Falcon030

Developer Documentation

October 1st 1992

Contents

Introduction
Guidelines
Hardware
Video
Sound
Joystick
DSP

Intro.1 - Intro.4
Guidelines.1 - Guidelines.7
Hardware.1 - Hardware.35
Video.1 - Video.6

Sound.1 - Sound.10
Joystick.1 - Joystick.2
DSP.1 - DSP.20

Introduction

Welcome

Welcome to the developer support package for the Atari
Falcon(030. This kit contains a machine with 16 Megabytes of
RAM (14 Megabytes are used), a harddisk, software on the
harddisk and on floppies, and the documentation package
that you are reading,

The DSP folder on the harddisk contains the files
ASM56000.TTP, DSPLNK.TTP, CLDLOD.TTP, README and
DSPBIND.H which is the binding needed to use the DSP
Support Routines described in this manual.

Note: Some compiler systems require different binding
structures than used in DSPBIND.H

©@1392, Atari Corporation

Overview

From the point of view of an application writer, the most
important thing to realize about the Atari Falcon(30 is that it
is an ST compatible TOS machine. This means that software
written to take advantage of the operating system features
via operating system calls of the previous machines will
work without modification. In fact, a great deal of effort was
expended to insure that a large percentage of software that
runs on previous machines will continue tc operate.

The hardware changes that the user will see between
the Atari Falcon030 and previous TOS machines involve
improved video and sound abilities.

The video system has the following characteristics:

1) The system supports both VGA and broadcast system
monitor types. For this document, "broadcast type
monitor" means a TV as well as an analog RGB monitor
such as the SC1224.

2} The number of vertical lines can be either 200 or 400
(240 or 480 on VGA). This is done by using interlacz on
broadcast monitors to get 400 lines and doubling each
line on VGA monitors to get 240.

3) The number of horizontal pixels can be approximately
either 640 or 320.

4) The number of bit planes can be either one, two, four or
eight.

5) Characteristics numbered 1-4 can be mixed in any
combination. {(except 320 wide 1-bit plane)

6) The color palette is 262144 in 1, 4 or 8 bit per pixel mode
and 4096 in Z Lit per pixel mode.

7) Overscan is available in all broadcast video modes.
Overscan will multiply the pixel count by 1.2

8) A 16 bit per pixel, true color mode exists that will
operate in all resolutions except 640 pixel wide VGA
mode. All of these modes can be accessed via the GEM
VDI. In the case of the true color mode there is no color
palette to allow for changing the color of pixels that

©1992, Atari Corporation Intro .3

Introduction 10/1/92

have already been drawn. The GEM VDI provides 256

virtual pens to use for drawing. These pens act just like
the physical pens in the other modes except that once a
pixel is drawn, it cannot be changed using vs_color().

The sound system has the following components:

1) 56001 Digital Signal Processor

2) DMA sound engine that can playback or record one,
two, three or four 16 bit stereo channels at 12.5,25 or 50
kH=.

3} 16 bit stereo codec allowing both input and output of
sound via built-in headphone and microphone jacks.

4) An external port (DSP) that allows external I/0O fora
wide variety of purposes. The details of how these
various components can be used and in what
combinations are given in other documents.

fntro .4 ©1992, Atari Corporation

Atari MultiTOS
User Interface Guidelines

Application Elements

User-friendly GEM applications should provide the user with
a consistent, predictable means of interacting with the
computer. The most popular applications to-date have
always been those that the user feels at home with, because
of general familiarity with other applications that they have
previously used. User interface design is a critical
consideration during product development and should be
well thought out before actually sitting down and laying out
and coding the interface.

The basic elements of a GEM application are the menu bar,
the application’s window (or windows), dialog boxes, alert
boxes, and if the application warrants them, toolbox
windows. GEM applications may optionally install their
own desktop background, which is swapped out by the AES
to reflect the foreground application.

The Menu Bar

Applications should normally consist of a MENU BAR,
which will generally have the titles from left to right,
"Prgname", "File", "Edit", and then the additional application-
specific main menu titles. "Prgname” should be replaced
with the application name so that users can quickly ice:lify
which application’s menu bar they are looking at.

For user convenience, the standard entries under "File"
should start with "New", “Open...", followed by other start-
oriented operations, then in the next section of the menu,
“Close", "Save", *Save as...", and the other application—speciﬁc
end-oriented functions. The next section down should be
used for other file operations such as "Import..." and
"Export...". This should be followed by the menu items for
printing, usually "Page Setup...", then “Print...". The last item
under "File" should always be "Quit".

© 1992, Atari Corporation Guidelines .1

Atarl Developer Guidellnes 10/1/92

Note -- A menu item must be followed by an
ellipsis to indicate that additional action or input
will be required by the user to carxy out the
requested task. For instance, "Save" indicates that
the file will be saved directly, using the current
name, whereas "Save as..." will require the
additional input of a filename.

The "Edit" menu should start with "Undo", then in the next
section, "Cut", "Copy", "Paste", and "Delete”. The rest of the
"Edit" menu is usually application-specific, but the next
menu item, if used should be "Select all”.

If applicable, the fourth main menu title should be "Qptions",
where menu items such as "Document defaults...”, or
“Preferences..." should appear.

Note -- Menu titles and items should never be
displayed in all uppercase letters. Menu titles
should have one space before and after each title.
There should be one space to the left of menu
items.

Keyboard Equivalents for Menu Items

The standard sytem-wide keyboard equivalents that should

be used system-wide for no other purpose other than those
listed are:

[Control-N] New
[Control-O] Open
[Control-W} Close
[Control-5] Save
[Control-I] Print
[Control-Q} Quit

[Control-X] Cut
[Control-C] Copy
[Control-V] Paste
[Control-A] Select all

Guidelines .2 ©1992, Atari Corporation

10 1,92 Atari MultiTOS User Interface

(Control-F] Find
[Control-H] Replace
[Control-G] Find next

[Delete] Delete
[Undo] Undo
[Help] Invoke help

The [Alternate] key is used as a character modifier on many
keyboards to access the necessary extended characters in
applicable countries, and should not be used for keyboard
equivalents in most cases.

Windows

The primary stage for user interaction with the application is
the window. Most of the user input, whether typing,
drawing, or editing, is performed in the confines of windows.
All of an application’s output should be constrained to the
application’s own windows only. See the VDI and AES
manuals for further information regarding window wox
areas and clipping rectangles.

Document windows should have at a minimuin, a

mover/ title bar so that even if the window is not resizable,
the user can move the window off to the side of the desktop
to have access to other items. The other window elements
are the Info bar, Closer, Sizer, Full box, Sliders, and Arrows.
The general use of these is apparent in the GEM Desktop. It
should be noted that GEM sliders are always proportional so
that the user has constant feedback as to the percentage of
the document that is being viewed.

Operating system calls allow every element of windows to be
set to any color and fill pattern. The user generally selects
these attributes using the Window Colors CPX in the Control
Panel and they should not be altered by an application. The
first 16 color entries should be reserved for use by the system
for drawing elements for which the user has set preferences.

1982, Atari Corporation G.ldelines .3

Atarl Developer Guldelines 10/3/92

Keyboard Equivalents for Cursor Movement
inside Windows

The system-wide standard for keyboard cursor manipulation
is as follows:

[Control-Left/Right Arrow] Move cursor to beginning
of word to the left /right

[Control-Backspace] Delete from cursor position to start
of next word to the left

[Control-Delete] Delete from cursor position to start of
next word to the right

[Control-ClrHome] Move cursor to beginning of
document

[Shift-ClrHome] Move cursor to end of document
[Shift-Delete] Delete line

Dialog Boxes

Dialog boxes are used for modal input, that is, input that the
user must provide before any further processing may be
done. They are generally used for parameter setting and
other selections that require the undivided attention of the
user. They should never be used for on-going information or
status output, as it would interfere with the normal real-time
user interaction with the system.

Alerts

Alerts should be used to call the user’s attention to
conditions that develop that require immediate user
knowledge. The simplest and most common would be an
alert notifying the user that he is quitting an application
without having saved an open, modified document. Alerts
should also be used to notify the user that a time-consuming
or unalterable function is about to be performed.

Alerts usually have two or three buttons that allow the user
to make some sort of decision based on the information
provided. Alerts with only one button are very frustrating to
the user, as it implies a lack of control over what is about to

Guidelines .4 ©1992, Atarl Corporatior:

10/1/92 Atarf MultiTOS User Interface

happen. The general rule for alerts is to have the “OK" button
to the left of the "Cancel" button. *Cancel” should always be
capitalized, and "OK" is uppercase.

Note -- Buttons in general should be capitalized
words, not all uppercase.

Toolbox Windows

Toolbox Windows are a special class of window that are used
for providing the user with non-modal control or
information. The most common use would be for drawing
tool selection in a paint program, or color selection. The tools
are usually shown as logical groups of icons that the user can
easily associate with their functions. Another use of this type
of window is continual status output, such as the progress of
a file downlead or recalculation time.

Other General Notes

Applications should make no assumptions on what type of
system the user will have. Be able to deal with any screen
size and color resolution. Use the operating system calls to
determine the screen dimensions and system capabilities to
provide the user with the richest computing experience
possible. Users have grown to expect unsurpassed ease of use
from applications available for Atari computers. If you have
any questions regarding user interface design for Atari
computers, please feel free to call your developer support
representative.

@ 1992, Atari Corporation Guidelines .5

Game/Entertainment
Software Guidelines

The following points should be followed...
e Installable on a harddisk
e Should be able to be launched from any video resolution

e The user should be presented with a single executable file;
leave ancillary data files, high score files, etc. inside a
companion folder.

e Allow the user to exit and return to the desktop exactly
where and how s/he left off.

e Use the enhanced joystick for all joystick-oriented games;
CX-40 style controls should not be supported.

e Ideally, where possible, allow the game to be runin a
window; this is well-suited for users that want to play games
in the MultiTOS multi-tasking environment (such as while
downloading a file).

e We expect most users to run in 640x480x256 colog mode;
you may want to keep this in mind.

e If you use the O/S call, vr_trn_fm() (transform form), you
can easily convert video data from standard form to the
correct form for the current resolution.

©1992, Atari Carporation Guidelines .7

Atari Falcon030
Hardware Reference Guide

Version: 2.1
Date: October 1, 1992

Introduction, 3
Summary, 3
Mechanical Specification, 5

Internal Expansion Port, 6
Bus Pinout, 6
Dimension Diagram, 7
Microprocessor Bus Signals, 8
Bus Arbitration Signals, 8-9
Interrupt Signals, 9-10
Clock Signals, 10
Bus Access, 10-11

Video Port, 12
Pinout, 12
Genlock Block Diagrams, 15-16

Digital Signal Processor and Audio Subsystem, 17
Overview, 17
Block Diagram, 18
Communications, 19
Connections, 20
Clock Sources, 20-21 .
Communication Protocols, 21-22
Devices, 22
DMA Input, 23
DMA Output, 23-24
DSP, 24
DSP Memory Map, 25
SSI Interface, 25
Host Port, 26
SCI, 26
DSP Expansion Port, 26-27
General Purpose Bits, 27
DSP SSI Interface, 28
External Serial Output Channel, 28-29
External Serial Input Channel, 30
External Master Clock, 30

© 1992, Atari Corporation Hardware .1

Atari Falcon030 Hardware Reference Guide 10/1/92

CODEC, 30

16-bit Stereo DAC, 30-31
Stereo Headphone Jack, 31-32
Internal Loudspeaker, 32
16-bit Stereo ADC, 32

Stereo Microphone Jack, 33-34

Parallel Port, 34
Pinout, 34

Serial Port, 35
Pinqut, 35

Hardware .2 ©1992, Atari Corporation

10/1/82 Introduction

Introduction

The Atari Falcon030 is a new generation of Atari TOS-
compatible computers. It is based around a Motorola 68030
32 bit microprocessor and includes an optional Motorola
68881/2 Floating point coprocessor, a 16MHz - 16 bit
BLiTTER, and a 32 MHz Motorola 56001 Digital Signal
Processor.

The Atari Falcon030 hardware specification can be
summarized as follows:

CPUL: 68030, 1I6MHz
FPU: Socket for optional 68881 or 68882 running at 16 MHz.
RAM: Custom module. 1 to 16 MBytes of RAM.

ROM: 512 KBytes.

