MetaDOS™/CD-ROM Developer's Documentation
First Edition
January 3, 1989

Atari Corporation
1196 Borregas Avenue
Sunnyvale, CA 94086

COPYRIGHT
Copyright 1989 by Atari Corporation; all rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of Atari Corporation, 1196
Borregas Ave., Sunnyvale, CA 94086.

DISCLAIMER
ATARI CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Atari
Corporation reserves the right to revise this publication and to make changes
from time to time 1in the content hereof without obligation of Atari
Corporation to notify any person of such revision or changes.

TRADEMARKS
Atari, ST, Mega, TOS, and CDAR504 are trademarks or registered trademarks of
Atari Corporation.

This document was produced with an Atari Mega 4 computer using Microsoft Write
and an Atari SLM804 laser printer.

Note: This document was salvaged from a floppy found at the Atari Headquarters
when 1t was closed. This cover page 1s an approximation of what the document
might have looked like 1in 1it's original form. If you have a copy of the
original document please contact: http://www.bright.net/~gfabasic/

Table of Contents

MetaDOS™
100w et X L6 K e e) o L 1
MetaDOS™ Limitation s . @ittt ittt ittt et ettt ettt eaeeeeeennanns 2
Desktop LimitationS . vttt ittt ittt ettt et ettt eeeeeeeeneneeens 2
Configuration File. ...ttt ittt ettt ettt e eeeeeeeneeeeeeneneeees 3
Requirements and Installation. ...ttt iii ettt eeeeeeeeneneeeenns 5
Atari CD-ROM BIOS Extensions (Trap #14) « ..ttt eeeeeeeeeeeeeeennns 7
100w et X L6 K e e) o L 7
Typical Application Calling SEgUENCE . .t vttt vttt it eeeeneneeeenneeeesns 9
Extended Bios COMMANAS . v v vttt i v ie et eenneneeeeeeeeeeeeneeesenneeeeeeenns 10
= = e o B () 10
(0 10 o N R 11
CLlOSE () et e ettt et et e e e e et e e e ettt 11
By Y= K (T 12
e (T 12
ST T 13
= o = 14
STArt AU () v v v ittt e e e e e 15
STEOP AUA () vttt ittt e e e e e e e e 16
SEL SONGELIME () vt v ittt ettt et et et et et et et et 16
o F S o X B 17
AisC AnfO () v i it e e e e e 18
Error CondifionsS . v ittt ittt ettt ettt et ettt eeeaeneanns 19
Command SpecCifications . @ittt ittt ettt et ettt ettt e eaeaeees 20
Test Unit Ready ..ttt ittt ittt ettt ettt eeeeeeeeeneeeeeeneneeens 22
S w6 T 2 4 i 22
REQUE ST SO S . ittt ittt it et et e ettt et e ettt ettt 23
Read and Extended Read.ttt iiiiittteeeeeeeeneeeeeeneeeeeanns 25
Seek and Extended Seek.ttt ittt ittt ettt e e 26
NG Lo B N T e) 2 26
AUALIO PrOgrall. v v vttt ettt et e et e e et ae e e eaeeeeseeeeesseaeeesseaneess 27
NG Lo B N T 27
Read TOC . & it ittt e e e et e e et e ettt ettt e et e eeeeeeeeeeeeeeaaaaeeeanns 28
@Yo LT Y 0 o = 29
@Yo LT ¥ I Y o 29
100 0 LB o 30
Media RemOVal. ...ttt ittt ettt ettt aeeeeeeeeeeeseaeeeeseanenns 31
Disk Spin-—doWn Tamer . .. vttt ittt ettt et e et e eeeeeeeeeeeeeeneeeeees 31
2N 0 ST o Lo I 32
A) Example cdbind.h file. ...ttt ittt e et e et 32

B) Quick Reference to Bios CallsS. v iiiiiintietteeeeeeeeeeeeeeeneeneean 33

MetaDOS™

Introduction

MetaDOS™ is an Atari TOS system extension that uses a standard method
for loading and executing multiple devices and drivers on the Atari ST or
Mega computer systems. Through these extensions and the proper software
driver, the ST computer systems can be configured to add any new devices and
drivers in an orderly fashion. MetaDOS™ has the following advantages:

-> Fully GEMDOS compatible.

-> Improved throughput via one system request handler.

-> Allows addition of any foreign electrically-compatible device.
-> Controls auto-boot sequence.

-> Maps multiple drivers to multiple physical devices.

-> Extends logical devices (up to Z:).

-> Allows solution to existing GEMDOS 16 MEG partitions.

MetaDOS™ is broken up into three sections. MetaDOS™ is the controller.
It receives requests from the operating system and routes the request to the
appropriate logical DOS translator. The DOS handler is the second section of
MetaDOS™. It is responsible for translation between the physical format of
the device and the GEMDOS interface. Different DOS handlers can be created to
interpret the different formats the physical device can read. For instance
with a CD-ROM, all discs are identical. This means that all CD-ROM players
can read all CD-ROM discs. Although the disc information can be read, this
information must be translated from the format in which it was written (High
Sierra May86, IS09660...) into the format the computer system expects (i.e.,
GEMDOS format) .

The third section of MetaDOS™ 1is the addition of physical device
drivers. These drivers talk directly to the physical device they were
assigned. There are 16 reserved calls for these devices. DOS translators
communicate with the physical device via a standard array of 16 calls. Some
of these calls are init, open, close, read, write, seek, and status. Some new
devices have new features that are not present in todays devices. Six calls
have been reserved to handle any new features these devices may present.

The following calls are supported by MetaDOS™ v1.0

Dgetdrv
Dcreate
Fread

Fcreate
Fgetdta

Dsetdrv Dgetpath Dsetpath Dfree
Ddelete Fattrib Fopen Fclose
Fwrite Fseek Fsfirst Fsnext
Fdelete Fdatime Frename Fsetdta
Pexec

MetaDOS™ v1.0 Limitations

With MetaDOS™ wversion 1.0 the following limitations apply:

1)

Files opened to a MetaDOS™ device MUST be closed by the
application. Memory is still released by the operating system
once the application terminates.

MetaDOS™ devices are not boot-able. Also MetaDOS™ device
drivers MUST originate from a standard GEMDOS device.

Networks are not supported.

Standard I/0 is not supported.

Desktop Limitations

Due to the growing amount of data a MetaDOS™ device can contain the
following desktop limitations apply:

1)

Fields in the "Show Information" dialog boxes may be too small.

Some CD-ROM discs have over 100 megabytes of information. This
will not fit in the desktop "Bytes Used" line. "Showing
Info..." on a CD-ROM disc can result in this line being

mysteriously removed from the information box. Reboot the
computer to repair the problem.

