[ntroduction to
GEM™ Programming

39

/n\l4~FEB-85

Introduction « « ¢ & ¢ & ¢ + o o o o o o
The GEM Programmer's Toolkit
Documentation Description+ « . .

. Software Description. « « « « « &« « + &
Technical Support Services. . . . « . .
The Development Environment. « « « o o « o
Hardware Regquirements . « « o o o o =« @
Software Requirements « o o o

An Overview of GEM System Software « e .
GEM Virtual Device Interface (VDI). -
NDC vs. RC Coordinate System
Raster Text Fonts. « « ¢ « « ¢ ¢ o

The GEM Metafile . . . « ¢« . ¢ ¢« « &«

.) .
- . .
. . -
. . .
- [-
. . -
.] .
. - e
. [.
. - .
- . e
. . .
. . .

GEM Application Environment Services (AES). .

Memory Management . « ¢« ¢« o ¢ o o o o o
Constructing A GEM Application . . « . . .
Using IconEdit. o o o o ¢ ¢ o o « ¢ o« =
The GEM IconEdit Screen. . « « o« «
GEM IconEdit Concepts. + « ¢ o + o &
GEM IconEdit Menus . « « « « o o o
Oesk Menu . « « o o o o o o o o =

File ME@NU . + &« o o o o« o o o o &

7o Operation Menu. . « o« « « s o o =
Jsing the Rescurce Construction Set . .
The GEM RCS S5creeén .« « « « o o o o =«
GEM RCS MeNUS. ¢« o« ¢ ¢ o o o o o o &
Desk MENU &« o« o o o o o o o o o =

File MenNu .« o« « o o o o o o o o @
Options MeNuU. « o+ « o o o o o o o
Global Menu . . c e o o o e @
Partbox Window Contents. e = v o o »
Tree OperationsS. « « « « o « » o « =
Objects. + ¢ & o ¢ o o o o o o o o =
Object OperationNsS. . « o« o o s o « &«
Tips And ConceptsS. « « « o ¢ ¢ o o @

Visual Hierarchy: Relationship between Trees and Objects

L] L .
. . -
- . .
. . .
. . .
. . O
. . .
. - .
» . .
. . L]
. L] .
. . .
. L3 .
3 L] .
- L] L]
. L] -
. . .
. . .
. . .
. . .

. . L3

Notes on Making Icons and Bit Images. .

Memory Limits . .« .« . « & o o o
Name Conflicts with Merge

Getting Started, a Sample Session with the

Using GEM SID ¢ ¢ &4 o « ¢ o o s o & o
Additions to the E Command . . .« .+ .
The Y Command
The N Command e e e s s s e s o
The Q Command (QUIt) & o o o o o &
The SR Command (Search) . « « « . .
The ? Command (Help) « « « ¢ o o«
The 2? Command (Help) « « « « « o &

N Using GEMSID with MAP files. . .
The Sample GEM Application and GEM Desk
Porting To Other Environments . . . « .

{output to 1 or 2 screens)

Introduction to GEM Programming

. .
. -
. e
. .
.)
) .
. »
. L]
. .
. -
- .
] 3
. .
- .
- .
. .
3 .
. .
. .
. .
. .
. .
. .
. -
. .
. -
. .
. .
. .
- .
. L)
. .
. .
e .

RCS
Accessory

.

.

page i

o
124
Q
]

.
.
O ~d ~d ~dJ DU UL b b L N

. o110
. W12
. .12
s 13
. .14
.« el

. .16
. .18
. 18
. 19
. .20
. 21
. 22
. +23
. +25
. .28
. o33
. 33
. o34
. o34
. o34
e o35
. W37
. .38
. 39
. .40
. .40
. .40
. .41
. .41
. 41
. .41
« .44

14-FEB-85 Introduction to GEM Programming page 1

1: Introduction

Welcome to "“lntroduction to GEM(TM) Programming”. PLEASE REVIEW
THIS DOCUMENT BEFORE EXAMINING THE REST OF THE MATERIALS IN THE GEM
PROGRAMMER'S TOOLKIT(TM). We hope this document will answer many of
your initial guestions. You have received an early release of this
software so be aware that there may be future changes in both the
software and documentation. There will be notice of these updates on
the DR SIG that the DR Support Center maintains on CompuServe (R} .
More on that later.

This document gives an overview of the GEM software and refers you
to the appropriate areas of the documentation provided with the GEM
Programmer's Toolkit. It also contains explanations on how to use
the sample programs, tools, and utilities. 1In addition, it has
suggestions about how to optimize your code and prepare for other
environments. Finally, we will introduce you to the Digital
Research (R) Support Center which provides access to GEM Programmer's
Support while you work on getting your GEM software application up
and running.

At DRI (TM) we are very excited about -the power GEM software gives
the applications programmer and we want to provide you with the most
complete set of tools and support available. Please contact us
directly with any questions or problems.

2: The GEM Programmer's Toolkit

The GEM Programmer's Toolkit is the set of Digital Research tools
and utilities that enables an application program developer to use
the GEM Virtual Device Interface (VDI) and the GEM Application
Environment Services (AES). This toolkit is designed for use under
PC DOS, version 2.8 or higher on an IBM(R) PC/XT, but any
applications written with it may be moved from environment to
environment with a minimal amount of effort.

You will use the Toolkit with a compiler, such as the LATTICE C
compiler, and a set of debugging tools. For debugging tools you may
use GEM SID with DR Assembler Plus Tools(TM), which includes LINK-
86 (TM), RASM-86(TM), and LiIB-86 or, if you prefer, you can use GEM
SID with any compiler that outputs a Microsoft(R)-type .MAP file
after converting it to a .SYM file with a special utility that we
provide. :

Documentation Description

The documents that are provided with the GEM Programmer's
T.»lkit, DRI product code number 5047, include:

- Introduction To GEM Programming (this document)
- GEM Programmer's Guide, volume l: VDI

- GEM Programmer's Guide, volume 2: AES

- GFM SetUp Guide

M1

Pra

14-FEB-85 Introduction.to GEM Programming page 2

N GEM Desktop User's Guide»
- End User License
cover letter and supplemental notices

2.2: Software Description

The software provided as a part of the GEM Programmer's Toolkit
consists of 6 disks. The disks consist included are:

Disk 1 of 6

- GEM SYSTEM MASTER ...containing GEM and GEM VDI 1n
addition to the BATCH files used to install the system

Disk 2 of 6

- GEM DESKTOP MASTER ...containing the DESKTOP, OUTPUT and
additional fonts

Disk 3 of 6

- GEM DEVICE DRIVER DISK 41 ...containlng GEMSETUP and
additional device drivers

Disk 4 of 6

P
) - GEM DEVICE DRIVLR DISK #2 ...containing various fonts
Disk 5 of 6

- CEM TOOLKIT TOOLS DISK ...Ccontalining GCM51D, 1ICONEDLIT,
the RESOURCE CONSTRUCTION SET and MAP25YM
Disk 6 of 6

- GEM TOOLKIT MS SOURCE DISK ...containing the sample GEM
application and GEM Desk accessory
To install the software on your 1BM PC/XT:

-~ Load DOS 1nto your computer,

- Place the GEM SYSTEM MASTER in drive A, type GEMPREP and
press ENTER. Follow the Instructions carefully, answering any
questions that you are asked.

- When you return to the DOS prompt, copy all files on the
two GEM Device Driver Disks to your GEMSYS sub-directory.

- Filnally create a sub-directory called TOOLS and copy the

Py GEM TOOLKIT TOOLS DISK and the GEM TOOLKIT MS SOURCE DISK to that

area. It 1s-1n this area that you will examine our sample
application and accessory before proceding with the development

(S

14-FEB-85 Introduction to GEM Programming page 3

of your own application.

It is necessary to install any application before you can execute
it. To install an application select it by Clicking on it once,

then choose "Install An Application" fron the Options Menu. This
must be done with each of the applications provided with the GEM

Programmer's Toolkit

NOTE: THIS SOFTWARE HAS BEEN SPECIALLY MODIFIED TO EXECUTE ONLY
ON AN IBM PC. 1IT WILL NOT RUN ON ANY OTHER HARDWARE.

2.3: Technical Support Services

The GEM Programmer Support(GPS) program provides one year of
technical support for one contact person in addition to the GEM
Programmer's Toolkit. This program consists of a variety of
technical support services streamlined to provide top quality
response to problems reported by programmers writing GEM
application programs. Through GPS a programmer may communicate
with engineers well-versed in the problems that a programmer may
encounter when using the Toolkit.

The methods of communicating with the DR Support Center are:

- US mail or any over-night courier for written SPR's
(software performance reportsj,

- CompuServe for communicating with DR engineers or other
programmers writing programs with Digital Research Development
Tools,

- or directly by telephone, using the telephone and
access number provided by DR when you return your completed GPS
agreement. .

We suggest that you familiarize yourself with the DR SIG on
CompuServe, as many of the guestions that you might have will be
"answered there. Additionally, there will be ideas from other
application programmers and information on the latest changes to
both the software and documentation that will not be available in

any other location.

During the prerelease period GPS will provide priority support
through CompuServe. Time permitting, we will also be available
directly by telephone. If you leave your phone number with your
message on CompuServe we will contact you by phone if necessary.
We have set up a special procedure to insure the privacy of the
messages that you leave for us and that we send to you.

To enter the DR SIG type "GO PCS~13" from the prompt after you -
have logged on to CompuServe. L.3 on procedures vary depending
on whether you connect directly to CompuServe or through an

43

14-FEB-85

Introduction to GEM Programming page

alternative communications system. For information on
intitiating your membership and logging on refer to the
"CompuServe IntroPak".

The first time that you log on you will not be able to use the
GPS area because we need your CompuServe number to give you
access. Following the instructions listed below will enable us
to get your CompuServe number and let you into the GPS area.

To send us a private message:

1- Log on to DR SIG

2- Enter the : Ask The SYSOP area (choose #3)
3- Leave a Message (choose L)
4- Address the message to "*SYSOP"

A message left in this manner will not be available to any other
person to read. This will create a "thread" of messages that
only you can read. We will respond to your message, you will
respond to ours. As long as you follow this procedure the

messages will remain private. Any message you leave addressed to

"*SYSOP" will be read only by us no matter which area you leave
it in.

We will be logged on to the DR SIG throughout the day and oiten
in the evenings so please try to make use of this service.

3: The Development Environment

3.1: Har

dware Reguirements

The recommended hardware for the GEM Programmer's Toolkit (50847)
is an IBM PX/XT with 512K RAM, a graphics card and a mouse.

Supported graphics cards include:
Hercules Monchrome Graphics Card
IBM Color Graphics Card (in monochrome mode)

IBM Enhanced Graphics Card

Supported mice are PC Mouse by Mouse Systems and the Microsoft
Mouse.

3.2: Software Requirements

In addition to the GEM Programmer's Toolkit you will need this

~additional software:

- PC DOS version 2.0 or higher

- the LATTICE "C" compiler

- an assembler, linker, and librarian such as those
provided in DR Assembler Plus Tools (RASM-86, Link-86, and Lib-
86)

4

14-FEB-85 Introduction to GEM Programming page 5

4: An Overview of GEM System Software

GEM software provides a unique graphics environment for personal
computers, allowing users to work more effectively by manipulating
graphic images such as icons, pop-down menus, and windows.

The GEM VDI supports graphics call portability across physical
hardware such as graphics screens, periperal input devices, and
output devices. The GEM AES supplements the GEM VDI graphics I/0
calls with functions that manage graphics-based user input to
application environment metaphors. These include icons, pop-down
menus, forms and user-manipulated menus.

GEM Virtual Device Interface (VDI)

The GEM VDI consists of two main components: the Graphics Device
Operating System(GDOS) and the device driver including font
information. The size of the GDOS is approximetely 6KB while the
screen driver and default font can be 32KB to 36KB. It should be
noted that the device driver contains much of the output
functionality and the size can vary from device to device
depending on what functions have been implemented. It is because
the functionality is located in this area that programs written
to GEM are portable. The programmer merely talks to all devices
as though they are one and the same and data is returned from —
these devices that will indicate to the programmer the '
limitations of that particular device. It is the responsiblity
of the application to interpet this data. One of these
limitations is the aspect ratio which is returned when a program
performs an "OPEN WORKSTATION", see your GEM Programmers Guide,
Volume 1. After the aspect ratio of the of the device is returned
the programmer must use this information to modify the data sent
to the device so that it looks the same on any device regardless
of aspect ratio. Through carefull, non-machine specific,
programming you can write one program that will port to other
systems guite easily.

