Pexec Cookbook
Third Edition
6 September 1991

Atari Corporation
1196 Borregas Avenue
Sunnyvale, CA 94086

COPYRIGHT
Copyright 1991 by Atari Corporation,; all rights reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of
Atari Corporation, 1196 Borregas Ave., Sunnyvale, CA 94086.

DISCLAIMER
ATARI CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Atari Corporation reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Atari Corporation to
notify any person of such revision or changes.

TRADEMARKS
Atari is a registered trademark of Atari Corporation. SLM, ST, and TOS are trademarks of
Atarni Corporation.

This document was produced entirely with Atari Computers, Atari SLM Laser Printers, and
Microsoft Write.

Table of Contents

INEPOGUCHON........ooi e ees oo 5
The Format of an Executable File...................o.cooooooooomoomooooo 5
SYMBOESIN.........oooiii e eeee oo 6
FIXUP INFOrMAON.ooviminireee oo 6
PEXEC and ABSFLAG.............c.ccooommmmierteneeeeeeeeeeeeeeeeesees oo 6
The Importance of Shrinking Before Pexecing................cooooooooo 7
PeXEC ANA MAIOC...............oooieeie e eeeeeseeeee 8
PeXeC ANA PRGFLAGS..................oooiieieniiieneeesete e eeesesees oo 9
OVerview Of PEXEC FIAVOLS..............ooooiuuiiueeeeeeeeeeeeeeeeeeeees oo oo 10
Version? WRat VEISION?.............c..oovcommiiumiioeceeeceoeeeeeeeessscess e seees e s e oeeeseeeeeoeeen 11
Making the Call.....................oooooiriieeee e eee st eoeseeeeeeees oo 12
REMULN FIOM PEXEC............oooeeeiieeeneeieete sttt eeeeseees s se e s e e eseeeseeeseeeeeoee 12
Why (B+6)==0)and ((5+4) 1= 0).....ccooo.oouuooeemeeeeeeeeeeeeeeeeeeeeeeeeeoeeoeoeoeeeoeeeooeoeoo 13
Usage Example of Pexec Mode 3 and MoOdE 6.....................ooommeeomrommemrorooo 13
Load ONce, EXECULE MALY...............cccommrrerruesirenesenseeesesseesseeseseessssessssessesess e es oo e 13
Inheritance and its Responsibilities.......................cooovoeeerommeosoeoooo 15
CommOn PEXEC MISLAKES................oooereereeieeeerceeeeeeeeseeeeeseeseeesessees s seeeeessseses 15
C RUNGME SArtup ROWHNES. ..o eeeeee e 16
SIZNGUP YOUL TPA..........oooorioreeeuuunssnnsssssessssssssssesssesssssssssssssssssssssssssssssssssosssseeeeeeoeeoo 17
SELE.S.....ooiit ettt sass st st se e s eneess s 17

Pexec Cookbook

INTRODUCTION

In broad terms, the things you have to know about Pexec are that it starts up a process,
lets it execute, then returns to the caller when that process terminates. The caller - the
process which used Pexec in the first place - has some responsibilities: it must make
memoty available to the OS for allocation to the child, it must build an argument string for
the child, and it must either pass an environment to the child or let the child inherit a
copy of its environment.

Pexec has several modes, not all of which are available in all versions of TOS. See
"Version? What Version?" and "Pexec Flavors" for more information.

Note: Because Desk Accessories are not GEMDOS processes, they should not use
Pexec. Although their files have the same internal structure as executable files,
they are not treated as executable files, and the rest of this document does not
apply to them.

THE FORMAT OF AN EXECUTABLE FILE
An executable file consists of a header followed by images of the text and data segments,
zero or more symbol segment entries, a fixup offset, and zero or more fixup records:

What's there Offset Description
o m e +
| PRG_magic I $00 (word) magic number ($601A)
Fm e +
| PRG tsize] $02 (long) size of text segment
Fm e +
| PRG_dsize | $06 (long) size of data segment
Fmmmm e +
| PRG bsize | $0A (long) size of BSS segment
e +
| PRG_ssize | $OE (long) size of symbol segment
R s +
| PRG_resl | $12 (long) (unused, reserved)
e +
| PRGFLAGS | $16 (long) See "Pexec and PRGFLAGS"
e LT +
| ABSFLAG | $1A (word) See "Pexec and ABSFLAG"
R et e +
Text Segment $1C
: : : image of text segment
Hmmmm e +
Data Segment PRG tsize+$1C
: : : image of data segment
B T TP +
Symbol Segment PRG tsize+PRG dsize+$1C
: : : see below
B e e +
| Fizxup Offset | PRG_tsize+PRG_dsize+PRG_ssize+$1C (long)
i | offset to first longword to fix up
R +
Fixup Info exists only if Fixup Offset is nonzero
fommmmmmmme ey ends with a zero byte

Atari Pexec Cookbook - 6 September 1991 Page 5

Pexec Cookbook

Note: The Fixup Offset will not exist if ABSFLAG is nonzero, although ABSFLAG was not
reliable in versions before Rainbow TOS. See "Pexec and ABSFLAG."