A directory listing of a CD-ROM disc in "Show as Text Mode" may
crash the computer system. Again the field used to display the
size of a file is too small. Only view a CD-ROM disc in "Icon"
mode.

Configuration File

The configure file is used to tell the Atari ST computer systems which
devices to load into the Atari system. The configure file has the following
features:

Load and execute a normal auto folder program with parameters.
Load new physical device drivers and assign physical id's.
Load in new DOS drivers and assign logical and physical device id's to use.

A config.sys file is located in the computers boot device auto folder. This
file 1is read via MetaDOS™ and parsed for normal auto folder devices, DOS
translators or physical device drivers to load. MetaDOS™ uses the information
within this file to locate and associate DOS translators and physical device
drivers. This file is an ascii file and can be edited by a simple text
editor.

The configure file has the following characteristics:

Lines in the configure file that start with ';' are comment lines.
Blank lines are ignored.

Lines starting with '*' are MetaDOS™ device drivers.

Lines starting with a letter 'A-Z' are executed as auto-exec
programs.

DSw N

Example Config.sys file

; Config.sys An ascii file that describes the system configuration for a
; CD-ROM driver to boot from the floppy drive A:

;BOS, A:\AUTO\CDAR504.B0S ,A:6
*DOS, A:\AUTO\HSMAY86.DRV,H:A
*DOS, A:\AUTO\IS09660.DRV,I:A

c:\auto\boot\ram512. tos ; OTHER AUTO FOLDER BOOT PROGRAMS
c:\auto\boot\gdosll. tos

c:\auto\boot\diab630. tos

c:\auto\boot\sdump. tos

; End Configure File

The order of the config.sys file is important. MetaDOS™ should be installed
first. This way other "auto folder programs" will know of MetaDOS™ existence.
In order to guarantee this, MetaDOS™ has the capability of executing normal
auto folder programs. To do this, move all "prg" (programs) from the auto
folder. Place the full path and the name of the file AFTER the '*' commands in
the config.sys file. See config.sys file above. MetaDOS™ will execute the
auto-boot programs with a command line input from the config.sys file.

NOTE: To speed up the boot process when using MetaDOS™, move the normal auto
folder terminate and stay resident programs to another folder. This way the
system will not look at these files to see if they are to be executed.

PHYSICAL (Basic Operation System) Format

The format for installing a physical Basic Operation System 1s as
follows:

; ¥BOS, [Physical Bios driver] [Arguments], [Physical id]:[DMA Channel], ...

In the example above, DEVICE.BOS 1is loaded by MetaDOS™ from the
specified GEMDOS device and path. The program 1is executed with the command
line "MEM(8k)"™ as input. Once installed, the physical device init routine 1is
called with the physical id "A" and the DMA channel number 6. (The DMA channel
number is not necessary for all physical devices. It is only required for DMA
devices.)

*BOS, A:\AUTO\BOOT\DEVICE.BOS MEM(8K),A:6
NOTE: The physical id is not the same as GEMDOS logical id's (i.e. A: does not
mean the floppy disk drive.) With this system TOS can have up to 26 physical

devices.

LOGICAL DRIVER (DRV) FORMAT

The format for installing logical device drivers is as follows:

; *DOS [Logical DOS] [Arguments],[Logical id][:[Physical id],...

Again, the example below shows HSMAY86.DRV is loaded by MetaDOS™ from
the specified GEMDOS device and path. The program is executed with NO command
line input. Once installed, the logical driver init routine is called with
logical device "H" to talk to physical device "A".

*DOS, A:\AUTO\HSMAY86.DRV,H:A

Another driver can be associated with the same physical device. 1In this
fashion two logical icons can access one device. This way both HSMAY68.DRV and
ISO9660.DRV can be installed at the same time, Dboth talking to one CD-ROM
unit. The user must install an "I" icon to have access to the IS09660 driver
from the desktop.

*DOS, A:\AUTO\IS09660.DRV,I:A

NOTE: The physical id is not the same as GEMDOS logical id's. In the example
above, "I" is the logical system id. The user must install an ICON "I" to
have access to the drive from the desktop or application.

MetaDOS™ Requirements and Installation

MetaDOS™ will install on any Atari ST or Mega system. To install
MetaDOS™ for the CDAR504 CD-ROM the following files are required:

metados.prg —-> MetaDOS™ system router.

config.sys -> System configuration file.

cdar504.bos -> CD-ROM Basic Operation System.
is09660.drv -> IS09660 driver (translator).
hsmay86.drv -> High Sierra May86 driver (translator).

Copy these files into the AUTO folder of your boot device. On power-up,
MetaDOS™ will read the config.sys file for logical and physical driver

assignments. (See config.sys description.) It will then load in the physical
drivers (.BOS). The DOS translator (.DRV) will issue commands to its assigned
physical driver to access the physical device. An installation message 1is

produced if initialization is successful.

Step by Step Installation

To install, do the following:

1) Move all .prg files in the auto folder into another directory on the
boot device.

2) Copy the files from the MetaDOS™ distribution disk into the auto
folder.

3) If your boot device is "A:" then rename config.a to config.sys, If
your boot device is "C:" then rename config.c config.sys.

4) Edit the config.sys file and at the bottom add the other auto folder
programs you wish to install. You MUST use the drive letter and full
pathname in which they are located.

5) Reboot the computer.

6) After reboot, you must install icon "I" (is096600) and "H" (High
Sierra) to have access to the CD-ROM from the Atari Desktop.

There will be a message displayed indicating MetaDOS™ 1is
message will look as follows:

KKKKKKKKKKKKKKKKKKKKKXKKXKXKXKXKXXXXXXXX

Atari MetaDOS™ RMS,RJZ

Version 1.0 09/14/88
Copyright Atari Corporation 1988

K %k 3k 3k K %k %k K %k 3k %k 5 %k %k X % % % X % %k X % % % X % % X % % % X %
CDAR504.B0S v1.0 installed as A: on DMA 6
HSMAY '86 v1.0 installed as H:

1509660 v1,0 installed as I:

KKKKKKKKKKKKKKKKKKKKKXKKXKXKXKXKXXXXXXXX

installed.

The

Atari MetaDOS™
CD-ROM Bios Extensions

Introduction

This is a description of the Atari CD-ROM Bios Extensions for use with
MetaDOS™. MetaDOS™ loads the CD-ROM Bios Extensions via a configuration file
and assigns a physical device id. MetaDOS™ intercepts trap #14 and vectors
all opcodes between 0x30 (hex) and Ox3F to the assigned physical Bios. To
install, see MetaDOS™ configuration file.

Through these bios calls, applications can access the physical device
directly. Other calls allow access to the unique features of the particular
device. The first seven calls are standard calls for MetaDOS™ Bios Extensions.
These are open, close, read, write, and status. The last six calls are device
explicit. These calls are used to access new features of the device.

