Introduction
Welcome

Welcome to the developer support package for the Atari
Falcon030. This kit contains a machine with 16 Megabytes of
RAM (14 Megabytes are used), a harddisk, software on the
harddisk and on floppies, and the documentation package
that you are reading,.

The DSP folder on the harddisk contains the files
ASM56000.TTP, DSPLNK.TTP, CLDLOD.TTP, README and
DSPBIND.H which is the binding needed to use the DSP
Support Routines described in this manual.

Note: Some compiler systems require different binding
structures than used in DSPBIND.H

© 1992, Atarl Corporation intro .1

Introduction 10/1/92

Intro .2 © 1992, Atari Corporation

Overview

From the point of view of an application writer, the most
important thing to realize about the Atari Falcon030 is that it
is an ST compatible TOS machine. This means that software
written to take advantage of the operating system features
via operating system calls of the previous machines will
work without modification. In fact, a great deal of effort was
expended to insure that a large percentage of software that
runs on previous machines will continue to operate.

The hardware changes that the user will see between
the Atari Falcon030 and previous TOS machines involve
improved video and sound abilities.

The video system has the following characteristics:

1) The system supports both VGA and broadcast system
monitor types. For this document, "broadcast type
monitor" means a TV as well as an analog RGB monitor
such as the 5C1224.

2) The number of vertical lines can be either 200 or 400
(240 or 480 on VGA). This is done by using interlace on
broadcast monitors to get 400 lines and doubling each
line on VGA monitors to get 240.

3) The number of horizontal pixels can be approximately
either 640 or 320.

4) The number of bit planes can be either one, two, four or
eight.

5) Characteristics numbered 1-4 can be mixed in any
combination. {(except 320 wide 1-bit plane)

6) The color palette is 262144 in 1, 4 or 8 bit per pixel mode
and 4096 in 2 bit per pixel mode.

7) Overscan is available in all broadcast video modes.
Overscan will multiply the pixel count by 1.2

8) A 16 bit per pixel, true color mode exists that will
operate in all resolutions except 640 pixel wide VGA
mode. All of these modes can be accessed via the GEM
VDI In the case of the true color mode there is no color
palette to allow for changing the color of pixels that

©1992, Atarl Corporation intro .3

Introduction 10/1/92

have already been drawn. The GEM VDI provides 256
virtual pens to use for drawing. These pens act just like
the physical pens in the other modes except that once a
pixel is drawn, it cannot be changed using vs_color().

The sound system has the following components:

1) 56001 Digital Signal Processor

2) DMA sound engine that can playback or record one,
two, three or four 16 bit stereo channels at 12.5,25 or 50
kHz.

3) 16 bit stereo codec allowing both input and output of
sound via built-in headphone and microphone jacks.

4) An external port (DSP) that allows external I/O for a
wide variety of purposes. The details of how these
various components can be used and in what
combinations are given in other documents.

Intro .4 © 1992, Atari Corporation

Atari MultiTOS
User Interface Guidelines

Application Elements

User-friendly GEM applications should provide the user with
a consistent, predictable means of interacting with the
computer. The most popular applications to-date have
always been those that the user feels at home with, because
of general familiarity with other applications that they have
previously used. User interface design is a critical
consideration during product development and should be
well thought out before actually sitting down and laying out
and coding the interface.

The basic elements of a GEM application are the menu bar,
the application’s window (or windows), dialog boxes, alert
boxes, and if the application warrants them, toolbox
windows. GEM applications may optionally install their
own desktop background, which is swapped out by the AES
to reflect the foreground application.

The Menu Bar

Applications should normally consist of a MENU BAR,
which will generally have the titles from left to right,
"Prgname”, "File", "Edit", and then the additional application-
specific main menu titles. "Prgname" should be replaced
with the application name so that users can quickly identify
which application’s menu bar they are looking at.

For user convenience, the standard entries under "File"
should start with "New", "Open...", followed by other start-
oriented operations, then in the next section of the menu,
"Close", "Save", "Save as...", and the other application-specific
end-oriented functions. The next section down should be
used for other file operations such as "Import..." and
"Export...". This should be followed by the menu items for
printing, usually "Page Setup...", then "Print...". The last item
under "File" should always be "Quit".

©1992, Atari Corporation Guldelines .1

Atari Developer Guidelines 10/1/92

Note -- A menu item must be followed by an
ellipsis to indicate that additional action or input
will be required by the user to carry out the
requested task. For instance, "Save" indicates that
the file will be saved directly, using the current
name, whereas "Save as..." will require the
additional input of a filename.

The "Edit" menu should start with "Undo", then in the next
section, "Cut", "Copy", "Paste”, and "Delete". The rest of the
"Edit" menu is usually application-specific, but the next
menu item, if used should be "Select all".

If applicable, the fourth main menu title should be "Options”,
where menu items such as "Document defaults...”, or
"Preferences..." should appear.

Note -- Menu titles and items should never be
displayed in all uppercase letters. Menu titles
should have one space before and after each title.
There should be one space to the left of menu
items.

Keyboard Equivalents for Menu Items

The standard sytem-wide keyboard equivalents that should
be used system-wide for no other purpose other than those
listed are:

[Control-N}] New
[Control-O] Open
[Control-W] Close
[Control-S] Save
[Control-P] Print
[Control-Q] Quit

[Control-X] Cut
[Control-C}] Copy
[Control-V] Paste
[Control-A] Select all

Guidelines .2 © 1992, Atari Corporation

10/1/92 Atart MultiTOS User Interface

[Control-F] Find
[Control-H] Replace
[Control-G] Find next

[Delete] Delete
[Undo] Undo
[Help] Invoke help

The [Alternate] key is used as a character modifier on many
keyboards to access the necessary extended characters in
applicable countries, and should not be used for keyboard
equivalents in most cases.

Windows

The primary stage for user interaction with the application is
the window. Most of the user input, whether typing,
drawing, or editing, is performed in the confines of windows.
All of an application’s output should be constrained to the
application’s own windows only. See the VDI and AES
manuals for further information regarding window work
areas and clipping rectangles.

Document windows should have at a minimum, a

mover/ title bar so that even if the window is not resizable,
the user can move the window off to the side of the desktop
to have access to other items. The other window elements
are the Info bar, Closer, Sizer, Full box, Sliders, and Arrows.
The general use of these is apparent in the GEM Desktop. It
should be noted that GEM sliders are always proportional so
that the user has constant feedback as to the percentage of
the document that is being viewed.

Operating system calls allow every element of windows to be
set to any color and fill pattern. The user generally selects
these attributes using the Window Colors CPX in the Control
Panel and they should not be altered by an application. The
first 16 color entries should be reserved for use by the system
for drawing elements for which the user has set preferences.

©1992, Atarl Corporation Guidelines .3

Atari Developer Guidelines 10/1/92

Keyboard Equivalents for Cursor Movement
Inside Windows

The system-wide standard for keyboard cursor manipulation
is as follows:

[Control-Left/Right Arrow] Move cursor to beginning
of word to the left/right

[Control-Backspace] Delete from cursor position to start
of next word to the left

[Control-Delete] Delete from cursor position to start of
next word to the right

[Control-ClrHome] Move cursor to beginning of
document

[Shift-ClrHome] Move cursor to end of document
[Shift-Delete] Delete line

Dialog Boxes

Dialog boxes are used for modal input, that is, input that the
user must provide before any further processing may be
done. They are generally used for parameter setting and
other selections that require the undivided attention of the
user. They should never be used for on-going information or
status output, as it would interfere with the normal real-time
user interaction with the system.

Alerts

Alerts should be used to call the user’s attention to
conditions that develop that require immediate user
knowledge. The simplest and most common would be an
alert notifying the user that he is quitting an application
without having saved an open, modified document. Alerts
should also be used to notify the user that a time-consuming
or unalterable function is about to be performed.

Alerts usually have two or three buttons that allow the user
to make some sort of decision based on the information
provided. Alerts with only one button are very frustrating to
the user, as it implies a lack of control over what is about to

Guidelines .4 ©1992, Atari Corporation

10/1/92 Atarl MultiTOS User Interface

happen. The general rule for alerts is to have the "OK" button
to the left of the "Cancel” button. "Cancel" should always be
capitalized, and "OK" is uppercase.

Note -- Buttons in general should be capitalized
words, not all uppercase.

Toolbox Windows

Toolbox Windows are a special class of window that are used
for providing the user with non-modal control or
information. The most common use would be for drawing
tool selection in a paint program, or color selection. The tools
are usually shown as logical groups of icons that the user can
easily associate with their functions. Another use of this type
of window is continual status output, such as the progress of
a file download or recalculation time.

Other General Notes

Applications should make no assumptions on what type of
system the user will have. Be able to deal with any screen
size and color resolution. Use the operating system calls to
determine the screen dimensions and system capabilities to
provide the user with the richest computing experience
possible. Users have grown to expect unsurpassed ease of use
from applications available for Atari computers. If you have
any questions regarding user interface design for Atari
computers, please feel free to call your developer support
representative.

©1992, Atarl Corporation Guidelines .5

Atarl Developer Guidelines 10/1/92

Guidelines .6 © 1992, Atari Corporation

Game/Entertainment
Software Guidelines

The following points should be followed...
e Installable on a harddisk
¢ Should be able to be launched from any video resolution

e The user should be presented with a single executable file;
leave ancillary data files, high score files, etc. inside a
companion folder.

o Allow the user to exit and return to the desktop exactly
where and how s/he left off.

e Use the enhanced joystick for all joystick-oriented games;
CX-40 style controls should not be supported.

o Ideally, where possible, allow the game to be runin a
window; this is well-suited for users that want to play games
in the MultiTOS multi-tasking environment (such as while
downloading a file}.

¢ We expect most users to run in 640x480x256 color mode;
you may want to keep this in mind.

o If you use the O/S call, vr_trn_fm() (transform form), you
can easily convert video data from standard form to the
correct form for the current resolution.

©1992, Atarl Corporation Guidelines .7

Atarl Developer Guldelines 10/1/92

Guidelines .8 ©1992, Atari Corporation

Menu Library Enhancements

Introduction

‘This section describes the additional features of the Menu
Library. All enhancements are backwards compatible with
previous versions of the AES, so existing applications will
continue to work. The new features will work on all
machines with an AES version number of 3.3 and up.

The enhancements to the Menu Library are:
+ Heirarchical menus are now supported.
+ Pop-Up Menus are now supported.
« Scrolling menus are supported for pop-up menus and
submenus. Scrolling for the first level menus of a
menu bar are not supported.

Helrarchical Menus

Heirarchical menus allow a menu item to be the title of a
submenu. Menu items with a right arrow signify that a
submenu is attached. Heirarchical menu items must be of
the type G_STRING. As a rule, the Desk Menu of a menu bar
is not allowed to have submenus.

Two delay values are used to prevent the rapid appearance
and disappearance of submenus:
+ Submenu Display Delay
This delay is used to prevent the rapid flashing of
submenus as the mouse pointer is dragged thru a menu
jtem with an attached submenu. The mouse pointer
must remain within the menu item for the delay period
before the submenu is displayed. The default Submenu
Display Delay is 1/5 of a second. menu_settings can be
used to inquire the current delay value, or to set a new
delay.
» Submenu Drag Delay
This delay is used to prevent the disappearance of the
submenu as the mouse pointer is dragged toward the
submenu from a menu item. The default Submenu
Drag Delay is 10 seconds. menu_settings can be used to
inquire the current delay value, or to set a new delay.

© 1993, Atarl Corporation AES .1

Supplemental AES Documentation 1/25/93

There are several actions that will cancel the Submenu Drag

Delay prematurely:

1) If the mouse pointer is dragged away from the direction of
the submenu, the submenu will disappear.

2) If the mouse pointer remains in the same position after the
drag has begun, the submenu will also disappear.

3) If the user clicks on the left mouse button before the
mouse pointer has entered the submenu, the system will
return to the application the menu item that started the
drag,.

4) If the mouse pointer is dragged vertically into another
menu item, the submenu will disappear.

As a rule, only one level of heirarchical menus should be
used. The actual number of recursions possible is currently
set to 4.

Pop-Up Menus

Pop-up menus are menus that are not in the menu bar. They
can be placed anywhere on the screen and once displayed, act
like any other menu.

Scrolling Menus

When the number of menu items exceeds the menu scroll
height, a scroll indicator appears at the bottom of the menu.
The scroll indicators are displayed as UP or DOWN
ARROWS. Clicking on the bottom arrow will scroll the menu
items. When the last item is shown, the DOWN ARROW
indicator disappears. Note that as soon as the menu started
scrolling, the UP ARROW indicator appeared at the top of the
menu. This is to show that there are now menu items in that
direction. The default menu scroll height is 16.
menu_settings can be used to inquire the current menu scroll
height, or to set a new menu scroll height.

When the user clicks and holds down the left mouse button,
there is a 1/4 of a second delay after one menu item has
scrolled. After the delay, scrolling continues uninterrupted.
This delay is used to prevent rapid scrolling for those just
clicking on the scroll indicators. menu_settings can be used

AES .2 © 1893, Atari Corporation

1/25/93 Menu Library Enhancements

to inquire the current delay, or to set a new delay.

Another delay value is used to slow down the scrolling
speed. This prevents the menu items from scrolling by too
fast. menu_settings can be used to inquire the current delay,
or to set a new delay.

Pop-up menus and submenus might consist of objects other
than G_STRINGS. Such a menu might consist of user-
defined objects that display the system’s fill patterns. The
system cannot scroll non-G_STRING object types. Scrolling
non-G_STRING object types will crash the system. Pop-up
menus and submenus containing non-G_STRING object
types should have its scroll_flag field set to FALSE.

The first-level menus of a menu bar are set to be non-
scrollable. This is due to the parent-child relationships
between the menu titles, menus and menu items. Therefore,
scrolling is applicable only to pop-up menus and submenus.

Using the Extended Menu Library

The existing Menu Library functions are still applicable to
pop-up menus and submenus. The Menu Library will
continue to have the following responsibilities:

 displaying the appropriate menu bar for each active

application

» enabling and disabling menu items

» displaying check marks in menus

* returning a highlighted menu title to its normal state

» displaying context-sensitive menu text

» displaying a desk accessory’s name on the Desk Menu

To use pop-up menus and submenus in one’s application,
create an object tree consisting of a G_BOX and as many
G_STRINGS within the G_BOX as required. The G_BOX is
the menu and the G_STRINGS are the menu items. An object
tree is not limited to just one menu and can contain one, two
or more menus. If a menu item is expected to have a
submenu attachment, the G_STRING must be padded with
blanks to the width of the menu.

© 1993, Atari Corporation AES .3

Supplemental AES Documentation 1/25/93

The object tree does not need to be created with the Resource
Construction Set. It can be created during runtime by the
application. However, the programmer is responsible for
this procedure.

Attaching a submenu to a menu item is done by calling
menu_attach. A submenu is associated to a menu item by
placing a right arrow two characters in from the right edge.
Any characters at that location will be overwritten.

The high-byte of the object’s type field is used to store an
internal Menu ID. The values between 128 and 192 are used
by the new menu sytem.

In addition, Bit 11 of the object’s ObFlag field will be set. Bit
11 is defined as: "#define SUBMENU 0x800’. Applications
using the Extended Object Type AND SUBMENUS should
first check the object’s ObFlag field to see if the value in the
Extended Object Type is a submenu attachment.

Each process can have up to 64 unique submenu attachments.
Attaching the same submenu to multiple menu items counts
as one attachment.

In addition to attaching a submenu, menu_attach can be used
to change or remove a submenu. menu_attach can also be
used to find out what submenu, if any, is attached to a menu
item. menu_istart can be used to set and get the starting
menu item of a submenu.

menu_settings can be used to set the menu delay values and
to set the height at which pop-up menus and submenus will
start to scroll.

AES 4 © 1993, Atari Corporation

1/25/93 Menu Library Enhancements

Using a Menu Bar

When the user chooses an item, the Screen Manager writes a
message to the pipe. Control then returns to the application,
which must read the pipe.

The pipe message contains the following:
« acode indicating that it is a menu message
(MN_SELECTED)
+ the object index of the menu title selected
+ the object index of the menu item chosen
+ the object tree of the menu item chosen (NEW)
« the object index of the parent of the menu item (NEW)

(If the user does not choose an item, or if the user selects a
disabled menu item, the Screen Manager does not write a
message to the pipe.)

After processing the chosen item, the application makes a
Menu Library call to dehighlight the menu title and waits for
the next message to come through the message pipe.

Extended Menu Library Routines

The additions to the Menu Library routines are:

« menu_popup: Displays a menu anywhere on the
screen. Clipping is performed for a standard menu.
Menus with user-defined objects will have to perform
their own clipping.

+ menu_attach: Lets an application attach, change,
remove or inquire about a submenu associated with a
menu item.

s menu_istart: Lets an application set and inquire the
starting menu item of a pop-up menu or submenu

» menu_settings: Lets an application set and inquire the
delay and height parameters of the submenus.

© 1993, Atarl Corporation AES .5

Supplemental AES Documentation 1/25/93

menu_popup and menu_attach use a new structure for
passing and receiving submenu data. The MENU structure is
defined as follows:
typedef struct _menu
{
OBJECT *mn_tree; - the object tree of the menu
WORD mn_menu; -the parent object of the menu items
WORD mn item; - the starting menu item
WORD mn_scroll; - the scroll field status of the menu
0 - The menu will not scroll
10 - The menu will scroll if the
number of menu items exceed
the menu scroll height. The
non-zero value is the object at
which scrolling will begin. This
will allow one to have a menu in
which the scrollable region is
only a part of the whole menu.
The value must be a menu item
in the menu.

menu_settings can be used to
change the menu scroll height.

NOTE: If the scroll field status is !0, the
menu items must consist
entirely of G_STRINGS.