SYMBOLISM

The symbol segment is free-format and its contents depend on the tools used to generate
the executable file. The Alcyon tools deposit Alcyon format symbols. Mark Williams 2.x
tools generate an empty symbol segment (PRG_ssize == 0)and append their own
symbol segment to the end of the fixup information, and Mark Williams 3.x puts the ID
header and debug info in the symbol segment as well. For more information on Alcyon
format symbols, consult the GEMDOS manual section on executable files,

FIXUP INFORMATION

Executable files may be loaded into memory on any word boundary. GEMDOS will fix
up longwords in the text or data segments by adding the base of the text segment to the
values already in the longwords. The fixup information specifies which longwords need
to be fixed up before the program can be executed.

The fixup information starts with a longword containing the byte offset to the first location
to fix up. If the offset is O then there are no fixups. See "Pexec and ABSFLAG."

Following the initial longword offset are a series of relocation bytes. These bytes specify
offsets to further fixups. The bytes may have the following values:

Value Meaning
0 End of relocation list;
1 Advance 254 bytes;

2..254 (even) Advance 'N' bytes and fixup the longword there.
We assume a location pointer that is initially set to the longword fixup offset:

A byte of 0 indicates the end of the relocation list. A byte of 1 means to advance the
location painter by 254 bytes and examine the next relocation byte. A byte of 2 or more
means to add the byte to the location pointer and add the address of the text segment to
the longword at the address the location painter paints to. This may sound confusing, but
it's really quite simple and a program to process these relocation bytes is easy to write.

PEXEC AND ABSFIAG
The word at offset $1A in the program header is ABSFLAG; when nonzero there are no
fixups.

Page 6 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

Using a nonzero ABSFLAG to indicate that a PRG file has no fixups is not recommended,
since old versions of TOS (TOS 1.0 and Mega TOS) did not handle this case correctly. A
better way to represent a PRG file with no fixups is to leave ABSFLAG in the header as
zero, and place a zero longword as the "offset to first fixup" at the start of the fixup
segment. A zero value there means there are no fixups. This works on all TOS versions.

THE IMPORTANCE OF SHRINKING BEFORE PEXECING
Here is a picture of a process at the moment it is started by Pexec mode 0:

<< Lower addresses << >> higher addresses >>
| BP | text | data | bss | heap ...stack |
AT AT s e A
| mmmmeees N EELE e TS e

This is your basepage This is your text base. This is hitpa. The

address; it is found The PC starts here. initial stack pointer

at 4(sp) when you is hitpa-8. Your

start up. basepage address

is found at 4(sp).

All programs are started with the largest available block of OS memory allocated to them.
This block of memory in which a program runs is known as the Transient Program Area
(TPA). Often (but not always!), a program's TPA is the block stretching from the end of
the accessories and resident utilities to the beginning of screen memory. The point is that
your program may have been allocated all of free memory.

The "heap" is the area between the end of your declared bss and your initial stack pointer.
Your stack grows downward in this area. In the Alcyon C memory model, malloc()
calls are satisfied from the heap. For most other libraries, you declare a stack size, and the
C runtime startup moves your stack to (bssend + stksiz) and does an Mshrink
down to that size, as illustrated below.

In order to make memory available for a child process, your program must shrinkthe
block it owns, returning the top part to GEMDOS. The time to do this is when it starts up,
or at least before using Pexec, and the call to use is Mshrink. Your program must also
move its stack painter before calling Mshrink, so its stack is never located outside its
TPA. If it doesn't do this, its stack will be in memory it doesn't own, which is wrong.

All programs should call Mshrink to release some memory to TOS, even if they aren't
going to Pexec anything. GEM VDI uses Malloc for its functions, AES Mallocs
memory for file selector directories, etc. These OS functions will fail (and multi-tasking
environment users will be angered) if your program selfishly keeps all of the system's
memoxy for itself. Note that a program only needs to Mshrink its TPA once. After that,
it can do as much Pexecing as it wants.

