Introduction
to the

Atari TOS
Developer's Kit

ATARI

Atari Corp.
1196 Borregas Avenue
Sunnyvale, CA 94089
(408) 745-2000

February 28, 1992

1. Introduction

Thank you for your interest and support of the Atari
TOS-based series of computers. Enclosed is the
documentation and software package you have
ordered. Read this section first to learn how to quickly
organize your documentation and get on the road to ST
product development.

A bit of waming is in order at this point. This document,
and the other documents in this developer's kit,
assumes that the reader has some experience using
the Atari system, even if they are not knowledgable
about programming it.

it is recommended you become familiar with the
operation of the GEM Desktop and at least a few
application programs before attempting any serious
work with the developer's kit.

Additionally, most of the documentation in the
developer's kit is intended as a reference, not a tutorial.
If you aren't a programmer already, the developer's kit
by itself wont make you into one. There are numerous
excellent books available about the C programming
language and 68000-family assembly language that
you should obtain.

After you have installed your developer's kit, please see
the Basic Programming Guidelines section at the
end of this document.

2. Online Services Information

Atari provides technical support through the special
ATARI.RSC Atari Developers' Roundtable section on
the GEnie Telecommunications network.

To access the Roundtable, type ATARLRSC at any
GEnie prompt. ATARI.RSC is a restricted area, and
only registered Atari developers are allowed. The first
time you try to get in, the system won't know about you
yet. You have to try to enter ATARLRSC at least once
so that the Atari developer support personnel will be
able to grant you access.

A message will appear instructing you where to send
EMAIL to gain access. You will be asked to input a
developer identification number. If you don't know
yours, leave your company name and the name of the
primary contact.

Once you have access to ATARLRSC, you can get
technical support from Atari as well as from other Atari
developers. You will also have access to restricted data
libraries which have utilities and example programs.

The telephone numbers and EMAIL addresses for
Atari's Developer Support staff can be found in the
ATARI.RSC developer newsletter. Simply locate the
most recent of the back issues included in your
developer's kit.

3. Documentation In This Package

The documentation may seem overwhelming at first, but
it is easy to get started. All pages are pre-punched for
the three-ring binders. The sections you will need the
most are:

The HitchHiker's Guide to the BIOS

Atari GEMDOS Reference Manual

GEM Programmer's Guide Volume 1 — VDI
GEM Programmer's Guide Volume 2 — AES
Programmer's Guide to FSMGDOS

To start programming in Alcyon G, the first files you
should read are on the MicroEMACS disk. They will
instruct you on the use of the MicroEMAGCS text editor.

The document you are now reading primarily contains
information about installing the developer's kit software
onto your hard disk, then compiling and linking your first
program. Later you may refer to other documents in
the package for detail on changing parameters of the
compiler, linker, and other utilities.

See the enclosed Contents of Atari TOS
Developer's Kit list to be sure that your kit is complete.
There are copies of newsletter back-issues to bring you
up-to-date. These may also contain corrections to other
pieces of documentation in the developer's kit.

Programming references include the following:

GEM Programmer's Guide Volume 1 — VDI

GEM Programmer's Guide Volume 2 — AES
Programmer's Guide to FSMGDOS

HitchHikers's Guide to the BIOS

Atari GEMDOS Reference Manual

Pexec Cookbook

AHDI 3.00 Release Notes (includes later versions)

Manuals on the development tools include:

C Language Programming Guide
ALN Linker manual

MADMAC assembler manual

DB debugger manual

Atari CHKDISK3 manual
Resource Construction Set

Page 2

The foliowing are more advanced documents for the
developer who wants to access the lowest level of the
operating system:

Intelligent Keyboard Protocol (IKBD)

Hardware documentation is included for those building
add-on products:

Engineering Hardware Specifications

Chip specifications:
6850 ACIA
MK68901 Multi-Function Peripheral
The Sound Chip
Programmable Sound Generator Data
AY-3-8910 Programmable Sound Generator
WD 1770 Floppy Disk Controller

Atari Monitor Summary Specifications

128K ROM cartridge schematic

Atari ST Bit-Block Transfer Processor Blitter Chip

There are also supplements to cover newly released
enhancements and new machines:

Rainbow TOS Release Notes

STE Developer's Addendum

STE TOS Release Notes

TT030 TOS Release Notes

STBook Expansion Bus Specification

Finally, additional information can be ordered by those
who have special development requirements. These
documents may involve additional developer's
agreements or additional cost:

GDOS Developers Kit

CDAR CD ROM Developers Kit

Field Service Manuals, including schematics
Atari SFP004 Fioating Point Coprocessor
Mega ST Series Intemal Expansion Bus
Atari ACSVDMA Integration Guide

Still Another Line-A Document (SALAD)

Besides the documentation in this package, there are
also additional documents which should be obtained
directly from the manufacturer/supplier

MIDI Specification:
IMA - The Intemational MIDI Association
11857 Hartsook St.
North Hollywood, CA 91607
(818) 505-8964

NCR 5380

SCSI Controller Chip Specification:
NCR Microelectronics
1635 Aeroplaza Drive
Colorado Springs, CO 80916
(719) 596-5612

VMEbus Specification:
VITA
10229 N. Scottsdale Rd., Suite B
Scottsdale, AZ, 85253
(602) 951-8866

Zilog 85C30
Serial Communications Controller Specification:
Zilog
210 Hacienda Ave.
Campbell, CA, 95008-6609
(408) 370-8000

4. Disks in this Package

The ST development package includes several disks.
These disks will enable a developer to compile and link
“C" or assembly language applications or desk
accessories for the Atari ST/TT series. They also
provide samples of programming techniques.

1) Alcyon C Compiler
Linker

2) MicroEMACS
Resource Construction Set
Source Code Examples

3) Programming Utilities
DB Debugger
MADMAC Assembler

4) Atari Hard Disk Utilities
System Utilities
STE Programming Examples

5) Demonstrator
eXtensible Control Panel

WARNING: Itis recommended that the developer
make BACKUP COPIES of these disks and put the
originals away in a safe place. Use the backups ONLY!

The list of files, programs, and other information that is
included on these disks is in the Contents of Atari
TOS Developer's Kit document.

Page 3

5. Hardware Requirements

The minimum system requirement for the Atari TOS
Developer's Kit is a 1 megabyte TOS-based system with
a hard disk drive and at least one double-sided floppy
disk drive. A 4 megabyte system is strongly
recommended, as this will better facilitate the use of the
RAM disk program included with the kit.

It is further recommended that the serious developer
test their software in all possible video modes. Also
remember that there are older revisions of the operating
system, as well as intemational versions. Systems with
various memory sizes should be used in testing a
program. The developer should follow the proper
programming protocols in order to allow their programs
to function under any hardware configuration. See the
section Basic Programming Guidelines at the end
of this document.

At the time of this writing (Nov. 6, 1991) TOS-based
machines include the following: 520ST, 520STFM,
520STE, 1040SFMT, 1040STE, Mega ST, Mega STE,
TT030, STacy, STBOOK.

6. Installing the Developer's Kit

Follow the instructions below to install the contents of
the developer's kit diskettes onto your hard disk drive.
Approximately 3.5 megabytes of free disk space is
required for installation of all the files. The instructions
assume drive A on your system is a double-sided disk
drive. If necessary, use drive B instead.

1) Create a folder on the desired hard disk partition to
contain all of the developer's kit information. We
shall refer to this folder as the DEVKIT folder (even if
you actually use a different name)....

2) Insert Disk 1 into drive A. Copy the DEV folder from
the floppy to the DEVKIT folder.

3) Insert Disk 2 into drive A. Copy the EMACS folder,
the EXAMPLES folder, and the RCS folder to the
DEVKIT folder.

4) Copythe ME.TTP program from the EMACS folder
on drive A into the DEV folder within the DEVKIT
folder on the hard disk. (After you have learned to
use the MicroEMAGCS text editor, you can delete the
EMACS folder from your hard disk.)

5) Insert Disk 3 into drive A. Copy the DB folder and
MADMAC folder to the DEVKIT folder.

6) Copy the contents of the UTILITY folder on drive A
into the DEV folder on the hard disk.

7) Insert Disk 4 into drive A. Copy the HDX folder, the
STE folder, and the SYSTEM folder to the DEVKIT
folder.

8) Insert Disk 5 into drive A. Copy the
DEMONSTR.TOR folder and XCONTROL folder to
the DEVKIT folder.

9) Your developer's kit is now installed.

7. Compiling a program with Alcyon C

The compiling and linking of a program with Alcyon C is
avery simple process. The following is an example on
how to compile and run the sample APSKEL.C program
supplied in the developer's kit.

