A Programmer's Guide to FSMGDOS

Copyright 1991 by Atari Corporation

Introduction
The latest incaration of GDOS is called FSMGDOS which features a powerful outline font

generator. FSMGDOS allows you to scale fonts, as well as rotate them. Programming with
FSMGDOS is a fairly easy task. FSMGDOS was written as a superset of the VDI spedifications, so
that a minimal amount of changes to existing programs are needed in order to take advantage of
the new features. In fact, most GDOS applications require no changes to use FSMGDOS,
although they will not take advantage of all of its features. Anyone with experience
programming with GDOS should find the new features to be easy-to-use, logical extensions to
the original format. This document discusses the new concepts and features found in
FSMGDOS, that will allow the programmer to produce a fast, powerful, and memory-efficient
application. Please note that FSMGDOS comes with new drivers. These drivers are required for
FSMGDOS to work on printing devices.

One of the great advantages of having FSMGDOS is being able to arbitrarily scale fonts. New
calls have been introduced to provide easy access to the outline fonts, so that programs can
create and use any size font. Of course, with the introduction of new calls, existing GDOS
applications had to have a way of using the new fonts. A lot of effort was made so that
FSMGDOS would be compatible with existing programs, and as a result, applications can use
existing GDOS calls to get at the outline fonts. Unfortunately, certain limitations were imposed
in order to achieve this compatibility.

When using existing GDOS calls, FSMGDOS requires the user to select a fixed set of point sizes
that he/she wants to use. Users either have to edit the "extend.sys" file (an ASCIT configuration
file, similar to the "assign.sys") or use a desk acessory to add or delete point sizes for FSM fonts.
Therefore, GDOS applications that were written for GDOS 1.1 can access FSM fonts from the
fixed set of point sizes (Note: unlike bitmap fonts, point size doubling is not available for FSM
fonts). This feature of making the user specify a fixed set of point sizes is meant to provide
compatibility with old applications, and should not be used when writing new or updating
existing software. The user no longer has to limit the sizes of the fonts, since FSMGDOS has a
new set of calls that can create any size of font. These calls (discussed in a section below)
should be used whenever outline fonts are used.

NOTE: To access an FSM font, the extend.sys file must specifiy at least one point size for every
font in the main list.

An application can find out whether or not FSMGDOS is running by making a trap 2 call with -2
in dO. If FSMGDOS is installed, dO will contain '_FSM' (0x5F46534D) in dO0.

Am I an Qutline Font?

With bitmap fonts, applications used to go through a sequence to find out what point sizes were
available for a particular font. Since FSM fonts are arbitrarily scalable, applications should check

to see if a font is an outline font, and bypass the point size inquiry if the font is scalable. The
easiest way for an application to tell whether or not a font is arbitrarily scalable is to use the
vqr_nameQ call. When the vqt_nameC call is made, a flag is set to 1 if the font in question is an
outline font (0, otherwise). The flag is found in the 33rd element of the "name" array that
contains the name of the font. Note that the flag was placed in the name array to conserve
compatibility with older bindings to the vqt_nameQ call.

Users of this new feature must use a new binding for vqt_nameQO.

There is a new call for setting the size of an outline font. It is called vst_arbptO, "set arbitrary
point size". The call is used to set the point size of the current font. Note that new applications
should not use the vst_pointQO call to set the paoint size for FSM fonts; vst_pointO will only access
the fixed point sizes specified in the "extend.sys" file, and is actually slower than vst_arbptO.

Like vst_pointQ, vst_arbptO takes a paint size as its input, and should return the same paint size
as the value which was input. For more information, see the attached bindings.

The other way to set the height of an outline font is to use the vst_heightO call. This is not a
new call, but a vst_heightQ call on an FSM font will yield height information that matches the
input. In other words, if an application asks for a 99 pixel high font, it will get a 99 pixel high
font (for a bitmap font, GDOS will scale as best as it can, although the characters tend to be very
jagged). If necessary, the value returned by the call can be converted into paints, by the
standard conversion using 72 points/inch and the device dots/inch (Note that this conversion is
only approximate as a 72 point font is not one inch in all faces).

One of the major differences in FSMGDOS is quite subtle. A limitation of the bitmap font format
is that characters are contained in cells which are placed side-by-side to form a string. In
FSMGDOS, outline font characters are not forced into cells, and can be overlapped. As a result,
spacing (or placement) of characters becomes more aesthetically pleasing.

Due to this characteristic, outline font characters look best when written in transparent mode. In
replace mode, the background rectangle is blitted, then the character bitmap is written in
transparent mode. If a string is printed character-by-character, parts or fringes may be erased.
So, to avaid incomplete output, either the application should use replace mode only to print
whole strings (etting FSMGDOS clear the background) or it can use transparent mode and make
sure that the background has been cleared by itself.

Reverse transparent mode output is very different as well. Due to the nature of FSM text, reverse
transparent text output becomes "blocky" and aesthetically displeasing. Furthermore, for similar
reasons, rotated text in this mode tends to overlap on itself. It is not recommended that
programs use this mode.

WYSIWIG
WYSIWYG (What You See Is What You Gep) is the goal of all graphics-based document

production systems. An outline font system is ideal for basing such a system. Fonts are created
with outlines: A description of the lines that enscribe the outlines of characters is mathematically
scaled to correspond to the desired point size of a particular dot density. Then the outline is
used as kind of a stencil. The outline (or stendiD) is placed on top of a grid that correspond to

the pixels of a device (e.g. the screen), and the pixels within the outline are turned on. Hence, a
bitmap is generated of a character in a point size of a particular dpi (dots per inch). The same
outline can be scaled to correspond to the pixels of any device, such as a laser printer, and the
resulting character should be the same size as the character on screen. Thus, an application can
display WYSIWYG (.e. the screen output matches the printer output in size and proportion).

Unfortunately, this is not entirely true. Obviously, the screen and printer can differ wildly with
respect to resolution. For example, ST high resolution has a dpi of 91 and the SLM series laser
printers have a dpi of 300. Text of the same paint size should indeed be the same size, but the
screen characters will be much "blockier" or more granular. Of course, this is perfectly natural.
What complicates the problem is the fact that the device resolution can become so granular that
not only is the aesthetics of the character affected, but the actual metrics of a font as well.

In other words, the values that describe the height, width, and placement of the character can
become inaccurate due to the loss of precision at low resolution. Again, this inaccuracy is to be
expected; there is no such thing as a fraction of a pixel. For example, take the character 'm'".
The outline of 'm' is scaled so that it is 12 points on the screen. There are three vertical lines on
an 'm', and let's suppose that the scaling says that the two outside lines of the 'm' are lines that
are two pixels wide, but the middle one is slightly smaller and should be 1.5 pixels wide. How
many pixels should the middle line be? If FSMGDOS decided to round, the line would be two
pixels. On the other hand, it could just truncate the value and make the line one pixel wide.
Consider both possibilities: what should the width of the character be? Unless some other
compensating factor is used (such as making the distance between the lines a pixel shorter or
longer, as the case may be), the width of the 'm', in both cases, is half a pixel off. Therefore, a
string of ten 'm's could be five pixels longer or shorter than what the scaler says the length of
those charaters should be. Furthermore, WYSIWYG is no longer valid, because the printer has a
different resolution which would yield a different error. In the case of the SLM series laser
printer, the resolution is much greater than the screen, making the possible error much less

significant.