Atari Pexec Cookbook - 6 September 1991 Page 7

Pexec Cookbook

Here is the picture just before calling Mshrink :

<< Lower addresses << >> higher addresses >>
| BP | text | data | bss] stack | to be freed... |
e e e —emmee o ____--_-_____;_____-; ________________
=mmm oo |
This is your stack pointer after This is the memory
you move it, before calling Mshrink. to be returned to
It is usually placed at the top of the OS.

the part of memory you are going to keep.

And here is the picture after calling Mshrink :

<< Lower addresses << >> higher addresses >>

| BP] text | data | bss | ...stack | free memory

A

I
After the Mshrink call, you do
not own this memory any more.

PEXEC AND MALLOC

It is not correct to assume much about how Malloc works. The only things guaranteed
are (@) Malloc(-1L) returns the length of the largest block you can allocate, and (b)
Malloc returns 0 if it can't allocate a block of the size you ask. Furthermore, Pexec is
guaranteed to load you into the largest free block. But don't try to play with these
guarantees too much: it is not the case that you can say Malloc(-1L) and know how
big the TPA of a child is. For one thing, the child's environment might be allocated out of
that same block of memory, but then it might not. Also, future Mallocs might have
some overhead between blocks where linkage is kept. You just can't tell. Furthermore, it
is not safe to assume that Malloc(Malloc(-1L)) will succeed, because of the
possibility of multi-tasking. In a multi-tasking environment it is also not Dolite to tyrannize
all of memory like this.

Page 8 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

PEXEC AND PRGFLAGS

Starting with the GEMDOS in Rainbow TOS (GEMDOS version 0.15), one of the reserved
longwords in the header of executable files (PRG, TTP, TOS) has acquired a meaning; the
bits there control the way GEMDOS treats that program. Briefly, the lower three bits of
that longword have the following meanings:

Bit Meaning
0 If set, clear only the program's declared BSS. If clear, the entire heap is
cleared.

1 If set, the program is eligible to be loaded into alternative RAM. If clear, the
program will only be loaded into ST RAM.

2 If set, the program's Malloc calls may be satisfied from alternative RAM. If
clear, the program's Malloc calls will only be satisfied from ST RAM.

In addition, the high four bits of the PRGFLAGS value are used in deciding where to load
the program.

These bits affect Pexec when using modes 0, 3, or 7. With mode 0 or 3, these values are
retrieved from the longword at offset $16 in the executable file header. With mode 7, this
longword is taken from the (otherwise zero) second input argument to Pexec.

For more detailed information on these "PRGFLAGS" bits, see the entry for "Program
Startup” in the "GEMDOS Changes - Processes and Memory” section of the Rainbow TOS
Release Notes, and the section titled, "The Specifics of the Two Kinds of RAM" section of
the TT030 TOS Release Notes.

Atari Pexec Cookbook - G September 1991 Page 9

Pexec Cookbook

OVERVIEW OF PEXEC FLAVORS

Pexec Mode 0 (load and go)
These are the things that happen for Mode 0 (load & g0). The tests for error conditions
and cleanup are left out for clarity.

1. Make sure the file exists.

2. Set up env, TPA, BasePage:
a. Allocate and copy the environment (call it env).
b. Allocate the largest free block (call it BP).
C. Set lowtpa, hitpa, dta, and env paointers in basepage.
d. Do file handle and default directory inheritance.
e. Copy command-line into BP.

3. Change the ownership of env & BP to BP.

4. Load executable file, fill in segment starts/sizes in BP.

5. Launch:
a. Set parent pointer in BP.
b. Set initial user stack, push initial registers to it.
C. Set the "current process" global to BP.
d. Start'er up.

Pexec Mode 3 (load, don't go)
This does #1, #2, and #4. Because #3 is not done, the process that called Pexec still
owns the memory.

Pexec Mode 4 (just go, original form)

This does #5 (launch) only. Because #3 is not done, the process that called Pexec still
owns the memory. Thus, when the child process terminates, its env and TPA are not
freed. Memory it got via Malloc is freed, however.

Pexec Mode 5 (create basepage)
This does #2 above (and not #3).

Pexec Mode 6 (just go, new form)
This does #3 above, then #5. Unlike mode 4, memory ownership is changed to the child
process.

Pexec Mode 7 (create basepage, respecting PRGFLAGS)
This does #2 above (and not #3). Unlike mode 5, accepts PRGFLAGS as its second

argument.