BLiTTER: Graphics coprocessor running at 16MHz.

qufO: Non-Overscan Overscan
Horizontal 320 384
640 768
Vertical 200 240
400 480

ST Low-res 4 16 4,096

ST Med-res 2 4 4,086

ST Bigh-res 1 2 4,096

Atari Falcon030 8 256 262,144
4 16 262,144
1 2 262,144
16 65536 N/A

All modes can also be Genlocked, to provide multi-media
capabilities on monitors or Televisions. The true color modes
also directly support overlays.

An on-board RF modulator allows for direct connection to
TVs. Monitor connector allows connection to VGA monitors,
ST monochrome, or color monitors (via an adaptor plug).

@ 1992, Atari Corporation Hardware .3

Atarl Falcon030 Hardware Reference Gufde 10/1/92

Horizontal scrolling is supported, compatible with STE.

Sound:

Built in stereo 16-bit Analog to Digital Convertor (ADC).

Built in stereo 16-bit Digital to Analog Convertor (DAC).

Stereo microphone input and stereo headphone output
jacks. Internal speaker (mono).

3 Channel PSG sound (compatible with ST).

8 Channel 16 bit PCM digital record/playback 1/0.

Stereo 8 bit PCM sound (compatible with TT030, STE, and
MSTE).

Digital Audio/DSP connector.

Sophisticated multiplexer connects DSP, Codec, DMA, and

external 1/0 connector.

DSP: 32MHz Motorola 56K Digital Signal Processor with
32Kx24 zero wait-state SRAM.

I/O:

Parallel port.

Modem/RS5232 port.

MIDI in.

MIDI out.

Cartridge port. ;

SCS1 11 (50 pin connector) with DMA.

LAN Local area network (compatible with TT030
and Mega5TE).

Joysticks: Two STE compatible enhanced joystick ports
supporting four paddles, a light gun, and up to 21 buttons
each. (See keypad documentation)

FDD: 1.44 Mbyte Floppy Disk Drive.

HDD: Internal optional hard disk drive on IDE bus.

Keyboard: 94/95 key keyboard

Mouse: 100 DPI mouse supplied as standard.

Hardware .2 ©1992, Atari Corporation

10/1/92 Introduction

Other:

Real time clock with battery backed, non-volatile RAM.
Optional internal HDD.

Internal expansion connector.

Mechanical Specification

Connectors

Type Pins Type # Description

Rear panel:

DIN S 5 Female 1 MIDI in

DIN 5 -5 Female 1 MIDI out

DB25S 25 Female 1 Parallel port

DBY 9 Male 1 Modem / Serial port

SCST IX 50 Female 1 SCSI II

DB19 19 Male 1 video out / Genlock
Mini-Jack 3 Female 1 Stereo Headphone out
Mini-Jack 3 Female 1 Stereo Microphone in

DB26 26 Female 1 LSP/Digital Audio interface
RCA 2 Female 1 RF Mcdulator

MiniDINW 9 Female 1 LEN

Reget switch

Left Side panel:

Custom 440 1 Cartridge port

DB1S 15 Hale 2 STE compatible enhanced joysticks
Undersides:

DBo9 9 Male 2 ST compatible joystick/mouse ports
Internal:

Headers 30450 Hale 1 DRAM expansion board
Headers 30+50 Male 1 Internal bus expansion
Header 44 Male 1 Internal IDE connection
Header 34 Cable 1 Internal Floppy Disk Drive
Cther:

Rechargeable cell on motherboard for battery backed RAM/RTC
Lasts over 10 years
Internal speaker

&1992, Atari Corporation Hardware .5

Atari Falcon030 Hardware Reference Guide 10/1/92

Internal Expansion Port

The Atari Falcon030 has a full featured, internal expansion
bus.

J20. 30 pin, dual row, upright male header

Pin# Signal Pin# Signal
1 D14 2 D13
3 D12 4 D11
5 D10 6 DS
7 P8 8 D7
9 D& 10 DS
11 D4 12 D3
13 D2 14 D1
15 Do i6 D15
17 GND 18 GHD
i9 GND 20 CPUBGO
21 EINT1 22 CPUBGIL
23 S00RHZ 24 n/c
25 MFP_IEX 26 MFP_INT
27 EINT3 28 VCC
29 VCC 30 vee

J19. 50 pin, dual row, upright male header

Pin# Signal Pin# Signal

1 GND 2 GHND

3 BGK _ 4 RS

5 LDS 6 ubs

7 RXW a DTACK
9 FC2 10 FC1
11 FCOQ 12 BMODE
13 n/c 14 IACK
15 BG ie BR

17 RESET 18 HALT
1% BERR 20 iPLO
21 IPL1 22 IPL2
23 CPUCLK 24 vCC
25 vCC 26 A23
27 222 28 AZ1
29 220 30 AlS
31 418 32 517
33 Alée 34 A1S
35 al4 36 Al3
37 A12 38 All
39 ml0 40 AS

41 A8 42 A7

43 L6 44 AS

45 24 46 B3

47 B2 48 Al

49 EXPAND 50 n/c

Hardware .6 © 1992, Atarl Corporation

internal Expanslion Port

10/1/92

LHOIIH LHANCMNOD
HOMNY HLDNIT QY31 XYR S

=1

.

TAHLYY

=1|

o i.w

LHDIZH OO XY 855

_Il

1

1

1

1

]

-

1
3
1
H
|
i
]
1

AN

¥ 30V4ENsS

SHILIWITUN NI SNOISNZWIQ 1TV
(MOUHYIS) B80d NOISNYYXT WILSAS

™ gee

T

¥ HOVANS

_w

e e e e men iz em o

=
[

ey

=

R, SRR

/

¥ Hid

|

FZUFGT= 9508

gtelt

T f

yae

b FLXPST 9550

Hardware .7

11992, Atari Corparation

Atari Falcon030 Hardware Reference Gulde 10/1/92

The internal expansion port essentially includes a 68000
direct micraprocessor interface. Since the Atari Falcon030

 uses a 68030 microprocessor there are some important
differences from the 68000 bus. In particular, signals such as
UDS, LDS, AS, and DTACK have been synthesized from the
68030 equivalents. In addition, the expansion bus has 16 bit
data and 24 bit address busses.

No signal should ever be connected to more than one
equivalent TTL load. Failure to follow this guideline will
cause the system to become unreliable or fail completely.

Microprocessor Bus Signals

A(23:1) Lower 23 bits of 68030 address bus
D(15:0) Upper 16 bits of 68030 data bus (D(31:16))
UDS, LDS5 Data Strobes (68000 compatible)

AS Address strobe

DTACK Data Transfer Acknowledge
RXW Read/Write

FC(2:0) Function code (68030 compatible)
RESET Reset (active low)

HALT CP’U Hatlt

Bus Arbitration Signals

BR Wire-Or’ed, active low bus request
BGK Wire-Or'ed, active low bus grant acknowledge
BG Daisy chained, bus grant

CPUBGI Bus grant in, direct from CPU
CPUBGO Bus grant out, to lower priority devices

The signals BR and BGK are wire or’ed together with every

other alternate bus master in the system. The bus masters
are;

Top Pricorityl €8030 CPU
| Expansion (optional})
} DMR (For SCSYI and Floppy digk drive)
! Scund Record
} Sound Playback
| BLiTTER
{

Bottom Priority! Expansion

rFware 8 © 1992, Atarl Corporation

10°1.92 internal Expansion Port

Expansion port devices can choose where they sit in bus
priority. By using CPUBGIl and CPUBGO they will have
priority just below the CPU, but above DMA. Using BG, they
will have lowest priority, just below the BLITTER. Cards
which do not use CPUBGI and CPUBGQ, must connect these
two signals together. If no card is installed, a jumper
connects these signals.

Devices sitting at the top of the bus arbitration chain are
intended to be uprocessors or other devices that are capzble
of relinquishing to other devices within one or two bus
cycles. If an expansion board wishes to sit at the top of the
chain it must guarantee a maximum response time of 1
microsecond to maintain system integrity. The worst case
device is currently the floppy disk. If the DMA channel
cannot empty its FIFO in time a sector of data will be lost.
(SCSI does not have this problem since SCSI devices are by
their nature buffered). Excessive response times may also
cause Sound DMA to lose words when running in
continuous mode.

To request the bus, a peripheral should pull BR low (with an
open collector output), wait for BG to go low, and then
acknowledge by pulling BGK low (again, with an open
collector output). The conditions under which BGK can be
pulled low can be somewhat complex since there are
multiple alternate bus masters. Designers are urged to
consult the 68030 documentation for a complete description.

Interrupt Signals

EINT1 Active high, level 1 interrupt
EINT3 Active high, level 3 interrupt

MFP_IET Active low, MFP (level 6} interrupt enable
MEP INT Active low, Wire-Ored, level 6 interrupt
[ACK Active low, level 6 interrupt acknowledge

IPL(2:0) Active low, CPU interrupt priority level
indicators

1eel Atari Corporation Hardware .9

 Atarl Falcon030 Hardware Reference Gulde 10/1/92

EINT1 and EINT3 allow peripherals to interrupt at levels 1
and 3 respectively. These signals are decoded and prioritized
by custom logic to generate a processor interrupt.

MEP_INT can be used in conjunction with IACK and
MFP_IEI to generate a high priority level 6 interrupt. The
peripheral is positioned at a higher priority than the MFD or
DSP (which can also cause level 6 interrupts).

Peripherals should pull MFP_INT low (with an open
collector output) while holding MFP_IEI high to hold off the
MEP from asserting its own interrupt vector. When IACK
goes low together with LDS, the peripheral should put a
vector onto the data bus.

The IPL(2:0) signals must not be driven by peripherals since
they are internally driven by custom logic. They are only

included for devices which may want to monitor these
signals.

Clock Signals

CPUCLK Set to 8MHz at reset, then set to 16MHz by
TOS. This clock is used by the system bus
to synchronize all bus cycles

500KHZ 500KHz fixed clock

Neither of these clocks should be loaded with more than one
TTL type device (or equivalent) under any circumstances.
Excessive loading of these clocks (or any other signals on the
expansion bus) will lead to system unreliability or failure.

Bus Access

Slave Devices/RAM: The address (A23-Al) and the functions
codes (FC2-FC0) along with AS must be used for decoding,.
Devices that require more than 4 CPUCLKs (i.e., DTACK is
not generated before 55) must activate EXPAND by the end
of S3. This allows 1 CPUCLK (62.5ns) from AS until
EXPAND must be valid. It must be held until AS returns
high. EXPAND is a wire-or’ed signal and must be driven
with an open collector output. It can oniy be driven low, if
AS is low. EXPAND can only be driven for address spaces
that do not conflict with system devices and system RAM.

Hardware .10 @1992, Atari Corporation

10/1/92 {nternal Expansion Port

Bus Masters: For proper operation Bus Masters should
emulate the 68030 timing if BMODE is pulled low. I
BMODE is high, then the Bus Master 1s emulating a 68000
interface. The system control logic uses the BMODE signal to
determine which edge of the CPUCLK to sample AS on.
BMODE can only change state by an alternate Bus Master
when it owns the bus. An alternate Bus Master will own the
bus if it won arbitration for the bus and then AS is sampled
inactive on two consecutive rising edges of CPUCLK.
BMODE must remain valid for the entire bus cycle and be
stable before AS is active.

Memory Map: Peripheral devices can use addresses in the
range F10000 to FOFFFF (576 Kbytes) and any of the RAM
space which is not occupied by RAM (address below E00000)
and EXPAND.

v | T
- L
S W I

Bus Interface Tlming For EXPAND

- 2
L

BGK \
) |
-

Bus Arbiuwtion

9

1

!

©1992, Atari Corporation Hardware .11

Atari Falcon030 Hardware Reference Gulide 10/1/92

Video Port

The Atari Falcon030 has a new video port connector. This
connector contains all the signals necessary for connection to
an analog VGA monitor as well as an 5T or STE compatible
color or monochrome monitor. In addition, it includes the
signals necessary for external GENLOCK devices including
an external video dot clock, and insertion of external Vsync.
The Atari Falcon030 video connector is a DB19 male. Its
pinout is as follows:

pin# Signal prin# Signal

1 Red 11 GHND

2 Green 12 Composite videc / Composite Sync

3 Blue 13 Hsync

4 Mono/Overlay 14 vsync

5 GND 15 External clock input

6 Red GND 16 Even-0dd

7 Green GND 17 +12Vv

8 Blue GRD 18 M1

9 Rudio out 1% MO

10 GND

Pin 4. Mono/Quverlay

This pinis a one bit monochrome video output when in ST-

High resolution (640 x 400). It has levels compatible with the
ST, STE and MegaSTe.

