patch_ext select the local scene
bsr sight_tst select only visible ones
bsr vis_srt sort them in depth order
bsr drw_it draw them in depth order
rts

patch_ext:
* Extract the tile patch

move.w oposx,do
move.w oposy,dl
move.w oposz,d2

* Find position in world
andi.w #$fff,dO
andi.w
andi.w
move.w
move.w
move.w
move.w
move. w

Put the 16 tiles in a list at patch_lst
observer x position
y
z

Keep to range 4096
range x
range y
range z
restore x
y
z

local world origin
/256
y coord, in 16*16 layout
/256
z coord

#$fff,dl
#$fff,d2
do,oposx
dl,oposy
d2,oposz
dl,d3
d2,d4

* find coords of patch centre
lsr.w #8,dl
move.w dl,Ty
lsr.w #8,d2
move.w d2,Tz

* coords of view frame referenced to this origin
lsl.w #8,dl Ty*256

#8,d2 Tz*256
dl,d3 oposy-Ty*256 = Ovy
d3,0vy
d2,d4 oposz-Tz*256 = Ovz
d4,Ovz
oposx,Ovx Ovx (the height is universal)

* Fetch the attributes of the 16 surrounding tiles from the map
* and calculate their world coords., storing the data in a record
* with the format:
* word 1: high byte = graphics attributes
* low byte = clear
* word 2: Voz tile centre z in view frame coords
* word 3: tile y in local world coords
* word 4: ditto z
* Ty and Tz are the patch centre coords. = local world origin

move.w Ty,do Ty
move.w Tz,dl Tz

* A 4*4 patch of tiles centred on the Ty,Tz are retrieved
move.w #-2,d5 z offset of start tile
lea map_base,aO pointer to map of 16*16=256 tiles
lea patch_lsi,al the local list of 4*4
move.w #3,d7 4 z values

lsl.w
sub.w
move.w
sub.w
move.w
move.w

_,——

A World Scene 191

t i l e _ l p l :
move. w
move.w
move.w
add.w
andi.w
l s l .w

t i l e _ l p 2 :
move
add.w
andi.w
add.w
move.b
swap
clr .w
lsl.l
move. 1

* Calculate the
* Local coords

movem.1
lsl
swap
lsl
move.w
move.1
movem.1
addq
dbra
addi.w
dbra
rts

sight_tst:
* Discard all

lea
lea
lea
clr .w
move.w
clr .w

sight_tstl:
move.w
addi.w
move.w
move.w
addi.w
move.w
movem.1
bsr
movem.1
tst.b
beq
addq.w
move.w
move.1
move.1

#-2,d4 reset start yoffset
#3,d6 4 y values
dl ,d3 origin Tz
d5,d3 + offset = next z
#$f,d3 stay in range 0-15
#4,d3 *16

d0,d2 origin Ty
d4,d2 + offset = next y
#$f,d2 stay in range 0-15
d3,d2 16*z+y = tile address in map
0(a0,d2.w),d2 fetch attribute in low byte
d2 of high word
d2 0 for low word
#8,d2 everything into high word
d2,(al)+ store the 1st half of the record
tile local coords.: Ooy and Ooz
are (offset*256)
d4/d5,-(sp) stack offsets
#8,d4 yoffset*256
d4 in high word
#8,d5 zoffset*256
d5,d4 in low word
d4,(al)+ store second half of record
(sp)+,d4/d5 restore offsets
#l,d4 next y offset
d6,tile_lp2 for all the tiles in this row
#l,d5 next z offset
d7,tile_lpl for all rows

tiles which are out of sight
patch_lst,aO
vis_lst,al
vis_cnt,a2
(a2)
#15,d7
Oox

4(a0),d0
#128,d0
do,Ooy
6(a0),d0
#128,dO
d0,0o2
d7/a0-a2,-(sp)
testview
(sp)+,d7/a0-a2
viewflag
nxt_tile
#l,(a2)
Voz,2(aO)
(a0),(al)+
4(a0),(al)+

pointer to source list
pointer to list of visible tiles
pointer to count of visible tiles
set count to zero
16 tiles in a patch
all tiles are on ground

tile

centres

is this tile within the field of view?

visible?
no
yes, increment visible count
save the depth for sorting
transfer 1st half to visible list
transfer 2nd half of record

192 Real-Time 3D Graphics for the Atari ST

nxt_tile:
addq
dbra
rts

#8,a0
d7,sight_tstl

point to next record
for all tiles

testview:
* Is the tile within the field of view?
* Test whether the primitive is visible.
* Tile centre (Oox,0oy,0oz) is transformed to view coords then tested.
* (remember matrix elements are *2"14 and must be corrected at the end)

tranvO

moveq.]
lea
link
move.w
move. w
move. w
sub.w
sub.w
sub.w
move
move
move
muls
muls
muls
add.l
add.l
lsl.l
swap
move.w
dbra

#2,d6
w_vmatx,a3
a6,#-6
Oox,d3
Ooy,d4
Ooz,d5
Ovx,d3
Ovy,d4
0vz,d5
d3,d0
d4,dl
d5,d2
(a3)+,d0
(a3)+,dl
(a3)+,d2
dl,dO
d2,d0
#2,dO
dO
d0,-(a6)
d6,tranv0

3 rows in the matrix
init matx pointer
3 words to store temporarily
Oox the
Ooy object centre
Ooz
Oox-Ovx relative to the view frame
Ooy-Ovy
Ooz-Ovz
restore

*Mil
*Mi2
*Mi3

*Mil+*Mi2+*Mi3

/2~14
save it
repeat for 3 elements

move.w (a6)+,d3
move.w (a6)+,d2
move.w (a6)+,dl
move.w d3,Voz
move.w d2,Voy
move.w dl,Vox
unlk a6 close frame

* Clip Ovz. To be visible, must have 50<Voz<2000
* This visibility test looks only at depth

off my stack becomes Voz
becomes Voy (the centre in view frame)
becomes Vox

cmp.w #50,d3
bmi notvis
cmp.w #2000,d3
bpl notvis
st viewflag
rts

* It's invisible, don't draw it
notvis sf viewflag

rts

test(Voz-50)
fail
test(Voz-2000)
fail
it's visible, set the flag all l's

set the flag all 0's

A World Scene 193

v i s _ s r t :
* Order the visible tiles in order of decreasing Voz.
* Voz is the distance of the tile centre from the view frame
* origin. Largest Voz's should be drawn first.

move.w vis_cnt,d7
beq srt_quit
subq #l,d7
beq srt_quit
subq.w #l,d7

* bubble sort the records
vis_srtl:

lea
movea.1
addq,1
move
clr .w

vis_srt2:
cmpm.w (aO)+,(al)+
ble no_swap
move.l -4(a0),d0
move.1 (aO),dl
move.l -4(al),-4(a0)
move.1 (al),(aO)
move.l d0,-4(al)
move.l dl,(al)
st srt_flg

number to do
are any visible?
this number-1
but no need to sort only 1
1 sort per pair

vis_lst+2,a0
aO,al
#8,al
d7,d6
srt_flg clear the flag

pointer to the first record Voz

pointer to second record Voz
reset count

no_swap:
addq.
addq.
dbra
tst.w
beq
bra

srt_quit:
rts

#6,a0
#6,al
d6,vis_srt2
srt_flg
srt_quit
vis_srtl

test(Voz2-Vozl) and advance pointer
1st is farther
fetch 1st record

make
second first and
first
second
set the flag

point to next record Voz
and the one following
for all records.
Were any records swapped?
no
yes, run through again

sort is finished

drw_it:
* Draw the visible tiles

move.w vis_cnt,d7
beq drw_it_out
subq.w #l,d7
lea vis_lst,aO

drw_itl:
movem. 1
bsr
movem.1
addq.1
dbra

drw_it_out:
rts

d7/a0,-(sp)
set_prim
(sp)+,d7/a0
#8,a0
d7,drw_itl

pointer to list

draw the next primitive

next record

194 Real-Time 3D Graphics for the Atari ST

set_prim:
* set up next primitive for drawing; enters with pointer to record in aO
* 1. First do the background

move.l aO,-(sp) save pointer
bsr ldup_bkg load background data as program data
bsr otranw object-to-world
bsr w_tran_v world-to-view

* It's always visible at constant illumination; pass colour directly
movea.l (sp)+,aO restore pointer
move.w (aO),dO first word of record
move.l aO,-(sp) save pointer
lsr.w #8,d0 top byte
lsr.w #4,do top nibble is colour-
move, w dO,col_lst the final
move.w d0,col_lst+2 colours
bsr perspective
bsr scrn_adj centre it
bsr polydraw draw it

ct
restore pointer

bsr ldup_obj load object data as program data
bsr otranw object-to-world
bsr w_tran_v world-to-view
bsr illuminate all
bsr perspective the
bsr scrn_adj rest
bsr polydraw
rts

* 2. Second draw the object
movea.l (sp)+,a6

ldup_bkg:
* Load background data as program data.

move.w #2,npoly
move.l #$40004,snedges
lea sedglst,a2
move.l #l,(a2)+
move.l #$20003,(a2)+
move.l #$4,(a2)+
move.l #$50006,(a2)+
move.l #$70004,(a2)+

the background vertices define a cross
all x coords are zero

The background is a grid.
2 polygons (intersecting rectangles)
4 edges in each
edge list 0,1,2,3,0,4,5,6,7,4
edges 0,1
edges 2,3
edges 0,4
edges 5,6
edges 7,4

lea
move.
move.
move.
move.
lea
move.
move.
move.
move.
lea
move.
move.
move.
move.
move.
move.w
move. w

ocoordsx,a2 vertex coords x =
#0,(a2)+ 0,0
#0,(a2)+ 0,0
#0,(a2)+ 0,0
#0,(a2) 0,0
ocoordsy,a2 y =
#$ff800080,(a2)+ -128,128
#$80ff80,(a2)+ 128,-128
#$fffcfffc,(a2)+ -4,-4
#$40004,(a2) 4,4
ocoordsz,a2 z =
#$40004,(a2)+ 4,4
#$fffcfffc,j(a2)+ -4,-4
#$ff800080,(a2)+ -128,128
#$80ff80,(a2) 128,-128
#8,oncoords the
#8,vncoords counts
#8,wncoords are all the same

A World Scene 195

the tile centre in the world frame is Oox=0 and the
contents of the third and fourth words of the record

move.w #0,0ox
move.w
addi .w
move. w
addi .w
clr .w
clr .w
clr .w
rts

4(a0),0oy
#128,Ooy
6(a0),0oz
#128,Ooz
otheta
ophi
ogamma

third word

fourth word

no
orientation

all done
* Load background data as program data

move.w #l,npoly only one polygon
move.w #4,snedges 4 edges
lea sedglst,a2 edge list 0,1,2,3,0
move.l #l,(a2)+ edge 0,1
move.l #$20003,(a2)+ edge 2,3
clr.w (a2)+ edge 0

* the background vertices are the corners of the tile
vertex coords x =

0,0
0,0

ocoordsx,a2
#0,(a2)+
#0,(a2)+
#0,(a2)+
#0,(a2)+
ocoordsy,a2
(a2) +
#$ff00ff,(a2)
ocoordsz,a2
#$ff,(a2)+
#$ff0000,(a2)
#4,oncoords
#4,vncoords
#4,wncoords

the tile centre in the world frame is 0ox=0 and the
contents of the third and fourth words of the record

move.w #0,Oox
move.w 4(aO),Ooy third word
move.w 6(a0),Ooz fourth word
clr.w otheta no
clr.w ophi orientation
clr.w ogamma
rts all done

lea
move.w
move.w
move. w
move.w
lea
clr.l
move.1
lea
move.1
move. 1
move.w
move.w
move.w

y =
0,0
255,255
z =
0,255
255,0
the
counts
are all the same

ldup_obj:
* Load object data as program
* first find out what type it

move.w (a6),d0

data
is; pointer to record in a6
top word

lsr .w
andi .w
lsl.w
lea
movea.1
movea. 1
move.w
move.w
subq.w
move
movea. 1
movea.1
lea

#8,do
#$f,d0
12, dO
primitive,,
0(a5,d0.w)
4(a5),a2
(a2),d7
d7,npoly
#l,d7
d7,d0
8(a5),a0
a0,a4
snedges,al

a5
,a5

top byte
bottom nibble is type (call
*4 for offset
pointer to vector table
pointer to type n lists
pointer to npolyn
here it is

the count
save it
pointer to nedgn (list edge
save it
destination

it n)

numbers)