WORD mn_keystate; - The CTRL, ALT, SHIFT Key state
at the time the mouse button was

pressed.
IMENU;

menu_settings uses a new structure for setting and inquiring
the submenu delay values and the menu scroll height. The
delay values are measured in milliseconds and the height is
based upon the number of menu items.

typedef struct _mn_set

{
LONG Display; - the submenu display delay
LONG Drag; - the submenu drag delay

AES .6 © 1993, Atari Corporation

1/25/93 Menu Library Enhancements

LONG Delay; - the single-click scroll delay

LONG Speed; - the continuous scroll delay

WORD Height; - the menu scroll height
IMN_SET;

* Submenu Display Delay:

The delay is used to prevent the rapid flashing of
submenus as the mouse pointer is dragged thru a menu item
with an attach submenu. The default value is 200
milliseconds (1/5th of a second).

* Submenu Drag Delay:

The delay is used to prevent the disappearance of the
submenu as the mouse pointer is dragged toward the
submenu from a menu item. The default value is 10000
milliseconds (10 seconds).

+ Single-Click Scroll Delay:

This is the delay period after one menu item has
initiallly scrolled. After the delay, scrolling continues at the
rate specified by the Continuous Scroll Delay. The delay is
used to prevent rapid scrolling for those just clicking on the
scroll indicators. The default value is 250 milliseconds (
1/4th of a second).

* Continuous Scroll Delay:
This is the delay period after each menu item has
scrolled. The delay is used to slow down the scrolling speed.
The default value is 0 milliseconds.

* Menu Scroll Height:
This value is the height at which a pop-up menu or a
submenu will start to scroll if its scroll field is TRUE. The
default value is 16 menu items.

The following text describe these routines.

© 1993, Atarl Corporation AES.7

Supplemental AES Documentation 1/25/93

MENU_POPUP

Allows an application to display a popup menu anywhere on
the screen. The popup menu may also have submenus. If
the number of menu items exceed the menu scroll height, the
menu may also be set to scroll. menu_settings can be used to
set the height at which all menus will start to scroll.

Parameters:
control(0)
control(1)
control(2)
control(3)
control(4)
int_in(0) =
int_in(1) =
int_out(0) = me_return

wonwono#8 n

addr_in(0) = me_menu
= me_mdata

* me_xpos - the left edge of where the starting menu item
will be displayed

« me_ypos - the top edge of where the starting menu item
will be displayed

« me_return - a coded return message
0 - FAILURE: The data returned by me_mdata is invalid
1 - SUCCESS: The data returned by me_data is valid
FAILURE is returned if the user did not click on an
enabled menu item.

« me_menu - pointer to the pop-up MENU structure. The
structure must be initialized with the object tree of the
pop-up menu, the menu object, the starting menu item
and the scroll field status.

« me _mdata - pointer to the data MENU structure. If
menu_popup returns TRUE, me_mdata will contain
information about the submenu that the user selected.
This includes the object tree of the submenu, the menu
object, the menu item selected and the scroll field status
for this submenu.

AES .8 © 1993, Atari Corporation

1/25/93 Menu Library Enhancements

Sample call to C language binding:

me_return = menu_popup{MENU *me_menu, word me_xpos,
word me_ypos, MENU *me_mdata);

MENU_ATTACH

Allows an application to attach, change, remove or inquire
about a submenu associated with a menu item.

Parameters:
control(0
control(1
control(2)
control(3)
control(4)

) = 37
)

[| T T B |

int_out(0) = me_return

addr_in(0) = me_tree
addr_in(1) = me_mdata

» me_flag - the action to be performed by menu_attach.

The options for me_flag are:

0 Inquire data about the submenu that is associated with
the menu item. The data concerning the submenu is
returned in me_mdata.

1 Attach or change a submenu associated with a menu
item. me_mdata must be initialized by the application.
The data must consist of the object tree of the submenu,
the menu object, the starting menu item and the scroll
field status. Attaching a NULLPTR structure will
remove the submenu associated with the menu item.
There can be a maximum of 64 associations per process.
Bit 11 of the object’s ObFlag will be set if a submenu is
actually attached.

2 Remove a submenu associated with a menu item.
me_mdata should be set to NULLPTR. Bit 11 of the
object’s ObFlag will be cleared.

© 1993, Atarl Corporation AES .9

Supplemental AES Documentation 1/25/93

* me_item - the menu item that the submenu will be
attached to

¢ me_return - a coded return message
0 - FAILURE: the submenu was not attached for
whatever reasons
1 - SUCCESS: the submenu was attached, changed or
removed successfully

* me_tree - the object tree of the menu item that will have
a submenu attach to

« me_mdata - pointer to the MENU structure. The
contents of me_mdata are dependant upon the value of
me_flag:
0 Upon return from menu_attach, me_mdata will
contain the MENU data regarding the submenu
associated with the menu item.
1 me_mdata must be initialized with the new submenu
MENU data. The submenu will be attached to the
menu item - me_item.
2 me_mdata should be set to NULLPTR. The submenu
associated with the menu item will be removed.

Sample call to C language binding:
me_return = menu_attach(word me_flag, object *me_tree,
word me item, MENU *me mdata);

MENU_ISTART

Allows an application to set or inquire the starting menu
item of a submenu that is associated with a menu item. The
submenu is shifted vertically so that the starting menu item
is aligned with the menu item that is associated with this
submenu.

Parameters:
control(0) = 38
control(1) = 3
control(2) = 1
control(3) = 1
control(4) = 0

me

int_in(0) = me_flag

AES .10 © 1993, Atarl Corporation

1/25/93 Menu Library Enhancements

int_in(1)
int_in(2)
int out(0) = me_return
addr_in(0) = me_tree

me_imenu
me_item

« me_flag - the action to be performed by menu_istart
0 Inquire the starting menu item for the submenu
1 Set the starting menu item for the submenu to be
me_item

» me_imenu - the menu object of the submenu that is
either to be set or inquired

« me_item - the starting menu item that is either to be set
or inquired

* me_return - a coded return message
0 - FAILURE: the submenu is not associated with a
menu item. The submenu must be attached via
menu_attach before this call can be made.
>0 - SUCCESS: the starting menu item is currently set to
this value.

» me_tree - the object tree of the menu item that we are
setting or inquiring about

Sample call to C language binding:
me_return = menu_istart(word me_flag, object *me_tree,
word me_imenu, word me_item);

MENU_SETTINGS

Allows an application to set or inquire the submenu delay
values and the menu scroll height value.

Parameters:
control(0) = 39
control(1) =1
control(2) =1
control(3) =1
control(4) = 0

int_in(0) = me_flag
int_out(0) = me_return

© 1993, Atari Corporation AES .11

Supplemental AES Documentation 1/25/93

addr_in(0) = me_values

» me_flag - the action to be taken by menu_settings
0 Inquire the current delay and menu scroll height
values.
1 Set the delay and menu scroll height values

« me_return - always returns 1 (one)

» me_values - pointer to the MN_SET structure.
me_values is dependant upon the value of me_flag:
0 Upon the return of menu_settings, me_values will
contain the current delay and menu scroll height values.
1 me_values must be initialized. The delay and menu
scroll height values will be set to those values found in
me_values. A value set to NIL will be ignored.

Sample call to C language binding;:
me_return = menu_settings(word me_flag,
MN_SET *me_values);

AES Supplemental Documentation

The following text contains documentation supplemental to
the existing AES manual, and clarifications of existing
documentation related to heirarchical submenus and the
menubar.

Supplement to: MN_SELECTED

GEM AES uses this message to notify an application that a
user has selected a menu item.

« word0 =10

« word3 = the object index of the menu title selected

« word4 = the object index of the menu item selected
« word 5,6 = the object tree of the menu item selected

« word7 = the parent object of the menu item selected

Pop-Up Menus

» The button on a dialog box that brings up a pop-up
menu should be shadowed.

AES .12 © 1993, Atarl Corporation

1/25/93 Menu Library Enhancements

« It would be nice if the pop-up menu was shadowed
also.

* While the pop-up menu is displayed, if it has a title, the
title should be inverted.

+ The pop-up menu should be aligned on a byte
boundary. This speeds up the drawing of the menu
considerably.

» The pop-up menu will be shifted vertically in order to
line up the start object with the given coordinates.

« If the menu exceeds the top of the screen, it will be
shifted down.

« No horizontal adjustments will be done to the menu.

Submenus

» Menu items expecting a submenu attachment must be
of type G_STRING.

« Menu items should be padded with blanks to the width
of the menu.

« Menu items expecting a submenu attachment should
not have any keyboard short-cut characters.

+ Submenus will automatically be displayed on a byte
boundary.

» The menu will be shifted vertically to align the start
object with the menu item. In addition, the menu will
be shifted to remain entirely on the screen in the vertical
plane.

+ The submenu will be displayed at the right edge of the
menu item. If the menu extends off the edge of the
screen, the menu will be displayed to the left of the
menu item. If it exceeds the left edge, the menu will be
shifted right a character at a time, until it fits.

+ There can be a maximum of 64 submenu attachments
per process. '

* A menu item with an attached submenu uses the high-
byte of its object type field. Values 128 thru 192 are
used by the submenu menu system.

« A menu item with an attached submenu will have Bit 11
of its object flag field SET.

The bit is defined as: #define SUBMENU 0x800

© 1993, Atari Corporation AES .13

Supplemental AES Documentation 1/25/93

L]

Applications using the Extended Object Type should
check the object’s ObFlag field to see if Bit 11 is SET. If
the bit is SET, the menu item has a submenu attached.
A submenu should not be attached to itself.

Attaching a submenu to different menu items counts as
one attachment. There will only be one scroll flag and
one start object.

As a user interface guideline, there should only be one
level of heirarchical menus. The system currently
allows up to four levels of recursion.

menu_istart works only on submenus attached with
menu_attach.

Menu items with attached submenus cannot have
keyboard shortcuts.

Scrolling Menus

In order to scroll properly, all menu items must be
G_STRINGS. Menus that contain objects other than
G_STRINGS should set the scroll flag to 0.

The first-level menus of a menu bar are not scrollable.
Pop-up menus and submenus with greater than sixteen
items can be scrolled if their scroll flag is set. The
number of items to scroll at can be adjusted with
menu_settings.

If the pop-up menu or submenu is designed to be a
toolbox, (ie: fill patterns), set the scroll flag to FALSE.
Setting the scroll flag to one of the menu items will
initiate scrolling from that menu item if the number of
items exceeds the menu height limit.

One should NOT set the scroll object to the last menu
item of a menu.

Setting the scroll object to a value less than the first
menu item defaults to the first menu item.

Setting the scroll object to a value greater than or equal
to the last menu item defaults to the first menu item.

AES .14 © 1993, Atarl Corporation

1/25/93 Menu Library Enhancements

Structure for Passing Menu Data
typedef struct _menu

{
OBJECT *mn_tree; /* Object tree of the menu */
WORD mn_menu; /* Parent of the menu items */
WORD mn_item; /* Starting menu item */
WORD mn_scrolj; /* scroll flag for the menu */
WORD mn_keystate; /* CTRL, ALT, SHIFT Keystate*/
IMENU;

Structure for the Menu Seitings
typedef struct _mn_set

{
LONG Display; /* The display delay */
LONG Drag /* The drag delay */
LONG Delay; /* The Arrow Delay */
LONG Speed; /* The scroll speed delay */

WORD Height; /* The menu scroll height */
IMN_SET;

WORD menu_popup(MENU *Menu, WORD xpos,
WORD ypos, MENU *MData);
WORD menu_attach(WORD flag, OBJECT *tree,
WORD item, MENU *Menuy);
WORD menu_istart(WORD flag, OBJECT *tree,
WORD menu, WORD item);
WORD menu_settings(WORD flag, MN_SET *Values);

© 1993, Atari Corporation AES .15

Supplemental AES Documentation 1/25/93

AES .16 © 1993, Atari Corporation

Atari Falcon030

Hardware Reference Guide

Version: 2.1
Date: October 1, 1992

Introduction, 3
Summary, 3
Mechanical Specification, 5

Internal Expansion Port, 6
Bus Pinout, 6
Dimension Diagram, 7
Microprocessor Bus Signals, 8
Bus Arbitration Signals, 8-9
Interrupt Signals, 9-10
Clock Signals, 10
Bus Access, 10-11

Video Port, 12
Pinout, 12
Genlock Block Diagrams, 15-16

Digital Signal Processor and Audio Subsystem, 17
Overview, 17
Block Diagram, 18
Communications, 19
Connections, 20
Clock Sources, 20-21 .
Communication Protocols, 21-22
Devices, 22
DMA Input, 23
DMA Output, 23-24
DSP, 24
DSP Memory Map, 25
SSI Interface, 25
Host Port, 26
SC1, 26
DSP Expansion Port, 26-27
General Purpose Bits, 27
DSP SSI Interface, 28
External Serial Output Channel, 28-29
External Serial Input Channel, 30
External Master Clock, 30

© 1992, Atari Corporation Hardware .1

Atari Falcon030 Hardware Reference Guide 10/1/92

CODEC, 30

16-bit Stereo DAC, 30-31
Stereo Headphone Jack, 31-32
Internal Loudspeaker, 32
16-bit Stereo ADC, 32

Stereo Microphone Jack, 33-34

Parallel Port, 34
Pinout, 34

Serial Port, 35
Pinout, 35

Hardware .2 © 1992, Atarl Corporation

10/1/92 introduction

Introduction

The Atari Falcon030 is a new generation of Atari TOS-
compatible computers. It is based around a Motorola 68030
32 bit microprocessor and includes an optional Motorola
68881 /2 Floating point coprocessor, a 16MHz - 16 bit
BLiTTER, and a 32 MHz Motorola 56001 Digital Signal

Processor.

The Atari Falcon030 hardware specification can be
summarized as follows:

CPU: 68030, 16MHz

FPU: Socket for optional 68881 or 68882 running at 16 MHz.
RAM: Custom module. 1 to 16 MBytes of RAM.

ROM: 512 KBytes.

BLiTTER: Graphics coprocessor running at 16MHz.

qukﬂ: Non-Overscan Overscan
Horizontal 320 384
640 768
Vertical 200 240
400 480

Bit Planes Colors Palette

- ki e

ST Low-res 4 16 4,096

ST Med-res 2 4 4,096

ST High-res 1 2 4,096

Atari Falcon(030 8 256 262,144
4 16 262,144
1 2 262,144
16 65536 N/A

All modes can also be Genlocked, to provide multi-media
capabilities on monitors or Televisions. The true color modes
also directly support overlays.

An on-board RF modulator allows for direct connection to
TVs. Monitor connector allows connection to VGA monitors,
ST monochrome, or color monitors (via an adaptor plug).

© 1992, Atarl Corporation Hardware .3

Atarl Falcon030 Hardware Reference Guide 10/1/92

Horizontal scrolling is supported, compatible with STE.

Sound:

Built in stereo 16-bit Analog to Digital Convertor (ADC).

Built in stereo 16-bit Digital to Analog Convertor (DAC).

Stereo microphone input and stereo headphone output
jacks. Internal speaker (mono).

3 Channel PSG sound (compatible with ST).

8 Channel 16 bit PCM digital record/playback 1/0.

Stereo 8 bit PCM sound (compatible with TT030, STE, and
MSTE).

Digital Audio/DSP connector.

Sophisticated multiplexer connects DSP, Codec, DMA, and

external I/O connector.

DSP: 32MHz Motorola 56K Digital Signal Processor with
32Kx24 zero wait-state SRAM.

I/O:

Parallel port.

Modem/RS232 port.

MIDI in.

MIDI out.

Cartridge port.

SCSI II (50 pin connector) with DMA.

LAN Local area network (compatible with TT030
and MegaSTE).

Joysticks: Two STE compatible enhanced joystick ports
supporting four paddles, a light gun, and up to 21 buttons
each. (See keypad documentation)

FDD: 1.44 Mbyte Floppy Disk Drive.

HDD: Internal optional hard disk drive on IDE bus.
Keyboard: 94/95 key keyboard

Mouse: 100 DPI mouse supplied as standard.

Hardware .4 ©1992, Atarl Corporation

10/1/92 introduction
Other:
Real time clock with battery backed, non-volatile RAM.
Optional internal HDD.
Internal expansion connector.
Mechanical Specification
Connectors
Type Pins Type # Description
Rear panel:
DIN 5 5 Female 1 MIDI in
DIN 5 5 Female 1 MIDI out
DB25 25 Female 1 Parallel port
DB% 9 Male 1 Mcdem / Serial port
SCSI II 50 Female 1 8CS8I II
DB19 19 Male 1 video out / Genlock
Mini-Jack 3 Female 1 Sterao Headphone out
Mini-Jack 3 Female 1 stereo Microphone in
DB26 26 Female 1 DsSP/pigital Audio interface
RCA 2 PFemale 1 RF Modulator
MiniDIN 9 Female 1 LAR
Reset switch
Left Side panel:
custom 40 1 Cartridge port
DB15 15 Male 2 STE compatlble enhanced joysticks
Underside:
DB9 9 Male 2 ST compatibla joystlck/mouse ports
Internal:
Headers 30+50 Male 1 DRAM expansion board
Headers 30+50 Male 1 Internal bus expansion
Header 44 Male 1 Internal IDE connecticn
Header 34 Cable 1 Internal Floppy Disk Drive
Other:

Rechargeable cell on motherboard for battery backed RAM/RTC

Lasts over 10 years
Internal speaker

© 1992, Atari Corporation

Hardware .5

Atari Falcon030 Hardware Reference Guide 10/1/92

Internal Expansion Port

The Atari Falcon030 has a full featured, internal expansion
bus.