NDC vs. RC Coordinate System

The GEM VDI supports two coordinate systems for the
description of graphic space, the Normalized Device
Coordinate (NDC) system and the Raster Coordinate (RC) system.
The NDC system addresses the graphics display independent of
the device coordinate size while the RC system addresses the
device in actual device units. These systems are descibed in
detail in section 1 of the GEM Programmer's Guide, Volume 1.
In order to make full use of the raster type operations
available WE SUGGEST THAT YOU USE THE RASTER COORDINATE
SYSTEM.

14-FEB-85 Introduction to GEM Programming page 6

.1.2: Raster Text Fonts

The device driver when loaded contains one or more system
fonts. Additional fonts are loaded when requested by the
application using the "LOAD FONTS" call. The fonts that are
loaded are associated with the device driver as specified in
the ASSIGN.SYS file. The number of fonts in the ASSIGN.SYS
file are determined by the choices made by the user when
executing SETUP. - The fonts are described in detail in
appendix G of the GEM Programmer's Guide, Volume 1.

There are two different modes when using fonts; Point mode and
Absolute mode. Point mode supports text of two sizes, the 1lx
and 2x. Absolute mode provides for the scaling of text at any
value between @ and 2x. These modes are a function of the
device driver and we have placed the capabilities for both
modes into our screen drivers while the printer drivers
supplied by Digital Research support both modes but round down
to the nearest size.

One special consideration when working with text in the work
area of a window is that it may be necessary for your
application to determine how much text will fit into your
window 1if you are going to allow for the changing of the
length of character strings. I.E.: You can send an English
language string to a window for one version of a product and
switch to a French language string for another, but the length
of the string required to convey the same idea in French would
be longer and require the placement of text into a different
area of the window. In order to facilitate these types of
situations DRI has included a set of VDI calls(see the
Programmer's Guide volume 1, section 8) specifically for
inquiring about the text attributes. To determine the amount
of text that will fit within a window you would perform an
"INQUIRE CHARACTER CELL WIDTH" and use that value in
conjunction with the size of the window, returned by
performing a WIND GET on the work area of the window. This
would not be a problem with Alert Boxes or Dialog Boxes since
the string length is determined at the time that they are
designed using the Resource Construction Set.

For complete information on TEXT functionality consult your
VDI Programmer's Guide, Volume 1.

4.1.3: The GEM Metafile

The GEM Metafile is a file used by GEM OUTPUT to send
information to peripheral devices. It is also used to send
information to other GEM applications. It is constructed of
object oriented inscriptions of pictures from GEM applications
or bit image files from paint programs and digitizers. The
most important consideration for the applications programmer
when constructing a GEM Metafile is that you; (1) define the
Physical Page Size of the area to be output, and (2) define

e

14-FEB-85 Introduction to GEM Programming page 7

the Coordinate System that you are using. -

Additional information on the GEM Metafile can be found in the
GEM Programmer's Guide, Volume 1, Appendix C.

"4.2: GEM Application Environment Services (AES)

The Application Environment Services (AES) consists of several
primary elements including the Subroutine Library, the Screen
Manager and the Dispatcher. The library provides for windowing,
management of objects, mouse movement and more, see the GEM
Programmer's Guide, volume 2, section 1.5. The Screen Manager 1s
responsible for the mouse whenever it is outside of the
application window and also sends alerts to the applicaticn,
1.E.: telling it to redraw. The dispatcher is the core of the
limited multi-tasking capabilities of GEM. It sets up a "ready
list" to rotate processor time to multiple processes rotating
control only when the application is making a system call to the
AES.

Although the present deveopment system is a single tasking
system, PC DOS, if your application can live with the desk
accessories then you are all ready for a future multitasking
environment.

4.3: Memory Management

For effective memory management a programmer need concern himself
with only two procedures:

First, you must link PROSTART to your application at link time.
This routine performs two functions; it (1) determines the amount
of memory that your application requires shrinking the memory
allocated at execution time to that amount, and (2) makes sure
that GEM is resident before actually executing your application
program to avoid a *hung" system. There are two versions of
PROSTART included, PROSTART.A86, for use with an assembler that
generates Digital Research format OBJ files, and PROSTART.ASM for
use with an assembler that generates Microsoft format OBJ files,
1.E.: Lattice "C". : :

Second, if you need temporary memory You should use the standard
PC DOS calls for memory allocation and memory release.

5: Constructing A GEM Application

The first step when designing a GEM application program is to create
the menus and dialog boxes using the GEM Resource Construction Set.
This is also the time to create the icons or bit images that you
will be using. After you have completed this you can develop the

14-FEB-85 Introduction to GEM Programming : page 8

code that will use the resourse file.

To write a GEM application program we recommend that you compile
your code with LATTICE "C" after creating the source code with any
wordprocessor in the non-text mode. It is possible to write code in
any language but we are distributing only the bindings for LATTICE
"C" at this time. We expect to be providing bindings for PASCAL
shortly and other languages after that. It is possible for you to
write your own bindings although you might have to adjust the
include files produced by the Resource Construction Set.

After you have your code functioning, you can use GEM-SID to debug
it. GEM-SID provides the capability to save your graphics sreen
while doing your debugging and to restore the graphics to the
screen. _It also makes possible for you to direct your text to one
monitor and the graphics to another.

The following instructions will help you in working with the GEM
development tools.

Using IconEdit

GEM IconEdit is a tool you use to create icons that represent
your applications on the GEM Desktop. The icon you create
subseqguently appears in a directory window. You can also create
icons for use in Dialog and Alert Boxes. To start your
application from the GEM Desktop, your end-user can:

1. Double-click on the icon, or
2. Select the icon and then choose the "Open" command from the
File Menu.

After you create an icon, you can store it as a disk file. You
subsequently use facilities provided by the GEM Resource
Construction Set to cause the icon to appear on the GEM Desktop.

The GEM IconEdit Screen

This section describes the components you see on the GEM
IconEdit screen.

The menu bar is the top line of your screen. It lists menu
titles, which give you access to commands you can use with GEM
IconEdit.

You use the GEM IconEdit menu bar in the same way you use the
menu bar on the GEM Desktop. When you touch one of the menu
titles with the pointer, a menu drops down beneath it. The

“43

14-FEB-85

Introduction to GEM Programming page 9

drop-down menu lists the commands available from the menu
title you display.

Each of the drop-down menus and their associated commands are
explained later in this documentation.

tm
"o

SEEssTz=sEs

.. Window

g

([]

=5
ti
==

W=

The Editing... window is your work area. You design the data
and mask portions of your icon inside this window.

The window title tells you which of your other windows is
currently active. The title reads "Editing Data" when your
Data window is the active one; it reads "Editing Mask" when
your Mask window is active. '

NOTE: You must pay particular attention to which of your
windows is active., When you instruct GEM IconEdit to save your
icon design in a disk file, only the design from your active
window is saved. Likewise, when you recall a previously
designed icon from disk to make changes to it, GEM IconEdit
places the icon in your active window.

Note the grid inside the Editing... window. Each rectangle in
the grid represents a single pixel in your icon. To draw your
icon, blacken and whiten the appropriate pixel rectangles to
form the image you want.

The pixels toggle between black and white as you touch them
with the pointer and click or press the mouse button. To
blacken a white pixel, place the pointer on it and click the
mouse button. Click again on the same pixel and it reverts to
white.

To blacken a series of pixels, place the pointer on a white
pixel, press the mocuse button, and drag the mouse. To whiten
a series of pixels, use the same technique, but begin by
placing the pointer on a black pixel.

Size of Editing... Window

P T T E L Ry - o ==
ET T TS SSS=S=S=S==S=S==ss==

When you start GEM IconEdit, the size of the grid in the
Editing... window measures 32 pixels wide by 32 pixels high.
This ratio is suitable for most icons that appear on a high-
resolution screen; for example, a screen that measures 720 x
348 pixels.

When you are designing icons fur screens with a different
resolution, you may want to change the ratio of pixels in your

MY

TN

14-FEB-85

5.1.2:

Introduction to GEM Programming page 190

icon. You can do this by choosing the "Size Icon..." command
from the Operation Menu. The command is described later along
with detailed recommendations about what size of icon you
should use for common screen resclutions.

SESSSsS=sEsSESES =

When the Data window is active, whatever you draw in the
Editing... window is duplicated in the Data window on a
smaller scale. To make the Data window active, place the
pointer anywhere inside the window and click the mouse button.

When the Mask window is active, whatever you draw in the
Editing... window is duplicated in the Mask window on a
smaller scale. To make the Mask window active, place the
pointer anywhere inside the window and click the mouse button.

when you place the pointer in the Icon window and click the
mouse button, GEM IconEdit combines the designs from your Data
and Mask windows to show you what your finished icon will look
like.

GEM IconEdit Concepts

You must name icons you create with GEM IconEdit when you want
toc store them on disk. Icon names must conform to PC DOS
filename conventions.

You can use a filetype extension with icon filenames. You can
use any extension you wish, but we recommend you use the
characters "ICN".

14-FEB-85

Introduction to GEM Programming page 11

This section recommends conventions for naming your icon file: o
when you store them on disk. These are only recommendations
and you are free to use any names you wish. The recommended
conventions are shown in the following table.
Position Value Interpretation
1 1 Identifies an icon file.
2 X Identifies type of icon:
A = Application icon
D = Document icon
G = Generic icon
3-6 XXXX Descriptive abbreviation.
Use any four characters that
adequately describe what the
icon represents. See the
examples that follow.
7 X Data or Mask identifier:
' D = Data portion of icon
M = Mask portion of icon
8 X Resolution identifier:
H = High-resolution
L = Low-resolution

P T T T T T Y P T T T 3 %

IGTRSHDL.ICN

A generic icon (IG) representing a trash can (TRSH). It is
the data portion of the icon (D) for low-resolution screens
(L) .

IADRAWDH. ICN
An application icon (IA) for a draw program (DRAW). It is the
data portion of the icon (D) for high-resolution screens (H).

IDGRPHML.ICN
A document icon (ID) for a graphing program (GRPH). It is the
mask portion of the icon (M) for low-resolution screens (L).

The basic purpose of an icon mask is to make sure your icon
does not blend into the desktop and "disappear" when it is
high-lighted. The GEM Desktop highlights an icon by showing
it in reverse video when the icon is selected.

By properly coordinating the settings of each pixel rectangle
in the data and mask portions of your icon, you can ensure

s

14-FEB-85

5.1.3:

Introduction to GEM Programming page 12

that the icon appears correctly when it is highlighted.
Furthermore, you can acheive special effects by this
coordination. Experiment with this feature to get the results
that you desire.

GEM IconEdit uses Boolean algebra when merging the data and
mask portions of your icon. It applies the same Boolean
algebra rules when placing the merged icon on the GEM Desktop.
The following table shows you what results to expect, on a
pixel by pixel basis, in the non-selected states for both
monochrome and color monitors.

MONOCHROME
Data Mask Non-selected
Black White Black
Black Black Black
White Black white
White White Clear*
* - If the pixel in the data portion is white and the ma=ching

pixel in the mask portion is also white, this has the effect
of creating a "hole" in the icon. Conseguently, you are able
to see through the icon to whatever is beneath it; which is
normally the Gem Desktop background.

GEM IconEdit Menus

This section describes the commands you see on the GEM
IconEdit menus.

Desk Menu

The Desk Menu gives you access to your desk accessories and
other useful information.

"IconkEdit Info...

When you choose this command, a dialog box appears.
Information inside the dialog box tells you:

1. The version number of the GEM IconEdit Yyou are using.
2. The date your version of GEM IconEdit was created.
3. The name of the DRI engineer who wrote GEM IconEdit.

EYs

14-FEB-85 Introduction to GEM Programming page 13

5.1.3.2: File Menu

The File Menu lists commands you can use to Create, save,
and modify your icons.

"New "

Use this command to create a new icon. If you have been
working on an icon when you choose the "New" command, GEM
IconEdit abandons all work you have done in any window.

Every data and mask icon you create with GEM IconEdit must
have a name. But, GEM IconEdit does not ask you to provide
a name until you save the data or mask. When you choose
"Save" or "Save as..." from the File Menu, the Item
Selector box appears for you to type the name under which
You want to save the file.

"Open..."