196 Real-Time 3D Graphics for the Atari ST

move.l (a5),a2
lea srf_col,a3

obj_lpl move.w (aO)+,(al)+
move.w (a2)+,(a3)+
dbra dO,obj_lpl

* calculate the total number of
move.w d7,d0
clr dl
clr d2

obj_lp2 add.w (a4)+,d2
addq #l,d2
dbra d0,obj_lp2

*move the edge list
subq #l,d2
movea.l 12(a5),a0
lea sedglst,al

obj_lp3 move.w (aO)+,(al)+
dbra d2,obj_lp3

* and the coordinates list
movea.l 28(a5),a0
move.w (aO),dl
move.w dl,oncoords
move.w dl,vncoords
move.w dl,wncoords
subq #l,dl
movea.l 16(a5),a0
lea ocoordsx,al
movea.l 20(a5),a2
lea ocoordsy,a3
movea.1 24(a5),a4
movea.l a5,a6
lea ocoordsz,a5

obj_lp4 move.w (aO)+,(al)+
move.w (a2)+,(a3)+
move.w (a4)+,(a5)+
dbra dl,obj_lp4

* increment the rotation angle
bsr next_rot
addi.w #128,Ooy
addi.w #128,Ooz
rts

pointer to intrinsic colours
destination
transfer edge numbers
transfer intrinsic colours

edges
restore count

number of edges
and with last repeated

this is the counter
edglstn, the source
destination
pass it

pointer to no
no. vertices
same
for
all frames
the counter
pointer object x

object y

object z

vertices

* Increment the rotation of the object
next_rot:

movea.l 32(a6),a0
move.l (aO),dO
move.1 do, dl
andi.l #$ffff,dO
addi.w #2,dO
cmp #360,do
bit obj_lp5
subi #360,dO

obj_lp5 move.w d0,2(a0)
* see what angles to rotate

swap dl
andi.w #$f,dl

pointer to angle and flag
top word is flag, bottom is angle

the angle
increment it

next angle

the flag is in the low nibble

A World Scene 197

* f lags

rot_vec:

no_rot
rotx

roty

rotxy

ro tz

rotxz

rotyz

rotxyz

are se t :
l s l .w
lea
move.1
jrap

d e l
r t s
move.w
r t s
move.w
r t s
move.w
move.w
r t s
move.w
r t s
move.w
move.w
r t s
move.w
move.w
r t s
move.w
move.w
move.w
rts

: bit 0 = x rot, bit 1 = y rot, bit 2 = z rot
#2,dl offset
rot_vec,a0 pointer to jump table
0(aO,dl.w),a0 the jump vector
(aO) here goes

no_rot,rotx,roty,rotxy,rotz,rotxz,rotyz,rotxyz
no rotation

dO,otheta rotate about x axis

dO,ophi

dO,otheta
dO,ophi

dO,ogamma

dO,otheta
dO,ogamma

dO,ophi
do,ogamma

do,otheta
dO,ophi
do,ogamma

y

x and y

z

x and z

y and z

x, y and z

joy_read:
* Rotate the view point about an axis
* Read the joystick and update the variables accordingly
* The data packet cpntaining the FIRE bit (7) and the position
* bits (0-2) is saved in the variable joy_data

c1r.w j oy_data
move.w #10,d6

joy_more:

joy_dr

bsr
dbf
move.w
move
andi.w
bne
andi .w
bne
rts
lea
lsl.w
move. 1
jmp

]ump_;)oy:
d e l
del

uP_jy b s r

rts
down_jy bsr

rts
left_jy bsr

rts

rd_joy
d6,joy_more
joy_data,d0
d0,dl
#$f0,d0
jy_press_fire
#$f,dl
joy_dr

jump_joy,a0
#2,dl
0(a0,dl.w),a0
(aO)

read joystick
give it time to think
here's the result
save it
fire pressed ?
yes
what direction is the stick?

nothing doing
base address
offset into jump table
the jump address
go for it

0,up_jy,down_ jy,0,left_jy,up_left_jy,down_left_ jy
0, r ight_ jy, up_r ight_ jy, down_right_jy
rot_down rotate view frame down about vy axis

rot_up

rot left

rotate up about vy axis

rotate left about vx axis

198 Real-Time 3D Graphics for the Atari ST

right_jy:
bsr
rts

up_left_jy
down_left_jy
up_right_jy
down_right_jy
jy_press_fire:

move.w
rts

rot_right

rts
rts
rts
rts

#l,fire

rotate right about vx axis

do nothing for now

in_key:
* Read the keyboard to set view frame speed

ky_read:

ky_rpt

bsr
cmp.w
beq
rts

bsr
tst.w
beq
rts
swap
subi.w
andi.w
lea
lsl.w

scan_keys
#-l,d0
ky_read yes

read_key
dO
ky_rpt

do
#$3b,d0
*1. do
ky_jump,aO
#2,do

movea.l 0(aO,d0.w),a0
jmp (aO)

ky_jump:
* The jump table for f keys

del flf,f2f,f3f,f4f ,f5f ,f6f ,f7f

was a key pressed?

which key?
f keys have $0 in the low word
only interested if f keys
something else
the code
fl is 3b : set it to zero for offset
first 7 f keys
jump table
key code is offset
to the routine address
go for it

flf

f2f

f3f

f4f

f5f

f6f

f7f

bsr
rts
bsr
rts
move.w
rts
move.w
rts
move.w
rts
move.w
rts
clr .w
trap

roll_left

roll_right

#-2,speed

#2,speed

#3,speed

#0,speed

-(sp)
#1

rot_down:
* Rotate down about the yv axis
* by the view transform matrix.

lea rot_y_neg,aO
bsr ctrl_view
rts

roll to the left

roll to the right

reverse speed 2

forward speed 2

forward speed 3

stop

quit altogether- return to caller

. Multiply the "down" control matrix

pointer to the control matrix
multiply and set base vectors

rot_up:
* Rotate up about the yv axis. Multiply the "up
* matrix by the view transform matrix.

lea rot_y_pos,a0
bsr ctrl_view
rts

control

A World Scene 199

r o t _ l e f t :
* Rotate left about the xv axis . Multiply the "left" control
* matrix by the view transform matrix.

lea rot_x_pos,aO
bsr ctrl_view
rts

rot_right:
* Rotate right about the xv axis. Multiply the "right" control
* matrix by the view transform matrix.

lea rot_x_neg,aO
bsr ctrl_view
rts

roll_left:
* Rotate left about the zv axis. Multiply the "roll-left"
* control matrix by the view transform matrix.

lea rot_z_neg,aO
bsr ctrl_view
rts

roll_right:
* Rotate right about the zv axis. Multiply the
* control matrix by the view transform matrix.

lea rot_z_pos,aO
bsr ctrl_view
rts

'roll-right"

ctrl_view:
* Multiply the control matrix pointed to by aO by the view matrix
* to calculate the new elements of the view base vectors.
*1. base vector iv

pointer to view matrix
pointer view frame base vector iv
3 elements to iv
set view pointer
next view element

lea
lea
move.w
movea. 1

iv_loop move.w
move. w
move.w
muls
muls
muls
add.l
add.l
lsl.l
swap
move.w
addq.1
dbra

w_vmatx,al
iv,a2
#2,d6
al ,a3
(a3),dl
6(a3),d2
12(a3),d3
(aO)>dl
2(a0),d2
4(a0),d3
d2,dl
d3 ,dl
#2,dl
dl
dl,(a2)+
#2,a3
d6,iv_loop

/
2A14
next element in base vector
next column in view matrix
for all elements in this base vector

*2. No need to do the base vector jv; it is calculated from the other two.

200 Real-Time 3D Graphics for the Atari ST

*3. base vector
lea
move.w
raovea.1

kv_loop move.w
move.w
move.w
muls
muls
muls
add.l
add.l
lsl.l
swap
move.w
addq.1
dbra
rts

kv
kv,a2
#2,d6
al,a3
(a3),dl
6(a3),d2
12(a3),d3
12(a0),dl
14(a0),d2
16(a0),d3
d2,dl
d3,dl
#2,dl
dl
dl,(a2)+
#2,a3
d6,kv_loop

* Set the velocity components
adj_vel:

adjl

lea
move.w
move. w
lsl.w
move
move
muls
lsr.l
add.w
bpl
clr .w
muls.
lsr.l
add.w
muls
lsr.l
add.w
rts

kv,aO
#14,d7
speed,dO
#4,dO
do ,dl
d0,d2
(aO),dO
d7,d0
dO,oposx
adjl
oposx
2(a0),dl
d7,dl
dl,oposy
4(a0),d2
d7,d2
d2,oposz

pointer view frame base vector kv
3 elements to kv
reset view pointer
next view element

/
2"14
next element in base vector
next column in view matrix
for all elements in this base vector
all done

ready to divide by 2A14

scale it

v*VZx
/2"14
xw speed component

oposx must be >0
v*VZy

yw speed component
v*VZz

zw speed component

*
* bss_07. s *
* variables for Chapter 12
*

i nc1ude bss_0 6.s
* observer position in world (mod4096)
oposx ds.w 1
oposy ds.w
oposz ds.w

* Tile offset in 16*16 patch
Ty ds.w 1
Tz ds.w

* Tile lists
patch_lst
vis_lst

* List vars
vis_cnt ds.w
srt_flg ds.w

ds.l
ds.l

32
32

records (8 byte) of 16 tiles in patch
records of visible tiles

number of visible tiles
set during sorting in depth order

A World Scene 207

* * * * *
* data_06.s *
* Data file for Chapter 12 *
*

include data_03.s
include data_05.s

* the vector table of graphics primitives
primitive:

d c . 1 p r i m O , p r i m l , p r i m 2 , p r i m 3 , p r i m 4 , p r i m 5

* t h e v e c t o r t a b l e f o r p r i m i t i v e #0 . A s i m p l e b l o c k .
primO d e l c o l r s 0 , n p o l y 0 , nedg0 ,edg l s t0 ,p rm0x ,p rmOy ,prmOz , n p t s 0

t h e t a O
1 , 1 , 1 , 1 , 1 8 shades of 1 c o l o u r
5 b lock

• 4 4 4 4 4
0 , 1 , 2 , 3 , 0 , 3 , 2 , 4 , 5 , 3 , 5 , 4 , 6 , 7 , 5 , 7 , 6 , 1 , 0 , 7 , 1 , 6 , 4 , 2 , 1
0 , 5 0 , 5 0 , 0 , 7 0 , 0 , 7 0 , 0
— 6,— 6 , 6 / 6 , 6 , 6 ,~6 ,"~6
—6 , "*6 ,—6 , ~6 , 6 , 6 , 6 , 6

d e l
c o l r s O d e w
npolyO d e w
nedgO d e w
e d g l s t o d e w
prmOx dc.w
prmOy d e w
prmOz d e w
nptsO d e w
t h e t a O d c . 1 $10000

* the vector table for primitive #1. An inverted pyramid.

p r i m l d e l
d e l
d e w
d e w
d e w

c o l r s l
n p o l y l
nedg l
e d g l s t l d e w
prmlx d e w
prmly d e w
prmlz d e w
n p t s l d e w
t h e t a l d c . 1

* the vector

colrsl, npolyl, nedgl, edglstl, prmlx, prmly, prml z, nptsl
thetal
1,1,1,1,0 sides and top differ in colour
5
3,3,3,3,4
0,1,2,0,0,2,3,0,0,3,4,0,0,4,1,0,1,4,3,2,1
0,75,75,75,75
0,
0,
5
$10000

32,32,32,-32
32,-32,32,32

p n m 2

colrs2
npoly2
nedg2

d e l
d e l
d e w
d e w
d e w

e d g l s t 2 d e w
d e w
d e w
d e w
d e w
d e w
d e w
d e l

prm2x
prm2y
prm2z
npts2
theta2

table for primitive #2. A nugget.
colrs2,npoly2,nedg2,edglst2,prm2x,prm2y,prm2z,npts2
theta2
1,1,0,1,0,0,1,0,1,1,0,1,0,1
14
4,4,4,4,4,4,4,4,4,4,4,4,4,4
1,6,4,2,1,0,1,2,3,0,3,2,4,5,3,4,6,7,5,4,6,1,0,7,6
8,0,3,11,8,3,5,10,11,3,5,7,9,10,5,7,0,8,9,7,8,11,13,12,8-
11,10,14,13,11,10,9,15,14,10,9,.8,12,15,9,12,13,14,15,12
40,60,60,40,60,40,60,40,20,20,20,20,0,0,0,0
-30,-10,10,30,10,30,-10,-30,-30,-30,30,30,-10,10,10,-10
-30,-10,-10,-30,10,30,10,30,-30,30,30,-30,-10,-10,10,10
16
$70000

202 Real-Time 3D Graphics for the Atari ST

* t h e v e c t o r t a b l e f o r p r i m i t i v e #3 . A Tee .
prim3 d e l c o l r s 3 ,npo ly3 ,nedg3 , e d g l s t 3 ,prm3x,prm3y ,prm3z , n p t s 3

d e l t h e t a 3
c o l r s 3 d e w 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1
npoly3 d e w 10
nedg3 d e w 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4
e d g l s t 3 d e w 0 , 1 , 2 , 3 , 0 , 3 , 2 , 4 , 7 , 3 , 4 , 5 , 6 , 7 , 4 , 5 , 1 , 0 , 6 , 5

d e w 8 , 1 1 , 1 4 , 1 5 , 8 , 1 3 , 1 4 , 1 1 , 1 0 , 1 3 , 1 2 , 1 3 , 1 0 , 9 , 1 2 , 8 , 1 5 , 1 2 , 9 , 8
d e w 1 2 , 1 5 , 1 4 , 1 3 , 1 2 , 1 0 , 1 1 , 8 , 9 , 1 0

prra3x d e w 0 , 4 5 , 4 5 , 0 , 4 5 , 4 5 , 0 , 0 , 7 0 , 4 5 , 4 5 , 7 0 , 4 5 , 4 5 , 7 0 , 7 0
prm3y d e w - 1 0 , - 1 0 , 1 0 , 1 0 , 1 0 , - 1 0 , - 1 0 , 1 0 , 1 2 8 , 1 2 8 , 1 2 8 , 1 2 8 , - 1 2 8 , - 1 2 8

d e w - 1 2 8 , - 1 2 8
prra3z d e w - 1 0 , - 1 0 , - 1 0 , - 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , - 1 0 , - 1 0 , 1 0 , - 1 0 , - 1 0 , 1 0
n p t s 3 d e w 16
t h e t a 3 d e l $10000