FSMGDOS deals with the above problem in one of two ways. The easiest way is to ignore the
problem. Ignoring the problem might not seem to be a viable solution, but as long as FSM
mathematically rounds values consistently, output will be predictable (somewhat like bitmap
fonts), although not precisely WYSIWYG (In fact, FSM font text will be further from WYSIWYG
than bitmap fonts, since bitmap fonts were created by hand). The other method is to allow
applications to deal with the fractions themselves. The following sections will elaborate on how
to create the most accurate output that FSMGDOS is able to create.

Character Placement
In the old GDOS, character placement was very simple. If one knew the width of a character,

one knew exactly where the next character should be placed. A character was always contained
in a cell of fixed width, so that the next character was placed right after the cell, offset by
however many pixels the width was. In FSMGDOS, as explained in a previous section,
characters can overlap. Therefore, character placement cannot be made in terms of character
width. A new call has been installed in GDOS that works like vqt_widthO, but returns a vector
for where and how far to advance the cursor. The vector returned specifies the arbitrary point
where one character ends and the other begins. This is especially useful with rotated characters,
since vqt_widthQ only tells you how far to advance in the x direction. The call is called

vqt_advanceQ, which returns the vector that when added to the last cursor coordinate, yields the
next cursor position.

Vqt_advanceQ returns four integers: the x-advance, y-advance, x-remainder, and y-remainder.
The advance values are a vector that yields the next cursor position. The remainders are just the
fractional portion of the advance values. To get the most accurate output, FSMGDOS uses the
remainders when calculating the next postion of a character in a string. A spedial text call,
v_ftextO, is used as a substitute for v_gtextO that uses the remainders when outputting text. It
works exactly like v_gtextO, except that the placement of characters is slightly different. In
addition, vqt_ fextentO has been provided for the v_ftextQO call to behave in the same manner as
vqt_extentO does for v_gtextOQ. V_gtextO, vqt_extentQ, and vqt_widthQ behave as if the
remainders are always zero.

For both v_gtextO and v_ftextO, the notion of character width must be redefined. Vqt_widthQ
no longer spedifies the cell width as defined in older documentation. For FSM fonts, the
character width should be interpreted as the number of pixels to advance in the x-direction to
place the cursor for the zero degree case and for v_gtextQ only. This limited definition on
vqt_widthQ is used for compatibility purposes; existing applications that use v_gtextQ and
vqt_widthQ can freely use FSM fonts, just like bitmap fonts. Furthermore, FSM font characters,
unlike the old-style bitmap fonts, can go beyond the left and right boundaries imposed by
vqt_widthQ (and vqt_advanceQ).

The slightly different interpretation of character width also affects the vqt_extentO and
vqt_fextentO call. With bitmap fonts, the vqt_extentQ call returned the coordinates of a rectangle
that enclosed the given text string. Unfortunately, the call was based on the fact that vqt_widthQ
returned a value that spanned the width of an entire character. Since, the return value is no
longer guaranteed to be as wide as the character, the vqt_extentQO call might not enclose the
string. Of course, most strings will be entirely enclosed, but many will go out of the defined
bounds. This is especially common with any slanted fonts such as Lucida Calligraphy or Zapf
Chancery. The problem is further complicated when text is rotated (See the next section for
details).

The way to solve the problem for both rotated and non-rotated text is to make the width of the
box returned by vqt_extent wider. More precisely, the maximum character width (of the font)
should be added to both left and right sides of the extent box (in the case of rotated text, the
width should be extended in relation to the baseline). The resultant box should encompass all
of the text string, and can be used as a blit buffer or as an extent box for erasure.

Note: The maximum character width returned by vqt_fontinfoQ tends to be very large. For
purposes of adjusting the extent box, if the width is too large and the characters in the box are
normal characters (e.g. 'a' - ', 'A' - 'Z!, numbers), the width of a capital 'M' or 'W' can be used as
an approximation.

Another placement problem may occur because of the vertical alignment values. The ascent,
descent, and half lines should be interpreted differently for bitmap fonts. For bitmap fonts, more
often than not, the ascent line was equal to the top, and the descent was equal to the bottom.
Programs could also assume by convention that lower case letters would stay below the half line,
and descenders would stay above the descent line. With FSMGDOS, this is no longer the case.
The aforementioned vertical alignment values are approximates, and many characters will not

stay within these boundaries. This fact should not affect many programs. Note that top and
bottom are specified such that there is much more whitespace above and below a character.
Many applications used these values to position lines vertically. With FSM characters, one might
wish to reconsider using top and bottom, since line spacing will be noticably larger than with
bitmap fonts.

Using Rotation

Incorporating font rotation is not as simple as incorporating font scaling. A certain number or
combination of features on bitmap fonts do not work for rotated fonts, due to practical
considerations. For example, justified text does not work with angles other than multiples of 90
degrees. Note that rotation works for the 90 degree cases, but one should watch for the 90 and
270 degree cases which, in many cases, are affected by non-square aspect ratios. In the case of
bitmap fonts, screen or printer drivers do not account for aspect ratios.

When using arbitrary rotation, it is strongly recommended that applications use v_ftextQ,
vqt_advanceQ, and vqt_f_extentQ. The remainders used in these calls are crucial to having
correct output on shallow angles.

Also, vertical and horizontal alignment should be accounted for when rotating text. The
alignment affects the point at which the text is rotated.

For vqt_widthO, FSMGDOS will return the x-component of the advance vector in all rotations
except when the rotation is 90, 180 or 270 degrees. In other words, at 90 degree rotations,
vqt_widthQO will behave like bitmap fonts are being used, but at non-90 degree rotations, the x-
component of the advance vector is used. Programs that need to keep track of widths in the
"older" sense (i.e. zero degree rotated) should set the rotation to zero, then inquire the widths for
the character set.

For vqt_extentO, FSMGDOS will return a rectangle with overlap characteristics similar to the
zero-degree case. The way vqt_extentQ works is that it gets the extent rectangle for the zero-
degree case, then GDOS rotates the points of the rectangle. Therefore, the rectangle will be
exactly the same in dimensions and text placement as the non-rotated case (ignoring
mathematical/low resolution aberrations). Note that the rectangle will touch both axes,
preserving this characteristic as well.

When using vqt_extentQ to determine the size of a temporary buffer for faster blits or text
erasure, one should add the maximum character width to both ends of the baseline to extend
the original extent box (the extent box should have its baseline increased by two times the
maximum character width). Then, a non-rotated box needs to be determined to encompass the
extent (for rectangular blits).