Use this command to make changes to a pre-existing data or
mask icon. After you choose this command, you see the Item
Selector box on your screen. Select the file you want and
GEM IconEdit places it in the Editing... window for you to
make whatever changes you wish.

Note that GEM IconEdit also places the icon in your active
window. Therefore, you should click on the desired window
(Data or Mask) before you choose the "Open..." command.

Use this command to store the icon from your active window
on disk. The icon remains in the active window so you can
continue making changes. ’

1f you are creating a new icon and this is the first time
you have saved it on disk, GEM IconEdit displays the Item
Selector box for you to enter a file name.

If you are changing a pre-existing icon, GEM IconEdit
stores it under its original name.

"Save as..."
53

14-FEB-85 Introduction to GEM Programming

Use this command to store the icon from your active window
on disk, but under a name different from its original one.
The original icon also remains on the disk under its
criginal name.

GEM IconEdit displays the Item Selector box for you to
enter the name under which you want to store the revised
icon. After you save the icon, GEM IconEdit leaves it in
your active window so you can continue working on it.

_-—— e e
T=====

This command stops GEM IconEdit and returns you to the GEM
Desktop.

5.1.3.3: Operation Menu

The Operation Menu lists commands you can use to manipulate
the windows on your GEM IconEdit screen. It also contains
commands that help you create icons more guickly and
efficiently.

Alternately turns the grid lines ON and OFF in the
Editing... window. The command has no other effect.

Erases the icon from the Editing... window and active
window and returns all pixel rectangles to their original
color, i.e.,white.

Blackens every pixel rectangle in the Editing... window and
the active window.

======z======z==

54

14-FEB-85

Introduction to GEM Programming page 15

"Invert Icon"

Changes every pixel rectangle in the Editing... window and
active window. That is, all black pixel rectangles change
to white, and vice versa.

"Size Icon"

Use this command to change the number of pixel rectangles
in the height and width of your icon. This is a necessary
procedure when you design icons for screens with different
resolutions. For example, if you design an icon that is 32
pixels high by 32 pixels wide, it may appear proportionally
correct on a screen of one resolution but incorrect on a
screen of different resclution

The following table lists common screen resoclutions and the
recommended icon size for each.

Resolution Recommended Icon Size
7208 x 348 - 32 x 32
640 x 208 48 x 24
643 x 400 32 x 32

Any time you start GEM IconEdit, the size of the grid in
the Editing... window is 32 x 32. 1If you want to change
the size, choose the "Size Icon...™ command and the "Icon
Size:" dialog box appears on your screen. Choose the width
and height for your icon by clicking on the appropriate
values. Then click on the "OK" exit button or press the
Enter key.

The Icon Size dialog box disappears and GEM IconEdit
changes the size of the windows on your screen to match
your specifications.

Note that there are other sizes available in the Icon Size
dialog box than those listed in the preceding table. The
additional sizes are available because you can use GEM
IconEdit to create images other than icons. For example,
you can create an image of your company logo so you can
show it in the dialog boxes you display as part of your
software. This is done with the GEM Resource Construction
Set.

23 3 2 35 & &+ + & 54
"Data to Mask"
4757

14-FEB-85

5.2: Usi

Introduction to GEM Programming ' page 16

=E==SS====S======

Copies the design from your data window into your mask
window. This command is a useful "shortcut" for creating
special visual effects between the data and mask portions
of your icon.

Copies the design from your mask window into your data

window. It works exactly opposite of the "Data to Mask"

command but can be used to acheive similar effects.
ng the Resocurce Construction Set
The RCS 1is the tool you use to make resources such as drop-down
menus, dialcg boxes, and alert boxes. The RCS also takes the
icons and bit images you draw with IconEdit and makes them
usable as resources. You save resources in files, which contain
trees of objects such as text strings, icons, and exit buttons.
The GEM RCS Screen

The RCS screen comprises three parts:

- the View Window, in which editing takes place

the Partbox Window, containing trees or objects

the Desktop, containing the clipboard and trash can

Only one window is selected at a time. You can perform
operations in the View or Partbox windows only when they are
selected. To select a window, click within it. When a window
is currently selected, the title bar is striped.

If one window is atop another, the topmost is currently
selected. To bring the bottom window to the top, click
anywhere within it. This operation 1is called "topping."

You can size and move the Partbox and View windows (but not
the Desktop). To size the Partbox or View Window, first make
sure it is selected. Touch the mouse pointer to the size
boxes in their lower right corners and drag (the drag
operation is described in your GEM User's Guide Glossary). To

move a window, touch the pointer to the title bar, hold the
mouse button down, and drag.

Most trees and objects are moveable within the View Window by
selecting and dragging. (Note: in this doc, "tree" means a

56

14-FEB-85

Introduction to GEM Programming page 17

tree icon; "object," means one of the things you add to a tre.
once you open the tree icon.) You can also size objects
within the View Window. When you are editing a tree, objects
contain an implied size box, or "handle" in the lower-right
corner, in the sameplace as size boxes for windows. You
cannot move around the contents of the Partbox Window; they
are static. In the Desktop, you can rearrange the Trashcan and
Clipboard. Note: certain trees and objects carry restrictions
on movement and sizing. These will be covered later.

- X 33 + 2 & £ 2 % % % 3 & 3 &3
Mouse Operations
ESES=SSTES=EZESSERS

Most of the mouse operations used in the RCS are described in
your GEM User's Guide Glossary. A couple of these operations
have special meanings in the RCS.

- click always selects an object

- a double-click always opens an object

-

- the effect of a drag depends on where you drag it.

* drag a tree or object from the Partbox Window to make a
copy in the View Window.

* drag within the View Window to move a part

* drag from the View Window to the clipboard to cut a tree
or object

* dragging a tree or object to the Clipboard cuts it from
the View Window and stores it temporarily in the Clipboard.
I1f you cut a tree, a small T appears in the Clipboard; if an
object, a small O appears. The clipboard can contain only one
tree or object at a time. If you cut two items, you can paste
only the second clipping; the first is lost. The clipboard
clears every time you save or load a file.

* drag from the clipboard to the View Window to paste a
tree or object. When you paste a tree, the Name Dialog appears
so you can change its name or type.

* to delete an tree or object in the view window, drag it
to the Trashcan. Deleted items are irretrievable.

- <SHIFT>-drag modifies a dvag by making nondestructive F
copies. Drag the object you w.nt to copy while holding down
{he <SHIFT> key.

' 7

14-FEB-85 Introduction to GEM Programming page 18

* (SHIFT>-drag in the View Window to make duplicates of an
object or tree

* (SHIFT>-drag from the View Windcw to the Clipboard to
place a duplicate object or tree in the Clipboard

* (SHIFT>-drag from the Clipboard to View Window to paste a
duplicate item on the View Window without clearing the
Clipboard

- To size an object in the View Window, place the pointer
on its size handle (its lower right corner) and drag.

- the <CTRL> key modifies the operations above by taking
you up one level in the visual hierarchy of your object tree.
All <CTRL> operations apply to both the selected object and
its progeny.

* (CTRL>=-click selects the parent of the object selected.
1f, for example, you have an object covering the sizing hand.=2
of the box that contains it, you cannot size the containing
box; when you try to select the sizing handle, you get the

, object instead. According to the rules of visual hierarchy,

e the containing box 1is the parent of the object it contains.

’ Therefore, <CTRL>-clicking on the sizing handle of the box
(or rather, on where the handle would be if you could see it)
selects the parent box rather than the child object. (Visual
hierarchy is explained later in this reference section.)

* (CTRL>-drag moves the parent of the object selected
(moving a parent moves all 1ts progeny as well).

* (CTRL>-<SHIFT>-drag duplicates the parent of a selected
object and all the progeny of that parent

- All copy, move, and delete operations affect both the
selected object and its progeny

5.2.2: GEM RCS Menus

At the top of the RCS screen are four menus, as follows:

5.2.2.1: Desk Menu

- Displays the version number, auwthor, and copyright
date of the RCS.

57

14-FEB-85

5.2.2.2:

Introduction to GEM Programming page 19

- other entries appear if you have Desktop accessories
installed

File Menu

New

Clears the View Window of trees and objects. A warning
message appears to remind you to save your workspace.

Opens a file, bringing up the Item Selector Dialog so that
you can enter a filename. If a tree or object is currently
selected, Open opens that instead. If the workspace 1is
already in use, you are warned.

merges a second file with the file currently open. Brings
up the Item Selector Menu for entry of the second filename.

—_————— =

=Es=s=s=ss=

Saves the current file. Trees are saved in files with a
filetype of RSC (for resource). Trees and the files they
reside in are named separately. The names and types of
trees and objects are saved in the DEF file. You can
create other types of files, depending on the current
Output setting (see the Global Menu).

59

14-FEB-85 Introduction to GEM Programming ' page 20

Saves a file under a new name. Brings up the Item
Selector Dialog. 1If you type in a new filename, include
the filetype (the filetype RSC is recommended). There are
no naming conventions for the RCS, but generally you name
your RSC file after your program: for example, FCO.EXE and
FOO.RSC.

Reverts to the last-saved version of your file. If you are
not satisfied with changes you made to a particular file,
Abandon clears the changes and gives you a fresh copy.

Takes you back to the Desktop. 1If you have not saved your
work, a warning message appears.

2.2.3: Options Menu

Displays information about the file, tree, or object
selected.

Names or renames a tree or object. You may alsc be able to
change the type of the tree or object.

Makes the hidden progeny of an object reappear. To expose

& O

14-FEB-85

5.2.2.4:

Introduction to GEM Programming page 21

a hidden object, select its parent and choose Unhide.

Sort

Sorts and object's progeny by X and Y coordinates. Useful
for achieving a tidy appearance and ensuring that objects
are drawn in the order in which you arrange them on the
screen.

ETXITITXTIXTX

Flatten

== ===xxX =

Removes the tree level selected, "flattening" the tree.
Suppose a three-level tree of parent, child, and
grandchild. If the child 1s selected, Flatten removes the
child and promotes the grandchild to direct relationship
under the parent.

Makes the position and size of an object in the View Window
automatically align with the nearest coordinates on an
invisible character grid. Used only with Free Tree, which
does not have automatic snap. Without snap, it 1is difficult
to get objects lined up exactly.

Loads a bit image or icon.

Global Menu

Creates output files. The Output Files Dialog comes up,
offering the following choices:

Application Binding Files Source Files for Resource
c (*.H) *.C
Pascal (*.0)

Gl

e

14-FEB-85

5.2.3:

Introduction to GEM Programming page 22

Note that .H and .0 files are included when compiling your
C or Pascal application. They supply actual values
associated with names you entered in the Name Dialeg. A .C
file is a C-language source of your resource, which you can
hand edit and use with RSCREATE.

Sets the level of protection on your files, from heavily
guarded to unwatched. When you select Safety, the Resource
Editing Mode Dialog appears. 1In it you have the choice of
three levels of protection: locked, in which tree
structure cannot be changed, normal, which issues a warning
before rearranging trees, and expert, in which anything
goes.

Partbox wWindow Contents

The Partbox Window contains the object trees, in the form of
icons, from which you build your resources. (The GEM
Programmer's Guide explains object trees and their function in
the GEM system.) The kinds of trees available are as follows:

Serves as a place marker for trees of unknown type. If the
DEF file of the tree you are working on was somehow lost (or
never existed: for example, you created it with RSCREATE) use
Unknown. If you have a hand-made tree containing non-standard
objects, use Unknown.

The most general and flexible kind of tree. Other tree types
have their own editing constraints. The only rule for Free
Trees is that visual hierarchy prevails. Free Trees are
mainly useful for building system-specific trees; generaily,
they are not portable.

S=E==S====

Specifically intended for application menus, as described in

(AN

14-FEB-85

5.2.4:

Introduction to GEM Programming page 23

P
the GEM AES Menu Library. ’
- 3 & 5 & 3£
Dialog
Eos=====
Creates dialog boxes for user input. A stricter form of Free
tree in that character snap is enforced. See Dialog Boxes in
the Form Library section of the GEM AES manual.
=EEET=S=E=2=
Alert
T=EE=S=R=EE=
Warns the user of impending consequences or that something is
not right. A stricter form of Dialog tree. See Alerts in the
Form Library section of the GEM AES manual.
Tree Operations
This section describes the various things you can do wit
trees.
.f’n\=
Starting a New Tree |
To begin work on a new tree, select the Partbox Window. In |
the Partbox Window, select the kind of tree you want and drag
a copy of it to the View Window. Drop the copy within the
window. The new tree opens into the Name Dialog.
The Name Dialog
The Name Dialog appears when you create a new tree by dragging
it from the Partbox Window, pasting from the clipboard, or
duplicating a tree in the View Window by <SHIFT>-dragging. 1In
the Name Dialog you can name your new tree and change its
type. After you exit the Name Dialog, the tree closes and
retreats to its place in the View Window. To continue work on
the new tree, you must open it.
======_=========
Naming a Tree
EETSE==EXTITE=ES==== N

Trees must have names so that you can refer to them in your
¢ 3

14-FEB-85

Introduction to GEM Programming page 24

code. When you drag a new tree to the View Window, it
automatically takes a default name based on its order among
the trees that already exist: for example, TREEl, TREE2, etc.
(You can have up to 55 trees in the View Window.)