There is no verification on the validity of the inputs to any of the
Bios function <calls. It 1is up to the application to keep within the
specification of this document. Not doing so can cause strange results or
system crash. The CD-ROM Bios 1is NOT reentrant. Therefore if used in a
reentrant fashion (for example, at interrupt) will also cause the system to
crash.

The following opcodes are now supported by the CD-ROM MetaDOS™ Bios
Extensions:

Op-Code Function

0x30 Meta init() -Returns information on installed Extended
Bios and the physical drives online.

0x31 open () -Opens the physical device and returns
information on the device driver.

0x32 close () -Closes the physical device.

0x33 read () -Reads a number of blocks.

0x34 write () -Writes a number of blocks (NOT USED).

0x35 seek () -Seeks to the physical block number.

0x36 status () -Returns the current status of the CD-ROM.

0x37 Reserved.

0x38 Reserved.

0x39 Reserved.

0x3A Reserved.

0c3B start aud() -Starts audio play.

0c3C stop_ aud() -Stops audio play.

0x3D set songtime () -Sets begin and end time for song play.

O0x3E get toc() -Gets audio Table of Contents information.

O0x3F disc_info () -Gets disk information.

These functions are available through a trap #14 call. A typical "C"
binding for the trap is:

.text

__CDROM:
move.1l (sp)+,savsp
trap #14
move.1l savsp,-(sp)
rts

.bss:

savsp: .ds.l1 1

.end

The binds listed within this documentation use the trap call above
EXPLICITLY. This shows the order in which parameters are placed on the stack.
An example of this type of bind is:

CDROM((int) OPEN, (int) phydrv, (long) buffer);

For the above example, the same bind in assembly language is as follows:
pea buffer ; Address of buffer.
move.w phydrv, - (sp) ; Physical drive id.
move.w #OPEN, - (sp) ; Op-code.
jsr _CDROM ; Call trap routine.
add. 1 #8,sp ; Clean up stack.
* Note: For all of the functions listed, the following convention applies:

32-bits is considered a LONG value.
16-bits is considered an INT (integer) value.
8-bits is considered a BYTE (character) value.

Typical Application Calling Sequence

For a typical application the following sequence will allow applications to be
compatible with all future versions of the CD Extended Bios. It will also
allow applications that follow these guidelines to operate with any future
Bios and MetaDOS™ released by Atari.

Steps
1) Make a Meta_init() call. This will return version information on MetaDOS™
as well as a drive map of the physical devices on the system. If the drive

map is zero, no physical devices were found on the system or MetaDOS™ has not
been installed. (See Meta init()).

2) Use the physical drive map to find the physical device id. This id will be
used in all Extended Bios calls. (See Meta init()).

3) Make an open() call with the physical device id. The physical Bios will
then initialize itself and also return information on the given physical
device.

4) Use the device id to make any Extended Bios calls.

5) Make a close() call with the physical device id to tell the physical Rios
that the application is finished with this physical device. This also de-
initializes the Extended Bios for this physical device (provided no other
application is currently using the physical device).

MetaDOS™ Extended Bios Commands
Meta_ init() (0x30)

This call returns information on the physical drives found on the system and
on MetaDOS™ itself. The buffer passed is 16 bytes long and must be ZERO
before the call is made. Once the call has been made if the drive map is zero,
no physical units are online or MetaDOS™ is not resident on the system. The
physical drive map supports 26 devices (A-Z).

The drive map is a bit map of each physical device on the system. Bit zero
(0) represents physical device A; bit one (1) represents physical device B;
bit 16 represents physical drive Q. The physical device id is an ascii value
representing a letter. For example, 1if bit 0 is set to one (1) then the
physical device id is a capital "A" or the hex value 41.

NOTE: The physical device id 1is not the same as GEMDOS logical device 1ids.
Physical device 1ids communicate directly to the assigned physical device

without interpretation of the data returned from the device.

CDROM (METAINIT, buffer);

Given:

int METAINIT -Initialization op code (0x30).

long buffer -A pointer to a 16 byte buffer where information will
be returned.

Returns:

buffer:

—
I
~

.ds. Physical Bios drive map (32 bits)

.ds.1l 1 ; Pointer to a null terminated ascii string
representing the version of MetaDOS™.

.ds. Pointer to the physical device link list.

.ds.1l 1 ; Reserved.

—
I
~

10

open () (0x31)

This call returns information on a given physical device. The physical
devices on the system can be found by the Meta init call. This call also
serves to initialize the Bios for this physical device if necessary.

long CDROM(OPEN, phydrv, buffer);

Given:
int OPEN -Open opcode (0x31).
int phydrv -Physical device id (ascii value).
long buffer -Pointer to the users transfer buffer. (This MUST be
on an even boundary). The buffer size must be 16
bytes long.
Returns:
0 -No error condition. The physical device initialized
and the buffer filled with the following information.
buffer:
.ds.1l 1 ; Pointer to the device header.
.ds.1l 1 ; Pointer to physical bios id string.*
.ds.1l 1 ; Reserved.
.ds.1l 1 ; Reserved.
else -Error (See error codes)

*NOTE: For CD-ROM, the first five letters of the physical bios id string 1is
"CDROM"

close() (0x32)
This call is used to inform the Bios that the application is finished with the
physical device. This call also serves to de-initialize the Bios for this

physical device if necessary.

long CDROM(CLOSE, phydrv);

Given:
int CLOSE -Close opcode (0x32).
int phydrv -Physical device id (ascii value).
Returns:
0 -No error condition.
else -Error (See error conditions).

11

read () (0x33)

This function transfers a number of blocks starting at the given block number
(blockno) for the given number of blocks (numblks) . Block size is defined to
be 2048 Dbytes (2K). The data 1s transfered to the user's data buffer
directly. This is a block transfer call so the buffer address MUST start on
an even boundary. The number of blocks to transfer MUST be 63 or less,
therefore a maximum of 126K can be transfered at one time.

lon CDROM (READ, phydrv, buffer, blockno, numblks) ;
g phy

Given:
int READ -Read opcode (0x33).
int phydrv -Physical device id (ascii value).
long buffer -Pointer to the user's transfer buffer. (This MUST be
on an even boundary)
long blockno -Starting block to begin transfer.
int numblks -Number of blocks to read. (This MUST be 63 or less)
Returns:
0 -No error condition
else -Error (See error codes)

NOTE: The first block on a CD-ROM disc is block number ZERO.

write () (0x34)

This function transfers a number of blocks from the beginning of the buffer
(buffer) for the given number of blocks (numblks) . Block size is defined to
be 2048 Dbytes (2K). The data 1is transfered from the user's data buffer
directly. This is a block transfer call so the buffer address MUST start on
an even boundary. The number of blocks to transfer MUST be 63 or less,
therefore a maximum of 126K can be transfered at one time. For CD-ROM this
function is not used.

long CDROM(WRITE, phydrv,buffer,blockno,numblks) ;

Given:
int WRITE -Write opcode (0x34).
int phydrv -Physical device id (ascii value).
long buffer -Pointer to the user's transfer buffer. (This MUST be
on an even boundary)
long blockno -Starting block to begin transfer.
int numblks -Number of blocks to read. (This MUST be 63 or less)
Returns:
0 -No error condition
else -Error (See error codes)

12

seek ()

This function will seek the physical unit to a physical address.