* t h e v e c t o r t a b l e f o r p r i m i t i v e #4. A r o l l e r .
prim4 d e l c o l r s 4 ,npoly4 , n e d g 4 , e d g l s t 4 , p r m 4 x , p r m 4 y ,prm4z , n p t s 4

d e l t h e t a 4
c o l r s 4 d e w 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1
npoly4 d e w 8
nedg4 d e w 4 , 4 , 4 , 4 , 4 , 4 , 6 , 6
e d g l s t 4 d e w 1 , 2 , 8 , 7 , 1 , 0 , 1 , 7 , 6 , 0 , 5 , 0 , 6 , 1 1 , 5 , 4 , 5 , 1 1 , 1 0 , 4 , 3 , 4 , 1 0 , 9 , 3

d e w 2 , 3 , 9 , 3 , 2 , 4 , 3 , 2 , 1 , 0 , 5 , 4 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 6
prm4x d e w 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0 , 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0
prm4y d e w - 3 2 , - 3 2 , - 3 2 , - 3 2 , - 3 2 , - 3 2 , 3 2 , 3 2 , 3 2 , 3 2 , 3 2 , 3 2
prm4z d e w - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0 , - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0
n p t s 4 d e w 12
t h e t a 4 d e l $20000

* t h e v e c t o r t a b l e f o r p r i m i t i v e #5 . Another r o l l e r .
pr im5 d e l C o l r s 5 , n p o l y 5 , n e d g 5 , e d g l s t 5 , p r m 5 x , p r m 5 y , p r m 5 z , n p t s 5

d e l t h e t a 5
c o l r s 5 d e w 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1
npoly5 d e w -8
nedg5 d e w 4 , 4 , 4 , 4 , 4 , 4 , 6 , 6
e d g l s t 5 d e w 1 , 2 , 8 , 7 , 1 , 0 , 1 , 7 , 6 , 0 , 5 , 0 , 6 , 1 1 , 5 , 4 , 5 , 1 1 , 1 0 , 4 , 3 , 4 , 1 0 , 9 , 3

d e w 2 , 3 , 9 , 8 , 2 , 4 , 3 , 2 , 1 , 0 , 5 , 4 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 6
prm5x d e w 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0 , 0 , 4 0 , 4 0 , 0 , - 4 0 , - 4 0
prm5y d e w - 8 , - 8 , - 8 , - 8 , - 8 , - 8 , 8 , 8 , 8 , 8 , 8 , 8
prm5z d e w - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0 , - 4 5 , - 2 0 , 2 0 , 4 5 , 2 0 , - 2 0
n p t s 5 d e w 12
t h e t a 5 d e l $40000

A World Scene 203

*
* da t a_07 *
* control matrices for rotation *
*
* +ve rotation about the view frame x axis (left) by.5 degrees
rot_x_pos:

dew 16384,0,0,0,16322,1428,0,-1428,16322

* - v e r o t a t i o n abou t t h e xv a x i s (r i g h t)
r o t _ x _ n e g :

d e w 1 6 3 8 4 , 0 , 0 , 0 , 1 6 3 2 2 , - 1 4 2 8 , 0 , 1 4 28,16322

* +ve r o t a t i o n abou t t h e yv a x i s (up)
r o t _ y _ p o s :

d e w 1 6 3 2 2 , 0 , - 1 4 2 8 , 0 , 1 6 3 8 4 , 0 , 1 4 28 ,0 ,16322

* - v e r o t a t i o n abou t t h e yv a x i s (down)
r o t _ y _ n e g :

d e w 163 2 2 , 0 , 1 4 2 8 , 0 , 1 6 3 8 4 , 0 , - 1 4 2 8 , 0 , 1 6 3 2 2

* +ve rotation about the zv axis (roll-right)
rot_z_pos:

dew 16322,1428,0,-1428,163 22,0,0,0,16384

* -ve rotation about the zv axis (roll-left)
rot_z_neg:

dew 16322,-1428,0,1428,16322,0,0,0,16384

204 Real-Time 3D Graphics for the Atari ST

*
data_08.s *

The world layout for Chapter 12 *

* The map of the world.
* Each byte gives the attributes of a size 256*256 "tile" in a
* 16*16 tile world. The attribute is broken down:
* high nibble = background colour (1-7)
* low nibble = primitive type (0-5)
map_base:

dc.b $62,$62,$62,$50,$41,$35,$35,$35
dc.b $35,$35,$35,$43,$45,$54,$54,$64
dc.b $62,$62,$62,$55,$42,$33,$35,$35
dc.b $35,$35,$32,$44,$45,$54,$54,$64
dc.b $52,$52,$52,$52,$44,$35,$34,$35
dc.b $35,$30,$35,$41,$44,$54,$54,$64
dc.b $45,$41,$42,$42,$42,$35,$22,$23
dc.b $23,$20,$25,$25,$44,$44,$40,$65
dc.b $33,$35,$30,$32,$32,$22,$25,$25
dc.b $25,$23,$24,$24,$35,$32,$35,$31
dc.b $35,$32,$35,$35,$32,$22,$11,$11
dc.b $10,$10,$24,$24,$33,$35,$32,$34
dc.b $20,$25,$25,$25,$20,$21,$13,$13
dc.b $13, $13, $20, $'25, $25, $25, $20, $25
dc.b $24,$25,$25,$25,$21,$21,$13,$13
dc.b $13 ,$13,$20,$20,$25,$25,$20,$25
dc.b $20,$25,$25,$25,$22,$22,$13,$13
dc.b $13,$13,$14,$24,$25,$25,$22,$23
dc.b $25,$23,$25,$25,$23,$22,$13,$13
dc.b $13,$13,$14,$23,$25,$25,$25,$25
dc.b $31,$35,$30,$35,$31,$21,$22,$22
dc.b $20,$20,$20,$20,$35,$35,$34,$33
dc.b $45,$40,$40,$40,$41,$41,$22,$22
dc.b $22,$25,$30,$40,$40,$42,$45,$41
dc.b $40,$40,$41,$41,$44,$45,$30,$35
dc.b $35,$35,$32,$45,$40,$50,$55,$55
dc.b $61,$61,$61,$51,$53,$45,$35,$32
dc.b $35,$35,$31,$45,$40,$50,$60,$60
dc.b $61,$61,$61,$52,$55,$44,$33,$35
dc.b $33,$35,$30,$45,$40,$50,$60,$60
dc.b $61,$61,$61,$55,$51,$45,$30,$35
dc.b $32,$35,$35,$41,$45,$50,$60,$60

A World Scene 205

*
* systm_05.s
* routines for Chapter 12
*

include systm_02.s
include systm_03.s
include systm_04.s

init_vars:
* set up the screens

bsr set_up
* set the view point

move.w #100,oposx
clr.w oposy
clr.w oposz

* and the clip frame
move.w #50,xmin
move.w #270,xmax
move.w #30,ymin
move.w #170,ymax

* Set up view frame base vectors
* 1. iv

* * * * * * *

* * * * * * *

y

lea
move.w
move.w
move.w

lea
clr.w
move.w
clr.w

lea
move.w
clr.w
move.w

iv,aO
#16384,(a0)+
#0,(a0)+
#0,(a0)

jv,aO
(a0) +
#16384,(a0)+
(aO)

kv,aO
#0,(a0)+
(a0) +
#16384,(aO)

align
view

axes

with
the
world
frame

axes

frame

* 3. kv

flg_init:
* Initialize flags and other variables

clr.w speed start off at rest
clr.w screenflag 0=screen 1 draw, l=screen 2 draw
clr.w viewflag

* Move the view point to -300 on the view frame z axis
lea
move.w
move.w
move.w
move.w
rts

swap sen:
tst.w
beq
bsr
bsr
clr.w
bra

screen_l:
bsr
bsr
move.w

screen 2:
rts

persmatx,aO
#300,dO
d0,(a0)
d0,10(a0)
dO,30(aO)

screenflag
screen_l
draw2_displ
clear2
screenflag
screen_2

drawl_disp2
clearl
#1,screenflag

screen 1 or screen2?
draw on screen 1, display screen2
draw on screen 2, display screenl
but first wipe it clean
and set the flag for next time

draw on 1, display 2
but first wipe it clean
and set the flag for next time

206 Real-Time 3D Graphics for the Atari ST

*
* eulr_scn.s *
* A multi-object scene *
*
* A world scene consisting of various types of graphics primitives
* in motion. The viewer is free to "fly" to any location with
* flight simulator type control from the joystick. At any
* position a patch consisting of 4*4 "tiles" is visible.

SECTION TEXT
opt d+
bra main
include systm_05.s
include core_08.s

main:
* Initialize the system.

bsr init_vars initialise view transform
bsr flg_init initialize flags

loop:
* Read input and make adjustments.

swap the screens
see' which "direction to move
change the euler angles
construct the view transform
move it to the base vectors
update the speed
adjust the velocity

everything to complete the picture

Draw the next frame
bra loop

SECTION DATA
include data_06.s
include data_07.s
include data_08.s
SECTION BSS
include bss 07.s

bsr
bsr
bsr
bsr
bsr
bsr
bsr

swap_scn
joy_look
angle_update
wtranv_l
vtran_move
in_key
adj_vel

Draw the scene
bsr scne_drw

END

A World Scene 207

*
* core_08.s *
* Subroutines for eulr_scn, Chapter 12 *

*
include core_07.s previous subroutines

joy_look:
* Change the euler angles etheta and ephi (vtheta and vphi from
* Chapter 10 are same thing)
* Read the joystick and update the variables accordingly
* The data packet containing the FIRE bit (7) and the position
* bits (0-2) is saved in the variable joy_data

clr.w joy_data
move.w

ejoy_more:
bsr
dbf
move. w
move
andi.w
bne

#10,d6

rd_joy
d6,ejoy_more
joy_data,dO
d0,dl
#$f0,d0
ejy_press_fire

andi.w #$f,dl
bne ejoy_dr

ejump_joy,a0
#2,dl
0(a0,dl.w),a0
(aO)

rts
ejoy_dr lea

l s l . w
move.1
jmp

ejump_joy:
d e l
d e l

eup_jy b s r
r t s

edown_jy
r t s

e l e f t _ j y
rts

eright_jy:
bsr
rts

eup_left_jy
edown_left_jy
eup_right_jy
edown_right_jy rts
ejy_press_fire:

move.w #l,fire
rts

read joystick
give it time to think
here's the result
save it
fire pressed ?
yes
what direction is the stick?

nothing doing
base address
offset into jump table
the jump address
go for it

0, eup_ jy, edown_ jy, 0,eleft_jy, eup_lef t_ jy, edown_left_jy
0,eright_jy,eup_right_jy,edown_right_jy
erot_down rotate view frame down about vy axis

bsr

bsr

erot_up rotate up about vy axis

erot left rotate left about wx axis

erot_right

rts
rts
rts

rotate right about wx axis

do nothing for now

erot_down:
* Rotate down about the yv axis. Decrement ephi (same as vphi)

move.w #-5,vphi_inc
rts

erot_up:
* Rotate up about the yv axis. Increment ephi (same as vphi)

move.w #5,vphijnc
rts

208 Real-Time 3D Graphics for the Atari ST

erot_left:
* Rotate left about the xw axis . Increment etheta

move.w #5,vtheta_inc
rts

erot_right:
* Rotate right about the xw axis. Decrement etheta

move.w #-5,vtheta_inc
rts

vtran_move:
* move the view transform matrix to the base vectors
* (really just a change of label)

lea
lea
lea
lea
move
move
move
move
move
move
move
move
move
rts

.w

.w

.w

.w

.w

.w
• w
.w
.w

iv,aO
jv,al
kv,a2
w vmatx,a3
(a3)+,(a0)+
(a3)+,(a0)+
(a3)+,(a0)
(a3)+,(al)+
(a3)+,(al)+
(a3)+,(al)
(a3)+,(a2)+
(a3)+,(a2)+
(a3),(a2)

all
iv

all
jv

all
kv

Mpfpmift$5x U

68000 Instruction Set
Entire books have been written concerning the 68000 instruction set. There is
insufficient space here to do more than outline the essentials. A succinct but
thorough discussion is given in the Motorola 16-Bit User's Manual.

The central feature of assembly language programming is that there are no abstract
algebraic variables as in regular mathematics or high level languages such as
BASIC. It is not possible to make statements such as

LET x=y+z

though it is possible to effect equivalent manipulations of data.

In assembly language, names such as x, y or z are labels representing addresses in
RAM. At these addresses can be found binary numbers which are the current
values of the parameters associated with the labels. There is a similarity to
algebraic variables but at every stage it is the binary number itself which is
manipulated either in memory or in the processor registers. The addressing modes
of the 68000 are designed to deal with all the ways data needs to be addressed or
directed through the system during the execution of the various instructions.

The 68000 instruction set is extensive and powerful. It has two important aspects:
the instructions themselves and their addressing modes, which form the basic
framework for data acquisition and manipulation.

Al.l Registers
The 68000 processor has eight 32-bit data registers (D0-D7) dedicated to data,
seven 32-bit address registers which can be used for data and addresses (A0-A6),
two 32-bit stack pointers (both called A7 but used separately, one for the system
and one for the user) set to point to last-in, first-out temporary storage areas of

210 Real-Time 3D Graphics for the Atari ST

RAM (stacks), one 32-bit program counter to keep count of program progress and
one 16-bit status register of flags to record results of operations. The 32-bit
registers can be used to handle the five basic data types: bits, bed digits, bytes
(8 bits), words (16 bits) and long words (32 bits).