Pqgge 10 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

VERSION? WHAT VERSION?

Pexec modes 6 and 7 are not available in all GEMDOS versions. Mode 6 is not available
prior to the GEMDOS version in Rainbow TOS, which was 0.15 (that is, Sversion
returns 0x1500). Mode 7 was not available prior to the release of TT TOS, with GEMDOS
version 0.19 (Sversion returns 0x1900). Before using these Pexec modes, you need
to check what version of GEMDOS you are using. The only legal way to do this is to
make the Sversion call. (You can't just check the TOS version number in the BIOS: it
is possible to have one version of the BIOS and another version of GEMDOS loaded off
disk.) The GEMDOS Sversion call returns GEMDOS's version number in a WORD,
where the high byte of the word is the minor revision number, and the low byte is the
majorversion number.

The following code fragments will tell you if Pexec mode 6 or 7 is available.

WORD pexec6 probe()
{
WORD vers;

vers = Sversion();

if (((vers & Oxff) > 0) |l ((vers & 0xf£f00) »>= 0x1500))
return YES;
else return NO;

WORD pexec7_probe()
{
WORD vers;

vers = Sversion();

if (((vers & Oxff) > 0) || ((vers & 0xff00) >= 0x1900))
return YES;
else return NO;

Note: ~ Using a version number to determine what Pexec modes (or other GEMDOS
features) are available is acceptable programming practice. Using a version
number to determine the location of undocumented system variables is 7ot
acceptable. You have been warned.

Atari Pexec Cookbook - 6 September 1991 Page 11

Pexec Cookbook

MAKING THE CALL

When you want to exec a child, you build its filespec into one string, and its arguments
into another. The argument string is a little strange: the first character of the argument
string is the length of the rest of the string. This simple system call will load a program,
pass in the spedified argument string, and execute the program, returning the program's
exit code to the caller:

long start a prog(cmd, args)
char *cmd, *args;
{

char buf[128};

int arglen;

arglen = strlen(args);
if (arglen > 125) {

printf("argument string too long\n");

return -1;
1
strcpy(buf+l, args); /* copy args to second byte */
buf[0] = arglen; /* set first byte to length */
return Pexec(0, cmd, buf, OL);

}

The first zero in the Pexec call is the Pexec function code load and go. The cmd
argument is the child's filespec: path Gf needed), and file name with extender, null
terminated. Buf becomes the child's command line, and the fourth argument is the
environment pointer. A NULL environment pointer means "let the child inherit a copy of
my environment."

RETURN FROM PEXEC

GEMDOS allows programs to return a 16-bit exit code to their parents when they
terminate. This is done with the Pterm(errcode) call. The value in errcode is
passed to the parent as the return value of the Pexec system call. The C library function
exit(errcode) usually uses this call, as does returning a value from main(). Ifthe
Pexec fails (not enough memory, file not found, etc.) a negative code is returned, and
you should deal with it accordingly. Note that error returns from Pexec are always
negative Jongs, while return codes from the child will have zeros in the upper 16 bits.

Unfortunately, the people who wrote the startup file for the Alcyon C compiler didn't use
this. The compiler calls exit with an error code, which calls _exit, but the Alcyon
_exit always uses Pterm0, which returns zero as the exit code. We fixed this by
rewriting GEMSTART.S, the C runtime startup code used with Alcyon C. Now, new
programs return correct exit codes, but the compiler still doesn't. It is possible, though, to
patch the binaries of all passes of the compiler so they do.

Page 12 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

WHY ((3+6)==0) AND ((5+4)!=0)

Pexec modes 3, 5, and 7 are used to set up processes to be run later, 4 and 6 to run
them once they are set up. If you use mode 6 to execute a child after setting it up with
mode 3, the net result is the the same as using the load and go mode, because the child
will go away when it terminates. Mode 6 is mostly useful if you want to fiddle a bit with
the child before you execute it (for example, to set breakpaints if you are a debuggen).
Mode 4 is useful for specially designed programs which can be run more than once. As
long as a program makes no assumptions about the memory it lives in, it is a fair
candidate for mode 4 execution. Mode 5 allows you to put anything you want into the
child's TPA before executing it, and could be used, for example, by an executive program
which builds executable programs on the fly out of common object code libraries.

USAGE EXAMPLE OF PEXEC MODE 3 AND MODE 6

The function below uses Pexec mode 3 to load a process without starting it. Then it
uses Pexec mode 6 to start it. It returns the error code from Pexec: long negative if
the initial load fails, or long positive if it succeeded and the child process returned an
error code, or zero.

