

COMPUTE!'s
SECOND BOOK OF

ATARI ST

Program Disk
Enclosed

COMPUTEl PublicationsJncS
Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

The following articles were originally published in COMPUTERS Atari STDisk &
Magazine, copyright 1986, COMPUTE! Publications, Inc.: "AstroPanic!," "Encryptor,"
"Crash Analyzer," "Word Count," and "Why C?" (October); "ST-Graph," "File Hider,"
"ST-Shell™", "NEOview," and "Comparing C to BASIC" (December).

The following articles were originally published in COMPUTEl's Atari ST Disk & Maga
zine, copyright 1987, COMPUTE! Publications, Inc.: "Picture Puzzler™," "Desktop
Clock," "File Lister," "Snapshot NEO/DEGAS," "Extended Formatter," and "Choosing a
Compiler" (February); "Laser Chess™," "Desktop Notepad," "Directory Dump," "File
Finder," "Customizing the GEM Desktop," and "The C Programming Environment"
(April).

The following article was originally published in COMPUTE! magazine, copyright 1987,
COMPUTE! Publications, Inc.: "Full-Screen Shell for ST BASIC" (February).

Copyright 1987, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permittedby Sections
107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-098-X

The authors and publisher have made every effort in the preparationof this book to insure the accu
racy of the programs and information. However, the information and programs in thisbook are sold
without warranty, either expressor implied. Neither the authors nor COMPUTE! Publications, Inc.
will be liable for any damagescaused or alleged to be caused directly, indirectly, incidentally, or con
sequentially by the programs or information in this book.

The opinions expressed in this bookare solely thoseof the authorsand are not necessarily those of
COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-
9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Companies,
and is not associated with any manufacturer of personal computers. Atari, Atari 520ST,
Atari 1040ST, ST, ST BASIC, and TOS are trademarks or registered trademarks of Atari
Corporation. Laser Chess, Picture Puzzler, and ST-Shell are trademarks of COMPUTE!
Publications, Inc.

Contents

Foreword v

1. The Games 1
Laser Chess™

Mike Duppong 3
AstroPanic!

Charles Brannon 11

Picture Puzzler™
Douglas N. Wheeler 34

Spanish Castles
Robert S. Geiger 38

ST-GO

Kyle Cordes 43

2. Applications 45
ST-Graph

Michael P. Cohan 47

Desktop Clock
David Plotkin 59

Desktop Notepad
Tim Victor 62

3. Disk Utilities 73
File Hider

David T. Jarvis 75
File Lister

Richard Smereka 80

Directory Dump
Marcos Zorola 87

File Finder

Richard Smereka 92

4. Utilities 97
Encryptor

Douglas N. Wheeler 99
Crash Analyzer

George Miller 102
Word Count: A Writer's Accessory

Tony Roberts 107

ST Shell™
Richard Smereka 110

Snapshot NEO/DEGAS
Philip I. Nelson 125

Extended Formatter

Richard Smereka 133
Customizing the GEM Desktop

McKendre Haynes 139
NEOview

Philip I. Nelson 150
Full-Screen Shell for ST BASIC

David Lindsley 157

5. C Programming 161
Why C?

Sheldon Leemon 163
Comparing C to BASIC

Sheldon Leemon 168
Choosing a Compiler

Sheldon Leemon 176

The C Programming Environment
Sheldon Leemon 183

Appendix 193
How to Use the Disk 195

Index 198

Foreword

Classic games with new faces, handy desk accessories, practical
applications, timesaving utilities, and instructive programming:
With COMPUTERS Second Book of Atari ST, you'll continue to ex
plore your ST's impressive potential. And you'll be more than
satisfied, perhaps even surprised, by what you find.

For challenging fun, begin by testing your strategic powers
with Laser Chess™—the First Prize winner in COMPUTERS Atari
ST Disk & Magazine's $10,000 programming contest. Picture Puz
zler™, with three levels of difficulty, exercises the eye (and
mind) to whatever degree of keenness suits your patience. Then
there's "Snapshot NEO/DEGAS," a program that makes clever
screen images possible for any prospective ST artist.

To help you keep important numbers balanced at home and
at work, "ST-Graph" creates bar graphs, pie charts, line graphs,
and more. "Customizing the GEM Desktop" and "Extended
Formatter" represent the programs included to insure that your
time at the computer is as productive as possible.

Ambitious programmers will welcome the commented
source code featured with "AstroPanic!" and "NEOview," and
those who are ready to make the transition from BASIC to C will
find suggestions to help them choose a C compiler. Even the
apprehensive will be eager to learn C when they discover the
benefits of using this efficient language.

COMPUTEI's Second Book of Atari ST brings together the best
programs from COMPUTEI's Atari ST Disk & Magazine in addi
tion to those never before published. The accompanying disk
contains all the programs presented in the book, so you won't
have to worry about typing them in. The programs have been
tested and are ready to be run. Put them to work for you to
day—and rediscover the ST.

APTER ONE

C^ omnc

Laser Chess
Mike Duppong

When COMPUTEI's Atari ST Disk & Magazine heJd
its programming contest, the originality and skillful

programming in Laser Chess™ brought it First Prize.
A two-player strategy game patterned after tradi

tional chess, Laser Chess features some fascinating
new twists. The program runs in the iow-resoiution

screen mode on any ST with a coior monitor.

Laser Chess™, as the name implies, is a chesslike strategy game
for two players. The goal is to manipulate a laser-firing piece and
various reflective objects to eliminate your opponent's king. As
in traditional chess, there are an infinite number of ways to
accomplish this.

There are eight basic types of pieces in Laser Chess, and each
has unique capabilities. Over time, you'll learn each piece's ad
vantages and limitations. Obviously, the more you play Laser
Chess, the more you'll understand the pieces in your arsenal,
which in turn will make you a better player. So let's start with a
description of the pieces.

A Geometric Army
Figure 1-1 shows each piece and its name. Notice that certain
sides of some pieces appear thickened (or are highlighted on a
color display). This indicates a reflective surface. When a laser
beam strikes a reflective surface, it bounces off without harming
the piece. But if a piece is hit by a laser on a nonreflective sur
face, it is destroyed.

A piece can also be removed from the board if it is captured
by an opposing piece. This is similar to traditional chess; to cap
ture a piece, you simply move one of your own pieces onto its
square.

In addition to their ability to move from square to square,
pieces with reflective surfaces can also be rotated in place in 90-
degree increments. This lets you orient the piece to protect it
against opposing laser shots or to set up bounce shots with your
own laser piece.

CHAPTER ONE

Figure 1-1. The Basic Types of Pieces in Laser Chess

The king is the most important piece in Laser Chess. When a
player's king is eliminated, the other player wins the game. Since
it has no reflective surfaces, it can be destroyed by a laser from
any angle. It can also be captured by an opposing piece. The
king is not totally defenseless, however. It can capture any op
posing piece by moving onto its square. But this can be done
only once per turn.

The second most important piece is the laser. This piece is
your primary offensive weapon; it's the only piece which can fire
a laser shot. When you're ready to take aim, it can be rotated in
place at 90-degree angles. But like the king, it is completely vul
nerable to enemy laser strikes, because it has no reflective sur
faces. If you lose your laser, the game is not over, but only the
most skillful (or incredibly lucky) player can overcome its loss.

Tricky Pieces
The hypercube is an interesting piece. It can't harm an opposing
piece directly, but may very well do so indirectly. When the
hypercube is moved onto another piece (even your own), that
piece disappears from its original position and reappears on a
randomly selected empty square. This can be done only once per
turn. Thus, the hypercube is a two-edged sword: It may relocate
a piece to a vulnerable position, or it can make it possible for the
piece to capture an important opposing piece on the next move.
The hypercube has no reflective surfaces and cannot be rotated.
It is invulnerable to laser shots, however, because it's made of

Games

transparent glass—a laser beam passes right through it. Remem
ber that.

The beam splitter is another tricky piece. When a laser beam
strikes a splitter's vertex (the point opposite its base), the beam
splits in two. The two new beams travel in opposite directions,
perpendicular to the original beam's path (Figure 1-2). When a
laser shot hits one of the beam splitter's reflective surfaces, it
bounces off at a 90-degree angle without splitting. If the beam
splitter's base is hit by a laser shot, it is destroyed. The beam
splitter can be rotated.

Figure 1-2. Beam Splitter (magnified view): Two New Beams,
Perpendicular to the Original, Reflected from Its Vertex

The blocks are fairly simple pieces. However, they may im
pose some complex situations. A block can capture any opposing
piece by moving onto that piece's square, much like a king. But,
unlike a king, a block has one reflective side and can be rotated
as the situation demands. Therefore, blocks can be used either
offensively or defensively. A laser beam that hits the reflective
surface of a block is deflected 180 degrees—bouncing the beam
back where it came from.

A diagonal mirror cannot be destroyed by a laser, because
both of its surfaces are reflective. Diagonal mirrors can be re
moved from the board only when captured by a block or a king.
When a laser beam strikes a diagonal mirror, the beam is de
flected 90 degrees. Diagonal mirrors can be flipped to their op
posite diagonal, but cannot be rotated to face horizontally or
vertically.

CHAPTER ONE

The horizontal mirrors and vertical mirrors (known collec
tively as straight mirrors) are also invulnerable to lasers due to
their reflective surfaces. When a laser hits a straight mirror on its
flat surface, the beam is deflected 180 degrees. But if the laser
hits a straight mirror edgewise, the beam passes straight through
it. (Look closely at Figure 1-2; a laser beam is passing through a
horizontal mirror just to the left of the beam splitter.) Straight
mirrors can be rotated to become either horizontal or vertical
mirrors, but not diagonal mirrors.

The triangular mirrors deflect laser beams just as diagonal
mirrors do, but they are vulnerable to hits on their two non-
reflective sides. A triangular mirror can be rotated in 90-degree
increments.

Making Moves
All game functions are controlled with the mouse. Each player
trades off the mouse after each turn. If you have a color monitor,
you'll notice that the mouse pointer changes color to show
whose turn it is.

The red player (at the bottom of the screen, unless you've
reoriented the board as described below) always gets the first
move. There's no particular advantage or disadvantage to mov
ing first.

A turn consists of two moves. The number of moves re
maining in a turn is indicated by the number of boxes in the
rectangle on the left side of the screen. (See Figure 1-3.)

Before you move or rotate a piece, you must select it. This is
done by pointing to the desired piece with the mouse and click
ing the left mouse button. You don't have to point directly at the
piece; the mouse pointer may be anywhere within the square.
When a piece is selected, its square is highlighted.

If you accidentally select the wrong piece, you can deselect
it by clicking the left mouse button again while the pointer is
within the highlighted square. (This won't cost you a move.) De
selecting is usually done after you've rotated a piece.

After you've selected a piece, your next decision is whether
to move or rotate it. To move a piece, simply point to the des
tination square and click the left mouse button. Moving a dis
tance of one square takes one move; moving two squares takes
two moves (although you can move a piece two squares in one
step). Since you have only two moves per turn, the maximum
distance a piece can be moved in one turn is two squares. If you

Games

try to move too far, the computer beeps to signal your error.
Pieces can be moved forward, backward, left, or right, but

not diagonally. You can effectively move a piece diagonally by
using two moves—forward and right, for instance. You can do
this in a single action by simply pointing to the adjacent diag
onal square and clicking the left mouse button; if there's a clear
path, the program moves the piece to the square and charges
you two moves (one full turn).

You cannot move a piece through other pieces. The only ex
ceptions are captures with blocks and kings, and moves of the
hypercube as described above.

Rotating a Piece
To rotate a piece, select it and firmly press the right mouse but
ton. If it's not legal to rotate that particular piece, the program
beeps. Otherwise, the piece rotates 90 degrees (a quarter-turn)
clockwise. You may continue rotating the piece to any desired
position before deselecting it. Rotating a piece to face any direc
tion takes only one move, and the move is subtracted after the
piece is deselected. If you deselect the piece in its original posi
tion, no move is subtracted.

You can combine a rotation and a move in a single action.
First, select the piece. Then rotate it to the direction you wish it
to face. Finally, point to any adjacent square (except a diagonal),
and click the left mouse button. The piece moves to that square
and faces in the direction you chose. Since rotating a piece and
moving a piece each take one move, this uses up your turn.

As mentioned above, the number of moves remaining in
your turn is represented by the boxes inside the rectangle on the
ieft side of the screen. If you wish to forfeit your entire turn or
any remaining moves, just move the mouse pointer inside the
square and click either mouse button.

Special Features
At the center of the 9 X 9 board is a special square called a
hypersquare. It absorbs laser beams and acts as a stationary
hypercube. That is, if you try to move a piece onto it, the piece
disappears from its original position and reappears randomly on
an empty square. This may be done only once per turn, however.

Along the board on the left side of the screen are four octag
onal shapes. The top three octagons are labeled with letters Q, R,
and D. The four octagons are screen buttons, similar to those

CHAPTER ONE

Figure 1-3. Full-Screen View of Laser Chess, with Its 9 X
Board Grid and Game Controls

found in both dialog and alert boxes on the ST. They can be
pressed by moving the mouse pointer inside the octagon and
clicking the left mouse button.

The top octagon, labeled Q, is the Quit button. When it's se
lected, a dialog box appears and requests confirmation. If you
confirm that you want to quit, the game is aborted and the pro
gram returns you to the GEM desktop.

Beneath the Quit button is the Restart button. This lets you
start a new game without finishing the current game. (For in
stance, a player may be so hopelessly behind that he or she
wants to resign.) Again, a dialog box appears, requesting that
you confirm this choice.

Below the Restart button is the Direction of Play button, la
beled D. Each time you press this button, the entire board rotates
90 degrees, so you can play in a left/right direction or place the
red pieces at the top of the screen instead of at the bottom.

Firing the Laser
The last octagonal button, which is unlabeled, is the laser trigger.
When it's your turn, you can select this button to fire your laser.
If your laser piece has been captured or destroyed, the laser but
ton won't appear on the screen during your turn.

The laser beam flashes on the screen when you press the
left mouse button, and remains there until you release the left
mouse button. (See Figure 1-4.) It's usually a good idea to hold
the button down for a few seconds, so you can see the effect of

Games

your shot. If you click the button too quickly, the beam may dis
appear before you can comprehend a complex bounce pattern.

Figure 1-4. Using the Bounce Pattern to Advantage: The Beam
Splitter (near the top) Allows a Laser to Destroy Two Blocks

Firing your laser takes only one move, but can be done only
once per turn. Therefore, you may want to use your first move
in a turn to aim the laser, rotate a reflecting piece to set up a
bounce shot, or move another piece into position. Of course, you
won't necessarily be firing the laser on every turn. Much of the
strategy in Laser Chess involves moving and rotating your pieces
to set up complex shots.

It's critically important to realize that any laser hit on a
piece's nonreflective or nontransparent surface will destroy that
piece (Figure 1-5). You can just as easily destroy your own pieces
as well as your opponent's. You can even zap your own laser,
particularly if you fire directly into the 180-degree reflective sur
face of a straight mirror or block, or if you fail to anticipate the
effects of a beam splitter. Be forewarned.

Advice on Play
Get your mirrors out early. Use them to gain the fullest potential
of your laser. Try to position mirror networks on both sides of
the beam splitter so you can inflict as much damage as possible.

Take advantage of the blocks. Since they "control" an area
around them with their threat of capture, no other pieces can
safely move within their range. Make your opponent work to

9

CHAPTER ONE

Figure 1-5. A Triangular Mirror—Hit by a Laser Beam on a
Vulnerable Surface—Exploding into Bits

displace them. Remember to rotate the reflective side of a block
to the most probable direction of laser fire. If you can prevent a
laser from destroying the block, your opponent will most likely
have to gang up on it with two or more of his or her own
blocks.

Use mirrors to protect your king. If you surround your king
with straight and diagonal mirrors, there is no way it can be hit
by a laser. As a result, your opponent will have to break through
your defense with blocks. (This is a pretty dirty trick, because if
your opponent loses all of his or her blocks, your king is almost
invulnerable.) Defending your king with blocks is also a good
strategy.

The hypercube should be used sparingly, since you have no
idea where a relocated piece will reappear. Most players use the
hypercube as a last resort—if another piece is going to be de
stroyed anyway, it doesn't hurt to take a chance and relocate it
with the hypercube. Also, if your opponent's king is encircled
with mirrors, you can march right in with your hypercube, fol
lowed by a block. This tactic may displace your opponent's de
fense, forcing evacuation of the enemy king from its mirrored
fortress. Escorting the hypercube with an adjacent block prevents
the opponent from attacking the hypercube with his or her king.
Your opponent's only options will be to flee or be displaced.

10

AstroPanic!
Charles Brannon

Alien ships weave about, bobbing and diving. Don't
let them hypnotize you, though—it's your duty to
stop the cosmic horde from achieving total domi
nance of your monitor screen. This entertaining
action game works on any 520ST or 1040ST with

either a color or monochrome monitor in all three
screen resolutions.

Just when you're beginning to think life is a picnic, here they
come. That's right—the aliens—strange, wicked creatures from
another world (or who knows, perhaps another dimension alto
gether). They have entered earth orbit, and their six-ship attack
squadrons have managed to penetrate earth's orbital defense sys
tem, one wave after another. You're earth's last hope, the hottest
laser jock yet to graduate from Defense Command's rigorous
training program.

Via a video link, you control the massive neutron-beam can
non, an instrument of fury that hurls a devastating bolt of matter-
shredding energy. Since no mirror system can deflect this beam
without itself being destroyed, the neutron cannon is shuttled
back and forth at high speed across a magnetic levitation (maglev)
track. The aliens know that the cannon is too heavily shielded to
be attacked by energy weapons, so they use the only tactic possi
ble—a kamikaze strike.

The aliens bounce about (in an attempt to evade your shots
while calculating the best collision trajectory), then careen in for
a confrontation. The experts at Defense Command have antici
pated even this mad strategy, so at horrendous cost they have
manufactured three neutron cannons, each popping up to replace
the previous one. But after the three cannons are vaporized,
there are no more chances left—the invaders will finally achieve
their victory.

Playing AstroPanic!
Choose the screen resolution you want with Set Preferences;
then run PANIC.PRG from the disk menu or from the desktop
by double-clicking on the file. The game automatically adjusts it
self to the screen resolution you have selected.

11

CHAPTER ONE

Figure 1-6. Three Games in One: AstroPanicI's Challenge
Changes with the Resolution

12

Large, finely detailed alien sau
cers crowd the screen in the
low-resolution game.

In medium resolution, saucers
are smaller in relation to the
sky, so they're harder to hit.

High resolution produces tiny
saucers moving through the big
sky on the monochrome screen.

Games

"AstroPanic!" is almost like three games in one. In low reso
lution, the saucers are large, multicolored objects that reveal lots
of detail and crowd the screen. In medium resolution, the objects
are smaller and show less detail. Since the saucers are smaller in
relation to the screen, the "sky" seems bigger, so the saucers are
harder to hit. In high resolution, the saucers are even smaller,
and the sky is even bigger. If you're lucky enough to have both
a color and a monochrome monitor, try playing the game in all
three resolutions to experience the differences.

When you run AstroPanic!, a Let's Play! button appears in
the center of the screen. Click on it and get ready to start shoot
ing—the aliens immediately swarm into action. Use the mouse
to move your cannon left and right across the bottom of the
screen, and press the right mouse button to fire.

The awesome energies of the neutron cannon aren't un
leashed casually—you can only fire one bolt at a time. If you see
that your shot has already missed, though, you can fire another
bolt immediately, canceling the previous shot. Keep your cannon
moving (to avoid destruction), and watch out for the edges of the
screen, where the saucers ricochet off the sides. When you have
destroyed all six ships, you move on to the next level.

A status display at the bottom of the screen shows the num
ber of cannons remaining, the current level, and your score. The
closer the alien is to the bottom of the screen, the more points
you get for hitting it. Every time you hit a saucer, the remaining
ones move a little bit faster. The speed of the survivors gradually
increases as you move through each level of the game, and all of
the saucers speed up after each level. By the time you reach level
20, you're bound to lose. Try it; you'll see.

How It Works

Accompanying this discussion of AstroPanic! is a copy of the
source code interspersed with extra comments (in bold). If you're
interested in writing your own ST games or simply learning
more about C, you should find the source code very educational.

Perhaps the most remarkable aspect of the game is its speed,
considering that it is written in a high-level language. In addi
tion, the executable program is only about 13K long. This is due
partly to the exceptional efficiency of the compiler. We examined
a disassembly of the compiler's object code and found that it

13

CHAPTER ONE

would be difficult to write much better code by hand in machine
language. For example, integer variable assignments such as
SCORE= 0 can translate into a single 68000 instruction. A pro
gram such as a game can exploit this efficiency by using only
integer math, thus avoiding some of the larger C library modules.

The ST video hardware doesn't have any provision for
sprites. On machines like the Atari 400/800/XL/XE, Commo
dore 64, and Amiga, sprites greatly simplify game programming
(or any programming that employs movable objects). Sprites ex
ist on a separate video plane, so they don't interfere with an un
derlying background display. Since the video hardware merges
the sprites with the video at hardware speed, sprites can be
moved quickly without tying up the microprocessor. On the
other hand, the 68000 has power to spare—it can easily simulate
sprites by virtue of its high-speed memory-moving capabilities.

ST Sprites?
The best way to simulate sprites on the ST would be to write
your own routines in machine language. Yet AstroPanic! is writ
ten completely in C, using only documented operating system
routines. The core of the animation is based on a function called
vrocpyfmi), which can be found in the Virtual Device Interface
(VDI) library. It's used to copy a rectangular block from one area
of memory to another. It can be used to copy one part of the
screen to another, or to copy a shape from a memory buffer to
any part of the screen.

These memory buffers are supported through a C language
structure called a memory form definition block, or MFDB. The
contents of an MFDB include a pointer to the memory containing
the shape data; variables specifying the width, height, and num
ber of bit planes (range of allowable colors) in the shape; as well
as a flag specifying whether the format of the shape data con
forms to the GEM standard or is machine-specific, using the
same memory organization expected by the video hardware.

You can use two methods to animate an object without eras
ing the background graphics. The first method is to preserve and
restore the background as the shape passes over it. Before draw
ing a shape, save in a buffer the rectangular area that would be
overlapped by the shape. When you move the shape to the next
position, you then restore the overwritten area from the buffer.

This works fine for one shape or for shapes that don't pass
through each other. But imagine what happens when these kinds

14

Games

of shapes do pass over each other. Each shape first saves the im
age of the shape it overlaps. After the shapes pass through each
other, they have both restored the area they overlapped, leaving
behind images of the shapes.

Another method relies on a special binary mathematical
operation known as exclusive OR (XOR). The binary truth table
for XOR is (0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR
1 = 0). If you know something about binary math, you can see
that XOR works much like binary OR, or even normal addi
tion—except that when you XOR two l's together, you get a 0.
(Interestingly, binary addition yields the same result, but with a
carry of 1 that must be added to the bit to the left.) When you
copy a shape to the screen, you can specify the way the bits in
the shape are combined with the bits in the background image.

A Magic Stamp
Let's use a simple example. On a monochrome ST system, white
is represented by 0 and black by 1 (the opposite of most comput
ers—the ST monitor displays its screen in reverse to simplify
programming). If you XOR a black shape (1) against a white
background (0), you see the shape 0 XOR 1 as 1 (black). On the
other hand, if screen memory is filled with l's (black), and you
attempt to XOR a shape made out of 0's (white), you will see
nothing, since 0 XOR 1 is 1 (black).

But notice what happens if you put a black shape against a
white background, then copy the black shape back on top of it
self. The first operation is 1 XOR 0 = 1. When you XOR the
black shape on top of itself, though, the operation is 1 XOR
1 = 0—the shape has removed itself. This method works no
matter what the background data is; XOR is a reversible
operation.

One way to think of XOR animation is that you're using a
rubber stamp inked with a magical negative ink—an ink that re
verses the color of whatever it touches. Naturally, stamping
twice is the same as not stamping a shape down at all. If you are
careful, you can stamp two different shapes so that they overlap.
Then, when you restamp these shapes, the background will be
completely restored. The only problem is that the area where the
shapes overlap is reversed. The l's in the shapes XOR together
in the overlapped area to give white.

15

CHAPTER ONE

It's a little more complicated with a color display, since the
XOR is performed on the binary screen data. A binary pattern of
11 XORed with a binary pattern of 10 gives a result of 01. Two
different colors, when overlapped, give a third color. Despite this
color variation, though, using XOR is fast and effective as a tech
nique for sprite simulation. When shapes are moving quickly,
you rarely notice the strange overlap effects.

AstroPanic! uses the XOR method of animation. When a
saucer moves, the program draws the shape, moves it to the next
position, and erases the old shape. XOR lets us perform this era
sure without cutting holes in the background display (the star
field).

Simulated Simultaneity
The inner loop of AstroPanic! updates all of the moving objects
in the game: the saucers, the cannon, and the missile in flight.
Of course, all of these objects aren't really moving simulta
neously—they just seem to be because the program alternates
the animation quickly and smoothly. First, sprite 1 gets to move
one notch, then sprite 2, then sprite 3, and so on. Then the pro
gram checks to see if the cannon should move and if the missile
has been fired.

When a saucer is destroyed, the program stops drawing it,
skipping to the remaining shapes instead. Since drawing the
shapes consumes the most time, skipping a saucer makes it pos
sible for the others to move that much faster. When there is just
one saucer left, it moves six times faster than when there are six
saucers being animated. To ease this, the program uses a delay
loop to simulate the time taken to draw a shape when one of the
saucers is no longer being displayed.

To prevent unsightly flicker, the cannon is redrawn only
when it needs to move to a new position. Therefore, the saucers
slow down somewhat if you keep moving the cannon. Since
drawing and erasing the missile takes some time, too, it can slow
down the animation loop. Despite all this, AstroPanic! is still
quite effective.

If you are familiar with GEM, and have your GEM reference
manuals handy, this program is fairly easy to follow, with a
good sprinkling of comments and liberal use of meaningful vari
able and label names. The program is broken up into a number
of small modules, which makes it easier to understand than if
the whole game were written as a large main loop. Using these

16

Games

modules is somewhat analogous to using subroutines in BASIC,
except every module has its own private variables.

AstroPanic! contains most of the elements found in arcade

games, and can serve as a model for your own game program
ming. Even if you aren't ready to write your own game from
scratch, try modifying this game, customizing certain details; it
can be very instructive—and fun.

AstroPanic! Annotated Listing

/* AstroPanic ST by Charles Brannon */
/* created June 12 1986 */
/* last modified June 27 1986 */

These are obligatory include files needed to access GEM and AES routines,
and to call the standard input/output (STDIO) functions. You may need to
use different header files with your C compiler; include only as many as are
needed to eliminate undeclared identifier error messages.

#include <define.h>

#include <gemdefs.h>
#include <obdefs.h>

#include <osbind.h>

#include <stdio.h>

These are the raster operations that can be performed when copying a shape
to the screen. They specify how the bits in the source are to be combined
with the bits on the screen. XOR is exclusive OR; REPLACE overwrites the
display; and ERASE clears only the part of the display overlapped by 1-bits
in the source image, while TRANSparent sets to 1 only the part of the dis
play overlapped by 1-bits in the source image, leaving the background
alone. REVerse TRANSparent complements (flips O's to l's, and l's to O's) the
source image before merging the source with the background.

#define fdb_XOR 6
#define fdb_REPLACE 3

#define fdb_ERASE 4

#define fdb_TRANS 7

#define fdb_REVTRANS 13

This macro is used to extract a pseudorandom number from 0 to (x—1),
using the XBIOS random number trap.

#define rnd(x) (Random()%(x))

Other useful macros for hiding or displaying the arrow pointer. (The pointer
doesn't need to be on the screen during the game.)

#define HIDE_MOUSE graf_mouse(M_OFF,&dummy)
#define SHOW_MOUSE graf_mouse(M_ON,&dummy)

17

CHAPTER ONE

Since we need to adjust the game throughout for color or monochrome
mode, this definition makes the source code more readable.

#define COLORMODE work_out[35]

You can change NUMSPRITES and recompile the game to get more saucers,
but this slows down the action. Using six saucers is the best compromise.

#define NUMSPRITES 6

The height and speed of the missile can also be changed if you want to
fine-tune the game. However, since the saucers can move in increments of
up to 12 pixels per move, don't make the missile move in too large an incre
ment, or it will sometimes skip over the saucers. The collision routine
checks to see whether a saucer is somewhere within the height of the mis
sile, so a tall missile can prevent the fast-moving missile from skipping over
a saucer (but also affects the speed of the game). Notice the use of the ter
nary conditional operator to select oneof two values. If the value preceding
the question mark is nonzero (true), the first value before the colon (:) is
used as the value of the three-part expression; otherwise, the value follow
ing the colon is used. I use this technique in many parts of the source code.

#define MISSILE_H (COLORMODE? 8 : 16)
#define MISSILE_SPEED (COLORMODE? 7 : 12)

TOPSCREEN is the top border from which the saucers bounce. TEXTBOX is
the size of the score box at the bottom, in pixels (this is doubled in mono
chrome mode).

#define TOPSCREEN 4

#define TEXTBOX 32

/* global variables */

These declarations are required for the sake of GEM and the library
routines.

int dummy,ch,cw;
int work_handle,contrl[12],pxyarray[10];
mtintin[128],intout[128],ptsin[128],ptsout[128];
int work_in[ll],work_out[57];

At least with Megamax C, I have to create an MFDB (memory form defini
tion block) "manually." Each shape has an MFDB to specify the bit image
and proportions of the object.

struct my_fdb

char *fd_addr; /* address of raster */
int fd_w; /* width in pixels */
int fd_h; /* height in rows */
int fd_wdwidth; /* width in words */
int fd_stand; /* 0 for ST, 1 for standard */
int fd_nplanes; /* how many planes */
int fd_rl, fd_r2, fd_r3; /* reserved */

} saucer,screen,cannon;

18

Games

The following comments explain the purposes of these variables.

int colortab[16][3]; /* used to save colors */
unsigned long score; /* you know what this is! */
int ships; /* how many cannons are left */
int missile; /* flag for whether missile is in flight or not */
int missile_x,missile_y; /* position of missile in flight */
int cannon_x, cannon_y; /* horizontal & vertical position of cannon */
int xborder,yborder; /* screen boundaries */
int x[NUMSPRITES],y[NUMSPRITES]; /* holds x/y position of sprites */
int xacc[NUMSPRITES],yacc[NUMSPRITES]; /* acceleration factors */
int isdead[NUMSPRITES]; /* is this sprite dead? */
int death—toll; /* saucers shot this round */
int textline; /* line where text box starts */
int round; /* current level of game */
int speed; /* saucer speed */

The main() routine controls the game. Most routines have meaningful
names, so it is pretty easy to follow the "recipe" for AstroPanic!.

main()

{
int sprite; /* sprite index */
int prev_x,prev_y; /* stores previous position of a sprite */
appl_init();
init_workstation();

Set screen to black and hide the arrow cursor.

set_colors();
HIDE_MOUSE;

Fill the screen with stars.

clear_sky();

Wait for the player to click on the alert button to start.

form_alert(l,"[l][AstroPanic!ICharles Brannonl(C) 1986 COMPUTER Let's
Play!]");

Load the appropriate shapes.

init_shapes();

Here, we adjust the boundaries of the screen according to workstation width
(work_out[0]) and height (work_out[l]). The height and width of the saucer
are found in saucer.fd—h and saucer.fdLw, members of the my_fdb structure.
The value of work_out[31] is 0 for a color screen or 1 for monochrome, so we
can select the position of the text lines in the score box. This figure needs to
be doubled (by left-shifting it by 1) for the 400-line monochrome mode.

xborder=work_out[0] —saucer. fd_w—4;
textline=work_out[l]-((COLORMODE)? TEXTBOX : TEXTBOX«l);
yborder=textline —cannon.fd_h;

19

CHAPTER ONE

Set the vertical position of the cannon.

cannon_y = yborder;

Set the score to 0 and the number of cannons to 3. Initialize the saucers
(ufos) and draw the screen.

reset_game();
/* ye olde main loope */

FOREVER is defined in define.h as for(;;;), an infinite loop (exited with the
Terminate() call when the game is over).

FOREVER

{

Look for a keypress and pause if one is found.

check_for_pause();

Begin looping for all sprites, updating their positions and images.

for (sprite = 0;sprite<NUMSPRITES;sprite+ +)
{

If a sprite has been shot, we don't draw it, but we do delay a bit via dum-
dum() to simulate the time it would have taken to draw the image. That
way the surviving saucers don't speed up too much. However, this delay
loop is decreased after each wave, so the survivors gradually move faster
and faster. The continue keyboard breaks out of the current iteration of the
loop, but continues with the statement following the above for (as opposed
to break, which terminates the entire loop).

if (isdead[sprite]) { dumdum(); continue; }

We remember the previous position of the "sprite," since we are about to
add in the horizontal and vertical acceleration factors (displacement from
current position) in order to move the saucer to the next position.

prev_x = x[sprite]; prev_y=y[sprite];
x[sprite]+ =xacc[sprite];
y[sprite] + = yacc[sprite];

If the position exceeds the screen boundaries, we reverse the direction by
negating the displacement, and reset the position to the previous position so
that the shape doesn't escape from the screen.

if (x[sprite]<4 I x[sprite]>xborder)
xacc[sprite] = —xacc[sprite],x[sprite] = prev_x;

if (y[sprite]<TOPSCREEN I y[sprite]>yborder)
yacc[sprite] = —yacc[sprite],y[sprite]=prev_y;

The first put() erases the previous image of the saucer; the second updates it
at the new position.

put(&saucer,prev_x,prev_y,fdb_XOR);
put(&saucer,x[sprite],y[sprite],fdb_XOR);

20

Games

If this sprite is within eight pixels of the saucer, we check to see whether
the horizontal positions of the sprite and the saucer overlap. If so, the can
non is destroyed and the loop is canceled with break, since we will call
init—ufos() within the kill—cannon() routine to reset the saucer positions for
the next round.

if (cannon_y—y[sprite]< 8)
if ((cannon_x> = x[sprite] &&

cannon x< = x[sprite] + saucer. fcLw) I
(cannon_x + cannon.fd_w> = x[sprite] &&

cannon_x+cannon.fd_w< = x[sprite]+ saucer.fd_w))
{

kill_cannon();
break;

}
} /* end for */

We move the cannon and update the missile only after all the saucers have
been updated; otherwise, the saucers would move too slowly. This works
just fine, though. The missile is updated only if the missile-is-in-flight flag
is active.

move_cannon();
if (missile) update_missile();

}

End of the main function and the beginning of the supporting modules.

Terminate() ends the game when all the cannons have been destroyed. We
restore the colors we've changed, close the virtual workstation, tell AES that
we've finished, and exit() back to the desktop. The flag allows the calling
routine to pass an error value back to the operating system (such as —1 for
an emergency exit), but we really don't use this feature in this game.

Terminate(flag)
int flag;
{

SHOW_MOUSE;
reset_colors();
v_clsvwk(work_handle);
appl_exit();
exit(flag);

}

The endpoint of the loop decreases as the round increases. Unfortunately, I
had to use this busy-wait technique, which prevents background programs
from running during the delay, since the shortest time waited for by the
XBIOS Delay() routine (despite the claim of its millisecond resolution) is
too long.

/* dummy routine, for short delay */
dumdum()

{

21

CHAPTER ONE

int i;
for (i= 0;i++<42-(round«l););

}

We need to reset the game the first time it is run and also after the end of a
game.

reset_game()

{
missile = FALSE; /* kill missile */
clear_sky();
speed = 2; /* maximum speed */
score=round = death—toll = 0; ships = 3;
update_scorebox();
cannon_x = 0;
put (&cannon,cannon_x,cannon_y,fdb_XOR); /* cannon appears */
init_ufos();

}

We plot 100 dots (a polyline with two identical coordinates) for a starfield
background. Since the XOR animation technique used to move the saucers
also preserves the background, it would be a shame not to provide a back
ground to preserve.