The Name Dialog also accomodates changes in tree type. The
current tree type is highlighted. Select the new type by
clicking on it. Be careful about changing the type of a tree
to Menu or Alert if you aren't absolutely sure of its nature.
Change it to a Dialog first so You can open and look at it
without undesireable consequences. (Trees mistakenly typed as
Menus are especially prone to hanging the system,)

You can rearrange trees in the View Window.

- To move a tree to a new position between two other trees,
drag it between them and let go. The two trees part, allowing
the newcomer to slip in.

- To move a tree to the end of a list of trees in your View
Window, drag it straight down and let go.

- To move a tree to the front of the list, drag it so it

touches the first tree and let go. The former first tree

shifts right and the new tree takes it place.

Use either of the following operations to open a tree:
- double click on the tree

- select it and choose Open from the File Menu.When you
open a tree, its name, whether the name you gave it or a
default name,appears in the title bar of the View Window. In
the Partbox Window, prototype objects appear where the
prototype trees were formerly. ‘ ‘

G+

14-FEB-85

.5.2.5:

Introduction to GEM Programming page 25

To close a tree, click on the Close Box at the far left of t!
title bar or pick Close from the File Menu. Closing a tree 1.
not the same as saving it to disk. Trees are saved in RSC
files, which must be named separately upon saving.

Objects

The objects that flesh out your tree appear in the Partbox
Window when you open the tree. These available objects differ
according to what kind of tree you are working on. Objects
are dragged onto the View Window. The surface of the View
Window, when the tree is opened, constitutes the highest level
of the tree(the root object).

Partbox Window Contents and Tree Type

For Free Trees and Dialog Trees, the objects available in the
Partbox Window are the same. Menu Trees and Alert Trees have
their own individual Partbox contents. Unknown Trees do not
have a corresponding Partbox. If you want to add objects to
an Unknown Tree, you have to change its type first. The kind
of tree you have open is reflected in the title bar of the
Partbox window: if thetree is a Dialog, for example, the
title reads "Dialog Partbox."

EE RS L 2 2 2 2 2 2 F R E 2 23 s 2t 2 E E X 2 1 £ 5

Free Trees and Dialogs: Objects Available

22 At - 2 2 - 3 s F 2 E 2 2 F 2 2 E X s A 2 F F 2 A 2 F £ 2 2 2 & & £

The following objects are available in Free Tree and Dialog
Tree Partboxes. The drawings below are intended to suggest the
way the prototype objects appear in the Partbox. The names
these objects assume in the Object Library section of the GEM
AES are given in parentheses.

o BUTTON l

(G_BUTTON) Boxed string that the end user selects to
indicate his choice among alternatives
o STRING

(G_STRING) Boxless character string, generally
consisting of explanatory text for the user.

AN

14-FEB-85

Introduction to GEM Programming page 26

o EDIT:

(G_FTEXT) Editable text field

o] EDIT: |

(G_FBOXTEXT) Editable text field with box

(G_IBOX) Hollow box through which you can see the dither
pattern or text beneath

|

(G_BOX) Opaque box

o TEXT

(G_TEXT) Formatted text, for which you can specify
sizes, colors, fonts, and masking '

g

(G_BOXCHAR) Single character in a box, nonformattable
o] ‘ BOXTEXT }
|
(G_BOXTEXT) Same as TEXT, but with a box
o]

ICON

(G_ICON) Makes resource of icon made with IconEdit

bl

14-FEB-85

Introduction to GEM Programming page 27

IMAGE

(G_IMAGE) Makes resourse of bit image (data field only)
made with IconEdit.

Menus: Objects Available

The objects in the Menu Partbox Window are limited to those
components practical in menus. They are as follows:

o TITLE

--prototypical title for your menu bar

o0 ENTRY

--prototypical entry to be placed in a menu drop-down

--separator line. Divides entries into logical groups
for user's convenience

———————

i

~-box. Used as placeholders for elements such as
dither patterns and colors that you add at runtime. (Observe
the GEM Draw menus.)

Alerts generally employ the standard GEM system warning icons,
a message, and away for the us=r to get out of the alert.

61

14-FEB-85

5.2.6:

Introduction to GEM Programming page 28

(o} | BUTTON ,

‘=-exit button, with characteristic heavy borders of
exit buttons.

0 Message Line

--nonformattable

o NOTE icon
--depicts a hand with upraised forefinger. A
prototypical NOTE icon is already in place in the View Window

when you open an Alert Tree, because NOTES are the most
commonly wused alerts.

0 WAIT icon

--depicts a question mark

o0 STOP 1icon

--depicts a hand with palm exposed

Object Operations

The'following descriptions apply specifically to objects in
Free and Dialog Trees and generally to Menu and Alert Trees.
Exceptions in Menu and Alert Trees are noted.

T N S m s e e = e - —
RERER R AR 2 E F 22 2 - T E F T 5+ 5 T

To move an object from the Partbox window to your tree, first
make sure the Partbox window is selected. Drag a copy of the
object into the View Window and drop it. Note that this is
the same procedure you use to copy trees into the View Window.
Remember that a <shift>-drag makes additional copies of
objects. If you want to add three buttons to your tree, for
example, you can drag one down from the Partbox and copy it
twice rather than dragging down three separate buttons.

For Menu Trees:

by

14-FEB-85

Introduction to GEM Programming page 29

You can drag objects only to their appropriate places.

Titles, for example, belong in the menu title bar after the
default entries "Desk"™ and "File." You can drag down Entries,
Separator Lines, and Boxes only when you have somewhere to put
them: that is, after you select the title of the menu you
want, and the white box that will contain your menu, drops
down.

You cannot drag objects to or from the Desk menu. Nor can you
edit the contents of the Desk Menu, except for the first line.

For Alert Trees:

You cannot have more than one warning icon in an alert tree.
To replace the default NOTE icon with another kind of icon,
drag the other icon anywhere within the Alert Tree. (If you do
not want an icon at all,drag it to the trash.) You are
limited to three or fewer buttons and five or fewer message
lines.

To move an object around in the View Window, drag it. To
discard an object, drag it to the trashcan. To cut it, drag
it to the clipboard. To make a duplicate of it on the
clipboard, <SHIFT>-drag it to the clipboard. To duplicate it
within the View Window, use <SHIFT>-drag.

You can size any object by dragging the lower-right corner
away from or toward the center of the object. Objects without
visual extents around them, such as strings, formatted text,
editable text fields, bit images, and icons, size
automatically when you change the data they contain. Objects
with visual extents reguire manual sizing.

For Menu Trees:

The default first entry in the Desk menu, "Your message here,"
is obligatory. You can (and should) change the text; you
cannot, however, move it or throw the entry away and have no
text there at all. Nor can you move, edit, or throw away the
remaining default objects, the Separator Line and Desk
Accessories 1-6. Think of the Desk Accessory as
placeholders.They fill in apprcpriately at runtime if you have
desk accessories (such as a click or calculator). Otherwise,
the unused slots disappear at runtime. The prototype File menu
provides a first entry, Quit, for your convenience. To add

"]

TN

14-FEB-85

Introduction to GEM Programming page 3¢

other entries, size the drop-down menu by <CTRL>-dragging the
lower rightcorner.

For Alert Trees:

You cannot size objects. They automatically expand or
contract to contain your text. You can drag Alert Tree
contents to the trash or clipboard only.

To open an object, double-click on it or select it and choose
Open from the File Menu. The object expands into an
Attribute Dialog, in which you set its characteristics.

For Menu Trees:

In the Desk menu, only the first entry opens.

For Alert Trees:

Certain objects are compatible, sharing like attributes and
ldentical Attribute Dialogs. There are five classes among the
objects.

1. Unformatted text (Buttons, Strings, and Titles)
coenstitutes the first class

2. Boxes (Boxes, Hollow Boxes, and Boxchars) constitute the
second

3. Formatted text (Text, Boxtext, Editable Text, and
Editable Text-in-a-Box) constitutes the third.

4. and 5. Icons and bit images are compatible with nothing
and form their own one-member classes.

70

14-FEB-85 Introduction to GEM Programming page 31

Class 1 Attribute Dialogs:

For Buttons and Strings, the Attribute Dialog consists of a
set of object flags (described in your GEM Programmer's Guide
AES under Object Library) and a field for text entry. The
flags are toggles. Select them to turn them on or off. At the
bottom of the Attribute Dialog, the current ‘text, namely
"STRING," or"BUTTON,"™ occupies the text field. Backspace over
it and type the text you want. (Instead of backspacing, you
can use <ESC> to clear the whole string atonce.)

Class 2 Attribute Dialogs:

For Boxes, Hollow Boxes, and Boxchars, the Attribute Dialog
contains the same object flags as in class 1. 1In addition,
the Attribute Dialog contains options as follows.

- background dither patterns--eight available

- background color--offers 16 VDI color indices in
hexadecimal

- border color--same as for background color
- border width--seven widths available
- character--enter any character

- character color--similar to background color. Offers
same colors.

- masking rules--select replacement mode or transparent
mode for characters. You can stamp characters on top of
background or replace it. To choose a dither, color, or border
width, click on one of the choices visible or click on the
left or right scroll arrows to expose additional choices.

The current selection appears in the "Selected" box.

For Text, Boxtext, ‘Editable Text, and Editable Text-in-a-Box,
the Attribute Dialog includes all the features of class 2 with
additions pertaining to textsize and format:

- font--choice of large or small fonts for text

- justify--justifies text left, center, or right

- PTMPLT>EDIT:"~~°°°% --temlate for text entry

)"‘\

14-FEB-85

Introduction to GEM Programming page 32
- PVALID>""77~ XXXXXX--validation field for text entry.
- PTEXT>™ "~~~ --text entry field

The template, validation field, and text entry field (P
fields) are explained in your GEM AES in the Object Library
section, under "TEDINFO Structure." Note that in the RSC,
PTMPLT fields use a tilde (7) in place of an underline () to
avoid confusion between the field itself and the placeholders
for editablecharacters. The following example, constructing
an editable field in which the end user types in .the date,
illustrates the use of the template, validation field, and
text entry fields.

PTMPLT>Today's Date: ~~/~~/~~

PVALID> " "~77 7 ~~~=~~~ 99799799
PTEXT>™"77=77~~=~~~~~ 21791785
Explanation of template: To enter "Today's Date: " instead

of the default, "EDIT:," backspace over EDIT and type in the
new string. The tildes in the template are placeholders for
characters that will later change. They are the only part of
the template that the end user will be able to edit. The
slashes, as non-tildes, are permanent features of the
template.

Explanation of validation field: The validation field
determines what kind of characters the end user can enter: it
determines what constitutes valid input. The tildes under
"Today's Date: " and the slashes means that those characters
in the template are literal strings and will -appear as they
are; ‘they require no validation. The nines under the tildes
in the template mean that the enduser must type in digits
where the nines occur.

Explanation of text entry field: The digits you type under
the nines in the validation field will appear as the default
entry. The end user must type over them to change the date.

Icon Attribute Dialogs:

Icon Attribute Dialogs contain object flags as for other
classes and special attributes for coloring icons and mixing
text and icons. ’

-~ foreground color--determines color of lines in icon

- background color--determines color between lines in icon

- text--to insert text within, above, or below icon. Useful
for labeling.

- character--to insert a single character within icon.
T3

14~FEB-B5

5.2.7:

5.2.7.1:

Introduction to GEM Programming page 33

Example: floppy disk icons. The Icon Attribute Dialog
contains two Locate Boxes: a Text Locate Box under the Text
field, and a Character Locate Box under the Character field.
For positioning Text within your icon, click on any of the
three levels in the Text Locate Box. To position a Character
within your icon, click on any square within the grid.