#include <osbind.h>
long doexec()

long bp;
long errcode;

bp = Pexec(3,"MYPRG.PRG","\003arg",0L);

if (bp < 0) {
/* Pexec failed; return the error code. */
return bp;

}

else {
/* if you want to do something between */
/* loading the process and starting the */
/* process, do it here. Then... */

errcode = Pexec(6,0L,bp,0L);

/* Now the process has terminated. Like */
/* a Pexec mode 0, the process is GONE: */
/* it owns no memory or other resources */

return errcode;

LOAD ONCE, EXECUTE MANY

One thing people may want is for "load, don't go" (Pexec mode 3) followed by "just go"
(Pexec mode 4) to act just like "load and go." Mode 6 instead of mode 4 does exactly
this. When the child terminates, its memory image will go away (because it is tagged with
the child's PID), and all will be just like load and go. You can't restart such a process (it's
gone as soon as it terminates).

Atari Pexec Cookbook - 6 September 1991 Page 13

Pexec Cookbook

But let's say you use mode 3 to load a process, then mode 4 to execute it. When that
process terminates, its TPA is not freed, because its parent still owns it. Now you're stuck
with a process in memory which didn't get freed. Any memory the process got via
Malloc orits own Pexec 3, 5, or 7 calls is freed, however.

You might want the process in memory which didn't get freed. Then you could start up
the process as often as you wanted with Pexec mode 4. This probably doesn't work the
way you want. There are several restrictions:

1. The child must not Mshrink its TPA, or must be very careful about it.

2. If the child changes the contents of its text and data segments during the first
run, they'll stay in the changed state for the second - probably not what is
intended.

3. The child's BSS doesn't get cleared the second time.

4. There are handle- and current-directory-inheritence problems.

5. Possibly others.

Number 1 deserves some explanation. Pexec step #5b (see "Overview of Pexec
Flavors") sets the initial user stack painter to BP->hitpa, then pushes your initial stack
frame (zero, then your basepage address) to it. If the child did an Mshrink the first time
it was executed, then nobody owns this memory any more! Running Pexec mode 4
again violates the commandment, "Thou shalt not mess with memory thou ownest not."
The parent can't fix this by writing a new value into BP->hitpa because it doesn't
know how small the child shrunk to. The child can fix this by writing the new hitpa
value into its own basepage.

There is another way to load once and execute many times. It only gets around problem
1; problems 2, 3, and 4 and possibly others exist in full force.

The other way is to use mode 3 to load the process, then Mshrink its TPA to just the
size of its bp+text+data+bss. Each time you want to start this process, you use mode 5 to
create a basepage, fill that basepage with the text/data/bss start/len fields of the old one,
and use mode 6 to execute this basepage. (You can use mode 4, too, if you Mfree the
environment and TPA afterwards.)

The virtue of this approach is that you create a new basepage for each execution of the
process, so the same basepage doesn't seem to get created once, then terminate many
times. Also, since this process' TPA is full-size, the hitpa and lowtpa fields are
accurate.

The drawback is that the process' basepage isn't contiguous with its text, data, and BSS
segments, and they in tumn aren't contiguous with the TPA memory the process owns. A
program's startup would probably have to be spedially written to understand this before it
could be used, because this is so different from the normal state of affairs under TOS,

Page 14 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

Lastly, some people want to load many processes using mode 3, and start them up one at
a time. To do this, you have to use Pexec mode 3 to load the process, but then you
have to Mshrink the process's TPA so you can load the next one. If you do this, you
should change the pointer in BP->hi tpa, because that's where the initial user stack
pointer gets set when the process is started (with mode 4 or 6). If you use mode 4, and
you want to start the process again later, be sure the mode 4 restrictions above are
followed. Even then, there may be other difficulties.

The best solution of all is to use mode 5 or 7 to create a TPA, fill it from whatever source
you like (a utility-program image in RAM, for example) relocate it (see self . s) and start
it with mode 6. Totally legal, guaranteed to work.

INHERITANCE AND ITS RESPONSIBILITIES

Children created with Pexec inherit several things from their parents: their current drive,
their current directory on each drive, and the meanings of file handles zero through five.
Each of these things refers to internal data structures, and those data structures include a
"use count" which tells how many processes are "using" that structure.