/* fill sky with stars */
clear_sky()

{
int star;
v_clrwk(work_handle);
vsl_color(work—handle, 1);
vswr_mode(work_handle,l); /* replace */
for (star=0;star<100;star+ +)

{
pxyarray[2]=pxyarray[0] = rnd(work_out[0]);
pxyarray[3]=pxyarray[l] = rnd(work_out[lj);
v_pline(work_handle,2,pxyarray);

}
}
/* allow player to pause game by pressing a key */

The trick here is that evnt—multi normally waits for an event, but we just
want to check for a keypress. If there is no keypress, we need to return to
the main loop—otherwise the saucers will move only when you have pressed
a key. The secret (divulged by Tim Oren in his GEM tutorials) is to wait for
both a keypress event and a time event. It works because you are waiting
for a duration of zero milliseconds, which makes evnt—multi return almost
immediately. However, if the event that occurred was not a timer event, you
know that the other event you were waiting for has happened. It's a little
roundabout, but I couldn't find any other way to scan for any key within
GEM or AES (I couldn't get vsm—choice() to work, the next best thing). You
have to really watch those zeros, though, to make sure the fields you do use
fall in the right place. If there is a keystroke, we then wait for another key
stroke with evnt—keybd() before continuing.

22

Games

check for_pause()
{

int key,which;
/* poll keyboard by waiting for a null time duration */
which=evnt_multi(MU_TIMERIMU_KEYBD,0,0,0,0,0,0,0,0,0,0,0,0,0,

&dummy,0,0,&dummy,&dummy,&dummy,&dummy,&key,&dummy);
if (which & MU-KEYBD) evnt_keybd();

/* initializes positions and vectors for saucers */
init_ufos()
{

int sprite;
death—toll = 0; /* no sprites dead yet */

For each sprite (saucer), we choose a random acceleration (from —speed to
+speed, where speed ranges from 2 to 8 or 12). A zero acceleration can't be
used, though, or the saucers will move only horizontally, vertically, or not
at all (if both xacc and yacc are zero). The saucer is then drawn on the
screen so that the animation loop will have a previous image to erase; other
wise, the first put() in the animation cycle will leave an image behind.

for (sprite= 0;sprite<NUMSPRITES;sprite+ +)

isdead[sprite]=xacc[sprite] = yacc[sprite] = 0;
while (xacc[sprite]==0) xacc[sprite] = (speed»l)-rnd(speed+l);
while (yacc[sprite]==0) yacc[sprite] = (speed»l)-rnd(speed+l);
x[sprite] = 8 + rnd(xborder—8);
yfsprite] = 8 + rnd(yborder —50);
put (&saucer,x[sprite],y[sprite],fdb_XOR); /* make it appear */

}

This one is chock-full of VDI calls. It redraws the score box every time a
saucer is hit, so it has to be fast.

update—scorebox()
{

char temp[20];
int y,d;

First we draw a solid white bar (rectangle) using replace mode.

pxyarray[0] = 0; pxyarray[l] = textline;
pxyarray[2] = work_out[0]; pxyarray[3]=work—out[l];
vswr_mode(work_handle, 1); /* replace */
vsf_color(work—handle, 1); /* white */
vsf_interior(work—handle,1); /* solid */
v_bar(work_handle,pxyarray);

Now we draw an expanding series of green lines (black in monochrome
mode) over the white box, just for looks. (All these colors assume the de
fault color palette.) Transparent mode is initialized so that the background
of a text cell doesn't erase the white box or the green lines.

23

CHAPTER ONE

vswr_mode(work_handle,2); /* transparent */
vsl_color(work_handle,COLORMODE? 3 : 0);
for (y= d=0;y<TEXTBOX;y + = d + +)
{

pxyarray[0] = 0; pxyarray[1]=y+textline;
pxyarray[2]= work_out[0]; pxyarray[3]=y+textline;
v_pline(work_handle,2,pxyarray);

}
vsl_color(work—handle,1);

That ternary ? operator is really handy. It lets us choose either red or black,
depending on the color mode.

/* draw text in red, if possible */
vst_color(work_handle,COLORMODE? 2 : 0);

The title is centered.

vst_alignment(work_handle,l,0,&dummy,&dummy); /* center */

The text origin is given as the center of the screen (the width shifted right
by 1, faster than dividing by 2). The variable ch is the character cell height,
defined by v—opnvwk(). The text is positioned one line lower in mono
chrome mode so that it isn't drawn through the horizontal line effect.

v_gtext(work_handle,work—out[0]»1,textline+ (ch«1)+
(COLORMODE? 0 : ch),"ASTROPANIC");

In black, we prepare to draw the text with left alignment.

vst_color(work_handle,0); /* draw text in black */
vst_alignment(work_handle,0,0,&dummy,&dummy); /* left */

The sprintf() function works like printf() except that the output is stored in
a string instead of appearing on the display. This makes formatted output
possible with any display routine.

sprintf(temp,"Cannons:%d Level:%d",ships,round+1);
v_gtext(work_handle,cw,textline+ch*3,temp);

The score line is right-aligned, and the origin is one character cell width to
the left of the screen's right margin.

vst_alignment(work_handle,2,0,&dummy,&dummy); /* right */
sprintf(temp,"Score:%071uO",score);
v_gtext(work—handle,work—out[0] —cw,textline + ch*3,temp);
vst_alignment(work_handle,0,0,&dummy,&dummy);
vst_color(work—handle, 1);

}
The main loop calls this routine when a saucer collides with the cannon.

/* when cannon is hit, kill it */
kill—cannon()

{
int lum;
put (&cannon,cannon_x,cannon_y,fdb_XOR); /* remove cannon */

24

Games

In color mode, we'll turn the screen red, and, after the explosion, gradually
decrease the luminance back to black while the explosion sound effect
decays.

if (COLORMODE) setcolor(0,1000,0,0); /* flash screen */
else setcolor(0,1000,1000,1000); /* monochrome */
explode(cannon_x + (cannon.fd_w»l),cannon_y + (cannon.fd_h»l)

,8,1);
if (COLORMODE)

for (lum = 1000;lum> - 0;setcolor(0,lum ,0,0));
else setcolor(0,0,0,0);
missile = FALSE; /* kill missile */

One ship less now, so we show this by updating the score box display.

ships; update—scorebox();

The game is over when all the cannons are used up.

if (ships = = 0) { end—game(); return; }
SHOW-MOUSE;

One nice touch is that we distinguish between the next and the last cannon,
just to remind the player that this is the last chance.

if (ships= = l)
form—alert(l,"[3][ILast Cannonl][Ready!]");

else

form_alert(l,"[3][INext Cannonl][Ready!]");
HIDE-MOUSE;

We reset part of the game by redrawing the screen and setting up new sau
cer positions. We can't use reset—game() since it sets the score to 0 and the
number of cannons back to 3.

clear—sky();
update—scorebox();
cannon_x=0;
put (&cannon,cannon_x,cannon_y,fdb_XOR); /* cannon appears */
init_ufos();

}

The explosion is used to destroy both the cannon and the saucers. It draws
an expanding circle in white, then erases the circle from the inside. Because
XOR mode is used, this explosion doesn't erase the background, and it im
proves the explosion effect, since some of the circles slightly overlap to cre
ate the illusion of an expanding shell. The game pauses when the saucer
explodes, or else the explosion would be too slow. We need a longer dura
tion for the explosion when the cannon is hit to leave time for the color ef
fect. The sound effect happens in the background, allowing the program to
continue immediately after Dosound().

/* explosion effect radiating from center */
/* flag controls duration of sound effect */

25

CHAPTER ONE

explode(xcenter,ycenter,radius,flag)
int xcenter,ycenter,radius,flag;
{

static char boom[]=
{0,0, 1,0, 2,0, 3,0, 4,0, 5,0, 6,63, 7,0xf7, 8,0x10, 9,0,
10,0, 11,0, 12,10, 13,0, 255,0};
int r;
boom[25] = flag? 20 : 10;
Dosound(boom);
vswr_mode(work_handle,3); /* XOR */
vsf_interior(work_handle,0); /* hollow circle */
for (r=0;r<radius;v_circle(work_handle,xcenter,ycenter,r+ =2));
for (r=0;r<radius;v_circle(work_handle,xcenter,ycenter,r+ =2));
vswr_mode(work_handle,l); /* normal */

}

At the end of the game, if the player wants to play again, we reset the game.
Otherwise, Terminate() cancels the program and returns us to the desktop.

end—game()

{
SHOW-MOUSE;
if (form_alert(l,"[2][Play Again?][YESINO]")==l)

{
reset—game();
HIDE-MOUSE;

}
else Terminate(O);

}
We periodically check for cannon movement and missile firing in the main
loop.

/* moves cannon, checks for fire button */
move_cannon()

{
int button,x,y,oldx;

The released flag is used to make sure the player has released the mouse
button before we allow another shot.

static int released=TRUE;
static char blip[]=
{0,0, 1,0, 2,10, 3,0, 4,0, 5,0, 6,0, 7,0xfd, 8,0, 9,16,
10,0, 11,0, 12,8, 13,4, 255,0};

We save the old position of the cannon and poll the mouse for the horizon
tal position.

oldx=cannon—x;
vq_mouse(work_handle,&button,&x,&y);

We use the right mouse button to fire the missile. The left mouse button is
represented by bit 0, with a value of 1.The right button is bit 1, with a
value of 2. (If both buttons are pressed, we get 1+ 2=3). The binary AND

26

Games

masks out the unwanted bits. We also check to see whether the button is re
leased. The released flag is set only if the right button test fails. If a missile
is fired, released is set to 0 (FALSE).

if (button&2)
{

if (released)

{
if (missile) draw_missile(); /* erase old missile */
Dosound(blip);

We fire the missile by enabling the missile-is-in-flight flag and giving the
missile its horizontal and vertical positions. The first missile is drawn so
that the update—missile() routine has something to erase the first time
through the loop.

missile = TRUE; missile—x=cannon—x + (cannon.fd_h»1);
missile—y=cannon—y;
draw_missile();
released = FALSE;

}
}
else released=TRUE;

The horizontal mouse cursor position is used as the cannon's position, al
though the cannon can be wider than the cursor, so we use only the legal
horizontal coordinates.

cannon—x=(x<work_out[0] —cannon.fd—w)? x :
work—out[0]—cannon.fd—w;

We redraw the cannon only if it has moved, to eliminate flicker.

if (cannon—x != oldx)
{

put (&cannon,oldx,cannon_y,fdb_XOR);
put (&cannon,cannon_x,cannon_y,fdb_XOR);

}

This is called in the main loop if a missile is in flight. Each call to this rou
tine moves the missile up one notch (defined by MISSILE_SPEED) and then
checks this missile position against all the sprites.

/* moves missile to next position, if missile is onscreen */
update—missile()
{

int sprite;
draw—missile(); /* erase old missile */

When the missile reaches the top of the screen, it is turned off; otherwise,
we draw it at the new position.

if ((missile_y- =MISSILE_SPEED)>TOPSCREEN)
draw_missile(); /* draw new missile */

else missile = FALSE; /* end of mission */

27

CHAPTER ONE

The check for the missile collision seems complicated, but we're just check
ing to see whether the saucer lies anywhere within the bounds of the mis
sile. Even though this loop executes six times every time the missile moves
up one notch, it slows down the animation loop only a little.

for (sprite=0;sprite<NUMSPRITES;sprite+ +)
{

if (!isdead[sprite] && missile_x>=x[sprite] &&
missile_x<=x[sprite] + saucer.fd_w)

if ((y[sprite]> = missile—y && y[sprite]<=missile—y+MISSILE_H)
l(y[sprite] + saucer.fcL_h>=missile—y &&
y[sprite] + saucer.fd_h<=missile—y + MISSILE—H))

{
killsprite(sprite);
break;

}
}

}

This routine removes a saucer (sprite) from the screen and from the anima
tion loop.

killsprite(which)
int which;

{
put (&saucer,x[which],y[which],fdb_XOR); /* remove saucer */
draw—missile(); /* remove missile */
missile = FALSE;

Explode the poor devil.

explode(x[which] + (saucer.fd_w»l),y[which],8,0);
isdead[which] = TRUE;

Your score is the vertical position of the saucer when it is hit. However, I
see no reason why players in monochrome mode should get twice the score,
since there are 400 scan lines in monochrome mode versus 200 in the color
modes, so in monochrome mode we right-shift the value by 1 (which
quickly divides by 2).

score+= (COLORMODE? y[which] : (y[which]«l));
update—scorebox();

We simultaneously increment the counter which keeps track of the number
of saucers shot and check to see whether all the sprites have been shot. If
so, new saucers are provided, and we move up to the next level of difficulty,
to a maximum of 20. The speed of the saucers is allowed to reach 8 pixels
per move in color mode or 12 in monochrome mode (since there's more
screen real estate to be covered).

if (+ + death-toll = = NUMSPRITES)

{
init_ufos();
if (round<20)

28

Games

{
round+ +; /* next round */
update—scorebox();

}
if (speed<(COLORMODE? 16 : 24)) speed++;

}
}

This is the core routine for updating the missile, a polyline drawn in the
XOR mode so that the missile doesn't erase any background.

/* draws missile at missile—x, missile—y, with XOR */
draw—missile()

{
vswr_mode(work_handle,3); /* XOR drawing mode */
vsl_color(work—handle,1); /* white */
pxyarray[0] = missile—x; pxyarray[1]=missile—y—MISSILE—H;
pxyarray[2] = missile—x; pxyarray[3]=missile—y;
v_pline(work_handle,2,pxyarray);
vswr_mode(work_handle,1); /* replace mode */
vsl color(work—handle,1); /* black */

}

Before we choose custom colors, we save the existing colors in an array so
that it can be restored when the game ends.

/* Saves colors in global array colortab[] */
save—colors()

{
int i;
for(i = 0;i<16;i++)

vq_color(work_handle,i,0,colortab[i]);
}

This routine employs a convenient setcolor() routine which simplifies pal
ette redefinition.

/* sets colors for this program */
set—colors()

{
save_colors();
setcolor(0,0,0,0); /* black */
setcolor(l,1000,1000,1000); /* white */

}

It's easier to use this routine than to fill an array every time you want to
call vs—color().

setcolor(index,red,green,blue)
int index,red,green,blue;
{

int rgb_in[3];
rgb_in[0]=red; rgb_in[l]=green; rgb_in[2] = blue;
vs_color(work_handle,index,rgb_in);

}

29

CHAPTER ONE

The colors are restored when the game is over.

reset—colors()

{
int i;
for (i=0;i<16;i++)

vs_color(work_handle,i,colortab[i]);

}

This is one of the longest parts of the program, containing the data for the
saucers and cannon. Since every screen resolution has different proportions
and color capabilities, as well as varying internal memory layout, we need
different shapes for every resolution. A program should always support
both color and monochrome modes, but needn't work in both low and me
dium resolution. It's fun to take advantage of the characteristics of these
modes, though: lo res is the most colorful—with big, detailed ships. The
smaller ships in medium res make for the fastest game.

/* initializes the shapes according to screen resolution */
init_shapes()

{
screen.fd_addr=0; /* screen memory */
switch (work—out[13]) /* number of colors */
{
/* hi res, 640 x 400 */
case 2: ufo_high();

cannon—high();
break;

/* medium res, 640 x 200 */
case 4: ufo_med();

cannon—med();
break;

/* lo res, 320 x 200 */
case 16: ufo_low();

cannon—low();
break;

}
}

Each word of data represents 16 pixels. The raster array is filled; then the
fd—addr field of the FDB structure is filled in by pointing to the array. This
member is defined as a pointer to a char, so we cast the array name (which
is similar to "pointer to int") to avoid compiler warnings.

/* initializes data for hi-res saucer shape */
ufo_high()
{

static int ufohigh[]=
{7,0x8000,0xl8,0x6000,0x20,0xl000,0x40,0x800,0xlff,0xfc00,
0xle49,0x27c0,0x7fff,0xfff0,0x8000,8,0x6aaa,0xaab0,0xld55,
0x55c0,0x3ff,0xfe00,0,0};
saucer.fd_addr=(char *) ufohigh; /* raster memory */
saucer.fd_w=29; /* width in pixels */

30

Games

saucer.fd—h = ll; /* height in rows */
saucer.fd_wdwidth = 2; /* width in words */
saucer.fd—stand =1; /* standard FDB? */
saucer.fd nplanes = l; /* one plane */

}
cannon—high()
{

static int cannonhighf]=
{16,0,16,0,16,0,0x38,0,0x54,0,0x306c,0xl9c0,0x68aa,0x2df0,
0x68aa,0x2c08,0xc4ba,0x46b0,0xd3ab,0x97c0,0xc8ba,0x2600,
0xd6aa,0xd600,0xd6aa,0xd600,0xc8ba,0x2600,0xd3ab,0x9600,
0xc4ba,0x4600,0x68aa,0x2c00,0x6828,0x2c00,0x307c,0xl800,

0x38,0};
cannon.fd_addr=(char *) cannonhigh; /* raster memory */
cannon.fd_w = 23; /* width in pixels */
cannon.fd_h = 20; /* height in rows */
cannon.fd_wdwidth = 2; /* width in words */
cannon.fd_stand = 1; /* standard FDB? */
cannon.fd_nplanes=l; /* one plane */

In medium res, two words are needed for every 16 pixels. If the second word
is placed beneath the first word, then each pixel will take its color from the
palette register pointed to by the top and bottom bit of each of the 16 col
umns in the stacked words. The left pixels of the two-pixel pair required to
identify a color from 0 to 3 (00, 01,10,11) come from the first word, and the
right pixels from the second word.

/* initializes data for medium-res saucer shape */
ufo_med()
{

static int ufomedf]=
{

0,0,0xf800,0,0,0x701,
15,8,0xff00,0xl00,0,0x800,
0xlff,0xlff,0xfff8,0xfff8,0x28,0x701,
0xffff,0x5555,0xffff,0x5555,0xflc0,0x5800,
0x3fff,0x3fff,0xffff,0xffff,0x8000,0x8000,
0,0xff,0,0xffe0,0x8b0,0

};
saucer.fd—addr=(char *) ufomed; /* raster memory */
saucer.fd—w= 36; /* width in pixels */
saucer.fd—h = 6; /* height in rows */
saucer.fd—wdwidth= 3; /* width in words */
saucer.fd_stand=0; /* not a standard FDB */
saucer.fd—nplanes = 2; /* two planes */

cannon—med()

{
static int cannonmed[]=
{ /* plane zero */

0x40,0, 0x40,0, 0xa0,0, 0xlf0,0, 0x21f0,0x8000,

31

CHAPTER ONE

0x51fl,0x4000, 0xd7fd,0x6000, 0xdfff,0x6000,
0xd9f3,0x6000, 0x50al,0x4000, 0x2000,0x8000,
/* plane one */
0,0, 0,0, 0xe0,0, 0xlb0,0, 0x21f0,0x8000,
0x7111,0xc000, 0xf7fd,0xe000, 0xfflf,0xe000,
0xf9f3,0xe000, 0x70el,0xc000, 0x2000,0x8000

};
cannon.fd_addr=(char *) cannonmed; /* raster memory */
cannon.fd_w = 19; /* width in pixels */
cannon.fd_h = ll; /* height in rows */
cannon.fd_wdwidth = 2; /* width in words */
cannon.fd_stand = 1; /* standard FDB? */
cannon.fd_nplanes = 2; /* two planes */
vr_trnfm(work_handle,&cannon,&cannon);

}

In lo res, it takes four words to define 16 pixels. Again, the words are
stacked out, and each column is read top to bottom. The leftmost bit of the
color number comes from the first word, and so on.

/* initializes shapes for low resolution */
ufo_low()

{
static int ufolow[]=
{0,7,0,7,0,0x8000,0,0x8000,
I,0xle,0,0xle,0x8000,0x6000,0,0x6000,
0,0x3f,0,0x3f,0x4000,0xb000,0,0xb000,
0,0x7f,0,0x7f,0,0xf800,0,0xf800,
0xlff,0,0,0,0xfc00,0,0,0,
0,le49,0xlb6,0xlb6,0,0x27c0,0xd800,0xd800,
0,0x7fff,0x7fff,0x7fff,0,0xfff0,0xfff0,0xfff0,
0x8000,0,0xffff,0,8,0,0xfff8,0,
0x6aaa,0xl555,0x7fff,0,0xaab0,0x5540,0xfff0,0,
0xld55,0xld55,0xld55,0xld55,0x55c0,0x55c0,0x55c0,0x55c0,
0x3ff,0x3ff,0,0,0xfe00,0xfe00,0,0};

saucer.fd—addr=(char *) ufolow; /* raster memory */
saucer.fd—w=29; /* width in pixels */
saucer.fd—h = 11; /* height in rows */
saucer.fd—wdwidth = 2; /* width in words */
saucer.fd—stand = 0; /* not a standard FDB */
saucer.fd—nplanes=4; /* four planes */

}
cannon—low()

{
static int cannonlow[]=
{0,16,0,0,0,0,0,0,
0,16,0,0,0,0,0,0,
0,16,0,0,0,0,0,0,
0,0x38,0,0,0,0,0,0,
0x28,0x54,0,0,0,0,0,0,
0,0x307c,0x3010,0x3000,0xlc0,0xl800,0xl800,0xl800,
0xl000,0x78fe,0x7854,0x7800,0xllf0,0x3c00,0x3c00,0x3c00,

32

Games

0xl000,0x78fe,0x7854,0x7800,0xl008,0x3c00,0x3c00,0x3c00,
0x3800,0xfcfe,0xfc44,0xfc00,0x38b0,0x7e00,0x7e00,0x7e00,
0x2c00,0xefff,0xff55,0xef01,0x69c0,0xee00,0xfe00,0xee00,
0x3701,0xf7ff,0xff45,0xf701,0xd800,0xde00,0xfe00,0xde00,
0x2901,0xe9ff,0xff55,0xe901,0x2800,0x2e00,0xfe00,0x2e00,
0x2901,0xe9ff,0xff55,0xe901,0x2800,0x2e00,0xfe00,0x2e00,
0x3701,0xf7ff,0xff45,0xf701,0xd800,0xde00,0xfe00,0xde00,
0x2c00,0xefff,0xff55,0xef01,0x6800,0xee00,0xfe00,0xee00,
0x3800,0xfcfe,0xfc44,0xfc00,0x3800,0x7e00,0x7e00,0x7e00,
0xl000,0x78fe,0x7854,0x7800,0xl000,0x3c00,0x3c00,0x3c00,
0xl000,0x787c,0x7854,0x7800,0xl000,0x3c00,0x3c00,0x3c00,
0,0x307c,0x3000,0x3000,0,0xl 800,0x1800,0x1800,
0x38,0,0,0,0,0,0,0};

cannon.fd_addr=(char *) cannonlow; /* raster memory */
cannon.fd_w = 23; /* width in pixels */
cannon.fd_h = 20; /* height in rows */
cannon.fd—wdwidth = 2; /* width in words */
cannon.fd_stand = 0; /* not standard FDB */
cannon.fd_nplanes=4; /* four planes */

Here is the primitive for drawing shapes with MFDBs. It fills in the
pxyarray from the structure, passed through shape, a pointer to an MFDB
structure. We are copying from (0,0) in the source bitmap (the arrays defined
above) to the x and y position passed through (xpos, ypos). Copy raster,
opaque is used to do the actual work. This routine is not blindingly fast. If
only this routine were rewritten in machine language, the whole game
could be speeded up considerably. There is some elegance to a game written
entirely in C, however.

put(shape,xpos,ypos,mode)
struct my_fdb *shape;
int xpos,ypos,mode;
{

pxyarray[0] = 0; pxyarray[l] = 0;
pxyarray[2]=shape —>fd_w —1; pxyarray[3] = shape - >fd_h —1;
pxyarray[4] = xpos; pxyarray[5] = ypos;
pxyarray[6]=xpos+pxyarray[2];
pxyarray[7] = ypos+pxyarray[3];
vro_cpyfm(work_handle,mode,pxyarray,shape,&screen);

This routine combines all the elements needed to initialize a virtual
workstation.

init_workstation()
{

int i, handle;
work—handle=handle=graf_handle(&cw,&ch,&dummy,&dummy);
for (i= 0;i<10;work_in[i++] = l); work_in[10] = 2;
v_opnvwk(work_in,&work_handle,work_out);
if (!work_handle) exit(—1); /* error if we can't open */

33

Picture Puzzler"
Douglas N. Wheeler

Looking for an interesting diversion? This program
scrambles a NEOchrome- or DEGAS-format picture
into a 10 X 10 jigsaw puzzie for you to reassemble
on the screen. It also times how long it takes you to

solve the puzzle and works in any screen resolution,
color or monochrome.

Nearly every Atari ST user accumulates at least one diskful of
pictures created with NEOchrome, DEGAS, and other drawing
programs. Numerous screens are available from user groups and
bulletin board systems. With the popular slide-show programs
that are also widely available, it's easy to view these pictures in
rapid succession without actually loading them into NEOchrome
or DEGAS.

Now there's something new you can do with your computer
art collection. Picture Puzzler™ lets you turn any NEOchrome- or
DEGAS-format picture into a fascinating jigsaw puzzle that you
reassemble on the screen. It even keeps track of how long it
takes you to put the puzzle back together.

Picture Puzzler supports the mouse and works in any screen
resolution: low-resolution color, medium-resolution color, and
high-resolution monochrome. And because it's written in com
piled C, it responds to your commands very quickly.

Scrambling a Screen
To get started, simply run PUZZLER.PRG from the disk menu or
the GEM desktop in the screen resolution of your choice. After
you've clicked on the OK button to acknowledge the copyright
message, a standard GEM file selector appears. This works like
any other file selector; click on the filename of the picture you
want to load, and then click on OK. (As a shortcut, you can dou
ble-click on the filename.) If the picture you want to load is on
another disk, insert that disk in drive A and click within the file
window to display the new directory. You can also change the
pathname at the top of the selector window to load pictures from
other drives.

Picture Puzzler automatically recognizes a DEGAS- or

34

Games

IVEOc/zrome-format picture by its filename extension. DEGAS pic
tures should end in .PI1 for low resolution, .PI2 for medium
resolution, and .PI3 for high resolution. NEOchrome pictures
should always end in .NEO.

Figure 1-7. Easy: The Best Choice for First-Time
Unscramblers

After Picture Puzzler has loaded the picture, it asks you to
pick a difficulty level: easy, medium, or hard (Figure 1-7). We
recommend starting with easy. On this level, the program di
vides the picture into a 10 X 10 grid and randomly scrambles
the resulting 100 pieces. The medium and hard levels scramble
the picture into 100 pieces, too, but they also add a twist—liter
ally. On the medium level, about 25 percent of the pieces are
flipped upside-down. On the hard level, about 50 percent of the
pieces are flipped. When you pick your level, Picture Puzzler rap
idly scrambles the picture before your eyes. The result can be
seen in Figure 1-8.

The Hard Part

So much for the easy stuff. Now it's time to reassemble the pic
ture. To do this, you drag pieces around the screen with the
mouse just as you drag files around on the GEM desktop. To
pick up a piece, point to it; then click and hold the left mouse
button. Drag the piece where you want it; then release the
mouse button. Instantly, it's swapped with the piece that for
merly occupied that spot.

35

CHAPTER ONE

Figure 1-8. The Newly Created Puzzle

Figure 1-9. Outline Box Showing New Location of Puzzle
Piece

If you have chosen the medium or hard level, you may need
to flip some pieces over. To do this, hold down either the Shift,
Control, or Alternate key when you press the mouse button to
drag a piece; when you release the button, the piece is dropped
into place and flipped.

Reassembling a picture is not as easy as it looks. To give
you some help, Picture Puzzler lets you look at the unscrambled
picture when you press and hold the right mouse button. You
can look at the picture as long as you hold down the button. But
be careful: You get only three such peeks during each puzzle.

36

Games

If you get frustrated and want to give up, you can return to
the desktop by pressing both mouse buttons simultaneously. A
dialog box asks you to confirm this action.

If you persevere and complete the puzzle successfully, Pic
ture Puzzler instantly lets you know and displays a dialog box
showing how long it took you to finish. At this point, you can
either try another picture or exit the program.

Helpful Hints
Some of the same techniques that apply to assembling real jig
saw puzzles also work with Picture Puzzler. For example, if the
screen has a border, that is always a good place to start when as
sembling a complex picture. If the picture contains any text, that
is another good place to begin.

You may be wondering what happens when a picture con
tains large areas of solid color or repeating patterns. It would
seem to be nearly impossible to reassemble such a picture, be
cause many of the pieces are visually identical. However, Picture
Puzzler takes this problem into consideration. If two or more
pieces really are identical, their positions are interchangeable. But
if even one pixel is different, Picture Puzzler treats them as sepa
rate pieces that must be placed in their original locations.

Despite this feature, occasionally you may assemble a pic
ture which looks correct, but in fact is not. The problem is that
more than one palette color may be assigned the same red,
green, and blue values, making them indistinguishable on the
screen. Picture Puzzler knows the difference and won't let you
finish until you get it right. This problem can be seen in the pic
ture entitled "Mr. X" that comes on the DEGAS disk. There's a
border on the lower right side of the screen, though you can't
see it.

Fortunately, there is a solution. When you drag a piece over
one of these areas, the border of the dragged box changes colors.
At any rate, keep this problem in mind if you're creating your
own pictures for puzzles.

Another problem is encountered when you try to piece to
gether sections of a picture that were spray-painted. For instance,
the picture of the comet on the DEGAS disk is just about impos
sible to complete because there is almost no pattern to the stars.
Give it a try—but be sure not to waste your three peeks at the
correct picture.

37

Spanish Castles
Robert S. Geiger

"Spanish Castles" is a deceptively simple game of
strategy. While it runs in any resolution, the program
looks best in lo res, where the first six palette colors

are available to brighten the game board which
fills the screen.

"Spanish Castles"—like the original, "The Witching Hour"—is a
strategy game based on Alquerque, a popular Spanish board
game that was first played in ancient Egypt. This ST BASIC ver
sion pits you against a friend or the computer, or you can watch
the computer play against itself.

The game board for Spanish Castles has 25 squares (which
actually look more like octagons, with their rounded corners);
each square is marked with a letter of the alphabet. As play be
gins, 12 Castilian towers confront an equal number of Moorish
mosques, so only one square is left vacant. Each player attempts
to capture the opponent's pieces by jumping over them. Vertical
or horizontal moves are permitted, as are some diagonal ones.
Follow the lines connecting the squares to trace the legal diag
onal moves. Don't worry if you accidentally charge off in the
wrong direction, though—the computer won't allow an illegal
move.

Spanish Castles creates a command line at the top of the
screen where ST BASIC'S menu bar is usually found. When
"Moor's move from:" appears on the command line, the player
who has chosen to be the Moor enters a letter. The letter tells
which square contains the mosque that the Moor is about to
move. When the computer responds with the "To:" prompt, the
Moor enters the letter of the square the mosque is heading for.

If you're playing against the computer, simply press RE
TURN when you've finished your move. Press RETURN on
every move to watch the computer play against itself.

If you can capture an opponent's playing piece, you must do
so; otherwise, you may move to any adjacent empty square. If
you have a choice between a single jump and a double or triple,
be careful; the jump which appears to carry you further may get
you into more trouble.

38

Games

Capturing a playing piece removes it from the board. The
game is over when one player has captured all the pieces from
the opposing side. At that point, an alert box pops up proclaim
ing the winner, and the game can be restarted or exited via the
mouse.

Running Spanish Castles
Since there are only two BASIC programs in this book, the main
menu program was not designed to load and run BASIC pro
grams, so you'll need special instructions to load and run Span
ish Castles. To do so, first insert ST Language Disk, which came
with your computer. Next, load and run BASIC.PRG by double-
clicking on its icon or filename from the desktop. Once BASIC is
loaded, insert COMPUTERS Second Book of Atari ST Disk. Type
LOAD A: \ SPANISHC.BAS and press Return; then type RUN
and press RETURN. This should bring up Spanish Castles, ready
for you to play.

The Program Conversion
The Witching Hour underwent several major changes before its
conversion to ST BASIC was complete. If you've done—or
would like to do—program translations, you'll find it interesting
(and perhaps helpful) to see exactly how these changes worked.

In the original IBM program, the game squares are graphic
blocks (31 pixels across by 23 pixels down) which come in three
types—an outlined empty square, an outlined square with a
witch shape, and an outlined square with a ghost shape. The
programmer uses IBM BASIC'S GET and PUT commands to
place them on the game board. It's possible to duplicate this pro
cedure on the ST using GEM VDI raster operations, but Spanish
Castles employs OpCode(112), Set User-Defined Fill Pattern,
which is a simpler technique for creating smaller blocks under
certain conditions.

Unless you write a utility program to create your individual
fill patterns, you'll have to use paper and pencil to make a fill
description chart such as the one shown in Figure 1-10. There
should be 16 rows X 16 columns—256 tiny squares—in the
chart; the 16 columns are divided into four equal sections. Each
tiny square represents a single pixel in your fill pattern and a
single bit in the computer's memory image. Each bit can be
either on or off, so an individual row of 16 bits would look like a
confusing string of l's and O's.

39

CHAPTER ONE

Figure 1-10. Sample Fill Description Chart—A Palm Tree

8421842184218421

&h0000
&h0000

&h3EF8

&h7FFC

&hFFFE

&hDFF6

&hBF7A

&h7B3C

&h731C

&h4304

&H0300

&h0300

&h0300

&h0300

&h0300

&h0000

Using the hexadecimal numbering system (base 16), how
ever, translates your patterns into something easier to under
stand. Begin by converting the binary pattern of l's and O's for
each row into 16 decimal numbers and then into 4 hexadecimal
numbers. To do this, label the pixels (in each of the four sections
of the chart) 8, 4, 2, and 1, going from left to right. Once you've
drawn the pattern for your fill (by shading in the squares which
represent the on pixels), add up the numbers which correspond
to the shaded bits in each section. For example, if all four squares
in a section are shaded, the sum is 15 (8 + 4 + 2 + 1 = 15).
The sum for each section is then converted to hexadecimal. Do
this for each row, and you will have a total of 16 four-digit hexa
decimal numbers.

To make the conversion easier, use this table:

decimal 0 12 3 4 5 6 7
hexadecimal 0 12 3 4 5 6 7

9 10 11 12 13 14 15
9 A B C D E F

Notice that in hexadecimal, letters are used to represent the six
higher-order digits. The four hex digits for each row are grouped
together and, in ST BASIC, are preceded by "&h" to signify a
hexadecimal number. See lines 880-900 of the Spanish Castles
program for an example fill pattern.

40

Games

The Big Picture
Now imagine that you are storing a full screen of each pattern
somewhere in memory. The data which describes the pattern of
the fill consists of 16 two-byte words, with bit 15 of word 1 as
the upper left dot of the pattern, and bit 0 of word 16, the lower
right dot. You create the pattern's screen by starting at the upper
left-hand corner and reproducing the 16 X 16-pixel pattern
block across the top of the screen, and then copying row after
row until the pattern covers the screen. Then, when you use a
BASIC command like PCIRCLE to draw a filled circle, it's as if
you have opened a hole in your BASIC OUTPUT window onto
the area of memory where your fill pattern's screen is located.
The trick is to open a 16 X 16-pixel hole using VDI OpCode(9),
Filled Area, but only at locations at which both the x and y val
ues of the top left-hand corner are multiples of 16. This reveals
exact copies of the original patterns—either castle towers,
mosques, or a solid filled area.

Spanish Castles includes several initial variables which differ
from those in the IBM program; these variables insure that the
coordinates calculated and stored in the X and Y arrays (which
hold the positions where each square is to be PUT) are multiples
of 16. The ST program uses offsets with these coordinates—VDI
OpCode(ll) Id(9) to place the rounded-corner squares, and VDI
OpCode(8) Text to place the identifying letters.