J20. 30 pin, dual row, upright male header

Pin# Signal Pin# Signal
1 D14 2 D13
3 D12 4 D1}
5 D10 6 D¢
7 D8 8 D7
9 D6 10 D5
11 D4 12 D3
13 D2 14 Dl
15 Do 16 D15
17 GND 18 GND
19 GND 20 CPUBGO
21 EINT1 22 CPUBGI
23 S00XHZ 24 n/c
25 MFP_IEI 26 MPP_INT
27 BINT3 28 VCC
29 vCcC 30 vcc

J19. 50 pin, dual row, upright male header

Pin# Signal Pin# Signal
1 GND 2 GND
3 BGK 4 AS
5 LDsS 3 uDs
7 RXW 8 DTACK
9 PC2 i0 FCl1
11 FCO 12 BMODE
13 n/c 14 IACK
15 BG 16 BR
17 RESET 18 HALT
19 BERR 20 1PLO
21 IPL1 22 IPL2
23 CPUCLK 24 vcc
25 vCcC 26 A23
27 A22 28 A2l
29 A20 30 aAl9
i1 AlsS 32 Al7
33 Alé6 34 AlS
as Ald 36 Al3
37 al2 38 All
39 AlQ 40 A9
41 A8 42 A7
43 Aé 44 A5
45 A4 46 A3
47 A2 48 Al
4§9 EXPAND 50 n/c

Hardware .6 © 1992, Atari Corporation

Internal Expansion Port

1/19/93

(xvw) w.l_

H—

SJajalWlljiw ul suojsuawip Iy

CCbh 977
- (xvw) s°g (SL¥a—0S0s~-Sd 3vr N/d 1# NId
OGNV ¥OON3A Q31S399NS))
n_v NNOD U3M20S Nid onl/ —GE'2
_ T
_ 20599895089500 I.u.
¥
_ ¥S'T
"
_ SUvr zg
"
)
] Ll 0000000000000000000000CH;
| u| 00000000000000000000¢ o..o..o@/
¥5C /
I# Nid
(1S1va—-Qs06—Sd Ivr N/d
n:m.ﬂwn_w; ONV ¥OON3A G3LS99NS)

2601

NNOD 13MO0S Nid OS

oit

Hardware .7

© 1992, Atari Corporation

Atari Falcon030 Hardware Reference Guide 1/19/93

The internal expansion port essentially includes a 68000
direct microprocessor interface. Since the Atari Falcon030
uses a 68030 microprocessor there are some important
differences from the 68000 bus. In particular, signals such as
UDS, LDS, AS, and DTACK have been synthesized from the
68030 equivalents. In addition, the expansion bus has 16 bit
data and 24 bit address busses.

No signal should ever be connected to more than one
equivalent TTL load. Failure to follow this guideline will
cause the system to become unreliable or fail completely.

Microprocessor Bus Signals

A(23:1) Lower 23 bits of 68030 address bus
D(15:0) Upper 16 bits of 68030 data bus (D(31:16))
UDS, LDS Data Strobes (68000 compatible)

AS Address strobe
DTACK Data Transfer Acknowledge
RXW Read /Write

FC(2:0) Function code (68030 compatible)
RESET Reset (active low)
HALT CPU Halt

Bus Arbitration Signals

BR Wire-Or'ed, active low bus request
BGK Wire-Or’ed, active low bus grant acknowledge
BG Daisy chained, bus grant

CPUBGI Bus grant in, direct from CPU
CPUBGO Bus grant out, to lower priority devices

The signals BR and BGK are wire or’ed together with every
other alternate bus master in the system. The bus masters
are:

Top Priority} 68030 CPU

} Expansion (optional)

| DMA (For SCSI and Floppy disk drive)
| Sound Record

| Sound Playback

{ BLATTER

$

Bottom Priorityl Expansion

Hardware .8 © 1992, Atari Corporation

10/1/92 internal Expansion Port

Expansion port devices can choose where they sit in bus
priority. By using CPUBGI and CPUBGO they will have
priority just below the CPU, but above DMA. Using BG, they
will have lowest priority, just below the BLITTER. Cards
which do not use CPUBGI and CPUBGO, must connect these
two signals together. If no card is installed, a jumper
connects these signals.

Devices sitting at the top of the bus arbitration chain are
intended to be uprocessors or other devices that are capable
of relinquishing to other devices within one or two bus
cycles. If an expansion board wishes to sit at the top of the
chain it must guarantee a maximum response time of 1
microsecond to maintain system integrity. The worst case
device is currently the floppy disk. If the DMA channel
cannot empty its FIFO in time a sector of data will be lost.
(SCSI does not have this problem since SCSI devices are by
their nature buffered). Excessive response times may also
cause Sound DMA to lose words when running in
continuous mode.

To request the bus, a peripheral should pull BR low (with an
open collector output), wait for BG to go low, and then
acknowledge by pulling BGK low (again, with an open
collector output). The conditions under which BGK can be
pulled low can be somewhat complex since there are
multiple alternate bus masters. Designers are urged to
consult the 68030 documentation for a complete description.

Interrupt Signals

EINT1 Active high, level 1 interrupt
EINT3 Active high, level 3 interrupt

MFP_IEI Active low, MFP (level 6) interrupt enable
MFP_INT Active low, Wire-Ored, level 6 interrupt
TIACK Active low, level 6 interrupt acknowledge

IPL(2:0) Active low, CPU interrupt priority level
indicators

©1992, Atari Corporation Hardware .9

Atari Falcon030 Hardware Reference Guide 10/1/92

EINT1 and EINT3 allow peripherals to interrupt at levels 1
and 3 respectively. These signals are decoded and prioritized
by custom logic to generate a processor interrupt.

MFP_INT can be used in conjunction with JACK and
MEFP_IEI to generate a high priority level 6 interrupt. The
peripheral is positioned at a higher priority than the MFP or
DSP (which can also cause level 6 interrupts).

Peripherals should pull MFP_INT low (with an open
collector output) while holding MFP_IEI high to hold off the
MFP from asserting its own interrupt vector. When IACK
goes low together with LDS, the peripheral should put a
vector onto the data bus.

The IPL(2:0) signals must not be driven by peripherals since
they are internally driven by custom logic. They are only
included for devices which may want to monitor these
signals.

Clock Signals

CPUCLK Set to 8MHz at reset, then set to 16MHz by
TOS. This clock is used by the system bus

to synchronize all bus cycles
500KHZ 500KHz fixed clock

Neither of these clocks should be loaded with more than one
TTL type device (or equivalent) under any circumstances.
Excessive loading of these clocks (or any other signals on the
expansion bus) will lead to system unreliability or failure.

Bus Access

Slave Devices/RAM: The address (A23-A1) and the functions
codes (FC2-FCO0) along with AS must be used for decoding.
Devices that require more than 4 CPUCLKS (i.e., DTACK is
not generated before $5) must activate EXPAND by the end
of $3. This allows 1 CPUCLK (62.5ns) from AS until
EXPAND must be valid. It must be held until AS returns
high. EXPAND is a wire-or'ed signal and must be driven
with an open collector output. It can only be driven low, if
AS is low. EXPAND can only be driven for address spaces
that do not conflict with system devices and system RAM.

Hardware .10 ©1992, Atari Corporation

10/1/92 Internal Expansion Port

Bus Masters: For proper operation Bus Masters should
emulate the 68030 timing if BMODE is pulled low. If
BMODE is high, then the Bus Master is emulating a 68000
interface. The system control logic uses the BMODE signal to
determine which edge of the CPUCLK to sample AS on.
BMODE can only change state by an alternate Bus Master
when it owns the bus. An alternate Bus Master will own the
bus if it won arbitration for the bus and then AS is sampled
inactive on two consecutive rising edges of CPUCLK.
BMODE must remain valid for the entire bus cycle and be
stable before AS is active.

Memory Map: Peripheral devices can use addresses in the
range F10000 to FOFFFF (576 Kbytes) and any of the RAM
space which is not occupied by RAM (address below E00000)
and EXPAND.

80 a2 84 8w S8

A3T-A1
FC2-FCO X

- T\
e)

Bus Interface Timing For EXPAND

BaGK \

BMODE \—

Bus Arbitrstion

©1992, Atarl Corporation Hardware .11

Atari Falcon030 Hardware Reference Guide 10/1/92

Video Port

The Atari Falcon030 has a new video port connector. This
connector contains all the signals necessary for connection to
an analog VGA monitor as well as an ST or STE compatible
color or monochrome monitor, In addition, it includes the
signals necessary for external GENLOCK devices including
an external video dot clock, and insertion of external Vsync.
The Atari Falcon030 video connector is a DB19 male. Its
pinout is as follows:

Pin# Signal Pin# Signal

1 Red 11 GND

2 Green 12 Composite video / Composite Sync

3 Blue 13 Hsync

4 Mono/Overlay 14 vsync

5 GND 15 External clock input

6 Red GND 1lé Even-0dd

7 Green GND 17 +12V

8 Blue GND 18 M1

9 Audio out 19 MO

10 GND

o — — . > v o o s S T e AR SO R . e M AU i e s e R ol S D PR S A A G S G . M e S

Pin 4. Mono/Overlay

This pin is a one bit monochrome video output when in 5T-
High resolution (640 x 400). It has levels compatible with the
ST, STE and MegaSTe.

In True color mode this pin represents the same polarity as
bit 5 (the overlay bit) of each pixel:

Bit 15 14 13121110 9 8 7 6 5 4 3 2 1 0

. o i e S S i e G e ok Y T W S A D U e S S S S St S S e e e - —

R R RRRGG GG G X B B BB B

e e e v e R Sl T o i B P . i o e e U e e e B YR L S0 M O S e M S S O M R G P e T

For standardization, we have defined this bit as follows:

Bit 5 Pin 4 Meaning

e . . e i v e kT S A O A S O S Sl s e AL S L Y S S . s S e

0 Low Trangparent (external video)
1 High Overlay {(Atari Falcon030 video)

e o s D R o S P B U G i A i D D e Ul N S e S0 S e G e D D e e S S e e

Hardware .12 ©1992, Atarl Corporation

10/2892 Video Port

|

The overlay bit becomes active one pixel clock period before
analogue RGB:

| External Clock

Pixel Clock

i
i RGB (Pins 1, 2, 3)
¥
'

2 :><: 3

Overlay (Pin 4)

n - —y g — e - o —

: X
1§>:(2><3><4

——e | T —

' Min TYP Max
1 4ms ons 20ns
R,G,B, Propagation Delay 12ns 24ns
Analog Settling Time l4ns

Note that the externally supplied clock (Pin 15) can be one,
two or four times the frequency of the actual pixel clock
used.

Typically this feature will be used to select between the Atari
Falcon030 and externally generated video on a pixel by pixel
basis. It could be called a one bit chroma-key, useful for
overlays and video titling.

Note that the overlay bit is undefined outside of the raster
data area. It is expected that most applications of the overlay
bit will be running in overscan modes where only the data
area is visible.

Pin 9. Audio out

This signal represents the same signal that goes to the
internal speaker except that it cannot be disabled. It has a
level of 1.4V RMS.

© 1992, Ataril Corporation Hardware .13

Atarl Falcon030 Hardware Reference Guide 10/28/92

Pin 12. Composite Sync / Composite Video
On Peritel machines, this pin is Composite Sync. On all other
machines, this pin is Composite Video.

Pin 14. Vsync

This pin can be programmed as an input to the Atari
Falcon030. When it is an input, a low level on Vsync will
hold the vertical timing generator in a reset condition. This
feature is typically used by external Genlocking devices.

Hsync should not be programmed as an input. Horizontal
locking is achieved with a phase locked loop, controlling the
external video clock (pin 15). To avoid contention at reset
time, a resistor should be used in series with the external
Vsync.

Pin 15. External clock input

An external video source can drive a clock input into this pin
synchronous with the external video dot-clock. The Atari
Falcon030 will use this signal as master video clock, when
selected in software.

Internally, this signal is padded with a 68Q resistor and then
pulled high with a 4.7k resistor. This signal should be driven
by a 74HCxx or 74HCTxx type device, with a 50/50 duty
cycle clock between ground and +5V. The maximum
frequency this input can be driven at is 32MHz.

Pin 16. Even-Odd

In interlaced modes, this signal is low on even frames, high
on odd frames.

Pin17. +12V

This voltage level is necessary for Peritel interfaces.
Peripherals can draw up to 100mA on this pin. Itis
internally fused.

Pins 18,19. Monitor select 1,0

These pins are internally pulled high and are read by the
operating system to determine the type of monitor

Hardware .14 © 1992, Atarl Corporation

10/28/92

Video Port

connected. The operating system then uses this information
to set up video timing values suitable for that particular

monitor.

The values assigned are as follows (1 -> +5V, 0 -> Gnd):

MO Monitor type

ST Monochrome

VGA

0
1 ST Color
0
1

— A D WA SO D N YA LD D S I S G G G I S D GG G S S w—

Video In
Composite Video Genlock
N~
Vsync 200
\' Sync ¢ |
< > VVV Stn);)per
Hsync \ Phase | .
7 Detector | >~ H
N2 N2
Extclock —~c s
32MHz | ¢
vco [==
AI(&— Color PLLI—<—%
Color
2 Burst Composite Video g\';ﬂtec?l
B Pixel
Vsync \ Rate
Hsync e.g. MCI378
Overlay
NV
Out to Monitor

© 1992, Atari Corporation

Hardware .15

Atari Falcon030 Hardware Reference Guide 10/28/92

VGA Genlock
in from Reference
VHRGB
Vsync 200 ‘l’v
€ >N\ TYVL
Hsync \ Phase | .
7 Detector {
g
Extclock
N
o ¥
RO Video
Switch
Pixel
Rate
Overlay > \ \ \
Hsync
Vsync
Y
LY
VHRGB
Out to Monltor

Hardware .16 © 1992, Atarl Corporation

10/1/92 DSP and Audio Subsystem

Digital Signal Processor (DSP)
and Audio Subsystem

Overview

The Atari Falcon030 contains a sophisticated digital
processing and audio sub-system...

32 MHz 56001 Digital Signal Processor with 96K bytes of
zero wait-state SRAM.

Eight track, 16-bit digital DMA record channel.

Eight track, 16-bit digital DMA playback channel
(operating in parallel with digital record).

On-board 16-bit stereo DACs, feeding the internal
loudspeaker and headphone jack.

On-board 16-bit stereo ADCs, and stereo microphone jack.

Sophisticated data path matrix between DSP, DMA, Codec
and external connector.

Sample rates up to 50KHz.
Serial data transfer rates up to 1MByte per second.

Loudspeaker or headphones can monitor any stereo channel
of 8 track digital playback data.

External serial record and playback channels connect to
industry standard DACs, ADCs and S/PDIF components
with minimum additional logic.

The block diagram on the following page describes the
Digital processing sub-system.

©1992, Atari Corporation Hardware .17

10/1/92

Atari Falcon030 Hardware Reference Guide

Address Bus
Data Bus
Host
iy FIFO | DMA Record FIFO | DMA Playback
56001
Sst Control Control
i
Multiplexer and Protocol Convertor
_ _ Sample Clock §
25175 320 DAC p—
MHz MHz
1O Interrupt
\”m a External Clock _|||I|'. ADC
| A —
_ DSP Connector Phones| | Mic

PSG

© 1992, Atari Corporation

Hardware .18

10/1/92 DSP and Audio Subsystem

The digital processing sub-system has many features which
make it ideal for audio processing. However, the data being
processed can also be video (images), graphics objects (3-D
image manipulation) or any other general purpose data.

To maintain the maximum flexibility, the Atari Falcon030
provides an extremely general connection system between
these components. All data transfers are in a synchronous
serial format. Any component can talk with any other. Since
some of the components have real time response
requirements, the clocking schemes have also been made
especially general and flexible.

Communlcations

Any two devices in the sub-system can talk with each other.
To allow them to talk you need to connect them together
correctly. This requires several things:

1) Connect the two devices (a receiving device to a source
device)

2) Select the source clock

3) Select the communication protocol (handshake or
continuous)

©1992, Atari Corporation Hardware .19

Atarl Falcon030 Hardware Reference Guide 10/1/92

Connections

There are four devices capable of sending data and four
devices capable of receiving data. To allow any connection
therefore requires a four by four matrix:

SOURCE
DEVICE
EXTERNAL INPUT o o o) r)
CHANNEL N S AN 74 N
DSP TRANSMIT D &4 4 &
DMA PLAYBACK & & 4 2}
L Mic
PSG —<C—— &b 4 35 &
R Mic ADC
o N
+ CBANNEL

RECEIVING DEVICE
DAC

Headphone Speaker

Each receiving device can have its data path connected to any
one source device. Source devices "source” data. For
example, the ADC represents data from the microphone jack
so the ADC is a data source. It can send it’s data to any (or
all) receiving devices. See the "Devices" section for more
details.

Clock Sources

All the data connections shown above, are actually serial data
paths which include a bit clock, data, and synchronization
signal.

There are three possible clock sources in the system:

Internal clock (25.175 MHz)
Internal clock (32 MHz)
External clock

Hardware .20 © 1992, Atari Corporation

10/1/92 DSP and Audlo Subsystem

Each source device must select one of these clocks as its
master clock. The Codec can only use the Internal
25.175MHz, or External clock.

The bit clock is taken from the master clock divided by a
programmable value of 4 to 24 (in increments of 4). The
Sample rate is then the bit rate, divided by 128:

Master Clock pivide Bit Rate Divide Sample Rate
N by N by N\
’ n 7 128 7

Since the bit rate is 128 times the sample rate, there is
room for eight l6-bit samples per sample period.

Master clock Divisor(n) Bit Rate Sample Rate
25.175 MHz 4 6.29375 MHz 49.17 KHz (50KHz)
22.5792 MHz 4 5.6448 MHz 44.1 KHz (CD)
24.576 MHz 4 6.144 MHz 48.0 FKHz (DAT)
32.000 MHz 4 8.000 MHz 62.5 KHz

—— - we ——— — —— o - ——— " S+ d

The internal 25.175 MHz clock is used to support STE
compatible 50KHz, 25KHz, and 12.5KHz sound sample rates.
(Note that the built in DACs do not actually support a
6.25KHz sample rate)

The internal 32 MHz clock is useful since it can be used to
provide an 8 MHz bit rate (or 1 Megabyte per second), which
is the maximum transfer rate of the DSP SSI interface.