In True color mode this pin represents the same polarity as
bit 5 (the overlay bit) of each pixel:

For standardization, we have defined this bit as follows:

Bit 5 ©Pin 4 Heaning

0 Low Transparent (external video)
1 High Overlay (Atari Falcon(030 video)

Hordware (12 ©1992, Atari Corporation

10/1/92 Video Port

The overlay bit becomes active one pixel clock period before
analogue RGB:

1 t External Clock

Pixel Clock

RGB (Pins 1, 2, 3)

XX X
o=

Overlay {Pin 4)

e

——— T —.—

. Min Typ Max
o tns 9ms 20ms
R,G,B, Propagation Delay 12ms 24ns
Analog Settling Time lans

——— U Tk e ———— it T —— e v —— ——— e — — it frul e ——— — " ——

Note that the externally supplied clock (Pin 15) can be one,

two or four times the frequency of the actual pixel clock
used.

Typically this feature will be used to seiect between the Atari
Falcon030 and externally generated video on a pixel by pixel
basis. It could be called a one bit chroma-key, useful for
overlays and video titling,

Pin 9. Audio out

This signal represents the same signal that goes to the

internal speaker except that it cannot be disabled. It has a
level of 1.4V RMS.

Pin 12. Composite Sync/ Composite Video

On Peritel machines, this pin is Composite Sync. On all other
machines, this pin 1s Composite Video.

718992, Atari Corporalion Hardware .13

Atari Falcon030 Hardware Reference Guide 10/1/82

Pin 14. Vsync

This pin can be programmed as an input to the Atari
Falcon030. When it is an input, a low level on Vsync will
hold the vertical timing generator in a reset condition. This
feature is typically used by external Genlocking devices.

Hsync should not be programmed as an input. Horizontal
Jocking is achieved with a phase locked loop, controlling the
external video clock (pin 15). To avoid contention at reset
time, a resistor should be used in series with the external
Vsync. '

Pin 15. External clock input

An external video source can drive a clock input into this pin
synchronous with the external video dot-clock. The Atart

Falcon030 will use this signal as master video clock, when
selected in software.

Internally, this signal is padded with a 68Q resistor and then
pulled high with a 4.7k resistor. This signal should be driven
by a 74HCxx or 74HCTxx type device, with a 50/50 duty
cycle clock between ground and +5V. The maximum
frequency this input can be driven at is 32MHz.

Pin 16. Even-Odd

In interlaced modes, this signal is low on even frames, high
on odd frames.

Pin 17. +12V

This voltage level is necessary for Peritel interfaces.
Peripherals can draw up to 100m4 on this pin. Itis
internally fused.

Pins 18,19. Monitor select 1,0

These pins are internally pulled high and are read by the
operating svstem te determine the type of monitor
connected. The operating system then uses this information
to set up video timing values suitable for that particular

P
IR TR MAPASEIMN

L. +
Haraware 13

@®1992, Atari Corporation

10/1/92 : Video Port

The values assigned are as follows (1 -> +5V, 0 > Gnd):

M1 MO Monitor type

e e . i A . Rt S Pt o i o L Aol S e v

0 0 ST Monochrome
0 1 ST Color

1 0 VGA

1 1 TV

——— i —— A S - ————— vt oA o —— ———

Video In
Composite Video Genlock
w/
Vsync 200 v Svne
Z N
Hsync N Phase p
4 Detector { > H
WV Y
Extclock
32MHz | | 3257
veo. [==
<— Color PLLI—&y
Color Vid
R——— Burst : ideo
& Compaosite Video Switeh
B—— J Pixel
VsynC—-—"—"“ l Hate
Hsyne | e.q. MCI378 \
Overlay
WV

Out to Monttor

@1992, Atarl Corporalion Hardware .15

Atarl Falcon030 Hardware Reference Gulide

10/1/92

VGA Genlock
in from Reference
VHRGB
Vsyne 200 J(\/
< >—\VV\ Vv\ ,
HSYI'!C N Phase /s
7 Detector §
N
&——— VCO T
B——
G—
RO—— Video
Switch
Pixel
Pate
Overlay
> \
Hsync
Vsync
‘ v\/\/
| VHRGB
Out to Monttor

Hardware .16

©1992, Atari Corporation

10/1/92 DSP and Audfo Subsystem

Digital Signal Processor (DSP)
and Audio Subsystem

Overview

The Atari Falcon030 contains a sophisticated digital
processing and audio sub-system...

32 MHz 56001 Digital Signal Processor with 96K bytes of
zero wait-state SRAM. |
Eight track, 16-bit digital DMA record channel.

Eight track, 16-bit digital DMA playback channel
(operating in parallel with digital record).

On-board 16-bit stereo DACs, feeding the internal
loudspeaker and headphone jack.

On-board 16-bit stereo ADCs, and stereo microphone jack.

Sophisticated data path matrix between DSP, DMA, Codec
and external connector.

Sample rates up to 50KHz.
Serial data transfer rates up to IMByte per second.

Loudspeaker or headphones can monitor any stereo channel
of 8 track digital playback data.

External serial record and playback channels connect to
industry standard DACs, ADCs and 5/PDIF components
with minimum additionai logic.

The block diagram on the following page describes the
Digital processing sub-system.

@ 1992, Atari Corporation Hardware .17

10/1/92

Atari Falcon030 Hardware Reference Guide

Address Bus

A e

Data Bus

FIFO DMA Record

Control

|

V4

FIFO

DMA Playback

Control

«

Host
32k x 24
SRAM 56001
SSI
-
VO Internupt
3
il

Multiplexer and Protocol Convertor

[

25175 320
MHz MHz

Extemnal Clock

Sample Qoox«

\

DSP Connector

Phones

Mic

DAC pa—

ADC

—

PSG

©1992, Atarl Corporzation

Hardware .18

10/1/92 DSP and Audic Subsysic.n

The digital processing sub-system has many features which
make it ideal for audio processing. However, the data being
processed can also be video (images), graphics objects (3-D
image manipulation) or any other general purpose data.

To maintain the maximum flexibility, the Atari Falcon030
provides an extremely general connection system between
these components. All data transfers are ina synchronous
serial format. Any component can talk with any other. Since
some of the components have real time response
requirements, the clocking schemes have also been made
especially general and flexible.

Communications

Any two devices in the sub-system can talk with each other.
To allow them to talk you need to connect them together
correctly. This requires several things:

1) Connect the two devices (a receiving device to a souir2
device)

2) Select the source clock

3) Select the communication protocol (handshake or
continuous)

21992, Atari Corporation Hardware .19

Atarl Falcon030 Hardware Reference Guide 10/1/92

Connections

There are four devices capable of sending data and four
devices capable of receiving data. To allow any connection
therefore requires a four by four matrix:

SOURCE
DEVICE
EXTECRéQAL EIIX:IPUT o o S o
DSP TRANSMIT B 35, &)
DMA PLAYBACK & B D =)
___ L Mic
psG —<———— 4 D &)
R Mic ADC J
DSP DMA e
RECEIVE RECORD At
+ LHI'I‘....;LLJ

RECEIVING DEVICE
DAC

Headphone Speaker

Each receiving device can have its data path connected to any
one source device. Source devices "source” data. For
example, the ADC represents data from the microphone jack
so the ADC is a data source. It can send it's data to any (or

all) receiving devices. See the "Devices" section for more
details.

Clock Sources

All the data connections shown above, are actually serial data
paths which include a bit clock, data, and synchronization
signal.

There are three possible clock sources in the system:

Internal clock (25.175 MHz)
Internal clock (32 MHz)
External clock

Hardware .20 ©1992, Atari Corporation

10/1/92 DSP and Audio Subsystem

Each source device must select one of these clocks as 1ts
master clock. The Codec can only use the Internal
25.175MHz, or External clock.

The bit clock is taken from the master clock divided by a
programmable value of 4 to 24 (in increments of 4). The
Sample rate is then the bit rate, divided by 128:

Master Clock Divide Bit Rate Divide Sample Rate
Y by N by by
4 n ’ 128 7

Since the bit rate is 128 times the sample rate, there 1is
room for eight 16-bit samples per sample period.

Master clock Divisor{n) Bit Rate h”Sample Rate
25,175 MH=z 4 6.29375 MH=z 49.17 KHz (S5S0RHZ)
22.5792 HHz 4 5.6448 HMHHz 44.1 EKHz {CD)
24.576 HMHz 4 6.144 MHz 48.0 ©KHz (DAT)
32.000 MHz 4 8.000 MHzZ 62.5 KHz

The internal 25.175 MHz clock is used to support STE
compatible 50KHz, 25KHz, and 12.5KHz sound sample rates.
(Note that the built in DACs do not actually support a
6.25KHz sample rate)

The internal 32 MHz clock is useful since it can be used to
provide an 8 MHz bit rate (or 1 Megabyte per second), which
is the maximum transfer rate of the DSI? SSI interface.

The external clock comes from the DSP connector. It can run

up to 32 MHz. Some useful external clock rates are shown
below:

22.5792 MHz gives CD rate of 44.1 KHz
24.576 Mz gives DAT rate of 48.0 KHz

Communication protocols

Data scmetimes gets lost. We all do it. Even a piece of
perfectlv well designed hardwere can do it.

The maximum data rate of the DMA record or playback
channels is 1 Megabyte per second each. Since the FIFOs are
32 bves deep each sound DMA channel will require bus
acouss approsimately every 32 microseconds.

1632, Atari Corporation Hardware .21

. Atari Falcon030 Hardware Reference Guide 10/1/92

Unfortunately, poorly written software can create situations
where this access requirement is not met. A combination of
other devices may lock out the bus from sound DMA,
particularly, badly behaved expansion port devices and true
color video. |

If the data is sound data and it is not critical, then an
occasional overrun or underrun may be acceptable. 1f the
data is JPEG video, DSP object code, or any other non
redundant data, then you will want to guarantee it is never
mislaid.

For precisely this purpose our system includes a special
handshaking mode which prevents overrun ot underrun.
When in handshaking mode, the data rate can be variable
since timely bus access cannot be guaranteed. This also
means that in handshaking mode there is no concept of a
sample rate, or left and right tracks, or multiple tracks at all.
The data is simply transferred one word at a time as quickly
as the source and receiving devices can commuricate.

If timely bus access can be guaranteed it is better to use
continuous mode. Continuous mode should be used for any
real time applications (such as sound playback or record),
and it will generally be more efficient for the DSP since its
interrupt routines can be faster.

Devices

There are a total of four devices in the audio sub-system,
each of which are full duplex. In other words, we actually
have four data sources and four data receivers:

Device Data Source Data Recelver
DMA DMA Playback DMA Record
Codec ADC DAC

DSP DSP Transmit DSP Receive
External External Input External Output

These devices can be connected together in a very flexible

manner {(as shown in the matrix under "Connections" earlier
in this section).

Hardware .22 ©1992, Atarl Corporation

10/1/32 DSP and Audio Subsystem

Each device has its own special characteristics, which are
described below.

DMA Input

The DMA input channel provides a fast path to system
memory. Briefly, it includes a 32 byte FIFO on the data path
synchronized with a memory addressing module which c2n
fill memory in a linear, continuous or looping mode. The
maximum data transfer rate is about one Megabyte per
second.

The data and clock signals to DMA input must be
synchronized. Source devices can send data to DMA input in
either handshaked or non-handshaked modes.

In handshaked mode DMA Input must be the clock source.

It uses a gated clock technique to stop data transmission if its
FIFO becomes full.

In non-handshaked mode, DMA input receives a clock from
the seniding device. When its FIFO becomes half full it will '
attempt to write it to memory. If it cannot get access to the
system bus in time, data will overflow.

Non-handshaked mode to DMA input i provided simply
because it puts less burden on the sending device. However,
when using it the user must be careful to limit the data
transfer rate to within system bus bandwidth limits.

DMA Output

The DMA output channel provides a fast data channel {rom
system memory to sub-system devices. It also has its own 32
byte FIFO which helps ensure that it can keep up with the
real time response required by certain devices {such as the
Codec DACs).

Data transfers can be done in either handshaked or non-
handshaked modes. In handshaked mode a gated clock
technique is used together with a flag signal from the
receiving device to prevent overruns ox underruns.

1992, Atari Corporation Hardware .23

Atari Falcon030 Hardware Reference Guide 10/1/92

Non-handshaked mode is normally used for communication
with DACs or other real-time devices. If the system bus
becomes overloaded for any reason with higher priority bus
masters data may be lost in non-handshaked mode.

As usual, the receiving device must be using the same clocks
and protocol as DMA output to ensure correct data transfer.