In addition, the translation program demanded minor
changes to line up all the connecting lines. With all the changes
it involved, the completed game board filled the OUTPUT win
dow, leaving no room for the INPUT prompts. This made it nec
essary to avoid any ST BASIC commands such as LINEF,
CIRCLE, ARC, PRINT, and GOTOXY, which output to the
screen. Instead of the OUTPUT window, Spanish Castles uses
the VDI directly for all output to the screen, which reduces ST
BASIC to a set of generic commands. You need a good reference
to do any work with VDI, but it's worth the effort.

That ST Look

Finishing touches included changing the first six palette colors
and erasing the entire screen to create a sharp display. With AES
OpCode(105), which also draws the window's title line instead
of the full window, the title of the OUTPUT window became
"Spanish Castles." To allow the game board to command the
display, the program has the command line at the top of the

41

CHAPTER ONE

screen. A final system alert box gives this translation a typical ST
appearance.

Note that the mouse pointer is turned off during the pro
gram since it's not needed in a program which relies on key
board input (and it gets in the way when the game board is
drawn). Without a mouse pointer you will not be able to pull
down ST BASIC menus, which are still there even though the
menu bar showing the titles was erased at the start of the pro
gram. As a result, you must exit this program by clicking either
mouse button while the mouse pointer is over the right-hand
FINISHED bar within the final system alert box.

42

ST-GO
Kyle Cordes

Here's a game that's easy to learn and fun to play,
but don't be fooled: Winning requires concentration

and foresight. "ST-GO" runs in medium resolution on
any ST with a color monitor.

"ST-GO" is a program which allows two players to compete in
the Japanese game of go-moku (sometimes called goban). Al
though this computer version of go-moku is played on the same
kind of "board"—a 19 X 19 grid—used by the game of go, the
two should not to be confused. Go is a more complex game; the
object of go-moku is simply to place five pieces in a line in any
direction. Still, if you and your opponent stay sharp in detecting
each other's strategy, ST-GO is far from easy.

On Your Mark...

In order to begin ST-GO, you and your opponent must decide
which of you will be the red player and which will be blue. At
the bottom corners of the grid are turn indicators—a red and a
blue rectangle. In a new game, the red rectangle is always larger,
indicating that the red player moves first.

To place a piece, point the mouse arrow near an intersection
on the grid and click. If that intersection is open, your playing
piece appears there, and your turn ends. If you accidentally
move the mouse while clicking (and the piece appears on the
wrong intersection), you can undo the incorrect move by clicking
on the UNDO box on the left side of the screen (the UNDO key
doesn't work). The turn indicators help you make sure that you
don't click twice on UNDO and accidentally erase your oppo
nent's last move.

corner of the grid. Every turn involves a move: Neither player
can pass.

You may display the instructions for ST-GO at any time by
clicking on the INSTRUCTIONS box. You may also restart a
game whenever you choose by clicking in the NEW GAME box.
(When you click on NEW GAME, RESET, or QUIT, a dialog box
appears to verify your choice.) Note that the win counters are

43

CHAPTER ONE

not affected by NEW GAME; if you wish to reset them, click in
the RESET box.

When a player successfully places five pieces in a row, the
screen flashes and the win counter below his or her turn indi
cator is incremented. At that point, the players can choose to
continue playing on that board or to start over with an empty
board.

Continuing on the same board makes the game more diffi
cult, since there are more potential moves to consider. If you do
choose to continue, the player who has just lost moves next. If,
on the other hand, you wish to compete by seeing who has the
lowest average of moves-per-win during a series of games, you
must start a new game in order to reset the counter which keeps
track of the number of moves.

44

CHAPTER TWO

Applications

ST-Graph
Michael P. Cohan

Now you can quickly and easily generate graphs to
display all kinds of data for home or business. Verti

cal and horizontal bar graphs, pie charts, line
graphs, scatter-dot charts, and numerous variations
can be compiled with a few mouse clicks. The pro
gram works on all STs in either medium-resolution

color mode or high-resolution monochrome.

It's said that a picture is worth a thousand words, and for good
reason: Sometimes a powerful photo can convey more infor
mation about a dramatic moment than a pageful of prose.

Likewise, a good graph can sometimes reveal more infor
mation than a pageful of numbers. Numerical relationships that
are lost in columns of figures often pop into sharp focus when
displayed in chart form. But until computers came along, con
structing graphs was a tedious process that didn't lend itself to
instant manipulation and experimentation.

Now you can quickly and easily display graphs on your
Atari ST with just a few mouse clicks. "ST-Graph" is an easy-to-
use application program that rapidly generates all the common
types of graphs based on values you supply. It supports all fea
tures of GEM (the Graphics Environment Manager), including
drop-down menus, dialog boxes, mouse controls, and adjustable
screen windows. It runs in either the medium-resolution color
mode or the high-resolution monochrome mode. (It looks best in
monochrome, because it was designed for that mode and takes
advantage of the greater resolution.) Written in compiled Pascal,
ST-Graph is both fast and efficient.

Getting Started
You'll find ST-Graph on the disk as STGRAPH.PRG. An impor
tant related file is STGRAPH.RSC. Commonly known as a resource
file, STGRAPH.RSC contains data required for STGRAPH.PRG
to function. Therefore, if you copy ST-Graph to other disks,
make sure to copy both STGRAPH.PRG and STGRAPH.RSC to
get a fully working program.

47

CHAPTER TWO

You can run ST-Graph from the disk either by selecting it
with the menu program or by double-clicking on its icon/filename
on the GEM desktop. Note that if you attempt to run ST-Graph
in the low-resolution color mode, an alert box informs you that
the program does not support this mode, then returns you to the
GEM desktop.

When ST-Graph runs, you should see three windows la
beled Bar Graph, Data, and Information. Any of these windows
may be dragged to any part of the screen. The Graph window
may be resized or expanded to a full screen. The Data window
also has what appears to be a Full-Screen button, but this has a
different effect that will be explained in a moment.

The Graph window, as its name implies, displays your
graph. The name of this window changes to reflect the different
types of graphs which can be displayed. If no data is available,
the Graph window is empty (as seen when the program first runs).

The Data window displays the data you have entered. Each
graph may contain up to 12 items of data. Each item has three
parts: a value (an integer from 0 through 999999), a label (up to
six characters), and an Enabled/Disabled button (which controls
whether this item is displayed on the graph). All three parts are
shown in the Data window. If an item is enabled, it is accompa
nied by a square filled with the pattern that keys it to the match
ing item on the graph. If the item is not enabled, the space next
to the value and label is blank.

If you don't wish to see items which are not enabled, you
can click on the Data window's Full-Screen button. The window
resizes itself and shows only those items which are enabled. If
no items are enabled, the window will be empty. To see all the
items again, click once more on the Full-Screen button.

The Information window consists of eight lines of text that
you type into a dialog box. This lets you add miscellaneous
information (such as the name of the chart) before printing out
the screen.

Note: When editing labels (or any dialog box) in ST-Graph,
be careful not to move the cursor outside the dialog box, or the
program will lock up.

Creating a Graph
Now you can begin constructing a graph. The first step is to en
ter your data with the pop-up calculator.

Drop down the Edit menu and select the Calculator option.
Instantly, a four-function calculator pops open on the screen

48

Applications

Figure 2-1. The Pop-Up Calculator in "ST-Graph"

Desk File If|f^ Graphtupe Draw
Bar Graph

(Figure 2-1). To enter numbers, point to a button and click the
mouse. ST-Graph does not support negative numbers or frac
tions, but if you want to graph values such as 2.3 and 5.8, all
you have to do is mentally shift the decimal point to make them
whole numbers. For example, enter 2.3 and 5.8 as 23 and 58, re
spectively; the proper numerical relationship is reflected on the
graph. (Of course, to enter whole numbers such as 23 and 58 on
the same graph, you'd have to shift their decimal points, too, en
tering them as 230 and 580.)

On the right side of the calculator are two columns of but
tons labeled DATA 1 through DATA 12, and a large button la
beled PASTE. These buttons let you copy the number on the
calculator's display into the Data window of your chart. Simply
click on one of the DATA buttons to indicate the data item
(1-12) and then click on the PASTE button. Note that this auto
matically enables the item so that it appears on the graph. To
close the calculator, click on the Exit button.

When you exit the calculator, a graph appears in the Graph
window, corresponding to the data you entered. If it isn't exactly
the graph you want, don't worry; it can be instantly changed by
selecting a menu option, as you'll see shortly. You can also re
size the Graph window, making it as small or as large as you
want. The graph automatically rescales itself to fit the new win
dow. (Sometimes the graph does not rescale when you make the

49

CHAPTER TWO

window smaller; if this happens, just select Plot Graph from the
Draw menu to force a redraw.)

If you need to erase all the data and labels, as well as the
contents of the Information window, drop down the File menu
and select Clear. An alert box asks you to confirm this operation.

Editing Labels
After you've entered data, you'll probably want to label it. These
labels will appear next to the numbers in the Data window.
Also, occasionally you may want to disable some of the data
you've entered to keep it from appearing on the graph. You can
do all this by dropping down the Edit menu and selecting the
option called Edit Labels.

This option opens a dialog box with 12 editable text fields.
The text fields are for the labels. Point to the field you want to
edit and click the mouse. When a thin cursor appears, you can
start typing.

You can move within this field with the left and right cursor
keys, and you can erase mistakes with the backspace key. To
change fields, point to the desired field and click the mouse again.

Each text field has an Enabled button. These buttons control
whether each data item is displayed on your graph. If the button
is selected (displayed in reverse video—with white letters on a
black button), the item is enabled. Click on the buttons to
change their state.

The 12 numbered buttons in the row across the top of the
dialog box control which of the 12 fields are used by ST-Graph
when you exit the dialog box. Normally, when the program
starts, all these buttons are selected (displayed in reverse video).
This means ST-Graph uses both the labels and Enabled buttons
for all 12 fields when you exit. If you click on a numbered but
ton to deselect it (it appears in normal video—with black num
bers on a white button), ST-Graph ignores the corresponding
label and Enabled button. The label and button state is retained
the next time you pick the Edit Labels option.

This might seem confusing at first, so here's why the num
bered buttons are provided. The label fields always contain
whatever you last typed into them, even when you load a previ
ously saved graph with new data and labels. The new labels are
shown in the Data window, but not in the label fields. Thus, if
you load in a new graph and labels, then want to change only
one label, you should select only the button of the label you

50

Applications

want to change so that the others aren't reset also. (If this still
sounds confusing, it will become clearer as you work with the
program.)

When you've finished editing labels, exit the dialog box by
clicking on the Exit button. If you change your mind and decide
you'd rather leave the labels and Enabled buttons as they were
before you opened the dialog box, click on the Cancel button
instead.

Dollars and Cents

Besides editing the labels, there's one other way to modify the
display in the Data window. When you drop down the Edit
menu and choose the option called Show Data as Dollars, all the
numbers you've entered are divided by 100 and are displayed to
two decimal places (81 becomes .81, and so on). Therefore, if
you want your graph to reflect dollars-and-cents figures, enter an
amount such as $23.47 as 2347 and select this option.

To turn off the option, drop down the menu and select it
again. A checkmark indicates when the option is active.

Note that Show Data as Dollars affects only the display of
the Data window—no decimal point is available on the calculator.

Changing Graph Types
Once you've entered your data and labels, you can specify which
type of graph should be displayed in the Graph window. Simply
drop down the Graphtype menu and select the type you want.
The graph is instantly redrawn and the name of the Graph win
dow changes to reflect your choice. Also, a checkmark on the
Graphtype menu shows which graph is currently selected.

Note that you can change any graph option at any time,
even when the Graph window is not the active window.

ST-Graph offers the following types of graphs:

• Pie Chart: Your data is translated into slices of the pie in a
clockwise direction (Figure 2-2).

• Horizontal Bar: Your data matches the bars from top to bottom
(Figure 2-3).

• Vertical Bar: Your data matches the bars from left to right (Fig
ure 2-4).

• Stacked Bar: A variation of the vertical bar; see below.
• Line: Your data matches the points on the line from left to right

(Figure 2-5).

51

CHAPTER TWO

• Dot: Your data matches the dots from left to right (similar to
Figure 2-5).

Figure 2-2. Pie Chart Created with "ST-Graph"

Desk File Edit Graphtype Draw

/::«£

^

Figure 2-3. Horizontal Bar Chart

Desk File Edit Graphtype Draw

52

Infornation

International Doorknob, Inc,

1987 Budgetary Breakdown

(by percentage)

E3 1:
• 2:

1 i,\
m 5:

Data

IB

12
8
5

65

fidninistration

Manufacturing
Distribution
Research & Dev,
Travel & Enter,

Infornation

CIVILIAN UNEMPLOYMENT ROTE
August 1985 ~ July 1986
Seasonally Adjusted

Source: U.S. Bureau
of Labor Statistics

H 9:
EhB:
EJll:
012:

Data

71

71
71

78

69
68
73

72

71
72
69

68

August 1985
Septenber 1985
October 1985
Hovenber 1985

Decenber 1985
January 1986
February 1986
March 1986
April 1986
May 1986
June 1986

July 1986

Applications

Figure 2-4. Vertical Bar Chart

Desk File Edit Graphtype Draw

Bar Graph *|" ;;•;; Infornation :: :: =;I:N

CIVILIAN UNEMPLOYMENT RATEn ?777

August 1985 - July 1986

m
,.,:i;.: Seasonally Adjusted

Source: U,S, Bureau

M 1 11 %
:

of Labor Statistics

Data

m is 71 August 1985
BBSS • 2: 71 Septenber 1985

.:-' ••!• ' I ' ^B^V^ #*;:*:• 1 3: 71 October 1985

i • BPi% ceo
i 4: 7B
I 5: 69

Novenber 1985
Decenber 1985

;MJflf Rfe •••:/,! i 6: 68 January 1986
::::::::.| 'J$:xV ^M^Se

yyy ffi 1 7: 73 February 1986
^•zdri 1 8: 72 March 1986

1 i SfSlvijiHra^^^^^RiSi: >>,; B 9: 71 April 1986

IIiiwiiibI
010: 72
011: 69

May 1986
June 1986
July 1986SIV, 68

Figure 2-5. Line Graph

Desk File Edit Graphtype Draw

*l Infomatiw"

PRIME RATE

June 1981 ~ August 1986

2D

16

11
14

9

Line Graph

Data

June 1981

June 1982
June 1983
June 1984

June 1985

August 1986

53

CHAPTER TWO

In addition to these different types of graphs, you have sev
eral options available for modifying the graphs. One is the Grid
option, which superimposes the graph upon a grid. Toggle this
option on and off by selecting it from the Graphtype menu; a
checkmark indicates when it is active. (Note that Grid is dimmed
on the menu when you're displaying a pie chart, since it's not
meaningful to superimpose a pie chart on a grid.)

You can adjust the scale of the grid by dropping down the
Edit menu and selecting the option called Edit Grid Spacing. A
dialog box opens and lets you enter three numbers—for Scale,
Grid, and Emphasize.

The Scale value determines the relative size of the chart (but
not the actual size of the Graph window). For instance, if you're
graphing percentages, you'll probably want a scale of 1 to 100.
Normally, ST-Graph scales your graph to the largest data item
supplied. That is, if the largest number you enter for a data item
is 94, the corresponding bar on a bar graph will extend com
pletely across the window. By changing the value of Scale, you
can scale the graph to a different value. Note that this value is
ignored if it's less than the largest value in the graph.

Figure 2-6. A Scaled and Emphasized Grid

54

Desk File Edit Oraphtype Draw

*F Infornation

PRIME RATE

June 1981 ~ August 1986

• II
• 2:
m 3:

m

Data

28 June 1981
16 June 1982

11 June 1983

14 June 1984

9 June 1985

8 August 1986

Applications

The Grid value controls the spacing of the grid. For instance,
if you've entered 100 for the Scale value and want grid lines
spaced by increments of 10 (representing values of 10, 20, 30,
40, 50, 60, 70, 80, and 90), enter a Grid value of 10. If you want
grid lines spaced by increments of 20 (20, 40, 60, 80), enter 20. If
you want to set the Scale but don't want to display a grid, enter 0.

The Emphasize value lets you highlight some of the grid
lines. If you enter 5, for instance, every fifth line becomes a solid
line instead of a dotted line. If you don't want to emphasize any
lines, enter 0.

So, putting this all together, let's say you want a vertical bar
chart ranging from 1 to 20, superimposed on a grid spaced by
l's, with every fifth grid line emphasized. You'll enter 20 for
Scale, 1 for Grid, and 5 for Emphasize. The result can be seen in
Figure 2-6.

Grouping
Beneath the Grid option on the Graphtype menu, you'll see an
other set of options, labeled Bar Grouping. These options are:
None, Groups of Six, Groups of Five, Groups of Four, Groups of
Three, and Groups of Two. A checkmark indicates the currently
selected option. These options are available only when bar
graphs—horizontal, vertical, or stacked—are being displayed.

Figure 2-7. Bar Grouping

Desk File Edit Graphtype Draw

KInfornation

PERFORMANCE COMPARISONI
Smith, Snith, Snith 8 Sons

International Doorknob, Inc.
U.S. Buggy Whip Co,

Fly-By-Nite Insurance Corp,

Avg, Price per Share 1984-86

• 1;
C 2

• 4
m 5:
• 6:

• 8
9
ID

lil
12

$ 125
$ 55,
$ 25,
$ 75,
$ 135
$ 58,
$ 17,
$ 85,
$ 142
$ 35,
$ 12,
$ 115,

Data

Snith - 1984

Doorknob - 1984
Buggy - 1984
Fly - 1984
Snith - 1985

Doorknob - 1985
Buggy - 1985
Fly - 1985
Snith - 1986
Doorknob - 1986
Buggy - 1986
Fly - 1986

1

Bar Graph

55

CHAPTER TWO

These options let you group the bars together and use the
same fill patterns for each group. For instance, let's say you're
comparing the performance of four companies over a three-year
period. You enter the first-year figures for the companies as data
items 1-4, the second-year figures as data items 5-8, and the
third-year figures as items 9-12. Then you choose the Groups of
Four option with either the horizontal or vertical bar graph. (A
grid can be added, too, if you wish.)

The result can be seen in Figure 2-7; the bars are grouped
together in three sections, four bars per section, with the same
four fill patterns used in each section. The correct fill patterns are
also displayed in the Data window.

The bar-grouping feature works with stacked bar charts as
well. Continuing with our previous example, select the Stacked
Bar option with Groups of Four. Instead of displaying three
groups of four bars, ST-Graph displays only three bars. The first
four data items are stacked atop one another in the first bar, the
next four items are stacked in the second bar, and the last four
are stacked in the third bar (Figure 2-8).

Figure 2-8. A Stacked Bar Chart

56

Desk File Edit Graphtype Draw

Infornation

PERFORMANCE CDMPARISON:
Snith, Snith, Snith 8 Sons

International Doorknob, Inc,
U.S. Buggy whip Co,

Fly-By-Nite Insurance Corp,

Avg. Price per Share 1984-86

II li$
• 2:5

3:5
4:5
5:5
6:5
7!$

_ 8i$
[J 3:5
• 10:$
Hll:$
"12:5

Data

125,00

55,00

25,88
75,B8

135,08
58.25
17,50
85,67
142,50
35,25
12,95

115,88

Snith - 1984

Doorknob - 1984
Buggy - 1984
Fly - 1984
Snith - 1985

Doorknob - 1985
Buggy - 1985
Fly - 1985
Snith - 1986

Doorknob - 1986
Buggy - 1986
Fly - 1986

Applications

If you don't have much experience with business graphs,
you'll probably have to experiment with this feature awhile to
iearn why it's useful. Try some different values and grouping op
tions; then compare the graphs that result when you select the
Vertical Bar option versus the Stacked Bar option.

Printing the Chart
ST-Graph's Information window lets you add a title and any
other information you deem necessary before printing out a fin
ished copy of the chart.

Up to eight lines of text can be displayed in this window. To
enter the text, choose the Edit Information option from the Edit
menu. A dialog box opens with eight editable text fields. Click
on the line you want to edit; then enter the text you want. Click
on the Exit button when you've finished, or click on Cancel to
retain the previous contents of the Information window.

The row of eight buttons across the top of this dialog box
have the same effect on the text fields as the similar buttons in
the Edit Data box.

Once you've designed your chart and arranged the Graph,
Data, and Information windows on the screen for an attractive
display, you can press the Alternate and Help keys simulta
neously to dump the screen to a graphics printer. (The ST is set
up for an Epson or Epson-compatible, but it's possible to use
other printers by making adjustments with the Install Printer
desk accessory that comes with the ST.)

Alternatively, you can capture the ST-Graph screen on disk
with one of the commercial or public domain snapshot-type pro
grams. One such program, by Russ Wetmore, is available on the
Atari Corporation's bulletin board system in Sunnyvale (408-
745-5308), and on other BBSs as well. Another, "Snapshot NEO/
DEGAS," appears later in this book. Most of these snapshot utili
ties save the screen in a format that can be loaded by graphic-
design programs such as NEOchrome or DEGAS. This lets you
modify the chart further before making a printout (Figure 2-9).

Saving and Loading Graphs
Another ST-Graph option lets you save a graph on disk. The ac
tual screen layout won't be saved, however—only the contents
of the Data and Information windows. You'll still have to arrange
the screen as you want it. To use this option, select Save from
the File menu.

57

CHAPTER TWO

Figure 2-9. An "ST-Graph" Chart Captured on Disk with a
Snapshot Utility and Modified with a Drawing Program

Sales Revenues of LPs, Tapes, CDs

LPs ~ 2BZ

Cassette Tapes ~ 58Z

w

CBreakdown by Percentage — USA 1986)

To bring in a previously saved graph, select Load from the
File menu. Both options take advantage of the standard GEM
item selector, so you can save and load files on different disks
and in different folders. When you select Load, ST-Graph looks
for filenames with the extender .DAT, so you might want to ap
pend this extender to any graphs you save.

Remember that loading a previously saved graph does not
change the text fields in the Edit Information/Edit Labels dialog
boxes—only in the Information and Data windows themselves. If
you wish to change only one line of text or one label, make sure
all the buttons across the top of these dialog boxes are dese
lected, except for the one corresponding to the field you wish to
change.

To leave ST-Graph and return to the GEM Desktop, you can
click on the Close buttons of any of the three windows or choose
Quit from the File menu. An alert box requests that you confirm
the action.

58

Desktop Clock
David Plotkin

With this desk accessory, you can display a digitai
clock on your screen while running any other GEM

application program. The program works on any ST
in any screen mode: iow- or medium-resoiution color

and high-resolution monochrome.

It's easy to lose track of time when you're working with a com
puter, and nearly everyone has experienced the surprise of
discovering that it's suddenly three hours past bedtime. But now
it's easy to keep an eye on the clock while working with your
word processor, spreadsheet, database, or telecommunications
program.

"Desktop Clock" is a simple desk accessory that's always in
stantly available within any program that supports GEM (the
Graphics Environment Manager). When summoned from the
Desk menu, it pops open a small window with a digital clock.
The clock can be repositioned anywhere on the screen and does
not interfere with the main application program running in the
background. It operates on a 12-hour cycle and indicates a.m. or
p.m. You can make the clock disappear and reappear at will. You
can even make it reappear if it is hidden behind another window.

Installing the Clock
The program file for Desktop Clock can be found on the disk un
der the filename CLOCK.AC. This is not an executable file—it
cannot be run from the disk or by clicking on the filename or
icon from the GEM desktop. Instead, it must be installed on your
boot disk as a desk accessory, a program that is automatically
loaded into memory when you first switch on your ST. A desk
accessory remains in memory even when it isn't running. To ac
tivate a desk accessory, you must select it from the Desk menu
which is present in all application programs that support GEM.
(Sometimes the Desk menu is titled with an Atari logo symbol;
in any case, it's always the menu at the far left of the screen.)

"Desktop Clock" was written using Personal Pascal from Optimized Systems Software.
Portions of this program (the linked libraries) are copyright 1986 by OSS and CCD. Used
by permission of OSS.

59

CHAPTER TWO

Installing Desktop Clock requires only a few simple steps:

1. Copy the file CLOCK.AC from COMPUTED Second Book of
Atari ST Disk to your boot disk—that is, the disk you insert in
drive A when you first switch on the computer.

2. Rename CLOCK.AC to CLOCK.ACC by selecting Show Info
from the File menu. (If you're not sure how to rename a file,
consult the manual that came with the ST.) The .ACC ex
tender is important—programs with filenames ending in .ACC
are recognized by the computer as desk accessories and are
automatically loaded into memory during boot-up. If you hap
pen to be using the disk-based version of TOS (pre-ROM),
you'll have to rename the file DESKx.ACC, where x is a num
ber between 1 and 6 not being used by some other desk acces
sory (for example, DESK5.ACC). Make sure that you install no
more than six desk accessory programs, or your ST will fail to
boot. The Control Panel accessory counts as two (that file in
stalls two accessories: the Control Panel and the printer con
figuration accessory). The VT-52 emulator accessory also
counts as two accessories, placing two options on the Desk
menu. This means that if you install the Control Panel and
VT-52 emulator, there's only enough room for two more ac
cessories of your own choosing.

3. To install Desktop Clock, turn off the computer and wait a few
seconds. Then switch the computer back on, making sure the
bootup disk with CLOCK.ACC is in drive A. (Note that desk
accessories must always be installed with this cold start proce
dure—a warm start triggered by pressing the reset button may
not reliably install a new accessory.)

Using the Clock
That's all there is to it. When you drop down the Desk menu
from the GEM desktop, you should see a new selection labeled
Desktop Clock, along with any other accessories you may have
previously installed on the boot disk. To open the Desktop
Clock, just select Clock from the menu.

Desktop Clock works the same as any other GEM window.
You can move it anywhere on the screen by clicking and drag
ging the title bar. You can make it disappear by clicking on the
close gadget in the upper left corner of the window. You can
move the clock on top of other windows, or move other win
dows on top of the clock. However, there are no sizing gadgets
on the clock window; it always stays the same size so that it

60

Applications

takes up a minimum amount of space on your screen.
If you close the clock window or hide it behind another win

dow, you can make it reappear by selecting it again from the
Desk menu.

Figure 2-10. "Desktop Clock" (lower right corner) in a Screen
from the GEM Application 1ST Word

A\ File Edit Block Style Help

ft R:\TEMP.DOC K

[,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,A,,,,] 0

"Desktop Clock" continuously displays the current tine inside a
snail noveable window, even while you're running another progran
— as seen in the lower right corner of this 1ST Hard screen,

1

1>
<? |» I

i .
F2

UNO LIME

F3

ITALIC LIGHT E3DEU LINE
F7

NEW PfiGE

F8

CENTER

Desktop Clock 1
N"> 81:58:58 PM

Desktop Clock has no provisions for setting the system time.
Therefore, to set the clock, you'll need to install the Control
Panel desk accessory that came with the ST or use a program
that prompts you to enter the time and date when booting up.
To learn how to use a batch file for this purpose, see the "ST-
Shell" article in Chapter 4.

61

Desktop Notepad
Tim Victor

If you've ever needed to jot down a short note while
using your ST, you'ii Jove this desk accessory—a

notepad that's instantly avaiiabie while any other
program is running. You can write a note, save or

ioad from disk, and print copies without interrupting
the main program you're using. It works on any ST

in any screen mode, color or monochrome.

"Desktop Notepad" is a handy desk accessory that nearly every
ST user needs at one time or another. Often while working with
an application program, you'll need to write yourself a quick
note, memo, or reminder. Some word processors let you open
another window for this purpose, but what if you're using a
spreadsheet, database manager, terminal program, text editor, or
compiler? Desktop Notepad lets you jot down your note without
interrupting whatever main application you're running.

Figure 2-11. "Desktop Notepad" Running Concurrently with
Another Application

Desk Baud Rate File Type Phone 8 Options

62

CONTROL PANEL

4:15 PM 12/38/86

Itf HLIKMIGliP

HBTEPUD

Here's an exanple of "Desktop Notepad" in use. Notii
Ihow it's running sinultaneously with another application ~
lithe terninal progran whose nenu bar appears at the top of
jthe screen ~ as well as another desk accessory, the
•Control Panel, "Desktop Notepad" is ideal for jotting down
(short notes or nenos without having to exit your current
application, And considering the nunber of functions it

goffers, it uses very little nenory.1

Applications

Although it's not a full-featured word processor, Desktop
Notepad does support basic word processing functions. You can
insert text at any point; delete single characters or entire blocks;
move or copy blocks of text from one place to another within a
document; search for specified strings of text; search and replace
strings; create documents of any size up to the limit of available
memory; save and load text on disk; and print out copies of doc
uments on a printer. Desktop Notepad takes full advantage of
GEM features, including a movable and resizable notepad win
dow, scroll bars, and a cursor that's controllable with the mouse
or the keyboard. And, thanks to its instantaneous word-wrapping,
you can freely enter text without worries about formatting.

Desktop Notepad will be a significant addition to nearly
anyone's software library.

Installing the Program
Desktop Notepad must be installed as a desk accessory. That
means the program is automatically loaded into memory when
you turn on your ST, and it waits for you to call it into action by
selecting it from the Desk menu. Most programs that support
GEM make this menu available at the far left side of the menu

bar. (Sometimes the Desk menu is labeled with the Atari logo, as
in 1ST Word.) As long as the Desk menu is available, Desktop
Notepad is ready to be called up at the click of a button.

To prepare Desktop Notepad for use, simply copy the file
NOTEPAD.AC from COMPUTERS Second Book of Atari ST Disk to
your boot disk (the disk you insert in drive A when you switch
on your ST). Then rename the file to NOTEPAD.ACC. The
.ACC extender tells the ST's operating system to automatically
load Notepad as a desk accessory when the computer is switched
on. NOTEPAD.ACC must be on the root (main) directory of
your boot disk; do not place it in a folder (subdirectory).

There's one exception to this rule: If you're using a hard
disk drive, you may place your desk accessory files on the root
directory of disk C.

Note: It you have an early 520ST without the TOS operat
ing system in read only memory (ROM), you should rename
NOTEPAD.AC to DESK5.ACC after copying it to your boot disk.
However, Desktop Notepad may not work properly with some
applications if your 520ST lacks TOS in ROM. The TOS upgrade
costs about $35 at your local Atari dealer's and is highly recom
mended. If you already have a DESK5.ACC file on your boot

63

CHAPTER TWO

disk, rename NOTEPAD.AC to DESKx.ACC, where x is any
number less than six.

The current version of TOS allows up to six desk accessories
and one primary application program in memory at a time. Note
that the Control Panel and VT-52 emulator accessories supplied
with your ST count as two accessories each, placing two options
each on the Desk menu. This means that if you install the Con
trol Panel and VT-52 emulator, there's only enough room for
two more accessories of your own. Desktop Notepad counts as
one accessory.

There is one potential problem in using desk accessories,
particularly large ones. Some accessories occasionally interfere
with some application programs. If the application you're using
is behaving strangely, try disabling all the accessories (perhaps
by renaming the extenders from .ACC to .AC) and rebooting the
computer. Then try your application again to see if it behaves
properly. This shouldn't be a problem with Desktop Notepad,
because it's a relatively small accessory. However, it does have
the capability of loading very large text files. (See below.)

After placing NOTEPAD.ACC on your boot disk, insert the
disk in drive A and switch on the computer. If it seems that the
GEM desktop takes slightly longer to appear than usual, don't be
alarmed; it takes a few seconds longer for the computer to load
desk accessories into memory. When the desktop appears, con
firm that Desktop Notepad is installed by dropping down the
Desk menu. You should see a selection called Notepad. You can
open the Notepad by clicking on this selection.

Full-Screen Editing
When Desktop Notepad opens, the screen should resemble Fig
ure 2-12. Try typing a line of text. Notepad works much like ST
Writer and 1ST Word; all alphanumeric keys and cursor control
keys are active. However, Notepad is permanently locked in in
sert mode, so whatever you type pushes existing text ahead of it.

Notice that when the cursor reaches the end of a line, the
text automatically continues on the next line, and no words are
broken at the right margin of the Notepad window. This feature
is called word-wrapping or parsing and is found in most word
processors. As a result, all text entered into Notepad is flushed
against the left screen margin, leaving a ragged right margin.

64

Applications

Figure 2-12. "Notepad": A Blank Slate Awaiting Input

Desk File view Options

Figure 2-13. Word-Wrapping in "Notepad"

Desk File View Options

65

CHAPTER TWO

Notice that the Notepad window is equipped with standard
GEM gadgets. By pointing at the window's title bar and pressing
the left mouse button, you can drag the window to any position
on the screen. By dragging the lower right corner of the window,
you can resize the Notepad. By clicking on the tiny button in the
upper right corner, you can expand the Notepad to full-screen
size and shrink it back down again. The vertical slider along the
right edge of the window lets you scroll through a note that
might be too long to fit in a single window.

One interesting feature of Desktop Notepad is that it auto
matically reformats the word-wrapping whenever the window is
resized. This makes it unnecessary to use a horizontal slider
along the bottom edge of the window. Even some full-blown
word processors on the ST lack this feature.

Figure 2-14. Text Reformatted for Resized Window

Desk File view Options

u'-^'i-ma u'-'..a-nn

U'l NOTEPAD k|
Word wrapping

autonatically noves
words to the next

[line rather than
breaking then at
the right nargin.l

-

0

JKJ

B:\

214413 bytes used in 7 itens.

Editing Controls
The keyboard and mouse work much the way you'd expect them
to. You can move the cursor a character at a time in any direc
tion with the cursor keys, or move it directly to any point in the
text by pointing and clicking the mouse. The Backspace key
erases the character immediately behind the cursor. The Return
key inserts a carriage return and lets you start a new paragraph.

If you want to delete a lot of text, it can be tedious to keep

66

Applications

pressing the Backspace key. Instead, define the block to be de
leted by holding down the left mouse button and dragging either
forward or backward. You can define text which doesn't appear
in the window by dragging the mouse above or below the win
dow—this automatically scrolls the text in the window. The de
fined block appears in reverse video. If you change your mind at
this point, you can undefine the block by holding down the
Control key while clicking the left mouse button.

Figure 2-15. Reverse-Video Block Defined by Dragging
the Mouse

Desk Baud Rate File Type Phone » Optioris

CONTROL PANEL

Here'

1Z/3B/86

I^deslulw

HIiHtl

NOTEPAD

's an exanple of "Desktop Notepad" in use, Notice how it's
running sinultaneously with another application — the terninal
Hprogran whose nenu bar appears at the top of the screen — as well as
Hanother desk accessory, the Control Panel, "Desktop Notepad" is ideal
jfor jotting down short notes or nenos without having to exit your
Bcurrent application,-"And consideringjthe nunber of functions it
•offers, it uses very little nenory,

Once a block is defined, you can delete it with a single
mouse-click. These and other functions are controlled by the spe
cial menu seen in Figure 2-16. The special menu appears when
ever you drop down the Desk menu and reselect the Notepad
item while the Desktop Notepad window is already open. The spe
cial menu disappears after you've selected a function or when
you click the mouse button without selecting a function.

Other items on the special menu let you move or copy de
fined blocks of text, search and replace strings, save notes on
disk, or recall notes that you saved earlier. To move a block of
text, first define it as described above. Next, place the cursor at
the position within your note where you want to move the
block. Then select Move from the special menu. The text block

67

CHAPTER TWO

will be deleted from its original position and moved to the new
position.

Copying a block of text to another place in your note is just
as easy. Define the block to be copied, move the cursor to the
position where you want the text inserted, and select Copy from
the special menu. The text block will be copied to the new posi
tion and left unchanged in the original position.

To find a string of text or search and replace a string, select
Find from the special menu. A dialog box opens to present an
other collection of functions (Figure 2-17).