(0x35)

The function

call will return once the seek has been completed or on an error condition.

long CDROM (SEEK,

Given:

int SEEK
int phydrv
long blockno

Returns:
0
else

phydrv, blockno) ;

-Seek opcode (0x35).

-Physical device id (ascii value).

-Block number to seek to.

-No error condition.
-Error.

13

status () (0x36)

This function returns the current status of the physical unit. The long
returned 1is broken up into the most significant word and least significant
word. If an error exists (error, timeout, or busy) the most significant word
will be OxFFFF indicating an error condition. Also, the most significant bit
of the lower word will be set (example busy error: FFFF8004). The programmer
should check the bits defined below explicitly to determine the error type.
This 1s the ONLY function that returns an error code in this form. All other
functions return the proper bios error code.

Bits defined are: | X RRRRRRRR | TRRRMBEDO |

Status Codes: 0 -Reserved (zero).
E -Error exists.
B -Busy Device Not Ready (Playing audio).
M -Media Change Bit (Cleared on first read).
R -Reserved.
T -Timeout. (No Response).
X -Set (1) if error else (0). Set only on

error, busy, or timeout condition.

long CDROM(STATUS, phydrv, buffer);

Given:
int STATUS -Get status opcode (0x36).
int phydrv -Physical device id (ascii value).
long buffer -Pointer to a 32 byte buffer where extended status
information is returned. NOTE: If zero (0) then no
extended status information is returned.
Returns:
X -Current status condition as defined above.
buffer:
.ds.1 1 ; Current error condition. (See error codes.)
.ds.1 7 ; Reserved.

Example return errors:

FFFF8002 Device error condition.

FFFF8004 Busy error condition.

FFFF800C Busy and media change condition.
FEFFEF8080 Timeout error.

00000008 Media changed.

NOTE: This function should be used to check for media change. The media change
bit is only cleared when the first read, extended read, or TOC read 1is
performed.

14

start_aud() (0x3b)

This command allows the application to set the songs to be played in
either a sequential or random manner. Up to 10 random selections can be
played. Setting bit (1) within the flag indicates random selection mode. The
byte array contains a list of decimal song numbers to play in order. The
byte array should be null terminated. The Bios will only accept up to 10
selections.

If bit (1) 1is zero then sequential song play 1is selected. The
byte array contains the number of songs to play and the starting song number.

byte array[0] = number of songs to play. (decimal)

byte array[1] = starting song number. (decimal)

There is also a short song play flag. In this mode, each song will be
played for approximately 10 seconds. This mode can be used by both sequential
or random play modes. Setting bit (0) within the flag indicates 10 second
play mode.

When an error condition occurs, the error returned is in a slightly
different format than normal returned errors. Although the long returned will
be negative indicating an error, it will be broken into two parts. The lower
word will indicate the error condition (See error codes) and the upper word
will contain the index into the byte array with the most significant bit set
to 1.

MS LS
Word Word
Example: | 80 05 | FF ED | Error -Device not responding

on song index 5.

long CDROM(STARTAUD, phydrv, flag, byte_array);

Given:
int STARTAUD -Audio play opcode (0x3b).
int phydrv -Physical device id (ascii value).
int flag -Mode flag. This flag has the following format:
bit 0 1 -10 second play mode.
0 -Normal play.
bit 1 1 -Random selection mode.
0 -Sequential play mode.
bit x -Reserved.

long byte array -Pointer to a null terminated decimal byte array. The
Bios will only allow up to 10 songs or will terminate
upon finding a null (0) song number.

Returns:
0 -No error condition.
else -Error.

15

stop_aud() (0x3c)

The function stops all audio play. All information sent to the CD-ROM
unit is lost. This includes random selection information as well as beginning
song time information.

long CDROM(STOPAUD, phydrv) ;

Given:
int STOPAUD -Stop audio play opcode (0x3c).
int phydrv -Physical device id (ascii value).
Returns:
0 -No error condition.
else -Error.
set_songtime () (0x3d)

This function gives the application a method of setting the song to play
via the minute, second, and frame information returned for the GET TOC call.
The start and end times for song play are in binary coded decimal. The upper
byte is ignored.

lon CDROM (SETSONG, phydrv, flag, start, endtime);
g

Given:

int SETSONG -Set song by time opcode.

int phydrv -Physical device id (ascii value).

int flag -When bit 0 is one (1) then repeat mode is initiated.

The given start and end times will be repeated until
another command is issued. With bit 0 is cleared (0),
no repeat will occur.

long start -A long (32 bits) that represents the minute, second,
and frame number in BCD. The MSB (byte) of the long
is ignored. Following the MSB is the minute then the
second and finally LSB is the frame number. By
treating the TOC information as records, the record
itself can be used without further modification.

long end time -A long (32 bits) that represents the minute, second,
and frame number in BCD. This is in the same format
as start time.

Returns:
0 -No error condition
else -Error (See error codes)

16

get toc() (0x3e)

This function transfers a maximum of 512 bytes of Table of Contents
information for an audio disc. The function transfers the data directly to the
user's buffer. This is a block transfer call so the buffer address MUST start
on an even boundary. Each TOC record is composed of four bytes and is in a
sequential order. The information returned is in BCD format where each byte is
one BCD number. The format for the table of contents is as follows:

Track Number #1, minute, second, frame
Track Number #2, minute, second, frame

Track Number #3, minute, second, frame

The Track number (TNO) is the first byte of each record and 1is defined as:

TNO Meaning

0x00 The following data has no meaning.

0xA0 The minute determines the number of the first song to
play. Second and block are all zero.

OxAl The minute determines the number of the next song to
play. Second and block are all zero.

0xAZ2 The minute and second show the finishing time of the
last song.

(0<TNO<O0xAQ) The data is valid and represents the starting time of

the song for that track (song) number.

long CDROM(GETTOC, phydrv, flag, buffer);

Given:
int GETTOC -Get Table of Contents opcode (0x3e).
int phydrv -Physical drive identifier.
int flag -When bit zero is zero (0) then the information is
returned in a non-edited form. If one (1) then
information is edited and returned. *
long buffer -Pointer to the users transfer buffer. (This MUST be
on an even boundary and has a maximum size of 512
bytes.)
Returns:
0 -No error condition
else -Error (See error codes)
* By default the TOC information is returned in non-edited form. Sometimes
CD-discs will have redundant information on an audio disc. If the edit bit is
set then redundant information is removed. If the disc contains more than 39
songs, all the TOC information will not be returned. Use Request Sense

command to find out the number of songs.