In GEMDOS versions up to and including version 0.19, this inheritance is done at the time
the process is created. That means there's a problem when you play games like using
mode 3 to load a process, then mode 4 multiple times to run it. The use counts are
incremented during the Pexec mode 3, then decremented when the process terminates.
If you call Pexec mode 4 again, the use counts are decremented again when the
process terminates, and GEMDOS's internal data structures are now inconsistent with
reality: something might be marked as free (use count is zero) when in fact it is in use.

It is slightly better if you use mode 3 to load something, then use the mode 5/mode 6 pair
to execute it multiple times. At least in that case you get an increment during mode 3,
then another during mode 5, then a decrement during mode 6 - the result being that the
use count is one higher than it should be. At least the structure won't be re-used out from
under the original process that used it, but it does mean that tables will fill up.

A future TOS will address this issue by doing inheritance at the time the process is started,
on the assumption that something which is created may never be started, but that
anything that starts will eventually terminate. This means that the current drive, current
directories, and standard handles (zero to five) will inherited at "go" time, not "load" time,
50 keep this in mind when coding handle-redirection routines.

COMMON PEXEC MISTAKES

Most Common Mistake #1 in attempting to do a Pexec is to fail to release memory
owned by the parent process for use by the child. When the parent process first gains
control from GEMDOS it owns all of the largest block of memory. The parent must call
Mshrink to release memory back to the system before calling Pexec.

Atari Pexec Cookbook - 6 September 1991 Page 15

Pexec Cookbook

Most Common Mistake #2 is to forget to relocate the parent's stack out of the memory
freed with the Mshrink call. Remember: an application may»ot continue to use memory
it does not own.

C RUNTIME STARTUP ROUTINES

Note: The following discussion of Mshrink and malloc applies mainly to Alcyon C.
Other compilers may implement malloc differently. For example, Mark
Williams C startup code performs the Mshrink for you, and uses GEMDOS
Malloc to obtain memory pools for its library malloc calls.

If you use Alcyon C from the developer's kit, you know that you always link with a file
called GEMSTART. In GEMSTART.S, there is a lot of discussion about memory models,
and then a variable you set telling how much memory you want to keep or give back to
the OS. Make your choice (when in doubt, use STACK=1), assemble GEMSTART.S, call
the result something like GEMSEXEC.O, and link the programs which Pexec with that
file rather than the normal GEMSTART.

Your program is invoked with the address of its own basepage as the argument to a
function (i.e., at 4(sp).D. The basepage structure is described in the GEMDOS manual.
The interesting fields are HITPA (the address of the first byte notin your TPA), BSSBASE
(your bss start address) and BSSLEN (your bss length).

Your program's stack pointer starts at HITPA -8, because the basepage argument and the
dummy return PC on the stack take up 8 bytes. The space from BSSBASE+BSSLEN to
your SP is the stack+heap space. Alcyon C library malloc calls use this space, moving a
painter called the break (in the variable _ _break, or the Alcyon C variable _break)
up as it uses memory. The stack painter moves down from the top as it uses memaory,
and if the sp and _break ever meet, you're out of memory. In fact, if they ever come
close, within a "chicken factor" of about 1K, malloc will fail because it doesn't want
your stack overwriting good data.

Your program keeps only the TPA it needs by calling Mshrink. The arguments are the
address of the memory block to shrink (your program's basepage address in this case)
and the new size desired. Be sure to leave enough room above your BSS for a
reasonable stack, at least 2K, plus any malloc calls you expect to make. Let's say you're
writing mmake and you want to leave about 32K for malloc for your dependency
structures. Also, since make is recursive, you should leave lots of space for the stack -
maybe another 16K.

Page 16 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

SIZING UP YOUR TPA
The amount of memory that your program needs can be calculated by finding where its
new top of memory needs to be:

newtop = bss base address + bss size + 16K stack + 32K heap

stacksize = $4000 ; 16K

heapsize = $8000 ; 32K

.BSS

basepage: ds.1 1

.TEXT
move.l 4 (sp),al ;i Get the basepage address,
move.1l a0, basepage ; and save it.
move.1l $18(al),al ; bss base address from basepage,
adda.l $lc(a0),al ; plus bss size,
adda.1l #stacksize,al ; plus stack,
adda.l #heapsize,al ; plus heap, leaves newtop in al

Since the stack pointer is at the top of your program's current TPA, and you're about to
shrink that, your program must first move its stack:

suba.l basepage,al ; newtop-basepage = TPA size

move.l al,-(sp) i set up Mshrink(basepage,size)
move.1l basepage, - (sp)

clr.w -(sp)

move.w $#$4a,-(sp) ; push function code for Mshrink
trap #1 ; and trap to GEMDOS

lea 12(sp),sp ; clean up args

Now that you've shrunk your program's TPA, the OS can allocate this new memory to
your child and use it for other OS functions.