Special Effects
Spedial effects are the built-in algorithms that generate lightening, bold, skewing, and outline on

fonts. It is recommended that wherever possible, the actual font style be used instead of the
algorithm (e.g. use Lucida Bold instead of using thickening with Lucida Roman), since the actual
font style will be generated from its own font file. Such cases will yield much better output if the
actual style/paint size is used. Of course, not all of these effects are available as a separate font
style. Also note that a new skew call is available (see below).

An issue directly related to special effects is the scratch buffer. The scratch buffer is the memory
allocated for the effects' algorithm; the size of the memory is based on the largest point size of
the largest font in the "extend.sys" or "assign.sys" file. Due to the nature of arbitrarily scaled
fonts, the buffer cannot possibly be big enough (since the buffer's size is based on the
dimensions of the largest available point size of all available fonts). Therefore, if one wishes to
use special effects at all, one must make sure that the buffer is big enough. The way to ensure
that the size is big enough is to find out what the biggest point size is for all fonts in the
"extend.sys" or "assign.sys". Then determine what size is being requested (by comparing the
point sizes). If the requested size is bigger, the application should not allow the special effects to
be used.

Another problem arises with special effects and rotation. Some special effects made available
through the vst_effectsO call don't work very well with FSMGDOS. In particular, bolding and
skewing don't have the desired effects on text when rotated. This is because these effects are
algorithmically generated, and the algorithms only work for non-rotated text. If the effects are
used on rotated FSM text, the results may look rather odd (e.g. distorted characters, crooked
strings of characters). Spedial effects should only be used if you have checked to see that the
output is what you want.

Memory Management
Memory management is simple, since FSMGDOS does all of the work. An application only has

to worry about whether or not it has enough room to run. The user must worry about if s/he
has enough memory for FSMGDOS. The user has access to two variables, the size of the cache
and how to divide it. Once set, two caches are allocated whose total size corresponds to the
user-set size and are split according to the percentage supplied by the user (default is a 50-50
split). One cache is devoted to storing the character bitmaps. The other is used for
miscellaneous memory needs resulting from bookkeeping and the generation of characters.
Applications can find out what the biggest chunk of memory is left for each cache by using the
vqt_cachesizeQ call (see bindings).

The cache for character bitmaps uses a simple cache scheme to reduce the overhead of
managing a more sophisticated one. When FSMGDOS determines that there is no more room in
the cache, it flushes it. This is done automatically, whenever a request for memory is made by
FSMGDOS, and there is no way for the application to anticipate when this will happen.
However, a call has been provided so that an application can flush the cache at any time. The
call can be used in the following manner: When an application is about to print to a device such
as a laser printer, the cache is full of screen fonts. It is unlikely that the cache is full, but when
the application goes out to print, a v_flush_cacheQ will make room for printer-sized fonts. The
application could possibly avoid an involuntary flush of the cache which might get rid of
characters that it may immediately need. The same reasoning works for the screen. After the
printing occurs, there might be a small amount of room to accomodate some of the screen
characters (some, not all). So if the cache is not flushed before generating screen characters, the
cache might become full before redrawing the screen, thereby generating some screen characters
more than once. It would be better if the application cleared the cache for screen characters.
Note that the cache can be saved and loaded at appropriate times to further enhance the
performance. See the section called "Saving the Cache."

The size of characters are determined by using the vst_arbptQ, vst_heightO, or the vst_pointO
call (see above). If, due to memory limitations, FSMGDOS cannot generate a requested size, the

above calls will not return a smaller size that it can accomodate, like bitmap fonts do.
Depending on what error mode has been selected, the error code should be checked, or an
error message will appear. Memory requirements for bitmap fonts are fixed and known. With
arbitrarily scaled fonts, different characters need different amounts of memory (.e. some
characters are just physically bigger than others), and thus, there is no limit enforced on the
maximum point size. For example, an application should not be prevented from using a 100
point comma simply because it cannot accomodate a capital ‘w' from the same font. For all
paint sizes, the vst_heightO and vst_arbptO call will not restrict sizes on FSM fonts, and
FSMGDOS will attempt to generate whatever characters that it is asked. Of course, an
application could use the vqt_cachesizeQ call to check to see if there is a big enough chunk of
memory. An application would have to approximate the size of the resultant bitmap, and issue a
warning (or prevent the user from daing the action). Otherwise, if there is not enough memory,
an error message will be output to the screen, telling the user to allocate more memory for the
cache and reboot.

Note that the simple cache management scheme was chosen in favor of an LRU algorithm or
some more sophisticated algorithm. This was done in consideration of the typical usage of FSM
characters. It seems reasonable to assume that the cache will overflow when the printer is being
used. Printers tend to be a much higher density medium compared to the screen, and character
bitmaps for printer devices will fill up the cache much quicker. In addition, cache sizes will tend
to be tuned such that the screen fonts will be small enough to fit within the cache. The garbage
collection required by a more sophisticated algorithm will make FSMGDOS' memory
management slower and less predictable.

The other cache, the miscellaneous cache, is trickier. It will neither flush itself, nor is there any
way for an application to manage its size. The cache is used for many internal data structures for
FSM, so it is hard to garbage collect (and it is subject to fragmentation). The only time it is
cleaned up is when all of the workstations are closed, and even then, part of the cache is still
being used. If the cache is overflowed, FSMGDOS will put up a nasty message stating that the
user should allocate more memory and reboot. The best that applications can do to prevent this
from happening is to warn the user beforehand. You can anticipate how much memory is
needed for some action (see above), and warn/prevent the user from doing it. Of course, this
technique is only good for gross errors (e.g. users asking for a 300 point font). Unfortunately,
this cache cannot just get more system memory when it runs out.

There is a formula that determines how much miscellaneous cache FSM needs to generate a
particular character. This should not be used as an absolute maximum, but it should give you a
general idea.

84 * (width + height) = # of bytes

So, for a particular font, using inquire calls to get the form height and the maximum character
width, you can find out how much memory the FSM module will need. Unfortunately, the
maximum character width is not entirely accurate because the width is interpreted as being the
advance vector and bitmaps of characters can be wider (or smaller) than that vector. A decent
safety margin is necessary. Note that the memory referred to is from the non-bitmap portion of
the FSM cache.

The FSM bitmap cache can be saved and reloaded at any time. This is primarily useful for users
who wish to save previously generated characters so that they can come back to the same
environment and not wait for character generation. On the other hand, applications can do
several interesting things, such as save caches for the screen just before an application tries to
print, so that after printing, the cache can be flushed and reloaded with the screen's old cache.
Similarly, the printer cache can be loaded for the next printing, in the case that it is the same or
similar document. Applications can also save and manage caches of whole sets of fonts, and
load them in when necessary or when the user requests a font.