17

disc_info() (0x3f)

This function returns Sub-Q information on the disc in the drive. This
information includes the type of disc and track information. The information
is returned in a 512 byte buffer provided by the application.

long CDROM(DISCINFO, phydrv, buffer);

Given:
int DISCINFO -Disc information opcode (0x3f).
int phydrv -Physical device id (ascii value).
int buffer -Pointer to a 512 byte buffer where Sub-Q information
is returned.
Returns:
0 -Buffer filled with information.
else -Error (See error codes)
buffer:
.ds.b 1 ; Disk type. O-audio disc, 1l-digital disc.
.ds.b 1 ; Beginning track (song) number.
.ds.b 1 ; Ending track (song) number.
.ds.b 1 ; Current track (song) number.
.ds.1l 1 ; Optical head location relative to the
; beginning of the current track number.*
.ds.1l 1 ; Absolute optical head location relative to

; the beginning of the disc.
.ds.1l 1 ; Starting time of the disc lead-out area or the last
data block on the disc.
.ds.1l 124 ; Reserved.

* All optical head locations are in packed binary coded decimal (BCD). The
long returned contains the minute, second, and frame number as described in
the Red Book. The long is formatted as follows: |00 MM SS FF| where MM =
minute, SS = second, and FF = frame number in BCD. Conversion from Red Book
notation (minute, second, frame converted to binary) to a physical block
number as defined by the High Sierra proposal 1is done by the following
equation:

physical block = Minute*60*75+Second*75+Frame-150

18

Error Conditions

The error numbers returned are the same as the ST Bios. All error numbers are
negative. For the Bios it ranges from -1 to -31. Some new error conditions
have been added. The following is a list of the error conditions:

0
-1
-2
-3
-4
-5

-6
=17

-8

-9

-10
-11
-12
-13

-14
-15

-16
-17
-18
-19

-20

Success: No error condition.

Error: General all-purpose error.

Drive Not Ready: The specified drive is not ready or busy.

Unknown Command: Unimplemented opcode.

CRC Error: Error occurred while reading a block from the device.

Bad Request: The device could not respond to the command or the
command parameters are bad.

Seek Error: The device was unable to seek to the given block number.
Unknown Media: The wrong type of media was found for the given
command. For CD-ROM this could mean that the application tried to
play a Data CD-ROM disc.

Sector Not Found: The given sector number to read was not found on
the disc.

No Paper: This error condition is not used with respect to CD-ROM's.
Write Fault: This error condition is not used with read-only drives.
Read Fault: Failed to read the desired block from the device.

General Error.

Write Protection: Attempting to write to write-protected or read-only
media.

Media Change: The media has changed since last access.

Unknown Device: The physical device the command was meant for is not
found on the system.

Bad Sectors: Not used by the CD-ROM Bios.

Insert Other Disk: Used by GEMDOS for two disk drive simulation mode.
Insert Disc: This indicates that there is no disc in the drive or the
drive door is opened.

Device Not Responding: The device the command was sent to is not
responding.

Hardware Error: The device indicates that there was some kind of
unrecoverable hardware error.

19

CDAR504 CD-ROM
Command Specifications

This section describes the CD-ROM command set within the firmware of the
CD-ROM unit. The commands allow computer control for both CD-Audio and CD-ROM
programming of the unit.

Commands are sent to the CD-ROM controller via the Atari Computer System
Interface (ACSI) command descriptor Dblock. The Atari Computer System
Interface (ACSI) is much like the Small Computer System Interface (SCSI). The
command bytes are handshake over the DMA channel. Once the last byte of the
command is sent and the DMA channel is enabled, the transfer will begin. When
complete, the CD-ROM will acknowledge the transfer. At this point the status
byte can be read to determine if the operation was successful.

The ACSI command descriptor block is defined as follows:

Byte Bit Meaning

0 | CCCOOOOO |-> Controller Number (CCC) ,0Opcode (00000)
1 | DDDHHHHH |-> Sub-Device (DDD),Block Addr MSB (HHHHH)
2 | MMMMMMMM |-> Block Addr MID (MMMMMMMM)

3 | LLLLLLULTYL |-> Block Addr LSB (LLLLLLLL)

4 | CCCCCCZCZC |-> Block Count (cceecececee)

5 | BBBBBBBB |-> Control Byte (BBBBBBBB)

Controller Number
A 3-bit wvalue which designates the physical controller to receive the
command block. Up to 8 (0 thru 7) controllers can be selected. This
number MUST match the DIP switch setting on the back of the CD-ROM unit.

Opcode
A 5-bit value specifying the operation to be performed by the unit given
the information within the command block.

Sub Device Number
A 3-bit number which determines the sub-device to be used.
Theoretically each controller can handle up to 8 sub-devices.

Block Address

A 21-bit value which designates the block address which data will be
transfered to or from.

Block Count

A 8-bit value which determines the number of data blocks to be
transfered.

Control Byte
A 8-bit value which is used for command specific modifiers.

20

Command List

Opcode

0x00
0x03
0x05
0x06
0x08
0x0B
0x11
0x12
0x13
0x15
0x18
0x19
O0x1A
0x1B
0x1E

Command

- Test Unit Ready

- Request Sense

- Audio Stop

- Audio Start

- Read

- Seek

- Audio Program

- Inquire

- Disc Spin-down Timer On/Off
- Mode Select

- Extended Read

- Read TOC (Table of Contents)
- Mode Sense

- Extended Seek

- Prevent/Allow Media Removal

21

Test Unit Ready (0x00)

This command checks to see if the device is in a READY condition or not. It
can be used to determine whether audio play is finished. The response from
this command ONLY SENDS THE STATUS data. The status is defined below. If the
status byte indicates an error, the Request Sense command can be used to
determine the nature of the error (See Request Sense command) .

o
o

Byte Bit Meaning
0 -> Controller Number (CCC)
1
2
3
4
5

[cNoNoNoNeoN@!
[cNoNoNoNeoN@!
[cNoNoNoNeoN@!
cNoNoNoNoNe)
cNoNoNoNoNe)
cNoNoNoNoNe)

O O O O o
O O O O o

Status Byte

The status byte returned from the unit indicates whether the last CD-ROM
operation was successful. This byte also returns information on the state of
the unit. The Media Change bit is set to one (1) by default or when the open/
close switch on the unit has been used. The bit will remain one until AFTER
the first READ, EXTENDED READ, or READ TOC has been performed (i.e., until the
first read this bit will be set; then the bit will be cleared, until the disc
table is opened indicating media changed) .