The external clock comes from the DSP connector. It can run
up to 32 MHz. Some useful external clock rates are shown
below:

22.5792 MHz gives CD rate of 44.1 KHz

24.576 MHz gives DAT rate of 48.0 KHz

Communication protocols

Data sometimes gets lost. We all do it. Even a piece of
perfectly well designed hardware can do it.

The maximum data rate of the DMA record or playback
channels is 1 Megabyte per second each. Since the FIFOs are
32 bytes deep each sound DMA channel will require bus
access approximately every 32 microseconds.

© 1992, Atari Corporation Hardware .21

Atari Falcon030 Hardware Reference Guide 10/1/92

Unfortunately, poorly written software can create situations
where this access requirement is not met. A combination of
other devices may lock out the bus from sound DMA,
particularly, badly behaved expansion port devices and true
color video.

If the data is sound data and it is not critical, then an
occasional overrun or underrun may be acceptable. If the
data is JPEG video, DSP object code, or any other non
redundant data, then you will want to guarantee it is never
mislaid.

For precisely this purpose our system includes a special
handshaking mode which prevents overrun or underrun.
When in handshaking mode, the data rate can be variable
since timely bus access cannot be guaranteed. This also
means that in handshaking mode there is no concept of a
sample rate, or left and right tracks, or multiple tracks at all.
The data is simply transferred one word at a time as quickly
as the source and receiving devices can communicate.

If timely bus access can be guaranteed it is better to use
continuous mode. Continuous mode should be used for any
real time applications (such as sound playback or record),
and it will generally be more efficient for the DSP since its
interrupt routines can be faster.

Devices

There are a total of four devices in the audio sub-system,
each of which are full duplex. In other words, we actually
have four data sources and four data receivers:

Device bata Source Data Receiver
DMA DMA Playback DMA Record
Codec ADC DAC

DSP DSP Transmit DSP Receive
External External Input External Output

These devices can be connected together in a very flexible
manner (as shown in the matrix under "Connections" earlier
in this section).

Hardware .22 © 1992, Atarl Corporation

10/1/92 DSP and Audio Subsystem

Each device has its own special characteristics, which are
described below.

DMA Input

The DMA input channel provides a fast path to system
memory. Briefly, it includes a 32 byte FIFO on the data path
synchronized with a memory addressing module which can
fill memory in a linear, continuous or looping mode. The
maximum data transfer rate is about one Megabyte per
second.

The data and clock signals to DMA input must be
synchronized. Source devices can send data to DMA input in
either handshaked or non-handshaked modes.

In handshaked mode DMA Input must be the clock source.
It uses a gated clock technique to stop data transmission if its
FIFO becomes full.

In non-handshaked mode, DMA input receives a clock from
the sending device. When its FIFO becomes half full it will
attempt to write it to memory. If it cannot get access to the
system bus in time, data will overflow.

Non-handshaked mode to DMA input is provided simply
because it puts less burden on the sending device. However,
when using it the user must be careful to limit the data
transfer rate to within system bus bandwidth limits,

DMA Output

The DMA output channel provides a fast data channel from
system memory to sub-system devices. It also has its own 32
byte FIFO which helps ensure that it can keep up with the
real time response required by certain devices (such as the
Codec DACs).

Data transfers can be done in either handshaked or non-
handshaked modes. In handshaked mode a gated clock
technique is used together with a flag signal from the
receiving device to prevent overruns or underruns.

©1992, Atari Corporation Hardware .23

Atari Falcon030 Hardware Reference Guide 10/1/92

Non-handshaked mode is normally used for communication
with DACs or other real-time devices. If the system bus
becomes overloaded for any reason with higher priority bus
masters data may be lost in non-handshaked mode.

As usual, the receiving device must be using the same clocks
and protocol as DMA output to ensure correct data transfer.

Digital Signal Processor (DSP)
The Atari Falcon030 includes a Motorola 56001 Digital Signal
Processor. This part offers the following features:
32 MHz operation, yields 96 MOPS.
1024 point complex FFT can be done in 2.07 milliseconds.
24 bit internal and external data paths, yielding 144 dB
dynamic range.
56 bit accumulators.
The following operations can be executed in parallel in one
instruction cycle:
24 x 24 multiply
56 bit addition
Two data moves

Two address pointer updates
Instruction prefetch

1024 x 24 bits of on chip RAM.

512 x 24 bits of on chip ROM used for Mu-Law, A-Law and
four quadrant Sine wave table data.

Hardware .24 © 1992, Atarl Corporation

10/1/92

DSP and Audio Subsystem

DSP Memory Map
In addition to the on-chip RAM and ROMs there are 32K

words of external, zero wait state SRAM.

The memory map is configured as follows:

Program space is one contiguous block of 32K words.

X and Y data space are each separate 16K word blocks.

Both X and Y can be accessed as blocks starting at 0 or 16K.
Program space physically overlaps both X and Y data spaces.

Note that since program space overlaps X and Y space DSP
software must be careful to avoid having program and data
memory corrupt each other. Note that X:0, X:16K and P:16K
are the same physical RAM location, and that Y:0, Y:16K and
P:0 are also at the same physical RAM location.

SEffff
Reserved Reserved Reserved
$7f££
16 K 16 K Overlaps
Shadow Shadow 32 X X memory
$3fLf Program
RAM
16 K) 16 X . overlaps
Externa Externa Y memory
RAM RAM
SO1££f
Internal Internal Internal
RAM/ROM RAM/ROM RAM
$0000
X Memory Y Memory P Memory
SSI Interface

The Atari Falcon030 brings out the six wire 58I port to the

external DSP connector.

© 1992, Atari Corporation

MHardware .25

Atari Falcon030 Hardware Reference Guide 10/1/92

Host Port

Interface with the 68030 host is via the 56001 host port (port
B). Data transfer by the host is via programmed I/0. In
other words, the DSP host port appears in the 68030 memory
map as eight byte locations. Data transfers by the host
should always be conducted through the appropriate
operating system calls (see the Atari Falcon030 software
developer’s guide).

DSP software transfers data to and from the host port in the
usual way (see 56001 DSP User’s Manual). The host can

interrupt the DSP and vice-versa.

SCI

The 56001 three wire SCI port is not implemented in the Atari
Falcon030. DSP software must not rely on the existence of
any of the SCI registers, including the SCI timer, interrupts,
or control and status registers.

Various versions of the Atari Falcon030 may or may not even
include the SCI circuitry!

DSP expansion port

This DB26 female connector includes a variety of signals
designed primarily for the connection of digital sound
devices and modems. It can (and almost certainly will) be
used for a number of other applications such as low cost laser
printers, video digitizers, scanners and so forth.

The pinout is as follows:
DSP Connector, DB26, three row Female:

Pin# Signal Pin# Signal Pin# Signal
1 GPO 10 GND 19 REC_DATA
2 GP2 11 sco 20 R_CLK
3 GPl 12 scl 21 R_SYNC
4 P_DATA 13 sC2 22 EXT_INT
5 P_CLK 14 GND 23 STD
6 P_SYNC 15 SRD 24 SCK
7 n/c 16 GND 25 GND
8 GND 17 +12V 26 EXCLK
9 +12V 18 GND

[P ———————— R PR L et Dl el e el

Hardware .26 ©1992, Atari Corporétlan

10/1/92 DSP and Audio Subsystem

Pin Description:

GP(2:0) I/O General purpose inputs and outputs.
Can be individually set and read

EX_INT 1 General purpose interrupt input

SCO I/O DSP SSI port Pin SCO (PC3), Receive clock
SC1 I/0 DSP SSI port Pin SC1 (PC4), Receive Sync
SC2 I/O DSP SSI port Pin SC2 (PC5), Transmit Sync
SCK I/0 DSP SSI port Pin SCK (PC6), Transmit clock
SRD I/0 DSP SSI port Pin SRD (PC7), Receive Data
STD I/Q DSP SSI port Pin STD (PC8), Transmit data

XO DATA O External Serial Output, serial data
XO CLK O External Serial Output, serial clock
XO_SYNC I/0 External Serial Output, Sync

XI DATA 1 External Serial Input, serial data
XLCLIK O External Serial Input, serial clock
XI_SYNC I/0O External Serial input, Sync

EX CLK I External master clock

+12V- +12V power. Do not draw more than
300mA on this pin.

The signals on this port include several high speed clock and
data lines. It is therefore essential that developers use correct
drive and termination. In general, all signals should be
terminated with a ferrite bead followed by a 68Q resistor in
series. This is the same type of termination used inside the
Atari Falcon030 on all DSP port signals. A ferrite bead
should be chosen that does not begin cutoff until 20MHz to
30MHz. Input signals from the peripheral should be driven
by CMOS devices such as 74HCxx or 74HCTxx.

Total cable length should not exceed 24 inches and we
strongly advise the use of twisted pair cables.

General purpose bits
Three bits are provided for general control purposes. They
can be set, cleared or read as inputs through the operating

system. At reset these three lines are programmed as outputs
and driven low by TOS.

© 1992, Atarl Corporation Hardware .27

Atarl Falcon030 Hardware Reference Guide 10/1/92

DSP SSl interface

These six pins are the SSI port from the Motorola 56001 DSP
chip. The serial clock can operate up to one quarter of the 32
MHz DSP master clock rate, or SMHz.

To use these pins to talk directly with the DSP you need to
take care to avoid contention with the communication matrix
by tri-stating the communication matrix outputs through the
appropriate OS call.

External Serial Output channel

This three wire serial interface can be used to transfer data
from the host computer. It can transfer data from the DSP,
DMA playback channel, or on board analogue to digital
convertor.

Data transfers use either continuous mode or a handshaked
(gated clock) mode:

Signal Continuous Handshaked
XO_DATA Output Output
X0_CLK Output Output
X0_SY¥YNC Output Input

In either mode, data changes on the rising edge of the clock.
Data should be sampled on the falling edge of the clock.

Hardware .28 © 1992, Atari Corporation

1/15/93 DSP and Audio Subsystem

In Continuous mode there are 128 clock cycles per sample
period. XO_SYNC will go high for the first 16 bits of a
sample period and then low for the remaining 112 bits. In
each sample period a maximum of 8 tracks of 16 bit data can
be transferred. Data words are transmitted MSB first, end-
on-end, with no gaps in between them. The number of
words per sample period is determined by the source device.

A typical sample is shown below:
128 Clock Cycles

e !

1 |

! [| 1 [i ICLK

: 1 | ! | l Psyne
I T

! 1 1 i 1 [|

T T U T JE U | DATA

<55 G, D, G LSBUMSB

1 1 H 1 1 1 _‘_:_,_

1 '

IWord 1 {Word 2 Word 16 IWord 1

DATA and SYNC change on rising edges of CLX and should be
sampled on falling sdges of CLK.

In Handshaked mode XO_SYNC becomes an input. The
external device will pull XO_SYNC high, and if the source
device is ready, XO_CLK will become active for 16 cycles (or
one word) together with XO_DATA. XO_SYNC is sampled
by the source device at the end of each word. If XO_SYNC s
high and another word is ready to be sent, XO_CLK and
XO_DATA will become active for another 16 cycles. A
minimum of two clock periods will always be inserted
between data words.

This gated clock technique will prevent overrun or underrun
at either end of the data paths:

elpiaiplisl S iaisis il
1 |
s & & & § 8§ 23 2 = 4 o & ap oo - { SYNC
b O T T S SO S S i
] [}
' lDATA
OO XXX
One Word)

NOTE: SYRC hold time after first rising edge of CLK = Ons

© 1992, Atari Corporation Hardware .29

Atari Falcon030 Hardware Reference Guide 1/15/93

External Serial Input Channel

This three wire serial interface can be used to transfer data to
the host computer. It can transfer data to the DSP, DMA
record channel, or an on board digital to analogue convertor.

Data transfers use either continuous mode or a handshaked
(gated clock) mode:

Signal Continuous Handshaked
XI_DATA Input Input
XI_CLK Output Output
XI_SINC Output Input

In continuous mode it is the responsibility of the external
device to synchronize to the XI_CLK and XI_SYNC outputs.
Data should be changed on the rising edges of XI_CLK since
it will be sampled on the falling edges. XI_SYNC will
identify the start of a frame by going high for the first 16
clock cycles, and then low for the remaining 96 cycles.

In handshaked mode the protocol is basically the same as for
the external serial output channel, except that XI_DATA is an
input. When the external device has no data to send it must
pull XI_SYNC low at least one clock cycle before the end of
the previous sample.

External Master clock

This clock can optionally replace the internal 25.175MHz or
32.0MHz clocks. The maximum frequency allowable is 32
MHz.

CODEC

The Atari Falcon030 on board Codec is a high performance,
16 bit, stereo device. It includes a stereo DAC and stereo
ADC.

16-bit Stereo DAC

The DAC output is directed to the on board loudspeaker
(which can optionally be turned off), to the monitor port (for

Hardware .30 © 1992, Atari Corporation

10/1/92 DSP and Audio Subsystem

monitors which have loudspeakers built in, such as the
SC1224), and the stereo headphone jack on the back panel.

DAC attenuation can be controlled for left and right channels
independently, through operating system calls.

Stereo Headphone Jack

The output port is a voltage drive with a peak voltage level
of 3V, and an RMS level of 2V. It is designed for a peak load
of 0.25W; this means that the load should have an impedance
greater than 32Q.

™ 0.033UF BNC

470P

GND
GND

To help compensate for the poor low-frequency response of
headphones and small speakers, the headphone amplifier has
had a bass-boost circuit added to it which adds about 6dB to
the output level, centered at 100Hz, dropping to a 0dB boost
‘at 1IKHz.

The power level present at the headphones is dependent on
the level in the input signal and the output impedance. If the
input (digital) value is assumed to be a 16-bit value scaled
between +/-1, then power level on the headphones is:

—_ »*
VOUT =3*IN

= (3 *IN) 2 .

P OUT = (3 * IN)</XH;

Where XH is the headphone impedance. For example, for
32Q headphones the peak output power is:

P ..=028%(N

2
OUT MAX

© 1992, Atari Corporation Hardware .31

Atarf Falcon030 Hardware Reference Guide 10/1/92

The output is AC coupled by a 47uF capacitor. This means
that there is a roll-off in the frequency response at low
frequencies. The cut-off point can be approximated as:
— » * .
F-UT.OFF = 1/(2* = * 47uF * XH);
Where XH is the impedance of the headphones. For
example, with 32Q headphones the cut-off is at 105Hz.

Note that the headphone output is a voltage. While the
output is somewhat higher than normal line levels, output
attenuation in the Codec can reduce this without loss of
dynamic range. At the normal "line" impedance of 6002, the
cut-off frequency will be lower; other internal limits keep the
system to a cut-off of about 30Hz.

Internal Loudspeaker

The internal speaker is driven from a boosted op-amp. It is
capable of output levels of 2V RMS (3.5V peak), and can
drive loads as low as 8Q. This means that the RMS output
level is 0.5W. Peak levels will clip at 1.5W.

+12v

LFI47
. 4
3 [N KPN Speaker
+
1 I

2

AN > W o
PNP

1
1

GND

\ !

A

16-bit Stereo ADC

The ADC is connected to the microphone jack on the back

panel. The ADC gain can be controlled through operating
system calls. The PSG signals can optionally be fed to the

ADC input.

Hardware .32 © 1992, Atari Corporation

10/1/92 DSP and Audlo Subsystem

Stereo Microphone Jack
The effective impedance of the microphone port is:

2.15x Ohm, O -~ 30Hz2
0 Ohms >900KHz

At DC, the input appears as a 2.2K resistor to +9V, and a

100K resistor to ground. The actual circuit used is shown

below:
+9V

0o

—W— 22.2!

; | BNC
2 I
- O
+ 1 0.47UP
N

GND

The maximum signal levels to be present at this port depend
to some degree on the input gain set in the Codec. A
"simple" formula is:

_ (10 ~(0.075* N)y /10.
Vaax@ms) = 10)10,

where N is the value (0 to 15) of the input gain.

IMPORTANT! -- A 200k Ohm resistor should be used in
series on each microphone input when connected to a 1V
RMS "Line" level signal (such as the Line Out signals from a
CD player).

© 1992, Atari Corporation Hardware .33

Atari Falcon030 Hardware Reference Guide 10/1/92

Parallel Port

The Atari Falcon030 parallel port has been extended from
previous TOS products, to include two additional signals -
‘Acknowledge’, and “Select’.

The new parallel port now looks like this:
Parallel port. DB25, female.

Pin# Signal Pin# Signal

1 Strobe 14 -

2 Data 0 15 -

3 Data 1 16 -

4 Data 2 17 Select
5 Data 3 18 GND

6 Data 4 19 GND

7 Data 5 20 GND

8 Data 6 21 GND

9 Data 7 22 GND

10 Acknowledge 23 GND
11 Busy 24 GND
12 - 25 GND
13 -

’Acknowledge’ is an input, active low from the printer. Itis
connected to the MFP pin GPIP1.

‘Select’ is an output, normally used to turn a printer on-line,
It is connected to the PSG pin IOA3.

Hardware .34 © 1992, Atari Corporation

10/1/92 Parallel Port

Serial port

The Atari Falcon030 serial port is connected to the 85¢30 SCC
chip (rather than the 68901 MFP as in previous machines).
This is generally more powerful and flexible than the MFP.

Pin# Signal Input/Output

1 DCD Carrier detect i/p
2 RxD Receive data i/p
3 TxD Transmit data o/p
4 DTR Data Terminal ready o/p
5 GND Ground

6 DSR Data set ready i/p
7 RTS Request to send o/p
8 CTS Clear to send i/p
9 RI Ring indicator i/p

e et T e P B S e e T S P e S D D S S S) G G S S S A Gals G AP VS R S Y T b S LA S W s s

All signals are RS232 levels. Every signal except Ring
Indicator is connected to the appropriate 85c¢30 port B pin.