The commands for cache manipulation are simple. V_savecacheQ takes the entire content of the
cache containing FSM characters and saves them out to disk (to the file and path specified in the
parameters). The v_flushcacheQ call clears out the entire cache. The v_loadcacheQ routine
takes a filename (which may include a path) and extracts the cache entries to place in the cache.
In addition, it takes a flag that says whether or not to append the entries to the cache or just
flush the cache first.

Please refer to the attached bindings.

New Effects

There are two new effects that can affect the look of FSM fonts. One is vst_skew(. This call
allows the application to set the shearing value in the transformation matrix. Note that the
shearing can be used in conjuction with rotation. This is the only way to get skewed characters
that are rotated. The shear value is taken in degrees which should range from -90 degrees to 90
degrees, although shearing at either end of the range will produce unintelligible text (since a
character skewed at 90 degrees is an infinitely long straight line).

The other new call is the vst_setsizeQ call. This is just another "set paint size" call, but it affects
the width of characters. This is useful for compressing or expanding text. Note that for
compatibility reasons, the setsize is reset whenever the size of the characters are set in the y-
direction G.e. with a vst_pointQ, vst_arbptO, or vst_heightO calD. If the setsize is negative, the
text will be mirrored over the y-axis.

Note that another effect can be made by using the vst_arbptO call. If the point size is negative,
characters will be reflected over the x-axis, and a mirroring effect can be achieved.

The Extend.sys
It is generally not recommended that applications manipulate the extend.sys file. FSMGDOS will

not behave predictably. On the other hand, it might be useful for you to know what can be
changed and when the changes take effect.

In general, if the timestamp on the extend.sys file changes, FSMGDOS will reload the file at a
vst_load_fontQ. This is meant to reflect changes made to the extend.sys between applications
Note that a vst_load_fontQ in the middle of an application (for loading printer fonts, for
example), can indeed cause a reloading of the extend.sys, and the behavior of FSMGDOS will
not be predictable (f the extend.sys has been modified).

Fonts and point sizes should be changed outside of the application (Note that you really should
not be using a point size entry, since this is used for backward compatibility puposes. Please use

vst_arbptO or vst_heightO.). Also, widthtables should be turned on or off outside of an
application. The path to the FSM folder and the symbol/hebrew file specifications can also be
altered outside of an application. However, the cache sizes will never be changed unless a
system reboot is made.

Please refer to the FSM user's guide or the "extend.sys" document for more information.

Widthtables

Widthtables were created to provide compatibility with older programs. As a side effect, they are
useful to speed up applications in certain cases. In particular, if a user builds widthtables for
fonts in his/her extend.sys and enters the point sizes for those fonts and turns the widthtables
flag on, then inquiry calls for the widths of particular fonts and point sizes will be relatively
quick. Otherwise, FSMGDOS would have to calculate the values from scratch, loading and
reading from the font file.

Many applications go through the process of filling out their own widthtables by making the
vqt_widthQO calls for all of the characters in all fonts and all paint sizes. Although with bitmap
fonts, this might have been a faster method of accessing this data, but with FSM fonts, this might
not be such a good idea. As mentioned above, this process is very time consuming without
having users preset the point sizes that they want to use and have them build widthtables for
them. The whole process is restrictive and confusing. It is recommended that your applications
and any future ones avaid filling out and using your own widthtables. By always using the
vqt_widthO or vqt_advanceQ call, FSMGDOS is responsible for caching that data (which it does
when a character is generated). Note that if v_ftextO or vqt_f_extentO is used, widthtables are
useless, since the tables do not save the remainders (or even the y-advance). Moreover, to speed
up your applications, they should only ask for widths/advances when needed, so that they don't
inquire on characters that they will never use.

However, FSMGDOS is responsible for caching screen font widths only. When outputting to
any other device such as a printer, width tables will not be cached. It is suggested that
applications cache widths for devices other than the screen. Otherwise, for example, each time a
word processor prints a document, it must spend time calculating the widths of different fonts.

Finally, using widthtables, in a general sense, is incompatible with the nature of FSM fonts. Since
they are arbitrarily scalable, there is no way of predicting what widthtables will be needed. In
other words, users would have to choose the point sizes that they want to use before running a
program, while the program is supposed to allow you to choose any size font. In general,
widthtables should be avoided when supporting arbitrarily scaled fonts, but in certain spedcialized
cases, you can maximize the performance of FSMGDOS by using them (which is actually the
user's responsibility).

Accessing New Characters

FSM fonts contain characters outside of the Atari character set. A call has been provided so that
applications can access these characters by careful modification of FSMGDOS-internal data
tables. The FSM character set is specified in gascii, while the Atari set is in asdii. There is a table
inside of FSMGDOS which maps all ascii values to gascii. If a user/application has particular
gasdii characters that s/he wants to use and knows that the characters are in a particular FSM font
file, the gascii values can be substituted for ones already in the table.

The vqt_get_tablesO call retrieves the addresses of two tables. One is the aforementioned gascii
table. The other is the style table. Both tables contain the constants used to locate and generate
all outline fonts. The style table is the table which tells FSMGDOS which font file contains the
requested characters. In other words, the gascii table entry for the character 'a' will contain the
gascii value for ‘a', and the style table will contain an index that says that that character is in the
main font file.

Hence, if there was some character in the music font (e.g. an eigth note) that you could not
access, you could use this call to substitute some unused character with the one needed. Then,
you must make sure that the enuy in the style table refers to the right type of font file (e.g. the
eighth note is in the music font, which is a symbol font, so the style table entry must index into
the symbol font file).

Note that remapping the gascii and style table as described above can confuse the cache.
Although an application should not blow up, any saved and reloaded cache might contain
incorrect characters if those characters were remapped by the application (i.e. characters might
not be the ones expected by the user). Any remapping should take place as soon as possible,
and the cache should be flushed. Furthermore, the widthtables should be considered inaccurate,
since they contain widths for characters that may no longer exist or that have been changed.

There are currently two modes of error output for FSMGDOS. The default method of reporting
errors is printing an error to the screen. This mode is good for older GDOS-compatible
programs which were not written to handle FSM errors. The second method involves passing in
an address of an integer variable which will be stuffed with an error code if one occurs. The
error code variable should be checked whenever a text call is made (e.g. v_gtextO, vst_paintQ,
v_savecache(Q). Note that the application is responsible for resetting the error code, so
therefore, whenever an error is detected, the application should clear the variable before making
further calls. See the description of vst_errorO below, and the list of calls that could incur an
error.

