

COMPUTERS

FIRST BOOK OF THE

ATARI
ST

COMPUTE! PublicationsJnc.
Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

The following programs were originally published in COMPUTE! magazine, copyright
1986, COMPUTE! Publications, Inc.

"Doodler" (February); "Switchbox" (March); "Adding System Power to ST BASIC"
(Part 1, April; Part 2, May); "Hickory, Dickory, Dock" (May); "Custom Title Bars for
ST BASIC" (June); "ST Hints and Tips" (June); "ST System Software, Inside Out"
(June); "Odd Facets of GEM" (July); "GEMQuirks" (August); "MODified Shapes for
Atari ST" (August); "Softball Statistics" (August); "3-D Tic-Tac-Toe" (September);
"Home Financial Calculator" (September); "Reversi" (October).

Copyright 1986,COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-020-3

The authorsand publisher have madeeveryeffort in the preparation of this book to insure the ac
curacy of the programs and information. However, the information and programs in thisbookare
sold withoutwarranty, either express or implied. Neither the authorsnor COMPUTE! Publica
tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, inci
dentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the authors and are not necessarily those
of COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is part of ABC ConsumerMagazines, Inc., one of the ABC Publishing
Companies, and is not associated with any manufacturer of personal computers. Atari,
Atari 520ST, Atari 1040ST, NEOchrome, ST, and TOS are trademarks or registered
trademarks of Atari Corporation. GEM is a trademark of Digital Research, Inc. Per
sonal Pascal is a trademark of Optimized Systems Software. Turbo Pascal is a trade
mark of Borland International, Inc.

LI

_

_

Contents

Foreword v

1. Getting Started 1
Introduction to the ST

Tom R. Halfhill 3
ST System Software, Inside Out

Bill Wilkinson 26
Odd Facets of GEM

Bill Wilkinson 29
GEM Quirks

Bill Wilkinson 32

2. Games 35
Switchbox

Todd Heimarck / Version by Kevin Mykytyn 37
Reversi

Kevin Mykytyn / Article by Philip I. Nelson 47
3-D Tic-Tac-Toe

David Bohlke 54

3. Applications and Education 59
Hickory, Dickory, Dock

Barbara H. Schulak

Version by Kevin Mykytyn and David Florance 61
Multiple-Choice Test Generator

C. Regena 66
Memory Trainer

C. Regena 76
Softball Statistics

Roger Felton / Version by George Miller 80
Home Financial Calculator

Patrick Parrish / Version by George Miller 96

4. BASIC Programming 117
ST Hints and Tips

George Miller 119
ST BASIC Sorting Algorithms

C. Regena 126
Custom Title Bars for ST BASIC

George Miller 133

Adding System Power to ST BASIC
Kevin Mykytyn 135

File Handling in ST BASIC
Tony Roberts 150

Using GEMSYS and VDISYS in ST BASIC
Philip I. Nelson 167

5. Sound and Graphics 185
ST Graphics

Brian Flynn 187
MODified Shapes for Atari ST

Robert G. Geiger 203
NEOchrome: The Rainbow Machine

Advanced Color Features of NEOchrome
Lee Noel, Jr., and Selby Bateman 213

Doodler

D. W. Neuendorf 226

Making Music on the ST
David Florance 232

6. C Programming 247
Introduction to C Programming

Sheldon Leemon 249

Moving Objects in C
Charles Brannon 261

7. Pascal Programming 279
A First Look at Pascal Programming

Tony Roberts 281
Event Management and Windows in Pascal

Program by Mark Rose / Text by Bill Wilkinson 290

Appendices
A. A Beginner's Guide to Typing In Programs 323
B. Using the First Book ofAtari ST Disk 325

Index 327
Disk Coupon 329

Foreword

COMPUTEI's First Book of Atari ST is an instant resource of
easy-to-use programs and information that will make your ST
even more valuable. There's much in these 27 articles for every
age group and every interest, and many of these articles are
published here for the first time. Children will enjoy learning
to tell time with "Hickory, Dickory, Dock." Game players will
match wits with "Reversi" and "3-D Tic-Tac-Toe." If you're a
softball fan, you can track your favorite team's progress with
"Softball Statistics." Or, if your memory needs improvement,
"Memory Trainer" will give you a good workout.

For programmers, there are utilities, demonstrations, hints
and tips, plus exciting application programs that will enhance
the value of your ST as well as expand your own knowledge
and techniques. Just for starters, you'll learn more about the
Graphics Environment Manager (GEM) and ST system soft
ware; you'll find seven different sorting subroutines that can
be incorporated into your own programs; and you'll gain in
sight into ST BASIC file handling.