Digital Signal Processor (DSP)

The Atari Falcon030 includes a Motorola 56001 Digital Signal
Processor. This part offers the following features:

32 MHz operation, yields 96 MOPS.
1024 point complex FET can be done in 2.07 milliseconds.

24 bit internal and external data paths, y1eldmg 144 dB
dynamic range.

56 bit accumulators.

The following operations can be executed in parallel in one
instruction cycle:
24 x 24 multiply
56 bit addition
Two data moves
Two address pointer updates
Instruction prefetch

1024 x 24 bits of on chip RAM.

512 x 24 bits of on chip ROM used for Mu-Law, A-Law and
four quadrant Sine wave table data.

Hardware .24 ©1992, Atari Corporation

10/1/92

DSP and Audlo Subsystem

DSP Memory Map
In addition to the on-chip RAM and ROMs there are 32K

words of external, zero wait state SRAM.

The memory map is configured as follows:

Program space is one contiguous block of 32K words.

X and Y data space are each separate 16K word blocks.

Both X and Y can be accessed as blocks starting at 0 or 16K.
Program space physically overlaps both X and Y data spaces.

Note that since program space overlaps X and Y space DSP
software must be careful to avoid having program and data
memory corrupt each other. Note that X:0, X:16K and P:16K
are the same physical RAM location, and that Y:0, Y:16K and
P:0 are also at the same physical RAM location.

SEfff
Regerved Reserved Reserved
STLEF
16 K 16 K overliaps
Shadow ?hadow 32 K X memory
S3fEfF Program
16 X 16 X RAM
Qveriaps
External External
Y memory
RAaM REM
S$01ff
Internal Internal Internal
RaM/ROM RAM/ROM RAM
$0000
X Hemory ¥ Hemory P Memory
SSI Interface

The Atari Falcon030 brings out the six wire SSI port to the

external DS connector.

© 1992, Atari Corporation

Hardware .25

Atari Falcon030 Hardware Refefence Gulde 10/1/82

Host Port

Interface with the 68030 host is via the 56001 host port (port
B). Data transfer by the host is via programmed I/0. In
other words, the DSP host port appears in the 68330 memory
map as eight byte locations. Data transfers by the host
should always be conducted through the appropriate
operating system calls (see the Atari Falcon030 software
developer’s guide).

DSP software transfers data to and from the host port in the
usual way (see 56001 DSP User’s Manual). The host can
interrupt the DSP and vice-versa.

SCI

The 56001 three wire SCI port is not implemented in the Atari
Falcon030. DSP software must not rely on the existence of

any of the SCI registers, including the SCI timer, interrupts,
or control and status registers.

Various versions of the Atari Falcon030 may or may not even
include the SCI circuitry!

DSP expansion port

This DB26 female connector includes a variety of signals
designed primarily for the connection of digital sound
devices and modems. It can (and almost certainly will) be
used for a number of other applications such as low cost laser
printers, video digitizers, scanners and so forth.

The pinout is as follows:

DSP Connector, DB26, three row Female:

Pin# Signal Pin# Signal Pin# Signal
1 GpO 10 GND 20 R CLK
2 GP1 11 3CO 21 R SYNC
3 GP2 12 scl 22 EXT_INT
4 P _DATA 13 sSC2 23 STD
5 P CLK 14 GND 24 SCK
6 P_SYNC 15 SRD 25 GND
7 n/c 16 GHD 26 EXCLK
8 GND 17 +12v
9 +12V 18 GND

Hardware .26 © 1992, Atari Corporation

10/1/92 DSP and Audio Subsystemn

Pin Description:
GP(2:0) 1/O General purpose inputs and outputs.

Can be individually set and read
EX INT 1 General purpose interrupt input

SCO I/O DSP SSI port Pin SCO (PC3), Receive clock
SC1 I/O DSP SSI port Pin SC1 (PC4), Receive Sync
SC2 1/O DSP SSI port Pin SC2 (PC5), Transmit Sync
SCK I/O DSP SSI port Pin SCK (PC6), Transmit clock
SRD 1/O DSP SSI port Pin SRD (PC7), Receive Data
STD 17O DSP SSI port Pin STD (PC8), Transmit data

XO DATA O External Serial Output, serial data
X0 CLK O External Serial Output, serial clock
XO SYNC 1/0 External Serial Output, Sync

XI DATA 1 External Serial Input, serial data
X1 _CLK O External Serial Input, serial clock
XI_ SYNC 1/0 External Serial input, Sync

EX CLK 1 External master clock

+12V- +12V power. Do not draw more than
300mA on this pin.

The signals on this port include several high speed clock and
data lines. It is therefore essential that developers use correct
drive and termination. In general, all signals should be

terminated with a ferrite bead followed by a 6842 resistor in
series. This is the same type of termination used inside the
Atari Falcon030 on all DSP port signals. A ferrite bead
should be chosen that does not begin cutoff until 20MHz to

- 30MHz. Input signals from the peripheral should be driven
by CMOS devices such as 74HOoc or 74HCTxx.

Total cable length should not exceed 24 inches and we
strongly advise the use of twisted pair cables.

General purpose bils
Three bits are provided for general control purposes. They

can be set, cleared or read as inputs through the operating

system. At reset these three Jines are programmed as outputs
and driven low by TOS.

©1992, Atari Corporation rard:y wre .27

Atarl Falcon030 Hardware Reference Gulde 10/7/92

DSP SSIinterface

These six pins are the SSI port from the Motorola 56001 DSsP

chip. The serial clock can operate up to one quarter of the 32
MHz DSP master clock rate, or 8MHz.

To use these pins to talk directly with the DSP you need to
take care to avoid contention with the communication matrix
by tri-stating the communication matrix outputs through the
appropriate OS call.

External Serial Qutput channel

This three wire serial interface can be used to transfer data
from the host computer. It can transfer data from the DSP,
DMA playback channel, or on board analogue to digital
convertor.

Data transfers use either continuous mode or a handshaked
(gated clock) mode:

Signal Continuous Handshaked
X0 DATA Output Output
X0_CLK Qutput Output
X0_SYNC Qutput Input

P ———— R el e e

In either mode, data changes on the rising edge of the clock.
Data should be sampled on the falling edge of the clock.

Hardware .28 ©1992, Atarf Corporu.don

10/1/92 DSP and Audio Subsystem

In Continuous mode there are 128 clock cycles per sample
period. XO_SYNC will go high for the first 16 bits of a
sample period and then low for the remaining 96 bits. In
each sample period a maximum of 8 tracks of 16 bit data can
be transferred. Data words are transmitted MSB first, end-
on-end, with no gaps in between them. The number of
words per sample period is determined by the source device.

A typical sample is shown below:
128 Clock Cycles

1 } K { | CLK
{ I i 1 | ['SYNC
i I 1
{ !] I ! [: .
| ! ' T § f oA
MeseC X X LSBXMSBX ... i
i 1 i i ! [et |
| $ (
iWord 1 IWord 2 Word 16 iWord 1

DATA and SYNC change on rising edges of CLEK and should be
sampled on falling sdages of CLE.

In Handshaked mode XO_SYNC becomes an input. The
external device will pull XO_SYNC high, and if the source
device is ready, XO_CLK will become active for 16 cycles (or
one word) together with XO_DATA. XO_SYNC is sampled
by the source device at the end of each word. If XO_SYNCs
high and another word is ready to be sent, XO_CLK and

XO DATA will become active for another 16 cycles. A
minimum of two clock periods will always be inserted
between data words.

This gated clock technique will prevent overrun or underrun
at either end of the data paths:

i : : CLK

X 1

. i R | SYNC

| _____________________ {

| |

' | DATA

);(:X'__X:X XX XX
One Word o

NOTE: SYRC hold time after first rising edge of CLK = Ons

®1992, Atarl Corporation Hardware .29

Atari Falcon030 Hardware Reference Guide 10/1/92

Cxternal Serial Input Channel

This three wire serial interface can be used to transfer data to
_ the host computer. [t can transfer data to the DSP, DMA
record channel, or an on board digital to analogue convertor.

Data transfers use either continuous mode or a handshaked
(gated clock) mode:

Signal Continuous Handshaked
XI_DATA Input Input
XI CLK Output Output
XI_SYNC Output Input

In continuous mode it is the responsibility of the external
device to synchronize to the XI_CLK and XI_SYNC outputs.
Data should be changed on the rising edges of XI_CLK since
it will be sampled on the falling edges. XI_SYNC wiil
identify the start of a frame by going high for the first 16
clock cycles, and then low for the remaining 96 cycles.

In handshaked mode the protocol is basically the same as for
the external serial output channel, except that XI_DATA is an
input. When the external device has no data to send it must

pull XI_SYNC low at least one clock cycle before the end of
the previous sample.

External Master clock

This clock can optionally replace the internal 25.175MHz or

32.0MHz clocks. The maximum frequency allowable is 32
MHz.

CODEC

The Atari Falcon030 on board Codec is a high performance,

16 bit, sterec device. It includes a stereo DAC and stereo
ADC.

16-bit Stereo DAC

The DAC output is directed to the on board loudspeaker
(which can optionally be turned off), to the monitor port (for

Hardware .30 @1992, Atari Corporation

10/1/92 DSP and Audio Subsystem

monitors which have loudspeakers built in, such as the
S5C1224), and the stereo headphone jack on the back panel.

DAC attenuation can be controlled for left and right channels
independently, through operating system calls.

Stereo Headphone Jack

The output port is a voltage drive with a peak voltage level
of 3V, and an RMS level of 2V. Itis designed for a peak load
of 0.25W; this means that the load should have an impedance
greater than 32€.

 0.033UF BRC

<)

470F

GHD

GND

To help compensate for the poor low-frequency response of
headphones and small speakers, the headphone amplifier has
had a bass-boost circuit added to it which adds about 6dB to
the output level, centered at 100Hz, dropping to a 0dB boost
at 1KHz.

The power level present at the headphones is dependent on
the level in the input signal and the output impedance. If the
input (digital) value is assumed to be a 16-bit value scaled
between +/-1, then power level on the headphones is:

VOUT=3*IN

—(3* 2 .
Paur= (3*IN)“/XH;
Where XH is the headphone impedance. For example, for
326 headphones the peak output power is:

P =028%(IN

) 2
OuT MAX

©1992, Atari Corporation Hardware .37

Altarl Falcon030 Hardware Reference Guide 10/1/92

The output is AC coupled by a 47uF capacitor. This means
that there is a roll-off in the frequency response at low
frequencies. The cut-off point can be approximated as:
_ * . % T % .
FCUT—OFF =1/(2 % n*47uF * XH);
Where XH is the impedance of the headphones. For
example, with 32Q headphones the cut-off is at 105Hz.

Note that the headphone output is a voltage. While the
output is somewhat higher than normal line levels, output
attenuation in the Codec can reduce this without loss of
dynamic range. At the normal "line" impedance of 6002, the
cut-off frequency will be lower; other internal limits keep the
system to a cut-off of about 30Hz.

Internal Loudspeaker

The internal speaker is driven from a boosted op-amp. It is
capable of output levels of 2V RMS (3.5V peak), and can
drive loads as low as 8Q. This means that the RMS output
level is 0.5W. Peak levels will clip at 1.5W.

+12v
PN Speaker
H
i
470F !
PRP
GHRD
GND

____4___ﬁ_ﬁw/\/\

16-bit Stereo ADC

The ADC is connected to the microphone jack on the back
panel. The ADC gain can be controlled through operating

system calls. The PSG signals can optionally be fed to the
ADC input.

Hardware .32 © 1992, Atari Corporation

10/1/92 DSP and Audio Subsystem

Stereo Microphone Jack

The effective impedance of the microphone port is:
2.15K ohm, O -~ 30Hz

1.77K Ohm, 30Hz - 900KHZ
O Ohms >900KHz

At DC, the input appears as a 2.2K resistor to +9V, and
100K resistor to ground. The actual circuit used is shown
below:

+9V

BNC
AVAVA 5 II o
10K G.470F

100K —l—

GND
v
GHND
GND

The maximum signal levels to be present at this poft depend
to some degree on the input gain set in the Codec. A
"simple" formula is:

_ 10 ~(0.075* Ny 710
Vataxms) = (10 (h/10;

where N is the value (0 to 15) of the input gain.

IMPORTANT! -- A 200k Ohm resistor should be used in
series on each microphone input when connected tc a 1V

RMS "Line" level signal (such as the Line Out signals from a
CD player).

@1992, Atari Corporation Hardware .33

. Atarl Falcon030 Hardweare Reference Gulde 10/1/92

Parallel Port

The Atari Falcon030 parallel port has been extended from
previous TOS products, to include two additional signals -
"Acknowledge’, and "Select’.