Figure 2-16. The "Desktop Notepad" Special Menu

Desk File view Options
Copy
Hove

Delete
Find,,,

Load,,
Save,,

Print

Clear

NOTEPAD

Just a note to let you know
that you did a great job on the
progran. Thanks!

TRH I

To find a string of text, type the string on the FROM: line.
Then click on the FIND button. The cursor will move to the next
occurrence of that string within your note. Keep in mind that all
search operations begin at the current location of the cursor. If
you want to search through the entire note, first move the cursor
to the beginning of the text.

To search for a string of text and replace it with another
string, first type the string you're searching for on the FROM:
line. Next, type the string you want to replace it with on the TO:
line. Then click on the CHANGE FIRST button to replace only
the first occurrence of the string, or CHANGE ALL to replace all
occurrences of the string. Again, remember that search-and-

68

Applications

replace operations begin at the current location of the text cursor.
If you selected the Find function by accident or changed

your mind, click on the CANCEL button to exit the dialog box
and return to the Notepad window.

Figure 2-17. Functions Available with the Special Menu's
Find Option

Desk File view Options

Saving and Loading
To save or load a note, select the Save or Load functions from
the special menu. Desktop Notepad saves all notes in a format
known as ASCII (American Standard Code for Information Inter
change). That is, the note is saved as a block of text with no spe
cial imbedded characters. In this form, the text can be uploaded
to another computer via modem or loaded into a word processor
or text editor that handles ASCII files. Likewise, Desktop
Notepad can load a text file that has been saved in ASCII format
by another word processor or text editor.

One note, however: Many word processors and text editors
on the ST save ASCII files a little differently from the way simi
lar programs on other computers save them. ASCII files on the
ST often have a carriage-return character and a linefeed character
at the end of every line of text. The carriage-return character is
invisible, but makes it appear that Desktop Notepad's automatic

69

CHAPTER TWO

word-wrapping isn't working; the text breaks in strange places
along the right margin of the Notepad window. The linefeed
character may appear on the screen as a bell character. Similarly,
tab characters inserted by some word processors may appear on
the screen as clock characters.

You can ignore these characters when editing a document
with Desktop Notepad, especially if you plan to load the file
later into the word processor or text editor that originally created
it. Alternatively, you can delete all of the carriage return, line
feed, and tab characters with Desktop Notepad's search-and-
replace function. To do this, select Find from Notepad's special
menu. To enter the search string on the FROM: line, type Con-
trol-M for the carriage-return character, Control-J for the linefeed
character, or Control-I for the clock character. Don't type any
thing on the TO: line. When you click on the CHANGE ALL
button, the character specified on the FROM: line will be deleted
throughout the document.

This operation may take quite some time with a long docu
ment. To speed it up, make the Notepad window very small
before beginning the search and replace. This reduces the
amount of reformatting the program must do each time it deletes
a character.

Remember that if you delete all of the carriage returns or
linefeeds in this manner, you may have trouble reformatting the
document if you load it back into the word processor or text edi
tor that originally created it. Experiment first before altering an
important document.

The File Selector
When you select the Save or Load functions from Desktop
Notepad's special menu, a standard GEM file-selector window
opens up to prompt you for a filename. This works the same as
all file selectors on the Atari ST. Simply enter any standard ST
filename (up to eight characters with an optional three-character
extender), and press Return or click on the OK button. Click on
Cancel to abort.

To change a pathname, click on the dotted line at the top of
the file-selector window. Press Backspace or Esc to erase the old
pathname, type the new pathname, and click on the directory
box to display the new directory. For example, if you need to
load a text file on drive B, type B: on the pathname line. Consult
the manual that came with your ST if you need further infor-

70

Applications

mation on using file selectors and pathnames.
Desktop Notepad's special menu also lets you print the text

currently loaded into the Notepad window. Make sure your
printer is powered up, connected, and online; then select the
Print function. The note will be printed as it appears in the
Notepad window, including line breaks. The entire note is
printed even if it doesn't fit inside the Notepad window.

Closing and Reopening
As you're writing a note, you may find that you need to check
an item in the application you're working with, or you may just
want to continue with the application. If so, you can close the
Notepad without losing the note it contains.

When you click on the close button in the upper left corner
of the Notepad window, the Notepad window goes away. The
next time you reopen the Notepad window by selecting Notepad
from the Desk menu, it reappears with the text intact. If you
want to erase the contents of the Notepad, select the Clear func
tion on the special menu. This lets you start a new note if
desired.

71

HAPTER THREE

• JLkHw XV V-/ LAX A IXC,15

File Hider
David T. Jarvis

Use the two programs described here to render disk
files invisible on directories to protect them from

snoopers; restore them to visibility; call up extended
directories of disks; and more. The programs work
on any ST in any screen mode: iow- or medium-

resolution color, and high-resolution monochrome.

"Reinventing the wheel" violates a basic rule of design: Don't
waste time doing something that's already been done well. But it can
be useful to reinvent a wheel now and then. Benjamin Franklin
reportedly taught himself to write by rewriting, from memory,
works of other writers and then comparing his results to the
originals. You can take the same approach with programming. It
can be instructive to write programs that perform functions al
ready provided by your computer's operating system; what bet
ter way to learn how the system works?

There can also be practical results from this. By rewriting
basic system functions, you can tailor them to your own needs or
preferences. On the Atari ST, for instance, you might occasion
ally want to enter system commands with an "old-fashioned"
command line interpreter instead of using the mouse controller
and GEM (Graphics Environment Manager) desktop. Or, more to
the point, you might want to modify the disk directory function
so that certain files you'd like to conceal from certain eyes don't
appear in a directory window. Writing a custom directory pro
gram is an important step toward accomplishing this goal.

Such a program can be found on the disk under the file
name XDIR.PRG. As we'll describe in more detail in a moment,
"XDIR" provides an extended directory listing of a disk by call
ing low-level routines within the ST's operating system. It re
veals disk information which isn't normally available in a
standard GEM directory window.

The other program is "File Hider," stored on the disk as
FILEHIDE.PRG. File Hider lets you hide filenames that would
normally appear in a directory. In effect, you can protect sensi
tive data against casual snoops by rendering the file invisible.

75

CHAPTER THREE

Using XDIR
Let's cover the extended directory program first. To get started,
you must make sure that XDIR is properly installed as a special
type of TOS (Tramiel Operating System) application. Follow
these steps:

1. Copy the file XDIR.PRG from COMPUTE's Second Book of
Atari ST Disk to one of your own disks. Although you can run
XDIR from the book disk, it's a good idea to keep the original
copy as a backup.

2. Click once on the XDIR.PRG icon or filename to highlight it.
Don't double-click it at this point.

3. Drop down the Options menu and select Install Application.
4. When the dialog box appears, click on the button labeled TOS

Takes Parameters to make sure it is selected. Then click on the
OK button.

XDIR is now installed and ready to run. If you want to avoid
repeating steps 2 through 4 whenever you reboot the computer,
drop down the Options menu again and select Save Desktop.
This insures that XDIR will be installed as a TTP (TOS Takes Pa
rameters) application whenever you boot from that disk. Other
wise, you'll have to select Install Application during each
session.

To run XDIR, double-click on the XDIR.PRG icon or file
name. A dialog box opens to prompt you for a disk pathname. If
you press Return or click on the OK button without typing any
thing, the default is the usual *.*, which displays every file and
folder on the disk. You can change this pathname, of course, just
as you would with a GEM item selector. For instance, to view
the contents of a folder called FOLDERS.TOO on disk A, you
would enter A:FOLDERS.TOO *.* (Figure 3-1). For more infor
mation on pathnames, consult the manual that came with your ST.

When you press Return or click the OK button, XDIR clears
the screen and displays the disk directory. To exit the directory
and return to the GEM desktop, press any key.

File Attributes

You'll notice that the XDIR directory provides a few pieces of
information normally missing from a GEM directory window: the
amount of free space on the disk, the disk label, and any special
attributes of each file, as we'll explain in a moment. In addition,
folders (subdirectories) are denoted with <DIR> and the letter D,

76

Disk Utilities

Figure 3-1. Entering the Pathname with "XDIR"

Desk File view Options

V
H!\

67615 bytes used in 3 itens,

• C1
POLDERS.TOO ARTICLE.TXT DEIKTOF . IriF FILEHIDE.C FILEHIDE.PRO HIDEME.NOW LETTER

OPEN fiPPLICHTIOH

Hanc: XDIR .PRO

Paraneters:

a:folders.too*.*

Cancel

and files concealed with the File Hider utility are marked with an
H. If you're viewing the contents of a folder, the first few entries
in the directory tell you how deep you are in the directory struc
ture. You'll see a period and a <DIR> for each directory level,
including the root (main) directory.

File attributes are special characteristics of disk files on the
ST. A file's attributes are encoded in one byte; a particular
attribute is given to a file by setting the corresponding bit of the
attribute byte. With the current version of TOS, a file may pos
sess the following attributes:

Attribute

Value Characteristic
1 Read-only; file cannot be altered.
2 A hidden file; filename won't appear on normal

directories.

4 System file.
8 The file is a disk label (always an empty file).

16 The file is a subdirectory (folder).
32 Used for archival purposes.

77

CHAPTER THREE

A file can have more than one attribute. For example, a file
with an attribute byte containing the value 3 would be a read
only, hidden file. A file whose attribute byte is 0 has no special
attributes.

Examining a file's attributes is interesting, but being able to
change the attributes is much more useful. You can change the
read-only attribute from the GEM desktop by clicking on a file
and selecting Show Info; then click on the Read-Only button in
the dialog window which appears. But other attributes, such as
the one for hiding a file, are not accessible from the desktop.
Fortunately, TOS contains a low-level call to read or change a
file's attributes. That's how File Hider works—it calls this routine
to let you set or clear the corresponding attribute bit.

Hiding Files
Before using File Hider, you must install the program in the
same way you installed XDIR. Copy FILEHIDE.PRG to another
disk, click once on the icon/filename, select Install Application
from the Options menu, click on the button labeled TOS Takes

Figure 3-2. Making a File Invisible with "File Hider"

Desk File View Options

FLOPPY DISK

78

100383 bytes used in 10 itens,

•
0LCER5.T0C FlRTICLE.T CT CESKTOF . IN- FILEHIDE.I JHJ!H»m333 HIDEME.HOW LETTER

OPEN APPLICATION

Narte: FlLEHIDE.PRG

Paraneters:
a: hidene, nowj

DO Cancel

Disk Utilities

Parameters, and then click on the OK button. Again, you may
want to select Save Desktop to avoid the trouble of reinstalling
the application in the future when booting from that disk.

To run File Hider, double-click on the icon/filename. A dia
log box opens to prompt you for the pathname and filename of
the file you want to hide. For example, to see how to hide a file
called HIDEME.NOW on the root directory of drive A, look at
Figure 3-2.

After you've entered this information and pressed Return or
clicked on the OK button, File Hider clears the screen and at
tempts to render the file invisible. If it succeeds, you'll see a veri
fication message; press any key to exit back to the GEM desktop.
You can confirm that the file is hidden by opening (or reopening)
the directory window for that disk. Or you can run XDIR and ob
serve that the hidden filename is denoted with an H.

To reverse the process and make a file visible again, rerun
File Hider. But when you enter the pathname and filename, add
a space character and the parameter —D to the end of the file
name. See Figure 3-3 for an example.

This restores the file to visibility as if nothing has happened.

Figure 3-3. Making a File Visible Again

Desk File view Options

FLOFFV DI£C

A:\

125166 bytes used in 10 itens,
E

a
FOLOERS.TOO "-M.E."? DESKTOP.INF FUEHIDE.C JHJ!H.IJIJ M .ETTEt.T" SNHMtltt

OPEN APPLICATION

Nane: FlLEHIDE.PRG
Parameters:
aihidene.now -d

nrn Cancel

o

K

79

File Lister
Richard Smereka

This utility greatly enhances the file-listing functions
of the Atari ST. It works in any screen mode and

runs as a stand-alone program on the GEM desktop
or as a command with ST-Shell. A printer is

optional, but recommended.

Normally when you want to examine a text file on the Atari ST,
you click on the appropriate icon or filename with the mouse,
then click on the Show or Print buttons inside the dialog box
that appears. This either displays the file on the screen or dumps
it to a printer.

Although this built-in function is sufficient for most pur
poses, the resulting output is raw and unformatted. A quick look
at what's available in other operating systems reveals that there's
plenty of room for improvement. That's the reasoning behind
"File Lister," an enhanced file-viewing utility. It adds several ex
tra features to control the appearance of the final output. The
program runs on any ST in any screen mode, but for obvious
reasons it works best in the 80-column modes (medium-resolution
color and high-resolution monochrome). It can be used as a
stand-alone application from the GEM desktop or as a command
with a command-driven disk operating system such as ST-Shell.
(See Chapter 4.)

To generate hardcopy with File Lister, you'll also need a
compatible printer. File Lister requires no special printer driver to
control the printed listing, but the printer must be capable of in
terpreting the form-feed character (character code $0C) to ad
vance to the next page.

Preparing File Lister
There are two different ways to install File Lister, depending on
whether you plan to use it from the GEM desktop or from a
command line interface such as ST-Shell.

To use it from the desktop, name the file LIST.TTP (it's al
ready stored in this form on the book disk). The .TTP filename
extension is important. It stands for TOS Takes Parameters, which
signals the ST that File Lister is a Tramiel Operating System pro-

80

Disk Utilities

gram that requires certain parameters before it can function.
When you run a TTP application by double-clicking on its icon,
a dialog box pops open on the screen so you can enter these pa
rameters. Figure 3-4 shows an example of this box.

Figure 3-4. Dialog Box Available When "File Lister" Is Run
from the GEM Desktop

Desk File View Options

If you plan to use File Lister from a command-driven DOS
such as ST-Shell, copy LIST.TTP to your ST-Shell disk and re
name it LIST.PRG.

File Lister expects these parameters:

[options] [D:][\pathnatne \]filename.ext

The only parameter that's absolutely required is filename.ext—
the name of the ASCII text file you wish to view or print. The
parameters within brackets are optional and must be separated
from each other by at least one space. (Do not type the brackets.)
Let's take a look at what these parameters do.

File Lister Options
The most obvious parameters let you specify a disk drive and
pathname. If the file you wish to examine is on another drive,
substitute the drive identifier for D:. If the file is in a folder, enter
the pathname between backslash characters. For example, if

81

CHAPTER THREE

you're running File Lister from drive A and the file you want to
view is called READ.ME in a folder called TEXTFILE on drive B,
you enter

B: \ TEXTFILE \READ.ME

If you're not sure how to use pathnames, refer to the user's
manual that came with your ST.

To specify additional options, refer to the list below:
—p printer output (default: printer output off)
—n print line numbers (default: line numbers off)
—z pad line and page numbers with zeros (default: zeros on)
—s screen output (default: screen output on)
—w screen wait after 18 lines (default: wait on)
—f full printer format (default: printer format on)
—t TTP pause before returning to desktop (default: pause off)

You can use these options in any combination and in any
order, as long as they're separated from each other by at least
one space (except the drive identifier and pathname, which must
be together with the filename). The options are like switches—
by default they assume an automatic position, on or off. When
included in the command line, their normal default state is
reversed.

The options may be freely mixed, although some options
depend on the state of others. For example, giving the —/ option
on the command line will have no effect unless the —p option is
on, because there is no sense in changing the printer format if no
printer output is requested.

Detailed Examples
Following are some typical ways in which you might use File
Lister. Remember to name the program LIST.TTP if you're run
ning it from the GEM desktop, or LIST.PRG if you're running it
from ST-Shell.

Desktop example: SAMPLE.TXT
ST-Shell example: LIST SAMPLE.TXT

This simply lists the text file SAMPLE.TXT to the screen,
pausing every 18 lines for a keypress to continue scrolling.
Desktop example: —p SAMPLE.TXT
ST Shell example: LIST -p SAMPLE.TXT

The —p option tells File Lister to send the text file to the

82

Disk Utilities

printer as well as to the screen. (The —s screen option is turned
on by default.) Note that normally the printer format option —/
is also switched on, so you get the full printer format. (Option
—/ is discussed below in more detail.)

If, for any reason, File Lister cannot properly communicate
with the printer (for instance, if the printer is not powered up or
online), you'll see the error message Trouble Communicating With
Printer, and the list request will be terminated.

Desktop example: -p -n SAMPLE.TXT
ST-Shell example: LIST -p -n SAMPLE.TXT

This example lists SAMPLE.TXT on the printer and prints
line numbers at the beginning of each line of text. Among other
things, this feature is useful when you're documenting or debug
ging source code. The line numbers range from 1 to 9999 and are
padded with leading zeros (0001, 0002, and so on; see Figure 3-5).

Desktop example: —p —n —z SAMPLE.TXT
ST-Shell example: LIST -p -n -z SAMPLE.TXT

This command lists SAMPLE.TXT on the printer and prints
line numbers at the beginning of each line of text, but turns off
the extra zeros and pads the numbers with spaces instead.

Desktop example: —p —n —z —s SAMPLE.TXT
ST-Shell example: LIST -p -n —z -s SAMPLE.TXT

This lists SAMPLE.TXT on the printer with line numbers
that are padded with spaces instead of zeros, but turns off screen
output. Note that since screen output is normally on, the —s op
tion turns it off when included in the command line.

Desktop example: -p -n -f SAMPLE.TXT
ST-Shell example: LIST -p -n -f SAMPLE.TXT

This lists SAMPLE.TXT on the printer and the screen with
line numbers padded with zeros, but the —/option turns off the
full printer format. The full printer format consists of 55 lines per
page with a header at the top of each page consisting of the file
name and page number. Since the full printer format is turned
on by default, the —/ option turns it off when included in the
command line.

Desktop example: -w SAMPLE.TXT
ST-Shell example: LIST -w SAMPLE.TXT

This command lists SAMPLE.TXT on the screen without
waiting for a keypress every 18 lines. In other words, the text

83

CHAPTER THREE

Figure 3-5. A Page of Source Code (dumped to printer)—Line
Numbers and Headers Provided by "File Lister'

FUb

File

Lister

MOLLY.C

0001

0002 /« MOLLY.C: Atari ST graphics demo for any resoluti
/* by Tim Victor and Philip Nelson, October, 1986

#indudu <o5bind.h>

int handle;
int inputr.H3,outputC573;
int intin[1003,intoutC 1003, pts:
int width,height,colors;

3,ptsout[1003,contrl[123;

/% Trans1 ate VDI colors to hardware

0011

0012

0013

0014

0015

0016

0017

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

00S2

0053

0054

xlateCJ • t

0,2,3,6,
4,7,5,8,
9,10,11, 14,

12,15,13,1

nt palC3 = {
0x700, 0x720, 0x 750, 0x770,
0x370,0x070,0x072,0x075,
0x077,0x037,0x007,0x207,
0x507,0x707,0x703
>;

ainl)

int draw_tone,draw_color;

int pal_phase,pal_tone;
int ptsr.43,5avepair.l63;

int xpos,ypos,rad;
int xdir,ydir,rdir;

int most = 20;

for (i=0;i<10;i++)

inputti3=1;
inputC103 = 2;

handle • 1;
v_opnvwk(input,Miandle,output); /« Open virtual
v_hide_c(handle); /* Hide mouse »/

width = outputr.03; /* Current workstation width •/
height = outputE13; /« Current height •/
colors = output[133 —1; /* Number of colors not counti ng backgrnd */

/* Palette for cola

rkstation */

ptsC03=ptsC13=0;
pts[23=width;

pts[33-height;

vs_clip(handle,l,pts) ; /* Turn on clipping */

/* Save current color palette %/
f or (i=0; i < 16; i ++) savepal [i 3 = Setcolord

scrolls by at full speed. This is useful when you want to quickly
scan through a file. Note that if the —s option is off, —w has no
effect.

You can also activate this option after you've started listing a
file on the screen. Normally when File Lister displays a file, it
pauses every 18 lines and prints this message: A = Abort,
N = No Wait, Any Other Key to Continue. Pressing A aborts the
listing and returns you to the GEM desktop or ST-Shell. Pressing
N turns off the wait feature, and pressing any other key resumes
the listing.

84

Disk Utilities

Desktop example: -t SAMPLE.TXT
ST-Shell example: LIST -t SAMPLE.TXT

This makes File Lister pause after it has finished displaying
a file; normally, it's useful only when you're running File Lister
as a TTP application from the GEM desktop. If you don't include
this option, File Lister exits to the desktop so quickly that you
might not see any messages that are generated before it quits.
The —t option forces a pause. If you're running File Lister from
ST-Shell, this option is unnecessary because the text remains on
the screen when the command prompt reappears.

File Lister Batch Files

If you're using File Lister with ST-Shell, you can set up a series
of batch files in advance with your favorite listing options. Then,
rather than typing in a long list of options on a command line,
you can simply execute the appropriate batch file. Note that to
take advantage of this you must have a copy of ST-Shell or an
other command-driven DOS with similar batch file capabilities.

For instance, you could have two main batch files: one to
list a file to the screen, and another to dump a file to the printer.
Look at this one-line batch file:

list -n %1

Let's call it SCREEN.BAT. To call this batch file from ST-
Shell, all you'd type at the screen prompt would be SCREEN
SAMPLE.TXT. This would display the text file SAMPLE.TXT
with zero-padded line numbers, pausing for a keypress every 18
lines.

Here's an example of a one-line batch file for listing to the
printer:

list —p —n —z —s %1

Let's call it PRINT.BAT. When you enter the command
PRINT SAMPLE.TXT at the ST-Shell prompt, this batch file
dumps SAMPLE.TXT to the printer with space-padded line and
page numbers, and suppresses screen output.

About the Program
File Lister was written in machine language instead of a high-
level compiled language in order to minimize the size of the pro
gram. It also runs faster than a program written in a compiled

85

CHAPTER THREE

language, although the limiting factor is more likely to be the
speed of the printer and screen-scrolling.

The small size of File Lister is important, because it leaves
room on an ST-Shell disk for a number of utilities of this type.
(See "Extended Formatter" in Chapter 4.) These utilities are
really extrinsic or external DOS commands, just like those found
in MS-DOS, PC-DOS, CP/M, and UNIX.

If such utilities were written in a compiled language, they
might be about 10K each. There would be only enough room on
a single-sided disk for about 25-30 of them. But if each utility
were a maximum of 2.5K (as this one is), there'd be room for
about four times as many on the disk. Of course, shorter utilities
also load faster and use less memory.

86

Directory Dump
Marcos Zorola

A short, useful utility that helps you keep track of
your disk files, "Directory Dump" reads the disk di
rectory and sends a formatted copy to a printer, the
screen, or another device. It works on any ST in any

screen resolution, coior or monochrome.

Faced with the question of how to print out a disk directory,
many ST owners resort to a rather inelegant solution: Double
click on a disk icon to display the directory window; then press
Alt-Help to start a time-consuming graphics screen dump. If the
directory is too long to fit on a single screen, several screen
dumps are necessary. To complicate matters, there may be fold
ers (subdirectories) on the disk, each of which must be displayed
and printed separately. There's no other way to print a disk di
rectory from the GEM desktop.

"Directory Dump" provides a much better alternative. It lets
you send a listing of an entire disk directory—as text, not graph
ics—to a printer or any other legal device or file. Legal devices
include the printer, the screen, and even another disk file.

Directory Dump prints out the filenames in the order in
which they appear on the disk. In general, this means the files
are listed in the order in which they were saved. Deleting a file
opens up a slot in the directory, however, so the next file you
create appears in the newly available slot.

Folders and their contents are included in the listing, too.
The only limitation is that Directory Dump cannot handle disks
that have 50 or more folders (including nested folders). In prac
tice, this isn't a severe limitation, even on hard disks up to 20
megabytes in size.

Directory Dump also lets you choose the type of information
that is displayed in the directory listing. Coupled with its flexible
output, this gives you the ability to customize the listings to suit
your requirements.

Running the Program
Directory Dump is on the disk under the filename DIRDUMP.PRG.
You can run Directory Dump directly from the disk menu, or

87

CHAPTER THREE

Figure 3-6. Sample Printout from "Directory Dump'

PRNCTL ACC

PRNCTL ETN

PRNCTL HLP

PRNCTL PRG

PRNCTL. RSC

PRNCTLLW RSC

SNAPSHOT AC

17701 11/20/1985 00 11 36 Read/Write

275 11/20/1985 01 5B 18 Read/Write

4079 11/20/19S5 00 05 56 Read/Wri te

17505 11/20/1985 00 11 42 Read/Wri te

5488 11/20/1985 00 02 58 Read/Wri te

6036 11/20/1985 00 04 58 Read/Write

3619 11/20/1985 00 11 16 Read/Wri te

Total o-f 54903 byte(s) in 007 file(s) in \.

\NEOCHROM.FLD\

NEDVIEW .TOS 1132 11/20/1985 00:19:24 Read/Write

NEOVIEW .TTP 436 11/20/1985 00:20:00 Read/Write

Total of 1568 byte<5> in 002 file(s) in \NEOCHROM.FLD\.

\GAMES.FLD\

LASERCHS.PRG 28104 11/20/1985 00:28:58 Read/Write

Total of 28104 byte(s) in 001 file(s) in \GAMES.FLD\.

\DIRDUMP.FLD\

DIRDUMP .MOD 20020 11/20/1985 00:24:04 Read/Write
DIRDUMP .PRG 16238 11/20/1985 00:24:30 Read/Write

Total of 36258 byte(s) in 002 file(s) in \DIRDUMP.FLD\.

\6AMES.FLD\PUZZLER.FLD\

Total of 0 byte(s) in 000 file(s) in \GAMES.FLDXPUZZLER.FLD\.

\GAMES.FLD\PUZZLER.FLD\PUZZLER.FIN\

PUZZLER .C 13601 11/20/1985 00:29:42 Read/Write
PUZZLER .PRG 7974 11/20/1985 00:29:50 Read/Write

Total of 21575 byte<B) in 002 file(s) in \GAMES.FLDXPUZZLER.FLDXPUZZLER.FINN

Grand total of 142408 byte(a) in 0014 file(s).

from the GEM desktop in the usual fashion: Double-click on the
DIRDUMP.PRG icon or filename. When the program starts,
you'll see a screen like the one shown in Figure 3-7.

In the Heading field, type a name for the disk whose direc
tory you're printing. Whatever you place there will be printed at
the top of each directory and folder listing. It's a good idea to
type the name of the disk as it appears on your disk label—
"BASIC Programs," for example—so when you're looking

88

Disk Utilities

through the listings, you can match up disks with their printed
directories. You may also want to include the date and whether
the disk is formatted for single- or double-sided use.

Figure 3-7. Opening Screen for "Directory Dump"

DIRDUMP.PRG

IDirectory printer

Heading

1

Display Infornation

Size I I Tine 1 Date I | fittr 1

Output style

Page Dir 1 1 Boldface Dir

Drive Hi Dev: PRH:
1Cancel 1

1 OK 1

Customized Listings
Below the Heading field is the Display Information field. The
four buttons here control what sort of information is printed. If
all four buttons are turned off, the listing contains the filenames
only, each printed under the folder in which it's located. By
clicking on the buttons, you can select any one (or several) of the
following options:

• Size—The size of the file in bytes is listed.
• Time—The time of the file's creation is listed.
• Date—The date of the file's creation is listed.

• Attr—The file's attribute is listed. This may be READ/WRITE
or READ ONLY.

If you don't usually use the ST's Control Panel accessory to
set the time and date, most files will have very similar date and
time stamps, and you'll probably want to omit this information
from the directory listing. The READ/WRITE and READ ONLY
attributes for a file can be set by selecting Show Info from the
File menu on the GEM desktop. If you never write-protect any of

89

CHAPTER THREE

your files, there's no need to print the file attribute.
The second set of options controls the output style:

• Page Dir—Each folder starts printing on a new page.
• Bold Dir—The folder names are printed in boldface.

The Bold Dir option makes the folders stand out when the
Page Dir option is not used. Directory Dump sends an escape
code for boldface which is recognized by most Epson and Epson-
compatible printers. If the boldface feature doesn't work properly
with your printer, just ignore this option.

Changing Devices
The Directory Dump window also has two additional fields you
can fill in: the Drive field and the Device field. These fields hold
default values (drive A and device PRN:) when Directory Dump
is first run.

The Drive field specifies which drive will be accessed for the
listing. In other words, if the Drive field is set to A, the disk
whose directory you want to list should be inserted in drive A. If
you use a single-drive system, leave the drive set to A. If you
have additional floppy drives or hard drives, you may enter
drive specifiers B-P, depending on which drives are currently
installed.

It's also possible to use Directory Dump to catalog a RAM
disk, although there isn't much point in doing so, since the RAM
disk disappears when you turn off the ST.

The Device field lets you specify which device will be used
for output. Legal device names are

PRN: Printer (the default)
AUX: RS-232 port
X:FILE.EXT Disk file on drive X (A-P)
CON: Console (screen)
HSS: MIDI port

Normally you'll leave this field alone. By typing in a differ
ent device name, you can redirect output to any available ST
output device shown above. If you change it to CON:, for in
stance, the output goes to the screen. Note that the colons are a
required part of the device names.

90

Disk Utilities

Creating a Disk File
By sending the directory listing to a disk file, you could edit it
with a word processor or text editor and perhaps merge a num
ber of listings together to make a catalog. Type the drive identi
fier, following it with a filename. The filename must be limited
to 12 characters, counting the period and the optional extender.
For example, to create a file called DIR1.CAT on drive A, type
A:DIR1.CAT. The result is an ASCII file containing the directory
listing.

To send the listing to a printer attached to the parallel
printer port, leave the Device field set to PRN:. If you have a se
rial (RS-232) printer that has been installed as such with the In
stall Printer accessory that came with your ST, it should also
work with PRN:. If not, change the Device field to AUX:. Theo
retically, you could also send the listing to a modem via AUX:,
but it would make more sense to create a disk file and then up
load it.

The HSS: device lets you send a directory listing to the
MIDI (Musical Instrument Digital Interface) port. This capability
wasn't included in the program on purpose; it's just a conse
quence of the ST's device-oriented input/output flexibility.

When you've made all the selections described above, make
sure your printer is connected and turned on (if you're directing
output to that device); then click on the OK button. If you decide
to exit the program instead, choose the CANCEL button.

91

File Finder
Richard Smereka

When you need to discover the whereabouts of a file
on a crowded disk, simply teii "Fiie Finder" the
name of the file you're looking for. Like a blood

hound, it sniffs out every occurrence in every folder
on a given disk. It's a must if you own a hard disk
drive. The program works on aii STs in any screen

resolution, color or monochrome.

What do you do when you've forgotten where a certain file is
stored? If you have 20 disks, each containing an average of 10
folders, you have 200 folders you might have to look through. If
you're lucky, you may find the misplaced program after a few
tries. If not, well, you'll have to open a lot of folders.

"File Finder" quickly locates a particular file on a crowded
disk. It's very handy for those times when you know the name
of the file but have forgotten which folder it resides in. File
Finder searches the entire disk, whether it's single-sided, double-
sided, a RAM disk, or a hard disk. It reports all occurrences of
the specified filename on the disk. As another option, File Finder
can search for just the first occurrence of the file on the disk.

Another use for File Finder is to root out redundant files on

a disk. Search for every occurrence of a given filename; if it
shows up more than once, you may have identical copies of the
same file which can be deleted to conserve space. This is espe
cially useful on hard disk systems, where multiple copies of files
tend to propagate.

File Finder can be run directly from the GEM desktop as a
TTP (TOS Takes Parameters) program, or from the command
line of ST-Shell. (See Chapter 4 for this disk operating system
shell.)

Starting a Search
File Finder is called FIND.TTP on the disk. If you plan to use File
Finder from ST-Shell, rename the FIND.TTP file to FIND.PRG.
Don't rename the file if you plan to use it from the GEM desktop.

To run File Finder from the GEM desktop, open or double
click on FIND.TTP. A dialog box pops up with a dotted line. At

92

Disk Utilities

this point you should type the name of the file you're looking
for, in this format, on the dotted line:

[options] [x:]filenatne

The command line syntax in ST-Shell is similar:

FIND [options] [x:]filename

The square brackets indicate optional arguments; do not type
the brackets. There are two options, —/ and —t, discussed be
low. The x: represents the optional disk drive identifier (from A:
to P:), and filename is the name of the file you're searching for.

Each parameter on the command line must be separated by
at least one space. It is illegal in this utility to supply a path
name, since the purpose of the program is to search all folders
on the disk.

File Finder searches only one disk drive at a time, since you
probably have a good idea which disk the file is on, but have
forgotten which folder it occupies.

The complete filename must be given without any wildcard
symbols (such as question marks or asterisks). This restriction
stems from a problem within the GEMDOS function PexecO.
When a new process is created and wildcard symbols are part of
the command tail, PexecO tries to expand the command tail. This
usually results in the new process not executing properly.

If the optional disk drive identifier is present in the com
mand line, the disk in that drive is searched. If you don't include
a drive identifier, the search operates on the current disk drive—
the one from which you loaded File Finder.

The program prints a reminder of the proper syntax if you
make a typing mistake or do not enter a filename. You can then
try again.

Optional Parameters
You may include two options on the command line:

—/ Search for the first occurrence of the file (default = off)
—t TTP program pause after execution (default = off)

When you include the —/ option, File Finder searches for
the first occurrence of the file. Once it finds the file, the program
ends. Note that if you're searching a disk with a lot of nested
folders, you can decrease the processing time by giving the —/
option.

93

CHAPTER THREE

Whether you use this option or not depends on whether you
want all occurrences of a file, or just the first. If you're sure that
there isn't another file on the disk with the same name, you can
use the —/ option. On the other hand, if you want to check to
see how many occurrences of a particular file there are on the
disk, omit the —/ option.

The option —t is used when you're executing File Finder as
a TTP application from the GEM desktop. When you include —t
on the command line, the program pauses and asks you to press
a key before exiting back to the desktop. This allows you to ex
amine the program's output, including any error messages that
are generated. This option usually isn't needed when you're exe
cuting File Finder from ST-Shell, because the ST-Shell command
prompt reappears immediately after the program's output—there
is no return to the desktop.

Note that these two options are like switches that assume an
off position by default. By putting them on the command line,
you reverse their position. (You turn them on.)

The options may appear on the command line in any order,
and you may include one or the other, or both. Remember,
though, that all parameters on the command line must be sepa
rated by at least one space.

A Few Examples
Following are some examples of how to use File Finder.

TTP example: -t TEST.C
ST-Shell example: FIND TEST.C

File Finder searches for the file TEST.C on the current drive

(because no drive identifier is present). File Finder lists all occur
rences of TEST.C. The —t parameter in the TTP example makes
sure the output will be visible when the program finishes.

TTP example: —t -f D:CMP.PRG
ST-Shell example: FIND -f D:CMP.PRG

File Finder searches drive D for the file CMP.PRG. Because
the —/ option is included, File Finder lists only the first occur
rence of CMP.PRG on drive D.

File Finder's output is fairly straightforward, but let's exam
ine a sample. First, here's the command line:

94

Disk Utilities

TTP example: -t AUTOLOG.BAT
ST-Shell example: FIND AUTOLOG.BAT

This searches for all occurrences of the file AUTOLOG.BAT
on the current drive. Here is how the output from that search
might appear:

FILE FINDER Version 1.0

Stand by....Searching for AUTOLOG.BAT
Found AUTOLOG.BAT

Path: Root

Path: \STSHELL.SYS

Path: \STSHELL.SYS \ BACKUPS \BATFILES \AUTOBATS

In this example, File Finder discovered three occurrences of
the file AUTOLOG.BAT on the disk (one for each Path: state
ment). The first copy of AUTOLOG.BAT is on the root level (the
main directory), the second is inside the folder STSHELL.SYS,
and the third is nested four levels below the root directory inside
the folder AUTOBATS.

As the final example clearly suggests, if you tend to organize
your most crowded disks with a lot of nested folders, you'll rate
File Finder an especially valuable utility.