Ring Indicator is compatible with previous machines, and
connected to the MFP pin GPIP6.

©1992, Atari Corporation Hardware .35

Atarl Falcon030 Hardware Reference Guide 10/1/92

Hardware .36 ©1992, Atari Corporation

Video Documentation

We recommend that all screen output be done via the GEM
VDI. This technique allows an application to take advantage
of higher resolutions and greater color capabilities of new
screen modes yet still function in more limited situations. We
do recognize, however, that direct screen output is
something that applications authors are going to want to do.
As a result we are documenting the screen memory
organizations in all modes on the Atari Falcon030.

The 1, 2, 4 and 8 bit per pixel modes are arranged as they are
in an ST, STE or TT. This organization consists of 16 bits of
each plane in adjacent words until all planes are accounted
for.

The 16 bit per pixel (true color) mode is organized as packed
pixels. Each 16 bit word contains all of the information for a

pixel.

Since this mode is a true color mode there is no palette to
convert the data into RGB information for the video system.
The information is encoded in each pixel where the 16 bits
represent RRRRRGGGGGGBBBBB. An overlay mode exists
where the 16 bits represent RRRRRGGGGGXBBBBB. The X

bit is used as an overlay bit.

The video (_VDO) cookie is 0x00000300. This cookie is
provided to developers so that applications that depend on
the exact video specifications can do so. In general it is
preferred for software to use the O.S. inquiry calls to check
for specific abilities of the system.

©1992, Atari Corporation Video .1

Video Documentation 10/1/92

OPCODE 5
WORD Setscreen(long log, long phys,

WORD rez, WORD mode)

Setscreen() has been enhanced to handle the new Falcon

video modes. If you pass a 3 in the ‘rez’ word and a L
modecode in the ‘mode’ word, Setscreen will set that mode , }}5{\ e RN
. . VAN FTCN Ut)/qA biery
Le fA s A he - Set Sonc oo LAl @ MK W 3< Senco . (Mg v “'(
;) , W . R = - Pl -] H PR VI ¥ l (\,
A AN t*x't ATV LI A B O T ool ROALE T e M 7 he - A
pplication programmers are better off using Setscreen() ST |

than VsetMode because Setscreen will handle reallocating the "¢ ¢ecc,
screen and will initialize the VDI for them. The VsetMode() " <le»

call does NOT initialize the VDI with the new mode y; /" TR
information. \ 6 7 *?4.(7

However, VsetMode(-1) should still be used to inquire what

YL
S

vL(i_A; ' (‘ l)

resolution the machine is in before setting a new one. Then
this information should be used to restore the previous
resolution.

OPCODE 88

int vsetmode(int modecode);

The Vsetmode (int modecode) call is used to place the Atari
Falcon030 into a specific video mode. A bit-encoded value
(called a "modecode") is passed to Vsetmode() to set the

mode. Vsetmode() returns the previous mode that was set.

A "modecode" is a bit-encoded value that works as follows:

S{O|P|V|B|N|N|N

Low byte

N » Bits per pixel 4 = 16 BPS 1 = 2 BPS

N » }3=GBPS 0 =1 BPS

N » 2 = 4 BPS

8 » 80 column flag (if set, mode is 80 columns,
otherwise it is a 40 Column mode)

V » VGA flag, VGA monitor mode if set.. otherwise
TV mode.

P » PAL flag, PAL mode if set.. otherwise NTSC.

» Overscan flag / Multiplies both x and y by 1.2

{(Not used in VGA)
ST compatibility flag.. It set, mode used will be
ST compatible. (for ST Low, ST Medium, ST High)

Video .2

© 1992, Atari Corporation

10/1/92 Video Routines

X|X|X|X|X|[X}{X]|F

High Byte
F » Vertical flag. If set, Interlace mode used on a
color monitor, double line used on VGA monitors.
X » Reserved
A few modes are not allowed. 40 column 1 BPS modes are
not supported. 80 column VGA 16 BPS modes are not

supported.

To help make the building of modecode values easier, here is
a table of defines:
#define VERTFLAG 0x100

#define STMODES 0x80
#define OVERSCAN 0x40

#define PAL 0x20
#define VGA 0x10
#define TV 0x0
#define COLS8O 0x08
#define COL40 0x0

#define NUMCOLS

#define BPS16
#define BPSS
#define BPS4
#define BPS2
#define BPS1

O H N W& 9

Using these defines, you can build a modecode for any
possible mode. For example:

For True Color Overscan:
modecode = OVERSCAN|COL40|BPS16;

For ST Medium Compatibility mode on a Color Monitor/TV:
modecode = STMODES |[COLS80 |BPS2;

For ST Low Compatibility mode in PAL on a Color
Monitor/TV: modecode = STMODES |PAL|COL80|BPS2;

For 256 color, 80 column mode on a VGA monitor:
modecode = VGA|COLS80|BPS8;

©1992, Atarl Corporation Video .3

Video Documentation 10/1/92

If you have a modecode and wish to know how many bits

per pixel it has, use the following:

if (modecode & NUMCOLS) == BPS16)
do_something_cool(); » You have true color mode «

The Vsetmode() call will return the previous modecode set.
You must use this value to get back to whatever mode you
were in before you made your Vsetmode call.

A word of warning: Vsetmode() does not provide error
checking on valid modes. It will try to set modes that do not
exist or that will not work on the monitor you are using. Be
careful to set the proper mode for the right monitor!

The defines that are listed above as well as the xbios binding
for Vsetmode() are defined in MODE.H on the distribution
disk.

IMPORTANT NOTES: Vsetmode() does not adjust the video
base address, allocate any memory for the new mode, or
initialize the VDL If you want to do these things, you should
use Vsetscreen().

OPCODE 89

int mon_type(void)

The mon_type() function will return the kind of monitor that
is currently in use. Here are the possible return values:

0 = ST monochrome monitor
1 = ST color monitor

2 = VGA monitor

3 = Television.

OPCODE 91
long VgetSize (WORD mode)

Returns the size of "mode" screen in bytes. Useful for easily
determining the size of buffers to malloc for a given screen
size.

Video .4 ©1992, Atarl Corporation

12/18/92 Video Routines

OPCODE 90
void VsetSync(WORD external)

This will tell the VTG hardware whether or not to use
external sync. The parameter ‘external’ is a bit value defined
as:

00000hve

L)

external clock
v- use external vertical sync
h-- use external horizontal sync

This call only works in Falcon modes, not in compatibility
modes or any four color modes.

OPCODE 93

void VSetRGB(WORD index, WORD count,

long *array)
Set colors by RGB value starting at "index" for "count”
number of times. The RGB value is stored in the array. This
code is called by vs_color() from the VDI. The format for the
array is "xXRGB" where x is not used.

This call is designed primarily for applications (i.e. games)
that need to set large sections of the palette or perhaps the
entire palette at once. If you need to set an individual color,
you should use the VDI vs_color() call.

OPCODE 94

void VgetRGB(word index, WORD count,
long *array)

Get colors from the palette starting at "index" running until
"count". Values are stored in the "array". The format of the
values in array is "xRGB" and x means not used. Again,
applications would be better off using the VDI to read or set
colors (vq_color).

Like VsetRGB(), this call is designed primarily for the use of
application programmers who need to set large banks of the
palette at once.

© 1992, Atari Corporation Video .5

Video Documentation 12/18/92

OPCODE 150

VsetMask (ormask, andmask, overlay)
tf:!g m&:{?ask, andmask; everiays
VsetMask is used to set the mask values used by VDI to
modify the color values computed for vs_color(). The
vs_color() function converts its input to a 16-bit RGB color
value which is bitwise OR’ed with ‘ormask’ and then bitwise
AND’ed with ‘andmask’. This allows the application to set

any color to be transparent (or not) in the 15 bit per pixel true

color W FHW
medes N modeg with genlec K and overd ay:
Nour osmy colen s«?\'
\

The default mask values are andmask=0xFFFF, wAE Us_color
ormask=0x0000. This combination has no effect. set the 22
overlay bit, use ormask=0x0020, andmask=0xffff.”To clear the

the overlay bit, use ormask = 0x0000, andmask=0xffdf. bX sat.

parancter
If the ‘overlay’ walde is non-zero, then the system will be put
into overlay mode. If the ‘overlay’ is zero, then the

system will be taken out of overlay mode.™ parameter

v$-color sl ‘\M"He\

Video .6 © 1992, Atari Corporation

Sound Documentation
Low level Sound calls

The Atari Falcon030 _SND cookie is a bitmap of abilities.

Bit0 PSG Bit3 DSP
Bitl 8-bit DMA Bit4 Connection Matrix
Bit2 16-bit CODEC

_SND = 0x3F

All of the calls return a long value even though only a portion
of the long value maybe useable.

The following three examples illustrate some of the many
possible ways that sound data might be laid out in memory:

One l6-bit stereo track
L | »] & | ® | ..
WORD _ WORD WORD WORD

One 8-bit stereo track
L R L R L R L R .
BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE

Four 16-bit stereo tracks
|rnxo,n|rnxo,n|Tnxl,n|mnxl,n[rnxz,nlTnxz,nlrnxg.nlwnxs,n[rnxo,n] .
WORD WORD WORD WORD WORD WORD WORD WORD WORD

OPCODE 128

long locksnd();
Used as a semiphore to lock the sound system.

RETURNS: 1 Sound system is now locked.
SNDLOCKED (-129)

OPCODE 129

long unlocksnd();
Used to release the sound system for other applications to use.

RETURNS: 0 No Error.
SNDNOTLOCK (-128)

© 1992, Atarl Corporation Sound .1

Sound Documentation

11/10/92

OPCODE 130

long soundcmd(mode,data);

This command is used to get or set the following sound
parameters. If a negative number is used as the input then the
current setting is returned.

MODE OQOPERATION MEANING

0O LTATTEN

INPUT:

RETURNS

1 RTATTEN

RETURNS

2 LTGAIN

INPUT:

RETURNS

3 RTGAIN

RETURNS

Sets the left channel output
Attenuation. Attenuation is
measured in -1.5Db increments.
(int) x00 xxxx LLLL xxxx
Where: LLLL- Attenuation to set.
xxxx- Reserved.
(int) 00 x0o¢ LLLL xxxx
Where: LLLL - Left Attenuation.

Sets the right channel output
Attenuation. Attenuation is
measured in -1.5Db increments.
(int) 00 xxxx RRRR xxxx
Where: RRRR- Attenuation to set.
xxxx- Reserved.
(int) 0 3000x RRRR xxxx
Where: RRRR - Right Attenuation.

Sets the left channel input gain.
Gain is measured in 1.5Db increments.
(int) 0 xxxx LLLL xxxx
Where: LLLL- Gain to set.
xxxx- Reserved.
(int) x000¢ xxxx LLLL xxxx
Where: LLLL - Left Gain.

Sets the right channel input gain.
Gain is measured in 1.5Db increments.
(int) xxxx xxxx RRRR xxxx
Where: RRRR- Gain to set.
xxxx- Reserved.
(int) o0 oxxx RRRR xxxx
Where: RRRR - Right Gain.

Sound .2

© 1992, Atarl Corporation

10/30/92

Low Level Sound Calis

4 ADDERIN

INPUT:

RETURNS:

INPUT:

RETURNS

Set the 16 bit signed adder to receive
it’s input from the ADC, Matrix or
both. The input to this function is a
bitmap where:

Bit

0- (A) ADC
1- (M) Matrix
(int) X000 xxxXx XXXX XXMA

Set the input to the ADC. The input
can either be the left and right
channel of the PSG or the left and
right channel of the microphone. The
input is a bit map where if the bit is
(0) it is 2 microphone input, or if the
bit is a (1) it is a PSG input.
BIT 7 6 5 4 3 2
0o 0 0 0 0 O
Bit

0- Right channel input.
1- Left channel input.
XXXX XXX XxxX XXLR

1 0
L R
(int)

(int)

6 SETPRESCALE Used for compatability. This

INPUT:

RETURNS

prescale value is used when the
DEVCONNECT() internal prescale
value is set to zero.
(int) 0-Invalid

1- Divide by 640

2- Divide by 320

3- Divide by 160

(int) Current divisor value.

© 1992, Atarl Corporation

Sound .3

Sound Documentation 10/30/92

OPCODE 131

long setbuffer(reg,begaddr,endaddr);
This function is used to set the play or record buffers. reg
selects playback or record, while begaddr and endaddr are
the buffers beginning and ending location. The ending
address is the first invalid data location.
(int) reg - (0) Sets playback registers.

- (1) Sets record registers.
(long) begaddr - Sets the beginning address of the buffer.
(long) endaddr - Sets the ending address of the buffer.

RETURNS: 0 No Error.

OPCODE 132

long setmode(mode) ;
This function is used to set record or playback mode. The
modes are as follows:

_MODE OPERATION

(int) O 8 Bit Stereo
(int) 1 16 Bit Stereo
(int) 2 8 Bit Mono

RETURNS: 0 No Error.

OPCODE 133

long settracks(playtracks,rectracks);
This function is used to sets the number of record or
playback tracks. Note these are stereo tracks. When in 8-bit
mono, two samples are read at a time.

(int) playtracks (0-3)
(int) rectracks (0-3)

RETURNS: 0 No Error.

Sound .4 © 1992, Atari Corporation

10/30/92 Low Level Sound Calls

OPCODE 134

long setmontracks (montrack);

This function is used to set the output of the internal speaker
to one of the up to four tracks currently playing. The internal
speaker is only capable of monitoring one track at a time.

(int) montrack (0-3)

RETURNS: 0 No Error.

OPCODE 135

long setinterrupt (src_inter,cause);

This function is used to set which, if any interrupt that will
occur at the end of a frame. If the frame repeat bit is on, this
interrupt is used to allow for double buffering the playing or
recording of sound. Interrupts can come from TimerA or the
MFP i7. '

(int) src_inter (0) for timerA, (1) for MFP i7
(int) cause (0) No interrupt, (1) Play, (2) Record,
(3) Play or Record.

RETURNS: 0 No Error.

OPCODE 136

long buffoper(mode);

This function is used to control the operation of the play or
record buffers in the sound system. The input to this
function is a bitmap. If mode is set to -1 then the current
status of the buffer operation bits is returned.

3 2 1 0
RR RE PR PE

(int) mode BIT 7

6 5
o 0 O

4
0
Where:

RR- Record Repeat (1) on, (0) off
RE - Record Enable (1) on, (0) off

© 1992, Atarl Corporation Sound .5

Sound Documentation 10/30/92

PR - Play Repeat (1) on, (0) off
PE - Play Enable (1)on, (1) off

NOTE: The sound system contains a 32 byte FIFO. When
transferring data to the record buffer, software must check to
see if the record enable (RE) bit was cleared by the hardware.
If the bit was cleared then the FIFO is flushed, if not then
software must flush the FIFO by clearing the record enable
(RE) bit.

RETURNS: 0 No Error.
or Current setting of the buffer operation

bits.

OPCODE 137

long dsptristate(dspxmit,dsprec);
This function is used to tristate the DSP from the data matrix.

(int) dspxmit (0) Tristate, (1) Enable.
(int) dsprec (0) Tristate, (1) Enable.

RETURNS: 0 No Error.

OPCODE 138

long gpio(mode,data);

This is used to communicate over the General Purpose I/0O
pins on the DSP connector. Only the low order three bits are
used. The rest are reserved. This call, depending on the
mode, can be used to set the direction of the I/O bits, read the
bits, or write the bits. At reset these three lines are
programmed as outputs and driven low by TOS.

(int) mode (0) Set I/O direction (1) - read, (2) - write.

(int) data When setting I/ O direction, a setting of
(1) indicates an output bit, where a (0)
indicates an input bit. A write operation
writes the data and a read operation
reads the current state of the GPIO port.

Sound .6 © 1992, Atarl Corporation

10/30/92 Low Level Sound Calls

RETURNS: Value read for mode=1 otherwise 0

OPCODE 139

long devconnect(src,dst,srcclk,prescale,
protocol);

This function is used to attach a source device to any of the

destination devices in the matrix. Given a source device, this

call will attach that one source device to one or all of the

destination devices. This call also sets up the source clock

prescale value and protocol used.

(int) src Source device to connect to one or
several destination devices. Source
devices are:

3- ADC (Microphone/PSG)
2- EXTINP (External Input)
1- DSPXMIT (DSP transmit)
0- DMAPLAY (DMA Playback)

(int) dst A bitmap of destination devices that the
source device will be connected too.

0x8- DAC (Headphone or Internal
speaker)

Ox4- EXTOUT (External out)

0x2- DSPRECV (DSP Receive)

0x1- DMAREC (DMA Record)

(int) srcik The clock the source device will use.
There are three clock sources:

0- Internal 25.175MHz Clock
1- External Clock
2- Internal 32MHz Clock

(int) prescale Clock prescale. The sample rate is the
clock value divided by 256, divided by
the prescale value. These values are N-
1 where N is the actual divisor. The
range of N is from 1 to 12. N greater
than 12 will result in a mute condition.
The sndstatus() command can be used
to reset the codec.

© 1992, Atarl Corporation - Sound .7

Sound Documentation 10/30/92

NOTE: If prescale=0 then the sound
system uses the /1280,/640,/320,/160
compatability mode prescaler.

See soundemdy().

(int) protocol Used to enable or disable handshaking
protocol.
0- Enables handshaking
1- Disables handshaking

RETURNS: 0 No Error.

OPCODE 140

long sndstatus(reset);

This function gets the current status of the codec. The status
is returned in the lower nibble (5SSS). Left (L) or Right (R)
clipping is indicated if it has occured during the A/D
conversion and filtering process.

(int} reset If one (1) resets the sound system. This
is used to clear the overflow status bits
if clipping has occured.