The new paralle]l port now looks like this:

Parallel port. DB25, female.

Pin# Signal Pin# Signal

1 Strobe 14 -

2 Data 0 15 -

3 Data 1 16 -

4 Data 2 17 Select
5 Data 3 18 GHD
6 Data 4 19 GND
T Data 5 20 GHD
8 pata 6 21 GHND
9 Data 7 22 GND
10 Acknowledge 23 GND
11 Busy 24 GHD
12 - 25 GND
13 -

‘Acknowledge’ is an input, active low from the printer. Itis
connected to the MFP pin GPIP1.

‘Select’ is an output, normally used to turn a printer on-line.
It is connected to the PSG pin I0A3.

Hardware .34 ©1992, Atari Corporation

10/1/92 Parallel Port

Serial port

The Atari Falcon030 serial port is connected to the 85¢30 SCC
chip (rather than the 68901 MFP as in previous machines).
This is generally more powerful and flexible than the MFP.

Pin# Signal Input/Cutput

1 DCD Carrier detect i/p
2 RxD Receive data i/p
3 TxD Transmit data o/p
4 DTR Data Terminal ready o/p
5 GND Ground

6 DSR Data set ready i/p
7 RTS Request to send o/p
8 CTS Clear to send i/p
9 RI Ring indicator i/p

All signals are R5232 levels. Every signal except Ring
Indicator is connected to the appropriate 85¢30 port B pin.

Ring Indicator is compatible with previous machines, and
connected to the MFP pin GPIP6.

©1992, Atari Corporation Hardware .35

Video Documentation

We recommend that all screen output be done via the GEM
VDI. This technique allows an application to take advantage
of higher resolutions and greater color capabilities of new
screen modes yet still function in more limited situations. We
do recognize, however, that direct screen output is
something that applications authors are going to want to do.
As a result we are documenting the screen memory
organizations in all modes on the Atari Falcon030.

The 1, 2, 4 and 8 bit per pixel modes are arranged as they are
in an ST, STE or TT. This organization consists of 16 bits of

each plane in adjacent words until all planes are accounted
for.

The 16 bit per pixel (true color) mode is organized as packed
pixels. Each 16 bit word contains all of the information for a
pixel.

Since this mode is a true color mode there is no palette to
convert the data into RGB information for the video system.
The information is encoded in each pixel where the 16 bits
represent RRRRRGGGGGGBBBBB. An overlay mode exists
where the 16 bits represent RRRRRGGGGGXBBBBB. The X
bit is used as an overlay bit.

The video (VDO) cookie is 0x00000300. This cookie is
provided to developers so that applications that depend on
the exact video specifications can do so. In general it is
preferred for software to use the O.S. inquiry calls to check
for specific abilities of the system.

©1992, Atari Corporation Video .1

Video Documentation 10/1/92

OPCODE 5

WORD Setscreen(long log, long phys,
WORD rez, WORD mode)

Setscreen() has been enhanced to handle the new Falcon
video modes. If you pass a 3 in the 'rez” word and a
modecode in the ‘mode’ word, Setscreen will set that mode
and realloc the screen RAM to match that mode.

Application programmers are better off using Setscreen()
than VsetMode because Setscreen will handle reallocating the
screen and will initialize the VDI for them. The VsetMode()
call does NOT initialize the VDI with the new mode
information.

However, VsetMode(-1) should still be used to inquire what
resolution the machine is in before setting a new one. Then
this information should be used to restore the previous
resolution.

OPCODE 88
int Vsetmode(int modecode);

The Vsetmode (int modecode) cail is used to place the Atari
Falcon030 into a specific video mode. A bit-encoded value
(called a "modecode") is passed to Vsetmode() to set the

mode. Vsetmode() returns the previous mode that was set.

A "modecode" is a bit-encoded value that works as follows:

Sito(P|V]|8 | N|N|N

Low byte
N » Bits per pixel 4 = 16 BPS 1 =2 BPS
N » } 3 = 8 BPS 0 = 1 BPS
N o» 2 = 4 BPS
8 » 80 column flag (if set, mode is 80 columns,

otherwise it is a 40 Column mode)
vGA flag, VGA monitor mede if set.. otherwise
TV mode.
P » PAL flag, PAL mode if set.. otherwise NTSC.
G » Overscan flag / Multiplies both x and y by 1.2
(Not used in VGh)
S » ST compatibility flag.. It set, mode used will be
ST compatible. (for ST Low, 5T Medium, ST High)

<

Video .2 @1392, Atari Corporation

10/1/92 Video Routines

X X[X|X{XIX|{X|F

High Byte
F » Vertical flag. If =set,
color monitor,
X » Reserved

Interlace mode used on a
double line used on VGA monitors,

A few modes are not allowed. 40 column 1 BPS modes aie
not supported. 80 column VGA 16 BP'S modes are not
supported.

‘To help make the building of modecode values easier, here is
a table of defines:

#define VERTFLAG 0x10¢
#define STMODES 0x80
#define OVERSCAN 0x40
#define PAL 0x20
#define VGA 0x10
#3define TV 0x0
#define COLSBO 0x08
#define COL40 0x0
#define NUMCOLS 7
#define BPS1l6 4
#define BPSS 3
#define BPS4 2
#define BPS2 1
#define BPS1 0

Using these defines, you can build a modecode for any
possible mode. For example:

For True Color Overscan:
modecode = OVERSCAN|COL40|BPS16;

For ST Medium Compatibility mode on a Color Monitor/TV:
modecode = STMODES |COL8G|BPS2;

For ST Low Compatibility mode in PAL on a Color
Monitor/TV: STMODES | PAL | COL80 | BPS2;

For 256 color, 80 column mede on a VGA monitor:
modecode = VGA|COLSBO|BPSS;

modecode =

@ 1992, Atari Corporation Video .3

Video Documentation 10/1/92

1f you have a modecode and wish to know how many bits

per pixel it has, use the following:

if (modecode & NUMCOLS) == BPS16)
do_something_cool{); » You have true color mode «

The Vsetmode() call will return the previous modecode set.
You must use this value to get back to whatever mode you
were in before you made your Vsetmode call.

A word of warning: Vsetmode() does not provide error
checking on valid modes. It will try to set modes that do not
exist or that will not work on the monitor you are using. Be
careful to set the proper mode for the right monitor!

The defines that are listed above as well as the xbios binding

for Vsetmode{) are defined in MODE.H on the distribution
disk.

IMPORTANT NOTES: Vsetmode() does not adjust the video
base address, allocate any memory for the new mode, or
initialize the VDL If you want to do these things, you should
use Vsetscreen().

OPCODE 89

int mon_type(void)

The mon_type() function will return the kind of monitor that
is currently in use. Here are the possible return values:

0 = ST monochrome monitor
1 = ST color monitor

2 = VGA monitor

3 = Television.

OPCODE 91
long VgetSize (WORD mode)

Returns the size of "maode" screen in bytes. Useful for easily

determining the size of buffers to malloc for a given screen
size.

Video .4 ©1992, Atart Corporation

15 1/92 Video Routines

QPCODE 90

void VsetSync (WORD extermnal)

This will tell the VTG hardware whether or not to use
external sync. The parameter ‘external’ is a bit value defined
351

00000hve
~ externa) clock
v- use extarnal vertical sync
h—— use exteornal horizontal sync

This call only works in Falcon modes, not in compatibility
modes or any four color modes.

OPCODE 393

void VsetRGB(WonD index, WORD count,

long *array)
Set colors by RGB value starting at "index" for "count”
number of imes. The RGB value is stored in the array. This _
code is called by vs_color() from the VDI. The format for the
array is "XRGB" where x is not used. "

This call is designed primarily for applications (i.e. garm.s)
that need to set large sections of the palette or perhaps 3ot
entire palette at once. Uf you need to set an individual color,
you should use the Vi vs_color() call.

OPCODE 94

void VgetRGB(word index, WORD count,
loung *array)

Get colors from the palette starting at "index" running until
“count". Values are stored in the "array"”. The format of the
values in arTay is "xR(%" and x means not used. Again,
applications would be tetter off using the VDI to read or set
colors (vg_color).

Like VsetRGB(), this ca'l is designed primarily for the use of
application programmets who need to set large banks of the
palette at once.

© 1992, Atari Corporation Video .5

Video Documentation 10/1/92

- OPCODE 150

vsetMask (andmask, ormask)
int andmask,ormask;

VsetMask is used to set the and and or masks that the VDI
uses to modify the color values computed for vs_color(}. The
color values returned by vs_color() are and’ed and then or’'ed
with the masks given by this call. The default masks are
andmask=0xEFFF ormask=0x0000, this combination has no
effect. This allows the application to set any color to be
transparent (or not) in the 15 bit per pixel true-color overlay
mode. Use of this call automatically sets the system into the

overlay mode. This call may be used only in true-color
modes.

Video .6 ©1992, Atari Corporation

Sound Documentation

I ow level Sound calls

The Atari Falcon030 SND cookie is a bitmap of abilities.

Bit0 BSG Bit3 DSP
Bitl 8-bit DMA Bit4 Connection Matrix
Bit2 16-bit CODEC

_SND = 0x3F

All of the calls return a long value even though only a portion
of the long value maybe useable.

OPCODE 128

long locksnd();
Used as a semiphore to lock the sound system.

RETURNS: 1 Sound system is now locked.
SNDLOCKED (-128)

OPCODE 129

long unlocksnd();
Used to release the sound system for other applications 0 use.

RETURNS: 0 No Error.
SNDNOTLOCK (-129)

OPCODE 131

long setbuffer(reg,begaddr,endaddr);
This function is used to set the play or record buffers. reg
selects playback or record, while begaddr and endaddr are the
buffers beginning and ending location. The ending address is
the first invalid data location.
(int) reg - (0) Sets playback registers.

. - (1) Sets record registers.
(long) begaddr - Sets the beginning address of the buffer.
(long) endaddr - Sets the ending address of the buffer.

RETURNS: 0 No Error.

®1992, Atari Corporation Sound .1

Sound Documentation

10/1/82

OPCODE 130

long soundcmd (mode,data);

This command is used to get or set the following sound
parameters. If a negative number is used as the input then the
current setting is returned.

MODE OPERATION MEANING

O

LTATTEN
INPUI’:
RETURNS
RTATYEN
INPUT:

RETURNS

 LTGAIN

INPUT:

RETURNS

RTGAIN

INPUT:

RETURNS

Sets the left channel output
Attenuation. Attenuation is
measured in -1.5Db increments.
(int) sococoooo LLLL xoox
Where: LLLL- Attenuation fo set.
xx0xx- Reserved.
(int) xxx000¢ LLLL xooxx
Where: LLLL - Left Attenuation.

Sets the right channel output
Attenuation. Attenuation is
measured in -1.5Db increments.
(int) oo xxoax RRRR xoxxx
Where: RRRR- Attenuation to set.
xooxx- Reserved.
(int) 000 x0ox RRRR xx0cx
Where: RRRR - Right Attenuation.

Sets the left channel input gain.
Gain is measured in 1.5Db increments.
(int) scoocxooo LLLL xoox
Where: LLLL- Gain to set.
xxxx- Reserved.
(int) xcooxxoxx LLLL xoox
Where: LLLL - Left Gain.

Sets the right channel input gain.
Gain is measured in 1.5Db increments.
(int) o xoo RRRR xxxx
Where: RRRR- Gain to set.
xxoxx- Reserved.

Gnt) 00 xox RRRR xooxx
Where: RRRR - Right Gain.

Sound .2

©1992, Atari Corporation

-

£
-

10/1/92

Low Level Sound Calls

4 ADDERIN

INPUT:

RETURNS:

5 ADCINPUT

INPUT:

RETURNS

Set the 16 bit signed adder to receive
it’s input from the ADC, Matrix or
both. The input to this function is a
bitmap where:
765 4 3 2
0 0CO0OO0CO

Bit

0- (A) ADC

1- (M) Matrix

IOOOC XXXX XxXxX XxMA

BIT 10
M Aa
(int)

(int)

Set the input to the ADC. The input
can either be the left and right
channel of the PSG or the left and
right channel of the microphone. The
input is a bit map where if the bit is
(0) it is a microphone input, or if the
bit is a (1) it is a PSG input.
BIT 7 6 5 4 3 2
0 0 0 0 0 O
Bit

0- Right channel input.
1- Left channel input.
200X XXXX Xxxx XX LR

1 0
L R
(int)

(int)

6 SETPRESCALE Used for compatability. This

INPUT:

RETURNS

prescale value 1s used when the
DEVCONNECT() internal prescale
value 1s set to zero.
(int) 0- Invalid

1- Divide by 640

2- Divide by 320

3- Divide by 160

(int) Current divisor value.