Note: If you have a C compiler or assembler (or other
programming language) other than that included with
the developer's kit, and you would prefer to use it
instead of Alcyon G, please refer to the documentation
that came with it for information on compiling or
assembling a program. However, please remember
that the example programs in the developers kit are
designed to be used with the tools from the developer's
kit. Some modifications may be required if you want to
use a different compiler or assembler.

1) Open a window on the GEM Desktop for the DEV
folder created when you installed the developer's kit
software, as described in section 6 of this document.

2) Select the BATCH.TTP program and open it.

3) When the open application dialog box appears, type
“C APSKEL" and select "OK". The batch program
will execute the C compiler to begin compiling the
APSKEL.C program. You will see some status
messages on the screen as the compile proceeds.

The compiler is finished when the screen shows a
message asking for a camiage return. Hit the
[Retum] key to retum to the desktop.

4) Double<click on the BATCH.TTP program again.
This time, type "LINKAP APSKEL" in the open
application dialog box and select "OK".

The batch program will execute the linker to link the
proper object files and libraries together. The linker is
finished when the screen shows a message asking
for a camiage retum. Hit the [Return] key to return to
the desktop.

Page 4

5) Now just double-click on the file APSKEL.PRG that
has appeared in the desktop window.

Within the APSKEL program, the window's move
bar, size button, close button, and full button are all
active. The close button returns you to the desktop.

To compile your own program would be very similar,
except that you would use the name of your program
instead of "APSKEL".

Waming! Remember not to include the ".C" portion of
the filename in the Open Application dialog, or your
original source code file will be deleted! For example,
enter "APSKEL" into the dialog, not "APSKEL.C"

7.1 Compiling a Desk Accessory

To compile and link the desk accessory ACSKEL.C
program, follow the same procedure as listed above,
but with the following changes: use ACSKEL wherever
you would have used APSKEL, and instead of LINKAP
in step 4, use LINKACC.

1) Thefinal step is to transfer the ACSKEL.ACC
accessory you have just created to a disk in drive A
and reboot the system from the floppy. Rebooting
the system installs the accessory under the Desk
menu.

It is recommended that desk accessories be tested
from floppy disk . If there are problems with the desk
accessory, it may crash before you have an
opportunity to get to the desktop to disable it, which
would be quite annoying to work around if you are
bocting from your hard disk.

The boot program for most hard drives for the Atari
can be disabled by holding down some combination
of the Control, Altemate, and Shift keys during the
boot process. Consult your manual for more
information.

2) To run, move the mouse to DESK on the menu bar
and click on "Sample Accessory". If you resize the
window you will see disk icons and other windows
on the desktop. Selecting the close box will remove
the desk accessory.

If you view the contents of C.BAT and LINKAP.BAT, you
will be able to see the proper order of instructions
necessary to compile or link a program file. For more
information on compiling and linking, please consult the
Atari ST developer's kit manuals.

The two remaining link batch files, LINKIO and CLINK,
are used for creating either TOS or TTP type
applications with GEMDOS and the C runtime libraries,
respectively. No examples are provided with this
discussion.

The batch files included with the developer's kit assume
that the programmer's source code is located in the
DEV folder (that is, the same folder as the compiler and
linker). To have your source code in a different folder
from the compiler and linker, you can create custom
batch files which paoint to your desired folders.

8. Include/ Link Information

The following information represents the proper C
header files which must be included to correctly call TOS
functions, as well as the libraries necessary to link in the
proper functions into your program.

System Include Link With...
VDI define.h VDIBIND library
vdibind.h
AES define.h AESBIND library
aesbind.h
obdefs.h
GEMDOS define.h OSBIND.O object module
BIOS osbind.h
XBIOS
"C'library stdio.h GEMLIB library
Floating math.h LIBF library
Point math

The LIBF math library is also required when certain
functions of the GEMLIB C library are used, and should
be linked with your program when using any C library
function which takes a floating point value as a
parameter or which retums a floating point value.

9. Startup Module & Stack Size

There are several startup modules included with the
developer's kit. These are intended to be used as the
very first object module when linking a program
together. They contain special initialization code and
data tables used by the GEM VDI & AES libraries and
certain parts of the C runtime library.

Page &5

The source code for APSTART, ACCSTART, and
GEMSTART is included with the developer's kit and may
be customized and re-assembled for your own needs.

GEMSTART.O - For applications which use the C
runtime library. Please note that many of the functions
in the C runtime library GEMLIB can be used without the
initialization code included in GEMSTART.O.