Qutlines

Calls have been provided so that applications can get at the actual outlines that FSM generates.
The outlines come packaged in a structure that contains specifications for conic splines that
define a particular character. When v_getoutlineQ is called with a character "ch" as a parameter,
an address of a structure is returned which contains the outline of character "ch". The structure,
called a component, is defined as follows:

typedef struct fsm_component_t {
short reservedl;
struct fsm_component_t *nextComponent;
unsigned char numPaints;
unsigned char numCurves;
unsigned char numContours;
unsigned char reserved2[13];
fsm_data_fpoint_t *points;
unsigned char *startPts;
} fsmn_component t;

typedef struct {
fsm_fpoint_t pt;
fsm_fpoint_t cpt;
fsm_int sharp;

} fsm_data_fpoint_t;

typedef struct {
fsm_int x, v;
} fsm_fpoint ¢

typedef struct {
short value, remainder; /* remainder is mod 16384 */
} fsm_int;

Within each fsm_component_t, there is a conic spline for each contour. Point (pt) and
tangent paint (cpt) coordinates are integer values with remainders; The sharp field is the
integer value with remainder of the square of the conic sharpness, s**2. points is an array of
numPoints paoints.

startPts is an array of numContours+1 point indices; startPts[n-1] is the point index of the first
point of contour n. startPtslnumContours] = numPoints+1 and indicates the last paint of the last
contour. A curve is determined by a positive sharp value; If outline is a structure of type
fsm_outline_t, and outline.points| pointNumber-1].sharp is not zero, then the application
program will need to use the following in order to build the conic spline:

first end point - outline.paints| pointNumber - 1].pt
tangent point - outline.points[pointNumber - 1].cpt
second end point - outline.points[pointNumber].pt
sharpness - sqrt(outline.points[pointNumber - 1].sharp)

To convert conic splines to the beziers available in FSMGDOS, place the first bezier control point
on the line connecting the first end paint and the tangent point at a ratio f of the distance
between these points. The corresponding thing is done for the second end point.

f=4/3*s/(s+l)
s = the square root of sharp

Line-A
Don't use it. FSMGDOS will never support it. FSM text is not compatible with Line-A.
Furthermore, since FSMGDOS caches bitmap text, Line-A can not access outline fonts at all.

FSMGDOS contains caching fadilities for bitmap fonts as well. The cache is entirely separate
from FSM font handling. Please refer to the users document for more details.

The difference between FSMGDOS and FONTGDOS is that FONTGDOS has the FSM generation
routines removed. It will still parse the "extend.sys", but it takes the "FSMCACHE = " value as the
value for a miscellaneous cache for itself (and will use all of the amount towards this cache, as

opposed to just a percentage). Programming FONTGDOS is identical to programming for GDOS
1.1, except that the Bezier features are installed.

Note: In order to determine if FONTGDOS is installed, place a -2 in dO and make a trap 2 call.
DO will contain '_FNT' upon return.

Calls Affected by Vst_error()

The following is a list of VDI calls that could cause an error in
FSMGDOS. Using vst_error(), an application can set the error output
mode such that it places an error code into an address provided by the
application. Therefore, the application can discover if an error has
occured by checking for an error whenever any of the following calls
are used:

v_gtext()
v_justified()
vst_point()
vst_height()
vst_font()
vst_arbpt()
vgt_advance()
vst_setsize()
vat_fontinfo()
vat_name()
vat_width()
vat_extent()
v_opnwk()
v_opnvwk()
vst_load_fonts()
vst_unload_fonts()
v_ftext()
vat_fextent()

If the error code is non-zero, an error has occured. The application
should handle the error appropriately, and reset the error code to 0 (so
that new errors may be detected). Note that the error code should be
initialized to O before any calls are made; this is to insure that the first
error is detected.

FSM Error Codes:

0 - No Error

1 - Character not found in font
8 - Error reading file

9 - Error opening file

10 - Bad file format

11 - Out of memory/Cache full

-1 - Miscellaneous error

Addendum to Inquire
Face Name and

Index
A new parameter has been added to this function. It is a flag that
indicates whether or not the font in question is an FSM font or
bitmap font. The flag will be contained in intin[33]; 0 will signify a
bitmap font, and 1 will indicate an FSM font.
Input contrl(0) - Opcode = 130
contrl(1) - Number of input vertices = 0
contr(3) - Length of intin array = 1
contri(6) - Device handle
intin(0) - Element number.
Output contrl(2) - Number of output vertices =0
contrl(4) - Length of intout array = 34
intout(0) - ID Number
intout(1) to
intout(32) - 32 ADE
intout(33) — flag (1 if FSM, 0 otherwise)
C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

index = vat_name(handle,element_num,name)

int index;
int handle;
int element_num;

char name(33];

handle = contrl[6]
element_num = intin[0]

index = intout{0]
namel0] = intout(1]

name[31] = intout[32]
name([32] = intout[33]

Note: To preserve compatibility, the fsmflag is placed

in the 33nd byte of the name array.

Get FSM Bitmap
Information

Input

This function retrieves placement information for
FSM-generated characters. An address of a
structure 52 words long is passed in intin[1]. The
structure, infoarray, will contain:

infoarray[0] = advance in the x direction

infoarray[1] = remainder of x advance

infoarray[2] = advance in the y direction

infoarray([3] = remainder of y advance
(Note: the remainder is in the same format as the
remainders from the vgt_advance() call.)

infoarray[4] = bitmap width

infoarray[5] = bitmap height

infoarray[6-7] = the x offset (real)

infoarray[8-9] = the y offset (real)

infoarray[46] = bitmap width
infoarray[47] = bitmap height
infoarray[48-49] = the x offset (real)
infoarray[50-51] = the y offset (real)

The first four integers are the advance vector.
Following that vector is the placement information.
When FSM generates a character, a bitmap of the
character is produced. The dimensions of that
bitmap are placed in the following two integers of
the array. The next two values are the placement
vector that goes from the current point (i.e. the
current cursor position, assuming baseline
alignment) to the upper left hand corner of the
bitmap. Since characters can consist of more than
one bitmap (e.g. (), up to seven more sets of
dimensions and offsets can follow. Of course, one
will rarely see characters with more than three
parts. To signify that there are no more parts, the
width and height values will contain -1.

The placement offsets are given as reals.
Internally in FSMGDOS, negative multiples of 1/2
are rounded down (e.g. -1.5 becomes -1 and -1.6
becomes -2). Therefore, in order to find out where
the bitmap has been blitted, the offsets must be
converted in the same manner.

contrl(Q)
contrl(1)

- Opcode = 239
- Number of input vertices = 0

contrl(3) — Length of intin array = 3

contrl(6) - Device handle

intin(0) - character

intin(1-2) — address of structure
Output

contrl(4) - Length of intout array = 0
C BINDING

Procedure Name

Data Types

Input Arguments

v_getbitmap_info(handle,ch,infoarray)

int handle;
int ch;
int infoarray[52];

handle = contri[6]
ch = intin[0]
infoarray = intin[1}{2]

Inquire fsm text

This function works exactly like vat_extent(), but
the rectangle returned will account for the
remainder values of vqgt_advance().

extent

input
contri(0)
contrl(1)
contrl(3)
contri(6)
intin(0)

Output
contrl(2)
contrl(4)
ptsout

C BINDING

Procedure Name

Data Types

Input Arguments

Output Arguments

- Opcode = 240

- Number of input vertices = 0
- Length of string

- Device handle

- Character string in current character set.