BIT 76 543210
0O 0OLRSSSS

After this call the following conditions are set:

DSP is tristated.

Gain and attenuation is zeroed

Old matrix connections are reset
ADDERIN is disabled

Mode is set to 8 bit stereo (0)

Play and record tracks are set to track 0
Monitor track is set to zero.

Interrupts are disabled.

Buffer operation is disabled (0)

RETURNS: Status 0- No Error.
1- Invalid Control Field (Data still

Sound .8 © 1992, Atari Corporation

10/30/92 Low Level Sound Calls

assumed to be valid).

2- Invalid Sync format. This causes
a mute condition.

3- Serial Clock out of valid range.
This causes a mute condidion.

L- If (1) indicates left clipping is
occurring.

R- If (1) indicates right clipping is
occurring.

OPCODE 141

long buffptr(pointer);

This function returns the current position of the play and
record data buffer pointers. These pointers indicate where
the data is being read / written within the buffers themselves.
This function is also used to determine how much data has
been written to the record buffer. See buffoper().

(struct) *pointer A pointer to a structure of four longs
used to return the play and record
buffer pointers.

Structure

(long)Play buffer pointer.
(long)Record buffer pointer.
(long)Reserved.
(long)Reserved.

RETURNS: 0 No Error

© 1992, Atari Corporation Sound .9

Sound Documentation 10/30/92

Sample Rate Table

The following is a list of clock prescalers and their
approximate sample rates. Note that when setting the
internal codec source clock, only certain clock prescale rates
can be used. The 32Mhz clock can NOT be used by the codec
source clock. Also all clock rates marked with a (*) are
invalid clock prescale rates.

NOTE: If the devconnect() prescale is set to zero (0) then the
TT prescale divisor is used. If the devconnect() prescale is
zero (0) and the setprescale divisor is also set to zero (0) a
mute condition will occur. The setprescale divisor of /1280 is
now invalid.

25.175 Mhz Prescale Table

Prescaler
Value NAME Sample Rate

0o See (NOTE) above.

1 CLK50K 49170HZ

2 CLK33K 33880HZ

3 CLK25K 24585HZ

4 CLK20K 20770HZ

5 CLK16K 16490HZ

6* 14.285KHz (invalid for codec)
7 CLK12K 12292HZ

8* 11.11KHz (Invalid for codec)
9 CLK10K 9834HZ

10* 9.09KHzZ (Invalid for codec)
11 CLK8K 8195HZ

12%* 7 .69KHz (Invalid for codec)
13+* 7.14KHz (Invalid for codec)
14+ 6.66KHz (Invalid for codec)
15+ 6.25KHz (Invalid for codec)

Sound .10 © 1992, Atari Corporation

Joystick/Keypad Matrix

The memory map that follows defines the joystick/keypad
matrix. All of these inputs are read by scanning. You start
the process by writing to FF9202 with the appropriate bit set
low (all others set high). Then FF9200 and FF9202 are read to
see if any bits are low. The button(s) pressed are read off of
the matrix. As an example, FE is written to FF9202 and then
FF9202 is read. Any low bits in FF9202 correspond to the
first column in the table. Only controller 0 is treated in the
table but the matrix for controller 1 is the same. Note that in
the following, "ro" means when read and "wo" means when
written,

FF9200 ==++ —eee —cw- xxxx 0 BUTTON (Button inputs)
bit0 controller 0 pin 6 Pause
bit1 controlter 0 pin 10 FO F1 F2 Option

bit2 controller 1 pin 6
bit3 controller1 pin 10

FF9202 —=—== —==- xxxx xxxx wo JOY (Joystick cutputs)
bit0 controller0 pin 4 --ec--eeeeee X
bit1 controller0pin 3 --------mmemmeoeene- X
bit2 controller 0 pin 2 X
bit3 controller 0 pin 1 X

bit4 controller 1 pin 1
bit6 controller 1 pin 2
bité6 controller1 pin3
bit7 controller 1 pin 4

FFP202 XXXX XXXX ==== m——- ro JOY (Joystick inputs)
bit@ controller 0 pin 4
bit1 controller 0 pin 3
bit2 controller 0 pin 2
bit3 controller0pin 1
bit4 controller 1 pin 1
bit5 controller 1 pin 2
bité controiler1 pin 3
bit 7 controller 1 pin 4
bit8 controiter 0 pin 14
bit? controlter0pin 13
bit 10 controller 0 pin 12
bit 11 controller 0 pin 11
bit 12 controller 1 pin 14
bit 13 controller 1 pin 13
bit 14 controller 1 pin 12
bit 15 controller 1 pin 11

Iroc
- P~ ¥
NI O
WNWO Ik

© 1992, Atarl Corporation Joystick .1

Joystick/Keypad Matrix 10/1/92

Controllers
Joysticks
FFO200 s]
FFS202 CIIIIITIITITITTIT
Paddles

FF9210 MEEEMTTTITT (X Paddle 0)
FF9212 s TTTTTT] (Y Paddie 0)
FF9214 mmmmesmTTTTTT] (X Paddle 1)
FF9216 MEERMEETTTIITTT (Y Paddle 1)

One pair of paddles can be plugged into Joystick O
(Paddle 0). ' A second set can be plugged into Joystick
1 (Paddle 1). The current position of each of the tour
paddles is reported at these locations. The fire buttons
are the same as for the respective joystick. The triggers
for the paddies are read as bits one and two of FF9202

Light Gun / Pen

FF9220 memmmTTTTITITIO (X Position)
FF9222 mmmmm TTTTTITT] (Y Position)

A light gun or pen can be plugged into Joystick 0. The
current position that the gun or pen is pointing to is
reported by these registers.

This pinout is for ports 0 and 1.
Ports 2/3 are on the other

DB15 connector.
1 UPO 6 FIREO 11 UP 1
2 DNO 7 VCC 12 DN 1
3 LTO 8 NC 13 LT
4 RTO 9 GND 14 RT 1
5 PAD QY 10 FIRE 1 15 PAD 0OX

Joystick .2 © 1992, Atari Corporation

Atari DSP
Developer’s Documentation

TOS Host Interface Routines

Communication between applications and the DSP on the
Atari Falcon030 must be done through a set of provided TOS
calls. This "virtualization” of the DSP hardware will insure
compatibility should the hardware be changed in future
machines.

DSP Memory Map

The private RAM that the DSP uses to store data or program
that will not fit into internal resources is supplied by three
32K Static RAMS. This memory appears to the DSP as
follows. Program space is one contiguous block of 32K
words. X and Y data space are each separate 16K blocks.
Both X and Y can be accessed, in the DSP’s map, as blocks
starting at 0 or 16K. Program space physically overlaps both
X and Y data space so DSP software must take this into
account to avoid having program and data memory corrupt
each other. Note that X:0, X:16K and P:16K are the same
location in physical memory and that Y:0, Y:16K and P:0 are
also mapped to the same physical location. System services
will reside at the top of X memory along with DSP
subroutines. DSP subroutine BSS area will take up the top
256 words of both X and Y memory. A flush subroutine call
by the program will regain some of this memory back for the
program. As discussed in the next section, a Dsp_Available
call should always be made to determine the amount of free
ram on the DSP.

DSP Programs

Certain steps must be followed when programming for the
Atari platform. Some of the 32K words of DSP memory is
allocated for system tasks and resident subroutines and is
therefore not available for use by the DSP program. A host
process must therefore make a Dsp_Available call to find out
how much memory is left for its DSP program. If the amount

© 1992, Atari Corporation DSP .1

Atari DSP Developer’s Documentation 10/1/92

is satisfactory, the host process should reserve that memory
area using a Dsp_Reserve call. This call will prevent the
program’s memory from being corrupted by the system. Itis
also necessary for the host process to prevent access to the
DSP by another host process by making a Dsp_Lock call.
This call must come before any other calls to manipulate the
DSP. Doing this will insure that the status of the DSP will
not be changed by someone else while the application is
using it. When the host process is through using the DSP
program it should do a Dsp_Unlock call to allow other
processes to use the DSP. If a call to Dsp_Lock returns a
"DSP busy" value, the host process should wait before
making DSP system calls until a successful Dsp_Lock can
take place. Failure to adhere to these rules will result in
unpredictably bad results when communicating with the
DSP. Before making an unlock call, the host application must
make sure that its DSP process has restored the IPR
(X:$FFFF) and MR to its original state.

DSP Subroutines

The existence of DSP subroutines allow the system to have
multiple DSP processes resident at the same time. This saves
the system the time of loading each program into the DSP
every time it needs to be used. These subroutines will stay
resident in the DSP until they are either pushed out by other
subroutines or they are flushed out by a DSP program
wanting more memory. DSP subroutines are subject to many
more constraints and restrictions than are DSP programs.
Subroutine code must be completely relocatable. When
writing subroutine code, instructions should begin at address
0. When a subroutine is called through a host command, the
subroutine can obtain it’s starting PC through the host port.
This beginning location which is sent by TOS should be read
by the subroutine whether or not it is needed for relocation.
Subroutine size is limited to 1024 DSP words of instructions.
Anything larger would probably be more appropriately
executed as a program. The code will be relocated
somewhere into external DSP ram. Care should be taken to
make any addresses used in the program (end addresses for
do loops for example) relocatable based off of the original

DSP .2 ©1992, Atarl Corporation

10/1/92 TOS Host Interface Routines

program counter. Any initialized data must be declared
within the program space in which it is contained. A block of
X and Y memory has been set aside for a subroutines
undeclared variable space. This area is located in the highest
256 DSP words of memory in both the X and Y memory space
(X:3f00 - X:3fff). This area may be used freely by the
subroutine but since this area is used by all subroutines, it
should not be assumed that the memory will be preserved
the next time the subroutine executes. Host programs must
use the Dsp_Lock function before executing a DSP
subroutine. Since DSP subroutines are executed as interrupts
through host commands sent from the system, they need to
be terminated by an RTI after it has completed execution.

The subroutine should not assume any initial state of the DSP
since its state is determined by previously executed programs
and subroutines and not from a bootstrap. A typical
sequence of calls to execute a subroutine may look like the
following,.

if{iDsp_Lock())

{
ability = Dsp RequestUniqueAbility();

handle = Dsp LoadSubroutine(ptr,size,ability);
status = Dsp_RunSubroutine(handle);
Dsp_DoBlock(data_in,size_in,data_out,size_out);
Dsp_Unlock();

}

A more efficient way of executing the subroutine would be to
first check to see if a subroutine already exists on the DSP
that would satisfy the applications requirements.

if(!Dsp_Lock{))

{
handle = Dsp_InqSubrAbility(ability);
if(handle)
{

status = Dsp_RunSubroutine(handle);
Dsp_DoBlock(data_in,size_in,data_out,size_out);
Dsp_Unlock(};
}
}

© 1992, Atarl Corporation DSP .3

Atari DSP Developer’'s Documentation 10/1/92

Program Abillity

A program’s (and subroutine’s) ability must be reported to
the system when loading the DSP process. This ability is
either a pre-defined ability which has been officially
registered with Atari or a unique ability which was acquired
by a Dsp_RequestUniqueAbility call. This ability can be used
to determine whether the host needs to reload it's DSP
process or whether it can use a process which already exists
on board the DSP. The basic concept behind the host
interface is that DSP programs and subroutines are not
owned by the host application that loaded it. Once loaded,
DSP programs become shared and freely usable by any host
application that wants to use it.

DSP .4 ©1992, Atari Corporation

DSP Library Functions

Data Transfer Routines

OPCODE 96

Dsp_ DoBlock(data_in, size_in, data_out,
size out)

char *data_in;

long size_in;

char *data_out;

long size out;

Dsp_DoBlock will handle block transfers of data between the
host process and the process inside the DSP. Data pointed to
by data_in will be passed to the DSP until size_in number of
DSP words are transferred over (the number of bytes in a
DSP word is returned by the Dsp_GetWordSize call). It is
important to note that no handshaking will occur while the
routine is feeding the data to the DSP. It will be assumed
that for the purpose of this call, the DSP will be able to accept
the data as fast as we can provide it. The call will wait for the
first DSP word to be accepted by the DSP before beginning
transfer of the rest of the buffer. After all of the data has
been transferred to the DSP, Dsp_DoBlock will wait until the
DSP has finished processing the data and is ready to send it
back to the host (when the RXDF bit is set in the ISR register).
At this time, size_out number of DSP words will be read
from the DSP and stored into the buffer pointed to by
data_out. Again, no polling of data ready bits will occur
before data transfer. Also, we will read size_out number of
words into the data_out buffer whether or not that much
data actually exists for transfer from the DSP. If no data is
expected out of the DSP, a zero should be placed in size_out.
Similarly if no input is to be received by the DSP, size_in
should be set to zero. Size_in and size_out are long values
indicating the size of the arrays. Size_in and size_out are
limited to a maximum of 64K.

©1992, Atari Corporation DSP .5

Atari DSP Developer’s Documentation 10/1/92

OPCODE 97

Dsp_BlkHandShake(data_in, size_in,
data_out, size_out)

char *data_in;

long size_in;

char *data_out;

long size_out;

This call is identical to Dsp_DoBlock except that handshaking

takes place during the transfer of the entire buffer. This call

will be slower than Dsp_DoBlock and should only be used

when the routine is expected to send/receive data faster than

the DSP process can accept or send it. Size_in and size_out

are long values indicating the size of the arrays. Size_in and

size_out are limited to a maximum of 64K,

OPCODE 98

Dsp_BlkUnpacked(data_in, size_in,
data_out, size_out)
long *data_in;
long size_in;
long *data_out;
long size_out;
Dsp_BlkUnpacked is another block transfer routine which
works in a similar manner to Dsp_DoBlock. This routine will
work only for TOS versions which return a value of 4 or
smaller for Dsp_GetWordSize. Data_in and data_out are
arrays of 32 bit long words. Size_in and size_out are the
number of longwords in the array and the number of DSP
words to transfer. Data is fetched from the least significant
bytes of the longword and sent to the DSP. Similarly, data
obtained from the DSP is placed into the least significant
bytes of the size_out buffer. For example if
Dsp_GetWordSize returned 3 (24 bits of DSP data). The least
significant 24 bits of each longword would contain DSP data
while the most significant 8 bits would contain something
meaningless. (Note: These 8 bits are not guaranteed to
contain zero. If the calling routine expects this byte to be
cleared, it must mask it off itself). Size_in and size_out are

DSP .6 ©1992, Atarl Corporation

10/1/92 DSP Library Functions - Data Transfer Routines

long values indicating the size of the arrays. Size_in and
size_out are limited to a maximum of 64K.

OPCODE 123

Dsp_BlkWords(data_in, size_in, data_out,
size_out)

long *data_in;

long size_in;

long *data_out;

long size_out;

Dsp_BlkWords takes blocks of signed 16 bit words and sends

them to the DSP. Words are sign extended before they are

transferred. In a similar manner, Dsp_BlkWords takes the

middle and low byte sent from the DSP and places them into

the 16 bits of the output array. Data_in and Data_out are 16

bit integer arrays. Size_in and Size_out are long values

indicating the size of the arrays. Size_in and size_out are

limited to a maximum of 64K.

OPCODE 124

Dsp_BlkBytes(data_in, size_in, data_out,
size_out)

long *data_in;

long size_in;

long *data_out;

long size_out;

Dsp_BlkBytes takes blocks of unsigned chars and sends them

to the DSP. These character values are not sign extended

before being transferred to the dsp. The low byte of the

transfer register is placed into the character array during

output to the host. Data_in and Data_out are 8 bit character

arrays. Size_in and Size_out are long values indicating the

size of the arrays. Size_in and size_out are limited to a

maximum of 64K.

© 1992, Atari Corporation DSP .7

Atari DSP Developer’s Documentation 10/1/92

OPCODE 127

Dsp_MultBlocks (numsend, numreceive,
sendblocks, receiveblocks)

long numsend;

long numreceive;

struct dspblock sendblocks[];
struct dspblock receiveblocks[];

struct dspblock {

int blocktype; /*0= longs

1= signed 16 bit ints

2= unsigned chars*/

long blocksize;

long blockaddr;
} i
Dsp_MultBlocks can be used to send multiple blocks of data
to and from the DSP while using only one trap call. Using
this call will save the overhead of making an XBIOS trap call
for every block that you want to send. The numsend and
numreceive parameters represent the number of dspblock
elements to expect in the input and output arrays.
Sendblocks and receiveblocks are the addresses of the two
dspblock arrays which contain the data to pass to and from
the dsp. A dspblock consists of a block type, a block size and
a block address. The block type lets the operating system
know what type of data is contained in the block (0 = longs,
1 = 16 bit signed ints, 2 = unsigned chars). The block size
indicates the number of elements in the block and the block
address is a pointer to the block of data.

OPCODE 99

Dsp_InStream(data_in, block_size,
num_blocks, blocks_done)

char *data_in;

long block_size;

long num_blocks;

long *blocks_done;

Dsp_InStream will pass data to the DSP from the given
buffer via a DSP interrupt handler. Each time an interrupt

DSP .8 © 1992, Atarl Corporation

10/1/92 DSP Library Functions - Data Transfer Routines

occurs telling the routine that the DSP is ready for more data,
block_size DSP words will be transmitted to the DSP. As
with the block move function, no handshaking will occur
during this process. This routine will continue servicing
interrupts until it has transferred over "num_blocks" number
of blocks to the DSP. At that time the interrupt routine will
tell the DSP to stop sending ready to receive interrupts.
Dsp_InStream will update the long value pointed to by
blocks_done to let the caller know how many blocks have
been transferred over. The calling routine can periodically
check this value to see if transmission has been completed.
This routine allows the calling application to begin
processing another batch of data as the current batch is being
transferred to the DSP. As the routine’s name implies, this
call should be used instead of Dsp_DoBlock when a
continuous stream of data is to be transmitted into the DSP.
If on the other hand, a single large chunk of data needs to be
transferred, it may be more efficient to use Dsp_DoBlock
instead.