A1.2 Addressing Modes
Each instruction is concerned with the manipulation of data of some kind
somewhere in the microcomputer system: in the processor, in memory or from
external hardware. The addressing modes are designed for the many ways data is
accessed. There are six basic types: Register Direct, Register Indirect, Absolute,
Immediate, Program Counter Relative and Implied, which encompass the 14 modes
listed below. For each instruction, the data (which can be an address) which is
about to be manipulated, is located somewhere in the system. The addressing
modes give the ways this location is to be found. In its most general form this
to-be-determined address is called an effective address (ea).

Addressing Modes

Immediate Data Addressing
Immediate the data is the next word
Quick Immediate the data is included with the instruction

Implied
ea = SR, SP or PC

Register Direct
Address Register Direct ea = An
(data contained in named address register)
Data Register Direct ea = Dn
(data contained in named data register)

Absolute Data Addressing.
Absolute Short ea = (next word)
(data is at address given at next word following instruction)
Absolute Long ea = (next 2 words)

Register Indirect Addressing
Register Indirect ea = (An)
(data is at address given in named
address register)
Postincrement Register Indirect ea = (An)+
(as (An), then increment register)
Predecrement Register Indirect ea = -(An)
(as (An) but predecrement register)

68000 Instruction Set 211

Register Indirect with Offset ea = dl6(An)
(as (An) plus a word length addition)
Indexed Register Indirect with Offset ea = d8(An,Xn)
(As (An) plus a byte length addition
together with the contents of an address
or data register acting as an index)

An important version of register indirect addressing is PC relative, where the
program counter is used instead of An in dl6(An) and d8(An,Xn). This allows
reference to memory locations relative to the current program counter and is used
to generate position independent code. It is not used in this book since the
assembler generates relocatable code which achieves the same end.

Instruction Set
In general instructions have associated with them a source operand and a
destination operand. What these actually mean depends specifically on the
instruction, for example in a MOVE instruction they do exactly what they imply -
supply the source and destination effective addresses. In an ADD instruction they
give the addresses of the two numbers to be added. These operands follow the
instruction, on the same line. The instruction itself is like the verb of the sentence.

In addition the instruction has attributes. These are the permitted data sizes, which
can be one or more of the types: byte, word or long word depending on the
instruction. Also as a consequence of die instruction certain flags will be set or
cleared in the condition code (status) register.

The list below gives the assembler mnemonics for the main instruction types.

Mnemonic Action Mnemonic Action

ABCD add decimal with extend ADD add
AND logical and ASL arithmetic shift left
ASR arithmetic shift right Bcc branch conditionally*
BCHG bit test and change BCLR bit test and clear
BRA branch always BSET bit test and set
BSR branch to subroutine BTST bit test
CHK check register against CLR clear operand

bounds
CMP compare DBcc test condition,

decrement
and branch*

DIVS signed divide DIVU unsigned divide
EOR exclusive OR EXG exchange registers

212 Real-Time 3D Graphics for the Atari ST

EXT
JSR
LINK
LSR
MOVEM
MULS
NBCD

NOP
OR

RESET
ROR
ROXR
RTR
SBCD

STOP
SWAP
TRAP
TST

sign extend
jump to subroutine
link stack
logical shift right
move multiple registers
signed multiply
negate decimal with
extend
no operation
logical or

reset external devices
rotate right with extend
rotate right with extend
return and restore
subtract decimal with
extend
stop
swap data reg. halves
trap
test

JMP
LEA
LSL
MOVE
MOVEP
MULU
NEG

NOT
PEA

ROL
ROXL
RTE
RTS
Sec

SUB
TAS
TRAPV
UNLK

jump
load effective address
logical shift left
move
move peripheral data
unsigned multiply
negate

ones complement
push effective
address
rotate left with extend
rotate left with extend
return from exception
return from subroutine
set conditional*

subtract
test and set operand
trap on overflow
unlink

*A list of condition codes is shown below:

Condition Codes

cc
EQ
GE
HI
LS
Ml
PL
VC

carry clear
equal
greater or equal
high
low or same
minus
plus
no overflow

CS
F
GT
LE
LT
NE
T
VS

carry set
false (never true)
greater than
less or equal
less than
not equal
always true
overflow

The condition codes follow instructions such as DBcc and Bcc, but be careful! The
codes test the result of a calculation in the order

(destination operand) - (source operand),

placing the result (if any) in (destination).

DBcc (which is used for loop processing) will go to the next instruction if the
condition is true, whereas Bcc (used for a straight branch) will branch if the
condition is true (and go to the next instruction if it is false).

68000 Instruction Set 213

The most obvious loop instruction DBRA (decrement a counter and branch until it
is -1) is actually absent from the 68000 set. But instead DBF (decrement and
branch, never true) achieves the same result. Most assemblers implement DBRA
anyway (but convert it to DBF on assembly), as a service to mankind.

Variations of Instruction Types
Here are additional variations of the main types. Most important are the endings -Q
and -I which refer to faster "Quick" and "Immediate" versions; Quick being the
faster of the two.

ADDA
ADDI

ANDI
ANDI to CCR
ANDI to SR

add address ADDQ
add immediate ADDX

AND immediate
AND immediate to cond. code
AND immediate to status reg.

add quick
add with extend

_ _....

CM PA compare address
CMPI compare immediate

CMPM compare memory

EORI exclusive OR immediate
EORI to CCR exclusive OR immediate to condition codes
EORI to SR exclusive OR immediate to status register

MOVEA move address
MOVE to CCR move to condition codes
MOVE to SR move to status register
MOVE from SR move from status register
MOVE to USP move to user stack pointer

MOVEQ move quick

NEGX negate with extend

ORI OR immediate
ORI to CCR OR immediate to condition codes
ORI to SR OR immediate to status register

SUBA
SUBQ

subtract address
subtract quick

SUBI subtract immediate
SUBX subtract with extend

Mpp&m^S^ 2

Devpac Assembler
There are many good assemblers available. The Devpac ST Assembler/Debugger
by Hisoft has been used to develop the programs in this book because it is
powerful, friendly and popular; there are many commands available. What is
included in this appendix is the small subset which has been found to be especially
useful.

The more recent version, DevpacST version 2, provides the option of editing,
assembling, running and debugging a program all within the one environment. This
gives the speediest development of programs. But the earlier version 1, which edits
and assembles separately from debugging, is still entirely adequate for the job. The
notes here apply mostly to version 2. If version 1 is used it will be necessary to
delete the section headings SECTION TEXT, SECTION DATA and SECTION
BSS (or precede them with an asterisk, *) from the main control programs. In
addition, version 1 only allows assembly to a binary file on disk, whereas version
2 allows assembly to memory, within the Editor. This difference only matters
when the GEMDOS call #o, TERMINATE, is invoked. In these programs,
control will return to the Editor in version 2 but not to the Desktop in version 1.
In the latter case the computer must be reset by turning it off for 10 seconds.

One last general point. It helps to have a high resolution monitor (SM124)
available for program development; the Editor displays a complete page and the
Debugger gives a more extensive view of memory contents. In low resolution less
is visible on the screen.

GENST
This is the combined editor, assembler and debugger. You can write programs, run
and debug them all within GENST2.

Devpac Assembler 215

The Editor
This is a friendly screen editor, allowing you to roam freely through the entire
program. Tabs can be set to convenient column positions in the instruction line
which will consist of the following fields separated by spaces:

label mnemonic operand(s) comment

The label is actually an address in RAM though it appears in the program as a
user-friendly word, usually having a meaning which is relevant to the program. For
example if it is the point to which the program returns in a repetitive loop, it might
be simply "loop". Instruction mnemonics and operands have been discussed in
Appendix 1. The comment field should explain in an informative way what is
going on so that the progress of the program can be easily understood. An example
might be

loop move.w dO, (aO) save the f l a g

Moving About the File

Gross movements about a file are easily done by using the mouse to drag the slider
on the scroll bar. To go to the start (top) or end (bottom) of a file press Alternate-T
or Alternate-B, respectively.

The cursor keys can be used to control movement within the screen.

Editing Text

Whole lines can b.e deleted by pressing Control-Y, and restored by pressing
Control-U (useful for repeating lines). Deleting within a line can be done by
pressing Backspace (backwards) or Delete (forwards).

Text Movement

Among the most useful facilities are those which handle blocks of text. First move
the cursor to the start of the block and press Fl. Go to the end of the block and
press F2. A marked block can be manipulated in several ways (Help lists these):

F3 saves a block; F4 copies it (to where the cursor is),

Shift-f4 saves it to the block buffer (a speedier version of F3),

Shift-F5 deletes it (but also saves it in the block buffer!),

F5 pastes in the block (at the cursor).

Alternate-W prints it out.

216 Real-Time 3D Graphics for the Atari ST

Assembly
A program can be assembled in several ways. Just to see whether it will assemble
choose the Output to None option. This is the best thing to try on the first attempt.
To run and debug a program choose the Output to Memory option. To save the
assembled program to run independently choose the Output to Disk option and
name it with the file extension .PRG (or TOS).

Options

There are many options available which affect how the assembly should take place.
The option OPT-D (written at the top of the source file but after a BRA to the
actual program) is very useful and will retain labels in the debugger, which helps
enormously to follow the program.

Directives

Assembler directives, which have a similar appearance to assembler instruction
mnemonics but which are unique to the assembler, are fairly standard. The
common ones, such as EQU, DC, DS, used to fix the values of labels, set up
(tables of) constants and to set up variables space, respectively, are used
extensively throughout the example programs. Also used extensively to pull in files
at assembly is the INCLUDE directive. This has made it possible to build up the
book and the overall program by stages. The programs themselves show best how
the directives are used.

Debugging

All assembly language programs have errors. Often, more time is spent debugging
programs than writing them and so it helps to have a good debugger.

The debugger is actually called MonST and is available as a free standing program
or within the Editor. Using it within the Editor makes the cycle of editing,
assembling, running, debugging complete. Most likely you will want to single step
through a program and watch what happens in the 68000 registers and in memory.
Three windows display the register contents, a disassembled section of program
around the current address of the program counter and the contents of a selected
part of memory. A fourth small window passes messages. For the purpose of
changing addresses and register contents, any one of the display windows can be
made active by toggling Tab.

Executing Programs

There are many ways of monitoring a program. Here are some of them:

Devpac Assembler 217

Control-Z
Control-T
Control-A

Run

Breakpoints

single step; every instruction executed
single step; skips BSR's, JSR's, LineA, Traps
single step; places a breakpoint after next instruction
(useful for by-passing DBF's (DBRA's)
produces a prompt for the type of run:
G run at full speed to next breakpoint
S run at reduced speed
I run for (specified) count
U run until condition is true (evaluate arexpression)

These allow you to stop the program at specific addresses. They control the flow
of the program in the different running modes. Here are simple controls:

Alternate-B
Control-K
U
Help

Miscellaneous
Control-C
L
P
M
Alternate-A
Alternate-R
S hift-Alternate-Help

set a breakpoint at an address (and clear if followed by -)
clears all set breakpoints
asks for an address to run to.
show Help and breakpoints

terminate MonST
list labels
print out (active window)
modify address
set the starting address (active window)
change contents of named register
interrupt running program

Hunting for Bugs
This is a skill learned through experience. The most useful tip is to check programs
thoroughly before trying them. Try to construct programs in a structured way, in
modules, each of which can be thoroughly tested independently before joining
them all together. Do not rely on the Debugger to find the mistakes. By that time
you'll have forgotten what each part of the program was for. Don't be in a hurry;
don't spend one hour "bugging" and ten hours debugging!

A most common error is a bus error. This is when the program counter finds itself
pointing to a wrong part of memory. This is often caused by the Stack getting out
of order, particularly when a return address from a subroutine is required. Look to
see how you have been using the Stack during the subroutine.

z%pf/7i?(gfe

Number Systems

Binary
Computers are made from electronic switches which are either off (0) or on (1).
The number system which can be constructed out of such units is called binary
(base 2), meaning out of 2; the system which goes in powers of 10 is called denary
(base 10). In the binary system numbers are assembled from powers of 2. For
example:

13(base 10) = 1*23 + i*22 + 0*2* + 1*2°

Instead of writing numbers out in this long form it is usual to arrange only the
coefficients of the powers of 2 in columns. The column number, labelled from the
right, gives the power of 2. Hence the number 11 is written as

13,O- 10H2

Each one of the units in the binary number is called a binary digit, or bit for short.
The group of four bits is called a "nibble", especially loved by assembly language
programmers who have frequent use of it.

A group of 8 bits also has a special name, a "byte", whose common use largely
dates from the age of 8-bit microcomputers, which transferred data in bytes. In
more recent 16-bit microprocessors (this microprocessor labelling scheme refers to
the size of the data bus) such as the 68000, groups of 16 and 32 bits are commonly
used, these are called "words" and "long words" respectively.