The note at the bottom of the menu indicates that you must
load a data or maskfile to change an icon in the RCS. Select
an icon object from the View Window, go to the Option Menu,
and pick Load to load a mask or data file.

Bit Image Attribute Dialogs

Bit Image Attribute Dialogs contain the standard object flags
and an Image Color attribute. Like the color selectors in
other attribute dialogs, this offers sixteen VDI-index
colors. Note that you must load new data through the Load
entry in the Options Menu.

Exiting an Attribute Dialog

Hit <RETURN> or select OK to assign the attributes and close
the object.

Tips And Concepts

Visual Hierarchy: Relationship between Trees and Objects

The highest level of a tree is the surface of the View
Window when you open the tree. Any solitary object you
drag to the surface is a direct child of the View Window
surface. An object within another object--a button within
a box, say--is the child of the containing object.
Because this hierarchy is apparent on sight, it is called
"visual hierarchy.

"Note that according to the rules of visual hierarchy, a
parent object must completely contain its progeny; objects
that jut out from an object that otherwise contains them
are not related to that object. Therefore, sizing objects
up or down can affect their relationships to other members
of the tree. With objects that are supposed to be nested
at the same level, such as radio buttons, you must take
care that the visual hierarch:r of the tree accurately
reflects your intentions.

Remember that a mouse ope: itions modified by <CTRL> takes
you up a step in the hierarchy and that Flatten, a choice

"3

S

14-FEB-85 Introduction to GEM Programming page 34

in the Options Menu, removes a level in the hierarchy.
Recall too that any delete, move, or copy affecting an
object also affects its progeny.

5.2.7.2: Notes on Making Iccns and Bit Images

Icons and bit images are drawn with IconEdit and are saved
in .ICN files. An icon consists of data and a mask. A bit
image consists of data only. You must load .ICN files into
the RCS to turn them into resources. As bit images are but
simpler versions of icons, in that they contain data only,
the notes that follow focus mainly on icons, with bit-image
exceptions indicated. - ’

To load a .ICN file, drag an icon object from the Free or
Dialog Partbox Window and drop it in the View wWindow.
Select the icon object. Go up to the Options Menu and
select Load. The Icon Load Dialog appears, and you can
choose to lcad the data or mask, or both. For bit images,
no Lecad Dialog appears.

When you load the data or mask, the Item Selector Dialog,
appears so that you can click on the .ICN file you want.
If you choose both mask and data, the Item Selector appears
twice, once for the data and once for the mask. Exit the
Item Selector Dialog. The data or mask you selected (or
both) now appear in the View Window. If you loaded just
the data, click on the icon again and choose Load to load
its mask. When both data and mask are loaded, the files
merge. Open the icon by double clicking and set its
attributes. When you save the object tree containing your
icon, it becomes a resource just like any other.

Remember that if you want to redraw the icon image itself,
you have to go backto IconEdit.

5.2.7.3: Memory Limits

You can have a maximum of sixty trees (on certain
machines you can see only fifty-five of these) occupying a
total of 30K bytes. These trees can contain acumulative
maximum of 1,258 objects, of which 528 can have names. As
names are stored in a separate index, they do not count
against your 30K bytes. When in doubt, drop down the
Options Menu and chose Info. You will be warned if you
reach the end of your memory buffer or name index.

.7.4: Name Conflicts with Merge

Check for name conflicts among trees and objects when you
merge files. When you duplicate a tree or file, the new
copy loses all name information. 1If you merge a file

14-FEB-85 Introduction to GEM Programming page 35

containing names already defined in the current file, the —
RCS makes up new names for the duplicates. T

5.2.8: Getting Started, a Sample Session with the RCS

This walk-through directs you in the making of a simple Dialog
Tree. The steps you take here apply generally to all the
trees in the RCS.

Starting Up

To begin work, select the RCS.EXE icon from the desktop.
Because the RCS is a programmer's tool, the RCS.EXE icon
depicts a hammer.

Choosing the Dialog Tree Option

—— e g e e e S e Ee S o A S e I e ar m Er e N I a2 I AT
S S S ST CSCSRSSCSSSS==SSESSSESREEXZ=ESSSsSS=

Inside the RCS, you notice five icons in the Partbox Window
- at the top of the screen. Click on the fourth, which contains
the word "“Enter." This is the Dialog Tree icon.

Holding the mouse button down, drag the Dialog Icon to the

center of the window labeled "Resource Construction Set." T
This is the View Window. Release the mouse button.

Naming the Dialog Tree

When you release the mouse button, a notice appears in the
center of the screen, informing you that you can change the
name and type of your Dialog Tree.

Backspace over the default name, TREEl, and type "FOO."

Next click on the OK button. The dialog tree labeled FOO
appears in the upper-left corner of the editing window.
Opening the Dialog Tree

I 3 ¥ ¥ 5 4 5 - 2tk ki

Click once in the view window to select it.

Double~-click on FOO to open it. When FOO is open, its name
appears in the title bar of the View Window. The View Windor
now shows a blank dialog tree , FOO.

Assembling the Objects

TN

i

14-FEB-85

Introduction to GEM Programming , page 36

Above the View Window, the Dialog Partbox window contains the
objects you use to make your dialog tree.

Click once in the Dialog Partbox Window to select it, then
drag the object labeled BUTTON to the FCOO tree. Drop it 1n
the middle of the View Window. Go back for another button and
drop it below the first.

Now get some text by dragging down a STRING object in the same

way you dragged the buttons. Drop it to the left of the
buttons.

Customizing the Objects

Click within the View Window to top it. Then double-click on
the first button to open it. An Attribute Dialog appears,
consisting of a list of object characteristics. Note that
SELECTABLE is already chosen by default. Click on EXIT.

At the bottom of the list, backspace over "BUTTON" and type 1in
"YES." When you are finished, select OK.

Open the second button and make it a selectable exit button
like the first. This will be the default button. Click on
DEFAULT. Over "BUTTON" type "CANCEL." When you are finished,
select OK.

Now open the STRING object by double-clicking on it. The same
Attribute Menu appears. Backspace over the word "STRING" and
type "Do you want to continue?" When you are through, click
on OK.

Naming an Object

Next, give the button a name so that you can refer to it in
your code. Click on the button to select it. Then go up to
the Options Menu and selectName.... When the Object Name
Dialog comes up, type in FOOBUTN. Click on OK when you're
ready. The string is now associated with the name FOOSTRNG.

Rearranging Objects

ST ESEZSoS=m==2==Z=SS=ES=s=

You might find upon closing the string object that the string
overlaps the buttons or that the layout of string and buttons
looks untidy. To move the string, click on it and drag .You
can also drag the buttons by clicking anywhere within them.

Move the three objects around till they look like the example

Te

14-FEB-85 Introduction to GEM Programming page 37

below:

Do you want to continue?

Closing the Dialog Tree

Now you are ready to close FOO. Click on the Close Box, which
appears at the far left of FOO's title bar.

Saving the Dialog Tree in a File

Trees are saved in .RSC files. Go to the File Menu and choose 7
Save As.... The Item Selector Menu appears. After : ’
"Selection:" on the right side of the menu, type

"FOOFILE.RSC." When you are finished, click on the OK button.

FOO is now saved in file FOOFILE.RSC. In the process of

saving your file, a .DAT file, containing naming and typing
information on your objects and trees, was automatically

created.

Close and Exit

ZoSSTE=X=SsSSsE=E=R=E=

To close "FOOFILE.RSC", click on the CLOSE box.

To exit the RCS, select QUIT from the File Menu. You are now
back to the Desktop.

5.3: Using GEM SID

This is an addendum to SID-86 for operation with the Digital
Research Graphics Environment Manager (GEM). This upgraded
version of SID-86 is named GEM-SID. With the exceptions
described below, GEM-SID operates in the same manner described in
the SID-86 Programmer's Guide for PS-DOS manual.

s

EEETESXII=SS=S=S=SSSES

LOADING GEM-SID

11

14-FEB-85

Introduction to GEM Programming page 38

To load GEM-SID, enter the GEM Programmer Tools desktop and
select the GEM-SID icon.

GEM is not present when GEM-SID is executed, the following

error message will appear in the GEM-SID banner:

!1!! Warning: GEM VDI not present !!!!

Without GEM present in memory, GEM-SID will operate 1in the
same manner as SID-86,

Additions to the E Command

GEM-S5ID features large symbols that have both a segment and an
offset. In order to debug GEM applications with large
sympbols, the large symbol segment values may have to bpe
corrected.

To ensure the correct large symbol addresses for the GEM
application, two new forms of the E command have been added.
These forms are:

E filename -symfilename
E filename +symfilename

If, after loading the GEM application and symbol file into
GEM-SID, the symbol addresses are missing the segment value,
Or are otherwise in error, reenter the E command using the E
filename -symfilename form. If the symbol addresses are still
wrong, use the E filename +symfilename form. The effects of
the minus and plus signs in front of the symbol table filename
are explained below.

A minus sign {(-) in front of the symbol table filename makes
the symbols relative to the GEM application's PSP (Program
Segment Prefix) plus 193nh paragraphs.

r
& Jis

When the minus sign is specified in front of the symbol table

filename, the SYM file's segment values are constructed by

adding 1@h paragraphs to the PSP segment value (which ;s
generally the beginning of the code segment). This sum is
then added to the code and data segment values provided in the

SYM file to generate the correct segment values for the large
symbols.

The equations used to construct the code and data segment
values for the SYM file can be illustrated as follows:

iR

14-FEB-8B5 Introduction to GEM Programming page 39

PSP Segment PSP Segment
+ 10h Paragraphs + 1@h Paragraphs
+ SYM file CS + SYM file DS
= Large Symbol CS = Large Symbol DS

The Plus Sign

When a plus (+) sign is placed in front of the symbol table
filename, the start of the SYM file is offset by the value of
the user code segment.

The equations used to construct the code and data segment
values for the SYM file can be illustrated as follows:

Current User CS Current User CS
+ Current SYM file CS + Current SYM file DS
= New SYM file CS = New SYM file DS
5.3.2: The Y Command (output to 1 or 2 screens)

The Y command controls the graphics to text conversions under o
GEM-SID. The forms are as follows:

YGE
YGD
YG
YME
YMD
Y

The YGE command enables the graphics image buffer. This
command causes the graphics image appearing on the screen to
be saved in a buffer before GEM-SID switches the screen to
text. The YG command is used to recall ‘the graphics imace
buffer to the screen.

The YGD command disables the graphics image buffer. After
entering the YGD command, the graphics image is not saved 1in
the graphics image buffer.

The YG command restores the graphics image to the screen. The
YG command only functions if the YGE command has enabled the
graphics image buffer. Press any character key to restore the
GEM-SID text to the screen.

The YME command enables the r alti-screen mode. 1If you have g
two screens connected to yo r system, the YME command routes
GEM-SIC to one screen and graphics to the other. This is the
default if GEM is not in memory at the time GEM-SID is loaded.

19

14-FEB-85 Introduction to GEM Programming page 440

The YMD command enables the multi-screen mode. Both graphics
and text are displayed on a single screen. This 1s the
default if GEM is in memory at the time GEM-SID is loaded.

The Y command displays the status of the graphics image
save/restore buffer and the current screen mode.

5.3.3: The N Command

The N command executes the G (Go) command to transfer control

to the program being tested directly before or after the next
call or callf. The forms are as follows: '

-N
N

The -N form executes a G command directly before the next call
or callf.

The N form executes a G command directly after returning from
the procedure called by the next call or callf.

3.4: The Q2 Command (Quit)

The Q command terminates SID-86 if no process 1s being
debugged. If a debug process loaded by the E command is
running, the Q command stops the process, but does not
terminate SID-86. The form is as follows:

Q

5.3.5: The SR Command (Search)

The SR command searches for a string within memory. The forms
are as follows:

SRs,f,"string"
SRs,f,value

where s is the starting address to begin searching and f is
the finishing address to end searching.

The SRs,f,"string" form searches for a string of ASCII
characters. The "string" parameter specifies the string of
one or more printable ASCII characters you want to search for.
Note that you may use either single (') or double (")
guotes.

The SRs,f,value form searches for a string of numerical
characters. The value parameter specifies the string of
nonprintable ASCII characters, numbers, and hexadecimal values
you want to search for. gc

———— - -

14-FEB~-85

5.3.6:

5.3.7:

5.3.8:

5.4: The

Introduction to GEM Programming page 41

The ? Command (Help)

The ? command prints a list of available SID-86 commands. The
form is as follows:

?