- Number of output vertices = 4
- Length of intout array = 0

- same as vgt_extent()

vat_f_extent(handie,string, extent)

int handle;
int - extent[8];
char stringl];

handle = contrl[6]
string = intin

extent[0] = ptsout[0]

extent[7] = ptsout(7]

FSM text

Input

Output

C BINDING
Procedure Name

Data Types

Input Arguments

This function works exactly like v_gtext(), but the
text returned will account for the remainder values
of vat_advance(). In other words, the text spacing
will be more accurate.

contri(0)
contrl(1)
contrl(3)
contrl(6)

intin(0)
ptsin(0)
ptsin(1)

contrl(2)
contrl(4)

- Opcode = 241

- Number of input vertices = 1
- Length of string

- Device handle

- Character string in current character set.
- x-coordinate
- y-coordinate

- Number of output vertices = 0
- Length of intout array =0

v_ftext(handle,x,y,string)

int handie;
int X, Y:
char stringl];

handle = contrl[6]
string = intin

x = ptsin[0]

y = ptsin[1]

Kill FSM outline

This function takes the address of an outline
component generated by v_getoutline() and frees
up the associated memory of that outline. The
address is passed in intin[0],[1]. Applications
should always use this function when they are
finished with the outline, or they will run out of
memory.

input
contrl(0) — Opcode = 242
contri(1) — Number of input vertices = 0
contri(3) - Length of intin array = 2
contrl(6) — Device handie
intin(0-1) — address of outline component
Output
contrl(2) — Number of output vertices = 1
contrl(4) - Length of intout array = 0
C BINDING

Procedure Name

Data Types

input Arguments

v_killoutline(handle &component)

int handle;
long component;

handle = contrl[6]
&component = intin[0-1]

Get FSM outline

This function generates an outline of the character
specified in intin[0], and places the address of the
outline in the address passed in intin[1], [2].

Input
contri(0) - Opcode = 243
contri(1) - Number of input vertices =0
contri(3) — Length of intin array = 3
contri(6) - Device handle
intin(0) - character requested
intin(1-2) — address of component structure
Output
contrl(2) -— Number of output vertices = 1
contri(4) — Length of intout array = 0
C BINDING

Procedure Name

Data Types

input Arguments

v_getoutline(handle,ch.&component)

int
int
long

handle;
ch;
component;

handle = contrl[6]
ch = intin{0]
&component = intin[1],[2]

Set scratch buffer
allocation mode

This function sets the method of memory allocation
for the scratch buffer. The scratch buffer is
memory used to create text with special effects,
and it's size is determined by the maximum
dimensions of a font. Since FSM fonts can be
scaled to any size, the scratch buffer size will not
have limits. Furthermore, many FSM fonts don't
need special effects (or a scratch buffer), because
of actual fonts that correspond to the effects. By
default, the allocation mode is 0, which takes FSM
fonts into account when calculating the scratch
butfer size. If the mode is 1, the size will not be
affected by FSM fonts, and will take only bitmap
fonts into account. In this case, special effects
should not be used for FSM fonts. If setto 2, no
scratch buffer will be allocated, and special effects
should not be used at all.

Input _
contrl(0) - Opcode = 244
contrl(1) — Number of input vertices = 0
contri(3) — Length of intin array = 1
contrl() - Device handle
intin(0) - allocation mode

Output
contrl(2) - Number of output vertices = 1
contrl(4) - Length of intout array = 0

C BINDING

Procedure Name

Data Types

Input Arguments

vst_scratch(handle,mode)

int handle;
int mode;

handle = contrl(6]
mode = intin[0]

Set FSM error
mode

This function sets the mode of error reportage. By
default, the mode is set to 1, which means that any
FSM errors will be printed on screen. If the mode
is set to 0, FSMGDOS will place an error code into
the address passed in intin{1], whenever an error
occurs. Applications should check this address for
errors when making text calls (e.g. v_gtext(),
vst_point(), vst_arbpt()). Please see the error
code list for specific errors. Note that the address
should be initialized to 0 and reset whenever an
€rror occurs.

Input
contrl(0) — Opcode = 245
contri(1) — Number of input vertices = 0
contrl(3) - Length of intin array = 3
contri(6) — Device handle
intin(0) - error mode
intin(1-2) — address of an integer variable
Output
contrl(2) - Number of output vertices = 1
contri(4) - Length of intout array = 0
C BINDING

Procedure Name

Data Types

Input Arguments

vst_error(handle,mode,&errorcode)

int handle;
int mode;
int errorcode;

handle = contr![6]
mode = intin[0]
&errorcode = intin[1]

Set character cell
height by arbitrary

points
This function sets the current graphic text character height in printer
points. Unlike the vst_point call, vst_arbpt allows the user to scale
to any point size regardless of what is contained in the extend.sys.
Note that this call will only work with fsm outline fonts.

Input contri(0) - Opcode = 246
contri(1) - Number of input vertices = 0
contrl(3) - Length of intin array = 1
contri(6) - Device handle
intin(0) - Cell height in arbitrary points

Output contri(2) - Number of output vertices = 2
contri(4) - Length of intout array = 1
ptsout(0) - Character width selected in RC units
ptsout(1) - Character height selected in RC units
ptsout(2) - Character cell width
ptsout(3) - Character cell height

C BINDING

Procedure Name

Data Types

input Arguments

Output Arguments

set_point = vst_arbpt(handle, point,

int
int
int
int
int
int
int

&chwd,&chht,&celiwd, &cellht)

set_point;
handle;
point;
chwd;
chht;
cellwd;
cellht;

handle = contrl[6]
point = intin[0]

set_point = intout[0]
chwd = ptsout{0]
chht = ptsout[1]
cellwd = ptsout[2]
cellht = ptsout{3]

Inquire fsm text
advance placement

vector
This function returns the x and y offsets which are
needed to place the next character of a string in the
proper position. This call is necessary when laying
down text at rotations other than 0, 90, and 270. In
addition, the call returns remainder values for the x
and y offsets (mod 16000), so that cursor placement
can be calculated for v_ftext() and vat_{_extent().
input
contrl(0) — Opcode = 247
contri(1) - Number of input vertices = 0
contri(3) - Length of intin array = 1
contrl(6) - Device handle
intin(0) - Character value
Output
contrl(2) - Number of output vertices = 1
contrl(4) - Length of intout array = 0
ptsout(0) - X advance
ptsout(1) - Y advance
ptsout(2) - X remainder (mod 16384)
ptsout(3) — Y remainder (mod 16384)
C BINDING
Procedure Name vat_advance(handle,ch,&advx,&advy &xrem.&yrem)
Data Types
int handle;
int ch;
int advx;
int advy;
int xrem, yrem;
Input Arguments handle = contrl[6]
ch = intin[0]
Output Arguments advx = ptsout[0]

advy = ptsout[1]
xrem = ptsout{?]
yrem = ptsout[3]

Inquire device
status information

This function takes a device id number as a parameter and reports
back to the application whether or not the driver for that device has
been installed by gdos. If the driver has been installed, the name
of the driver is returned to the application.