Number Systems 219

Hexadecimal (hex for short)
Humans count in powers of 10 (probably because they have 10 fingers), and find it
unnatural to count in powers of 2. But some link with the binary system is
necessary for assembly language programmers, especially when memory locations
are being inspected. To this end the hexadecimal number system is commonly
used. In it nibbles are abbreviated into single symbols. For the values up to 9
ordinary denary numbers are used but for the values 10 to 15 (the maximum value
of a nibble) new symbols are needed. Here a great opportunity has been lost.
Instead of inventing new computer age symbols, the letters of the alphabet A, B,
C, D, E, F have been hijacked. Hexadecimal means base 16.

In the three systems binary, denary and hexadecimal respectively, the equivalence
is:

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Denary
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

He
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Negative Numbers
Negative numbers in binary are hard to get the hang of. This is because there is no
special symbol reserved for the minus sign and it must be encoded within the
number itself. It is done in the following way.

For simplicity, suppose we are working only in nibble size numbers (in fact there
aren't any instructions to handle only numbers of this size on the 68000, a nibble
must be part of a larger number). To deal in negative numbers the total possible
range, 0-15, is split equally. The interval 0-7 inclusive (8 numbers) is reserved for
positives and the range 15-8 inclusive (also 8 numbers) is reserved for negatives
(the range -1 to -8). It's not as daft as it sounds. A negative number is obtained by

220 Real-Time 3D Graphics for the Atari ST

counting backwards from 0. If there is nothing below 0 the next best to do is to go
to the top and count down. In a practical sense this is a good method because all
the negative numbers have their top bit set. The top bit is like a minus sign turned
vertical. There is a fancy name for this convention: 2's complement

There is a simple recipe for getting the negative of a number: write it in binary,
switch all the Ts to 0's and 0's to l's and then add 1. Let's try it. We know that
-2 is in fact 14 so here's the check:

Step 1

+2 is 0010

Step 2 (2's complement)

change bits 1101

and add 1 to give 1110

which is 14 and therefore correct.

The 2's complement method of labelling negative numbers works for any size:
bytes, words and long words. But be warned, only you know that the number is -2
and not 14, the computer doesn't! To help you keep track of what is going on the
68000 has instructions, called signed instructions which treat the top bit as a sign
bit. There are other, unsigned instructions, which treat numbers as positive only.
These help, but there are many occasions where the programmer must watch that
numbers do not exceed their allotted range and flip sign, usually with pathological
consequences.

In assembly language the different number types are distinguished by their
different prefixes:

denary - none ; binary - % ; hex - $.

Mmm^Bzz 4

ST Operating System
As they say at the start of "A Hitchhiker's Guide to the BIOS" (1985 Atari
Corp.): DON'T PANIC.

The Operating System of the ST is big and complex. It is called TOS. It is
basically split into two parts: one which depends on the hardware details of the ST
and is called machine dependent (BIOS, XBIOS and Line A routines), and another
which is machine independent (BDOS, XBDOS, VDI and AES) and will work on
any computer which runs on the same operating system. A crude breakdown of
their functions is

BDOS and XBDOS basic disc operating system
VDI graphics, particularly input
AES graphics, particularly output
BIOS basic input and output to all devices
XBIOS bios extension to mouse, joystick sound and screen
Line A very fast graphics primitives to screen.

Calls to the Operating System
BDOS Push parameters onto the stack in the given order. Push the function

number and call trap #1. Afterwards the stack must be tidied (the
pointer returned to its precall value). Any returned parameter will be
in DO.

XBDOS An address pointer (to a parameter block) is placed in Dl, the
function code in DO and trap #2 is called. A returned parameter (if
any) is passed in DO. Access to AES and VDI is through this route.

222 Real-Time 3D Graphics for the Atari ST

BIOS Push parameters onto stack and call trap #13. Reply is passed in DO.
Tidy stack.

XBIOS Push parameters onto stack and call trap #14. Reply is passed in DO.
Tidy stack.

LINE A Declare constant $AOO0. Set up parameter blocks. Declare constant
SAOOn, where n is the routine to be called.

The Line A functions are described in greater detail in Appendix 5.

The following describes some of the Operating System calls that have a relevance
to the programs in this book. The reader who wants more detail should consult the
references given at the end.

BIOS calls (trap #13)

1 - bconstat (return character_device input status)
push: WORD bconstat; WORD character_device number, tidy #4
Returns character_device input status:
D0.L = $0000 if none; $ffff if some characters waiting.

device can be one of:
0 - prt (parallel port printer); 1 - aux (aux, RS232 port)
2 - con (console.the screen); 3 - midi; 4 - keyboard port;
5 - raw console (to screen without control)

Other functions also use character device so a table can be made:

operation
bconstat
bconin
bconout
bcostat

prt
no
yes
yes
yes

aux
yes
yes
yes
yes

con
yes
yes
yes
yes

midi
yes
yes
yes
yes

kbd
no
no
yes
yes

raw
no
no
yes
no

The keyboard device is output-only, and can be used to configure the intelligent
keyboard (ikbd) (or drive it insane).

2 - bconin (input character from device - wait for it)

As bconstat.
Waits for a character to be input. Returns with code in low word of DO.L.
For the console (dev. 2) returns the IBM-PC compatible scan code in low
byte of upper word and the ASCII character in the low byte of low word
(see Appendix 8).

ST Operating System 223

3 - bconout (output character to device)
push: WORD bconout; WORD device; WORD character, tidy #6
returns when the character has been written (see Appendix 8).

8 - bcostat (return character device output status)
push: WORD bcostat; WORD device, tidy #4
returns status: 0 = not ready; -1 = ready to send

XBIOS calls (trap #14)

2 - _physbase (get address of physical screen (start of 32K block))
push WORD _physbase. tidy #2
returns address in D0.L (at next vertical blank)

3 - Jogbase (get address of logical screen; right away)
push WORD Jogbase. tidy #2
returns immediately die address in D0.L

4 - getrez (get the screen's current resolution (0,1 or 2)
push WORD _getrez. tidy #2
returns result in DO.W

5 - setscreen (set up all (or some) of screen parameters)
push: WORD rez; LONG physbase; LONG logbase;

WORD _setscreen
tidy #12
(negative parameters are ignored allowing partial changes)

6 - setpalette (set up the hardware colour palette)
push: LONG palettePtr; WORD -_setpalette. tidy #6
set the contents of the hardware palette register (all 16 entries)
from the 16 words pointed to by _palettePtr (at next Vblank).

7 - setColour (set a colour register in the colour palette)
push: WORD colour; WORD colourNum; WORD _setColour. tidy #6
set the colour number "colourNum" in die palette to the value
"colour", return old value in DO.W, no change if negative.

25 - ikbdws (write a string to the intelligent keyboard)
push: LONG ptr; WORD cnt; WORD ikbdws. tidy #8
ptr is the pointer to the string, cnt is the number of characters minus 1.

34 - kbdvbase (find the vector table for intelligent keyboard)
push WORD kbdvbas. tidy #2
returns in D0.L die pointer to the base (kbdvbase) of the table of vectors to
ikbd routines called packet handlers that process the data packets received
from the intelligent keyboard controller. The structure of long words is:

224 Real-Time 3D Graphics for the Atari ST

midivec
vkbderr
vmiderr
statvec
mousevec
clockvec
joyvec
midisys
ikbdsys

midi input
keyboard error
midi error
ikbd status packet
mouse packet
clock packet
joystick packet
system MIDI vector
system IKBD vector

The user can substitute his own vectors in this table so as to provide mouse and
joystick control of programs.

VT52 Terminal Escape Codes
Text can easily printed on the screen using the VT52 terminal emulator routine in
the BDOS. The program f i l e j o y _ t e s t . s in Chapter 8 illustrates this. Here
are the control codes, each one of which must be preceded by the ESCAPE code
27:

CODE
A

B

C

D
E

H
1

J

K
L

M

Y,m,n

b,f
c,b

FUNCTION
cursor up

cursor down

cursor right

cursor left
clear home

home cursor
cursor up

clear below

clear to eol
insert line

delete line

position at m,n

foreground f
background b

DESCRIPTION
move cursor up a line (no effect
at top)
move cursor down a line (no
effect at bottom)
move cursor to right one
column
move cursor to left one line
erase screen and return cursor
to (0,0) (top LH)
return cursor to (0,0) (top LH)
move cursor up a line (scrolls
at top)
the screen below the cursor is
erased
erase to end of line
insert blank line above present
one
erase current line and close up
space
position cursor at row m,
column n
select character colour f
select background colour b

ST Operating System 225

d clear to cursor erase screen to cursor,
inclusive

e show cursor make cursor visible
f hide cursor make cursor invisible
j save cursor save cursor position
k restore cursor restore it to saved position (or

(0,0))
I erase line keep the current line but erase

characters
o clear to sol erase to start of line, inclusive
p reverse video exchange foreground and

background colours
q normal video restore fg and bg colours
v wrap on continue text onto next line
w wrap off characters pile up in last

column position.

References
The Concise Atari ST Reference Guide. K.D.Peel, Glentop Press

Atari ST Internals. A Data Becker Book, Abacus Software

A Hitchhiker's Guide to the BIOS, Atari Corp.

z%epM2/(§fe

Line A (A-Line) Routines
The ST has a set of fast graphics routines available in User or Supervisor mode. In
User mode they are triggered by any instruction which has the hexadecimal form
$A00n where n is the number of the routine which can be from 0 to $F. Any
instruction which begins with $A000 triggers an exception which is a special
design feature of the 68000 incorporated to handle interrupts and exceptions of
various kinds. This so called Line A "emulator" is to allow the user to set up
customised routines which do not have to be called as subroutines.

When the code is detected, the processor switches to supervisor mode and selects
the appropriate exception handler routine address from the list of addresses (JumP
vectors) at the start of RAM and is directed to the particular routine to execute
according to the value of n. When the routine is completed, control again returns to
the user at the instruction following the Line A code. Prior to calling any of the
other Line A routines the very first one, $A000, must be called as an initialisation
in order to find the addresses of parameter blocks, which then have to be set up
before the routine is called.

The following details of the Line A routines are taken from S.A.L.A.D. (Still
Another Line A Document) made available by Atari Corporation, U.K. and used by
their kind permission. The 15 opcodes are:

Return Line A pointers
Draw a pixel
Return the value of a pixel
Draw an arbitrary line
Draw a horizontal line
Draw a filled rectangle
Draw a horizontal, line of filled
rectangle

Initialization $A001
Put Pixel $A001
Get Pixel $A002
Arbitrary Line $A003
Horizontal Line $A004
Filled Rectangle $A005
Filled Polygon $A006

Line A (A-Line) Routines 227

BitBIt

TexBIt
Show Mouse
Hide Mouse
Transform Mouse
Undraw Sprite
Draw Sprite
Copy Raster
Seedfill

$A007

$A008
$A009
$A00A
$A00B
$A00C
$A00D
$A00E
$A00F

Move/copy a section of
memory
Move text to the screen
Show the mouse pointer
Hide the mouse pointer
Transform the mouse pointer
Undraw software "sprite"
Draw software "sprite"
Copy raster form
Seedfill

Initialization $A000
This constant must be declared before any other. It returns several useful pointers
including the one to the Line A Variables Structure. Returned registers contain:

dO - pointer to variables structure
aO - ditto
al - pointer to null terminated array of pointers to system font headers letting you
to point to custom fonts in TexBIt call.
a2 - pointer to null terminated array of pointers to Line A routines so they can be
called direcdy in supervisor mode.

This routine, like all the others is called by declaring the constant

d e w $A000

This only needs to be done once so that the pointers can be stored for later use.

Line A Variable Structure
After initialization ($A000) both DO and AO point to the start of the variables
structure. This is a long table into which the user must enter values before calling
other Line A routines. Some of the entries contain pointers to secondary variables
structures. The list is very long. Most of the lower address variables are concerned
with the more complicated functions beyond $A007. Only the part concerned with
simple graphics is given here. The variables are listed in order of their addresses,
given as an offset from the base address returned by $A000.

228 Real-Time 3D Graphics for the Atari ST

Variables Concerned with Simple Graphics

NAME
PLANES
WIDTH

CONTRL
INTIN
PTSIN
PTSOUT
COLBITO
COLBIT1
COLBIT2
COLBIT3

LSTLIN

LNMASK
WMODE

X1
Y1
X2
Y2
PATPTR

PATMSK

OFFSET
+000 $000
+002 $002

+004 $004
+008 $008
+012$00C
+020 $014
+024 $018
+026 $01A
+028 $01C
+030 $01E

+032 $020

+034 $022
+036 $024

+038 $026
+040 $028
+042 $02A
+044 $02C
+046 $02 E

+050 $032

SIZE
word
word

long
long
long
long
word
word
word
word

word

word
word

word
word
word
word
long

word

MFILL

CLIP

XMINCL
YMINCL
XMAXCL
YMAXCL

+052 $034

+054 $036

+056 $038
+058 $03A
+060 $03C
+062 $03 E

word

word

word
word
word
word

FUNCTION
number of bit planes in current resolution
width of destination memory form in bytes;
low and medium res: $a0(160 decimal);
high res: $50 (80 decimal)
pointer to CONTRL array
pointer to INTIN array
pointer to PTSIN array
pointer to PTSOUT array
current colour bit value for colour plane 0
ditto 1
ditto 2
ditto 3
these are the four bits of the colour nibble
which selects one of 16 coloursfrom the
palette
used in line drawing;iif zero last pixel
drawn: nonzero last point undrawnfor
conflicts e.g. connecting lines in XOR mode

equivalent to the VDI writing mode
0-replace, 1-transparent, 2-XOR mode,
3-reverse transparent
x1 coordinate start of line
yi
x2 coordinate end of line
y2
pointer to fill pattern e.g. in horizontal line
and filled rectangle
"mask" for fill pattern.maintains alignment of
pattern on the screenjs ANDed with Y1
to give offset into pattern.most often is
length of pattern minus 1,usually pattern is
power of two in length
multi-plane fill flag,
0 - fill pattern is single plane
nonzero - multiplane
clipping flag: zero = no clipping,
nonzero = clipping
minimum x clipping value
minimum y
maximum x
maximum y

Line A (A-Line) Routines 229

Line A Routines
$A000 - i n i t i a l i z a t i o n

Returns pointers to variables arrays
INPUT: none
RETURNS: DO = pointer to variables structure base address

AO = ditto
Al = pointer to null terminated font headers
A2 = pointer to null terminated array of Line A pointers

$A001 - P u t P i x e l

Plot a single pixel
INPUT: INTIN[0] = pixel colour

PTSIN[0] = x coord, of pixel
PTSIN[1] = y coord, of pixel

RETURNS: nothing

Set up the INTIN and PTSIN arrays as shown above and then load their addresses
at 8(A0) and C(A0) respectively.