If you want to know more about sound and graphics,
COMPUTEI's First Book of Atari ST provides you with a music-
generating program, a drawing program written in Logo, and a
detailed guide to creating animated figures with NEOchrome.

When ST BASIC won't accomplish what you're after, Pas
cal or C may be the answer. Both of these languages are faster
than BASIC and give you full access to the power of GEM.
You'll get a taste of how they work and how they're best used.

Each program in COMPUTEI's First Book of Atari ST has
been carefully tested and is ready to type in. All you need are
this book and your ST, and you'll be off and running.

All the programs in COMPUTEI's First Book of Atari ST are
ready to type in and run. If you prefer not to type in the
programs, however, you can purchase a disk that includes
all the programs in the book. Call toll-free 1-800-346-6767;
in New York call 1-212-887-8525. Or use the coupon
found in the back of this book.

'-._'

CHAPTER ONE

Getting
Started

! I

_

_

_

Introduction
to the ST

Tom R. Halfhill

"We aren't selling home computers. We aren't sell
ing business computers. We're selling persona]

computers. People can use them for whatever they
want." With those words, Jack Tramiei announced
the ST series in January 1985 and launched a new
beginning for the Atari Corporation. Here's an in

troduction to the 520ST and 1(MOST—the most

powerful Ataris ever.

The old stereotypes about home computers are being chal
lenged. Now there's a new generation of machines that can
match the speed and power of the most popular business-
oriented personal computers installed in executive offices.
They combine such features as massive memory, high-speed
processing, fast floppy disk drives, hard disk interfaces, stun
ning graphics, and sophisticated sound into a single, reason
ably priced package. They are true general-purpose personal
computers—powerful enough to run state-of-the-art business
software, yet versatile enough to excel at running home enter
tainment and educational programs.

The Atari 520ST was the first of this new breed. An
nounced at the Winter Consumer Electronics Show in January
1985, it quickly attracted a loyal following that is growing by
the thousands each month. In January 1986, it was followed
by the announcement of the 1040ST, an even more powerful
computer. Here's a rundown of their features:

• The 520ST has 512K of random access memory (RAM),
half a megabyte. The 1040ST has 1024K of RAM, a full
megabyte. The 520ST can be expanded to a megabyte with
the addition of a memory board available from several inde
pendent manufacturers.

• Both computers are built around the Motorola 68000
microprocessor. This 16/32-bit chip is clocked at 8 megahertz
and can directly address up to 16 megabytes of memory with-

CHAPTER ONE

out bank-switching. It's the same central processing unit found
in the Apple Macintosh and Commodore Amiga, except the
clock speed is slightly higher.

• High-speed microfloppy disk drives. Although the
floppy interface is serial, not parallel, it transfers data at a
megabit per second. Two different drives are available from
Atari: a single-sided drive that stores about 360K on a 3V2-inch
disk and a double-sided drive that stores about 720K per disk.
The 520ST can be hooked up to one or more external drives.
The 1040ST comes with a built-in double-sided drive and can
be hooked up to additional external drives.

• One of the fastest hard disk interfaces in personal com
puting. This built-in interface transfers data at an incredible
1.33 megabytes per second, faster than some RAM disks on
other computers. Hard disks with capacities of 10 or 20 mega
bytes and more are available from Atari and other manufactur
ers. Prices for 20-megabyte drives are typically around $700.

• Built-in Centronics-standard parallel port and RS-232 se
rial port for printers, modems, and other peripherals. These
ports are compatible with IBM cables for printers and modems.

• Built-in Musical Instrument Digital Interface (MIDI) for
attaching keyboard synthesizers, sequencers, drum boxes, and
other electronic musical devices. Both MIDI IN and MIDI OUT
ports are standard. Because the MIDI ports transfer data at a
very high speed (31.25 kilobaud), they've also been considered
for such future applications as inexpensive local area networks
(LANs).

• A slot for cartridges containing up to 128K of read only
memory (ROM).

• Intelligent audio/video port that recognizes whether an
RGB (red-green-blue) color or monochrome monitor is
plugged into the computer, allowing the operating system to
adjust itself accordingly. This port has pins for audio
input/output, and 520STs made after early 1986 also have
composite video output.

• RF (radio frequency) output for hooking up to ordinary
TV sets. This feature is present only on 520STs made after
early 1986.