95

CHAPTER FOUR

Encryptor
Douglas N. Wheeler

Do you have sensitive in/ormation you want to pro
tect from prying eyes? This utility automatically

encodes any type of disk file and locks it with a pass
word of your own choosing. It works on a 520ST or
1040ST in any resolution mode: in low or medium

resolution with a color monitor or in high resolution
with a monochrome monitor.

Security is an important issue in today's world. In fact, every
body is becoming more security-conscious. Businesses have im
portant documents and contracts which should not be viewed by
just anybody hanging around the office. Lawyers, doctors, and
other professionals have to guarantee their clients complete con
fidentiality. Even the average teenager may have letters or dia
ries which he or she would like to keep secret. If you've
refrained from storing something with a computer for any of
these reasons, this program is for you.

"Encryptor" is a utility which will encode and decode any
ST disk file, whether it is your latest programming creation, a
database file, a text file made with your favorite word processor,
or even your mother's secret recipes. Once a file is encrypted, no
one can decrypt it without entering the correct password or
cracking the code.

Using Encryptor
Encryptor is very easy to use. Simply double-click on the
ENCRYPT.TOS icon to run the program; then answer the two
questions it asks you. But before you begin, there are a few
things you should know. First, the file you wish to encrypt must
be on the disk in the default drive, the same drive which con
tains ENCRYPT.TOS. Second, there must be enough room on
the disk for a copy of the file. Third, the file must not be in a
folder; it must be on the disk's root directory.

If the file is in a folder, the easiest way to move it to the
root directory is to drag the file's icon to the drive icon. This
makes a copy of the file outside of any folders. The original copy
of the file remains in the folder, however, so you should delete it

99

CHAPTER FOUR

if you want to make sure no unencrypted version of the file re
mains on the disk.

When you run Encryptor, the first question it asks is the
name of the file you wish to encrypt. Simply type in the file
name (wildcard symbols are not allowed) and press Return.

The second question Encryptor asks is the password you
wish to choose. The password may be up to 40 characters long
and may contain any displayable character except the space. Each
file you encrypt can be secured with a different password if you
like. But don't forget any of these passwords, because you'll need
them to decrypt the files later. To decrypt a file, you simply enter
the password at this same prompt after rerunning ENCRYPT.TOS.
Either memorize the passwords or write them down and keep
them in a safe place.

Because of the nature of the encryption scheme, you can
superencrypt a file by encrypting it more than once using differ
ent passwords. To read such a file, you'd have to decrypt it as
many times as you encrypted it using the same passwords in
reverse order.

How It Works
Although it is a short program, Encryptor is quite complex. If
you're interesting in learning how it works, read on; otherwise
you already know everything you need to use Encryptor.

Encryptor begins by opening the file you selected for input
and creating a temporary file named qqqq for output. The pro
gram then reads the input file, encrypts the data, and writes the
results to the output file one character at a time. When it's fin
ished, the program deletes the original file and changes the qqqq
filename to the name of the original file. Most of these opera
tions are pretty straightforward; obviously, the encrypting is
where the action is.

As Encryptor reads each character, it matches that character
with a corresponding character in the password. That is, the first
character in the file is matched with the first character in the pass
word; the second character in the file is matched with the second
character in the password; and so on, repeating the password as
many times as necessary to match every character in the file.

For example, if the file you're encrypting is a text file which
begins Now is the time for all good men, and the password is
Help, Encryptor matches up the characters as follows:

100

Utilities

No wis the ti me for all good me n
Hel pHel pHel pHel pHel pHel pHel pHel p

Now picture, if you will, the complete ASCII character set as
a continuous line of characters, repeating indefinitely in each di
rection. For each character to be encrypted, Encryptor effectively
reverses the ASCII character set around the corresponding letter
of the password. Using the first letter of our sample file and its
corresponding password letter, we would have the following:
Original ASCII set:
... ABCDEFGHIJKL MN OPQRSTUVWXYZ...

New ASCII set:

... O N ML K J I H G F E D C B A @? > = < ; : 9 8 7 6 ...

As you can see, the ASCII character set has been reversed
"around" the letter H (the first letter of the password). If you
then look up the first letter of the file—N, on the top line—you
will see that this corresponds to the letter B, which would be
written to the output file. Encryptor would then continue to the
next character in the file and reverse the ASCII set around the
next letter of the password.

This process repeats until the complete file is encrypted and
written to the output file. Encryptor then deletes the original file
and changes the output filename from qqqq to the original
filename.

101

Crash Analyzer
George Miller

Advanced programmers: If your ST crashes when
running a new program you're writing, run this utility

to find out why. It recovers special information
preserved in memory by the 68000 microprocessor
to give you a report on the cause of the failure. The
utility works in aJi monochrome and color modes on
any ST, but some of the information it displays is not

visible in the Jow-resoiution color mode.

Sooner or later it happens to everyone. As your carefully crafted
program begins to run, bomb icons suddenly appear on the left
side of the screen and you find that you've become another vic
tim of a system crash.

But now you can clear away some of that smoke and find
out why your program crashed the computer. "Crash Analyzer,"
a utility written in machine language, provides an explanation of
those bomb symbols and helps you diagnose what caused your
program to fail. It works even after you've rebooted the com
puter by pressing the reset button. And it's useful to program
mers who are working in practically any language: 68000
machine language, C, Pascal, Forth, and even ST BASIC.

Taking Exception
Since computers do exactly what you tell them to do—not al
ways what you want them to do—the system crash is a fact of
life faced by every programmer. In the past, on the eight-bit
computers, your only choice was to turn off the power and start
over. The computer would refuse to respond to any of your at
tempts to get its attention.

The designers of the Motorola 68000 family of micro
processors felt the chips should be intelligent enough to recog
nize when they are heading for a system crash, and to take steps
to recover from it, if possible. So the designers made that kind of
help possible by including a feature called exception processing.

Basically, an exception is the ability of the chip to interrupt
whatever it is doing, do something else, and then return to the

102

Utilities

original task. Exceptions fall into two categories: those caused by
external sources, such as input/output devices, and those caused
by internal operations, like programming errors and TRAP in
structions. An exception caused by an external source is called an
interrupt.

Each 68000 exception is processed by a different routine.
Pointers to these routines are stored in the first 1024 bytes in
memory in a 68000 system. Each pointer, or vector, is stored in a
long-word memory location (four bytes). There are 256 possible
vectors, numbered from 0 to 255. Therefore, the address of a
vector is the vector number multiplied by 4.

Exceptions generated by programming errors use certain vec
tor numbers. Table 4-1 lists the more important preassigned ex
ception vectors. Table 4-2 is a list of the vectors used by the ST.

Here's why the vector numbers are important. As the ST be
gins to crash, the 68000 senses that something is going wrong.
Immediately it stores a copy of the values found in its address
and data registers into an area of low memory. This area of
memory usually survives the crash, and is not overwritten when
you press the reset button on the rear of the ST to reboot. Then,
to alert you that something has gone awry, the ST displays a
number of bomb icons near the left side of the screen. The num
ber of bombs corresponds to the vector number of the exception
encountered. This information can point you to the right track
when you are debugging your programs.

Exception Errors
Here's a brief explanation of the more commonly encountered
types of exceptions. Refer to any complete guide on 68000 pro
gramming for a more detailed explanation.

Resets (exceptions 0 and 1). Vectors 0 and 1 are used when the
computer is first powered up (or, on the ST, when the reset but
ton is pressed) to set the initial stack and the program counter.

Bus error (exception 2). This indicates that your program tried to
access a nonexistent area of memory.

Address error (exception 3). This may be caused by referencing
a long word at an odd-numbered memory address. Long words
consist of four bytes and must coincide with even addresses.

Illegal instruction (exception 4). Your program tried to execute
an instruction which is not part of the 68000 instruction set.
Check your source code for typing errors.

103

CHAPTER FOUR

Table 4-1. Preassigned Vectors

Vector Address Function

0 $000 Reset initial supervisor stack pointer
1 $004 Reset initial program counter
2 $008 Bus error (nonexistent memory)
3 $00C Address error

4 $010 Illegal instruction
5 $014 Division by zero
6 $018 CHK instruction

7 $01C TRAPV instruction

8 $020 Privilege violation
9 $024 Trace

10 $028 Line A emulator

11 $02C Line F emulator

12-14 $030-$038 Unassigned
15 $03C Uninitialized interrupt vector
16-23 $040-$05C Unassigned
24 $060 Spurious interrupt
25-31 $064-$07C Level 0-7 autovector interrupts
32-47 $080-$0BF TRAP 0-15 instruction vectors

48-63 $0C0-$0FC Unassigned
64-255 $100-$3FF User interrupt vectors

Table 4-2. Vectors Used by the ST

Vector Function

10 Line A emulator

26 Level 2 interrupts
28 Level 4 interrupts
33 TRAP #1 GEMDOS

34 TRAP #2 GEM

45 TRAP #13 BIOS

46 TRAP #14 XBIOS

(All unused vectors are available to the programmer.)

Division by zero (exception 5). Since the 68000 instruction set
includes division instructions, a check is made for the mathemat
ically illegal operation of division by zero.
CHK instruction (exception 6). Caused by the CHK instruction.

TRAPV instruction (exception 7). Caused by the TRAPV
instruction.

104

Utilities

Privilege violation (exception 8). This happens when a privi
leged instruction is attempted while the 68000 is not in supervi
sor mode.

Trace (exception 9). Used by many debugger programs to single-
step through a program that is being debugged.

Line A emulator (exception 10). A trap for opcodes using the
format $Axxx.

Line F emulator (exception 11). A trap for opcodes using the
format $Fxxx.

Safe Deposit Boxes
In addition to reading the exception vectors, you can gather even
more information about the conditions within the computer at
the time of the crash. Before grinding to a halt, the 68000 saves
the vital contents of its registers in some special memory loca
tions which act as safe deposit boxes. After a crash which has
been handled by an exception, it's possible to examine the infor
mation held in low memory (unless the ST is powered down).

The first place to look is at location $0380. If this address
contains the magic number $12345678, then the information
about the crash is good.

The data registers D0-D7 are saved beginning at location
$0384.

The address registers, A0-A6, and the supervisor stack
pointer, A7, are stored starting at $03A4.

The exception number is stored at $03C4 as a long word, and
the user register is stored at $03C8. Beginning at $03CC is a list
of 16 words saved from where the supervisor stack was pointing.

As you can see, when the 68000 crashes, it tries to help you
by putting information where you can find it. However, unless
you're using a monitor or a debugger, it's difficult to examine all
of these locations after a crash. That's when Crash Analyzer
comes to the rescue.

Run the Analyzer (disk filename: ANALYZER.TOS) immedi
ately after rebooting the computer with the reset button. It in
forms you which exception has been triggered and lists the
contents of the data registers (D0-D7) and address registers
(A0-A7). It shows you a list of flags which were set at the in
stant of the crash and displays the starting addresses of both the

105

CHAPTER FOUR

supervisor and the user stacks. Finally, it shows the contents of
the supervisor stack at the time of the crash.

In effect, Crash Analyzer takes a snapshot of the activity in
your ST at the moment of the crash, then lets you examine it at
your leisure.

This information—plus a complete guide on 68000 program
ming—will help you debug your program to correct the condi
tion that triggered the crash.

106

Word Count
A Writer's Accessory

Tony Roberts

This compact and efficient desk accessory quickly
counts the number of words in a text file. It's a useful
tool for writers and can be summoned in a flash from
within any word processor. It works on any 520ST or

1040ST in any resolution mode: in iow or medium
resolution with a coior monitor or in high resolution

with a monochrome monitor.

One of a writer's traditional guideposts is the word count. It
measures both what has been accomplished as well as what re
mains to be done. Writing assignments take shape when an edi
tor specifies how many words are expected, and a writer working
past deadline often relies on word-count references to keep the
anxious editor at bay.

Although most computers, the ST among them, can report
the number of bytes in a file, writers and editors rarely bandy
about byte counts. There are various mathematical methods for
converting number of bytes to number of words, but they're
rather haphazard. More precise counting methods are often pain
fully slow.

"Word Count" is a desktop accessory program that solves
these problems. It provides a fast, convenient word count for all
types of text files—including documents in ST Writer and 1ST
Word formats as well as plain ASCII files.

Using Word Count
You'll find Word Count on the disk under the filename

WRDCOUNT.AC. Don't try to run it from the disk menu. In
stead, copy the file to one of your own boot disks and rename it
WRDCOUNT.ACC. The .ACC extender tells the ST's operating
system to install the program as a desk accessory when the com
puter is switched on. (To install any desk accessory, you have to

"Word Count" was written using Personal Pascal from Optimized Systems Software. Por
tions of this program (the linked libraries) are copyright 1986 by OSS and CCD. Used by
permission of OSS.

107

CHAPTER FOUR

boot up the computer by turning on the power; merely pressing
the reset button doesn't do it.) Once the computer has been
started, it's not necessary to keep the WRDCOUNT.ACC disk in
the drive.

After Word Count is installed, it's instantly available from
the Desk menu on the GEM desktop. To activate it, simply drop
down the Desk menu on the desktop or from within an applica
tion program (such as your word processor) and select it.

Once activated, Word Count provides a standard GEM item-
selector dialog box which lists the files on your disk. The dialog
box displays the files in the current folder, but, as usual, you
may switch to other folders to locate the desired file. This is ac
complished by clicking on the directory line, editing the line to
reflect the desired pathname, then moving the pointer down into
the file area and clicking again to inform GEM that you want to
view another directory.

Upon receiving a valid filename from the dialog box, Word
Count reads through the specified file byte by byte, looking for
space characters, tab characters, and line-ending characters,
which it assumes are word delimiters. When it finds a delimiter,
Word Count increments the counter and continues the search
unless the previous character also was a word delimiter, in
which case the counter is not incremented.

When the count is complete, another dialog box opens and
displays the complete pathname of the file selected and the re
sults of the count. After you've clicked on OK or pressed Return,
Word Count retreats back to the desktop, and you can pick up
where you left off.

It Has To Be Fast

Word Count works rapidly. The time it takes depends on the
length of the text file, of course, but normally it finishes the job
in only a few seconds. Because it's a memory-resident desk ac
cessory and because it sets aside a large buffer for reading the
text file, time-consuming disk accesses are kept to a minimum.
Another advantage of Word Count as a desk accessory is that it's
available whenever the Desk menu is displayed—while you are
using your word processor, programming in BASIC, or even
using a telecommunications program that supports GEM.

One shortcoming of Word Count is that it cannot analyze
the document currently in memory until you've stored it on disk.
But aside from that, you can ask it to count any disk file, includ-

108

Utilities

ing program (.PRG or .TOS) files—but with these, of course, the
results are rather meaningless. It's also possible to count BASIC
program files and Pascal or C source files, but because most
source code is inconsistently spaced, the results are less than
accurate.

Word Count ignores the format lines that are stored at the
beginning of 1ST Word and ST Writer document files. If you're
using another word processor, you might have to experiment to
see what effect (if any) its format lines have on the word count.

If you own an early Atari 520ST that has not yet been up
graded with the TOS operating system in ROM, you may have
to rename WRDCOUNT.ACC to DESK5.ACC for it to work
properly.

Word Count works with text files stored on floppy disks,
hard disks, and RAM disks; but a caution is in order if you're
using a single-drive floppy system. Because of an operating sys
tem bug, the computer may crash if you attempt to switch to
Disk B from the file-selector dialog to access a text file on an
other disk. To circumvent this problem, close the Disk A win
dow, remove the disk from the drive, and insert the disk
containing your text file before activating Word Count from the
Desk menu.

109

ST-Shell
Richard Smereka

Here's a major new feature for your Atari ST—a pro
gram that provides disk operating system commands
and batch file capabilities. Using more than 30 UNIX-

like commands, you can run programs, create and
delete files and folders, print screen messages, set the
system date and time, change screen colors, custom
ize the cursor, check free memory, set up autoboot
sequences, and do much more. The program works

on ali STs in medium-resolution color and high-
resolution monochrome modes.

The Atari ST relies heavily on the desktop metaphor provided by
GEM, the Graphics Environment Manager. Instead of typing in
cryptic disk operating system commands, you deal with icons,
windows, and drop-down menus. For instance, you never have
to use a DIR or CATALOG command to find out what's on a
disk; instead, you open or double-click the disk icon. You don't
type LOAD or RUN to execute programs; you open or double
click the program icon. You don't manipulate files by typing
COPY, ERASE, or DELETE; you drag icons from window to win
dow or to the trash can.

Although designed for convenience, the desktop-style inter
face can sometimes become a minor nuisance, especially when
you perform a certain series of actions every time you turn on
the computer. For instance, you might want to start each session
by setting the system clock, running a RAM disk utility, and
copying certain files from drive A to the RAM disk. What's
needed in a case like this is an old-fashioned command line
DOS that supports batch files.

ST-Shell™ is the answer. Like GEM, it's a program that
wedges itself as a shell between you and the computer's under
lying operating system. But unlike GEM, it's not a graphics-
oriented desktop environment. Instead, it's a command line
interpreter similar to MS-DOS, CP/M, DOS XL, and the Amiga
CLI. Actually, most of the commands are patterned after those
found in UNIX, a popular operating system on minicomputers
and powerful micros. With ST-Shell, you enter commands at a

110

Utilities

DOS prompt to manipulate files, run programs, pass arguments,
and execute batch files. You can even set up your system to
automatically run a batch file when the computer is first
switched on.

Almost any program can be executed from ST-Shell. If the
program requires arguments such as filenames or additional
commands, you can add them to the command line and they'll
be passed along. In addition, ST-Shell allows batch files of just
about any size.

ST-Shell is set up for an 80-column screen, as found in the
medium- and high-resolution modes. It's possible to run ST-Shell
in the lo-res mode, but characters past column 40 will not appear
on the screen.

The instructions for using ST-Shell can get somewhat involved,
and for good reason: ST-Shell is much more than the average
utility program. It's a fairly complete, yet compact, disk operat
ing system shell. In all, there are 33 commands for managing
disk files and setting up your system, and many of these com
mands have several variations. If you've never used a command-
oriented DOS before, it will take some time to fully master this
environment.

In addition, keep in mind that the complexity of command-
line interpreters like ST-Shell is exactly why Atari chose to equip
the ST with GEM. Many of the functions provided by ST-Shell
can be performed more easily with GEM, but some can't be per
formed at all—such as the batch file processing. ST-Shell offers
flexibility in return for its complexity.

Preparing ST-Shell
ST-Shell is labeled STSHELL.TOS on the disk. You can run it di
rectly from the disk (either from the menu program or the GEM
desktop), but we recommend copying it to another disk and sav
ing the original as a backup. When you copy STSHELL.TOS to
another disk, also copy the file called HELP.BAT. (We'll explain
why later.)

Note that ST-Shell is a TOS (Tramiel Operating System)
application, as indicated by the .TOS filename extender. TOS
applications do not support GEM features such as windows,
drop-down menus, and the mouse controller. When you run a
TOS application, the screen clears, the mouse pointer disappears,
and a text cursor is enabled.

Ill

CHAPTER FOUR

In some cases, you may want to rename ST-Shell from
STSHELL.TOS to STSHELL.PRG to disable it as a TOS applica
tion. ST-Shell still won't support GEM features, but it will behave
differently in some respects. For instance, if you want ST-Shell to
run automatically when you turn on the computer, you must re
name it STSHELL.PRG and place it in a folder named AUTO. The
ST checks for an AUTO folder during bootup and runs any non-
GEM programs in the folder that have the .PRG filename exten
sion. The programs are executed in the order in which they were
placed in the folder. (GEM programs can't be started from the
AUTO folder because GEM is not initialized at this stage of the
boot-up procedure.)

If you place ST-Shell in the AUTO folder as STSHELL.PRG,
you'll notice that the ST wakes up in the low-resolution screen
mode if you're using a color monitor. That's because the ST
boots up in lo res by default unless you Set Preferences for me
dium res and then select Save Desktop. Even if you've done this,
however, the ST still boots up in lo res when running ST-Shell
from the AUTO folder. Why? Because the DESKTOP.INF file
which saves your preferences is not loaded until after all pro
grams in the AUTO folder have finished executing. This is an
idiosyncracy of the ST that you'll have to get used to when boot
ing ST-Shell from the AUTO folder.

You'll also notice that the text cursor does not appear when
ST-Shell is booted from the AUTO folder. This is normal; you
can turn on the cursor with ST-Shell's CURON command.

It's important to realize that since GEM is not initialized
when the ST is running programs found in the AUTO folder, you
can't run a GEM application from ST-Shell if STSHELL.PRG has
been automatically started from AUTO. This means that auto-
booting batch files cannot run GEM applications—a limitation of
the ST, not of ST-Shell.

Running GEM Programs
It is possible, however, to run GEM applications from ST-Shell if
STSHELL.PRG has not been started from the AUTO folder. If
you run STSHELL.PRG from the desktop, you can launch a
GEM application simply by typing its filename at the ST-Shell
prompt. For example, suppose you want to run 1ST Word and
load a text file called DIARY.DOC. With STSHELL.PRG active,
you can type this command:

112

Utilities

1ST-WORD DIARY.DOC

or include this line in a batch file. The computer runs 1ST Word
and loads DIARY.DOC. (This demonstrates ST-Shell's ability to
pass arguments—in this case a filename—to an application
program.)

If you try to run a GEM application such as 1ST Word from
ST-Shell when it is named STSHELL.TOS (a TOS application),
the GEM program comes up on the screen, but lacks a mouse
pointer. You'll probably have to reboot to regain control. When
you run the GEM program from ST-Shell when it is named
STSHELL.PRG, the mouse pointer and other GEM features re
main available.

You may notice some odd effects when running GEM pro
grams from ST-Shell, however. For instance, the text cursor may
remain on the screen, superimposed on the GEM application. Al
though the cursor usually causes no harm, you can prevent this
by turning off the cursor with ST-Shell's CUROFF command
before running a GEM program.

Similarly, when you quit the GEM application and exit back
to ST-Shell, remnants of the GEM screen and mouse cursor may
remain on the ST-Shell screen. You can clean this up by entering
ST-Shell's CLS command.

The ST-Shell Screen

When ST-Shell first runs, you'll be greeted with a sign-on mes
sage, a text cursor, and a command line prompt that looks like
this:

A:

This prompt indicates that the current disk drive is drive A.
In other words, all disk commands entered at this prompt will
affect drive A. ST-Shell is now waiting for you to type in a
command.

(Note: If you run ST-Shell from a drive other than drive A,
that drive identifier appears as the default prompt.)

All ST-Shell commands can be typed in upper- or lowercase
characters. You can even mix upper- and lowercase, since ST-
Shell converts all input to uppercase before interpreting the
command.

An ST-Shell command or a program name must appear as
the first argument on any new command line. Any following ar
guments (such as the 1ST Word document filename shown above)

113

CHAPTER FOUR

must be separated from the command by one or more spaces.
When entering commands at the keyboard, you are limited to
one screen line. Commands in a batch file, however, may be
longer. (We'll cover batch files in detail below.)

Running Other Programs
To run a program from ST-Shell, all you have to do is type the
name of the program followed by any arguments that may be
optional or required. For example, to run a text editor program
named ED.PRG, type

ED filename

where filename is the name of the text file you wish to edit.
When running a program from ST-Shell, do not type in the

filename extension (the period and the three characters which
follow it). ST-Shell automatically searches for files with these
extensions:

.PRG (application programs)

.TOS (TOS applications)

.BAT (ST-Shell batch files)

ST-Shell searches for the filenames in that order. In other
words, if a .PRG file and a .BAT file happen to have the same
name (such as lST_WORD.PRG and lST_WORD.BAT), the
.PRG file is found and executed first and the .BAT file is ignored.
Therefore, to avoid conflicts, you should make sure your files
have unique filenames.

Also, since ST-Shell first attempts to interpret anything on
the command line as a command, do not use filenames that are
the same as ST-Shell commands. The accompanying table shows
the full command set.

114

Utilities

Table 4-3. ST-Shell Command Set

Command Function

Disk commands

X: Change prompt to the specified drive (A-P)
DF Display free space on disk in the current drive
LS List (display) the disk directory
GD Get directory: display current folder name
CD Change directory (current folder)
MKDIR Make (create) a folder
RMDIR Remove (delete) a folder
CPDIR Copy a folder
CP Copy a file
RM Remove (delete) a file
MV Move (rename) a file

Screen commands

HOME Home the cursor
CLS Clear the screen and home the cursor
PLOT Place the cursor at a designated location
CURON Turn on the text cursor
CUROFF Turn off the text cursor
CURFLASH Turn on flashing text cursor
CURSOLID Turn on solid (nonflashing) text cursor
CURATE Change cursor flash rate
TEXT Change the screen text color
BGROUND Change the screen background color
RVSON Turn on reverse video
RVSOFF Turn off reverse video
ECHO Print text or blank line on the screen
WRAPON Wrap text to next screen line if line overflows
WRAPOFF Do not wrap overflow lines; ignore overflow text

Miscellaneous commands

MF Display the amount of free memory (RAM)
BEEP Beep the monitor speaker
TIME Get or set current system time
DATE Get or set current system date
DOC ST-Shell remark statement
BYE Exit ST-Shell and return to GEM desktop
EXIT Exit ST-Shell from a batch file and return to GEM

desktop

115

CHAPTER FOUR

Command Syntax
In the following sections, we'll list ST-Shell commands in upper
case type and required parameters in lowercase italics. Optional
parameters are listed in lowercase italics enclosed in brackets. Do
not type the brackets. For example,

RMDIR [x:] [\path\] foldername\ [-P]

means the command RMDIR (Remove Directory) requires one
parameter, the name of a folder to remove. Optional parameters
include a drive identifier (x:), a pathname (\ path\), and the
characters —P (which prevent ST-Shell from warning you if the
folder to be deleted contains any files). Remember that all ST-
Shell commands and parameters must be separated by spaces.

So, to delete a folder named LETTERS on drive B, and to
prevent ST-Shell from alerting you if the folder contains any files,
you enter

RMDIR B: LETTERS \ -P

If the folder LETTERS is contained within another folder on
drive B called TXTFILES, you enter

RMDIR B: \ TXTFILES \ LETTERS \ -P

When you're first learning ST-Shell, it's a good idea to ex
periment with the commands on a scratch disk before using a
disk with important files.

Disk Commands

x:

This changes the current disk drive and therefore the ST-Shell
prompt which appears on the screen. Normally, ST-Shell defaults
to the drive from which it was run, and the screen prompt de
notes this drive. You can change this to any drive you want—the
x parameter stands for any drive identifier in the range A
through P. On a single-drive system, your drive is always A. The
second floppy drive is always B. If you have a RAM disk in
stalled, or a hard drive, you may use the letters C-P. For this
command to work properly, there can be nothing else on the
command line or in a batch-file line.

116

Utilities

DF

Display Free disk space. This command displays the total
amount of disk space available and the amount of space remain
ing on the disk in the current drive.

LS [x:] [\path\] [*.*]

List directory. This command lists to the screen the directory of a
disk or folder. The default drive is listed unless you provide a
drive identifier (*:). Note that the wildcard symbols (*.*) are op
tional only for listing a directory for the current drive. If you are
listing a directory for another drive or folder, you must include
the wildcard symbols. Of course, you can change the wildcard
symbols to specify that only certain files should be listed. For ex
ample, LS B: *.C lists to the screen only those files ending with
the extension .C on the disk in drive B.

The optional pathname (\path\) lets you list the contents
of a folder nested to any level. ST-Shell has a simple rule regard
ing folder pathnames. When using the commands MKDIR,
RMDIR, and CPDIR, you may omit the backslashes in the path
name if the folder is not nested below the root level. For ex
ample, the command RMDIR TEST is a valid command as long
as the folder TEST is not nested below the root directory. If you
are in doubt, use the backslashes.

GD

Get Directory. This command displays the current folder (direc
tory) or indicates that the current directory is the root directory.

CD [\foldername\]

Change Directory. This changes the current directory to the
folder specified. If no folder is specified, CD defaults to the root
directory.

MKDIR [x:] [\path\] foldername\

Make Directory. This creates a folder on the default drive, or on
the drive indicated (x:). ST-Shell displays an error message if the
folder cannot be created (for example, if a folder of that name al
ready exists).

RMDIR [x:] [\path\] foldername \ [-P]

Remove Directory. This removes a folder from the default drive
or from the drive specified (x:). The folder may contain files and
other empty folders. You cannot delete a folder if it contains

117

CHAPTER FOUR

other nested folders with files in them. If the folder contains
files, ST-Shell asks if you're sure you want to delete them. This
safety measure may be prevented by using the option —P.

CPDIR [x:] [\path\] olddir\ [x:] [\path\] newdir \

Copy Directory. This command creates a new folder and copies
into it the entire contents of an existing folder. The olddir param
eter specifies the old directory (existing folder) name. The newdir
parameter specifies the new folder. The new folder cannot al
ready exist.

CP [x:] [\path\] oldname [x:] [\path\] newname

Copy a file. Both drives (if they are different) must be separate
physical drives or RAM disks. On a single-drive system, you
cannot copy a file from drive A to drive B because they are the
same physical drive.

RM [x:] [\path\] filename

Remove file. This deletes the file specified by filename from the
current folder in the current drive, or from the drive and/or
folder specified by x: and \ path \.

MV [x:] [\path\] oldname [x:] [\path\] newname

Move (rename) a file. The oldname (and optional parameters) re
fers to the existing filename. The newname refers to the new file
name. The new filename cannot already exist; if it does, ST-Shell
reports an error. Files can be moved between folders, but not be
tween disk drives, with this command.

Screen Commands

HOME

Home the cursor. This command places the text cursor in the
home position (the upper left corner) without clearing the screen.

CLS

Clear Screen. This command both clears the screen and homes
the cursor.

PLOT row column

Plot cursor at specified position. With this command, you can
move the cursor to any screen position indicated by row and col
umn. In the medium- and high-resolution screen modes, row can

118

Utilities

range from 0 to 24, and column can range from 0 to 79. Plotting
outside these ranges results in an error. PLOT is useful when you
are formatting the screen with ECHO commands in a batch file.

CURON [-B]

Cursor On. This command makes the text cursor visible if it isn't
on the screen. Normally, when processing batch files, ST-Shell
automatically turns off the cursor. You can suppress this feature
by specifying the -B option.

CUROFF [-B]

Cursor Off. This command makes the text cursor invisible. This
is handy for formatting the screen. The -B option suppresses the
cursor only during batch file processing (the default).
CURFLASH

Cursor Flash. This enables a blinking text cursor, the default.
CURSOLID

Cursor Solid. This stops the text cursor from blinking, displaying
it as a solid block.

CURATE rate
CURATE -N

Cursor Rate. Both of these commands change the rate at which
the cursor flashes. Higher values for rate make the cursor blink
slower; lower values make it blink faster. The useful range for
rate is 10-50. If you specify a rate of 1, the cursor blinks so fast
that it appears to be gray. The command CURATE —N restores
the flash rate to ST-Shell's default value, which is approximately
equal to CURATE 30. The CURATE command has no effect if
CURSOLID has been executed.

TEXT color

Change text color. In hi res, color can be 0 or 1; in medium res,
color can range from 0 to 3.

BGROUND color

Change background color. Allowable values for color are the
same as for the TEXT command.

119

CHAPTER FOUR

RVSON

Reverse On. This causes all subsequent ECHO commands to
print in reverse video. If you follow RVSON with CLS, the entire
screen is reversed.

RVSOFF

Reverse Off. This disables reverse-video printing.

ECHO [text line to be printed]

Print text on the screen. This command is generally used in
batch files. If no text is specified, ECHO prints a blank line.
ECHO is an exception to the rule that ST-Shell converts all text
to uppercase; when processing batch files, ST-Shell prints the text
in an ECHO statement as is.

WRAPON

Wrap On. If a line of text overflows a screen line, this command
allows the leftover text to be printed on the next screen line.

WRAPOFF

Wrap Off. This command truncates all text after printing on
screen-column 80. This is the default when ST-Shell is initialized.

Miscellaneous Commands

MF

Memory Free. This displays the number of available bytes of
random access memory (RAM) in the ST.

BEEP

Beep the monitor speaker. This is useful in batch files when you
want to grab the user's attention.

TIME [hh:mm:ss]
TIMEP

Get or set system time. If the TIME command is followed by no
arguments, ST-Shell displays the current system time. To set a
new time, follow TIME with the new setting. You can omit lead
ing zeros (for example, 9:15:00 does not have to be entered as
09:15:00). The TIME P command causes ST-Shell to prompt the
user to enter the time; this is useful in batch files.

120

Utilities

DATE [mm/dd/yy]
DATEP

Get or set system date. The same basic rules that apply to the
TIME command also apply here: You can enter 8/6/86 instead
of 08/06/86 or 08/06/1986. The DATE P command prompts
the user to enter the date; again, this is intended for batch files.

DOC [comment text]

Document remark. This is like a REM statement in BASIC; it lets
you add comments to batch files. ST-Shell ignores any text that
follows DOC.

BYE

Exit ST-Shell to the GEM desktop; this command may not be
used in a batch file.

EXIT

Exit ST-Shell to the GEM desktop from within a batch file. This
command should be on the last line of the batch file.

Batch Files

If you're new to a command-oriented DOS, you may be unfamil
iar with the advantages of batch files. A batch file is just a series
of DOS commands that are executed in sequence by the com
puter. The computer reads the commands in the batch file and
carries them out, one by one, just as if you have typed them on
the keyboard. In effect, a batch file is a program written in the
language of DOS commands.

Batch files are extremely useful for automating frequently
executed tasks, which is why they were incorporated into the de
sign of ST-Shell. And like any good DOS, ST-Shell is capable of
automatically reading and executing a batch file when the com
puter is first powered up. (We'll cover this in a moment.)

An ST-Shell batch file is identified by the file extension
.BAT. A batch file may consist of ST-Shell commands and can
even run other programs. Consider this example:
ECHO ** This is a batch file test **
MKDIR B:USR

CP TEST.C B: \USR \ TEST.C
NUMBER

121

CHAPTER FOUR

To create this batch file, you enter these lines exactly as they
appear above with a text editor or word processor that can save
straight ASCII files (such as 1ST Word with its WP Mode
switched off). Suppose you saved this text file on disk with the
filename BATCH.BAT. To run the batch file, you'd type BATCH
at the ST-Shell prompt (remember that you don't have to type
the filename extension .BAT).

When BATCH.BAT runs, ST-Shell executes the four com
mands in the sequence shown above. The first command
ECHOes a simple message on the screen. The second command,
MKDIR, creates a folder on drive B called USR. The third com
mand, CP, copies the file TEST.C from the current drive (usually
drive A) into the folder USR on drive B. The last line in the
batch file tells ST-Shell to run the program named NUMBER on
the default drive. The program NUMBER can have the file exten
sion .PRG or .TOS.

NUMBER cannot be another batch file, however. A batch
file cannot load and run another batch file.

Passing Parameters
ST-Shell lets you pass parameters from the command line to a
batch file. For example, you could type this on the command
line:

TEST HELP.DOC

TEST could be a batch file which contained this single line:

PRINT %1

This would mean you were executing the program PRINT
from within the batch file TEST, and you were passing the first
(%1) argument found on the ST-Shell command line to PRINT.
The specifier %1 replaces the characters found in the batch file
with the nth command line argument. Command line arguments
start from zero, which is the actual program name and cannot be
used in a batch file.

Unlike ST-Shell commands entered at the keyboard, a batch
file command can be extended past one screen line. The @ char
acter is called the line-continuation character. When placed at the
end of a batch line, it tells ST-Shell that the next batch line
should be treated as a continuation of the first line. You may not
continue a line past the second line, however.