Input contri(0) — Opcode = 248
contri(1) - Number of input vertices = 0
contrl(3) - Length of intin array = 1
contrl(6) — Device handle
intin(0) - Device id number
Output contrl(2) ~— Number of output vertices = 1
contri(4) - Length of intout array = number of characters
ptsout(0) - 1 = Device installed.
0 = Device not installed
C BINDING

Procedure Name
Data Types

Input Arguments

Output Arguments

vat_devinfo(handle,devnum,&devexists,devstr)
int handle;

int devnum;

int devexists;

char devstrll;

handle = contrl[6]
devnum = intin{0]

devexists = ptsout[0];
devstr = intout;

Save FSM
cache to disk

This function saves the contents of the FSM cache to disk. The
function takes a filename as its parameter, and the cache is saved
under that filename. The file is created in the current directory.

Input
contrl(Q) — Opcode = 249
contrl(1) - Number of input vertices = 0
contrl(3) — Length of intin array = n
contrl(6) — Device handle
intin - Character string of the filename as ASCII
: codes in 16-bit words.
Output
intout(Q) — zero or -1 if an error has occured
C BINDING

Procedure Name
Data Types

Input Arguments

Output Arguments

ret_val = v_savecache(handle, filename);
int handle;
char filename(n];

handle = contri[6]
filename = intin

ret_val = intout[0]

Load FSM

cache
This function loads in the contents of an FSM cache from disk. The
function takes a filename and a mode as parameters. The filename
specifies what file to open in the current directory. The mode
specifies whether or not to append or create a new cache. If the
mode is 0, the cache from disk will be appended to the current
cache; ifitis 1, then the cache will be flushed, and a new cache will
be loaded.
Input
contri(0) — Opcode = 250
contrl(1) - Number of input vertices = 0
contrl(3) - Length of intin array = 1+ n
contrl(6) - Device handle
intin(0) - mode
0 = append
1 = flush and replace cache
intin(1) - First character of filename.
intin(n) - Last character of filename
intin - Character string of the filename as ASCI|
codes in 16-bit words.
Output
intout(0) - zero or -1 if an error has occured
C BINDING
Procedure Name ret_val = v_loadcache(handle, filename, mode);
Data Types
int handle;
char filenameln];
int mode
Input Arguments handle = contrl[6]

mode = intin(0)
filename(n) = intin(n+1)

Output Arguments ret_val = intout{0]

Flush FSM

cache
This function flushes the contents of the FSM cache. Note that this
only flushes the portion of the cache that contains bitmaps of FSM
characters.
Input
contrl(0) — Opcode = 251
contrl(1) - Number of input vertices = 0
contrl(6) - Device handle
Output
intout(0) - zero or -1 if an error has occured
C BINDING

Procedure Name
Data Types

Input Arguments

Output Arguments

ret_val =

int

handle =

ret_val =

v_flushcache(handle);

handle;
contrl[6]

intout[0]

Set character cell
width by arbitrary

points
This function sets the current graphic text character width (set size)
in printer points. An arbitrary set size may be entered to represent
the character width. It should be noted that the next call to
vst_point, vst_arbpt or vst_height will cancel out this call and will
set the set size to be equal to the requested point size. This call will
only work with fsm outline fonts.
Input
contri(0) - Opcode = 252
contri(1) — Number of input vertices =0
contrl(3) - Length of intin array = 1
contrl(6) — Device handle
intin(0) - Cell width in arbitrary points
Output contri(2) — Number of output vertices = 2
contri(4) - Length of intout array = 1
ptsout(0) - Character width selected in RC units
ptsout(1) - Character height selected in RC units
ptsout(2) - Character cell width
ptsout(3) - Character cell height
C BINDING
Procedure Name set_width = vst_setsize(handle, point,
&chwd.&chht &cellwd, &cellht)
Data Types int set_width;
int handle;
int point;
int chwd;
int chht;
int cellwd;
int celiht;
Input Arguments handle = contrl[6]
point = intin[0]
Output Arguments set_width = intout[0]

chwd = ptsout{0]
chht = ptsout[1]
cellwd = ptsout[?]
cellht = ptsout{3]

Set FSM skew

This call requests fsmgdos to generate skewed characters. It works
independantly from the skewed characters generated with the
vst_effects call. The requested skew value is represented in tenths
of degrees and should be a number between 900 and -900 (plus or
minus 90 degrees). Negative degrees will cause characters to
"lean” to the left while positive numbers will lean to the right. Note
that characters will degenerate badly when their skew approaches
90 degrees. This call only works with FSM fonts.

contri(0)
contri(1)
contrl(3)
contrl(6)

intin(0)
intout(0)

- Opcode = 253

- Number of input vertices = 0
- Length of intin array = 1

- Device handle

- Requested skew value.

- Amount of skew

C BINDING
Procedure Name
Data Types

Input Arguments

Output Arguments

set_skew = vst_skew(handle, skew)

int set_skew;
int handle;
int skew;

handle = contrl[6]
skew = intin[0]

set_skew = intout[0]

Get FSM
Gascii Tables

This call returns the addresses of two tables, which are used
internally by fsmgdos. When ascii characters are passed into
v_gtext, they are first translated into a 2 byte word which is
recognized by the fsm character generator. These translations are
contained in the gascii table. This table contains 224 entries with
the first entry being the translation for character 32, the second for
character 33....etc.

The second table, the style table, gives the caller information on
which font file the character was generated from. Recall from
previous documentation that the Atari character set is generated
from information contained in three fonts, the main font, the symbol
font, and the hebrew font. When a character is to be generated,
fsmgdos checks this table to determine where to get the character
information. The table values are:

0 - From main font file
1 - From symbol font file
2 - From hebrew font file

Why are these tables useful? Fsm fonts have the information to
generate many characters which are not in the atari character set.
By remapping these gascii values the caller will be able to access
these characters. :

contrl(0) — Opcode = 254

contri(1) - Number of input vertices = 0
contrl(3) — Length of intin array = 0
contrl(6) - Device handle

intout(0) - Address of gascii table
intout(1)

intout(2) - Address of style table
intout(3)

C BINDING
Procedure Name

Data Types

input Arguments

vgt_get_tables(handle, gascii, style)
int handle;

long *gascii;

long *style;

handle = contrl[6]

Output Arguments *gascii = intout{0], intout[1]

*style = intout[2], intout[3]

Get FSM

Cache Size
Returns the largest block size available in each of the two fsm
caches. This call can be used to estimate how big a character
fsmgdos can handle when it prints a character. A zero (0) in intin[0]
will instruct fsmgdos to return the largest allocatable block in the
character bitmap cache. A one (1) will return the same information
for the data structure cache. Please refer to the section on memory
management for more information on the two caches.
contrl(0) - Opcode = 255
contrl(1) - Number of input vertices = 0
contrl(3) — Length of intin array = 1
contrl(6) - Device handle
intin(0) - Which cache to inquire size from
intout(0) - Size of the largest allocatable block
intout(1)
C BINDING
Procedure Name vqt_cachesize(handle, which_cache, size)
Data Types int handle;
int which_cache;
long *size;
Input Arguments contri{6] = handle;

intin[0] = which_cache;

Output Arguments *size = intout[0], intout[1]

Enable Bezier
capabilities

This call enables the GDOS Bezier capabilities. Note
that while a handle is provided and the associated
device driver is called, the GDOS Bezier extension is
enabled for all devices when this call is made.