SELF.S

This example program is intended to be placed at the beginning of an executable file. It
has several applications, but it is probably most useful for self-booting applications like
video games or device drivers that can't depend on GEMDOS to load them.

Atari Pexec Cookbook - 6 September 1991 Page 17

Pexec Cookbook

The basic idea is that the entire executable file is loaded into memory, including the
symbol segment (which is ignored) and relocation information. The program examines
itself, determines where the relocation information is, and performs the necessary fixups.
Control falls through to the code following the object file "self.o".

BSS is not cleared - it is full of symbol segment and relocation garbage, and is left as an
exercise for the reader if BSS clearing is important to you.

This program is written in the MadMAC assembly language dialect, but it should work on
other assemblers with minimal changes.

***%% file "self.s”

*¥---- Executable file structure
.ABS
MAGIC: ds.w 1 ; $601A magic number
TSIZE: ds.1l 1 ; size of text,
DSIZE: ds.1l 1 ; data,
BSIZE: ds.1l 1 ; BSS,
SSIZE: ds.1 1 ; symbol segment
ds.w 5 ; (reserved)
TSTART = * ; start of text
. TEXT
*---- Get control from boot ROM or GEMDOS. If the header doesn't
*¥---- contain $601A, assume that we've already been relocated.
lea *-TSTART(pc),a2 ; a2 -> PRG header
cmp.w #$601a, (a2) ; correct magic#?
bne .exit ; (no, don't fixup)

*- locate start of relocation information:

' lea Start(pc),al Al -> base of text
move.l al,dl D1 = base of text
move.l al,al A0 = base of text
add.1 TSIZE(a2),al Al += tsize
add.l1 DSIZE(a2),al Al += dsize
add.1 SSIZE(a2),al Al += symsize
tst.1 (al) if (*Al == NULL)
beq.s .exit then don't fix
moveq #0,d0 DO = OL
add.1 (al)+,a0 A0 -> first fixup

Ne Ne Ne Mo Ne Ne Ne Ne we Ne

Page 18 Atari Pexec Cookbook - 6 September 1991

Pexec Cookbook

*- do relocation:

.2: add.l1 di, (a0) ; longword += text base

.4: move.b (al)+,do ; get next fixup byte
beq.s .exit ; if (byte == 0) break;
cmp.b #1,40 ; if (byte == 1) a0 += Oxfe;
bne.s .3 ;
add.w #$00fe,al ; bump location pointer
bra.s .4 ; get next reloc byte

.3: add.w do0,a0 ; a0 += byte
bra.s .2 ; fixup, get next reloc byte

*---- Fall through to the next object file. It had

*---- better be something prepared to handle it...

.exit:

Atari Pexec Cookbook - 6 September 1991 Page 19

Pexec Flavors

PEXEC FLAVORS

Pexec mode 0 Load and go

This is the most common mode; it executes a child process like a subroutine. Returns a
WORD from the child, or a negative LONG value on an error.

LONG Pexec(0, char *pathName, char *commandLine, char *env);

- pathName is the name of the program file to execute.

- commandLine is a null-terminated Pascal-style string that is copied to offset 0x80 in
the child's basepage, which means that
(D) the first character should equal the length of the string, and
(2) the string may not exceed 125 bytes (not including the nulD).

- env is a painter to an environment string to copy and pass to the child. An
environment string is a series of null-terminated strings of the format "VAR=value”;
the last string is followed by two zero bytes, indicating the end of the environment. If
the env parameter is NULL, the parent's environment is copied and passed to the child.

If a Pexec error occurs, due to insufficient memory or some other condition, GEMDOS

will return a LONG negative error number. If the Pexec succeeds, it will return 2 WORD
exit code (which can not be longword negative) when the child terminates.

Pexec mode 3 Load, don't go

Used for a process that is loaded but not executed. Typically used with modes 4 and 5 to
do overlays. Returns a painter to the loaded process' basepage.

BASEPAGE *Pexec(3, char #*pathName, char *commandLine, char
*env) ;

Parameters are the same as for mode 0, load and go.