This capability is useful if you're programming in a language

122

Utilities

like C that requires lengthy commands for compiling or linking.
Suppose you are linking a program like this:

link68 [u,tem[d:]] %1.68k=gemstart,d:°/ol,osbind,gemlib,libf,@
vdibind,aesbind

Normally, it would be difficult to get this entire command
on one line. But when you're using the line-continuation charac
ter, the command does not have to be squeezed on one line.
Note where the continuation character is placed—between one
subcommand and another. Do not chop a command in the middle.

Also, since ST-Shell ignores all leading spaces, notice that
you can indent the second line.

Special Notes
Multiple commands on a single line are not permitted in batch
files; each line in a batch file may contain only one command or
program name.

If you want a batch file to terminate ST-Shell and quit to the
GEM desktop, keep in mind that you must use the EXIT com
mand, not BYE. The BYE command is valid only when typed on
a command line.

Before exiting ST-Shell, enter the CUROFF command; this
will prevent the cursor from remaining visible when you return
to the desktop.

One batch file has a special meaning to ST-Shell. When ST-
Shell initializes, it looks for a batch file called AUTOLOG.BAT. If
this file is present, ST-Shell automatically executes the file. This
lets you create an autoboot sequence that prompts you for the
date and time, customizes the screen colors and text cursor,
prints a welcome message, or whatever you want.

You'll find two examples of AUTOLOG.BAT files on the
disk; a short one is on the root directory, and a longer one is in
the folder named STSHELL. The longer AUTOLOG.BAT demon
strates a typical startup sequence that queries for the date and
time. This AUTOLOG.BAT is designed to be executed when ST-
Shell is booted from an AUTO folder. For this purpose, it must
be on the root directory. You must copy it to the root directory of
your boot disk, then, along with STSHELL.PRG in an AUTO folder,
to see how it works.

If you're not running ST-Shell from an AUTO folder, ST-
Shell looks for the AUTOLOG.BAT file in the current directory,
not in the root directory. That's why the shorter AUTOLOG.BAT

123

CHAPTER FOUR

file is executed when you run ST-Shell from the disk.
The disk also contains the ST-Shell batch file HELP.BAT.

This is a help screen for ST-Shell. Simply type HELP at the ST-
Shell prompt to load and run this batch file; it consists of ECHO
statements that list the complete set of ST-Shell commands.
HELP.BAT is also a good example of screen formatting with
ECHO. To have this help screen available, you must copy
HELP.BAT to any disk on which you copy ST-Shell.

124

Snapshot NEO/DEGAS
Philip I. Nelson

Try "Snapshot NEO/DEGAS" whenever you want to
capture a screen image for later use with

NEOchrome or DEGAS. You can even use this
convenient desk accessory to convert NEOchrome

and DEGAS pictures from one format to the other. It
adjusts automatically to any screen resolution and

works on any ST, color or monochrome.

NEOchrome and DEGAS are both excellent drawing programs for
the Atari ST. But let's face it—not all of us are artists. Rather
than always starting with a blank screen and creating something
from scratch, sometimes it's easier to simply capture an existing
screen image and load it into your favorite drawing program for
modifications.

A number of so-called "snapshot" utilities are available both
commercially and in the public domain for this purpose. But among
those utilities, it's difficult to find the right combination of fea
tures. Some work only in certain screen modes; some can save a
screen in DEGAS format but not NEOchrome format, or vice
versa; some don't let you specify a filename or pathname when
saving the screen on disk; some require two programs to func
tion—one to capture a screen and another to save it; and so on.

"Snapshot NEO/DEGAS" is a new program written to in
clude all the features you need in this kind of utility. Like other
snapshot programs, it lets you capture any screen image in
stantly and save it on disk for later use. But as the name implies,
Snapshot NEO/DEGAS lets you save the screen in either
NEOchrome or DEGAS format. It also works on any ST in any
screen mode: low-resolution color, medium-resolution color, and
high-resolution monochrome. It lets you specify any pathname
and filename you want when saving the file on disk. It's avail
able at any time with a simple keypress. And since it's a desk
accessory, Snapshot NEO/DEGAS installs itself in memory auto
matically whenever you turn on the computer.

125

CHAPTER FOUR

Figure 4-1. "Snapshot NEO/DEGAS"—Available in Any
Resolution

Desk File Uiew Options

FLOPPV DISK FLOPPV DISK TRASH

*t ft! > m^B^^^m
178634 bytes used in 9 itens

DEGAS BASIC.PRG BASIC. RSC CONTROL.ACC

M. JaEl

Lo-res screen

Desk File Uiew Options

FLOPPV DISKS FLOPPV DISK: TRASH

A:\
178634 bytes used in 9 itens,

|1

a u Q • a a
DEGAS BflSIC.PRG BflSICRSC CONTROL.flCC DESKTOP,INF HDISK.PRG PflNIC.FRG REBOOT.PRG

Medium-res screen

126

Utilities

Hi-res screen

You can use Snapshot NEO/DEGAS to capture graphics
screens, GEM screens, high-score game screens, or just about
anything. As a bonus, it also lets you convert NEOchrome pic
tures to DEGAS format, or vice versa.

Installing Snapshot
You'll find Snapshot NEO/DEGAS on the disk under the file
name SNAPSHOT.AC. It cannot be run from the disk menu pro
gram or the GEM desktop; it must be installed as a desk
accessory. (A desk accessory is a program that automatically loads
into memory when you first switch on your computer, and then
idly waits there until called from the Desk menu at the far left of
the menu title bar. The Control Panel which comes with every
ST is an example of a desk accessory.)

To use Snapshot NEO/DEGAS, you must first install it as a
desk accessory on your startup disk (the disk you insert in drive A
when switching on the computer) by renaming it SNAPSHOT.ACC.
If you aren't sure how to do this, follow these steps:

1. Copy the file SNAPSHOT.AC from COMPUTERS Second Book
of Atari ST Disk to your startup disk.

2. Display a directory window for your startup disk.
3. Select the file SNAPSHOT.AC by clicking once on its icon or

filename to highlight it.

127

CHAPTER FOUR

4. Drop down the File menu and select the Show Info option.
5. When the Show Info dialog box appears, a cursor should ap

pear on the filename line. Change the name of the file to
SNAPSHOT.ACC.

6. Exit the Show Info box by pressing Return or clicking the
mouse on the OK button. The directory window for your
startup disk should confirm that the file is now named
SNAPSHOT.ACC.

Snapshot NEO/DEGAS is now ready to be installed. Turn off
your computer and wait about 15 seconds. Then insert your
startup disk with SNAPSHOT.ACC into drive A and switch the
computer on again. (This cold start procedure is recommended
because merely pressing the reset button for a warm start does
not reliably install a new desk accessory.) When the GEM desk
top appears, drop down the Desk menu. You should see a new
selection entitled SNAPSHOT NEO/DEGAS.

Snapping Pictures
As a desk accessory, Snapshot NEO/DEGAS hides in memory
until you need it, even when you're using applications such as
ST BASIC or 1ST Word. To snap a picture of the current screen,
just press Alt-Help. (Hold down the Alt key; then tap the Help
key.) Snapshot NEO/DEGAS briefly inverts the screen colors to
signal that it has stored a complete image of the screen, includ
ing the resolution, color palette, and current position and appear
ance of the mouse pointer.

At this point, the screen is captured in memory, but is not
yet saved on disk. If you press Alt-Help again, the captured im
age will be replaced by a new screen. Unlike most cameras,
Snapshot NEO/DEGAS can take only one picture on its "film." If
you need to capture more than one screen, you must save each
image on disk before pressing Alt-Help again.

To save a captured screen on disk, start by dropping down
the Desk menu. (Some application programs, such as 1ST Word,
title the Desk menu with the Atari logo symbol, but it still works
the same.) Then select SNAPSHOT NEO/DEGAS to activate the
desk accessory. A dialog box appears and prompts you to choose
the desired format: NEO or DEGAS. If you decide not to save the
screen, you can click on CANCEL. (If you select SNAPSHOT
NEO/DEGAS without a captured screen in memory, the acces
sory informs you with an alert box.)

128

Utilities

Since the current version of NEOchrome loads only low-
resolution files, Snapshot NEO/DEGAS warns you if you choose
the NEOchrome file option when in medium or high resolution.
To cancel the save, simply select the CANCEL box. However,
Snapshot NEO/DEGAS is designed for upward compatibility, so
it allows you to save a NEOchrome-format image in medium or
high resolution in case NEOchrome is ever updated to handle
those screen formats as well.

After you've selected the file type, Snapshot NEO/DEGAS
opens a standard GEM file selector box which allows you to
choose a filename for the stored screen image. Choose the drive-
path and filename you wish to use, just as you would from
BASIC or any other ST application. Again, if you choose CAN
CEL, or if you select OK without entering a filename, Snapshot
NEO/DEGAS aborts the operation without saving anything to
disk. If you select a filename that already exists, Snapshot NEO/
DEGAS gives you the option to replace the existing file or cancel.

The program also checks to make sure the disk contains
enough free space to hold the new file; if there's not enough
room, Snapshot NEO/DEGAS displays an alert box and aborts
without altering the disk. (Keep in mind that a picture file in any
resolution in either format requires about 32K.)

Naming Picture Files
When saving pictures, you are responsible for entering a file
name with the correct three-character extension for the desired
picture format. Every NEOchrome filename must end with the
.NEO extension. DEGAS filenames end with the extension .PI fol

lowed by a 1, 2, or 3 to indicate the screen resolution: Use .PI1
for low resolution, .PI2 for medium resolution, and .PI3 for high
resolution.

If you're not sure about the extension, look at the path
specification in the upper portion of the file selector box. As a
convenience, Snapshot NEO/DEGAS supplies the correct exten
sion for the format and resolution which you select. The file
name extension does not affect the contents of the file; if you
accidentally save a picture with the wrong extension, simply re
name it with Show Info from the desktop.

Once you've selected a filename, Snapshot NEO/DEGAS
saves the complete screen image on disk in the desired format,
including the screen resolution and color palette which were in
effect when you captured the screen. The resulting file can be

129

CHAPTER FOUR

loaded into NEOchrome or DEGAS and manipulated like any
other picture file.

As a desk accessory, Snapshot NEO/DEGAS is normally
available from within any GEM application. However, it's possi
ble for an application to change what's available in the Desk
menu. Some programs replace existing menus with menus of
their own (or make all accessories unavailable, as in the case of
NEOchrome), but restore them when you exit the application. If
you have previously installed Snapshot NEO/DEGAS, it should
work even when you're using such a program. Press Alt-Help to
store a screen image while the application is running; the screen
should blink as usual to signal that the image is captured. After
you've exited the application, Snapshot NEO/DEGAS should re
appear in the Desk menu. At this point, you can save the cap
tured image to disk. The process of returning to the desktop does
not disturb the captured image.

If Snapshot NEO/DEGAS does not reappear in the Desk
menu when you return to the desktop, it has been forcibly re
moved by the application and cannot be used. It's considered
bad GEM etiquette for an application to remove a desk accessory
without replacing it, but you should be aware of the possibility.

Additional Notes
Snapshot NEO/DEGAS works correctly under circumstances
where a program temporarily changes the screen resolution. For
instance, NEOchrome always runs in low resolution, even if the
computer is set for medium resolution before you run NEOchrome.
If you capture a screen in NEOchrome, then exit to a medium-
resolution desktop, Snapshot NEO/DEGAS remembers the cor
rect resolution and saves the picture in lo-res format.

This does not apply, however, to a resolution change which
does not occur under program control. If you switch resolutions
from the desktop with the Set Preferences option, the ST re
initializes all desk accessories, effectively erasing any screen that
Snapshot NEO/DEGAS has captured in memory.

Like most ST programs, Snapshot NEO/DEGAS opens the
GEM file selector to let you choose a filename and pathname.
Sometimes, calling the file selector from a desk accessory can
have unexpected consequences. If the file selector box overlays
an open disk directory window on the desktop, mouse events
may occasionally "leak through" the file selector and affect the
underlying window. In such cases, it's possible for GEM to be-

130

Utilities

come confused about which activity—the file selector or the disk
directory window—has priority in receiving mouse input. To
avoid surprises, you can close any directory windows that are
likely to lie under the file selector box when it appears on the
desktop.

Although Snapshot NEO/DEGAS itself is less than 4000
bytes in length, it needs to reserve another 32,000-odd bytes of
memory to store the screen image, color palette, and other data.
That shouldn't create problems unless you're running a highly
memory-intensive application on a 512K machine, or are using
several other desk accessories which are very large.

Normally on the ST, pressing Alt-Help activates a graphics
screen dump to your printer. Snapshot NEO/DEGAS diverts this
hardcopy vector in order to capture the screen instead. If you
run another program that also tries to divert the hardcopy vector
for some other reason, Snapshot NEO/DEGAS probably won't
work correctly. To avoid conflicts, do not use any other program
or utility that relies on Alt-Help while Snapshot NEO/DEGAS is
installed. If you wish to print a hardcopy image of a screen—
either from the desktop or a program like DEGAS—turn the com
puter off and reboot with a startup disk that doesn't contain
SNAPSHOT.ACC. Or temporarily rename the program to
SNAPSHOT.AC and reboot. (A desk accessory must have the ex
tension .ACC to be recognized by the system.)

Snapshot NEO/DEGAS may not work correctly on early
520STs which require you to load TOS (the operating system)
from disk. Later 520STs and all 1040STs have TOS in ROM
(Read Only Memory). There are many differences between the
RAM-based and ROM-based versions of TOS. You can have an
early 520ST upgraded with TOS in ROM chips at an authorized
Atari service center.

Suggested Applications
Snapshot NEO/DEGAS is useful in many situations. You may
want to create geometric figures in BASIC or Logo (or any other
language, for that matter), save the picture, and then touch it up
with NEOchrome or DEGAS. Many such figures can be created
more easily with a program other than NEOchrome or DEGAS.
Students can plot mathematical functions; dabblers in the stock
market can track the progress of selected securities; artists can
draw crystalline lattices.

Game players may also appreciate the ability to save

131

CHAPTER FOUR

screens. When you struggle to reach the all-time high score, it's
nice to have a permanent record of your achievement. It also
proves that you really did make a certain score, especially if you
have friends who may doubt your boasts.

Another idea is to snap screens to accompany newsletter ar
ticles. The screens can be printed out with NEOchrome or DE
GAS, or merged into some of the desktop publishing programs
available for the ST. The sample screens appearing in Figure 4-1
were captured with Snapshot NEO/DEGAS, then uploaded using
special software to a minicomputer/typesetter. Some programs
with animation can't be paused long enough for the long expo
sures required to photograph them; with those programs, Snap
shot NEO/DEGAS captures a frozen image instantly.

Another useful feature of Snapshot NEO/DEGAS is its ability
to convert a picture from NEOchrome to DEGAS format or vice
versa. To convert a NEOchrome picture to DEGAS format, simply
run NEOchrome and load the picture, select the Full Screen dis
play, and then capture the picture by pressing Alt-Help. Exit
NEOchrome and save the picture from the desktop with a DEGAS
filename (using the extension .PI1 to indicate low resolution).
The picture can then be loaded into DEGAS.

To convert from DEGAS to NEOchrome format, simply
reverse the process: Capture the screen from within DEGAS, re
turn to the desktop, and save it with a NEOchrome filename
(using the extension .NEO). Since screen data is structured differ
ently for different resolutions, this conversion works only for
low-resolution pictures. You cannot convert between lo-res
NEOchrome pictures and medium- or hi-res DEGAS pictures.

Incidentally, Snapshot NEO/DEGAS can capture a
NEOchrome screen only when you have selected the Full Screen
display. If you try to capture a screen that contains the
NEOchrome tools at the bottom of the screen, the image will be
incomplete. This is because NEOchrome uses special split-screen
techniques to display more than the usual 16 colors in the pal
ette box.

132

Extended Formatter
Richard Smereka

With this compact machine language utility, you can
format blank disks with an option to increase the
storage capacity of either a single- or double-sided

disk. It works on any ST in any screen mode, either
as an ST-Shell command or as a stand-alone

application from the GEM desktop.

As you know, a formatting command is already built into the
Atari ST's GEM desktop. You insert the disk to be formatted into
a drive, click the mouse on the corresponding drive icon, drop
down the File menu, and select Format. A dialog box pops open
to let you choose single- or double-sided formatting. It's all very
quick and easy.

Why, then, is a separate utility to format a disk a useful ad
dition to your software library? For one thing, the integral format
command is available only from the GEM desktop. If you're
using an alternative such as ST-Shell—the command-driven disk
operating system discussed earlier in Chapter 4—there may be
no format command available. In addition, GEM's Format option
currently doesn't offer some special features that are possible in
a custom formatting utility.

"Extended Formatter" fills both of these voids. First, it pro
vides a handy format command for the ST-Shell command line
interface. And second, as its name implies, Extended Formatter
provides a special formatting option not currently supported by
GEM: You can format a single-sided disk to store 404K of data
instead of the standard 349K, or a double-sided disk to store
80 8K instead of the usual 69 8K. Best of all, disks formatted with
this option can be read from or written to without using any spe
cial software. They're fully interchangeable with regular disks.

Extended Formatter works on any ST in any screen mode,
and it works with both single- and double-sided floppy disk
drives.

133

CHAPTER FOUR

Figure 4-2. "Extended Formatter" Results—with Single- and
Double-Sided Disks—Shown in Number of Bytes Available

Installing on the Desktop
There are two different ways to install Extended Formatter, de
pending on whether you plan to use it from the GEM desktop or
from a command-driven DOS such as ST-Shell.

To use it from the desktop, copy the file FORMAT.XXX from
the book disk to your own disk and rename it FORMAT.TTP.
The .TTP filename extension is important. It stands for TOS
Takes Parameters, which signals to the ST that Extended
Formatter is a Tramiel Operating System program that requires
certain parameters before it can function. When you run a TTP
application by double-clicking on its icon, a dialog box pops
open on the screen so you can enter these parameters. (We've
named the program FORMAT.XXX on the disk to guard against
accidentally formatting the disk.)

Here are the parameters expected by Extended Formatter:

DS[E]

The first two parameters are required. D is the drive identi
fier; substitute A (for drive A) or B (for drive B). S indicates the
number of sides to be formatted; use S for single-sided or D for
double-sided. (You must have a double-sided drive to use D, of
course.) The third parameter is optional; if E is entered (do not

134

Utilities

type the brackets), the extended-formatting option is selected.
The parameters must be separated from each other by at least
one space.

Figure 4-3. GEM Dialog Box for Entering "Extended
Formatter" Parameters

Desk File View Options

Here are some examples of what you might type into the di
alog box when you run Extended Formatter:

AS

This formats the disk in drive A for single-sided use.
BD

This formats the disk in drive B for double-sided use.

ASE

These are the parameters shown in Figure 4-3; they format the
disk in drive A for single-sided use and also select the extended-
formatting option (404K).

ADE

This formats the disk in drive A for double-sided use with the
extended-formatting option (808K).

After you've entered the parameters and clicked on the OK
button or pressed Return, Extended Formatter loads into memory

135

CHAPTER FOUR

and then waits for you to press a key. This gives you a chance to
swap disks if necessary. (On a single-drive system, naturally, you
wouldn't want to format the disk from which you loaded Ex
tended Formatter.)

That's all there is to it. Just remember that formatting erases
any previous information that may have been stored on the disk.
GEM's Format command warns you about this with an alert box,
but Extended Formatter does not. This shouldn't be a problem,
however, since the TTP dialog box—which should be warning
enough—provides a Cancel button to abort the program.

Formatting from ST-Shell
A somewhat different procedure is required when you're running
Extended Formatter from a command line interface like ST-Shell
instead of from the GEM desktop.

First, install Extended Formatter by copying FORMAT.XXX
from the book disk and renaming it FORMAT.PRG. Note that
you do not name the program FORMAT.TTP in this case.

To run Extended Formatter, type the following command
line:

FORMAT D S [E]

The parameters are the same as those used when Extended
Formatter is being run from the desktop. D is the drive identifier,
either A or B; S is the number of sides to format, either S for
single-sided or D for double-sided; and E is the optional param
eter for extended formatting (again, omit the brackets). The pa
rameters must be separated from each other and from the
FORMAT command by at least one space. Here are some examples:

FORMAT A S

This formats the disk in drive A for single-sided use.

FORMAT B D

This formats the disk in drive B for double-sided use.

FORMAT A S E

This formats the disk in drive A for single-sided use and also se
lects the extended-formatting option.

136

Utilities

FORMAT A D E

This formats the disk in drive A for double-sided use with ex
tended formatting.

After you've entered the parameters and pressed Return, Ex
tended Formatter loads and then waits for you to press a key.
This gives you a chance to swap disks if necessary.

Additional Tips
Extended Formatter works only with microfloppy disks in drives
A or B. Attempting to format a disk in any other drive causes an
invalid drive specification error. Also, do not attempt to format a
RAM disk or hard disk with this utility.

When you run Extended Formatter, there must be at least
20,000 bytes of memory available in the computer for the track
buffer. If there's not enough memory, an error will result.

Normally a single-sided ST disk has 349K of disk space
available and a double-sided disk has 698K. The Extended For
mat option boosts these capacities to 404K and 808K, respec
tively, by increasing the number of tracks on the disk as well as
the number of sectors per track. There should be no problem
reading from or writing to these disks with drives that are prop
erly aligned. (Atari recommends, however, that you don't format
your disks to sizes other than those defined by the default sys
tem values. While extended-format disks have been used for
some time at COMPUTE! without any problem, we recommend
that, to avoid trouble, you fill an extended disk with files that
can be replaced, and test it awhile before entrusting it with your
irreplaceable data.)

When using the Extended Format option, you may have to
change the way you copy disks. The Atari ST's disk copy rou
tine—which is called when you drag a disk icon atop another
disk icon or use the copy command from ST-Shell—will not copy
a normally formatted disk onto an extended format disk, or vice
versa. That's because the operating system first checks to be sure
the disks used in a copy operation are compatible. That is, both
disks must have the same total storage space available. If not,
the computer informs you that the disks are incompatible. You
may have encountered this message when trying to copy a
floppy disk to a RAM disk or vice versa.

137

CHAPTER FOUR

To copy a normally formatted disk onto an extended format
disk, copy the individual files and folders from disk to disk. The
easiest way to do this is to select a number of files simulta
neously by looping them with the mouse or clicking on them
while holding down a Shift key. See your ST manual for more
information on extended-selection copying.

It is possible, however, to copy extended format disks onto
each other by dragging the disk icon or by using the copy com
mand from ST-Shell.

138

Customizing the GEM
Desktop
McKendre Haynes

Have you ever wondered about the meaning of all
those numbers in the DESKTOP.INF file? Wonder no
longer. This in-depth article takes the mystery out of
customizing and saving the GEM desktop. The tech

niques apply to all STs, color and monochrome.

If you're a relatively new ST owner, you may indulge in a
power-on ritual that goes something like this: First, after the
GEM desktop appears, you drop down the Options menu and
select Set Preferences to set the screen resolution to medium (if
you have a color monitor) instead of low resolution. Then, per
haps you use the same menu to turn off confirmation of copies
or deletes. Next, you drop down the View menu and select
Show as Text to replace the file icons with filenames. Moving
over to the Desk menu, you open the Control Panel and change
the screen background color to something easier on the eyes
than fluorescent green. Perhaps you open the Install Printer ac
cessory and adjust the printer parameters, too.

Finally, after dragging the trash can to the lower right-hand
corner of the screen, you double-click on the Floppy Drive A
icon, resize the directory window, and reposition it slightly. Now
the desktop looks the way you want it to look.

Arranging the desktop to suit your taste takes time. And
what happens when you turn off the ST? It forgets everything.
The next time you turn it on, you have to rearrange everything
all over again.

It doesn't have to be that way. After moving things around
and setting your preferences, you can drop down the Options
menu and select Save Desktop. This writes a file called
DESKTOP.INF on drive A. When you next turn on your ST, be
sure this disk is in drive A. The computer reads the file and
automatically reconstructs the GEM desktop just as you left it.

139

CHAPTER FOUR

Figure 4-4. Modifying the DESKTOP.INF File: The Key to a
Customized GEM Desktop

Desk File Uiew Options

III
FIRMV DISK FIRMV DISK NERATOR !

^liiiiiiiiliiiiiliiiiiiiii
164889 bytes used in 9 itens.

£

*

7 7 7 7

snap:;hot .ACC CONTROL. ACC DESKTOP. INF TOMTEST. TXT

£ [•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•: ^ K

Exploring DESKTOP.INF
Not too long ago, I read an article which described how to
change the labels of the desktop icons. In the process of modify
ing the file, I became curious as to what all those other numbers
in DESKTOP.INF meant.

The DESKTOP.INF file tells the ST how to configure the
GEM desktop whenever the power is switched on or the reset
button is pressed. The ST continually monitors the GEM desk
top, so it's always ready to save the various values on disk
whenever Save Desktop is selected.

To view the contents of the DESKTOP.INF file, double-click
on its icon or filename in a directory window. An alert box pops
open to offer three options: SHOW, PRINT, and CANCEL. Click
on the SHOW button to display the DESKTOP.INF file on the
screen; click on PRINT to send a copy to the printer; or click on
CANCEL to return to the desktop.

When listed to the screen or printer, a typical DESKTOP.INF
file looks something like this:

#a030001

#b001000
#c7770007003730070055200505552220770

557075057705503111005

140

Utilities

#d

#E IB 02

#W 00 00 00 05 50 14 07 B:*.*@
#W 00 00 0C 04 50 OE 00 @
#W 00 00 OE 09 2A OB 00 @
#W 00 00 OF OA 2A OB 00 @
#M 00 00 00 FF A FLOPPY DISK@ @
#M 01 00 00 FF B FLOPPY DISK@ @
#T 07 00 02 FF TRASH@ @
#F FF 04 @ *.*@
#D FF 01 @ *.*@
#G 03 FF *.APP@ @
#G 03 FF *.PRG@ @
#F 03 04 *.TOS@ @
#P 03 04 *.TTP@ @

Yours will probably look slightly different, depending on
how you've configured your desktop.

By changing the data in this file, you can customize your
desktop. Changing the data is easy if you load DESKTOP.INF
into a text editor or word processor that can save files in plain
ASCII format (for instance, 1ST Word with word processor mode
turned off). However, it's also easy to mess up the DESKTOP.INF
file if you don't know exactly what you're doing. If you're not
sure how to go about this, just continue reading.

How It Works

Each line in the DESKTOP.INF file contains a series of hexadeci
mal (base 16) numbers, and some lines contain additional sym
bols. Let's take a look at what these lines do.

The first line in DESKTOP.INF contains values describing
the configuration of the RS-232 port:

Digit Meaning
1st: 0 = Full duplex 1 = Half duplex
2nd: 0 = 9600 bps 1 = 4800 bps

2 = 1200 bps 3 = 300 bps
0 = No parity 1 = Odd parity3rd

4th

5th

2 = Even parity
0 = 8 bits/char 1 = 7 bits/char
2 = 6 bits/char 3 = 5 bits/char
0 = X OFF, Rts/Cts OFF
1 = X ON, Rts/Cts OFF
2 = X OFF, Rts/Cts ON
3 = X ON, Rts/Cts ON

6th: 0 = Strip bit ON
1 = Strip bit OFF

141

CHAPTER FOUR

So, for example, since the first line in the sample DESKTOP.INF
file above is #a030001, the RS-232 port will be configured as fol
lows: full duplex, 300 bps (bits per second), no parity, 8 bits per
character, X OFF, Rts/Cts OFF, and strip bit OFF.

The next line in DESKTOP.INF contains the printer infor
mation you've entered with the Install Printer accessory. The
numbers represent the following settings:

Digit Meaning
1st: 0 = Dot-matrix

1 = Daisywheel
2nd: 0 = Black and white

1 = Color

3rd: 0 = 1280 pixels/line
1 = 960 pixels/line

4th: 0 = Draft quality
1 = Final quality

5th: 0 = Printer port
1 = Modem port

6th: 0 = Continuous feed
1 = Single sheet feed

In our example DESKTOP.INF file, the second line is
#b001000, so the printer settings are dot-matrix, black and
white, 960 pixels per line, draft quality, printer (parallel) port,
and continuous feed. This is a typical setup for many Epson-
compatible printers.

The Control Panel

The third line in DESKTOP.INF contains the values from the
Control Panel accessory when the desktop was saved. In our ex
ample file, this line is

#c777 000 700 373 007 005 520 050 555 222 077 055 707 505 770 550
3111005

Note: For illustrative purposes, the first 48 numbers are ar
ranged in groups of 3, separated by spaces. This is not the way
you would normally see it in the DESKTOP.INF file, where the
numbers run together.

The first 48 numbers are the colors set by the Control Panel.
Since the ST can display a maximum of 16 colors at any one
time, each color is represented by 3 numbers (48 / 16 = 3). Each

142

Utilities

of the 3 numbers corresponds to the number displayed under R,
G, and B on the Control Panel color selector. R is the red value;
G is the green value; and B is the blue value. All 512 colors pos
sible on the ST can be created by combining the various RGB
values.

The last seven numbers in this line, 3111005 in the example,
are also set by the Control Panel:
Digit Meaning
1st: Mouse button response (0-4)
2nd: 0 = Keyclick off

1 = Keyclick on
3rd: 0 = Bell off

1 = Bell on

4th & 5th: Keyboard response (0-46)
6th & 7th: Character repeat delay (0-21)

Again, looking at our example file, you can see that 3111005
stands for a mouse button response of 3 (thus requiring fairly
rapid double-clicks); keyclick on; bell on; a keyboard response of
10 (fairly fast); and a character repeat delay of 05 (a very short
delay for fast repeats).

The next line in DESKTOP.INF, labeled #d, does not seem
to be used yet. Most likely it's reserved for future use by a new
version of the ST.

Icons and Screens

The next line in the file, #E IB 02 in our example, performs two
functions. The first hexadecimal number determines how files
are arranged in the directory and if confirmation should be re
quested before copying or deleting files. The 32 possible values
(not all of which are listed here) depend on how the four options
are chosen—for example,

IB = View as Icons; Sort by Name; Confirm Deletes; Confirm Copies
03 = View as Icons; Sort by Name; No Confirm Deletes; No Confirm

Copies
9B = View as Text; Sort by Name; Confirm Deletes; Confirm Copies

The first two options—View as Icons or View as Text and
Sort by Name, Date, Size, or Type—are found under the View
menu. The last two—Confirm Deletes and Confirm Copies—can
be set when you choose Set Preferences from the Options menu.
All of these settings are encoded as bits in the hexadecimal num
ber. Bit 7 is icons/text; bits 6 and 5 are sort by name, date, size,

143

CHAPTER FOUR

or type; bit 4 is for confirming deletions, and bit 3 is for confirm
ing copies.

The second number in the #E line, 02 in our example, indi
cates the screen resolution to which the GEM desktop will de
fault. Low resolution is 01, medium is 02, and high is 03.

Window Info

The next four lines represent the four windows that may be
opened (W apparently stands for window). GEM permits only
four windows to be open simultaneously:

#W 00 00 00 05 50 14 07 B:*.*@
#W 00 00 0C 04 50 0E 00 @
#W 00 00 0E 09 2A 0B 00 @
#W 00 00 OF 0A 2A 0B 00 @

These hexadecimal values are continuously updated in
memory as windows are opened, resized, and repositioned on
the desktop. (This is why, when you close a window, the next
window opened will appear in its former location and size.)
When you select Save Desktop, the current arrangement is saved
on disk. The next time you boot up the computer or press the re
set button, the window (or windows) will reopen and position it
self exactly as it appeared when you selected Save Desktop.

For each line and each window, the first two bytes are re
lated to the slider bar positions, the next two determine the win
dow's desktop location, and the third pair define the window's
size. In the first line of our example above, these pairs of bytes
are 00 00, 00 05, and 50 14.

The use of the next byte is uncertain, but it appears to be
used by GEM as a window handle. This byte is always a value
between $07 and $0A, with $07 the first value assigned to a
window. The values of this byte seem to vary from ST to ST.

In the first window line, the symbols B: *.*@ represent the
pathname of the open window: It is the root directory (not a
folder) of disk drive B, and all files will be displayed. If a win
dow had been opened for a folder in drive B, the line would end
like this: B: \ FOLDER *.*@, where FOLDER is the folder
name. As each successive folder is opened, the latest folder name
is added to the line.

The windows are opened in the order listed, so if you have
A listed before B, the directory for B will be opened last and will
come up as the currently active window. Changing the path-

144

Utilities

name allows you to customize the directory that appears. For ex
ample, if you make B: *.*@ into B: *.BAS@, only BASIC
programs will be listed in the directory window for drive B when
you boot or reset your ST. Closing and reopening the window
restores the normal directory.

Disk Drives and Trash Cans

The next three lines in DESKTOP.INF list information about the
disk drive and trash can icons:

#M 00 00 00 FF A FLOPPY DISK@ @
#M 01 00 00 FF B FLOPPY DISK@ @
#T 07 00 02 FF TRASH@ @

The M and T lines tell the ST where to locate the icons on
the desktop, what the icons should look like, and how the icons
should be labeled.

The first byte in each line is the horizontal location of the
icon; the second is the vertical location; and the third byte tells
the ST which GEM icon to use for each device.

There are five icons built into the ST, numbered as follows:

00 = File drawer

01 = Folder

02 = Trash can

03 = Program
04 = File

Figure 4-5. GEM's Built-in Icons

GEM Screen Icons

FLOPPY DISK

Disk drive

•

TRASH

Trash can

TESTt.PRG TEST t .PRS

Folder Executable Nonexecutable

{subdirectory) progran file

You can change the icon numbers for the disk drives and
trash can to any of the above values, but the results will likely
be confusing. (A trash can that's disguised to look like a disk
drive could be hazardous to the health of your files.) If an icon
specifier greater than 04 is used, the system will not boot.

145

CHAPTER FOUR

The text portions of the lines which appear after the FF de
limiter are the desktop icon labels. These, too, can be edited. You
might, for example, relabel your disk drive icons as FIRMY
DISKS since the 3V2-inch floppies are not really very floppy, and
rename the trash can icon to INCINERATOR, since—unlike the
Macintosh and Amiga—the ST provides no simple way to re
cover a discarded file. The resulting lines in the DESKTOP.INF
file would look like this:

#M 00 00 00 FF AFIRMYDISK@@
#M 01 00 00 FF B FIRMY DISK@ @
#T 07 00 02 FF INCINERATOR® @

Some people with two-drive 1040ST systems change their
icon labels to read INTERNAL for drive A and EXTERNAL for
drive B, since the 1040ST has a built-in floppy drive.

By the way, there's an easier method of changing a disk
drive icon than by editing the DESKTOP.INF file with a text edi
tor or word processor. Simply click once on the icon to highlight
it, drop down the Options menu, and select Install Disk Drive.
The dialog box that appears lets you change the drive identifier
and the icon label. You shouldn't mess with the drive identifier
(this is for installing a RAM disk or hard disk on your system),
but you can change the label quite easily. Press the Tab key to
move the cursor to the line with the label, and then press the
Esc key to erase the line. Now you can type in any new label
you want (up to 12 characters). Click on the INSTALL button to
effect the change, or the CANCEL button to restore the original
label.

File Icons

The rest of the DESKTOP.INF file tells the ST which icons to use
for different types of files within windows and how to deal with
those types of files. The example above looks like this:

#F FF 04 @ *.*@
#D FF 01 @ *.*@
#G 03 FF *.APP@ @
#G 03 FF *.PRG@ @
#F 03 04 *.TOS@ @
#P 03 04 *.TTP@ @

The #F and #D lines may represent folders and disks; their
function is uncertain. The next four lines describe the four types of
programs that can run. Here, G files run under the Graphics Envi
ronment Manager (GEM), and F and P files are Tramiel Operating

146

Utilities

System (TOS) programs which run with or without parameters.
There's no useful purpose to modifying these lines, and they

should be left untouched to avoid problems.