OPCODE 100

Dsp_OutStream(data_out, block_size,
num_blocks, blocks_done)

char *data_out;

long block_size;

long num_blocks;

long *blocks_done;

Dsp_OutStream will fill the buffer pointed to by data_out via
a DSP interrupt handler. The call is similar to Dsp_InStream
above except that data is transferred from the DSP to the
buffer at each interrupt. Again, block_size number of DSP
words are transferred at each interrupt until num_blocks
number of blocks has been transferred over. At that time,
blocks_done will be equal to num_blocks informing the
calling process that transmission has stopped.

©1992, Atarl Corporation DSP .9

Atari DSP Developer’s Documentation 10/1/92

OPCODE 101

Dsp IOStream(data_in, data_out,
block_insize,
block_outsize,
num blocks,
blocks_done);

char *data_in;

char *data_out;

long block_insize;

long block_outsize;

long num_blocks;

long *blocks_done;

Dsp_IOStream is a specialized form of the previously
documented stream handlers. This routine makes the
important assumption that every time a block of data is
ready to be transferred from the DSP to the host, the DSP
will at the same time be ready to accept as input another
block of data. By handling both the input to and output from
the DSP in one interrupt handler, the application can save the
overhead of servicing a second interrupt. When
Dsp_lOStream is first called, it "primes the pump" by
sending the first block of data to the DSP. It then installs an
interrupt handler to service "output is ready” interrupts from
the DSP. From that point on, each time an interrupt occurs,
the handler will fetch the block of data from the DSP and also
send a new block of data to the DSP. The variables which are
passed into the function are used in a manner similar to the
other stream processing functions. Data_in and data_out
represent the input and output buffers. Block_insize and
block_outsize represent the size of blocks in DSP words to
pass into and receive from the DSP. Num_blocks is the
number of blocks to transfer and blocks_done points to the
value which keeps track of the number of blocks which have
been transferred.

DSP .10 © 1992, Atarl Corporation

10/1/92 DSP Library Functions - Program Control Routines

OPCODE 126

Dsp_SetVectors(receiver, transmitter)
void (*receiver)();
long (*transmitter)();

Dsp_SetVectors allows the host process to install a function
which is called when an interrupt is received from the DSP.
Receiver should point to a function that the user wants called
when the DSP has sent data to the host process. Transmitter
should point to the routine to be called when the DSP
interrupts requesting data. If transmitter returns a non-zero
long value, the XBIOS portion of the interrupt handler will
send the low three bytes of the longword to the DSP. No
data will be sent if the 32 bit long word which is returned is a
0. (To send back a 0 DSP word, OR in a value into the high
byte of the returned value) If either receiver or transmitter
are OL, the corresponding interrupt will not be enabled. The
host must remove its interrupts by using the
Dsp_Removelnterrupts call.

OPCODE 102

Dsp_RemoveInterrupts(mask);
int mask;

Dsp_Removelnterrupts will stop the DSP from generating
ready to receive or ready to send interrupts to the host. Mask
is an 8 bit mask which represents the interrupt to turn off. 1
= No more interrupts when the DSP has data ready for the
host; 2 = Don’t generate interrupts when the DSP is ready to
receive data from the host; 3 = Remove both types of
interrupts. This call should be made if one of the previously
described stream calls are made and a less than expected
amount of data is passed to or from the DSP thereby not
allowing the interrupt routine to terminate. It should also be
used to remove interrupts installed by a Dsp_SetVectors Call.

© 1992, Atari Corporation DSP .11

Atarl DSP Developer’s Documentation 10/1/92

OPCODE 103
size = Dsp GetWordsSize();

int size;

Dsp_GetWordSize returns the number of bytes which
represents a DSP word in the current system. It is important
for the application to use this routine to determine values
such as buffer size and block size. Buffer sizes for all of the
data transfer routines should be modulo the size returned by
this function. The value returned by this routine may
change in future versions of hardware.

DSP .12 ©1992, Atari Corporation

11/10/92 DSP Library Functions - Program Control Routines

Program Control Routines

OPCODE 104
state = Dsp_ Lock()

Dsp_Lock should be called before making any other calls to
the DSP Library. The call is intended to provide a way for
host applications to tell whether or not the DSP is currently
in use. A value of -1 returned by this function informs the
calling application that a call to Dsp_Lock has already been
made by another process. A return value of 0 means that the
DSP is available and that you are free to make other DSP
calls. The DSP will stay locked until a call to Dsp_Unlock is
made.

OPCODE 105
Dsp_Unlock()

Dsp_Unlock should be used in conjunction with the
Dsp_Lock call described above. A call to this routine tells the
system that you are through with the DSP and that it is safe
to allow someone else to begin using it.

OPCODE 106

Dsp_Available(xavailable, yavailable)
long *xavailable;
long *yavailable;

Dsp_Available returns to the calling process the amount of
memory which is available to use in the DSP (See previous
discussion on DSP memory map). Upon return from this
call, the longword pointed to by xavailable will contain the
amount of free X memory space left in the DSP and
yavailable will contain the same for Y memory space. Free
memory for both X and Y will always begin at physical
location 0. Remember that since Program space overlays
both X and Y space, the low 64 words of Y memory are used
for interrupt vectors.

© 1992, Atarf Corporation DSP .13

Atari DSP Developer’'s Documentation 11/10/92

OPCODE 107

Dsp_Reserve(xreserve, yreserve)
long xreserve;
long yreserve;

Dsp_Reserve sets aside DSP memory for a DSP program.
The amount of requested memory should not exceed the
amount given by the Dsp_Available call. This function must
be called to insure that your DSP process is not overwritten
by a DSP subroutine which may be installed in the same area.
The memory area which is set aside will be preserved until
another Dsp_Reserve call is made. This will allow other
processes to use the DSP program residing in this reserved
space. Xreserve is the amount of X memory space that is
requested and Yreserve represents the same thing in Y
memory space. A O return value indicates that the memory
was successfully reserved. A -1 indicates an error in
reserving the requested memory.

Note: The Dsp_Available and Dsp_Reserve calls are only
implemented to resolve memory conflicts between
programs and subroutines. The calls were not meant to act
as a true memory management system within the DSP.

The Dsp_Available call returns the amount of memory in
DSP ram available for program use that is not currently
being used by subroutines. This available amount will be
returned no matter how much memory is reserved by the
Dsp_Reserve call. This amount will be changed if another
subroutine is loaded. The Dsp_Reserve call is only used to
let the system know if there is room to load another
subroutine. The amount of memory reserved for programs
can be changed by simply making another Dsp_Reserve
call with more or less memory to reserve.

DSP .14 © 1992, Atari Corporation

11/10/92 DSP Library Functions - Program Control Routines

OPCODE 108

status = Dsp_LoadProg(file,ability,
buffer)

char *file;
int ability;
int status;
char *buffer

Dsp_LoadProg will load from disk a program to be executed
in the DSP. The program must be in the ascii ".lod" format
and cannot exceed the amount of space reserved by the
Dsp_Reserve command. File should point to the name of the
program file to be loaded into the DSP. Ability represents
the 16 bit code which describes the funcionality of the given
program. Buffer should point to a block of memory where
the loader can place the DSP code that it generates. The size
of buffer can be calculated by the formula...

3 * (#of program/data words + (3 * #blocks in the program)).
A 0 return value indicates a successful launch. A return
value of -1 indicates an error occurred before the file could be
executed.

OPCODE 109

Dsp_ExecProg(codeptr,codesize,ability)
char *codeptr;

long codesize;

int ability;

Dsp_ExecProg executes a DSP program which resides in
binary format in memory. This function is much faster than
Dsp_LoadProg since it doesn’t need to read the file into
memory and convert it from ascii to binary format. Codeptr
should point to a block of binary dsp code. Codesize number
of DSP words will be transferred from this location and
downloaded into the DSP. The ability parameter specifies
the programs functional ability. Codesize should not exceed
the amount of memory reserved by the Dsp_Reserve call.

© 1992, Atarl Corporation DSP .15

Atarl DSP Developer’'s Documentation 11/10/92

OPCODE 110

Dsp ExecBoot (codeptr, codesize, ability)
char *codeptr;

long codesize;

int ability;

Dsp_ExecBoot will download into the 512 words of internal
DSP memory a bootstrap program. A reset will be
performed on the DSP before the program is loaded. This
program can either run as a program or be used to load a
larger DSP program. Note that this call currently exists for
developmental test purposes only. Only debuggers or
similar programs wanting to take over the entire DSP
system should use this call. Applications should use
Dsp_LoadProg and Dsp_ExecProg instead. Codeptr should
point to a block of binary DSP code. Codesize number of
DSP Words will be transferred from this location and
downloaded into the DSP (See function Dsp_GetWordSize
for a description of a DSP word). Only the first 512 DSP
words of code will be downloaded.

OPCODE 111

size = Dsp LodToBinary(file, codeptr)
char *file;
char *ptr;

long size

Dsp_LodToBinary reads in the ".lod" file whose file name is
given in the variable file. The function will then convert the
file into binary form ready to sent to the Dsp_ExecBoot or the
Dsp_ExecProg function. Codeptr should point to a block of
memory which is large enough for the routine to place the
binary code data. The function will return the size of the
program in DSP words. A negative size means that an error
occurred during the conversion process.

DSP .16 © 1992, Atari Corporation

11/10/92 DSP Library Functions - Program Control Routines

OPCODE 112

Dsp_TriggerHC(vector);
int vector;

Dsp_TriggerHC will cause a host command which is set
aside for DSP programs to be executed. Only two HC
vectors are available to use by DSP programs. Vectors $13
and $14. All other Host vectors are used by the system and
by DSP subroutines. Note that when a program is loaded
for execution, the vector table is overlayed with the system'’s
vector table. All other vectors except $13 and $14 will be
overwritten by the system.

OPCODE 113
ability = Dsp_RequestUniqueAbility();

int ability;
Dsp_RequestUniqueAbility provides a way for host
processes to uniquely identify their own DSP process which
does not fall under a known ability definition. Upon return,
the system will pass back an ability identifier which is
unique to the current system session. Using this value in

- calls such as Dsp_InqSubrAbility will allow the host process
to check to see if your code is still resident in the DSP making
it unnecessary to load it back in.

OPCODE 114
ability = Dsp GetProgAbility()

int ability;

Dsp_GetProgAbility will return to the calling process the
ability of the program currently residing in the DSP. This
ability value can then be used to determine if another DSP
program needs to be downloaded into the DSP or if the
current DSP program will do the required job.

© 1992, Atari Corporation DSP .17

Atarl DSP Developer’s Documentation 10/1/92

OPCODE 115
Dsp_FlushSubroutines()

Dsp_FlushSubroutines can be called if the host process needs
more DSP memory than what is returned by Dsp_Available.
When this call is made, all DSP subroutines currently
residing in the DSP will be removed and the memory will be
returned back to the pool of usable program memory.
Dsp_Available may then be called again to find out how
much memory was returned to the system. Programs should
make an effort to get by with the memory left in the system
without making this call whenever possible. Overall system
performance can be greatly enhanced if frequently called
DSP code can be left in the DSP instead of having to
repeatedly download them.

OPCODE 116

handle = Dsp_LoadSubroutine(ptr, size,
ability);
char *ptr;
long size;
int ability;
Dsp_LoadSubroutine will install a DSP subroutine into the
system to be executed at a later time. Ptr must point to a
block of DSP subroutine code. This code must meet the "DSP
subroutine" requirements as explained in an earlier section of
this document. The size of this subroutine as well as its
ability are reported in the remaining 2 variables.
Dsp_LoadSubroutine will return a positive handle if the
subroutine was installed without problems. A zero handle
will be returned if the system was not able to install the
subroutine. The subroutine will remain resident in the DSP
until all of the subroutine slots have been filled and it is
replaced by another subroutine. It may also be removed if a
process makes a Dsp_FlushSubroutine call.

DSP .18 © 1992, Atarl Corporation

10/1/92 DSP Library Functions - Program Control Routines

OPCODE 117

handle = Dsp_InqSubrAbility(ability);
int ability;

int handle;

Dsp_InqSubrAbility will return the handle of an installed
subroutine if the subroutine’s ability matches the ability
passed into the routine. By finding a subroutine which
already exists on the DSP (whether or not the process is the
one that installed it) the calling process will save the time
taken to download it to the DSP. If the system does not find
a DSP subroutine whose ability matches the requested one, a
zero handle will be returned. In that case it would be
necessary for the calling process to use the
Dsp_LoadSubroutine call to install their own subroutine.

OPCODE 118

status = Dsp_RunSubroutine(handle);

int handle;

Dsp_RunSubroutine will execute a DSP resident subroutine
identified by the given handle, Before this call can be made
the subroutine must be identified through either a
Dsp_InqSubrAbility call or a Dsp_LoadSubroutine call. The
status which is returned from the call lets the calling process
know if the DSP subroutine was properly launched. A
negative status reports that an error occurred and that the
process was not launched. A zero return value represents a
successful launch.

OPCODE 119

hf0_ret = Dsp_HfO0(flag)
int flag;

int hf0_ret;

Dsp_Hf0 will read from or write to bit #3 of the HSR. If flag
is either a zero or a one, the value of flag will be written into
the HSR bit. If flag contains a Oxffff, the routine will return

© 1992, Atari Corporation DSP .19

Atari DSP Developer’s Documentation 11/10/92

into hf0_ret the value of bit #3 in the HSR (either 0 if cleared,
1 if set) without changing its value.

OPCODE 120

hfl _ret = Dsp_Hfl(flag)
int flag;

int hfl_ret;

Identical to Dsp_Hf0 except sets/checks bits for bit #4 of the
HSR.

OPCODE 121
hf2 ret = Dsp_ _Hf2()

int hf2_ret;

Returns the value of bit #3 in the HCR. Note that this bit can
only be read by the host and cannot be set.

OPCODE 122
hf3_ret = Dsp_Hf3()

int hf3_ret;
Similar to Dsp_Hf2 except returns value of bit #4 of the HCR.

OPCODE 125
status = Dsp_ HStat()

char status;

Dsp_Hstat returns the value of the DSP’s ISR port. This call
enables the calling process to know whether or not the host
port is ready to transmit or receive data. Please refer to the
DSP56000 Users manual for a complete

description of the ISR register.

DSP .20 © 1992, Atari Corporation

Motorola DSP Assembler

Introduction

The Motorola DSP Assemblers are programs that process
assembly language source statements written for Motorola’s
family of digital signal processors. The assembler translates
these source statements into object programs compatible with
other Motorola DSP software and hardware products.

Assembly Language

The assembly language provides mnemonic operation codes
for all machine instructions in the digital signal processor
instruction set. In addition, the assembly language contains
mnemonic directives which specify auxiliary actions to be
performed by the assembler. These directives are not always
translated into machine language. The assembly language
enables the programmer to define and use macro instructions
which replace a single statement with a predefined sequence
of statements found in the macro definition. Conditional
assembly also is supported.

Running the Assembler

The general format of the command line to invoke the
assembler is:

DSPASM [options] <filenames>

The breakdown of this command is discussed in the pages
that follow.

DSPASM

The name of the Motorola DSP assembler program
appropriate for the target processor.

For example, for the Motorola DSP56000 processor the name
of the assembler executable is ASM56000.

© 1992, Atari Corporation DSP Tools .1

Atari DSP Programming Tools 1/25/93

[options]

Any of the following command line options. These can be in
any order, but must precede the list of source filenames.
Some options can be given more than once; the individual
descriptions indicate which options may be specified
multiple times. Option letters can be in either upper or lower
case.

Option arguments may immediately follow the option letter
or may be separated from the option letter by blanks or tabs.
However, an ambiguity arises if an option takes an optional
argument. Consider the following command line:

ASM56000 -B MAIN IO

In this example it is not clear whether the file MAIN is a
source file or is meant to be an argument to the -B option. If
the ambiguity is not resolved the assembler will assume that
MAIN is a source file and attempt to open it for reading.
This may not be what the programmer intended.

There are several ways to avoid this ambiguity. If MAIN is
supposed to be an argument to the -B option it can be placed
immediately after the option letter:

ASM56000 -BMAIN 1

If there are other options on the command line besides those
that take optional arguments the other options can be placed
between the ambiguous option and the list of source file
names:

ASM56000 -B MAIN -V 1

An alternative is to use two successive hyphens to indicate
the end of the option list:

ASM56000 -B -- MAIN 1

In this latter case the assembler interprets MAIN as a source
file name and uses the default naming conventions for the -B
option.

DSP Tools .2 © 1992, Atari Corporation

1/25/93 Motorola DSP Assembler

-A

This option indicates that the assembler should run in
absolute mode, generating an absolute object file when the -B
command line option is given. By default the assembler
produces a relocatable object file that is subsequently
processed by the Motorola DSP linker.

-B[<objfil>]

This option specifies that an object file is to be created for
assembler output. <objfil> can be any legal operating
system filename, including an optional pathname. A hyphen
also may be used as an argument to indicate that the object
file should be sent to the standard output.

The type of object file produced depends on the assembler
operation mode. If the -A option is supplied on the
command line, the assembler operates in absolute mode and
generates an absolute object (.CLD) file. If there is no -A
option on the command line, the assembler operates in
relative mode and creates a relocatable object (.CLN) file.

If a pathname is not specified, the file will be created in the
current directory. If no filename is specified, the assembler
will use the basename (filename without extension) of the
first filename encountered in the source input file list and
append the appropriate file type (.CLN or .CLD) to the
basename. If the -B option is not specified, then the
assembler will not generate an object file. The -B option
should be specified only once. If the file named in the -B
option already exists, it will be overwritten. Example:
ASM56000 ~Bfilter main.asm fft.asm
fio.asm

In this example, the files MAIN.ASM, FFT.ASM, and
FIO.ASM are assembled together to produce the relocatable
object file FILTER.CLN.