The ?? Command (Help)

The ?? command prints a detailed command 1list that, in
addition to the SID-86 commands, includes the available
command options. The form is as follows:

?27?

Using GEMSID with MAP files

In order to use GEMSID with compilers and assemblers that
produce Microsoft format MAP files you must first convert
those MAP files to SYM files using MAP2SYM. The correct

syntax for using that utility follows:

MAP25SYM <filename.map> filename.sym

Sample GEM Application and GEM Desk Accessory

DOODLE, a sample GEM application

The sample application, DOODLE, provided with the GEM
Programmer's Toolkit serves as an example of way in which you
program to the GEM environment. Functionality demonstrated
includes: '

- opening and closing of windows

- moving of windows

- use of Alert boxes and Dialog boxes

- pop-down menus

- error handling

There are several different BAT files for you to use depending
upon which compiler you are using. We have supplied the compile
and link options in these BAT files to simplify your
understanding of these samples. For more information as to which

BATCH file you might want to use see the name and description of

Bl

14-FEB-85 Introduction to GEM Programming page 42

the files that follows this section.

R R R
SSESE=ESSET=s=====x

If you are using a compiler that outputs Microsoft format MAP
files and want to use GEMSID for debugging you must convert those
files to SYM files using the MAP2SYM file converting utility
provided with this pPackage. The proper syntax for this utility
is: '

MAP2SYM <DOODLEM.MAP> DOODLEM;SYM

This conversion is automatically executed in the BATCH files that
we provide.

NOTE: YOU WILL FIND A COPY OF MAP2SYM.EXE ON THE TOOLS DISKETTE
PROVIDED WITH THE TOOLKIT. 1IN THE BATCH FILES PROVIDED WITH THE
SAMPLE APPLICATION AND ACCESSORY THIS UTILITY IS REFFERED TO AS
SYMS. YOU MUST MAKE A COPY OF MAP2SYM CALLED SYMS AS
DEMONSTRATED IN THE FOLLOWING COMMAND FOR THOSE BATCH FILES TO
WORK CORRECTLY:

COPY MAP2SYM.EXE SYMS.EXE

P S N T D T E E E E o S s o = = o o = ———
i R R R Y Y T

L R E 1 T F T F T L N
I e R S 2 T F F T3

We have also provided a sample accessory called HELLO. There is
a compiled copy of HELLO called DESK2.ACC. Placing this file in
your GEMSYS sub-directory will cause it to be automatically
loaded when you load the DESKTOP.

Since you cannot execute an accessory you must compile it as an
application for debugging purposes. 1In the sample accessory we
show you a technique to use for this purpose. On the sample
programs disk there are two files, DESKACC@.H and DESKACC1.H,
that you use for this purpose. COPY DESKAPPB.H to DESKACC.H and
compile to create an application. When you are finished with the
development and debugging of your accessory COPY DESKAPPl.H to
DESKACC.H and recompile creating an accessory.

There are several BATCH files provided on the disk for compiling
and linking of the sample accessory. Carefull examination of
these files will demonstrate the correct technigue for
developemnt of a Desk Accessory.

Note: There are two files on the disk used by the accessory to
demonstrate a technique for reducing the amount of code in your
accessory, TGEMBIND.C and TVDIBIND.C. These are used in the
HELLOMAC.BAT. What has been done in these files is to strip out

£X

14-FEB=-85

Introduction to GEM Programming

page 43

the code for the calls that the accessory is not using to reduc:

overhead.

You may also accomplish the same effect by creating a

library file of the bindings using a libraian of your choice such

as LIB-86.

LA E R R 232t ittt X 2 2 2 B B R R R B B B 2 & & 3

List of files on GEM TOOLKIT MS SOURCE DISK

L 2 -+ & 3+ + 2 3 1 T E E T R E S R - T X X+ - 2 - 2 = & &

ACCSTART.AB6 sets up DS and local stack

ACCSTART.ASM sets up DS and local stack

DESK2.ACC HELLO.C compiled by HELLOMAC.BAT

DESK2.MAP Microsoft format symbols of DESK2

DESK2.5YM converted MAP file using MAP2SYM

DESKACC.H include used to specify whether app or acc
DESKACC@.H include used to specify application

DESKACC1l.H include used to specify accessory

DOODLE.BAT compiles and links all modules (w/RASM)

DOODLE.C sample application source code

DOCDLE.DEF usedbyRCS to find names ofobjectsfor H file
DOODLE.EXE executable sample application

DOODLE.H include file for DOODLE.C generated by the RCS
DOODLE.INP link input for DOODLE for use with LINK-B86
DOODLE.MAP Microsoft format symbols of DOODLE

DOODLE.RSC resource file for DOODLE

DOODLE.SYM converted MAP file, used in debugging
DOODLEL.EXE executable sample application

DOODLEL.SYM symbol file for DOODLEL

DOODLEM.BAT compiless& links DOODLEL & DOODLEM (uses tinyC 1lib)
DOODNRSC.C source code for resource file load error message
DOODNRSC.DEF usedbyRCS to find names ofobjectsfor H file
DOODNRSC.H include file for objects used in load error RSC
DOODNRSC.RSC compiled resource file containing error message
DOSASM.AB6 assembly code portion of DOSBIND

DOSASM.ASM assembly code portion of DOSBIND

DOSBIND.C all DOS 2.0 requests go through this module
DOSBIND.H include module for DOSBIND.C

GEMASM.AB6 assembly portion of GEMBIND

GEMASM.ASM assembly portion of GEMBIND

GEMBIND.C bindings to GEM AES

GEMBIND.H include file for GEMBIND

HELLO.BAT compiles & links HELLO with RASM as an application
HELLO.C source code for sample accessory :

HELLO.EXE executable HELLO as an application (RASM)
HELLO.INP input line for linking HELLO (application,w/RASM)
HELLO.SYM symbol file from HELLO for debugging
HELLOACC.BAT compiles & links HELLO as an accessory (w/RASHM)
KELLOACC.INP input line for linking HELLO (accessory,w/RASM)
HELLOM.BAT compiles & links HELLO with MASM as an applicatior
HELLOM.EXE executable HELLO a an application (MASM)
SELLOM.MAP MS symbol file

HEYLLOM,.SYM
HZ LLOMAC.BAT
LG IGASM.AB6

converted MAP fi 2 for
compiles & links HELLO

debugging
as an accessory

(w/MASM)

routines to address data not in your segment

14-FEB-85

5.5: Por

Introduction to GEM Programming : page 44
LONGASM,.ASM routines to address data not in your segment
MACHINE.H pProcessorspecific routines
OBDEFS.H include file of data structure for objects
PORTAB.H processor specific definitions
PROEND.AS6 marks end of code for PROSTART
PROEND.ASM marks end of code for PROSTART

PROSTART.A86 shrinks memory, see additional documentation
PROSTART.ASM shrinks memory, see additional documentation
TCRTL.C tiny C run time library (STRLEN, STRCAT, STRCPY)
TCRTLASM.A86 assembly portion of TCRTL

TCRTLASM.ASM assembly portion of TCRTL

TCS.ASM tiny C start, replaces CS in LATTICE
TGEMBIND.C tiny GEM BIND

TREEADDR.H includeforaccessof objecttreesinother segments
TVDIBIND.C tiny VDI BIND

VDIASM.A86 assembly portion of GEM VDI bindings
VDIASM.ASM assembley portion of GEM VDI bindings
VDIBIND.C bindings to GEM VDI

VDIBIND.H include files for VDIBIND.C

ting To Other Environments

A program written to GEM System Software is portable to any
machine with the same processor that is running GEM without any
modification. It is also possible to move an application to an
environment with a different Processor running GEM with minor
modifications.

With our sample application we have included all of the machine

and operating system specific calls into several include files.
Most of the work in moving an application to another processor

As GEM becomes available on other systems Digital Research will

make available the necessary files for making the changeover. we

strongly advise you to write macnine independent code or to
include all machine dependent code into modules that are simply
identified and replaced. We have already moved some of our
applications to a new environment with a minimum of effort andg
éxpect that you will be able to dc likewise.

8y

TN

. OUTLINE FOR ISV SEMINAR:
GEM RESOURCES AND THE RESOURCE CONSTRUCTION SET

Demonstration: Creation of Resource File for Demo App (60 minutes)
- 1Info Dialog :
-~ Pen/Eraser Select Dialog
- Save As Dialog
-~ Duplicate File Alert
=~ Out of Windows Alert
= Menu

Review of Resource and Object Format
- Comparison to Macintosh
-~ A GEM Resource is a file
= A GEM Resource contains object trees, text strings,
and bit images such as mouse forms
- Hierarchy of structures within a resource
= Tree index
- Objects
-~ Tedinfos, Iconblks, Bitblks
- Strings
- Bit image data
- The "free" indices
~ Free strings
-~ Free bitblks
- GEM Objects (GEM AES 6.3)
- Contain linkage, rectangle def'n, flags, and
type specific information
- Linkage Information

- next
-~ head
- tail

- How Objects are organized into trees
- how siblings are linked
- how offspring are linked
- The Visual Hierarchy Rule
- Each object owns a screen rectangle determined
by its x, y, w, h fields
- All of its offspring must be within that rectangle
- The offspring DO NOT need to be disjoint
- Object x,y fields are positive displacements
from the parent's x,y coordinates
- The rule is applied recursively
= In the case of non-disjoint siblings, the rightmost
(last added) will be the last one drawn,
and will be one located by objec_find
- Object flags
= Selectable: may be selected by clicking at run :ime
= Default: will be selected when return is entered
(On a button, causes a triple weight border.)
- Exit: selection causes the dialog to complete
(On a butzon, causes a double weight border.)
- Editable: contains editable text
- Rbutton: is a member of a set of radio buttons
- Only one of a set of radio buttons is on
at a given time
= All members of a set of radio buttons must
- be siblings of a common parent object
- Lastob: set for the last object in a tree
(Generated automatically by RCS)
- Hidetree: makes an object and its progeny invisible.
The object library will neither draw nor find

- Object

the object(s).

Touchexit: the dialog will be exited immediately
when the mouse button goes down over this
object. (Note: this is different from EXIT,
which requires a press+release to activate.)

Indirect: the ob_spec field (see below) is actually
a long pointer to the real ob_spec data.
(Note: the standard rs_load and
RCS do not support this flag. You must set
up the indirect at run-time.)

states

Selected: The body of the object is drawn in
reverse video. May not be set in the RCS.
Used at run_time only.

Crossed: An X is drawn through the box in system
background color. Only useful with boxed
objects

Checked: A check mark is drawn inside the left
margin of the obJect.

Disabled: The object is drawn at half-intensity
(gray).

Outlined: An outline appears a boxed object.
(Note: conflicts with shadowing and outside
box borders.)

Shadowed: A drop shadow is drawn on the object
which is usually a box. Conflicts with
outlining.

- Object types and special information (ob_spec field)

Box type objects
- G_IBOX - a hollow box
- G_BOX - an opaque box
- G_ “BOXCHAR - an opaque box containing
a single character
- The obspec contains packed bit fields
defining:
- Background color
- Background dither pattern
- Border color
- Border thickness
= Character
- Character writing mode
~ Character color
Raw text objects
- Are alvays written in mono-spaced full-size
system font, using system foreground
and background colors in replace mode.
G_STRING - text string
G_BUTTON - text str1ng enclosed by a box

The ob _spec is a long pointer to a
zero terminated ASCII string.
Formatted text types
- used for editable text
- also used for text which should not appear
in the default system font.
G_TEXT - formatted text
G_BOXTEXT - formatted text with a box
G_FTEXT - editable text
G_FBOXTEXT - editable text with a box
The ob_spec field is a long pointer to a
TEDINFO structure.
The TEDINFO contains long pointers to
text. template and validarinn errinoe.

G_ "TITLE - text string (used in menu bar only)

8k

(Note: the latter two are only used
in editable fields.)

- TEDINFO also includes the same info as in
the box-types, as well as font and
justification designators.

Bit image type (G_IMAGE)

-~ A non-masked (replace mode) rectangular
bit image.

- The ob_spec is a long pointer to a
BITBLK structure.

- The BITBLK contains a long pointer to the
actual data, plus horizontal and
vertical size fields, and the

_ writing color.
Icon type (G_ICON)
-~ A data+mask bit image, with optional
- associated text string and character.
- The ob_spec is a long pointer to an ICONBLK
) structure.

- The ICONBLK contains long po1nters to
the data and mask bit images, and to
the text string.