Input
contrl(0) — Opcode = 11
contri(1) - 1 (indicates ON)
contrl(2) - 0
contri(3) - 0
contri(4) — 4
contrl(5) - 13
contri(6) — Device handle
Output
intout(0) - retval
Maximum Bezier depth. a measure of the smoothness
of the curve. The value. which can range from 0 to 7,
is an exponent of 2. giving the number of line
segments that make up the curve. Thus. if retval is 0.
the curve is actually a straight line (one line segment)
li retvalis 7, the curve is made of 128 line segments
C BINDING
Procedure Name retval = v_bez_on(handle)
Data Types
int handie;
int retval;

Input Arguments

Output Arguments

handle = contrl[6]

retval = intout[0]

Disable Bezier
capabilities

This call disables the GDOS Bezier capabilities. Any
memory allocated by the GDOS for Bezier-generated
polygons is released at this time. (See
V_SET_APP_BUFF for memory allocation information.)

Input
contri(0) — Opcode = 11
contrl(1) - 0 (indicates OFF)
contrl(2) — 0
contrl(3) — 0
contri(4) — 0
contrl(5) - 13
contrl(6) — Device handle
C BINDING
Procedure Name v_bez_off(handle)
Data Types

Input Arguments

int

handle;

handle = contrl[6]

Reserve Bezier
workspace

This call reserves memory for use by GDOS
extensions to produce Bezier curves. When the
application makes Bezier calls, the buiffer set aside by
this call holds the polygon generated from the Bezier
anchor and direction points. When not making Bezier
calls, the application has free access to this buffer.
When the application exits. it must pass a zero offset.
segment. and size to disable further use of this buffer
and prevent accidental use of this memory. In the
absence of this call, GDOS allocates its own buffer
when a v_bez() or v_bez_fill() call is made. The size
of this default buffer is 8K. The size of the buffer that
you pass in should vary according to the complexity of
the Bezier - typically around 9K bytes.

Input

contri(Q) — Opcode = -1
contri(1) — 0
contrl(2) - 0
contri(3) - 0
contrl(4) - 0
contrl(5) - 6
contrl(6) — Device handle

intin(0) - offset to buffer (first two bytes of address)
intin(1) - segment address of buffer (last two bytes
of address)
intin(2) - number of paragraphs available
(each paragraph = 16 bytes)

C BINDING
Procedure Name v_set_app_buff(&address, nparagraphs)
Data Types

long address;

int nparagraphs;

Input Arguments nparagraphs = intin[2]

Output Arguments
address = intin[0][1]

Output Bezier

This call draws an unfilled Bezier on the specified

device.
Input
contrl(0) — Opcode = 6
contrl(1) - number of vertices
contri(2) - 2
contri(3) - (no. of vertices + 1)/2
contrl(4) - 6
contrl(5) — 13
contri(6) — Device handle
intin(0) - array of vertex-type flags
bit 0 = 1 first point in a 4-point Bezier segment (a curve-
the four points are two anchor points and two direction
points)
bit 0 = 0 begins a polyline unless the previous byte’s bit 0
indicates the beginning of a bezier (Note: The last point
of a bezier segment can be the first point of the next
segment.)
bit 1 = 1 jump point - a point connecting two regions
without drawing a line between them ("move to here"”
instead of "draw to here")
ptsin(0) - array of vertices
Output
intout(0) - no. of points in resulting polygon
intout(1) - no. of moves in resulting polygon
intout(2) - reserved
intout(3) - reserved
intout(4) - reserved
intout(5) - reserved
ptsout(0) — minimum x extent of rectangle
("bounding box") surrounding the
curve
ptsout(1) - minimum y extent of bounding box
ptsout(2) - maximum x extent of bounding box
ptsout(3) — maximum y extent of bounding box
C BINDING
Procedure Name v_bez(handle, count, xyarr, bezarr, extent, totpts, totmoves)
Data Types

int handie;
int count, *xyarr, extent(4];

char *bezarr;
int *totpts, *totmoves;

Input Arguments handle = contrl[6]
count = contrl[1]
xyarr = ptsin[0]
bezarr = intin[0]

Output Arguments totpts = intout(0};
totmoves = intout[1];
extent[0] = ptsout{0];
extent[1] = ptsout[1];
extent[2] = ptsout[2];
extent(3] = ptsout{3]:;

Output Filled

Bezier
This call draws a filled Bezier on the specified device.
Input
contrl(0) - Opcode =9
contrl(1) - number of vertices
contrl(2) — 2
contrl(3) - (no. of vertices + 1)/2
contrl(4) - 6
contrl(5) - 13
contrl(6) — Device handle
intin(0) - array of vertex-type flags
bit 0 = 1 first point in a 4-point Bezier segment (a curve-
the four points are two anchor points and two direction
points)
bit 0 = 0 begins a polyline unless the previous byte’s bit O
indicates the beginning of a bezier (Note: The last point
of a bezier segment can be the first point of the next
segment.)
bit 1 = 1 jump point - a point connecting two regions
without drawing a line between them ("move to here"
instead of "draw to here")
ptsin(0) — array of vertices
Output
intout(0) - no. of points in resulting polygon
intout(1) - no. of moves in resulting polygon
intout(2) - reserved
intout(3) - reserved
intout(4) - reserved
intout(5) - reserved
ptsout(0) — minimum x extent of rectangle
("bounding box") surrounding the
curve
ptsout(1) — minimum y extent of bounding box
ptsout(2) — maximum x extent of bounding box
ptsout(3) — maximum y extent of bounding box
C BINDING
Procedure Name v_bez_fill(handie, count, xyarr, bezarr, extent, totpts,
totmoves)
Data Types

int handle;

int count, *xyarr, *extent;
char *bezarr;
int *totpts, *totmoves;

Input Arguments handle = contrl[6]
count = contrl[1]
xyarr = ptsin[0]
bezarr = intin[0]

Output Arguments totpts = intout{0];
totmoves = intout[1];
extent{0] = ptsout[0];
extent[1] = ptsout[1];
extent{2] = ptsout[2];
extent[3] = ptsout{3];