Installing Applications
Occasionally you'll see a DESKTOP.INF file that has lines like
this:

#G 03 04 BASIC.PRG@ *.BAS@
#G 03 04 lST_WORD.PRG@ *.DOC@

These indicate applications that have been installed. In GEM
desktop parlance, installing an application has a special meaning.
Usually when you double-click on a file represented by a file
(04) icon—such as an ST BASIC program or a 1ST Word file—an
alert box tells you that you can only SHOW or PRINT the file;
it's not an executable program. In the case of BASIC programs
and 1ST Word documents, the files are identified with the file
name extensions .BAS and .DOC, respectively.

But by installing the application, you can run the application
program merely by clicking on one of its nonexecutable files. For
example, let's say you want to install 1ST Word. Click once on
the program icon for 1ST Word (the icon you'd double-click to run
the program). When it's highlighted, drop down the Options
menu and select Install Application. A dialog box appears and
asks you for a Document Type. Enter DOC as the document
type; then click the OK button.

Now you can load and run 1ST Word just by double-clicking
on any 1ST Word document file (that ends with the filename ex
tension .DOC). Not only is 1ST Word loaded, but the text file you
click on is automatically loaded, too. Of course, the 1ST Word
program file must be on the same disk as the document file for
this to work.

If you reboot or reset the ST, the application will be
uninstalled. To keep from having to install it each time you use
the computer, simply Save Desktop.

Saving Room for Accessories
A desk accessory is a special type of program that automatically
loads into memory when an ST is booted, then waits "in the
background" until selected from the Desk menu. At that point it
runs instantly, since it doesn't have to be loaded from disk like
other programs. Also, a desk accessory can be called anytime the

147

CHAPTER FOUR

Figure 4-6. Installing an Application from the Desktop

Desk File Uiew 9MM

Hfi!7-#;r:
FLOPPV DISK:!FLOPPV DISK

vjsi

164839 bytes used

• 1
DEGAS

INSTALL APPLICATION

tion Nanei B
nent Type: B
Application

Application Nane: BASIC ,PRG
Docunent Type: BAS

Type: \
Iffil [~TuTl 1TOS-takes paraneters

mm

n 1

J a
I0T.PRG SNAPSHOT.ftC

Desk menu is available, even when you're running another
application program. (Sometimes, as in 1ST Word, the Desk menu
is represented by the Atari logo symbol.)

Desk accessory files end with the .ACC extension and must
be located on the root directory in order for you to be able to
load them. Normally, they'll load from drive A. If you have a
hard disk, accessories load from drive C. The most common desk
accessory is the Control Panel (CONTROL.ACC) that comes with
every ST system. Another free accessory is the VT-52 emulator
(EMULATOR.ACC).

Accessories can be useful, but they consume memory and
lengthen the time required for the computer to boot up. Also, the
current version of TOS limits the ST to a maximum of six acces
sories that may be installed at one time. The Control Panel, al
though it is a single accessory, uses up two of these slots because
it includes the Install Printer program.

If you want to free up some memory or some slots on the
Desk menu for other accessories, you can Save Desktop after
configuring your system with the Control Panel, Install Printer,
and VT-52 emulator. Then you can prevent these accessories from
loading in the future by deleting them from your boot disk or re
naming them CONTROL.AC and EMULATOR.AC. Since all the

148

Utilities

information supplied to your ST by these accessories is preserved
in the DESKTOP.INF file when the desktop is saved to disk, it's
not really necessary to keep them around.

The only function you might miss is the system clock on the
Control Panel. Several programs are available both commercially
and in the public domain which let you set the clock during
bootup. This could eliminate your need for the Control Panel/
Install Printer accessory, freeing up those two slots for more im
portant accessories.

149

NEOview
Philip I. Nelson

Here are two programs—one written in machine lan
guage and the other in C—which let you display

NEOchrome pictures without loading NEOchrome.
Programmers wiii want to study the accompanying

source code, which demonstrates how to load
NEOchrome pictures into your own programs.

NEOchrome, the graphics-design program supplied with the ST,
is a powerful tool for artists and doodlers alike. But it can also be
a powerful tool for programmers. For instance, if you're writing
arcade-style games or other graphics applications, it saves time
and effort to draw the background with NEOchrome and then
just load it into screen memory, rather than to write a complex
routine to create a similar background.

But how do you go about displaying a NEOchrome picture
within a program of your own? The accompanying programs
provide the answer—in both C and machine language. You
should be able to convert them into routines for your own pro
grams with little trouble. And the techniques they illustrate are
valuable for anyone interested in writing programs that involve
NEOcnrome-format files.

In addition, these programs are useful in their own right for
anyone who wants a quick look at a NEOchrome picture without
running NEOchrome. You don't have to be a programmer to use
them.

Viewing with NEOview
Before running either version of "NEOview," make sure the
computer is in the low-resolution screen mode. This is the only
mode currently supported by NEOchrome.

The machine language version of NEOview is stored on the
disk as NEOVIEW.TTP and runs as a TTP (TOS Takes Param
eters) application from the desktop. When you run a TTP appli
cation, the ST opens a dialog box in which you may type
information to be passed to the program. In this case, enter the
name of the NEOchrome picture you wish to display, using the
full drive specifier, pathname, and filename.

150

Utilities

For example, to display a picture called MYPIC.NEO on the
disk in drive A:, enter A:MYPIC.NEO in the dialog box and
press Return. NEOview displays the picture until you press Re
turn again. If a disk error occurs, the program prints an error
message and waits for you to press Return. If you have a single-
drive system, make sure that NEOVIEW.TTP is on the same disk
as the NEOchrome picture you want to display.

The C version of NEOview is stored on the disk as
NEOVIEW.TOS and runs as a TOS (Tramiel Operating System)
application. When you run the program, it prompts you to enter
the name of the file you wish to display. Again, you should en
ter the full drive specifier, pathname, and picture filename. For
instance, you would enter B:PICS \DOG.NEO to load DOG.NEO
from the folder PICS on the disk in drive B:. If a disk error oc
curs, the program prints an error message; otherwise, it displays
the picture and waits for you to press any key.

How It Works

In addition to the executable object files on disk, commented
source code for the C version of NEOview—and the source code
for the machine language version, as well—follows this discus
sion of the programs. If you're a C or machine language pro
grammer, you'll want to study this code to learn how to load
NEOchrome pictures with your own programs.

NEOview was written first in machine language using AS68,
the 68000 assembler included with the Atari ST development
system. It was then translated with Alcyon C, the C compiler that
comes with the development system. Minor changes may be
needed to compile and link the C source code with other C
compilers.

To facilitate comparison, both versions of the program per
form essentially the same tasks in the same order. After they
have accepted the filename, the programs save the current color
palette, read the color-palette data from the NEOchrome file, and
reset the ST's palette with the new colors. Then they read the
screen-image portion of the file directly into the computer's
screen memory, close the disk file, and wait for the user to press
a key. Finally, they restore the original color palette and return
to the desktop.

These programs illustrate only the bare essentials needed to
get the job done. If you decide to incorporate any of these tech
niques in a program of your own, you will probably want to add
more error-checking or convenience features.

151

CHAPTER FOUR

NEOview: Commented C Source Code

/* SHOWNEO.C */
/* Display a NEOchrome picture. This program runs as a TOS */
/* application from the desktop. Enter the filename of the */
/* NEOchrome file you wish to display. If the file is found, */
/* the program resets the palette, displays the picture, and */
/* waits for you to press any key. If the file doesn't exist, */
/* or if a disk error occurs, the program displays a terse */
/* error message. Because NEOchrome currently works only in */
/* low resolution, the program assumes you are already in low */
/* res before you run. To save space, the program doesn't do */
/* checks like scanning the extender to make sure it's .NEO */
/* or checking the file size before reading to make sure it's */
/* 32128 bytes. */

#include <osbind.h>

char namebuff[40];
char errormsg[] = "A disk error occurred. Press any key....";
char prompt[1 = "Enter NEO filename: ";

int savepal[16], newpal[16], junkbuff[46], *screen;

main()
{ int i, filehandle;

namebuff[0] = 37;
Cconws(prompt);
Cconrs(namebuff);
namebuff[namebuff[l]+2] = '\0';

if((filehandle = Fopen(&namebuff[2],0))<0) { error();
return(O);

/* Make the flashing cursor disappear. /
Cursconf(0,0);

/* Save current color palette */
for(i=0;i<16;i++) savepal[i] = Setcolortf, -1);

/* Read and throw away first two words. */
if((i = Fread(filehandle, 4L, junkbuff)) <4) { error();

return(O);

/* Read 16 words of palette data into newpal array. */
if((i = Fread(filehandle, 32L, newpal)) <32) { error();

return(O);

/* Tell system to use the new color palette */

Setpalette(newpal);

152

Utilities

/* Read and throw away 46 words of color cycling data */
if((i = Fread(filehandle, 92L, junkbuff)) <92) { error();

return(O);

}
/* Find screenbase */

screen = (int *) Physbase();
/* Read screen image into screen memory. */

if((i = Fread(filehandle, 32000L, screen)) <32000) {
error();
return(O);

}
/* Close the file. */

Fclose(filehandle);
/* Wait for a keypress */

Bconin(2);
/* Restore original palette */

Setpalette(savepal);
} /* main ends here */
/* Print error message and wait for any key to be pressed. */

error()
{ Cconws(errormsg);

Bconin(2);

}

NEOview: Machine Language Source Code

* SHOWNEO.S

start:

* Enter supervisor mode
clr.l -(sp)
move.w #$20,-(sp)
trap #1
addq.l #6,sp
move.l dO,savesp

* Save color palette
move.w #32,d0
move.l

move.l

#savepal,al
$ff8240,a0

sv:

move.b (aO)+,(al)+dbra

* Disable cursor

move.w

move.w

trap
addq.l

#0,-(sp)
#21,-(sp)
#14
#6,sp

dO,sv

153

CHAPTER FOUR

* Find command tail

lea start,aO
sub.l #128,a0
clr dO

move.b (a0),d0
adda.l #l,aO

* Reject null name
tst.w dO
beq exit

* Zero-terminate tail

move.b #0,0(aO,dO)

* Open for read
move.w #0,-(sp)
moved a0,-(sp)
move.w #$3d,-(sp)
trap #1
move.w d0,filehandle
add.l #8,sp
tst.w dO

bmi errout

* Discard rez info

move.l #junkbuff,-(sp)
move.l #4,-(sp)
move.w filehandle,-(sp)
move.w #$3f,-(sp)
trap #1
add.l #12,sp
tst.w dO

bmi errout

* Read palette data
move.l #newpal,-(sp)
move.l #32,-(sp)
move.w filehandle,-(sp)
move.w #$3f,-(sp)
trap #1
add.l #12,sp
tst.w dO

bmi errout

* Use new palette
move.l #newpal,$45a

* Discard cycling info
move.l #junkbuff,-(sp)
move.l #92,-(sp)

154

Utilities

move.w filehandle,-(sp)
move.w #$3f,-(sp)
trap #1
add.l #12,sp
tst.w dO

bmi errout

* Get screen base

move.l $44e,savescr

* Read screen image
move.l savescr,-(sp)
move.l #32000,-(sp)
move.w filehandle,-(sp)
move.w #$3f,-(sp)
trap #1
add.l #12,sp
tst.w dO

bmi errout

* Close file

move.w filehandle,-(sp)
move.w #$3e,-(sp)
trap #1
add.l #4,sp
tst.w dO

bmi errout

* Wait for Return

wait:

move #l,-(sp)
trap #1
add.l #2,sp

* Restore palette
exit:

move.l #savepal,$45a

* Back to user mode

move.l savesp,-(sp)
move.w #$20,-(sp)
trap #1
add.l #6,sp

* Exit to desktop
move.w #0,-(sp)
moveq.l #0,d0
trap #1

155

CHAPTER FOUR

* Error handler

errout:

move.l #errormsg,-(sp)
move.w #9,-(sp)
trap #1
addq.l #6,sp
bra wait

errormsg:
.dc.b 13,10,"A disk error occurred. Press Return...",0
.bss

savepal:
.ds.w 16

savesp:

.ds.l 1

savescr:

.ds.l 1

screen:

.ds.l 1
filehandle:

.ds.w 1

newpal:
.ds.w 16

junkbuff:
.ds.w 46

156

Full-Screen Shell for
ST BASIC

David Lindsley

If you've ever wanted to write an ST BASIC program
that isn't confined to the BASIC output window, you'ii

be giad to see this program. It shows you how to
create full-screen graphics that don't depend on the

usual window borders.

Windows are integral to the ST BASIC programming environ
ment. Whether you're typing, listing, or running a program,
everything occurs within a bordered window. Since ST BASIC
provides no commands for monitoring gadgets such as the win
dow scroll bar, the gadgets serve no real purpose in most pro
grams. And in applications such as games, the ever-present
borders prevent you from using the full area of the screen.

This program creates a full-screen shell for your own ST
BASIC programs. By enclosing a program within this code, you
can override BASIC'S windowing environment and work with
the entire screen surface.

When you run the demonstration program (on the disk), the
screen is filled immediately with a graphic design. At the top of
the screen, where the ST BASIC menu titles normally appear, is
a title bar containing the name of this program. After a short
pause, the screen clears and returns to normal, displaying the ST
BASIC menu titles which were overdrawn while the program ran.

Running the Program
Before you can run "Full-Screen Shell," though, you must load
BASIC into memory. Insert your ST Language Disk into the com
puter; then double-click on the BASIC.PRG icon or filename from
the desktop. When BASIC has finished loading, insert COMPUTEI's
Second Book of Atari ST Disk. Enter LOAD A: \FULSCRN.BAS
(and press Return), followed by RUN (and another Return). Full-
Screen Shell will then display the demo described above.

157

CHAPTER FOUR

Enclosed in a Shell

The line numbering of this program is designed to make it easy
to merge with your own programs. Lines 10-70 check the cur
rent screen resolution and adjust several variables accordingly.
Line 80 calls the subroutine PRGNAME, which draws a title bar
with the title you designate and fills the screen with the specified
pattern.

Lines 100-5000 are reserved for your program. In the dem
onstration included, line 110 simply delays long enough for you
to look at the screen. In a real program, of course, you would
substitute your own code. Just remember that your portion of the
program should use only line numbers 100-5000.

Instead of terminating with END, your program should fall
through to lines 5010-5030. These lines restore the usual ST
BASIC menu titles, clear the output window, and reopen it so
that you can use BASIC normally. Since the shell code draws on
the entire screen, it erases the ST BASIC menu titles. (However,
the menus are still active while the program runs, so that you
can select Break to stop the program, and so on.) Thus, it's nec
essary to redraw the menu titles when the program ends. The
string name$ in line 5010 contains the text for these titles, which
you can change if you wish. The END statement at the end of
line 5030 terminates the program.

Merging
Unless you write your programs with this shell in mind, most
programs will need some modification before you merge them
with the shell. This is necessary in order to preserve the win-
dowless screen. Once you have cleared the screen completely,
you cannot use ordinary BASIC graphics commands such as
PCIRCLE, GOTOXY, LINEF, and CIRCLE. If you do, ST BASIC
suddenly redraws the right and lower bars of the output win
dow, even though these commands have nothing specifically to
do with those window bars.

To avoid such unwanted effects, you must create all graph
ics with VDISYS commands which aren't tied to windows. This
rule also includes text, which must be placed with VDISYS in
stead of PRINT. VDISYS commands are more complicated to use
than most BASIC commands, but they can operate much faster,
giving your program the appearance of something written in ma
chine language. Any graphics or text that you create in ST

158

Utilities

BASIC can also be created with VDISYS commands. In fact,
BASIC itself uses VDI routines to create graphics in the first
place.

The simplest way to use the shell program is to delete exist
ing lines 100-110 and MERGE it with your own program code.
Here are the steps to follow before you attempt the merge: First,
renumber your program if necessary, so that its line numbers fall
in the range 100-5000. Then substitute the name of your pro
gram in the string title$ in line 5090. Delete any CLEARW 2 or
FULLW 2 commands from the beginning of your program and
rename any variables that conflict with the variable names used
in the shell code. Once this is done, you can perform the merge.

Program Notes
Lines 50-70 set several important variables used by subroutines
in the shell. The variables dcx and dcy represent the screen size,
and the variables c and s indicate colors.

The PRGNAME subroutine beginning at line 5050 specifies
the screen coordinates and color according to the current resolu
tion and passes those values to the RECT subroutine. Lines
5100-5120 draw the top menu bar in the color specified by the
variable s.

Lines 5130-5160 call a VDI routine which places text at the
designated screen coordinates. Line 5150 centers the text on the
screen. Line 5160 places the text 8 lines below the top border in
low- and medium-resolution modes or 16 lines down in high-
resolution mode. Lines 5170-5190 POKE the necessary infor
mation into memory prior to the VDISYS call. You can place the
title lower on the screen by changing lines 5100 and 5160. You
may want to include additional VDISYS calls to enlarge the let
tering or create special text effects. Or you can eliminate the title
altogether by deleting lines 5090-5190.

The RECT subroutine calls a VDI routine which fills the

specified screen rectangle with the designated color and pattern.
The MENU subroutine is similar to the PRGNAME routine,

but it's designed to clear the screen back to white, the usual
background color (5300). The LEN function used in line 5150 is
omitted in lines 5330 and 5360 because the number of characters

in the string name$ (including spaces) is now known to be 28. If
you change the length of name$, change the 27 in line 5360 to
match the new length.

159

CHAPTER FIVE

C Programming

Why C?
Sheldon Leemon

1/you're curious about C, this discussion of what it's
like as a programming language will answer some of
your questions. In particular, you'll see why the lan

guage has become so popular on next-generation
microcomputers like the Atari ST series.

If you're coming to the ST from the world of eight-bit Atari com
puters, you may feel that C has emerged from nowhere to be
come the dominant programming language on the ST. After all,
on the older eight-bit machines, BASIC and machine language
have been far and away the most popular programming lan
guages, almost to the exclusion of any other languages. BASIC
has filled the role of the beginner's language, easy to learn and
easy to use because of its interactive nature. Since most home
computers come with BASIC built into ROM (Read Only Mem
ory), many people equate "making the computer do something"
with giving it commands in BASIC.

Assembly or machine language (ML for short), on the other
hand, has become the language of choice for commercial pro
grams on eight-bit micros. Since ML is the only code that the
computer really understands without the need for translation,
ML programs can be smaller and faster than any other kind.
They are, however, much more difficult to write than BASIC
programs.

To many current Atari owners, these two languages have
proven to be sufficient. So where did C come from, and why, all
of a sudden, is it the language that you have to learn in order to
program the ST effectively?

The Balance of Power

Contrary to what the frustrated programmer might think, C is
not a new language that somebody dreamed up to spring on the
long-suffering microcomputer hobbyist who has finally mastered
BASIC and grudgingly come to terms with ML. Rather, its recent
popularity reflects a natural evolution in software that has paral
leled the rapid transformation of low-cost computer hardware
into high-powered gear like the ST.

163

CHAPTER FIVE

Choosing the right programming language for any computer
involves weighing tradeoffs between the level of performance
that the finished program must meet, and the time required to
develop and maintain that program. Programs that are written in
ML execute quickly and take up relatively little memory, but
they are relatively difficult to write and maintain. It's much
easier to program in higher-level languages, but these languages
generally don't offer the same performance as ML, and the pro
grams are generally much larger in size than comparable ML
programs.

On the older eight-bit computers, there isn't much weighing
to do. After all, you can't run a 100K Pascal program on a com
puter that has only 64K of memory. These machines usually
don't have enough memory or mass storage to obtain reasonable
performance from programs written in higher-level languages, so
ML is more or less a necessity.

Minicomputers and mainframes, on the other hand, have so
much power that they can achieve excellent performance from
programs written in higher-level languages like FORTRAN and
Pascal. As a result, the emphasis is on writing a functional pro
gram in a reasonable amount of development time.

The ST computers fit somewhere between these two ex
tremes. They have a much faster microprocessor than do the
older micros, along with large mass-storage capacity and lots of
main memory. Still, they're not quite in the same league as
mainframes.

A Mid-Level Language
That's where C comes in. It represents a good compromise be
tween high-level languages like FORTRAN that are used exten
sively on mainframes and the machine-level programming that is
a must for micros. C supports most of the fundamental features
of high-level languages, but it also supports lower-level functions
like bit manipulation of memory. In addition, it interfaces easily
with ML programs, so time-critical portions of a C program can
be written in ML.

Although C may not offer features like sophisticated han
dling of text strings, it does generate fairly compact code that ex
ecutes rapidly enough to achieve good performance. In fact, most
of GEM—which controls the windowing environment on the
ST—is written not in ML, but in C. (This is another reason that
C is the natural choice for those who wish to make use of GEM's
features.)

164

C Programming

Besides the strictly pragmatic considerations of the size and
performance of C programs, the language itself has many fea
tures that make it well-suited for software development. It's a
modern, structured language, the philosophy of which is based
on the use of small subprograms called functions. Each function
is a self-contained program that performs a particular task. The
use of functions allows the programmer to break down the over
all task into small, manageable pieces. Each piece can be inde
pendently tested and debugged, and then incorporated into
larger functions that perform more complex tasks.

This modularity not only makes it easier to write and main
tain properly working programs, but also helps to eliminate
duplication of effort. For instance, assume you're writing several
programs, each of which requires the user to enter some specific
kind of information, such as an amount expressed in dollars and
cents. You can create one general module that prompts the user
and accepts the input, and then include that same module in
each of your programs. In fact, libraries of such commonly used
modules are available commercially. In C programming, it is
quite common to obtain the skeleton of an application like a tele
communications program or database manager from a commer
cial or public domain source, and then expand and customize the
program to meet your own needs.

Portable Programming
Another aspect of C is the kind of output it generates. C compil
ers create machine language code, just like machine language as
semblers. (In fact, some C compilers generate assembly source
code that is later assembled.) Such programs generally run faster
than those compiled by languages which generate semi-interpreted
code or pseudocode (p-code). Furthermore, compiled C programs
can be executed without requiring any special support programs
or runtime packages, so they're easy to operate and easy to dis
tribute. The programs created by a C compiler can also be fairly
compact, since they include only those parts of the language that
are actually used in the program.

Finally, C offers a fair degree of portability—you can usually
translate a C program to another computer without completely
rewriting it. Although there isn't an official standard version of
C, in practice, most implementations of the language are very
similar.

165

CHAPTER FIVE

Of course, programs that include any kind of graphics or
windowing generally use very hardware-specific display meth
ods, which makes it harder to convert them for use on comput
ers with different types of display hardware. But by isolating
these display routines into a small group of distinct functions, C
programmers need to convert only these functions to enable
their programs to operate on another machine. This makes it
much easier to convert a C program written for the IBM PC to
one for the Atari ST (particularly if it uses the GEM interface)
than it would be to convert a similarly complex program from
IBM BASIC to ST BASIC.

Worth the Wait

Despite these many advantages, there are still several reasons
that newcomers might feel put off or intimidated by C. For one
thing, it's a compiled, rather than an interpreted, language.
Using an interpreted language like BASIC is an interactive expe
rience. The language has a built-in screen editor, and after
you've entered a line of code, you need only type RUN to see
the program execute. Some BASICs (such as eight-bit Atari
BASIC) even provide syntax checking on entry, so you get in
stant feedback if you make a typing mistake. If you run the pro
gram and discover it doesn't function properly, you just list the
lines that are to blame, make some changes, and run the pro
gram again.

Compiled languages such as C are not so easy to use. First,
you must compose the source code using a separate text editor.
Then you use the compiler program to convert the source code
into object code. The compiler may be a single program, or it
may be composed of two or more programs, each of which han
dles a different phase of the compilation process. Finally, you
must use a linker program to combine the object code with por
tions of the C library and convert it into an executable format.

If an error occurs at any stage of this process (due to a typ
ing mistake in the source code, for instance), the whole proce
dure must be repeated until the program compiles and links
successfully. Only then can you actually run the program to de
termine whether or not it does what you want it to do. If it
doesn't, you've got to load up your text editor and try again.
This is a far cry from BASIC, where you type PRINT "HELLO",
press RETURN, and the computer prints HELLO.

Fortunately, many products have appeared which make the

166

C Programming

process of generating C programs much less tedious. Very so
phisticated text editors are now available, and some can even
perform syntax checking so that you don't have to wait until
compiling time to discover syntax errors. Many DOS shell pro
grams are available for the ST which let you run batch programs
to automate the process of compiling and linking into a single
step. Some will return you to your text editor if the compiling
process fails and give you error messages that help you locate
the problem.

There are even some interpreted versions of C (though not
yet for the Atari ST). These allow a programmer to develop pro
grams in an interactive environment that is much more like
BASIC. The difference is that once programs have been written
using the interpreter, they can then be compiled and run with a
speed that BASIC can't touch.

Memory Leverage
Thankfully, the power of the ST computers is a big help in com
piling C programs. Even with compiled (rather than interpreted)
C, the large amount of memory available in the 520ST and
1040ST provides a luxurious environment in which to work.
Using one of many programs available either commercially or in
the public domain, you can partition some of that memory as a
RAM disk, then run your text editor, compiler, and linker from
memory. The amount of time saved by not having to compile
and link from floppy disk can dramatically increase your pro
ductivity. In fact, some compilers work so fast from a RAM disk
that they hardly take longer than interpreters.

The main point to keep in mind is that deep down, a pro
gramming language is a programming language. Though C has
its eccentricities of syntax and style, it still incorporates the basic
concepts of conditional branching (IF-THEN-ELSE), loops (FOR-
NEXT, DO-WHILE), and so on. If you've learned to program in
BASIC, you can learn to program in C. And once you get used to
it, you may really enjoy creating programs that run rings around
eight-bit machine language without the tedium of machine lan
guage programming.

Now that's what I call "Power without the price."

167

Comparing C to
BASIC
Sheldon Leemon

While C has a distinct look, BASIC programmers will
recognize a number of features that it shares with the

more familiar language. And adapting to the pecu
liarities that do exist—in C formatting, for example,

or in its variable and /unction definitions—brings
payoffs in programming efficiency that are well

worth the effort.

Some BASIC programmers are hesitant to try C because of its
image as a difficult language to learn. Though it is true that the
process of writing a C program is substantially different from
writing a program in BASIC, the two languages still have quite a
bit in common. Once you get accustomed to C's distinctive syn
tax and style, it is possible to begin writing C programs in just a
short time.

Perhaps the best way to demonstrate that C isn't so mysteri
ous is to show an example of what a C program looks like. Fol
lowing are listings of two programs, one in C and one in BASIC.
Each produces a list of the prime numbers from 2 to 50. (In case
you've forgotten, a prime number is only evenly divisible by it
self and 1.) The list that is produced looks like this:

2

3

5

7

11

and so on (up to 47).
First comes the version written in C:

/* Sieve.c—Finds the prime numbers from 2 to SIZE */

main()

int num, x, count; /* declare & initialize variables */
#define SIZE 50
char flags[SIZE + l];

168

C Programming

num = 2;

for (x = num; x <= SIZE; x = x+1)
flags[x]=l; /* set all flags */

while (num <SIZE/2){
for (x = 2*num; x <= SIZE; x = x+num)

flags[x] = 0; /* eliminate multiples */
num = num +1;

}
for (x = 2; x <= SIZE; x = x+1)

if (flags[x])
printf("%2d \n",x); /* print the primes */

Now, here is the same program in ST BASIC.

100 REM Sieve.bas—Finds the primes between 2 and size
110'

120 DEFINT a-z 'declare and initialize variables

130 size=50

140 DIM flags(size+l)
150 num=2

160'

170 FOR x=num TO size

180 flags(x)=l 'set all flags
190 NEXT

200'
210 WHILE (num<size/2)
220 FOR x=2*num TO size STEP num

230 flags(x)=0 'eliminate all multiples
240 NEXT x

250 num=num+1

260 WEND

270'

280 FOR x=2 TO size

280 IF flags(x) THEN PRINT USING "##";x 'print the primes
300 NEXT x

As you can see, the two programs are not all that different.
Let's compare them statement by statement.

Flexible Formatting
First of all, you'll notice the C program has no line numbers. A
single statement can take up one line or many lines. The com
piler doesn't get confused because each statement in C ends with
a semicolon (;), and multiple statements grouped together as a

169

CHAPTER FIVE

single block are enclosed in curly braces ({ }). The programmer
decides how to arrange the statements on each line to make the
program neat and readable. It is customary, however, to group
the various parts of a C program together in a way that makes
them visually distinct from one another.

The first statement, which starts with the slash and asterisk
characters (/*), is a remark—identical to the REM statement in
line 100 of the BASIC program. In C, a remark can extend over
many lines until the closing */ characters. It is especially im
portant to include many remarks in a C program, because the
language is compact and each statement can do a lot of work.
Without comments, it can be difficult to remember what a line of
C code actually does. Furthermore, remarks don't affect the size
of the final program in C, since the compiler ignores them. With
a BASIC interpreter, REM statements consume memory.

Next comes the line main(). This marks the start of a func
tion named main. All C programs are made up of functions,
which are small subprograms. Every C program has at least one
function (called main) where program execution begins. The fact
that the name main is followed by parentheses, but no semi
colon, shows that it is a function definition. Some functions use
values (called parameters) that are passed to them by other func
tions, and such functions contain the names of these variables
listed within the parentheses. Since main() is the first function
to execute, the only values it can be passed are those in the list
of parameters that the user types in when starting a TTP (TOS
Takes Parameters) type of program. The example program above
is a TOS program, without parameters, so the parentheses after
main are empty.

After the name of the function comes the curly brace charac
ter, {. Curly braces are plentiful in C programs—they mark the
beginning and end of function definition blocks, and the begin
ning and end of compound statements within a function. As
shown here, most programmers indent the lines to make the
source code more readable—indentations help to visually match
up left braces with their corresponding right braces.

Defining Variables
After the initial brace come three strange-looking statements:

int num, x, count; /* declare & initialize variables */
#define SIZE 50

char flags[SIZE + l];

170

C Programming

The first is roughly equivalent to the DEFINT statement in
line 120 of the BASIC program. It declares that the variables
named num, x, and count will be integers, and reserves space for
these variables. To tell the truth, though, the equivalent BASIC
line was added for instructive purposes rather than out of neces
sity. BASIC isn't a strongly typed language. Most of the time,
you don't have to worry about whether a simple numeric vari
able is stored internally as an integer or a floating-point value
(although most BASICs give you the option of specifying which
should be used, for those times when it's necessary). Unless you
specifically declare a variable type with a DEF statement, BASIC
assumes a default type and reserves storage space for the vari
able on its own.

With C, however, declaration statements are not optional.
You must take responsibility for deciding how much storage
space will be allotted for each variable, and you can even specify
the particular memory location to be used to store a variable.
Each time you want to use a variable in C, you must declare
ahead of time whether it should be stored as a long or short
integer, in single- or double-precision floating-point math, or as
text characters. These declarations are usually made in a block at
the top of the function definition.

The only case in which BASIC really requires you to declare
a variable ahead of time, the way C does, is when a subscripted
array will have more than ten elements. In this respect, the DIM
statement in line 140 of the BASIC program is very similar to the
C declaration of the flags array.

The Preprocessor
The middle statement in the trio of C lines shown above is
somewhat more complicated to explain. Where the BASIC pro
gram assigns the value of 50 to a variable called size, the C pro
gram uses the #define statement to define a macro called SIZE as
the number 50. This is because C has a feature known as the
preprocessor. This allows you to define symbolic names which
are replaced by a larger expression when found in the program
by the compiler.

In these two programs, the terms size and SIZE refer to the
size of the group of numbers in which you are looking for
primes. This makes it easy to change the size of the group; you
need only change the value of the size term.

In BASIC, the size value must be assigned to a variable—

171

CHAPTER FIVE

even though its value stays constant throughout the program—
because BASIC has no other symbolic way to represent a num
ber. But in C, you can use the #define operator to create the
symbol SIZE. Every time the compiler sees the word SIZE, it will
substitute the number 50. This allows us to assign a symbolic
meaning to SIZE, making the program easier to read without
wasting storage space in our program by creating a variable for
this constant value.

This example, however, gives only the smallest clue to the
power of the preprocessor, which can be used for much more so
phisticated types of substitutions.

Building Loops
When you compare the bodies of the programs, you find that
there are only small differences. The first is that the form of the
loop used by each language is somewhat different. The BASIC
format declares a loop variable, the starting value of that vari
able, the terminating value, and an increment value, separated
by the keywords TO and STEP. The increment parameter is op
tional and defaults to 1 if omitted.

In C, the starting condition, termination condition, and the
condition repeated each time through the loop are enclosed in
parentheses and separated by semicolons. Although in this par
ticular program each condition is related to the variable x, it is
interesting to note that in C, unlike BASIC, the three conditions
do not all have to relate to the same variable. You could declare
a loop that begins by setting the value of y to 0, and ends when
z is equal to 50, changing the value of x each time through the
loop. Also, it is possible to leave one or more terms empty; the
expression for(;;) can be used to set up an endless loop.

The second difference is that BASIC uses the NEXT state
ment to mark the end of a FOR loop, while C expects the loop to
consist of either a single statement or a compound statement en
closed in curly braces. This compound statement may be com
posed of any number of lines. The same is true of the if
conditional statement. The compound if statement may stretch
over several lines—unlike the BASIC if statement, which must
take up only one line.

Likewise, where BASIC uses the WEND statement to define
the end of the WHILE loop, C accomplishes the same thing by
enclosing the whole body of its while statement within curly
braces.

172

C Programming

Screen Output
Another difference is the ways in which the two programs print
their results. The C program uses a function called printfO,
which is not part of the language proper. Instead, printf() is part
of the standard library of input/output routines that must be
linked with the program after it is compiled. During the linking
stage, these routines are attached to the object code generated by
the compiler.

Printf() also is an example of a function that takes param
eters. The text and variables upon which a function operates ap
pear within the parentheses that follow the function name. The
printf() function performs roughly the same task as the PRINT
USING command in BASIC. The % and d characters specify that
a decimal number is to be formatted, and the number 2 is used
to specify that the numbers are to be printed with digits before
the decimal place and none after. In BASIC, the PRINT USING
template ## does roughly the same thing. However, the C
printf() function allows for multiple substitutions, while separate
BASIC statements would be required for each formatted column.

This example should make it pretty clear that once you get
past the formal requirements of function names, curly braces,
and variable declarations, C is not as strange as you might have
thought. Of course, you should not take this to mean that C is
just BASIC in disguise. C has a number of powerful features that
distinguish it quite clearly from BASIC. But, thankfully, there are
enough similarities so that beginning programmers can produce
working code right away and can learn to take advantage of C's
special features a little at a time.

C Shortcuts

For most BASIC programmers, C's extra features will be quite
welcome. For example, C has a multitude of powerful math and
logical operators. The statement x + = num; may be less recog
nizable at first than x = x + num, but it requires a lot less typ
ing over the course of a long program. C allows you to use
either form.

As mentioned above, C has a number of features that let
you pack a lot into one line. For example, you can make multiple
assignments using the = operator. The statement

a=b = c = d=0;

173

CHAPTER FIVE

is just fine in C. In most BASICs, it would require four separate
statements.

Assignments can also be made to a value that is the result of
a function, as well as to a constant value, as in this statement:

a=b=c=d=getchart);

Here, getchari) reads the character from the keyboard and
assigns it to four different variables.

You can even make assignments at the same time you make
comparisons. For example, the statement

if ((a=b)<c) DoThis();

first assigns the value of b to a, then compares that value to c,
and calls the function DoThis() if the new value of a is less than
that of c.