©1992, Atarl Corporation

Sound .3

Sound Documentation 10/1/92

OPCCDE 132

long setmode(mode) ;
This function is used to set record or playback mode. The
modes are as follows:

_MODE QOPERATION

(int) O 8 Bit Stereo

(int) 1 16 Bit Stereo

(int) 2 8 Bit Mono
RETURNS: 0 No Error.
OPCODE 133

long settracks(playtracks,rectracks);

This function is used to sets the number of record or
playback tracks. Note these are stereo tracks. When in 8-bit
mono, two samples are read at a time.

(int) playtracks (0-3)
(int) rectracks (0-3)

RETURNS: 0 No Error.

OPCODE 134

long setmontracks (montrack);

This function is used to set the output of the internal speaker
to one of the up to four tracks currently playing. The internal
speaker is only capable of monitoring one track at a time.

(int) montrack (0-3)

RETURNSG: 0 No Error.

OPCODE 135

long setinterrupt(src_inter, cause);
This function is used to set which, if any interrupt that will
occur at the end of a frame. If the frame repeat bit is on, this

Sound .4 ©1892, Aftari Corporation

10/1/82 Low Level Sound Calls

interrupt is used to allow for double buffering the playing or
recording of sound. Interrupts can come from TimerA or the
MEP i7.

(int) src_inter (0) for timerA, (1) for MFP i7
(int) cause (0) No interrupt, (1) Play, (2) Record,
(3) Play or Record.

RETURNS: 0 No Error.

OPCODE 136

long buffoper (mode);

This function is used to control the operation of the play or
record buffers in the sound system. The input to this
function is a bitmap. If mode is set to -1 then the current
status of the buffer operation bits is returned.

(int) mode BIT 7 6 5 4 3 2 1 ¢
0 0 0 @ RR RE PR PE

- Where:
RR- Record Repeat (1) on, (0) off
RE- Record Enable (1) on, (0) off
PR - Play Repeat (1) on, (0} off
PE - Play Enable (1)on, (1) off

INOTE: The sound system contains a 32 byte FIFO. When
transferring data to the record buffer, software must check to
see if the record enable (RE) bit was cleared by the hardware.
If the bit was cleared then the FIFQO is flushed, if not then

software must flush the FIFO by clearing the record enable
(RE) bit.

RETURNS: G NO Error.

or Current setting of the buffer operation
bits.

@1892, Atari Corporation Sound .5

. Sound Documentation 10/1/92

OPCODE 137

long dsptristate(dspxmit, dsprec);
This function is used to tristate the DSP from the data matrix.

(int) dspxmit (0) Tristate, (1) Enable.
(int} dsprec (0) Tristate, (1) Enable.

RETURNS: 0 No Error.

OPCODE 133

long gpio(mode,data);

This is used to communicate over the General Purpose /O

pins on the DSP connector. Only the low order three bits are

used. The rest are reserved. This call, depending on the

mode, can be used to set the direction of the /O bits, read the

bits, or write the bits. At reset these three lines are

programmed as outputs and driven low by TOS.

(Woro(fzgg ﬁ@(DFF 5942 = Jota Ry Ret Wintte.

(int) (0) Set I/0 direction (1) - read, (2) - write.

(int) data When setting I/O direction, a setting of
(1) indicates an output bit, where a (0)
indicates an input bit. A write operation
writes the data and a read operation
reads the current state of the GPIO port.

RETURNS: Value read for mode=1 otherwise (

(worlle) JO9FF89 %0 = Dk Dieckis- Ry
OPCODE 139 |

long devconnect (src,dst,srcclk,prescale,
protocol);

This function is used to attach a source device to any of the

destination devices in the matrix. Given a source device, this

call will attach that one source device to one or all of the

destination devices. This call also sets up the source clock

prescale value and protocol used.

(int) src Source device to connect to one or several
destination devices. Source devices are:

Sound .6 © 1992, Atsri Corporation

10/1/92

Low Level Sound Calls

(int)

(int)

(int)

(int)

RETU

dst

srclk

prescale

T

MoA .,
(" /’r ‘/;_
T [3 1

Lo Ty

. e

/ é“‘ r :

2/~

3- ADC (Microphone/PSG)

2- EXTINP (External Input)

1- DSPXMIT (DSP transmit)

0- DMAPLAY (DMA Playback)
A bitmap of destination devices that the
source device will be connected too.

0x8- DAC (Headphone or Internal

speaker)

Ox4- EXTOUT (External out)

0x2- DSPRECV (DSP Receive)

Ox1- DMAREC (DMA Record)
The clock the source device will use,
There are three clock sources:

0- Internal 25.175MHz Clock

1- External Clock ~——-#7#77{J930 oR #iter

2- Internal 32MHz Clock—55#2 4up pores
Clock prescale. The sample rate is the
clock value divided by 256, divided by
the prescale value. These values are N-
1 where N is the actual divisor. The
range of N is from 1 to 12. N greater
than 12 will result in a mute condition.

mmand can be used

J then the sound
'80,/640,/320,/160
' prescaler.

lisable handshaking

ishakin g
dshaking

HS V%)f]

A

/,

©1992, Atari Corporation Socund .7

Sound Do-cumentaﬁon 10/1/92

- OPCODE 140

long sndstatus (reset);

This function gets the current status of the codec. The status
is returned in the lower nibble (5555). Left (L) or Right (R)
clipping is indicated if it has occured during the A/D
conversion and filtering process.

(int) reset If one (1) resets the sound systern. This
is used to clear the overflow status bits
if clipping has occured.

BIT 7 6 543210
0 0 LRSS S S

After this call the following conditions are set:

DSP is tristated.

Gain and attenuation is zeroed

Old matrix connections are reset
ADDERIN is disabled

Mode is set to 8 bit stereo (0)

Play and record tracks are set to track 0
Monitor track is set to zero.

Interrupts are disabled.

Buffer operation is disabled (0)

RETURNS: Status 0- No Error.

1- Invalid Control Feld (Data still
assumed to be valid).

2- Invalid Sync format. This causes
a mute condition.

3- Serial Clock out of valid range.
This causes a mute condidion.

L- If (1) indicates left clipping is
OCCULTING.

R- If (1) indicates right clipping is
occurTing.

Sound .8 ©1992, Atarl Corporation

10/1/92 Low Leve! Sound Cai!s

OPCODE 141

long buffptr(pointer);

This function returns the current position of the play and
record data buffer pointers. These pointers indicate where
the data is being read / written within the buffers themselves.
This function is also used to determine how much data has
been written to the record buffer. See buffoper().

(struct) *pointer A pointer to a structure of four longs
used to return the play and record
buffer pointers.

Structure

(long)Play buffer pointer.
(long)Record buffer pointer.
(long)Reserved.
(long)Reserved.

RETURNS: 0 No Error

© 1992, Atari Corporation Sound .9

- Sound Documentation 1C,1,92

Sample Rate Table

The following is a list of clock prescalers and their
approximate sample rates. Note that when setting the
internal codec source clock, only certain clock prescale rates
can be used. The 32Mhz clock can NOT be used by the codec
source clock. Also all clock rates marked with a (¥) are
invalid clock prescale rates.

NOTE: If the devconnect() prescale is set to zero (0) then the
TT prescale divisor is used. If the devconnect() prescale is
zero (0) and the setprescale divisor is also set to zero (0) a

mute condition will occur. The setprescale divisor of /1280 is
now invalid.

25.175 Mhz Prescale Table

Prescaler
Value NAME Sample Rate

0 See (NOTE) above.
1 | CLKSOK 49170HZ |
2 CLK33K 33880HZ |
3 CLK25K 24585HZ |
4 CLK20K 20770HZ |
5 CLK16K 16430HZ |
6* 14.285KHz (invalid for codec)
7 CLK12K 12292HZ
8=* 11.11KHz (Invalid for codec)
9 CLK10K 9834HZ
10* 9.09KHz (Invalid for codec)
11 CLKS8K 8195HZ
12+ 7 .69KHz (Invalid for codec)
13%* 7 .14KHz (Invalid for codec)
14+ 6.66KHz (Invalid for codec)
15* 6.25KHz (Invalid for codec)

Sound .70 @©1992, Atari Corporation

Joystick/Keypad Matrix

The memory map that follows defines the joystick/keypad
matrix. All of these inputs are read by scanning. You start
the process by writing to FF9202 with the appropriate bit set
low {(all others set high). Then FF9200 and FF9202 are read to
see if any bits are low. The button(s) pressed are read off of
the matrix. As an example, FE is written to FF9202 and then
FF9202 is read. Any low bits in FF9202 correspond to the
first column in the table. Only controller 0 is treated in the
table but the matrix for controller 1 is the same. Note that in
the following, "ro" means when read and "wo" means when
written.

FFe200 === ————e ———— xxxX (o BUITON (Button inputs)
bit0 controlter0pin 6 Pause
bit1 controller 0 pin 10 0 F1 F2 Option

bit2 coniroller1 piné
bit 3 contreller 1 pin 10

FFP202 —m———= =—w= XXXX XxXxx wo JOY (Joystick outputs)
bitQ controller 0 pin 4 --—-enmmmmm- X
bit 1 controller0 pin 3 ————---—r-mermmmameeo X
bit 2 controller 0 pin 2 ——ecemmmmemm- X
bit3 controller0 pin 1 X

bit 4 controlier 1 pin 1
bits controller 1 pin 2
bité contfroller 1 pin 3
bit7 confroller 1 pin 4

FFP202 XXXX XXXX === ———— ro JOY (Joystick inputs)
bitd controller0 pin 4
bit 1 controller 0 pin 3
bit 2 controller C pin 2
bit 3 controller 0 pin 1
bit 4 controller 1 pin 1
bit5 controlier1 pin 2
bit4 confroller 1 pin 3
bit 7 controller 1 pin 4
bit 8 controller O pin 14
bit @ controiler 0 pin 13
bit 10 controller Q pin 12
bit 11 controller O pin 11
bit 12 controller 1 pin 14
bit 13 confroller 1 pin 13
bit 14 coniroller 1 pin 12
bit 15 controller 1 pin 11

nrroc
whotaow] O#
(pulS) oo
L Wi

@ 1992, Atarl Corporation Joystick .1

Joystick/Keypad Matrix 10/1/92

Controllers

F F 9 2 O O T e |] 1]
FF9202 BN EIAREEREEREE

Paddles
FFG210 B= RETEE (X Paddle 0)
FFa212 (Y Paddle 0)
tF3214 (X Paddie 1)
FF9216 E=E (Y Paddle 1)

One pair of paddies can be plugged into Joystick O
(Paddle 0). A second set can be plugged into Joystick
1 (Paddle 1). The current position of each of the four
paddles is reported at these locations. The fire buttons
are the same as for the respective joystick. The triggers
for the paddies are read as bits one and two of FF8202

Light Gun/ Pen

FF9220 EEmSERCTITTOIO (X Position)
FFo222 ssmmmmr a1 (Y Position)

A light gun or pen can be plugged into Joystick 0. The
current position that the gun or pen is pointing to is
reported by these registers.

This pinout is for ports 0 and 1.
Ports 2/3 are on the other
DB15 connector.

o o o o o {1l

]

1 UPO 6 FIREO 11 UP1
2 DNO 7 VCC 12 DN 1
3 LTO 8 NC 13 LT 1
4 RTO 8 GND 14 RT 1
5 PADOY 10 FIRE 1 15 PAD OX

Joystick .2 ©1992, Atarl Corporation

Atari DSP
Developer’s Documentation

TOS Host Interface Routines

Communication between applications and the DSP on the
Atari Falcon030 must be done through a set of provided TOS
calls. This "virtualization" of the DSP hardware will insure
compatibility should the hardware be changed in future
machines.

DSP Memory Map

The private RAM that the DS uses to store data or program
that will not fit into internal resources is supplied by thre>
32K Static RAMS. This memory appears to the DSP as
follows. Program space is one contiguous block of 32K
words. X and Y data space are each separate 16K blocks.
Both X and Y can be accessed, in the DSP’s map, as blocks
starting at 0 or 16K. Program space physically overlaps both
X and Y data space so DSP software must take this into
account to avoid having program and data memory corrupt
each other. Note that X:0, X:16K and P:16K are the same
location in physical memory and that Y:0, Y:16K and P:0 are
also mapped to the same physical location. System services
will reside at the top of X memory along with DSP
subroutines. DSP subroutine BSS area will take up the top
256 words of both X and Y memory. A flush subroutine call
by the program will regain some of this memory back for the
program. As discussed in the next section, a Dsp_Available
call should always be made to determine the amount of free
ram on the DSP.