$A002 - Get P i x e l

Gets the value of a single pixel
INPUT: PTSIN[0] = x coordinate of pixel

PTSIN[1] = y

RETURNS: value of pixel in DO

Set up the arrays and pointers to the arrays as in $A001

$A003 - A r b i t r a r y l i n e

Draws line between two points
INPUT: COLBITO, COLBIT1, COLBIT2, C0LBIT3, LISTLIN,

LNMASK, WMODE
X1,X2,Y1,Y2.

RETURNS: nothing

LINMASK is rotated to align with the rightmost end point.

$A004 - H o r i z o n t a l l i n e

Draw a horizontal line. Slightly faster than $A003
INPUT: COLBITO, COLBIT1, COLBIT2, COLBIT3, WMODE, XI,

Yl, X2PATPTR, PATMSK, MFTLL
RETURNS: nothing

230 Real-Time 3D Graphics for the Atari ST

PATPTR points to an array of line patterns Which one is chosen depends on YI
and PATMSK. If MFDLL is nonzero, all planes will be filled with the values in the
colour bits. This overrides WMODE.

$A005 - F i l l e d rectangle

Draw a filled rectangle between the limits of XI, X2 and Yl, Y2.
INPUT: COLBITO, COLBIT1, COLBIT2, COLBIT3, WMODE, XI,

X2, Yl, Y2PATPTR, PATMSK, MFTLL, CLIP, XMTNCL,
XMAXCL, YMINCL, YMAXCL

RETURNS: nothing

The pattern length, PATMSK, should be 1 less than the length of the number of
words in the pattern block.

$A006 - F i l l e d polygon

This is not a substitute for fast polygon filling routines since it fills only one line at
each call of $A006. To fill the entire polygon the value of y must be incremented
and entered at Yl in a loop.
INPUT: PTSINQ (the array must be filled with the list of wordlength

polygon vertices with the first one repeated at theend:
xl,yl,x2,y2 xn,yn,xl,yl)
CONTRLtl] (number of verticesX^OLBITO, COLBIT1,
COLBIT2, COLBIT3, WMODE, Yl (current scanline y value),
PATPTR, PATMSK, MFTLL, CLIP, XMTNCL, XMAXCL,
YMINCL, YMAXCL.

RETURNS: nothing

$A007 - BitBlt

Perform a BIT BLock Transfer. This can be used to create a 'sprite'. It transfers a
prepared bit pattern from one part of memory (called the source form memory) to
another (called the destination form memory). The destination memory may be the
screen, or some other part of RAM. In these memory 'spaces' the block of pixels
to blit is located by the coordinates of its top left-hand corner (minimum x and y)
called the anchor point and the size by its height and width. The BitBlt routine has
its own dedicated parameter block into which data must be loaded before the call.
The block must be 76 bytes long with the last 24 bytes being kept free for use by
the routine itself. The pointer to this parameter block must be loaded into A6
before the routine is called. Variables marked (D) may be destroyed during the blit.
Further explanations of the meanings of some of the variables are given at the end.

B_WD +00 $00 word width of block to blit in pixels
B_HT +02 $02 word height of block to blit in pixels (D)
PLANE_CT +04 $04 word number of consecutive planes to blit

(D)

Line A (A-Line) Routines 231

FG_COL

BG_COL

OP_TAB

S XMiN
S YMIN
S FORM
S NXWD
S NXLN
S_NXPL

D XMIN
D YMIN
D_FORM

D NX WD
D NXLN
D_NXPL

P_ADDR

P NXLN
P NXPL
P MASK
SPACE

+06 $06

+08 $08

+10 $A

+14 $E
+-16 $10
+18 $12
+22 $16
+24 $18
+26 $1A

+28$1C
+28$1C
+32 $20

+36 $24
+38 $26
+40 $28

+42 $2A

+46 $2E
+48 $30
+50 $32
+52 $34

word

word

long

word
word
long
word
word
word

word
word
long

word
word
word

long

word
word
word
24 bytes

foreground colour (logic op index: hi
bit) (D)
background colour (logic op index: lo
bit) (D)
logic ops for all fore and background
combos
minimum x: source
minimum y: source
source form base address
offset in bytes to next word in line
offset in bytes to next line in plane
offset from start of current plane to
next plane
minimum x: destination
minimum y: destination
destination form base address
(screen address)
offset in bytes to next word in line
offset in bytes to next line in plane
offset from start of current plane to
next plane
address of pattern buffer (0=no
pattern)
offset in bytes to next line in pattern
offset in bytes to next plane in pattern
pattern index mask
workspace required by routine

NOTES

The prefixes S_ and D_ refer to the bit pattern in memory and when it is copied
onto the screen respectively.

S_FORM is the pointer to the block of memory defining the sprite and D_FORM
is the pointer to the base address of the screen. These addresses must be on word
boundaries (start at the next word). S_NXWD and D_NXWD are the offsets, in
bytes, to the next word in a particular colour plane (see Chapter 2) for the source
and destination and are: monochrome = 2, medium = 4, low res. = 8. S_NXLN and
D_NXLN are the number of bytes between each y value which are 80 in high
resolution (monochrome) and 160 in medium and low resolution. S_NXPL and
D_NXPL are the number of bytes between colour planes. On the ST screen this
value is always 2, but it could be different for the source.

There is no clipping in this routine so care must be taken to ensure the blit does
not spill outside the destination memory space.

232 Real-Time 3D Graphics for the Atari ST

Logic Operations
There is a complicated set of logic operations associated with the blitting process
which combine the pixels about to be copied (source) with those already there
(destination). What logic operation applies to each colour plane is calculated from
the contents of OP_TAB (see below).

This routine is complicated and powerful due to the variety of different options
available. Its basic function is to move bit images defined within a rectangle from
one part of memory to another. If the destination is the screen then it provides a
very versatile framework within which to manipulate 2D pictures or 'sprites'.

There are other Line A functions ($A00C and $A00D) dedicated to handling small
sprites of size 16x16 pixels but there is no such limit on $A007. They do however
take care of the housekeeping associated with preserving the underlying image
when the sprite is removed. There are three principal entities involved in this
function having similar sets of variables but with different prefixes: source,
destination and pattern. They represent the transfer of an image from the source to
the destination with the possibility of including a pattern in the process.

There are many alternative settings of the variables to cope with the range of
options available and ample opportunity for experimentation (which is probably the
only way of finding out how it all works). Some of the more impenetrable are
concerned with the way in which the foreground and background colours of the
source interact with the destination especially when there are different numbers of
planes in the source and destination. There are 16 logical operations, called
RASTER OP codes, between the source, S, and destination, D, to give the
following results:

OP CODE Combination Rule
0 0
1 SANDD
2 S AND [NOT D]
3 S (replace mode)
4 [NOT S] AND D (erase mode)
5 D
6 S XOR D (XOR mode)
7 SORD
8 NOT [S OR D]
9 NOT [S XOR D]
A NOTD
B S OR [NOT D]
C NOTS
D [NOT S] OR D
E NOT [S AND D]
F 1

Line A (A-Line) Routines 233

For each colour plane the logical operation is chosen from a table (at OP_TABLE)
of 4 byte length codes which is indexed from the appropriate plane bits in the
foreground colour (FG_COL) and background colour (BG_COL). The entries in
this table depend strongly on how you want the foreground and background
colours to interact with the destination The foreground bit is the high bit and the
background bit is the low bit in a two bit number to index into the table.

Patterns

Patterns can be included in the blit unless the pointer, P_ADDR, is zero. The
pattern is word-wide, an integral power of 2 in height (and vertically repeated at
that spacing) and word aligned. Since the pattern is anchored to the coordinate
(0,0) (upper left hand corner) of the destination memory form and is logically
ANDed with the source prior to logical combination with the destination, the final
pattern depends on the destination coordinates. P_NXLN is the offset in bytes (an
integral power of 2) between consecutive bytes in the pattem.P_NXPL is the offset
in bytes between consecutive pattern planes and a single plane pattern can be used
to set all destination planes with the same pattern by setting the plane offset to
zero. P_MASK works with P_NXLN to specify the length of the pattern which (in
words) must be an integral power of 2. The relation between these two is

if P_NXLN = 2**n
then P_MASK = (length in words-l)<n.

Some Examples

1. To BLT from a single plane source to a multiplane destination set S_NXPL=0.
The same source plane is BLTed to all destination planes. To map l's to
foreground colour and 0's to background colour set OP_TAB to:

Offset logic Op
+00 00 all zeros
+01 04 [NOT S] AND D
+02 07 S OR D
+03 15 all ones

To map l's to foreground colour and make 0's transparent set S_NXPL to zero
and OP_TAB to:

+00 04 [NOT S] AND D
+01 04
+02 07 S OR D
+03 07

2. To BLT a pattern without Source to the Destination, define a word of l's and
set S_FORM to point to it. Set S_NXLN, S_NXPL, S_NXWD, S_XMIN, and

234 Real-Time 3D Graphics for the Atari ST

S_YMIN to zero. Set up the pattern and the BLT will create a pattern filled
rectangle.

3. To create a simple sprite-like device, build a monoplane mask. Everywhere
there is a 1 in the mask the background will be removed. Everywhere there is a 0
the background is left intact. Set OP_TAB to:

+00
+01
+02
+03

04
04
07
07

[NOT S] AND D

S O R D

It is not necessary to enter a background colour BG_COL. Take a monoplane form
(or a multiplane form) and "OR" it (OP7) into the area that you just scooped out
with the mask.

Example: BitBIit a monochrome invertebrate to the screen

move.w #2,-(sp)
trap
addq
move.I
lea
dew

*BitBlit parameter block
blit: dew

dew
dew
dew
dew
del
dew
dew
del
dew
dew
dew
dew
dew

screen del
dew

find the screen
#14
#2,sp
dO.screen
blit,a6
$a007

$0030
$0014
$0001
$0001
$0000
07070707
$0000
$0000
slug
$0002
$0006
$0002
$00ff
$0064
$00000000
$0002

pointer to parameter block
Bitot

width of source in pixels
height of source in pixels
number of planes to blit
fg colour (logic op index: hi bit)
bg colour (logic op index: lo bit)
logic ops for all fg and bg combos
minimum X: source
minimum Y: source
source form base address
byte offset to next word in line
byte offset to next line in plane
offset to next plane (in bytes)
minimum X: destination
minimum Y: destination
destination form base address
byte offset to next word in line

Line A (A-Line) Routines 235

dew
dew
del
dew
dew
dew

$0050
$0002
$00000000
$0000
$0000
$0000

byte offset to next line in plane
offset to next plane (in bytes)
address of pattern buffer
byte offset to next line in pattern
byte offset to next plane in pattern
pattern index mask

* working space
dew $0000,$0000,$0000,$0000
dew $0000,$0000,$0000,$0000
dew $0000,$0000,$0000,$0000

* the image
slug:
* $30 pixels/scanline, $14 scanlines
* monochrome mask (1 plane: background = 0, foreground = 1)

dew $0000,$0000,$0030,$0000,$0000,$0066,$0000,$0000
dew $006e$0000,$0000l$00ce1$0000,$0000,$00cc,$0000
dew $0000,$0198,$0000,$0000,$03b0,$0000,$0000,$0770
dew $0000,$0000,$0760,$0000,$0000,$0ee0,$0000,$0000
dew $7fc0>$0000,$0003,$ffc0,$0000,$003f,$ffc0,$0000
dew $00ff,$ffe0,$0000,$1fff,$fff0,$01ff,$ffff,$fef0
dew $0fff ,$ffff ,$ff70,$1 fff ,$ffff ,$ff80,$ffff ,$ffff
dew $ffe0,$ffff,$ffff,$ffc0

* note: this program changes "constants" in "dew'"s; it would
* be better practice to use the "ds.w" directive in the bss section.

Vectors and Matrices
Vectors and matrices go together. Whatever convention is chosen for vectors
determines the convention for matrices.