Admittedly, the C prime-number program shown earlier was
to some extent written to look as much as possible like the
BASIC program. Here is another version that is a bit more C-
like:

/* Sievel.c—Finds the prime numbers from 2 to SIZE */

#define SIZE 50
main()

{
int num = 2, x, count; /* declare & initialize variables */
char flags[SIZE+l];

for (x = num ;x <= SIZE; x+ +)
flags[x]=l; /* set all flags */

while (num+ + <SIZE/2)
for (x = 2*num; x <= SIZE;x += num)

flags[x]=0; /* eliminate multiples */

for (x = 2; x<= SIZE; x++)
if (flagsfx])

printf("%2d \n",x); /* print the primes */

This one takes several C shortcuts. First, the variable num is
assigned a value in the line in which it is declared. As stated
above, in C you can assign a value to a variable just about any
where. Also, it uses the + = operator as explained above. Fi
nally, in three places it uses the + + increment operator. With
this operator, you can say x+4- instead of x=x+l.

Note also that the + + operator can be used to increment

174

C Programming

one of the variables being compared as part of the condition of
the while statement. The + + following the variable num means
that after the comparison has been made to determine whether
the while loop should continue, the value of the variable should
be increased by 1. If the + + came before the variable name, its
value would be increased before the comparison was made.

Learning C is a big step up from learning BASIC, though
perhaps not as big a step as learning to program in machine lan
guage. But like any big programming job, writing a C program
can be broken down into smaller, more manageable steps. Once
you try C, you may discover that taking full advantage of the
power of your Atari ST is not as difficult as you once thought.

175

Choosing a Compiler
Sheldon Leemon

The best version of C for your time and money
offers a lot more than just a compiler. Consider the
merits and shortcomings of the familiar packages

presented here.

If you think you'd like to try C programming, you'll have to find
the C compiler that suits you best. You have several versions of
C to choose from on the ST.

Unfortunately, the process of comparing compilers is com
plicated by the fact that the compiler itself does not make up a
complete C programming environment. In order to effectively
program in C on the ST, you need not only a C compiler, but
also a text editor, linker, command processor shell, resource file
construction program, and documentation of the GEM (Graphics
Environment Manager) and TOS (Tramiel Operating System)
functions. You might also want an assembler, disassembler,
debugger, program librarian, and make utility. Each of the C
compilers currently being sold contains some, but not all, of
these features. Therefore, to evaluate C compilers, you must con
sider how close each comes to providing everything that's
needed to start programming on the ST.

C compilers for the ST are available from Alcyon, Megamax,
MetaComCo, and GST. Another package, Haba Hippo C, has
been discontinued, though copies are probably still available
from existing stock. (Still another, Mark Williams C, has recently
become available; this package is popular on the IBM PC.)

Among the compilers which have been around awhile, the
two lowest-priced entries, Haba Hippo C and GST C, have some
major drawbacks. Hippo C was the first C compiler available for
the ST other than Atari's own development system (Alcyon C).
Hippo C was lacking in such areas as floating-point math and
GEM support, and had so many other problems that it was ulti
mately withdrawn from the market.

GST C is not nearly as problem-ridden as Hippo C, and in
fact has many positive features. For a very low price it offers not
only the compiler and linker, but also an assembler, text editor,
and menu-driven command shell. It also offers complete GEM

176

C Programming

support (though it doesn't include GEM documentation). The
major problem with GST C is that it's not really a complete im
plementation of the C language. It lacks such major features as
floating-point math, casts, and structures. This is not to say that
you can't develop significant programs with GST C; GST report
edly used it in-house to develop 1ST Word, the word processor
included with every ST. But if you're just learning to program on
the ST, you're confronted with adapting to both a new language
and a complex operating system, and it's extremely difficult to
work around the eccentricities of a nonstandard compiler at the
same time.

Alcyon C: Wheat and Chaff
The first C compiler to appear for the ST was Alcyon C, which is
included in the kit which Atari sells to software developers. The
$300 developer's kit is a package deal, however, so you can't
buy Alcyon C without also paying for everything else in the kit—
mostly documentation. This makes Alcyon C the most expensive
C package and probably the most extensive as well.

Atari's GEM and ST documentation represents both the best
and the worst available. It's the best because it contains the most

GEM information you can get in one place, and it's the worst be
cause precious little of it was written specifically for the ST.

Take, for example, the GEM documentation. Basically it con
sists of poor photocopies of Digital Research's preliminary GEM
manuals for the IBM PC, complete with 8088 machine language
examples that have nothing to do with the 68000-based Atari
ST. Atari didn't add any material on how GEM differs on the ST,
nor did it try to eliminate the large quantity of irrelevant material
that relates only to the PC. It's up to the reader to separate the
wheat from the chaff. So while the documentation starts out as a

stack of about 2000 loose sheets of paper, by the time you get
rid of the IBM GEM installation manual, material on CP/M-68K,
and more information than you'll ever want to know about the
Kermit communications transfer protocol, you're left with a
much smaller pile.

The good stuff consists mainly of the Hitchhiker's Guide to
the BIOS, the Line A Document, a GEMDOS manual, some hard
ware specifications, and miscellaneous loose ends. This material
is very helpful, but is incomplete, not entirely free from errors,
and poorly organized (some of it exists only as disk files that you
must print yourself).

177

CHAPTER FIVE

Probably just as helpful as the printed documentation, or
more so, is the support that Atari provides in the Atari Develop
ers' Forum on the CompuServe Information Service. To reach
this area, log on and type GO ATARIDEV. Atari representatives
are available online to answer programming questions, and they
also provide programming examples and timely updates to the
manuals. Although this service goes a long way toward filling in
the gaps left by the written documentation, it's not free.

The Alcyon C Compiler
Alcyon C consists of a three-pass compiler that generates ma
chine language source code, plus an assembler. After you've run
those four programs, you still have to put your object code
through the linker and Relmod utility to convert it into a form
that can be loaded by GEMDOS (GEM Disk Operating System).
To make running these six programs a little more bearable, Atari
includes a minimal batch utility program that lets you set up text
scripts which describe a sequence of programs to be run with
one command.

Although the batch utility makes compiling and linking
more convenient, it doesn't do much to speed up the process.
Alcyon C produces good results, but having to load and run so
many programs makes it slower for development than any other
C compiler. It's theoretically possible to run this compiler with
just one single-sided drive, but it's not something you'll want to
try if your time is worth more to you than 30 cents an hour. A
hard disk drive—or better still, a very large RAM disk—is the
only way to go with this package.

The compiler itself is solid and professional. It offers several
compile-time options that can be invoked with flags in the com
mand line, including one which specifies a search path for in
clude files. It has good support for floating-point math, and the
library of standard functions is quite adequate.

As usual with this package, however, the compiler docu
mentation is not really specific to the ST version of Alcyon C. In
stead, you get photocopies of the Digital Research CP/M-68K C
documentation, along with Alcyon's generic Motorola develop
ment system manual. It's up to you to figure out what applies to
the system you're working with. Nevertheless, all of the material
is there, somewhere.

178

C Programming

Valuable Extras

The Alcyon Cpackage includes a large collection of auxiliary
software. Digital Research's Resource Construction Set (RCS) is al
most indispensable for creating GEM program resources such as
menus and icons. For creating source code, there is the
MicroEMACS editor, a non-GEM command-driven text editor that
is also available in many public domain versions. The AR68 Pro
gram Librarian helps manage system library files. SID is a sym
bolic assembly-level debugger.

There's also a simple, usable-but-buggy command processor
shell called COMMAND.TOS that operates something like the
MS-DOS interface. (You may find the Michtron DOS Shell pro
gram more complete and reliable.) And to compensate for the
disorganized documentation, the program disks include good
source code for a sample GEM application and desk accessory.

In summary, the Atari developer's kit contains everything
you need in order to write great GEM software, but finding it
can sometimes resemble a high-tech adventure game.

Although Atari doesn't limit the sale of its developer's kit as
some manufacturers do (Atari's definition of a developer is
somebody who is willing to spend $300), the prospective buyer
should exercise discretion. This package is mostly for those who
are seriously dedicated to producing commercial applications. For
those people, the resources in this package—especially Atari's
technical and marketing support—are absolutely essential, and
they far outweigh the problems associated with sketchy and
poorly organized documentation.

Megamax C: Complete and Concise
The Megamax Ccompiler package provides a development sys
tem almost as complete as Atari's, but in a much more attractive
and usable format and at a more affordable price ($200). The
GEM documentation isn't as extensive as the Digital Research
material from Atari, but that's mostly because it doesn't contain
any extraneous information.

Instead, each GEM library call is summarized on its own
page, complete with an example of the syntax, a full explanation
of the function, and its input and output parameters. Brief over
view sections provide a little insight into how to put the calls to
gether. Similar concise explanations are offered for BIOS (Basic
Input/Output System), XBIOS (extended BIOS), and GEMDOS
routines. In addition, there are chapters covering system global

179

CHAPTER FIVE

variables, keyboard codes, and system error codes.
In short, Megamax has taken all of the most useful ST infor

mation and summarized it in a convenient and attractive format,
complete with a table of contents and index. The documentation
for the compiler itself is also neatly laid out. Its most serious
flaw is that there's no list explaining the compiler or linker error
messages, which can make it quite difficult to figure out where
you've gone wrong.

Megamax's previous 68000 compiler was created for the
Macintosh, and, for good or ill, that experience has shaped the
ST version of C. On the positive side, Megamax is obviously
used to dealing with a mouse-driven windowing environment,
and it shows in the way in which Megamax C takes advantage of
the user interface.

For example, while it's convenient to use the GEM desktop
icons to run a single program, it isn't so convenient when you
have to edit, compile, link, and test an application over and over
again. So Megamax provides a shell program from which you
can easily edit, compile, link, and run the program you're writ
ing. It even has a built-in make utility that lets you compile and
link in one step. Moreover, when a compile fails, you end up
back in the text editor with your source code and a list of the
compile errors in separate windows.

The 32K Ceiling
But Megamax's Macintosh background also has some drawbacks.
Macintosh programs use position-independent code, which limits
program code and data segments to a maximum size of 32K.
While Mac programmers are used to this by now, it seems to
have thrown the ST world for a loop. Whenever I mentioned the
Megamax compiler to any of its competitors, they almost always
said the same thing: It's a nice, fast compiler for small applica
tions, but it isn't really useful for serious work because it limits
you to 32K programs.

Of course, if that were true, there wouldn't be any Macin
tosh software. The 32K limit on program segments means only
that any single function must be less than 32K. To create pro
grams larger than 32K, you simply string the 32K sections
together.

Likewise, the 32K data-section limit means you can't declare
an array with more than 32K of elements. You can, however,
work with larger data arrays by using the malloc function to allo-

180

C Programming

cate the memory, and then declaring a pointer to that memory
block. So while these limitations may create slight portability
problems, they don't really limit the usefulness of programs writ
ten with Megamax C.

As a matter of fact, the standalone version of Thunder!—a
spelling checker from Batteries Included that keeps a 50,000-
word dictionary in memory—was written with Megamax C. (The
desk-accessory version was compiled with Alcyon C.) As an
added bonus, the format in which Megamax C compiles its object
code results in smaller and faster programs.

Swift Compilation
The Megamax C compiler itself is a fast and simple one-pass
compiler. True, this simplicity does limit your options somewhat.
For example, since there are no compile-time directives, all
header files must either be in the same folder as the source file,
or in the HEADERS folder within the MEGAMAX folder. The
MEGAMAX folder, in turn, must be on the disk's root directory,
which irritates some hard disk users. Also, Megamax Cdirects
compiler error messages to a disk file without consulting you for
your opinion.

In general, Megamax C is very compatible with Alcyon C
source code. It uses 16-bit integers, which simplify GEM pro
gramming. As many published benchmarks have shown, the ob
ject code produced by Megamax C tends to be smaller and faster
than that produced by Alcyon C—in some cases, significantly so.

A more important distinction is the time and trouble re
quired to compile a program with each package. Unlike the large
and unwieldy collection of programs required for Alcyon C, all of
the necessary Megamax C programs fit neatly on one single-sided
disk with room left over for source code. And the Megamax
compiler works so quickly that it's actually much faster to com
pile and link a program using Megamax C with a floppy drive
than it is to use Alcyon C on a hard disk. If you use Megamax C
with a hard disk or RAM disk, it's almost like working with an
interpreter rather than a compiler.

The auxiliary programs in the Megamax package are out
standing. It is the only C package besides Atari's that comes with
a resource construction set. Resource files are all but essential to

creating GEM applications that use drop-down menus, dialog
boxes, and icons, and it is almost prohibitively tedious to create
them manually. A resource construction set, therefore, is practi
cally a necessity for serious GEM programmers.

181

CHAPTER FIVE

The Megamax C linker is intelligent enough to load only the
modules necessary to resolve external references in your source
code, which reduces the size of executable object files. Also, be
cause it automatically searches the system library, your com
mand line merely has to specify the name of your object module.

Sorry, No Assembler
Along with the linker there's a librarian and a code improver
that performs branch optimization. The text editor is nice, but
probably too Mac-like for most ST users—it won't let you move
the cursor with the cursor keys, and it's limited to 32K files. Of
course, you're free to use any other standard ASCII text editor or
word processor to create your source code.

There's no assembler in the Megamax package, and some
would say that none is necessary since the compiler accepts in
line assembly commands and thus doubles as an assembler. Still,
some people like a compiler that generates assembler source
code so they can optimize sections of the program. This isn't
possible with Megamax C unless you use its disassembler to
break down your program and then reconstruct it as source code.

Finally, the Megamax package contains even more example
programs than Atari's, including the same application and desk
accessory program source.

If you suspect that I favor Megamax C, you're right.
Megamax has provided a complete ST development system for a
reasonable price (as C compilers go). The only other viable C
product I've seen that's cheaper is MetaComCo's Lattice C. While
this is a good, full C compiler with an excellent standard library,
it suffers from some serious problems. First, the int data type is
32 bits long instead of 16, which causes portability problems
with Alcyon C. Second, it doesn't include a resource construction
set, which puts a damper on GEM programming. And third, it
doesn't include any GEM documentation. By the time you finish
buying the extra books you need, your investment will equal the
cost of Megamax C.

But the real clincher is the compiling time. Unless you're
trying to finish War and Peace while your programs compile and
link, you'll find Megamax C's speed to be a lifesaver.

182

The C Programming
Environment

Sheldon Leemon

Learn how to make the C programming environment
work in your favor: You'll save yourself time and

frustration as you make the transition from
programming in BASIC.

For the person who has no prior C programming experience, the
prospect of learning the language on the ST can be quite intimi
dating. Naturally, there's the problem of learning the syntax of
the language. But at the same time, the programmer also must
become familiar with the ins and outs of the various parts of the
ST operating system—the GEM AES, VDI, GEMDOS, BIOS, and
XBIOS. Calls to these collections of routines are necessary to im
plement the friendly icon and menu interface that GEM pro
vides, since this kind of interface goes beyond the scope of the
traditional C input/output scheme.

As difficult as these hurdles appear, the prospective C pro
grammer faces an even more fundamental problem. He or she
must first learn the mechanics of writing a C program, compiling
it, and getting it to run. To someone coming from a BASIC pro
gramming background, this may sound strange. After all, if you
want to write a BASIC program that puts the words "My pro
gram works!" up on the screen, you simply load up BASIC, enter
the program line

10 PRINT "My program works!"

and then type RUN. In fact, you don't even have to enter a pro
gram. You can just type

? "My program works!"

in direct mode, and the words will appear on the screen. The ad
vantage of an interpreted language like BASIC is that it's highly
interactive. The program source code (the text that makes up the
program) stays in memory at all times, there's always a text edi
tor available for changing the source code, and when you want
to see the result of the changes, all you have to do is type RUN.

183

CHAPTER FIVE

Delayed Gratification
C, on the other hand, is a compiled language. It produces stand
alone programs that don't need an interpreter in memory in or
der to run. Such programs run much more quickly than
interpreted BASIC programs, but they generally take longer to
develop.

In C, the program text editor and the means of making the
program executable aren't part of the same cozy program devel
opment environment (as they are in BASIC). Instead, the pro
grammer must create a source code file with a text editor, and
then run a series of programs that create a working program out
of that file. If approached properly, this process can be almost as
quick and easy as programming in BASIC. But if you concentrate
only on learning the rules of C programming and don't spend
the time required to set up a convenient programming environ
ment, you may find that creating the simplest C program can be
quite a chore.

Let's go through the steps required to create a C program
which, like the BASIC program above, just prints the statement
"My program works!" on the screen. The first step is to create a
text file that contains the program source code. To do this, you'll
need to run a text editing program.

Many C compilers include such a program. Atari, for ex
ample, includes Mark Williams's MicroEMACS editor with the
Alcyon C compiler in its development package. The Lattice C
compiler comes with MetaComCo's ED program, and the Mega
max C compiler has a GEM-style editor with windows, drop
down menus, and a mouse-controlled cursor. There are also a
number of public domain text editors, including variations on the
MicroEMACS editor, that may be downloaded from bulletin
boards and information services.

It may also be possible to create source code files with your
favorite word processor. The file that's produced must be straight
ASCII text, with no embedded printer-control characters. And,
unlike most documents produced with a word processor, the file
should include a carriage return at the end of every line. These
requirements are met in 1st Word when the word processor mode
is switched off, but other word processors may require some
maneuvering. With ST Writer, for example, you must print the
text to a disk file.

184

C Programming

Compiling the Source Code
Once you've started your editor from the GEM desktop, you
must type in the text of the program. For this modest example,
all you have to type is

main()

{
puts("My program works! \ n");

}

This program creates a function called main() which con
tains a single statement, the purpose of which is to print a string
of text on the screen. After you've finished typing it in, you must
save the source code on disk. TEST.C will be the name of this
file. (Most C compilers require that the name of source code files
end with the .C extender.)

The next step is to compile the source code into object code.
This process involves running a compiler program (or programs).
The compiler reads the source code file, translates the C com
mands into equivalent machine language instructions, and cre
ates another disk file to store these instructions.

The simplest case is that of a single-pass compiler, like
Megamax C, which requires only one program to convert the
source code to object code. To compile the test program with
Megamax, you run the program MMCC.TTP (for Megamax C
compiler). This is a TOS Takes Parameters type of program,
which means that when you start it from the desktop, a dialog
box appears with a dotted line for entering parameters. In this
case, the parameters are instructions which tell the program
what source code file to compile. With some compilers, these pa
rameters may include optional instructions as to how the source
code should be compiled, what the output file should be named,
and so on.

For this example, enter the name of the source file, TEST.C,
as the sole parameter. This means that you want the compiler
program to use the source file TEST.C as input, and create the
object code file TEST.O as output.

The Missing Link
Assuming that the program compiles successfully, you can go on
to the final stage. (If it doesn't successfully compile, go back to
step 1 with the text editor.) Some beginning C programmers find
the next step a bit puzzling. For, if the compiler has already con
verted the program into machine language, why can't it be run?

185

CHAPTER FIVE

The answer is that the object code file isn't a complete pro
gram. It's missing certain preparatory routines that perform
housekeeping functions—setting up a program stack and certain
pointers, and directing program execution to the function named
main(), which is where every C program starts. The program
may also require the addition of some standard subroutines
which aren't part of the C language proper.

For example, this sample program uses an input/output
function called puts(). This function is not an integral part of the
C language. Like all other I/O functions in C, it is actually im
plemented as a separate program. A number of such programs
are collected into an object code file (or files) known as the stan
dard C library. Whenever a C program refers to an external func
tion like puts(), the compiler can only note its usage in the
object code file, since it doesn't know the machine code instruc
tions needed to perform the function. It's up to a program called
the linker to pull those external programs out of the system li
brary and join them with the object code, along with the startup
code, to create an executable program. For this reason, the job of
the linker is said to be resolving external references.

To link the Megamax object code file, you need to run a pro
gram called MMLINK.TOS. The parameter line to enter in the
dialog box is

TEST.O -O TEST.PRG

which tells the linker to use the TEST.O file for input and to cre
ate the program file TEST.PRG as output. Since the only external
routines needed for this program are located in the SYSLIB file,
which the linker automatically checks, you don't have to include
the name of any other object code files or library files with
which to link TEST.O.

If the link process succeeds, you end up with the program
file TEST.PRG, which can be run from the desktop by double-
clicking its icon. This program prints the message "My program
works!" briefly at the top of the screen before ending. At that
point, you may wish to delete the intermediate file TEST.O.

Multipass Compilers
This may seem a lot of work for such a small program, but the
Megamax compiler is actually the simplest to use. The most
complex, the Alcyon C compiler that comes with Atari's develop
er's kit, requires several additional steps.

186

C Programming

First of all, it is a three-pass compiler, which means that
three separate programs are needed to process the source code.
After having created the original source code file, you must run a
program called CP68.PRG, which is the C preprocessor. Since all
of the Alcyon C programs have the .PRG extender, you must in
stall them as TOS Takes Parameters applications from the desk
top to add a command line. After doing so, you can run CP68
with the command line TEST.C TEST.I.

After you've created the TEST.I file, run the parser program,
C068.PRG, with the command line TEST.I TEST.I TEST.2
TEST.3. This takes the TEST.I file and creates two more interme
diate files, PRINT. 1 and TEST.2. Next you run the code genera
tor, C168.PRG, with the command line TEST.I TEST.2 TESTS.
Unlike Megamax C, the Alcyon C compiler does not turn the C
source code directly into machine language instructions. Instead,
it creates an assembly language source code file—in this case,
TEST.S, which must be run through an assembler to be con
verted into machine code.

So the next step is to run the assembler, AS68.PRG, with
the command line —L —U TEST.S, which creates the object
code file TEST.O.

This brings you to the linking stage. Run the linker, LINK68
.PRG, with the command line [U] TEST.68K=GEMSTART,
TEST.O, GEMLIB. This creates a file called TEST.68K using the
startup code from the file GEMSTART, the program code from
TEST.O, and the C library code from the file GEMLIB. Unlike
Megamax C, which uses only one large library file for all of the C
libraries, Alcyon C breaks them down into files like GEMLIB,
VDIBIND, AESBIND, OSBIND, and LIBF. Which of these you
must include in your link depends on which kinds of functions
(GEM AES, GEM VDI, and so on) you use in your program.

It may seem that once you've performed the link you should
be finished, but there's one more step. The linker provided with
Alcyon C creates a relocatable load file in a format that is incom
patible with the ST. This load file must be modified with a pro
gram called RELMOD.PRG. In this case, run RELMOD with the
command line TEST, which means that it takes the file called
TEST.68K as input and produces a file called TEST.PRG.

It is TEST.PRG that you finally run to print the message
briefly on the screen. Once you've done that, you'll probably
want to clean up all of the intermediate files that you've left
lying around—TEST.I, TEST.I, TEST.2, TEST.S, TEST.O, and
TEST.68K.

187

CHAPTER FIVE

Menu-Driven Shells

As you can see, if you had to run each of these programs from
the desktop and remember the proper command line to enter for
each, you might soon lose your enthusiasm for C altogether. For
tunately, there are programs which allow you to delegate these
boring, repetitive tasks to the computer.

The first type is a menu-driven shell program. Both the
Megamax C and Lattice C compilers include this type of program,
and the shell Menu+ , packaged with the latter, is also available
separately. These programs allow you to associate the various
programs used in the development process with menu items on
the shell window. Then, when you want to run one of the pro
grams, all you have to do is select the menu item.

When you run the compiler from the Megamax shell, a file-
selector window pops up which lets you click on the name of
the source code file to compile. You may also set up default
command lines. The Megamax shell lets you use a simple make
facility, in which the compilation and linking processes are run
according to a script that you save in a file. For example, the
script file

TEST.C

MMLINK TEST.C -O TEST.PRG

gives the shell instructions to compile and link your test program
in just one step. And if there were an error in the compilation
process, the shell would automatically switch back to the editor
program and load both the source file and the error file showing
what the compiler problems were.

Batch-Processing Shells
The Atari development package takes a slightly different ap
proach. It includes a program called BATCH.TTP that emulates
the batch-processing capabilities of operating systems like MS-
DOS. Batch processing means that you can put a batch of com
mand lines in a text file, and the operating system executes them
one after the other automatically. It also includes the concept of
parameter substitution. This means that you can type in
filenames on the command line of the batch program, and these
names may be substituted for parameters in the batch file.

The advantage of parameter substitution is that the same
batch file can be used to perform the same general operation on
different input files. When you want to specify that a name

188

C Programming

should be substituted by one that is entered on the command
line, you place a percent sign followed by a number in the batch
file. '

For example, if you put the command CP68 %1.C %1.I in
the batch file, the %1 parameter is replaced by the first param
eter on the batch file command line. If the batch file is called C
and the input file you want compiled is MYPROG, you use the
command line C MYPROG, and the batch program will read the
line CP68 %1.C %1.I as CP68 MYPROG.C MYPROG.I. If the
command line is changed to C YOURPROG, the batch program
interprets it as CP68 YOURPROG.C YOURPROG.I.

In this way, you can build up generalized command files.
For example, the following CC.BAT file contains all of the steps
needed to compile and link a C program:

CP68 %1.C %1.I
C068 %1.I %1.1 %1.2 o/0i.3
RM %1.I
C168 %1.1 0/0I.2 o/0i.s

RM %1.1
RM %1.2

AS68 -L -U %1.S
RM %1.S
LINK68 [U] %1.68K = GEMSTART,%1,

VDIBIND,OSBIND,AESBIND,LIBF,
GEMLIB

RM %l.o
RELMOD %1
RM %1.68K

If you run the BATCH.TTP program with the command line
CC TEST, it automatically creates a TEST.PRG file from your
TEST.C source file. The RM commands refer to a program that
ReMoves (deletes) the unwanted intermediate files after the com
piler has finished with them.

Command Line Shells

From a batch-processing program, you're just a short step to
using a command line shell. Such a program provides the type
of command line interface found in UNIX or MS-DOS. Instead of
clicking on files to run them, you type their names. Instead of
dragging files to the trash can to delete them, you type in a com
mand like RM or DEL.

Command shells generally include batch file processing, so
if you type a filename that ends in the extender .BAT, the shell

189

CHAPTER FIVE

automatically executes the commands contained in that text file.
For example, if you have commands in a file CC.BAT, you type
CC to execute them. If the batch file uses parameter substitution,
you add the command line to the end of the filename (for ex
ample, CC FILE1 FILE2).

There are many such command shells available, both com
mercially and in the public domain. In fact, the CC.BAT file
shown above would work well with ST-Shell (see Chapter 4)
since it contains its own version of the RM command.

Optimizing for Speed
Another important part of setting up a C programming environ
ment is organizing your work disks. At the very least, you
should try to set up your work disks so that all the programs
you need are on one floppy disk. This avoids time-consuming
disk swaps. But for real efficiency, put all of the necessary pro
grams on a hard disk or a RAM disk.

A hard disk offers a lot of speed and convenience, but it also
requires the outlay of a fair amount of cash, something not every
one has. But with the ST's large amount of memory, everyone
should be able to use a RAM disk. RAM disk programs (avail
able both commercially and in the public domain) make the
computer think that a section of its random access memory is a
disk drive. Since a RAM disk isn't subject to the mechanical limi
tations of a real disk drive, it's very fast—as fast as, or faster
than, the best hard disks.

Even with 512K of RAM, you should have enough memory
for a fair-sized RAM disk. But with a one-megabyte 1040ST or
an expanded 520ST, you should have enough room to put all of
your files in RAM. This can make a huge difference when you're
compiling and linking programs.

Keep in mind, though, that a RAM disk disappears when
you pull the plug. Try to set up your batch file to write a copy of
your finished program, as well as any altered source files, to
floppy disk just in case.

190

C Programming

As you've seen, compiling a C program can be a laborious,
time-consuming process that involves running many programs
and entering many command lines by hand. Or, it can be a mat
ter of typing a single command that sets a series of events in
motion at lightning speed. It's all a matter of how you set up
your programming environment. So don't be in such a hurry to
start writing code that you doom yourself to needless drudgery.
Take the time needed to arrange things so that each compile
takes the least time and the least effort possible. Each second
you knock off the compiling process through careful planning
will be saved hundreds of times over as you program in the
coming months.

191

Appendix

How to Use the Disk

To use the disk, simply insert it in a drive and click on the ap
propriate file-drawer icon to display the directory window. If you
wish, you may boot up your ST with this disk by inserting it in
drive A and switching on the computer, but normally it contains
no active desk accessories.

There are two ways to access programs and files on the disk.
You can simply run or examine the files from the GEM desktop
as usual. Or you can use the custom disk menu program on the
disk that contains descriptions of each file as well as special in
structions. To run the menu program, double-click on the file
named DISKMENU.PRG. It works in all screen modes, color or
monochrome.

DISKMENU.PRG displays a directory of files on the disk,
one screen at a time. Click on the lower buttons labeled Prev or
Next to display the previous or next screen.

At the top of the disk menu are three buttons labeled De
scription, QUIT, and Run program.

The Description button calls up a screen which describes the
program or file. At the bottom of this screen are the filename
and two buttons labeled MENU and RUN. Clicking on the
MENU button returns you to the disk menu. Clicking on the
RUN button loads and runs the program. However, if this par
ticular file is not an executable program (for example, a source
code or data file), the RUN button is dimmed and disabled.

You can also run a program directly from the disk menu by
clicking on the Run program button at the upper right of the
screen. However, if this particular file is not an executable pro
gram, you'll be alerted to this fact.

Note that several files on the disk require special instruc
tions or an explanation; please refer to the corresponding article
in the book before attempting to run a program or access a file.

Clicking on the QUIT button on the disk menu returns you
to the GEM desktop.

There are four files on the disk which are required for
the disk menu program: DISKMENU.PRG, DISKMENU.RSC,
MONOMENU.RSC, and CONTENTS.MAR. These files do not
appear on the disk menu itself. Do not delete them if you intend

195

APPENDIX

to use the disk menu. If you plan to use the disk menu, be sure
these files are copied when you back up the disk.

Our disk is not copy-protected. You are encouraged to make
a backup of the disk as soon as possible. However, the contents
of the disk are copyrighted and may not be used by anyone
other than the owner of COMPUTEI's Second Book ofAtari ST.
Since the writers and programmers whose work appears on this
disk are paid, in part, according to the volume of sales, we ask
that you respect the copyright.

196

Index

= operator 173-74
/* (characters). See slash and asterisk
Alcyon C 151, 177-79, 181
application, installing 147
ASCII 69

assembly language 163
AS68 151

"AstroPanic!" annotated listing 17-33
Atari Corporation's bulletin board

system 57
attributes, file 77-78
BASIC 163

batch file 121

batch processing 188
batch-processing shells 188-89
BIOS 179

boot disk 63

braces 170

cold start 60, 128
command line shells 189-90

compiled languages 166, 184
compiler 176-82
COMPUTEl's SecondBook of Atari ST

Disk, using. See disk, how to use
Control Panel desk accessory 61,

142-43, 148
DEGAS 34, 125
desk accessory 59, 63, 127, 147-49
"Desktop Clock," installing 60
disk drive 145-46

disk, how to use 195-96
DOS Shell 179

errors, exception 103-5
exception 102-5
exception processing 102
exclusive OR (XOR) 15
folder 63

function 165, 170
function definition 170

GEM (Graphics Environment Manager)
47, 59, 75
desktop directory, how files are
arranged 143-44
disk operating system (GEMDOS) 178

Haba Hippo C 176
hexadecimal numbering system 40
icons 146-47

indentations 170

Install Printer accessory 142
interpreted language 166
interrupt 103
Lattice C 182

198

library 186
line-continuation character 122
line numbers 169
linker 186

loops 172
machine language 163-64
main() 170
Mark Williams C 176
Megamax C 179-82
memory buffers 14
memory form definition block (MFDB)

14

menu-driven shells 188

musical instrument digital interface
(MIDI) 91

NEOchrome 34, 125
"NEOview" commented C source code

152-53

"NEOview" machine language source
code 153-56

parameter 81, 170
parsing 64
pathname 76, 81
preprocessor 171-72
prime number 168
"Prime.BAS" 169

"Prime.TOS" 168-69

pseudocode 165
RAM disk 190

remark 170

resource construction set (RCS) 179
resource file 47

ROM 163

root directory 63
RS-232 port 141-42
screen output 173
screen resolution 144

semicolon 169, 172
slash and asterisk 170

source code 183

source code, compiling 185
sprites 14-17
structured language 165
ST-Shell 80

batch files 121-22

Command Set (table) 115
command syntax 116
disk commands 116-18

miscellaneous commands 120-21

passing parameters 122-23
preparing 111-12
screen 113-14

screen commands 118-20

text editor 166-67, 184 Vectors, Preassigned (table) 104
TOS operating system 63, 76, 80, 111, Vectors Used by the ST (table) 104

151 virtual device interface (VDI) 14
TOS Takes Parameters (TTP) 76 vrocpyfm 14
Tramiel Operating System (TOS) 76 warm start 60, 128
trash can 145-46 window 144-45, 157
TTP 76, 150, 170 word-wrapping 64
variables, defining 170-71 XBIOS 179
vector 103 "XDIR" 75-78

199

COMPUTE! Books
Ask your retailer for these COMPUTE! Books or order directly from
COMPUTEI.

Call toll free (in US) 800-346-6767 (in NY 212-887-8525) or write
COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

Quantity Title Price' Total
Machine Language for Beginners (11-6) $16.95
The Second Book of Machine Language (53-1) $16.95
COMPUTEI's Guide to Adventure Games, Revised (67-1) $14.95
Computing Together: A Parents & Teachers Guide
to Computing with Young Children (51-5) $12.95
COMPUTEI's Personal Telecomputing (47-7) $12.95
BASIC Programs for Small Computers (38-8) $12.95
Programmer's Reference Guide to the Color Computer (19-1) $12.95
Home Energy Applications (10-8) $14.95
The Home Computer Wars: An Insider's Account of
Commodore and Jack Tramiel

Hardback(75-2) $16.95
Paperback (78-7) $ 9.95

The Book of BASIC (61-2) $12.95
The Greatest Games: The 93 Best Computer
Games of All Time (95-7) $ 9.95
Investment Management with YourPersonal Computer (005) $14.95
40 Great Flight Simulator Adventures (022) $10.95
40 More Great Flight Simulator Adventures (043-2) $12.95
100 Programs for Business and Professional Use
(for IBM PC and Apple Computers) (017-3) $24.95
From BASIC to C (026) $16.95
The Turbo Pascal Handbook (037) $14.95
Electronic Computer Projects (052-1) $10.95
Flying on Instruments with Flight Simulator

perfectbound (091 -2) $ 9.95
wire bound (103-X) $12.95

Jet Fighter School
perfect bound(092-0) $ 9.95
wire bound (104-8) $12.95

The Complete Desktop Publisher(065-3) $21.95
I Didn't Know You Could do Thatwith a Computer! (066-1) $14.95
Flight Simulator Adventures: For the Macintosh. Amiga,
and Atari ST (100-5) $12.95

• Add $2.00 per book for shipping and handling. Outside US add $5.00air mailor $2.00surface mail.

NC residents add 5% sales tax.
NY residents add 8.25% sales tax
Shipping & handling: $2.00/book

Total payment

All orders must be prepaid (check, charge, or money order).
All payments must be in US funds,
• Payment enclosed.
Charge • Visa a MasterCard • American Express

Acct. No Exp. Date .

Name
(Required)

Address

City _ State Zip

'Allow 4-5 weeks for delivery. Prices and availability subject to change. Current catalogavailable upon request.

	Front Cover
	Title Page
	Contents
	Foreword
	1: Games
	Laser Chess
	Picture Puzzler
	Spanish Castles
	ST-GO

	2: Applications
	ST-Graph
	Desktop Clock
	Desktop Notepad

	3: Disk Utilities
	File Hider
	File Lister
	Directory Dump
	File Finder

	4: Utilities
	Encryptor
	Crash Analyzer
	Word Count
	ST-Shell
	Snapshot NEO/DEGAS
	Extended Formatter
	Customizing the GEM Desktop
	NEOview
	Full-Screen Shell for ST BASIC

	5: C Programming
	Why C?
	Comparing C to BASIC
	Choosing a Compiler
	The C Programming Environment

	Appendix
	How to Use the Disk

	Index
	Advert
	Back Cover