Note: If you intend to use Pexec (3. . .) to load a process that is to be run more
than once, you must ensure that:

(1) the child process does not modify its text or data segment without first
initializing what it modifies - if the child does, and it is run a second time,
the modified locations will not be initialized as it expects;

(2) the BSS of the child must be cleared before it is re-executed;

(3) standard file handles should be set up as they were when the child was first
loaded - they are only inherited at the time of the Pexec (3. ..) call

See also notes on memory ownership under Pexec modes 4 and 6.

Page 20 Atari Pexec Cookbook - 6 September 1991

Pexec Flavors

Pexec mode 4 Just go

Executes a loaded process.
Returns values in the same manner as mode 0.

LONG Pexec(4, OL, BASEPAGE *basePage, 0L);

The basePage parameter passed to GEMDOS should be the address of a process
basepage which has been set up via Pexec 3 or 5.

If you use mode 4, you will find that when the process terminates, the memory is still
around. You have to free it yourself. This is the case whether you use mode 3 or mode 5
to create the process in the first place. To free the memory, you not only have to free the
basepage address, you also have to free the environment pointer. That is, do this:

free process(bp)
BASEPAGE *bp;

{
Mfree(bp->p _env);
Mfree(bp);

Note: Use of Pexec (4. . .) is restricted by GEMDOS' concept of memory
ownership. When a child is launched using this mode, memory ownership
does not transfer to the child. TOS 1.4 (GEMDOS version 0x1500) adds Pexec
mode 6 to overcome this problem. See also notes on Pexec mode 3 above.

Pexec mode § Create basepage (a.k.a. create psp)

Allocates an environment, then gets the largest block of free memory and sets it upasa
prototype TPA. Returns a painter to the memory block.

BASEPAGE *Pexec(5, OL, char *commandLine, char *env);

GEMDOS allocates and creates an environment, then gets the largest block of free
memory and creates a basepage in the first 0x100 bytes of that block. This is a
"prototype" TPA, because the text, data, and bss start addresses and lengths are not set up
in the basepage. The parent is responsible for loading the child into the memory block,
relocating it, and filling in the missing basepage data. Probably the least used Pexec
mode, because it involves so much work to load the child.

Atari Pexec Cookbook - G September 1991 Pgge 21

Pexec Flavors

Note that mode 5 allocates a big TPA just like 0 and 3. If you don't need it (for example,
because your program is in ROM) you can Mshrink the basepage to, say, $400 bytes,
change BP->hi tpa to the new ending address, fill in the (ROM) starting address of the
child, then use mode 4 or 6. (This gives a user stack size of $300 bytes, which is minimal
atbest.) Another possibility is that the process is elsewhere in RAM (for instance, within
the parent). Same trick applies. Finally, the process might be on CD ROM or something
where GEMDOS doesn't know how to read it in. You can use mode 5 to build the
basepage, then read in the text and data images at BP+$100 (and fix them up if
necessary), then fill in BP+$100 as the text base address and use mode 4 or 6, Most
TOS programs are going to want all of the fields of the basepage filled in, including
text/data/bss base/len, but Pexec only requires the text base (and hitpa if you
Mshrink).

Pexec mode 6 Just go, then free

Execute a loaded process which owns its TPA. The child's memory is freed when it exits.
Returns values in the same manner as mode 0.

LONG Pexec(6, 0L, BASEPAGE *basePage, OL);

This function is available only in TOS versions 1.4 (GEMDOS version 0x1 500) or higher.
It functions like Pexec mode 4, "just go," with one important exception: memory
ownership is changed to the child process. When the child terminates, GEMDOS frees
any memory allocated to the child, including its TPA.

As with mode 4, the "basepage" argument must be a value returned from Pexec Mode 3
(oad, don't go) or 5 (create basepage). It is the address of the basepage of the new
process to execute. If the basepage was created with Pexec Mode 5, set the text-base
field before using mode 6.

The difference between mode 4 and mode 6 is that mode 6 changes the owner of the
new process's basepage and environment to be the new process itself. This way, when
the process terminates, the basepage and environment are freed. This means that mode 3
(load, don't go) + mode 6 (just go) = mode 0 (load and go).

Pexec mode 7 Create basepage (a.k.a. create psp) respecting PRGFLAGS

Allocates an environment, then gets the largest block of free memory and sets it up as a
prototype TPA. Returns a painter to the memory block. Unlike mode 5, the second
argument is the PRGFLAGS value.

BASEPAGE *Pexec(7, prgflags, char *commandLine, char *env) ;

See "Pexec and PRGFLAGS" for more information.

Page 22 Atari Pexec Cookbook - G September 1991