© 1992, Atarl Corporation DSP Tools .3

Atari DSP Programming Tools 1/25/93

-D<symbol> <string>
This is equivalent to a source statement of the form:
DEFINE <symbol> <string>

<string> must be preceded by a blank and should be
enclosed in single quotes if it contains any embedded blanks.
Note that if single quotes are used they must be passed to the
assembler intact, e.g. some host command interpreters will
strip single quotes from around arguments, The -D<symbol>
<string> sequence can be repeated as often as desired.
Example:

ASM56000 ~-D POINTS 16 prog.asm

All occurrences of the symbol POINTS in the program
PRO.ASM will be replaced by the string “16'.

-F<argfil>

Indicates that the assembler should read Command line
input from <argfil>. <argfil> can be any legal operating
system filename, including an optional pathname. <argfil>
is a text file containing further options, arguments, and
filenames to be passed to the assembler. The arguments in
the file need be separated only by some form of white space
(blank, tab, newline). A semi- colon (;) on a line following
white space makes the rest of the line a comment.

The -F option was introduced to circumvent the problem of
limited line lengths in some host system command
interpreters. It may be used as often as desired, including
within the argument file itself. Example:

ASM56000 ~Fopts.cmd

Invoke the assembler and take Command line options and
source filenames from the command file OPTS.CMD.

DSP Tools .4 © 1992, Atari Corporation

1/25/93 Motorola DSP Assembler

-G

Send source file line number information to the object file.
This option is valid only in conjunction with the -B command
line option. The generated line number information can be
used by debuggers to provide source-level debugging.
Example:

ASM56000 -B -G myprog.asm

Assemble the file MYPROG.ASM and send source file line
number information to the resulting object file MYPROG.CLN

-I<pathname>

When the assembler encounters INCLUDE files, the current
directory (or the directory specified in the INCLUDE
directive) is first searched for the file. If it is not found and
the -1 option is specified, the assembler prefixes the filename
(and optional pathname) specified in the INCLUDE directive
with <pathname> and searches the newly formed directory
pathname for the file.

The pathname must be a legal operating system pathname,
The -1 option may be repeated as many times as desired. The
directories will be searched in the order specified on the
command line. Example:

ASM56000 ~-I\project\ testprog

This example uses IBM PC pathname conventions, and would
cause the assembler to prefix any INCLUDE files not found in
the current directory with the \project\ pathname.

-L <Istfil>

This option specifies that a listing file is to be created for
assembler output. <Istfil> can be any legal operating system
filename, including an optional pathname. A hyphen also
may be used as an argument to indicate that the listing file
should be sent to the standard output, although the listing file
is routed to standard output by default.

© 1992, Atari Corporation DSP Tools .5

Atari DSP Programming Tools 1/25/93

If a pathname is not specified, the file will be created in the
current directory. If no filename is specified, the assembler
will use the basename (filename without extension) of the
first filename encountered in the source input file list and
append .LST to the basename. If the -L option is not
specified, then the assembler will route listing output to the
standard output (usually the console or terminal screen) by
default. The -L option should be specified only once. If the
file named in the -L option already exists, it will be
overwritten. Example:

ASM56000 -L filter.asm gauss.asm

In this example, the files FILTER.ASM and GAUSS.ASM are
assembled together to produce a listing file. Because no
filename was given with the -L option, the output file will be
named using the basename of the first source file, in this case
FILTER. The listing file will be called FILTER.LST.

-M<pathname>
This is equivalent to a source statement of the form:
MACLIB <pathname>

The pathname must be a legal operating system pathname.
The -M option may be repeated as many times as desired.
The directories will be searched in the order specified on the
command line. Example:

ASM56000 -M fftlib/ trans.asm

This example uses UNIX pathname conventions, and would
cause the assembler to look in the fftlib subdirectory of the
current directory for a file with the name of the currently
invoked macro found in the source file.

-O<opt>[,<opt>,...,<opt>]
This is equivalent to a source statement of the form...
OPT <opt>[,<opt>,...,<opt>]

DSP Tools .6 © 1992, Atari Corporation

1/25/93 Motorola DSP Assembler

<opt> can be any of the options that are available with the
OPT directive. If multiple options are specified, they must be
separated by commas. The -O<opt> sequence can be
repeated for as many options as desired.

Example:

ASM56000 -0S,CRE myprog.asm

This will activate the symbol table and cross reference listing
options.

-R<rev>[,<revs,...,<rev>]

Run the assembler without the specified processor revision
level enhancements. This is for backward compatibility so
that the assembler will flag new constructions as illegal.
<rev> can be any of the revision specifiers given below, but
must be appropriate for the target processor. If multiple
revision levels are specified, they must be separated by
commas. The -R<rev> sequence can be repeated for as many
revision levels as desired. Example:

Processor Revision

DSP56000 C, 2
DSP96000 B,1

ASM56000 -RC myprog.asm

Assemble MYPROG.ASM without the DSP56000 Revision C
enhancements.

-V
This option causes the assembler to report assembly progress
(beginning of passes, opening and closing of input files) to
the standard error output stream. This is useful to insure
that assembly is proceeding normally. Example:

ASM56000 -V myprog.asm

Assemble the file MYPROG.ASM and send progress lines to
the standard error output.

© 1992, Atari Corporation DSP Tools .7

Atari DSP Programming Tools 1/25/93

-Z

This option causes the assembler to strip symbol information
from the absolute load file. Normally symbol information is
retained in the object file for symbolic reference purposes.
Note that this option is valid only when the assembler is in
absolute mode via the -A command line option and when an
object file is created (-B option).

Example:

ASM56000 -A -B -Z myprog.asm

Assemble the file MYPROG.ASM in absolute mode and strip
symbol information from the load file created as output.

<filenames>

A list of operating system compatible filenames (including
optional pathnames) . If no extension is supplied for a given
file, the assembler first will attempt to open the file using the
filename as supplied. If that is not successful the assembler
appends .ASM to the filename and attempts to open the file
again, If no pathname is specified for a given file, the
assembler will look for that file in the current directory. The
list of files will be processed sequentially in the order given
and all files will be used to generate the object file and listing.

The assembler will redirect the output listing to the standard
output if the output listing is not suppressed with the IL
option, or if it is not redirected via the -L command line
option described above. The standard cut generally goes to
the console or terminal screen by default, but can be diverted
to a file or to a printer by using the I/O redirection facilities
of the host operating system, if available. Error messages
will always appear on the standard output, regardless of any
option settings. Note that some options (-B, -L) allow a
hyphen as an optional argument which indicates that the
corresponding output should be sent to the standard output
stream. Unpredictable results may occur if, for example, the
object file is explicitly routed to standard output while the
listing file is allowed to default to the same output stream.

DSP Tools .8 ©1992, Atari Corporation

Motorola DSP Linker

Introduction

The Motorola DSP Linker is a program that processes
relocatable object files produced by the Motorola DSP
assemblers, generating an absolute executable file which can
be loaded directly into one of the Motorola DSP simulators,
downloaded to an application development system, or
converted to Motorola S-record format for PROM burning,.
A command line option provides for specification of a base
address for each DSP memory space and logical location
counter (high, low, default). In addition, a memory control
file may be supplied to indicate absolute positioning of
sections in DSP memory as well as physical mappings to
internal and external memory. The linker optionally
generates a map file which shows memory assignment of
sections by memory space and a sorted list of symbols with
their load time values.

Running the Linker

The general format of the command line to invoke the linker
is:

DSPLNK [options] <filenames>

The breakdown of this command is discussed in the pages
that follow.

[options]

Any of the following command line options. These can be in
any order, but must precede the list of source filenames.
Some options can be given more than once; the individual
descriptions indicate which options may be specified
multiple times. Option letters can be in either upper or lower
case.

Option arguments may immediately follow the option letter
or may be separated from the option letter by blanks or tabs.

© 1992, Atari Corporation DSP Tools .9

Atari DSP Programming Tools 1/25/93

However, an ambiguity arises if an option takes an optional
argument. Consider the following command line:

DSPLNK -B MAIN I0

In this example it is not clear whether the file MAIN is an
input file or is meant to be an argument to the -B option. If
the ambiguity is not resolved the linker will assume that
MAIN is an input file and attempt to open it for reading,
This may not be what the programmer intended.

There are several ways to avoid this ambiguity. If MAIN is
supposed to be an argument to the -B option it can be placed
immediately after the option letter:

DSPLNK -BMAIN IO

If there are other options on the command line besides those
that take optional arguments the other options can be placed
between the ambiguous option and the list of input file
names:

DSPLNK -B MAIN -V IO

An alternative is to use two successive hyphens to indicate
the end of the option list :

DSPLNK -B MAIN IO

In this case the linker interprets MAIN as an input file name
and uses the default naming conventions for the -B option.

-B[<objfil>]

This option specifies that an object file is to be created for
linker output. <objfil> can be any legal operating system
filename, including an optional pathname. A hyphen also
may be used as an argument to indicate that the object file
should be sent to the standard output.

If a pathname is not specified, the file will be created in the
current directory. If no filename is specified, or if the -B
option is not present, the linker will use the basename
(filename without extension) of the first filename

DSP Tools .10 © 1992, Atari Corporation

1/25/93 Motorola DSP Linker

encountered in the input file list and append .CLD to the
basename. If the -1 option is present (see below) an explicit
filename must be given. This is because if the linker followed
the default action it possibly could overwrite one of the
existing input files. The -B option should be specified only
once, If the file named in the -B option already exists, It will
be overwritten. Example :

DSPLNK -Bfilter.cld main.cln fft.cln
fio.cln

In this example, the files MAIN.CLN, FFT.CLN, and
FIO.CLN are linked together to produce the absolute
executable file FILTER.CLD.

-F<argfil>

Indicates that the linker should read command line input
from <argfil>. <argfil> can be any legal operating system
filename, including an optional pathname. <argfil> is a text
file containing further options, arguments, and filenames to
be passed to the linker. The arguments in the file need be
separated only by some form of white space (blank, tab,
newline). A semicolon (;) on a line following white space
makes the rest of the line a comment.

The -F option was introduced to circumvent the problem of
limited line lengths in some host system command
interpreters. It may be used as often as desired, including
within the argument file itself. Example:

DSPLNK -Fopts.cmd

Invoke the linker and take command line options and input
filenames from the command file OPTS.CMD.

© 1992, Atari Corporation DSP Tools .11

Atari DSP Programming Tools 1/25/93

-G

Send source file line number information to the object file.

The generated line number information can be used by

debuggers to provide source-level debugging. Example:
DSPLNK -B -G myprog.cln

Link the file MYPROG.CLN and send source file line number
information to the resulting object file MYPROG.CLD.

-1

The linker ordinarily produces an absolute executable file as
output. When the -1 option is given the linker combines the
input files into a single relocatable object file suitable for
reprocessing by the linker. No absolute addresses are
assigned and no errors are issued for unresolved external
references. Note that the -B option must be used when
performing incremental linking in order to give an explicit
name to the output file. If the filename were allowed to
default it could overwrite an existing input file. Example:

DSPLNK -I -B filter.clmn main.cln
fft.cln fio.cln

In this example. the files MAIN.CLN, FFT.CLN, and
FIO.CLN are combined to produce the relocatable object file
FILTER.CLN.

-L<library>

The linker ordinarily processes a list of input files which each
contain a single relocatable code module. If the -L option is
encountered the linker treats the following argument as a
library file and searches the file for any outstanding
unresolved references.

If a module is found in the library that resolves an
outstanding external reference, the module is read from the
library and included in the object file output. The linker
continues to search a library until all external references are
resolved or no more references can be satisfied within the

DSP Tools .12 © 1992, Atari Corporation

" 1/25/93 Motorola DSP Linker

current library. The linker searches a library only once, when
it is encountered on the command line. Therefore, the
position of the -L option on the command line is significant.
Example:

DSPLNK -B filter main fir -Lio

This example illustrates linking with a library. The files
MAIN.CLN and FIR.CLN are combined with any needed
modules in the library IO.LIB to create the file FILTER.CLD.

-M[<mapfil>]

This option indicates that a map file is to be created.
<mapfil> can be any legal operating system filename,
including an optional pathname. A hyphen also may be used
as an argument to indicate that the map file should be sent to
the standard output.

If a pathname is not specified, the file will be created in the
current directory. If no filename is specified, the linker will
use the basename (filename without extension) of the first
filename encountered in the input file list and append .MAP
to the basename. If the -M option is not specified, then the
linker will not generate a map file. The -M option should be
specified only once. If the file named in the -M option
already exists, it will be overwritten. Example:

DSPLNK -M -- filter.cln gauss.cln
In this example, the files FILTER.CLN and GAUSS.CLN are
linked together to produce a map file. Because no filename
was given with the -M option, the output file will be named

using the basename of the first input file, in this case FILTER.
~ The map file will be called FILTER.MAP.

© 1992, Atari Corporation DSP Tools .13

Atari DSP Programming Tools 1/25/93

-N

The linker considers case significant in symbol names. When

the -N option is given the linker ignores case in symbol

names; all symbols are mapped to lower case. Example :
DSPLNK -N filter.cln fft.cln fio.cln

In this example, the files FILTER.CLN, FFT.CLN, and
FIO.CLN are linked to produce the absolute executable file
FILTER.CLD. All symbol references are mapped to lower
case.

-O<mem>[<ctr>][<map>] :<origin>

By default the linker generates instructions and data for the
output file beginning at absolute location zero for all DSP
memory spaces. This option allows the programmer to
redefine the start address for any memory space and
associated location counter.

<mem> is one of the single-character memory space
identifiers (X, Y, L, P). The letter may be upper or lower case.
The optional <ctr> is a letter indicating the high (H) or low
(L) location counters. If no counter is specified the default
counter is used. <map> is also optional and signifies the
desired physical mapping for all relocatable code in the given
memory space. It may be I for internal memory, E for
external memory, R for ROM, A for port A, and B for port B.
If <map> is not supplied, then no explicit mapping is
presumed.

The <origin>is a hexadecimal number signifying the new
relocation address for the given memory space. The -O
option may be specified as many times as needed on the
command line. This option has no effect if incremental
linking is being done (see the -1 option). Example:

DSPLNK -Ope:200 myprog -Lmylib

This will initialize the default P memory counter to hex 200
and map the program space to external memory.

DSP Tools .14 © 1992, Atari Corporation

1/25/93 Motorola USP LinkKer

~-pP<pathname>

When the linker encounters input files, the current directory
(or the directory given in the library specification) is first
searched for the file. If it is not found and the -P option is
specified, the linker prefixes the filename (and optional
pathname) of the file specification with <pathname> and
searches the newly formed directory pathname for the file.
The pathname must be a legal operating system pathname.
The -P option may be repeated as many times as desired.
The directories will be searched in the order specified on the
command line. Example :

DSPLNK -P\project\ testprog

This example uses IBM PC pathname conventions, and
would cause the linker to prefix any library tiles not found in
the current directory with the \protect\ pathname.

-Rf<ctifil>]

This option indicates that a memory control file is to be read
to determine the placement of sections in DSP memory and
other linker control functions. <ctlfil> can be any legal
operating system filename, including an optional pathname.

If a pathname is not specified, an attempt will be made to
open the file in the current directory. If no filename is
specified, the linker will use the base name (filename without
extension) of the first filename encountered in the link input
file list and append .CTL to the basename. If the -R option is
not specified, then the linker will not use a memory control
file. The -R option should be specified only once. Example:
DSPLNK -Rproj filter.cln gauss.cln

In this example, the files FILTER.CLN and GAUSS.CLN are
linked together using the memory file PROJ.CTL.

© 1992, Atari Corporation DSP Tools .15

Atari DSP Programming Tools 1/25/93

-U<symbol>

Allows the declaration of an unresolved reference from the

command line. <symbol> must be specified. This option is
useful for creating an undefined external reference in order
to force linking entirely from a library. Example :

DSPLNK -U start -Lproj.lib

Declare the symbol START undefined so that it will be
resolved by code within the library PROJ.LIB.

-V

This option causes the linker to report linking progress
(beginning of passes, opening and closing of input files) to
the standard error output stream. This is useful to insure
that link editing is proceeding normally. Example :

DSPLNK -V myprog.cln

Link the file MYPROG.CLN and send progress lines to the
standard error output.

-X<opt>[,<opt>,...,<opt>]
The -X option provides for link time options that alter the
standard operation of the linker. The options are described
below. All options may be preceded by NO to reverse their
meaning. The -X<opt> sequence can be repeated for as many
options as desired.
Option Meaning
XC Relative terms from different sections used in an
expression cause an error
RSV Reserve special target processor memory areas
(e.g. DSP96000 DMA)
AEC Check form of address expressions
RO Allow region overlap
ESO Do not allocate memory below ordered sections
ASC Enable absolute section bounds checking

DSP Tools .16 © 1992, Atari Corporation

1/25/93 Motorola DSP Linker

Example:
DSPLNK -XNOXC myprog.asm

This will disable checking of relative terms from different
sections in arithmetic expressions.

-Z

The linker strips source file line number and symbol
information from the output file. Symbol information
normally is retained for debugging purposes. This option
has no effect if incremental linking is being done (see the -1
option). Example:

DSPLNK -Z filter.cln fft.cln fio.cln

In this example, the files FILTER.CLN, FFT.CLN, and
FIO.CLN are linked to produce the absolute object file
FILTER.CLD. The output file will contain no symbol or line
number information.

<filenames>

A list of operating system compatible filenames (including
optional pathnames). If no extension is supplied for a given
file, the linker first will attempt to open the file using the
filename as supplied. If that is not successful the linker
appends .CLN to the filename and attempts to open the file
again. If no pathname is specified for a given file, the linker
will look for that file in the current directory. The list of files
will be processed sequentially in the order given and all files
will be used to generate the object file and map listing.

© 1992, Atari Corporation DSP Tools .17

Atari DSP Programming Tools 1/25/93

DSP Tools .18 © 1992, Atari Corporation