DSP Programs

Certain steps must be followed when programming for the
Atari platform. Some of the 32K words of DSP memory is
allocated for system tasks and resident subroutines and is
therefore not available for use by the DSP program. A host
process must therefore make a Dsp_Available call to find out
how much memory is left for its DSP program. If the amount

©1992, Atari Corporation DSP .1

Atarl DSP Developer's Documenitation 10/1/92

is satisfactory, the host process should reserve that memory
area using a Dsp_Reserve call. This call will prevent the
program’s memory from being corrupted by the system. Itis
also necessary for the host process to prevent access to the
DSP by another host process by making a Dsp_Lock call.
This call must come before any other calls to manipulate the
DSP. Doing this will insure that the status of the DSP will
not be changed by someone else while the application is
using it. When the host process is through using the DS
program it should do a Dsp_Unlock call to allow other
processes to use the DSP. 1f a call to Dsp_Lock returns a
"DSP busy" value, the host process should wait before
making DSP system calls until a successful Dsp_Lock can
take place. Failure to adhere to these rules will result in
unpredictably bad results when communicating with the
DSP. Before making an unlock call, the host applicatior. must
make sure that its DSP process has restored the IPR
(X:$FFFF) and MR to its original state.

DSP Subroutines

The existence of DSP subroutines allow the system to have
multiple DSP processes resident at the same time. This saves
the system the time of loading each program into the DSP
every time it needs to be used. These subroutines will stay
resident in the DSP until they are either pushed out by other
subroutines or they are flushed out by a DSP program
wanting more memory. DSP subroutines are subject to many
more constraints and restrictions than are DSP programs.
Subroutine code must be completely relocatable. When
writing subroutine code, instructions should begin at address
0. When a subroutine is called through a host command, the
subroutine can obtain it’s starting PC through the host port.
This beginning location which is sent by TOS should be read
by the subroutine whether or notitis needed for relocation.
Subroutine size is limited to 1024 DSP words of instructions.
Anything larger would probably be more appropriately
executed as a program. The code will be relocated
somewhere into external DSP ram. Care should be takeato
make any addresses used in the program (end addresses for
do loops for example) relocatable based off of the original

pse .2 © 1992, Atari Corporation

10/1/92 TOS Host interface Routines

program counter. Any initialized data must be declared
within the program space in which it is contained. A block of
X.and Y memory has been set aside for a subroutines
undeclared variable spacé."hThis area is located in the highest
256 DSP words of memory in both the X and Y memory space
(X:3£00 - X:3{ff). This area may be used freely by the
subroutine but since this area is used by all subroutines, it
should not be assumed that the memory will be preserved
the next time the subroutine executes. Host programs must
use the Dsp_Lock function before executing a DSP
subroutine. Since DSP subroutines are executed as interrupts
through host commands sent from the system, they need to
be terminated by an RTI after it has completed execution.

The subroutine should not assume any initial state of the DSP
since its state is determined by previously executed programs
and subroutines and not from a bootstrap. A typical
sequence of calls to execute a subroutine may look like the
following.

if (I1Dsp Lock(})}

{
ability = Dsp_RequestUniqueability(}:;
handle = Dsp LoadSubroutine(ptr,size,ability);
status = Dsp RunSubroutine(handle};
Dsp_DoBlock(data in,size_in,data_out,size_out);
Dsp_Unlock({):

}

A more efficient way of executing the subroutine would be to
first check to see if a subroutine already exists on the DSP
that would satisfy the applications requirements.

if (IDsp Lock(}}
{
handle = Dsp_IngSubrability(ability);
if(handle)
{
status = Dsp_RunSubroutine(handle};
Dsp DoBlock(data_in,size_in,data_out,size_out);
Dsp Unlock(};

©1992, Atari Corporation DSP .3

‘Atarl DSP Developer’'s Documentation 10/1/92

Program Ability

A program’s (and subroutine’s) ability must be reported to
the system when loading the DSP process. This ability is
either a pre-defined ability which has been officially
registered with Atari or a unique ability which was acquired
by a Dsp_RequestUnique Ability call. This ability can be used
to determine whether the host needs to reload it’s DSP
process or whether it can use a process which already exists
on board the DSP. The basic concept behind the host -
interface is that DSP programs and subroutines are not
owned by the host application that loaded it. Once loaded,
DSP programs become shared and freely usable by any host
application that wants to use it.

DSP .4 ®1992, Atari Corporation

DSP Library Functions

Data Transfer Routines

OPCODE 96

Dsp_DoBlock(data“in, size_in, data out,
size out)

char *data_in;

long size_inj;

char *data_out;

long size_out;

Dsp_DoBlock will handle block transfers of data between the
host process and the process inside the DSP. Data pointed to
by data_in will be passed to the DSP until size_in number of
DSP words are transferred over (the number of bytes in a
DSP word is returned by the Dsp_GetWordSize call). Itis
important to note that no handshaking will occur while the
routine is feeding the data to the DSP. It will be assumed
that for the purpose of this call, the D5SP will be able to accept
the data as fast as we can provide it. The cail will wait for the
first DSP word to be accepted by the DSP before begin<'n g
transfer of the rest of the buffer. After all of the data has
been transferred to the DSP, Dsp_DoBlock will wait until the
DSP has finished processing the data and js ready to send it
back to the host (when the RXDF bit is set in the ISR register).
At this time, size_out number of DSP words will be read
from the DSP and stored into the buffer pointed to by
data_out. Again, no polling of data ready bits will occur
before data transfer. Also, we will read size_out number of
words into the data_out buffer whether or not that much
data actually exists for transfer from the DSP. If no data is
expected out of the DSP, a zero should be placed in size_out.
Similarly if no input is to be received by the DSP, size_in
should be set to zero. Size inand size_out are long values
indicating the size of the arrays. Size_in and size_out are
limited to a maximum of 64K.

©1992, Atari Corporation DSP .5

" Atarl DSP Developer’s Documentation 10/1/92

OPCODE 97

Dsp_BlkHandShake(data_in, size_in,
data_ out, size_out)

char *data_in;

long size_in;

char *data_out;

long size_out;

This call is identical to Dsp_DoBlock except that handshaking
takes place during the transfer of the entire buffer. This call
will be slower than Dsp_DoBlock and should only be used
when the routine is expected to send /receive data faster than
the DSP process can accept or send it. Size_in and size_out
are long values indicating the size of the arrays. Size inand
size_out are limited to a maximum of 64K.

OPCODE 98

Dsp_BlkUnpacked(data_in, size_in,
data_out, size_out)

long *data_in;

long size_in;

long *data_out;

long size_out;

Dsp_BlkUnpacked is another block transfer routine which
works in a similar manner to Dsp_DoBlock. This routine wiil
work only for TOS versions which return a value of 4 or
smaller for Dsp_GetWordSize. Data_in and data_out are
arrays of 32 bit long words. Size_in and size_out are the
number of longwords in the array ar.d the number of DSP
words to transfer. Data is fetched from the least significant
bytes of the longword and sent to the DSP. Similarly, data
obtained from the DSP is placed into the least significant
bytes of the size_out buffer. For example if
Dsp_GetWordSize returned 3 (24 bits of DSP data). The least
significant 24 bits of each longword would contain DSP data
while the most significant 8 bits would contain something
meaningless. (Note: These 8 bits are not guaranteed to
contain zero. If the calling routine expects this byte to be
cleared, it must mask it off itself). Size_in and size_out are

DSP .6 ©19982, Atarl Corporation

10/1/92 DSP Library Functions - Data Transfer Routines

long values indicating the size of the arrays. Size_in and
size_out are limited to a maximum of 64K.

OPCODE 123

Dsp BlkWords(data_in, size_ in, data_out,
size_out)

long *data_in;

long size in;

long *data_out;

long size_ out;

Dsp_BlkWords takes blocks of signed 16 blt words and sends
them to the DSP. Words are sign extended before they are
transferred. In a similar manner, Dsp_BlkWords takes the
middle and low byte sent from the DSP and places thein into
the 16 bits of the output array. Data_in and Data_out are 16
bit integer arrays. Size_in and Size_out are long values
indicating the size of the arrays. Size_in and size out are
limited to a maximum of 64K,

OPCODE 124

Dsp__ BlkBytes (data_in, size_in, data_out,
size_ out)

long *data_in;

long size_in;

long *data_out;

long size_out;

Dsp_BlkBytes takes blocks of unsigned chars and sends them

to the DSP. These character values are not sign extended

before being transferred to the dsp. The low byte of the

transfer register is placed into the character array during

output to the host. Data_in and Data_out are 8 bit character

arrays. Size_in and Size_out are long values indicating the

size of the arrays. Size_in and size_out are limited to a
maximum of 64K.

©1992, Atari Corporation 0SSP .7

Atari DSP Developer’s Documentation 10/1/92

- OPCODE 127

Dsp MultBlocks (numsend, pumreceive,
sendblocks, receiveblocks)

long numsend;

long numreceive;

struct dspblock sendblocks([];
struct dspblock receiveblocks{];

struct dspblock {

int blocktype; /*0= longs

‘ 1= signed 16 bit ints

2= unsigned chars*/

long blocksize;

long blockaddr;
} i
Dsp_MultBlocks can be used to send multiple blocks of data
to and from the DSP while using only one trap call. Using
this call will save the overhead of making an XBIOS trap call
for every block that you want to send. The numsend and
numreceive parameters represent the number of dspblock
elements to expect in the input and output arrays.
Sendblocks and receiveblocks are the addresses of the two
dspblock arrays which contain the data to pass to and from
the dsp. A dspblock consists of a block type, a block size and
a'block address. The block type lets the operating system
know what type of data is contained in the block (0 = longs,
1 = 16 bit signed ints, 2 = unsigned chars). The block size
indicates the number of elements in the block and the block
address is a pointer to the block of data.

OPCODE 93

Dsp_ InStream(data_in, block_size,
num_blocks, blocks_done)

char *data_in;

long block_size;

long num_blocks;

long *blocks done;

Dsp_InStream will pass data to the DSP from the given
buffer via a DSP interrupt handler. Each time an interrupt

DSP .8 : ©1992, Atari Corporation

i

N

10/1/92 DSP Library Functions - Data Transfer Routlnes

occurs telling the routine that the DSP is ready for more data,
block size DSP words will be (ransmitted to the DSP. As
with the block move function, no handshaking will occur
during this process. This routine will continue servicing
interrupts until it has transferred over "num_blocks” number
of blocks to the DSP. At that time the interrupt routine will
tel]l the DSP to stop sending ready to receive interrupts.
Dsp_InStream will update the long value pointed to by
blocks_done to let the caller know how many blocks have
been transferred over. The calling routine can periodically
check this value to see if transmission has been completed.
This routine allows the calling application to begin
processing another batch of data as the carrent batch is being
transferred to the DSP. As the routine’s name implies, this
call should be used instead of Dsp_DoBlock when a
continuous stream of data is to be transmitted into the DSP.
If on the other hand, a single large chunk of data needs to be
transferred, it may be more efficient to use Dsp_DPoBlock
instead.

OPCODE 100

Dsp OutStream(data_out, block_size,
num_blocks, blocks_done)

char *data_out;

long block_size;

long num_blocks;

long *blocks_done;

Dsp_OutStream will fill the buffer pointed to by data_out via
a DSP interrupt handler. The call is similar to Dsp_InStream
above except that data is transferred from the DSP to the
buffer at each interrupt. Again, block_size number of D5P
words are transferred at each interrupt until num_blocks
number of blocks has been transferred over. At that time,
blocks_done will be equal to num_blocks informing the
calling process that transmission has stopped.

®1992, Atari Corporation DSP .9

Atarl DSP Developer's Documentation 10/1/92

OPCODE 101

Dsp_IOStream(data_ in, data_out,
block insize,
block outsize,
num_blocks,
blocks_done);

char *data_in;

char *data_out;

long block insize;

long block_outsize;

long num blocks;

long *blocks_done;

Dsp_IOStream is a specialized form of the previously
documented stream handlers. This routine makes the
important assumption that every time a block of data is
ready to be transferred from the DSP to the host, the DSsP
will at the same time be ready to accept as input another
block of data. By handling both the input to and output from
the DSP in one interrupt handler, the application can save the
overhead of servicing a second interrupt. When
Dsp_1O0Stream is first called, it “primes the pump" by
sending the first block of data to the DSP. It then installs an
interrupt handler to service “output is ready" interrupts from
the DSP. From that peoint on, each time an interrupt occurs,
the handler will fetch the block of data from the DSP and also
send a new block of data to the DSP. The variables which are
passed into the function are used in a manner similar to the
other stream processing functions. Data_in and data_out
represent the input and output buffers. Block_insize and
block outsize represent the size of blocks in DSP words to
pass into and receive from the DSP. Num_blocks is the
number of blocks to transfer and blocks_done points to the

value which keeps track of the number of blocks which have
been transferred.