Format: | 000 0MBE O |

Status Codes: M Media Change Bit
B Busy Device Not Ready
E Error

22

Request Sense (0x03)

Returns the sense code from the target device. The sense data returns the
error that has occurred. In order to confirm an error, this command must be
used directly after the occurrence of the error condition.

00

Byte Bit Meaning
0 -> Controller Number (CCC)
1
2
3
4
5

[cNoNoNoNoN@]
[cNoNoNoNoN@]
[cNoNoNoNoN@]
cNoNoNoNoNe

1]
0 |
0 |
0 |
0 |
0 |

[cNeoNeNeNoN

cNoNoNoNe)
cNoNoNoNe)

The Sense Data Block is sent to the host unit whenever a Request Sense command
is executed. The block returned from this call is fixed to 32 bytes. The sense
key nibble in byte number 2 is the error condition of the drive. The bytes 16
to 31 contain the current Sub-Q information from the disk.

Sense Data Block

Byte Bit Meaning

0 | 11110000 |-> Fixed (0xFO0)

1 | 000 0O0O011 |- Fixed (0x03)

2 | 000 0 KKKZK |-> Sense Key (KKKK)

3 | 000 0O0O0O0O0 |-> Fixed

4 | 000 0O0O0O0O0 |-> Fixed

5 | 000 0O0O0O0O0 |-> Fixed

6 | 000 0O0O0O0O0 |-> Fixed

7 | 0001 1000 |-> Fixed (0x18)

8 | 00 00O0O0O0O0 |-> Future Expansion

15 | 000 0O0O0O0O0 |

16 | 00O FFO0OO0OO1 |-> Sub-Q0 Information Flag (FF)
17 | TTTTTTTT |-> Track (Song) Number (TTTTTTTT)
18 | T I I I IITITI |- Index (IIIIIIII)

18 | MMMMMMMM |-> Relative Minute (MMMMMMMM)

20 | S S S S S S SS |-> Relative Second (SSSSSSSS)

21 | FFFFFFFTF |-> Relative Frame (FFFFFEFFEF)

22 | 000 0O0O0O0O0 |-> Fixed

23 | MMMMMMMM |-> Absolute Minute (MMMMMMMM)

24 | S S S S S S S S |-> Absolute Second (SSSSSSSS)

25 | FFFFFFFTF |-> Absolute Frame (FFFEFFFFEF)

26 | B BB BBBB B |-> Beginning Song Number (BBBBBBBB)
27 | EEEEEEEZE |-> Ending Song Number (EEEEEEEE)
28 | MMMMMMMM |-> Ending Song Minute (MMMMMMMM)
29 | SSSSSS S S |-> Ending Song Second (SSSSSSSS)
30 | FFFFFFFF |-> Ending Song Frame (FFFFFFFF)
31 | 000 0O0O0O0O0 |

23

Sense Key

The following is a list of the sense key definitions. This 1is the current
error condition returned in byte 2 of the Request Sense call.

0 Normal, no error condition
1 Recovered Error, any hardware recoverable error
2 Not Ready, the CD-ROM is not in a ready condition, i.e., playing

audio song

3 Media Error, unable to read media, CRC error

4 Hardware, hardware-related error only, pickup switch, CLV servo
5 Illegal Request, unimplemented function or opcode

6 No Media, no media in the drive or the door is open

9

Wrong media, the wrong media type for the applied command

Sub-Q information is returned in bytes 16 thru 31 of the returned data. All
Sub-Q information is in BCD. The meaning of this information is as follows:

Flag

Track Number

Index

Relative Time

Absolute Time

Beginning Song
Ending Song

Ending Time

The flag 1is set according to the type of disc within the
unit. It can either be zero (0) for an audio disc or one
(1) for an audio emphasis disc or two (2) for a digital data
disc.

The current track number that is playing. This is also

referred to as the song number.

This is used for further expansion of a CD-ROM disc.

The relative time is broken down into minutes, seconds, and
frame. It is relative to the beginning of the current track
number.

The absolute time is the current block or sector number of
the disc. It is relative to the beginning of the disc.

The beginning song number on the disc.

The

The

ending song or last song on the disc.

ending time is the last audio or data block on the disk.

It represents the starting time of the disc lead-out area.

24

Read and Extended Read

This command reads data from the disc starting at the logical address or block
number given and sends it to the host. The number of blocks to read 1is the
Block Count. This command automatically seeks the logical address.

Read (0x08)
Byte Bit Meaning
0 | CCCO01 000 |-> Controller Number (CCC)
1 | 00 0O HHHHH |-> Block MSB (HHHHH bits 20-16)
2 | MMMMMMMM |-> Block (MMMMMMMM bits 15-8)
3 | LL L LLLULTL |- Block (LLLLLLLL bits 7-0)
4 | CCCCCCCZC |-> Block Count (CCCcCCCCC 1-255)
5 | 000 0O0O0O0O0 |
Extended Read (0x18)
Byte Bit Meaning
0 | CCC1 1000 |-> Controller Number (CCC)
1 | 000 0O0O0O0O0 |
2 | BBBBBBBUB |-> Must be zero / Min (BCD)
3 | BB BBBBUEBIB |-> Block MSB / Sec (BCD)
4 | BBBBBUBBIB |-> Block/ Frame (BCD)
5 | BBBBBBBUB |-> Block LSB / Must be zero
6 | 000 0O0O0O0O0 |
7 | CCcCCcCCcCCCZC |-> Block count MSB
8 | CCcCCcCCcCCCC |-> Block count LSB
9 | 0T 0 O0O0O0O0O0 |-> Time Read bit

The Extended Read command allows addressing the CD-ROM in the Red Book (audio)
format (minute,second,frame) as well as Yellow Book (data) format. It also
allows 24 bits for the Yellow Book block address instead of 21 bits in the
regular read command. For the Extended Read command, a bit in byte 9 is used
to indicate which type of Extended Read is to be done. When the T bit is zero
(0) then we are reading the CD disc via Yellow Book format. Setting this bit
to one (1) indicates this read is using Red Book format.

25

Seek and Extended Seek

The Seek command seeks to a logical address. NOTE: After seeking, the CD is in
a PAUSE condition. Red as well as Yellow Book format can be used to seek to
the desired position using the Extended Seek command. (See Extended Read
command for more information.)