Vectors
A vector is a concise way of specifying a position in space. The position is
measured from a fixed position called the origin. Since space is 3-dimensional the
position is determined by moving specified distances forward, sideways right and
up from the origin (negative distances account for backward, left and down
respectively). In mathematical language this means measuring all displacements in
a Cartesian coordinate system. A position in space is then specified by the
distances along the three axes at right angles one has to travel to reach it. The
vector notation arises from the way this information is presented. If the
displacements along the three axes to the point, P, are x,y and z respectively, then
the vector r which stretches from the origin to P, as shown in Figure A6.1, can be
expressed in vector notation as

r = xi + yj + zk

It is common to write vectors (which have both size (magnitude) and direction) in
boldface to distinguish them from ordinary numbers which have only size. Here i, j
and k, called the unit or base vectors, are signposts pointing along the x, y and z
axes and the term xi means "go a distance x in the direction of the x axis" and so
on. They are vectors in their own right with size (magnitude) equal to unity.

Since i, j and k really serve only to distinguish the three components of die
displacement, we could omit them from the scheme providing the order is retained.
The three components can be included in order inside brackets ready for
multiplication with matrices in the column vector notation

Modelling in a 3D World 237

Figure A6.1 A vector in Cartesian coordinates

I X
r = y

\ z

This is not the only way to represent vectors. In computer graphics it is common to
represent them in the row notation

r = (x y z)

The convention used determines the way matrices are written. In this book column
vectors are used because this is more common in science and engineering and
therefore, likely to be more familiar to the general reader. Switching between the
conventions is tiresome but fairly painless.

Matrices
As a result of rotational transforms which occur frequently in computer graphics,
the coordinates of objects change in a particular way. A point P(x,y,z) will move to

238 Real-Time 3D Graphics for the Atari ST

a new position P' (x' ,y' ,z') as a result of a rotation about some axis as shown in
Figure A6.2. Each one of the new components is related to all the old components
in a set of linear equations:

x' =Mll.x + M12.y + M13.z

y' = M21.x + M22.y + M23.Z

z' = M31.x + M32.y + M33.z

where the M's are numbers giving the proportions of the original components and
are the elements of a matrix M. The important thing is that the matrix elements are
related uniquely to the rotation, so that any other point rotated in an identical way
about the same axis would have its new components determined by the same
matrix M. Using the rules of multiplication of matrices and vectors, we can
emphasise this by disentangling the elements of M from the components x, y and z
of the vector. The product is written as:

x' = / Mil M12 M13

y' = M21 M22 M23

z' = \ M31 M32 M33

The matrix product written this way is just shorthand notation for the set of linear
equations which really matter when we actually come to work out the new
coordinates. But writing it this way makes it clear that, once calculated, the matrix
M can be used to rotate any point in the same way. In an even more concise
shorthand we can summarise the transformation by:

r ' =M.r

where the product here is the matrix product and not an ordinary product of
numbers.

To convert this shorthand product back into the set of equations observe that the
vector has three rows and one column and the matrix has three rows and three
columns. To form the top row (x') of the transformed vector r ' , multiply in turn
each of the elements in the top row of M by each of the rows of the vector r and
add them. The second row of r ' is calculated from die product of each elements in
die second row of M with die rows of r and so on (if we were working in the row
representation of vectors everything would be the other way round). This meaning
of matrix multiplication is somediing that just has to be learned.

Modelling in a 3D World 239

Figure A6.2 Point P transferred to point P'

Products of Vectors

The Scalar (Dot) Product
Vectors are really just a shorthand and highly suggestive way of doing geometry.
A point P(x,y,z) in a Cartesian system looks much more important when
represented by a vector r which stretches from the origin to the point P. Another
point P ' (x' ,y' ,z') is similarly represented by the vector P ' .

Very often we wish to know the angle, 0, between these two vectors (referring
back to the previous section it could be the angle of rotation of the vector P). It
turns out that what is simplest to find is the cosine of 0 which is

cos0 = (x.x' + y.y' + z.z') / V((x2+y2 +z2).(x'2+y'2+z'2))

The factors in the denominator look complicated but are just the magnitudes of the
two vectors calculated using a 3D version of Pythagoras' theorem. The numerator
is the sum of the products of the components of the two vectors taken together.

240 Real-Time 3D Graphics for the Atari ST

Because such a product occurs frequently in geometry it is given a special symbol
and name. It is called the scalar or dot product and is written as

r.r' = x.x' + y.y' + z.z'

It is called the scalar product because it produces a scalar answer from two vectors.
Instead of writing the magnitude of a vector as a square root of a sum of squares
all the time, which is tiresome, it is usual to represent it by the same symbol as the
vector but without boldface. Hence the cosine is given by

cos0 = (r.r')/r.r'

where r = Irl = V(x2+y2+z2) and likewise for r ' .

The operation Irl means 'the magnitude of r.'

Notice that the scalar product r.r' is proportional to cos0 and, most important, has
the same sign as cosG. The sign of the cosine turns out to be a very useful test of
whether two vectors are parallel (pointing in the same direction) or antiparallel
(pointing in opposite directions) and plays an important part in testing for the
visibility of surfaces.

The Vector (Cross) Product
This is a product of two vectors which produces a new vector. Once again it is
based on a useful application. In this case it generates the vector which is normal
(at right angles) to both the original vectors. Another way of stating this is to say
that the new vector is normal to the plane containing the two product vectors. This
is shown in Figure A6.3. The new vector r ' ' and the vector product are defined
by:

r ' ' = r x r '

The vector r ' ' is normal to the plane containing r and r ' and its magnitude is
equal to r.r' .sin(0). The components of r ' ' are

x ' ' = y.z' - z.y'

y ' ' = z.x' - x.z'

z ' ' = x.y' - y.x'

There is one important aspect of vector products which is also true of matrix
products, the order of multiplication matters; the product r x r ' is not the same as
r ' x r. In fact

r ' x r = -r x r '

The direction of r ' ' is obtained by twisting r into r ' through the smallest angle.
The direction in which this is seen as a clockwise rotation is the direction of r ' ' .

Modelling in a 3D World 241

T~v r

r /

Figure A6.3 Vector cross product

The vector product is complicated but very useful in computer graphics. It is used
to construct vectors which are normal to surfaces. We discuss this next.

Surface Normal Vectors

It is often necessary to construct a vector which is normal to two other vectors.
This occurs in the calculation of surface normal vectors and coordinate transforms.
In the case of a surface normal vector the objective is to construct a vector which
is normal (at right angles) to the surface.

What this amounts to is forming the vector product of two vectors which lie in the
surface, as discussed in the previous section. Usually these two vectors are not
presented as such but have themselves to be constructed from polygon vertex
coordinate lists. Suppose three consecutive vertices of a convex polygon are
Pl(xl,yl,zl), P2(x2,y2,z2) and P3(x3,y3,z3) and that these go clockwise round the
perimeter. The two vectors which can be multiplied in a cross product to give a
vector pointing out of the surface are

r = (x3-x2)i + (y3-y2)j + (z3-z2)k

r ' = (x2-xl)i + (y2-yl)j + (z2-zl)k

242 Real-Time 3D Graphics for the Atari ST

so ,

r ' ' = r x r '

Base Vectors
Base vectors are unit vectors which point along the axes of the coordinate system.
In Cartesian coordinates, i, j and k are the "base" vectors. They each have
magnitude 1, so the only thing that distinguishes them is their direction.

Matrices
Matrices have already been discussed in the previous section. In computer graphics
they represent a transformation of some kind. The matrices which are most
straightforward to deal with are those associated with rotation and are discussed
further in Appendix 7.

The rule for multiplying two matrices in the same as that of multiplying a matrix
and a vector (as discussed in the previous section) where the vector is taken as a
matrix having one column and three rows. Adding extra columns to the vector
makes it a matrix and produces extra columns in the product. For a product to be
possible there must be as many columns in the first matrix as there are rows in the
second matrix.

The matrices which describe rotation about the three axes x,y and z all have three
rows and three columns (unless they are in homogeneous coordinates): they are
3x3 matrices. The act of building up a complex rotation from the separate matrices
in some order is accomplished by multiplying the matrices together. This is called
matrix concatenation. Just as with the vector cross product, the order of the matrix
multiplication matters: the matrix farthest to theright is the first rotation and that
closest to the left is the last rotation.

Homogeneous Coordinates
Unlike rotations, certain types of transform, such as translations and perspectives,
cannot be written as 3 x 3 matrices and made to operate on vectors as a product.
Since, for the purpose of concatenation, it is desirable to put all transforms on an
equal footing, homogeneous coordinates are used to convert all transforms to
4 x 4 matrices which can be multiplied.

This means moving to a 4-D space (not real space, just a mathematical
convenience) in which the additional dimension is always 1. The extra degree of
freedom this gives is sufficient to convert all transforms to 4 x 4 matrices.
Likewise all vectors must have a forth component, 1. Putting this fourth dimension
to unity means we are working on a "plane" in the 4-D space which has the
intersection 1. The "plane" is normal 3-D space.

M$(pm(o]B% 7

Geometric and Coordinate
Transforms

There are two types of transform used widely in computer graphics: geometric and
coordinate transforms. What is confusing is that they are really two aspects of the
same thing and it is possible to achieve the same end result by either method.
However in order to stay sane it helps greatly to think of them as different, chosing
one or the other depending on the problem. Many clever shortcuts become possible
once the distinction and connection between them is understood.

Imagine that you are sitting in a swivel chair positioned at the centre of circular
carpet in a room with black featureless walls. Since there is no external reference
point (apart from remembering what actually happened) it is not possible to
distinguish between rotating the chair to the right on a stationary carpet, or keeping
the chair fixed and rotating the carpet to the left. The observer on the chair sees the
same relative movement of chair and carpet and his view of the carpet pattern is
the same in both cases. But we must be careful to establish a scheme of rotation of
either the chair or the carpet which are consistent Let us decide that left rotations
are positive and right rotations are negative. Then we can see that a positive
rotation of the chair (the observer) is equivalent to a negative rotation of the carpet
(the object): they are said to be the inverse of each other.

Now we come to the formal definitions. Rotating the observer is called a
coordinate transform and rotating the object is called a geometric transform. There
are many times in computer graphics when we wish to do both of these. When an
object is moved in the world frame, it is subject to a geometric transform. When
we wish to see the world from a different point of view a coordinate transform
must be done. When the observer is controlling his viewpoint orientation by means
of a joystick it is useful to exploit the connection between the two transforms.

244 Real-Time 3D Graphics for the Atari ST

Coordinate Systems and Frames of Reference
To some extent these terms are used interchangeably. For the most part the
positions and vertices of objects are determined in Cartesian coordinates by a set of
three x, y and z axes at right angles. The position of the zero of this set of axes is
called the origin of the coordinate system. The whole constitutes a frame of
reference to track subsequent motion of the various objects. As we have seen, there
are two types of movement: a coordinate transform (when the observer moves) and
a geometric transform (when an object moves). When the object moves it is easiest
to keep track of what is going on by following the motion of the frame of
reference attached to the object itself. We have called this the object frame. In the
main text the object-to-world transform was made by selected rotations and a
displacement of this object frame. Now we can see exactly how this works.

u

%~~--~?
i < ^ " ^

—l^

,1
\

/theta

XAJ'

_\Ji

Figure A7.1 Rotation of an object

Imagine a set of axes permanently attached to the object so that when it moves
they also move. For simplicity, we consider a rotation by an angle 0 about the z
axis, as shown in Figure A7.1. A transform matrix is now needed to relate the
coordinates after the rotation (xl.yl.zl,) to those before (x,y,z). The beauty of this
scheme is that we can construct this matrix by observing what happens to the base
vectors. Remember, the base vectors are the unit vectors (of size 1) pointing like

Geometric and Coordinate Systems 245

sign posts along the x,y and z axes. The base vectors before the rotation are i, j ,
and k and after the rotation are il, j l and kl.

Looking at the Figure we can see the relations between these:

il = cosG.i + sinG.j

j l = -sin0.i + cosG.j

kl =k

leading to a transform matrix for the base vectors:

(cosG sinG 0 \

-sinG cosG 0

0 0 1 /

Now mis matrix as it stands cannot be used to transform the coordinates (x,y,z) to
(xl,yl,zl), but curiously enough, its inverse can. Fortunately, the inverse of a pure
rotation is simply obtained by switching (transposing) the rows and columns. In
technical language, the inverse of a rotation is its transpose. Doing this yields the
matrix:

(cos8 -sin9 0 \

sinG cosG 0

0 0 1 /

so that, for example, in a rotation by 90 degrees, the point (0,1,0) becomes the
point (0,0,1) and the point (0,0,1) becomes (0,-1,0). So we have found a way of
rotating an object to a new orientation: perform that reorientation on the object
base vectors and express the result in terms of the original base vectors; men
transpose the matrix to produce the coordinate transform matrix.

Can the original matrix be used for anything? Yes. As it stands, before it is
transposed, it is a coordinate transform. If we were to leave the object stationary
and just rotate the frame of reference, it gives us the transform to calculate what
the object coordinates appear to be in the new rotated frame. This is shown in

246 Real-Time 3D Graphics for the Atari ST

Figure A7.2. Hence in the rotation of 90 degrees, the vertex (0,1.0) appears to be
at (0,0,-1), and the vertex (0,0,1) appears to be at (0,1,0) when seen from the
rotated frame. Note that in both of these rotations, of the object and reference
frame respectively, the sense of the rotation was positive.