DSP .10 @1882, Atari Corporation

10/1/92 DSP Library Functions - Prograim Control Routines

OPCODE 126

_DspﬂSetVectors(receiver, transmitter)
void (*receiver)();
long (*transmitter)();

Dsp_SetVectors allows the host process to install a function
which is called when an interrupt is received from the DSP.
Receiver should point to a function that the user wants called
when the DSP has sent data to the host process. Transmitter
should point to the routine to be called when the DSP
interrupts requesting data. If transmitter returns a NI <E€70
long value, the XBIOS portion of the interrupt handler will
send the low three bytes of the longword to the DSP. No
data will be sent if the 32 bit long word which is returned is a
0. (To send back a 0 DSP word, OR in a value into the high
byte of the returned value) If either receiver or transmitter
are OL, the corresponding interrupt will not be enabled. The
host must remove its interrupts by using the
Dsp_Removelnterrupts call.

OPCODE 102

Dsp_ RemoveInterrupts(mask);
int mask;

Dsp_Removelnterrupts will stop the DSP from generating

~ ready to receive or ready to send interrupts to the host. Mask
is an 8 bit mask which represents the interrupt to turn off. 1
= No more interrupts when the DSP has data ready for the
host; 2 = Don’t generate interrupts when the D5P is ready to
receive data from the host; 3 = Remove both types of
interrupts. This call should be made if one of the previously
described stream calls are made and a less than expe.cted
amount of data is passed to or from the DS? thereby not
allowing the interrupt routine to terminate. It should also be
used to remove interrupts installed by a Dsp_SetVectors Call.

@ 1992, Atari Corporation DspP .11

~ Atari DSP Developer’s Documentéuon 10/1/92

OPCODE 103
size = Dsp GetWordSize();

int size;

Dsp_GetWordSize returns the number of bytes which
represents a DSI” word in the current system. Itis important
for the application to use this routine to determine values
such as buffer size and block size. Buffer sizes for all of the
data transfer routines should be modulo the size returned by

this function. The value returned by this routine may
change in future versions of hardware.

DsSpP 12 @©1992, Atari Corporation

10/1/92 DSP Library Functions - Program Controf Routines

Program Control Routines

OPCODE 104
state = Dsp Lock()

Dsp_Lock should be called before making any other calls <c
the DSP Library. The call is intended to provide a way for
host applications to tell whether or not the DSP is currently
in use. A value of -1 returned by this function informs the
calling application that a call to Dsp_Lock has already been
made by another process. A return value of J means that the
DSP is available and that you are free to make other DSP
calls. The DSP will stay locked until a call to Dsp_Unlock is
made.

OPCODE 105
Dsp Unlock()

Dsp_Unlock should be used in conjunction with the
Dsp_Lock call described above. A call to this routine tells the
system that you are through with the DSP and that it is safe
to allow someone else to begin using it.

OPCODE 106

Dsp Available(xavailable, yavailable)
long *xavailable;
long *yavailable;

Dsp_Available returns to the calling process the amount of
memory which is available to use in the DSP (See previous
discussion on DSP memory map). Upon return from this
call, the longword pointed to by xavailable will contain the
amount of free X memory space left in the DSP and
yavailable will contain the same for Y memory space. Free
memory for both X and Y will always begin at physical
location 0. Remember that since Program space overlays
both X and Y space, the low 64 words of Y memory are used
for interrupt vectors.

©1992, Atari Corporation DSP .13

- Alarl DSP Developer’s Documentation 10/1/92

OPCODE 107

Dsp Reserve(xresexrve, yreserve)
long xreserve;
long yreserve;

Dsp_ Reserve sets aside DSP memory for a DSP” program.
The amount of requested memory should not exceed the
amount given by the Dsp_Available call. This function must
be called to insure that your DSP process is not overwritten
by a DSP subroutine which may be installed in the same are:.
The memory area which is set aside will be preserved until
another Dsp_Reserve call is made. This will allow other
processes to use the DSP program residing in this reserved
space. Xreserve is the amount of X memory space that is
requested and Yreserve represents the same thing in'Y
memory space. A 0 return value indicates that the memory
was successfully reserved. A -1 indicates an error in
reserving the requested memory.

OPCODE 108

status = Dsp LoadProg(file,ability,
buffer)

char *file;

int ability;

int status;

char *buffer

Dsp_LoadProg will load from disk a program to be executed
in the DSP. The program must be in the ascii ".lod" format
and cannot exceed the amount of space reserved by the
Dsp Reserve command. File should point to the name of thi2
program file to be loaded into the DSP. Ability represents
the 16 bit code which describes the funcionality of the given
program. Buffer should point to a block of memory where
the loader can place the DSP code that it generates. The size
of buffer can be calculated by the formula...

* (#of program/data words + (3 * #blocks in the program)).
A O return value indicates a successful launch. A return

value of -1 indicates an error occurred before the file could be
executed.

DsSP 14 ©1992, Atarl Corporation

10/1/92 DSP Library Functions - Prograin Control Routines

OPCODE 109

Dsp_ ExecProg(codeptr, codesize,ability)
chaxr *codeptr;

long codesize;

int ability;

Dsp_ExecProg executes a DSP program which resides in
binary format in memory. This function is much faster than
Dsp_LoadProg since it doesn’t need to read the file into
memory and convert it from ascii to binary format. Codeptr
should point to a block of binary dsp code. Codesize number
of DSP words will be transferred from this location and
downloaded into the DSP. The ability parameter specitizs
the programs functional ability. Codesize should not exceed
the amount of memory reserved by the Dsp_Reserve call.

OPCODE 110

Dsp ExecBoot (codeptr, codesize, ability)
char *codeptr;
long codesize;
int ability; .
Dsp_ExecBoot will download into the 512 words of internal
DSP memory a bootstrap program. A reset will be
performed on the DSP before the program is loaded. This
program can either run as a program or be used to load a
larger DSP program. Note that this call currently exists for
developmental test purposes only. Only debuggers or
similar programs wanting to take over the entire DSP
system should use this call. Applications should use
Dsp_LoadProg and Dsp_ExecProg instead. Codeptr should
point to a block of binary DSP code. Codesize number of
DSP Words will be transferred from this location and
downloaded into the DSP (See function Dsp_GetWordbize
for a description of a DSP word). Only the first 512 DSP
words of code will be downloaded.

© 1992, Atari Corporation DSP .15

Atarl DSP Developer’s Documentation 10/1/92

OPCODE 111

size = Dsp LodToBinary(file, codeptr)
char *file;
char *ptr;

long size

Dsp_LodToBinary reads in the ".Jod" file whose file name is
given in the variable file. The function will then convert the
file into binary form ready to sent to the Dsp_ExecBoot or the
Dsp_ExecProg function. Codeptr should pointtoa block of
memory which is large enough for the routine to place the
binary code data. The function will return the size of the
program in DSP words. A negative size means that an error
occurred during the conversion process.

OPCODE 112

Dsp_ TriggerHC(vector);
int vector; |

Dsp_TriggerHC will cause a host command which is set
aside for DSP programs to be executed. Only two HC vectors
are available to use by DSP programs. Vectors $13 and $14.
All other Host vectors are used by the system and by DSP
subroutines. Note that when a program is loaded for
execiition, the vector table is overlayed with the system’s
vector table. All other vectors except $13 and $14 will be
overwritten by the system. i

OPCODE 113
ability = Dsp RequestUniqueAbility();

int ability;

Dsp_ RequestUniqueAbility provides a way for host
processes to uniquely identify their own DSP process which
does not fall under a known ability definition. Upon return,
the system will pass back an ability identifier which is unique
to the current system session. Using this value in calls such
as Dsp_InqSubrAbility will allow the host process to check to

DSP .16 © 1992, Atarl Corporation

10/1/92 DSP Library Functions - Program Control Routines

see if your code is still resident in the DSP making it
unnecessary to load it back in.

OFCODE 114
ability = Dsp GetProgaAbility()

int ability;

Dsp_GetProgAbility will return to the calling process the
ability of the program currently residing in the DSP. This
ability value can then be used to determine if another DSP
program needs to be downloaded into the DSP or if the
current DSP program will do the required job.

OPCODE 115
Dsp FlushSubroutines ()

Dsp_FlushSubroutines can be called if the host process needs
more DSP memory than what is returned by Dsp_ Available.
When this call is made, all DSP subroutines currently
residing in the DSP will be removed and the memory will be
returned back to the pool of usable program memeory.
Dsp_Available may then be called again to find out how
much memory was returned to the system. Programs should
make an effort to get by with the memory left in the system
without making this call whenever possible. Overall system
performance can be greatly enhanced if frequently called
DSP code can be left in the DSP instead of having to
repeatedly download them.

OPCODE 116

handle = Dsp lLoadSubroutine(ptr, size,
ability);

char *ptr;

long size;

int ability;

Dsp_LoadSubroutine will install a DSP subroutine into the

system to be executed at a later time. Ptr must point to ¢

@1992, Atari Corporation DSP .17

‘Atari DSP Developer’s Documentation 13/:7/32

block of DSP subroutine code. This code must meet the "DSP
subroutine" requirements as explained in an earlier section of
this document. The size of this subroutine as well as its
ability are reported in the remaining 2 variables.
Dsp_LeoadSubroutine will return a positive handle if the
subroutine was installed without problems. A zero handle
will be returned if the system was not able to install the
subroutine. The subroutine will remain resident in the D5P
until all of the subroutine slots have been filled and it is
replaced by another subroutine. It may also be removed if a
process makes a Dsp_FlushSubroutine call.

OPCODE 117

handle = Dsp_ IngSubrAbility(ability);
int ability;

int handle;

Dsp_IngSubrAbility will return the handle of an installed
subroutine if the subroutine’s ability matches the ability
passed into the routine. By finding a subroutine which
already exists on the DSP (whether or not the process is the
one that installed it) the calling process will save the time
taken to download it to the DSP. If the system does not find
a DSP subroutine whose ability matches the requested one, a
zero handle will be returned. In that case it would be
necessary for the calling process to use the
Dsp_LoadSubroutine call to install their own subroutine.

OPCODE 118

status = Dsp RunSubroutine(handle};
int handle;

Dsp_RunSubroutine will execute a DSP resident subroutine
identified by the given handle. Before this call can be made
the subroutine must be identified through either a
Dsp_IngSubrAbility call or a Dsp_LoadSubroutine call. The
status which is returned from the call lets the calling process
know if the DSP subroutine was properly launched. A

DSP .18 ©1992, Atarl Corporatioc:

10/1/92 DSP Library Functions - Program Control Aoutines

negative status reports that an error occurred and that the
process was not launched. A zero return value represents a
successful launch.

OPCODE 119
hf0 ret = Dsp_ HfO(flag)
int flag;

int hfO_ret;

Dsp_ Hf0 will read from or write to bit #3 of the HSR. If flag
is either a zero or a one, the value of flag will be written into
the HSR bit. If flag contains a Ox{fff, the routine will return

into hf0_ret the value of bit #3 in the HSR (either 0 if cleared,
1 if set) without changing its value.

OPCODE 120
hfl ret = Dsp Hfl(flaq)

int flag;
int hfl ret;

Identical to Dsp_HI0 except sets/checks bits for bit #4 of the
HSR.

OPCODE 121
hf2 ret Dsp Hf2()

It

int hf2 ret;

Returns the value of bit #3 in the HCR. Note that this bit can
ondy be read by the host and cannot be set.

OPCODE 122
hf3 ret = Dsp Hf3 ()

int hf3_ret;
Similar to Dsp Hf2 except returns value of bit #4 of the HCR.

@ 1992, Atari Corporation DSP .19

 Atarl DSF Developser’s Documentatlon 10/1/52

OPCODE 125
st7;.tus = Dsp_ HStat ()

char status;

Dsp_Hstat returns the value of the DSP’s ISR port. This call
enables the calling process to know whether or not the host
port is ready to transmit or receive data. Please refer to the
DSP56000 Users manual for a complete

description of the ISR register.

DSpP .20 @ 1992, Atarf Corporation