APSTART.O - For applications which do not use the
C runtime library.

ACCSTART.O — Fordesk accessories. Can be used
with most standard C library calls by linking with GEMLIB
and LIBF.

For applications, one would normally inciude use the
GEMSTART startup module. For Desk Accessories,
one would use the ACCSTART module.

GEMSTART is a greatly enhanced version of APSTART
which includes additional initialization code for certain
functions in the C runtime library.

The Stack size for applications and desk accessories
has been set at 1K. If this is not enough for your
program, make the appropriate changes to the startup
module you are using and re-assemble it.

10. Developer Kit Utilities

There are several utility programs included with the
developer's kit which are not described in the other
documentation.

BATCH.TTP is a batch processing program which
runs through a batch file and executes the programs
named within the batch file with the specified
parameters.

For example, to execute the C.BAT file from the GEM
Desktop, you would double-click on BATCH.TTP and
when the Open Application dialog box appeared, you
would enter "C myfile".

When BATCH.TTP is given the line "C myfile" it
automatically adds ".BAT" to the first part, and then
reads the file C.BAT, as shown below:

cp68 %1.c %1.i

c068 %1.1i %1.1 %1.2 %1.3 -f
rm %1.1

cle8 %1.1 %1.2 %1.s

rm %1.1
rm %1.2
as68 -1 -u %l.s

rm %1l.s
walit.prg

The "%1" you see in several places is a placeholder for
the first parameter you will enter into the dialog. When
you enter "C myfile", the BATCH.TTP takes the first
parameter after the "C" and uses it everywhere it finds
"%1"in the C.BAT file. So that the first line becomes:

cp68 myfile.c myfile.i

If there had been more parameters after "myfile" then it
would have looked for "%2" and replaced it, and so on.

BATCH.TTP then runs the specified programs and
passes along the parameters. For example, it would
run CP68.PRG and give it a commandiine containing
"myfile.c myfile.i". When that program was finished, it
would go to the next file and execute it, until it got to the
end of the C.BAT file.

If you want to use a commandline shell instead of the
GEM Desktop (such as the COMMAND.TOS program
included with the developer's kit), then you would run
BATCH.TTP like this:

batch c myfile

There are several more sophisticated commandiine
shells available, most of which include built-in batch file
processing. These may not support the same batch
files as BATCH.TTP without some modification.

There are several batch files included with the
developer's kit which you may examine to learn how to
create your own.

RM.PRG is a program which deletes the file specified
in the commandline. When running BATCH.TTP to
compile files, RM.PRG is typically callled by the batch file
to delete temporary files created by the compiler or
assembler after they are no longer needed.

WAIT.PRG is a program which prints a message and
waits for a key to be pressed. WAIT.PRG is used in
batch files so that the programmer has time to view
screen output, such as error messages, before they are
scrolled off-screen or disappear upon returning to the
GEM Desktop.

11. Global Variable Names To Avoid

The startup modules and libraries included in the
developer's kit use several global variable names which
should be avoided in your program. The linker always

Page 6

takes the most recent definition of anything as being the
“real" definition. If you had an array in your program
named max[] and you linked with the VDIBIND library,
the linker would confuse the array in your program with
the max() function included in VDIBIND.

Below is a list of global variable names which are used

by the various startup modules and libraries, and which
should be avoided by your programs.

ACCSTART.O, APSTART.O startup modules

crystal ctrl_cnts
GEMSTART.O startup modules
_main _exit
_start _cpmrv
_base_sw _sovf_break
_BDOS _pname
_tname _lname
_Xeof blkfillindex
strchr

AESBIND library

c control
global int_in
int_out addr_in
addr_out gl_apid
ad_c

VDIBIND library

i_ptr i_ptr2
m_lptr2 mul_ptr
MUL_DIV smul_div
umil_div gsxl

SMUL, DIV iioff
gsx2 UMUL_DIV
iooff pioff
pooff vdi
vec_len max

OSBIND.Q object module

gemdos bios

xbios

12. Basic Programming Guidelines

Below is a set of basic guidelines for programming
practices meant to insure that your programs are
compatible across current and future machines.
Developers are urged to strive for compatibility as much
as possible. While this list is not complete by any
means, it will hopefully point you in the right direction.

Re-read this section after you have become familiar with
the documentation in the developer'skit. You may not
immediately understand the references and reasons
behind the guidelines, but they will become clearer as
you leam more about the system.