Seek (0x0B)
Byte Bit Meaning
0 | CCCO01011 |-> Controller Number (CCC)
1 | 0O 0O 0O HHHHH |-> Block MSB (HHHHH bits 20-16)
2 | MMMMMMMM |-> Block (MMMMMMMM bits 15-8)
3 | LL LLLLUILYZL |-> Block (LLLLLLLL bits 7-0)
4 | 00 0O0O0O0O0O0 |
5 | 00 0O0O0O0O0O0 |
Extended Seek (0x1B)
Byte Bit Meaning
0 | CCC11011 |-> Controller Number (CCC)
1 | 00 0O0O0O0O0O0 |
2 | BBBBBBDBRBUB |-> Must be zero / Min (BCD)
3 | BBBBBUBUBUB |-> Block MSB/ Sec (BCD)
4 | BBBBBBBUB |-> Block / Frame (BCD)
5 | BBBBBBRUBDBRB |-> Block LSB / All zero
6 | 00 0O0O0O0O0O0 |
7 | 00 0O0O0O0O0O0 |
8 | 00 0O0O0O0O0O0 |
9 | 0T O0O0O0O0O0O0 |-> Time read bit
Audio Stop (0x05)

This command cancels the Audio Program or Audio Start command. All data sent
to the unit via these commands is lost.

00

Byte Bit Meaning
0 -> Controller Number (CCC)
1
2
3
4
5

[cNoNoNoNoN@]
[cNoNoNoNoN@]
[cNoNoNoNoN@]

oNoNoNoNe)
oNoNoNoNe)
OO OO o
[eNoNoNoNoNe)
OO OO o

26

Audio Program (0x11)

This command sets the starting and duration times for audio play. With the
repeat flag set, the sequence is performed again. The Test Unit Ready command
is used to determine whether the audio is finished or not.

it Meaning
| CCC100 | -=> Controller Number (CCC)
| 00 00O OULR |=> Left Channel (L)
-> Right Channel (R)

HcaE’
5
ve}
[
t+

o
=

2 | MMMMMMMM |-> Start Min (BCD)

3 | S S S S S S S S |-> Second (BCD)

4 | F FFFFFFF |-> Frame (BCD)

5 | MMMMMMMM |-> Finishing Minute (BCD)
6 | S S S S S S S S |-> Second (BCD)

7 | F FFFFFFF |-> Frame (BCD)

8 | 000 0O0O0O0O0 |

9 | RO O 0O 000 0 |-> Repeat flag

The right and left channel bits determine whether or not the right or left
channel has sound. When the bits are zero, that channel has sound. Of course,
a one indicates that that channel has no sound.

Audio Start (0x06)
This command sets the first song and the number of songs to play by the song
number. These song number are in decimal.

Byte Bit Meaning

0 | CCCO0OO0110 |-> Controller Number (CCC)

1 | 00 00O OULR |=> Left Channel (L)

-> Right Channel (R)

2 | 00 00O0O0O0O0 |

3 | SSS S S S S S |-> Song Number

4 | FFFFFFFF |-> Number of Songs

5 | CI 00 O0O0O0 0 |-> Continue Flag (C)

-> Index Flag (I)

The left and right channel bits are the same as described under Audio Program.
With the Index Flag set, the unit is in 10-second play mode for each song. If
this flag is cleared (zero), the unit will be in Play All mode. The Continue
Flag is used to tell the CD unit that this command is to be continued and that
MORE song numbers will be sent to the unit. Clearing this bit ends the
command.

27

Read TOC (0x109)

This command sends to the host computer 512 bytes of the Table Of Contents
(TOC) . The TOC data has a fixed size of 512 Dbytes. The TOC data record 1is
composed of four bytes: the track number (TNO) , followed by the starting
minute, second and frame. All records are sequential (i.e., every 4 bytes 1is
the next record). All data returned from the TOC is in BCD form.

WARNING: If this command is used while audio is playing, the audio commands
are terminated as if the Audio Stop command were used.

11

Byte Bit Meaning
0 | -> Controller Number (CCC)
1
2
3
4
5

Ho oo o
[cNoNoNoNoN@]
[cNoNoNoNoN@]
[eNeoNoNoNe!

[eNeoNoNoNe!

[cNeoNoNoNoNe
[cNeoNoNoNoNe
[eNeoNeNeRoN

\
\
\
\
| -> Data Edit Flag

If the Data Edit flag is cleared (zero), the 512 bytes of TOC data are sent
without editing. When this flag is set, the 512 bytes of TOC are sent after

editing. (One complete set of data is sent, the remaining bytes are all 0x0.)
If there are more than 39 songs on the disk some information will not be

returned with the edit bit set. Use the Request Sense command to find the
total number of songs on the disc. The format for the TOC is as follows:

Byte Bit Meaning

0 | X X X X X X X X |-> TNO Time Number 1

1 | X X X X X X X X |-> Minute

2 | X X X X X X X X |-> Second

3 | X X X X X X X X |-> Frame

4 | X X X X X X X X |-> TNO Time Number 2

5 | X X X X X X X X |-> Minute

6 | X X X X X X X X |-> Second

7 | X X X X X X X X |-> Frame

508 | X X X X X X X X |-> TNO Time Number 128

509 | X X X X X X X X |-> Minute

510 | X X X X X X X X |-> Second

511 | X X X X X X X X |-> Frame

The Track Number field (the first byte of each record) is defined as:

TNO Meaning

0x00 The following data has no meaning.

0xA0 The minute determines the number of the first song to
play. Second and block are all zero.

OxAl The minute determines the number of the next song to
play. Second and block are all zero.

0xAZ2 The minute and second show the finishing time of the
last song. (Total song time on the disk.)

(0<TNO<O0xAQ) The data is valid and represents the starting time of

the song for that song number.

28

Mode Sense (0x1a)

The current setting of the CD-ROM is returned to the host computer. This
includes the number of bytes/block and the current data mode type (See Mode
Select) .

Byte
0 -> Controller Number (CCC)
1
2
3
4
5

coococon|w

eNeoNoNoNeNa)o]
[eNeoNoNeRel

0 |
0 |
0 |
0 |
0 |
0 |

The Mode Sense data 1s returned in a 16-byte packet. This packet is defined
as:

Byte Bit Meaning

0 | 00001111 |-> Fixed to O0xOF

1 | 10000011 |- Fixed to 0x83

2 | 100 00000 |-> Fixed to 0x80

3 | 00 00O0O0O0O0 |

4 | 00 00O0O0O0O0 |

14 | 00 00O0O0O0O0 |

15 | X X X X X X X X |-> Selected Mode Value
Mode Select (0x15)

This command 1is used to determine the number of bytes/block as well as the
current data mode (Red or Yellow book). The default value is 0Ox41l. It is not
necessary to use this command when the default value is used. The information
returned 1is broken into the MS and LS nibbles. The least significant nibble
(0-4) determine the data type. The number of bytes per block is determined
from the most significant nibble (5-11) in the table below.