- It also contains a X and Y sizes, foreground
and background colors, the (optional)
character, and relative positions of
the text and character.

User defined type (G_PROGDEF)
- A type which is handled at run-time
by application specific code.
Not supported by RCS or rs_load:
set up at run-time
- See GEM AES 6.3.5 - 6.3.6

Qutline of the resource editing system.
- The Resource Construction Set
- .RSC files - input/output = binary resource

- .DEF files - input/output - RCS use only, contain
tree/object names and types.

Binding to languages/applications

- Associate user supplied tree/object names with
actual locations in the resource.

- .H file is produced for 'C'

- .I file is (optionally) produced for PASCAL

Loading bit images

- Bit images are defined/edited in the ICON EDITOR

-~ LJICN files contain an ASCII representation of the

binary image.

- .ICN files are loaded into the RCS using the LOAD

menu option applied to a G_IMAGE or G_ICON

The secondary update cycle

- Use to create specialized objects or include
"free" strings or images

- Create optional .C file from RCS - contaxns acC
language source of the resource.

- Hand edit this file

- #include the file in RSCREATE.C and compxle, 'ink, and

execute RSCREATE

cycle

A regular .RSC will be produced: resume the normal editing

Overview of RCS operation

- Program states

- Nofile crara? smitial ctrarmt mn §i1 A amamadionlo_.

37

view and parts window contain tree icons
-~ File state: file under edit; view and parts window
contain tree icons
- Dialog state: editing a dialog type tree. View and parts
windows contain GEM drawing objects .
- Free state: editing a "free", unformatted. View and parts
windows contain drawing objects.
- Menu state: editing s menu tree. View and parts contain
menu objects. Special formatting rules apply.
- Alert state: editing an alert tree. View and parts contain
alert objects. Special formatting rules apply.
(Note: an alert is stored as a tree only for the
duration of the edit - it is stored in the resource
as a free string.)
- Box, String, Formatted text, image, and icon editing states.
Reached by opening an object of the appropriate type.
These are not "full" states, but rather editing dialogs.
- The Screen Layout
- The Parts Box Window: contains prototype trees or objects
‘(an infinite supply)
- The View Window: contains a picture of the resource or
tree under edit.
- The Trashcan: is the destination for deleting parts from
the view.
- The Clipboard: a temporary save area for transferring
objects between trees. (Note: the clipboard
is cleared when files are saved/opened; it is
local to the RCS, and is one deep.)
- The Files Menu: contains file related operations. OPEN
and CLOSE may also be used with selected trees and
objects. L~
- The Options Menu: contains advanced editing commands which o
may be used after selecting a tree or object.
- The Global Menu: for selections which affect the overall
operation of the program.
- Mouse Operations
- Dragging == Move
- Part to View: place new part
- View to View: move part
- View to Clipboard: "cut" part to clipboard
- View to Trashcan: delete part
Clipboard to View: "paste" part into view, clearing
clipboard.
Shift-drag == Copy
- Part to View: place new part
- View to View: duplicate part
- View to Clipboard: copy part to clipboard
- Clipboard to View: "paste" new part into view,
clipboard is not cleared.
Click + menu == perform operation on selected part
Double-click == open part for edit
Operations peculiar to tree edit states:
- Drag object size handle == resize object in
view window.
- Control key modifier == select the parent of the
object pointed at, then perform the normal
operation. o
- All copy/move operations ap:ly to the selected :
object AND its progeny.

38

Walkthrough of the RCS
- Desktop operations

- Moving the windows. You may move the partbox and view
wvindow by grabbing their title bars and dragging.

- Sizing the windows. Size either window by dragging the
sizebox at the lower right. The part box contents
will be rearranged to fit the new size. Tree icons
in a "whole-resource" view will also be rearranged.

= Moving desktop objects. You may move the trashcan and
clipboard by dragging them to a new location on

- an EXPOSED piece of the desktop.
- Global options

- Safety selection

= Locked: Object editing and sizing only. Intended
for "post-release' changes, such as
internationalization. This mode preserves
the values associated with tree and object
names, so that the application need not
be recompiled.

~ Normal: The default. All operations are legal.
Warnings are given for hierarchy changes
and workspace clears.

~ Expert: Anything goes. No warnings.

= Output options

= .H: generates a #define file to be included
in the compile of the application. It
contains the numeric values of the names
given to trees and objects.

= «I: the same thing, but formatted for use with
PASCAL

= .C: generates a C source of the resource which
may be hand-modified and regenerated using
RSCREATE.

- Operations in NOFILE and FILE states (the "whole resource” views)

- File operations

= OPEN: brings in an existing resource, replacing
whatever is in the workspace. If the
workspace is not empty, you are warned.
FILE state is entered.

= NEW: clears the workspace, releases any file

association, returning to NOFILE state.
You are given a chance to cancel.

= MERGE: adds an existing resource file to the
current workspace. If name conflicts are
detected, RCS invents a unique name.

- CLOSE: saves the current file to disk, and clears
the workspace, returning to NCFILE state.

= SAVE: writes the current file to disk and continues
the edit. (A memory compress is done during
the write.) '

= SAVE AS: writes the workspace to a new file. If
no file name currently exists, the SAVE AS
file becomes the default, and FILE state
is entered.

- ABANDON: reload the last saved version of the
current file. Useful if you if you make a
‘mistake. : ‘ :

= QUIT: exit the RCS immediately, without saving

, anything. You are given a chance to cancel.
=~ INFO: gives the total number of trees, objects,
and other structures in the workspace. Also
gives a byte total and bytes remaining in the
workspace.

wperaLions on trees {(represented by icons)

-~ Add a tree: Drag the icon for the appropriate
tree type from the partbox and drop it in
the view window. A NAME operation is
automatically executed.

~ Reorder trees: Drag the tree you want to move to
its new position and drop it. To move to
end of the list, you may drop it on any
open area below the arrsy of icons.

- Delete a tree: Drag the tree to the trashcan.

- Duplicate a tree: Shift-drag the tree to the place you
want the new one inserted. A NAME operation
is auvtomatically executed. (NOTE: All naming
information is lost during a duplicate.)

~ "Cut" a tree to the clipboard. Drag the tree to
the clipboard. Anything which is cut
or copied to the clipboard loses its
name information. (Note: since the clipboard
does not survive file load/saves, its
main use with trees is holding a prototype
tree to be copied many times.)

- Copy a tree into the clipboard. Shift-drag the tree
to the clipboard. . :

- Paste clipboard contents into window, clearing
clipboard. Drag from clipboard to view,
dropping at the insertion point. (A NAME

 operation is automatically executed.)

- Paste from clipboard without clearing clipboard.
Shift-drag from clipboard to insertion point.
A NAME operation is executed.

-~ INFO: Click on the tree, and select INFO. Gives
statistics for the tree only, plus bytes
remaining in workspace.

- NAME: Click on tree and select NAME. You are
asllowed to change the tree name and/or
the type of the tree. Be extremely careful
when changing a tree from a less to more
restricted type, e.g., FREE to MENU.

~ OPEN: Double-click on the tree, or click on the
tree and select OPEN. The RCS enters the
appropriate editing state depending on the
type of tree opened.

- Operations in the tree editing states: FREE, DIALOG, MENU, and ALERT
- The tree editing states differ in the rules applied
as the tree is edited, and in the operations which
may be performed. An appropriate partbox is provided
for each state.
FREE state is the most general, the only rule enforced is
the visval hierarchy.
In DIALOG state a character snap grid is enforced. This
makes the resulting trees portable amongst machines.
A MENU tree is constrained to have a parallel structure of
title bar entries and pulldowns, as well as a critical
sizing of the bar objects. The RCS enforces these
constraints.
~ An ALERT tree is an analogue of a free ctring which will
be interpreted by form_alert at application runtime.
The rules enforced are those vsed by form_alert.
An alert will contain at most . image out of a set of
three, 5 message lines of 40 characters max, and
three buttons. The size of the alert and the object
position are automatically readjusted as editing
nrareoda.

another TITLE will cause the pull-down to
snap up.
- When you place a new TITLE, a blank pull-down is created.
If you delete an entire pull-down, a new blank one is
created. Deleting the TITLE will also remove
the pull-down.
= The DESK menu is required. The only operation you
may perform on it is to edit the first line,
which is traditionally the program information
entry.
=~ Remember that the control key 1is useful for selecting
pull-downs which are completely covered with
entries.)
= The disabled dashed line is used as a separator between
logical groups of menu entries. :
~ The box object is provided as a place-holder for user-defined
objects. For an example, see GEM DRAW.
= Alert editing rules
= Alerts are actually emitted as strings. The editing
rules applied reflect those in the form alert
run-time. N ‘
= You may place an object in an alert by dropping it
anywhere within the alert. It will snap to
the appropriate position.
= Only one icon may be present at a time. It must
be one of those from the partbox. A new
icon replaces an old one. You may not edit
or load the icon. You may delete the icon
totally by dragging it to the trash.
= No more than five strings or three buttons are allowed.
The size of the alert automatically adjusts
as strings/buttons are added, deleted, or edited.
- Editing objects
~ Object editing is accomplished within dialog boxes.
There are five different dialog which appear depending
on the type of object opened: Raw text type (string,
button, or menu title), box type (box, hollow box,
and boxchar), formatted text (text, boxtext, frext,
and fboxtext), bit image, or icon.
= Autosizing. The rectangle size of certain objects will
be altered to reflect the length of their text or
the size of their bit images. In general, the
types affected are those lacking a box as part of
their definition: strings, menu titles, text and ftext,
and icons and images. The new size of a text type is
determined by the length of the PTEXT field, that of
an frext by the length of its PTMPLT. New bit object
sizes are generated at LOAD time. You can always
change the automatic size by dragging the size handle.
= Raw text edit dialog. The options presented are the
lags and states as discussed in the summary of
object format, as well as the ability to enter/edit
a character string up to 40 characters long.
=~ Box edit dialog. The standard flags and states are
presented. You may also select the background color
and dither pattern, the border thickness and color,
and the character color, masking rule, and value.
Most of these attributes are selected with scrolling
selectors. To make a choice, click on one of the
visible options and it will appear in the Selected
box. To see more choices, scroll the selector by g1
clicking on the arrow boxes. Some of these box

of this type: background information is not relevant
for hollow boxes, and character data is only useful
for boxchars. You can go ahead and enter this data,
but it will only be used if you change the object type.
Note that choosing an inside border thickness on a
BOXCHAR which is one character high will prevent the
character from being drawn.

- Bit image edit dialog. This dialog includes the standard
flags and states, as well as a color selector for
the bit image. Note: the image data is loaded via
the LOAD menu option.

- Icon edit dialog. In addition to the standard flags and
states, you may select the foreground and
background colors, specify an associated text
string and/or character, and select their position.
To select position, click the box in the location
where you would like the text or character to appear.
Remember that the icon's data and mask images are
read in with the LOAD menu option.

- Formatted text dialog.
This is the most complicated dialog. It includes
the standard states and flags, and all of the
selectors which appear in the box dialog. (The
latter are used with G_BOXTEXT and G_FBOXTEXT. Again,
note that choice of an inside border with a single
character high box will prevent the characters from
being drawn.) In addition, you can select the font
and justification of the text, and enter the PTEXT,
PTMPLT, and PVALID fields. If the object type is
G_TEXT or G_BOXTEXT, then only the PTEXT field is
used. If the type is G_FTEXT or G_FBOXTEXT, then all
three must be specified. The PTMPLT (templace) entry
establishes the fixed and variable portions of the
field. Use a tilde to represent an editable character
position, anythlng else is regarded as fixed.
(The tilde is used to avoid visual confusion with
the underscores in the dialog -~ tildes are replaced
with underscores in the actual TEDINFO.) Under
every tilde you must enter a validation character
in PVALID. These characters are defined in the GEM
AES 6.3.2. If you want a default character to appear
enter it in the corresponding position in PTEXT..
If you don't want a default, enter blanks or a null
string. CAUTION: if you use a null string, you
MUST allocate and link a scratch PTEXT before
activating the dialog at run-time. Failure to do
this will crash the resource.

gL

VI.

RCS Caveats, Tradecraft, and Folklore
- Capacity limits on the RCS

- 60 trees (you can't see more than 55 on an IBM PC, but

they are there, just out of your viewing area)

- 1250 objects

- 30 Kbytes (decimal) total resource size

- 500 names for objects and trees (these DO NOT count
against the size limit - they are stored in a
separate index.)