1) Read all of the documentation included in the
developer's kit before starting to program. it's a lot of
reading, but it will save you from making some hard
to find mistakes later on down the road.

2) Don't make assumptions about the screen. There
will be new video modes in new machines and
add-on video boards you didn't know about when
you wrote your program. If you make assumptions
about the display hardware, then your program will
probably fail when something new comes along.

The operating system provides information about the
display in use. This is accomplished by opening a
GEM VDI Workstation and examining the returned
information. Additional information is available
through GEM VDI inquire functions.

Some basic rules and some of the more common
assumptions to avoid are given below.

a) A certain screen resolution does not mean a
certain number of colors on screen at once, or
vice versa.

b) Don't assume the color palette is a certain
number of colors because you're on a certain
type of machine. The machine may have an
add-on video board which provides more colors.

¢) Many early programs written for the ST made
assumptions about the screen resolution by
looking at the hardware video shifter mode
through the Getrez() XBIOS function, which
ultimately has nothing to do with the screen
resolution.

d) Ifthe information is available from GEM VDI, then
get it from GEM VDI, not someplace else,
including Line-A. GEM VDI will always have the
last word.

Page 7

3)

4)

5)

The use of Line-A is strongly discouraged.
Documentation is still provided in the developer's
kit about Line-A, but it should be avoided if at all
possible. Most applications have no reason to
use it. Contact Atari developer technical support
for more information if required.

Don't assume only certain machines have certain
hardware or software features.

The Cookie Jar is an operating system feature that
allows programs to obtain information about the
system they are running on, such as if DMA stereo
sound is available. The Cookie Jar should be used
wherever possible when a program needs to know
if a certain hardware or software feature is available.
Use the machine type ONLY for detecting features
which don't have a cookie of their own. The Cookie
Jar is discussed in the STE TOS Release Notes.

Leam how to program the GEM AES before you
leam to program the GEM VDI. The heart of a GEM
program fies in the menus, windows, and dialogs
through which the user must operate the program.
These are all the responsibility of GEM AES. The
sooner you leam to utilize GEM AES, the more
polished and professional your programs will
appear.

Examples of existing applications which make good
use of the GEM AES include Migraph's Touch-Up
(with its pop-up menus and palettes), Gribnif/Strata's
STalker and STeno (all-around good examples),
The Resource Construction Set (included with the
developer's kit), and the GEM Desktop.

If you would like an idea of how to do something and
you cannot find an existing example, please contact
Atari developer technical support.

Don't do something different just for the sake of
being different.

When in doubt about how something should work or
look, examine how the GEM Desktop looks and how
it does things. If your program has something
similar, it should follow the example of the GEM
Desktop.

When creating the user interface for your program,
keep in mind that simple is better. in aimost all
cases, the simpler something is, the easier itis to
leam, and the easier it isto use. Don't make extra
steps for the user if you can avoid it.

Page 8

6) Replacing, ignoring, or working around the

resources of the operating system should be
avoided.

For example, there is a standard system file selector
for a reason. A GEM program which doesn't use a
standard file selector is inconsistent with the interface
of standard applications. Atleast make it a user
preference option in the application.

As another example, some programs use a
proprietary font format for their text capabilities, rather
than using GEM's font and text functions. As a resutt,
these programs did not work with the outline font
capabilties of FSMGDOS when it became available.
On the other hand, many older programs which did
use GEM's font and text functions work just fine with
FSMGDOS outline fonts. If a program wants to do
something like support its own proprietary font
format, it should be done in addition to supparting the
standard GEM features, not instead of them.

7) Be familiar with the various update documents such

as the Rainbow TOS Release Notes and
TT030 TOS Release Notes. These will contain
additions, comrections, and clarifications to other
documents in the developer's kit.

8) Watch the ATARLRSC developer newsletter for any

documentation corrections or updates.

9) Ifyou can use a vector to get a memory address, do

it. Don't assume that something will always be at the
same place in all machines and all versions of the
operating system unless it is a documented memory
address.

For example, the operating system itself is in a
different place in newer machines than with older
machines. 1f an application needs to access the OS
header to get a version number or country code, for
example, then the application should not assume
that the OS ROM starts at a certain memory location.
Instead, it should get the address of the OS header
from the appropriate system variable.

10) Do not use or rely upon undocumented variables

in memory or reserved’ variables or parameters
in a function call or data structure.. They will
move or change when a new operating system
revision is introduced.