Byte Bit Meaning

0 | CCC10101 |-> Controller Number (CCC)

1 | 00 0O0O0O0O0O0 |

2 | 00 0O0O0O0O0O0 |

3 | 00 0O0O0O0O0O0 |

4 | X X X X X X X X |-> Mode Select Data*

5 | 00 0O0O0O0O0O0 |

* LS Nibble Meaning MS Nibble Meaning

0 XO Normal (2052/2340) bytes 5 0X 512 bytes/block

1 X1 Character 2048 bytes 6 2X 256 bytes/block

2 X2 Bit 2336 bytes 73X 1024 bytes/block

3 X3 Data 1 2048 bytes 8 4X 2048 bytes/block

4 X4 Data 2 2336 bytes 9 b5X 2052 bytes/block
10 6X 2336 bytes/block
11 7X 2340 bytes/block

29

Inquire (0x12)

This command allows an application to interrogate the DMA channel of the ST in
order to find out what devices are on the DMA channel. This command can also
be used to find out the current status of the disk table. Byte 1 of the
returned information will be a 0x80 if the disk table can be opened using the
Open/Close button or 0x00 if the disk table is locked.

Byte Bit Meaning

0 | CCC1 0010 |-> Controller Number (CCC)
1 | 000 0O0O0O0O0 |

2 | 000 0O0O0O0O0 |

3 | 000 0O0O0O0O0 |

4 | X X X X X X X X |-> Send data flag*

5 | 000 0O0O0O0O0 |

NOTE: When comparing the information returned by this call with the
information below, it 1is important to use only the string "CD-ROM". The
number ":1:" may change with a future release.

* When data length is zero then no data is sent, else 16 bytes of information
is sent.

The response from the Inquire command is as follows:

Byte Bit Meaning

0 | 00000101 |-> Fixed (Read Only)

1 | X X X X X X X X |-> If (0x80) Allow media removal
-> If (0x00) Prevent media removal

2 | 00 0O O0OOOO 1 |-> ACSI Version

3 | 000 0O0O0O0O0 |

4 | 00001011 |-> Fixed (0x0OB)

5 | 01 000011 |- "C"

6 | 01 000100 |-> "D"

7 | 00101101 |-—>"="

8 | 01 010010 |-> "R"

9 | 01 001111 |—> "Oo"

A | 01 001101 |—> "M"

B | 001 000O0O0 |[|-—>™"™M"

C | 00111010 |-> ":"

D | 00 0O0O0O0O0O0 |=> "1"

E | 00111010 |-> ":"

F | 001 000O0O0 |[|-—>™"™M"

30

Media Removal (0x1E)

This command prevents the removal of the CD disc until such time as the
computer signals the CD that the media can now be removed. If the Operation
Flag is set to one, then the door cannot be opened. Clearing this bit allows
the door to be opened. The default condition will be to "Prevent Removal".
You can use the Inquire function to interrogate the CD-ROM as to the current
removal status. (See Inquire function).

Byte Bit Meaning
0 | CCC 11110 |-> Controller Number (CCC)
1 | 00 0O0O0O0O0O0 |
2 | 00 0O0O0O0O0O0 |
3 | 00 0O0O0O0O0O0 |
4 | 0000 O0O0O0F |-> Operation Flag
5 | 00 0O0O0O0O0O0 |
Disk Spin-down Timer (0x13)

After about 2 minutes the disc of the CDAR504 will spin down if the unit has
not been accessed within this time period. This will prevent wear on the
spindle motor. The timer can be set to up to 255 seconds or turned off
altogether using this command. When the operation flag is zero (0), the timer
is turned off and the disc will spin forever. When the operation flag is one
(1), byte 3 of the command block indicates the time in seconds before the
spindle motor will spin down.

Byte Bit Meaning

0 | CCC1 0011 |-> Controller Number (CCC)

1 | 00 00O0O0O0O0 |

2 | 00 00O0O0O0O0 |

3 | TTTTTTTT |-> Time (TTTTTTTT) in seconds
4 | 000 O0O0O0O0F |-> Operation Flag (F)

5 | 00 00O0O0O0O0 |

31

Appendix
APPENDIX A

Example cdbind.h file for programming in the "C" programming

version (1.0) MetaDOS™ CD-ROM Bios Extensions.
/**

*

* cdbind.h Standard "C" include file for use with cdbind.o to access
* the CD-ROM Extended Bios.

*

* Started: 08/01/88

* Last Update: 08/01/88

*

*

**/

/* CD-ROM trap calling routine. */
extern long CDROM() ;

/* Currently defined Extended Bios calls: */

#defineMeta_init(a)
#definecd open(a,b)
#definecd close(a)
#definecd read(a,b,c,d)
#definecd seek(a,b)
#defineget status(a,b)

#definestart_aud(a,b,c)
#definestop_aud(a)
#defineset songtime(a,b,c)
#defineget toc(a,b,c)
#definedisc_info(a,b)

CDROM(48,a);
CDROM(49,a,b);
CDROM(50,a);
CDROM(51,a,b,c,d);
CDROM(53,a,b);
CDROM(54,a,b);

CDROM(59,a,b,c);
CDROM(60, a) ;
CDROM(61,a,b,c);
CDROM(62,a,b,c);
CDROM(63,a,b) ;

Source to cdbind.o trap call.

3k 3k 3k %k %k %k Kk ok k 3k 3k k 5k 3k 5k ok k 5k 3k k %k %k %k 5k 5k 5k Xk %k %k %k %k 3k 5k k k %k k k %k %k %k %k %k 5k 5k 5k 5k k k k k 3k k 3k 5k %k % % % % % % % % % % % Xk Xk % X X

; cdbind.o Trap #14 bios call.
Z Started: 08/01/88
; Last Update: 08/01/88

3k 3k 3k %k %k %k Kk ok k 3k 3k k 5k 3k 5k ok k 5k 3k k %k %k %k 5k 5k 5k Xk %k %k %k %k 3k 5k k k %k k k %k %k %k %k %k 5k 5k 5k 5k k k k k 3k k 3k 5k %k % % % % % % % % % % % Xk Xk % X X

; CD-ROM trap calling routine.

.globl _CDROM;

.text

__CDROM:
move.l (sp)+,savsp
trap #14
move.l savsp,-(sp)
rts

.bss:

savsp: ds.1 1

.end

32

language

for

APPENDIX B

Quick Reference to the Extended Bios commands. All functions return a long
value except the bios init call. See function description.
Meta init((long) buffer);
open((int) phydrv, (long) buffer);
close((int) phydrv);
read((int) phydrv, (long) buffer, (long) blockno, (int) numblks);
write((int) phydrv, (long) buffer, (long) blockno, (int) numblks);
seek ((int) phydrv, (long) blockno);
status ((int) phydrv, (long) buffer);
start aud((int) phydrv, (int) flag, (long)byte array);
stop _aud((int) phydrv);

set songtime ((int) phydrv, (int) flag, (long) start time, (long)
end time) ;

get toc((int) phydrv, (int) flag, (long) buffer);

disc info((int) phydrv, (long) buffer);

33