Figure A7.2 Rotation of a frame of reference

Now we can see the qualitative discussion concerning the observer on the swivel
chair and the carpet expressed mathematically. The transform which calculates the
coordinates of the object after its positive rotation is:

/ cos6 -sin6 0

sin9 cosG 0

\ 0 0 1

and the transform which calculates the new apparent coordinates of the stationary
object after the reference frame has been moved in a positive direction is:

Geometric and Coordinate Systems 247

1 cos0 sin0 0

-sin9 cosG 0

\ 0 0 1

They are different when both involve a positive rotation but become the same if
the reference frame (the chair) is rotated negatively. Then the angle 0 is negative
and because sin(-0) = -sin9 but cos(-0) = cos0 the terms involving sin0 change
sign but those involving cos9 don't.

This is only restating the fact that rotating the reference frame one way gives the
same relative motion as rotating the object the other way.

o ppmmm &

Colour Palette and Key Scan
Codes

Standard Colour Palette

RGB value (hex) Colour
111
700
070
770
007
707
Oil
555
333
733
373
773
337
737
377
000

white
red
green
yellow
blue
magenta
cyan
light grey
grey
light red
light green
light yellow
light blue
light magenta
light cyan
black

GSX standard keyboard mapping

The key scan codes returned by the ikbd are chosen to simplify the implementation
of GSX.

Scan Codes 249

Hex
01
02
03
04
05
06
07
08
09
0A
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23

Keytop
Esc
1
2
3
4
5
6
7
8
9
0
-
==
BS
TAB
Q
W
E
R
T
Y
U
I
0
p
[
]
RET
CNTL
A
S
D
F
G
H

Hex
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46

Keytop
J
K
L
)
'
(i

(LEFT) SHIFT
\
Z
X
c
V
B
N
M
I

/
(RIGHT) SHIFT
(NOT USED)
ALT
SPACE BAR
CAPS LOCK
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
(NOT USED)
(NOT USED)

Hex
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72

Keytop
HOME
UP ARROW
(NOT USED)
KEYPAD
LEFT ARROW
(NOT USED)
RIGHT ARROW
KEYPAD +
(NOT USED)
DOWN ARROW
(NOT USED)
INSERT
DEL
(NOT USED)
(NOT USED)
ISO KEY
UNDO
HELP
KEYPAD (
KEYPAD)
KEYPAD /
KEYPAD *
KEYPAD 7
KEYPAD 8
KEYPAD 9
KEYPAD 4
KEYPAD 5
KEYPAD 6
KEYPAD 1
KEYPAD 2
KEYPAD 3
KEYPAD 0
KEYPAD .
KEYPAD ENTER

250 Real-Time 3D Graphics for the Atari ST

Index 251

ENBEX

2's complement, 220
3D

clipping in, 161
Modelling, 26
general transforms, 129
order, 177

68000 Instruction Set, 209

A-Line routines, 226
Absolute addressing, 210
Absolute code, 32
Address registers, 209
Addressing modes, 209, 210
AES, 8, 221
Assembly language, 6, 32, 209, 214
Atari ST, 1
Atari STE, 26
Attributes, 176

Base vectors, 156, 242
BDOS, 221
BCD digits, 210
Binary, 209, 218
BIOS, 8, 9, 100, 221
BIOS calls (trap #13), 222
BITBLT graphics, 26, 26
Bits, 208, 210
BUTTER, 26
Blurring, motion, 5
Breakpoints, 217
Bresenham algorithm, 36, 38, 40
bss_00.s file, 41, 43, 50
bss_01.sfile, 56, 64
bss_02.s file, 73, 80
bss_03.s file, 89, 99
bss_04.s file, 120
bss_05.s file, 139, 149
bss_06.s file, 164, 175
bss_07.s file, 187, 200

Bubble sort, 179, 179, 180, 186
Bugs, hunting for, 217
Bytes, 210, 218

Calls (to operating system), 221
Cartesian (x,y,z) coordinate system, 28, 30
Centre of projection, 66
Clip frame, 30, 51
clipfrme.s file, 55, 57
Clipping in 3D, 161
Clipping, 51, 55
Colour, 115
Colour Palette, 12,115- 119
Colour Palette, standard, 248
Colour planes, 13, 117
Column vectors, 32
Complex scene, 176
Composite rotations, 84
Computer Aided Design (CAD), 4
Computer games, 4
Computer graphics, 1, 2
Concatenation, 68, 129
Condition codes, 212
Control matrices, 152, 180 - 182
Control Panel Accessory, 117
Convex polyhedra, 52, 111
Coordinate systems, 30, 244
Coordinate transforms, 81, 132, 153, 243
core_00.s file, 42, 45
core_01.s file, 56, 58
core_02.s file, 73, 76
core_03.s file, 89, 90, 93
core_04.s file, 118, 123
core_05.s file, 138, 142
core_06.s file, 163, 167
core_07.s file, 186, 190
core_08.s file, 187, 207
Cosine tables, 88
Cosines, direction, 153, 156

252 Real-Time 3D Graphics for the Atari ST

crds_out, 56
Cross product (vectors), 113

Data
packet, 102
registers, 209
structures, 32

Database, 176
data_00.s file, 16, 22
data_01.s file, 71, 79
data_02.s file, 71, 79
data_03.s file, 88, 92
data_04.s file, 119
data_05.s file, 139, 150
data_06.s file, 185, 201
data_07.s file, 182, 186, 203
data_08.s file, 185, 204
Debugging, 214, 216
Decision variable, 39
Depth sorting, 176
Devpac Assembler, 8, 214
Direction cosines, 153, 156
Directives, 216
Displacements, 129
Distant objects, 162
Dot product, 112

Edge list, 33
Editor, 214, 215
Effective address (ea), 210
Errors, 159
Euler angles, 151, 153, 156, 180, 185, 187
eulr_scn, 183, 184, 185, 206
Exceptions, 13
Executing Programs, 216

Fast filling, 36
Field of view, 162
Fields, 179
find_phys, 15
Fire button, 102
Flicker-free pictures, 87
Flight simulators, 29, 151, 153, 180, 184
Fractals, 3
Frame, 73
Frames of reference, 27, 244
Friction, 137
Frustrum of visibility, 161

GEM variables area, 104
GEMDOS, 8

General Transforms in 3D, 129
GENST, 214
Geometric transforms, 81, 127, 129, 153, 243
Geometry engines, 5, 26
Graphics primitives, 29
GSX standard keyboard mapping, 248

Hexadecimal, 219
Hidden surface removal, 3, 110, 111, 118
High resolution, 11
High resolution monitor, 214
Hisoft Devpac assembler, 1
Hither plane, 162
Homogeneous coordinates, 65 - 69, 86, 242
Horizontal blank, 12

IKBD, 100 - 104
IKBDWS, 103, 104
illkey, 118
Illumination, 110, 114, 115, 118
Illumination vector, 115
ilLhide, 118, 121
Immediate addressing, 210
Implied addressing, 210
INCLUDE directive, 6, 41
Independent code, 7
Indexed addressing, 33
Inertia, 137, 138
Initialization, $A000, 227
Input devices, 100
Instance transforms, 28, 129, 136
Instruction set, 68000, 209, 211
Instruction types, variations, 213
Intelligent Keyboard Controller, see IKBD
Interrupt, vertical blank, 87
INTIN, 14
Inversion, 129

Joystick, 100 - 102, 130
Joystick handler routine, 102
Joystick vector, 102
joy_test, 104, 108
Jump vectors, 323

KBDVBASE, 102
Key Scan Codes, 248
Keyboard mapping, standard GSX, 248
key_peek.s program, 104, 105

Labels, 8, 32, 33, 109
Latitude, 130

Index 253

Left-handed Cartesian coordinates, 30
Light source, 110, 115
Line A (A-Line) Routines, 8, 9, 13, 14, 226,

229
Line A variable structure, 227
Line-of-sight vector, 114, 119
Linear transform, 68
LINK, 73
Lists, 33
Logical screen, 10, 29, 51, 87
Long words, 210, 218
Longitude and Latitude, 130
Look up tables, 15
Low resolution, 11, 12, 116
Low resolution screen driver, 15
Lucasfilm, 5

Map, 176
Mass, 137
Matrices, 31, 321, 236, 237, 242
Matrix concatenation, 242
Matrix product, 68
Medium resolution, 11, 13
Micropolygons, 5
Modelling, 25
Monitor, high resolution, 214
Motion blurring, 5
Mouse, 100, 101, 103
Mouse icon, 42
my_data, 55

Negative numbers, 219
Newton's Laws of Motion, 29, 137
Nibble, 218
Noncommutative products, 84
Number systems, 218

Object frame, 27, 28, 87
Object reference frame, 85
Object-to-world transform, 29, 85, 87
Observer, 29, 81
Operating System, 101
Operating System, calls to, 221
Order of Rotation, 84
ORG, 32
otranw, 87, 90

Packet handler, 102
Painter's algorithm, 110, 178
Patch, 186, 186

PC (program counter) relative addressing, 7,
210

Personal Iris, 5
perspect.s program, 71, 74
Perspective transform, 29, 65, 69, 72
Physical realism, 137
Physical screen, 10, 51, 87
Pilot, 152
Pitch, 182
Pixar, 5
Pixel colour, 13
Pixels, 37
Plane, hither, 162
Plane, Yon, 162
polydraw, 73
polyfilO.s program, 16, 21
polyfill.s program, 15, 16, 18
polyfil2.s program, 41, 44
Polygon Fill, 40
Polygon Mesh, 3
Polygons, 52
Polyhedral structures, 25, 26, 33
Position dependency, 7
Principal Axes, rotations about, 82
Products of Vectors, 239
Program Counter Relative addressing, 210
Projection, centre, 66
PTSIN, 14
put_pixl.s program, 14, 17

Radiosity, 115
RAM, 209
ramview.s program, 101, 104, 105
Raster scan graphics, 25, 36
Real-time, 26
Records, 178, 179
Reflection, 129
Register Direct/Indirect addressing, 210
Registers, 209
Relocatable code, 7, 8
Resolution, 11
Reyes system, 5
Right-handed Cartesian coordinates, 30
Roll, 182, 183
Rotation, 129, 130
Rotation, about

arbitrary axis, 152
principal axes, 82
x-axis, 83
y-axis, 83
z-axis, 83

254

Rotations, composite, 84, 129, 130
Rotations, order of, 83
Rotations, simple, 81, 129
Row vectors, 32
Running times, 184

Scalar (Dot) Product, 112, 239
Scaling, 129, 133
Scan conversion, 25
Screen, 10, 29, 51
Screen buffering, 10, 87, 89
Screen coordinate system, 30
Screen frame, 67
Screen pixel, 11
Screen RAM, 30, 51
Screens 1 and 2, 87
screenflag., 88
Self-similar structure, 4
SETSCREEN, 104
SETSCREEN (#5), 101
set_pixl.s program, 15, 24
Shear distortion, 133
Simulators, 4
Sines, tables of, 88
Sorting, 178
Sprite graphics, 115
SPRITES, 26
Square root, 114, 119, 164
ST cube, 136
ST monolith, 136
ST operating system,.221
Stack pointers, 209
Standard palette, 13
Status register, 210
Surface Normal Unit Vector, 111, 113, 241
Sutherland-Hodgman Algorithm, 5 1 - 5 5
System Variables, 101
systm_00.s file, 15, 23
systm_01.s file, 41, 43, 50
systm_02.s file, 89, 97
systm_03.s file, 104, 106
systm_05.s file, 187, 205

Tables, 88
Tile, 178
Title, 177
TOS, 9
Transformations, 27
Transforms, 31, 243

general in 3D, 129
geometric, 129

Real-Time 3D Graphics for the Atari ST

TRAP, 15
Trigonometric tables, 88
trnsfrm.s program, 137, 140

UNLK, 73

Variables, 32
vblank, 87
VDI, 8, 221
Vectors, 25, 31,32, 111,236
Vector (Cross) Product, 113, 160, 239, 240
Vector graphics, 25, 26
Vector table, 102
Vertical blank, 10, 12, 87
View frame, 29, 66, 67, 81
View frame base vectors, 156, 182
View plane, 66
View port, 30
View vector, 112, 114
Viewing transform, 180
Viewpoint, 66, 112
Visibility, 111, 113
Visibility sort, 186
VT52 Terminal emulator, 104
VT52 Terminal Escape Codes, 224

Window, 66, 88
Windowing, 30, 51, 55
Wire frame, 25
Words, 210, 218
World frame, 28, 81, 85, 156
World map, 186
World picture, 81
World Scene, 176
wrld_scn.s program, 182, 184, 185, 189
wrld_vw.s program, 163, 165
wrt_phys_tbl, 15

X-axis, rotation, 83
XBDOS, 221
XBIOS, 8, 9, 15, 100, 221
XBIOS call number $25, 89
XBIOS call number 6, 119
XBIOS calls, 223
xbuf, 16,42,51

Y-axis, rotation, 83
Yaw (bearing) pitch, 182, 183
Yon plane, 162

Z-axis, rotation, 83

	Contents
	1: An Overview
	2: Drawing on the Screen
	3: Modelling a 3D World
	4: Fast Filling a Polygon
	5: Windowing
	6: Getting Things Into Perspective
	7: Simple Rotations
	8: Keyboard, Joystick and Mouse
	9: Hidden Surfaces and Illumination
	10: General Transforms in 3D
	11: Flying Around The World
	12: A World Scene
	Appendix 1: 68000 Instruction Set
	Appendix 2: Devpac Assembler
	Appendix 3: Number Systems
	Appendix 4: ST Operating System
	Appendix 5: Line A Routines
	Appendix 6: Vectors and Matrices
	Appendix 7: Geometric and Coordinate Transforms
	Appendix 8: Colour Palette and Key Scan Codes
	Index