- Things the RCS will not do

= Known

- Handle free strings other than alerts

- Handle free bit images

- Handle user-defined objects or indirects

= Let you scroll the tree icons or partbox

bugs in Beta 1.0

- Icons and bit images are currently in IBM system
dependent format. Save your .ICN files for
reloading when the final RCS version is
released. _

= RCS will not allow you to open an object with a
non-zero upper byte in the type field.

- There is no ctrl-Z at the end of output text files.

- The system performs extra redraws.

- Entering an empty string or cancelling an image/icon

load will leave the object with a zero width/height.
- Dropping a menu entry on the dividing line between the

bar and the pull-down may cause a hang.

- Respect for tree typing

= Be sure to mark non-standard trees with the ? type.
A tree is non-standard if it contains user
defined objects, unresolved indirects, or
non-standard linkage.

= You may freely retype trees from a restricted type
such as alert or menu, to a less restricted
type such as free or dialog. DO NOT retype
in the other direction unless you clearly
understand the required format. You can
crash the program this way!

= If you have loaded an existing resource which lacks
a .DEF file, try typing each of the trees
as a FREE or DIALOG and examining them.

- Use caution when pasting objects from other trees

into menus or alerts. Most incompatible objects

will be rejected by the RCS, but you may
the lucky one to find an exception!

-~ Memory, and the lack thereof

= RCS uses memory from its workspace as you edit.
There 1s no garbage collector, you recover
space by dcing a SAVE which writes out
and reloads the resource. (This is a good
practice anyway.)

- It 1s easy to create a large resource without
noticing. Use INFO to check on what you are
doing.

~ Remember that the resource uses a separate segment,
but counts against your 128K total if you
are creatxng a minimum memory application.

- The byte total given by INFO is the working total
and will be somewhat different from the actual
output. Alerts will take up less space when
emitted as strings. Also, the RCS does not
duplicate strings and images from shift-dragged
objects until reguired. These are rocnluad

93

&t 3ave time and may add to the size of the
resource.,
- If you must create a larger resource, generate it
it in two parts, and combine them by hand
using RSCREATE. There is an ABSOLUTE limit —~~
of 64K in a resource. You may ''chain” resources
but only after clearing any references to the
old one in the AES, e.g., menu and desktop
definitions.
- Using RSCREATE: the secondary update process
-~ You may hand-edit a .C file produced by RCS and
regenerate the resource by #including it in
RSCREATE.C and compiling, linking, and executing
RSCREATE.
- The .C file contains some mnemonics for object types, etc,
as well as base numbers for each object tree.
When adding any new object, TEDINFO, etc. insert
them at the END of the current entries. Update
the tree base definitions if you insert new objects
into existing trees.
You MUST use the secondary update process to insert
free strings (other than alerts) and free bitblks.
Do this early in the resource creation process to
keep down the amount of editing involved.

If you know you will alter the object structure by

hand, do not enter object names until you are done.
Changes in object numbers caused by RSCREATE
will NOT be adjusted for by the RCS, and your
.DEF file may have to be re-entered.
RCS always emits the objects in a tree in pre-order:
root first, followed by its children left to right, .
with the rule applied recursively. Any hand-built
trees which are passed through the RCS will have
this done: do not write code which is dependent
on other ordering.

- Be aware that some C compilers (such as Lattice) will
fold duplicate strings together when you compile
RSCREATE. This may be hazardous at run-time if
the strings are to be altered by editing. Run the
resource through the RCS to resolve the duplicate
strings.

- Saving time
- When you are laying out a dialog, put related text
items into a box. You can then move and
center them as a unit. When you are satisfied,
FLATTEN the box to save memory.
- Whenever possible, drag one of each part type you will
need into the view and then use shift-drag
to peel off copies. This saves the aggravation
of topping the parts window each time you need
a new object.

If you have several similar objects (such as radio buttons)
within a tree, define one of them and make copies, -
editing only what differs.

- Often entire subtrees are nearly duplicated within a tree
or among a set of trees. Create a prototype and
copy it using shift-drag and/or the clipboard. —

For commonly used icons, subtrees and the like, create '
a2 "library" resource file (or files). Use MERGE
to copy a library into your working resource,
copy the parts you want using the clipboard,
then delete the unneeded trees. You can use

I = . Qg,.

appearance of your applications if you include

prototype dialogs of your own design. (BTW,

the merge/delete process uses up workspace, SAVE
— your work to get it back!)

- Take advantage of the quirks of the MENU and ALERT views.

To make more menu bar entries, point at one which
exists, hold down the shift key and do a
"drag-in-place" by holding down the mouse button.
Watch the copies zip down the bar! You can do the
same thing with message strings and buttons in the
alert view!
(Some hints on formatting)
= In the resource file

- Put your menu first

- Group dialogs next, then any free trees

- Put "non-standard" trees last, so they

- May we suggest?

will be easy to edit manually.

- Establish tree and object naming conventions.

= In menus

Design them to avoid conflicts. Occasionally
print out and check your .H file for errors.

= Make sure the entries totally cover each pull down
Use the "disabled dashes" entry to separate

disparate functions, and to set off hazardous
ones.

- Use two leading blanks on menu entries, and follow

them with dots if they lead to a dialog.
Leave at least one trailing blank as a
margin.

Sort each pull-down by Y when you are done. It

But a

Leave

Avoid

looks rather funny when they are drawn in
random order!

leading and trailing blank on each title
bar entry.

about 302 of the menu bar clear. You will
need the space if you internationalize
your program. ’
lengthy and cluttered menus and menu bars.
Remember that the maximum pull-down size
is one quarter of the total screen area.
The beta version of RCS does not enforce
this limic!

Remember to NAME the menu titles as well as the

= In dialogs
= Use the standard frame - a two-in border plus

entries.

an outline.

SORT your radio-buttons, and SORT the whole

Place

dialog by Y major, X minor when you

are done. It will then draw in a

smooth, natural looking order.

exit buttons near the right edge.
Standardize their appearance and

placement by creating a your own prototype
dialog. Put it in a library resource.

Make selectable objects LARGE so they are

easy to point at. Embed text IN the
object in preference to placing it nearby.
Avoid packing selectable objects together.
Place dangerous options and exit buttens
away from other objects.

Choose your defaults carefully. The same choice

pick the exit option that is the safest is
your default.
- Alerts
-~ Keep them simple. Avoid jargon. Avoid
three button alerts,

- Use them in single button form for error messages.
But, see if you can avoid the need for some
alerts by disabling or hiding inappropriate
menu entries, dialog selections, and so on.

- Adopt consistent standards for use of the three
severity levels of alert.

= Cheating on visual hierarchy

- is not recommended, but can be useful for visual
effects or in creating sophisticated selector
sub-trees.

= to cheat, be sure that the object you want to lie
"on top" was inserted after the "bottom" object.

- size the "top" object so it cannot fit totally into the
bottom object.

- move the top object, placing its upper left corner
where you want it inside the bottom object.

~ size the top object down to its desired size.

~ if you later want to adjust the position of the
the top object, you must first size it back up.

-~ NEVER turn off the move alert when working on trees of
this sort.

~ Hints on extending form do

- You may do this to create complex selector objects
such as the scrolling selectors in the RCS.

- Use TOUCHEXIT to return control from form do as soon
as the user clicks on your special objects. Write
a shell routine which processes the special
object, does any necessary redraws and re-enters
form_do.

- Use the user defined object type to draw non-standard
objects.

- Use the HIDETREE flag to make variable parts of
of the dialog appear and disappear. (Use this
sparingly - it encourages cumbersome dialogs -
and ill-structured driver code.)

- Use the upper byte of the object type word to create
your own extended object types. GEM AES ignores
this byte; RCS ignores and preserves it. (You
will have to do this with RSCREATE - once you
have created such an object put it into your
library so you can make copies easily! The brave
may attempt this modification using a debugger
directly on the resource - use a .C file to
figure out the internal structure and make
a backup before proceeding!)

- Use the INDIRECT option to set up pointers to data
areas.

- Be careful to restore the resource to a known state
at the end of your routine.

- Leverage your work by putting your code and the
most general form of the associated subtree
into libraries. /

9e

- “

- Object part box contents
- BUTTON
= STRING (unformatted)
= FTEXT (editable, formatted, shown as EDIT:)

o~ ~ FBOXTEXT (editable, formatted, shown as EDIT:

enclosed in a box)

= IBOX (hollow box, shown schematically as a box
with an outline)

- BOX

- TEXT (formatted)

= BOXCHAR (a 'C' in a box)

- BOXTEXT (formatted)

= ICON (labelled)

- IMAGE (labelled DRI logo)

= Operations on the whole tree

= INFO. If this option is used when no individual
object is selected, statistics for the
whole tree are given.

= CLOSE. To finish editing the tree, select CLOSE
or click the close box of the view window.

= Operations on objects

= These operations are described in the most general
case: FREE and DIALOG. Restrictions in the
MENU and ALERT states are noted below.

= Add a new object. Drag the prototype object from
the partbox. It is placed at the appropriate
visual hierarchy level.

= Deleting an object. Drag it from the view to the
trashcan. All progeny of the object are also
deleted.

ey - Moving an object. Place the mouse pointer near the
center of the object and drag it to its new
location. All of its progeny will also be
moved. If the move will result in a change
in visual heirarchy, you will be warned.

- Sizing an object. Each object has an invisible
sizing handle inside its lower right hand
corner. Drag this handle to change the
objects size. The drag operation is clamped
to prevent you from violating hierarchy rules.
(See also: auto-sizing under object editing
below.)

= Duplicating an object. Shift-drag from the object
to be duplicated to the desired insertion
point. All of its progeny will also be
duplicated.

- "Cutting" an object to the clipboard. Drag the
object from the view to the clipboard.

In alil clipboard operations, progeny are
also affected, and naming information is lost.

- Copying an object to the clipboard. Shift-drag the
object to the clipboard. -

- Pasting an object from the clipboard to the view.
Drag from the clipboard to the view. The
drag box will assume the size of the object
being dragged to aid in positioning. The

— clipboard is cleared by this operation.

’ ‘ - Paste an object from the clipboard, without clearing
the clipboard. Shift-drag from the clipboard
to the view.

- Editing an object. Double-click on the object,
or click on it, and select OPEN. You will 97

which will reflect the type ot tne opject
under edit.

- INFO: Click on an obj)ect and select INFO. You
will be given the statistics for this
object alone.

- NAME: Click the object and select NAME. You
may assign the object a name and/or
change its type amongst compatible types.
To delete an object's name, enter an
empty name. There are three sets of
compatible object types: boxes (G_BOX,
G_IBOX, G_BOXCHAR), raw text (G_STRING,

G BUTTON), and formatted text (G _TEXT,
G_FTEXT, G_BOXTEXT, G_FBOXTEXT). No other
types are compatxble with bit images or
icons.

- HIDE: Click the object and select HIDE.

This sets the HIDETREE bit for the object,
causing it and its progeny to disappear.

- UNHIDE: Click an object and select UNHIDE. Any
children which have been hidden will
reappear. This option only appears if
the object has offspring.

- SORT: Click an object and select SORT. This
reorders the progeny of the object based

on their location on the screen. A dialog

will appear with options for X, Y, or
combined sorting criteria. This option
only appears if an object has offspring.

- FLATTEN: Click an object and select FLATTEN. This

deletes the object and raises all of its
offspring up one level, preserving their

visual position. This option only appears

if the selected object is a box type and
has offspring.

- SNAP: Click the object and select SNAP. The
objects X, Y, W, and H parameters are
rounded to the next even character values.
This option only appears in FREE state.

.= LOAD: Click on an icon or image and select LOAD.
This option is used to import bit images
(.ICN files) from ICONEDIT. If the
selected object was an icon, a dialog will
appear allowing you the choice of loading
the data, the mask, or both. If the new
bit image(s) are of different dimension
from the old, auto-sizing will be applied
(see below).

- The control key modifier. You may cause any
operation to refer to the parent of the
object under the pointer by pressing the
control key when the operation begins.

For example, pointing at a radio button
and doing a control-drag would move the
entire set of radio buttons.
- Menu ecditing rules
- {nly TITLE objects may be vlaced in the menu bar.
- Yhenever a TITLE is moved, inserted, deleted or sized
the menu bar and the corresponding pull-downs

are rearranged.

- T¢ see a pull-down click on its TITLE entry. You
may now select entries within the pull-down.

98

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62