• Analog RGB color monitor (optional). One of the lowest-
priced analog RGB monitors in the industry, it's capable of
sharply resolving the ST's advanced graphics. Two screen

Getting Started

modes are available in color: 320 X 200 pixels with 16 simul-
— taneous colors, or 640 X 200 with 4 simultaneous colors. In

either mode, the color palette can be chosen from a selection
of 512 possible colors.

— • High-resolution monochrome monitor (optional). In mono
chrome mode, the ST offers the sharpest, highest-resolution
screen available as a standard feature on any personal com-

— puter. With a resolution of 640 X 400 pixels and a screen re
fresh rate of 70 hertz—about 16 percent faster than normal
monitors and TVs—this mode is unusually sharp and steady.

• Three-channel General Instruments sound chip. Enve
lope registers allow the chip to simulate various types of musi
cal instruments and sound effects.

• A ROM-based operating system called TOS (Tramiel
Operating System), which combines Digital Research's CP/M-
68K and GEM (Graphics Environment Manager). CP/M-68K is
the 68000 version of the popular Z80-based operating system
CP/M (Control Program for Microcomputers), similar to MS-
DOS on the IBM PC. CP/M-68K is vastly expanded, however,
with provisions to support up to 16 disk drives with 512
megabytes per drive and 32 megabytes per file. To make this
operating system easier to use, it is linked on the ST with
GEM, a graphics-oriented user interface with icons, windows,
and drop-down menus. The GEM desktop is manipulated with
a mouse controller that comes with the ST. The two-button
mouse plugs into one of the two controller ports built into the
computer.

• Digital Research Logo and ST BASIC programming lan
guages are included on a language disk supplied with the
520ST and 1040ST. Also included on disk are NEOchrome, a
graphics-design program, and 1ST Word, a word processor.

• Both STs have an 84-key keyboard with cursor keypad,
numeric keypad, and ten special function keys.

• The 1040ST has built-in power supplies for the com
puter and internal disk drive. The 520ST uses external power-
supply transformers.

The GEM Desktop
If you've never used a computer with a graphics-oriented user
interface, working with an Atari ST for the first time will be
an unfamiliar experience. Graphics-oriented interfaces were

CHAPTER ONE

pioneered by Xerox in the 1960s on experimental computers,
but were popularized by the introduction of the Macintosh in
1984. Since then, they've spread to almost all personal com
puters and seem to be the wave of the future. You can find
GEM on the Atari ST and IBM PC, the Intuition Workbench
on the Commodore Amiga, Desqview, Topviezv, and Microsoft
Windows on the PC and AT, and even GEOS on the Commo
dore 64.

Most of these user interfaces employ pull-down or drop
down menus, icons, multiple screen windows, and mouse con
trollers. Their goal is not only to reduce the number of cryptic
commands that must be memorized and entered by users, but
also to encourage or enforce uniformity among the wide vari
ety of application programs. The idea is that once you learn
how to use one application, you can adapt quickly to others,
because they all use similar menus and screen displays for
common tasks (such as loading and saving files).

The central feature of this style of "working environment"
is a screen called the desktop. On the ST with GEM, this is the
first screen you see after switching on the computer. Earlier

Figure 1. The GEM Desktop

Desk File View Options

-A
V

_

_

Getting Started

computers landed you either in BASIC or some type of disk
operating system (DOS). But the ST doesn't wake up with a
READY prompt, command line, or DOS menu. Instead, the
first thing you see is the GEM desktop.

Icons along the edges of the desktop screen represent file
drawers and a trash can (Figure 1). The drawers represent disk
drives—floppy disks, hard disks, or RAM disks, depending on
your system configuration. Menu titles appear across the top
of the screen. Floating above the desktop is an arrow cursor
that you can move by rolling the mouse or by pressing certain
keys. It represents an extension of your hand on the screen.

To view a menu, you move the pointer to the desired ti
tle. Instantly, the menu drops down over the screen. (GEM's
drop-down menus are summoned in a slightly different way
than are the pull-down menus more often used by other sys
tems: You don't have to click and hold the mouse button.) As
you move the pointer up and down the menu, it highlights
various options. Some options may be invalid for a particular
operation; they appear in dim print (ghosted) and cannot be
highlighted. To select an option, you simply highlight it and
click the left button on the mouse (Figure 2).

Figure 2. Selecting an Option

Desk File Uiew IJiWliU ____
Bisk kin,

[1 Application

Set Preferences,,,

Save Desktop
Print Screen

CHAPTER ONE

To call a disk directory, you move the pointer atop the
appropriate file drawer icon and perform what's called a
double-click—you press the mouse button twice in rapid suc
cession. In seconds, a window appears on the desktop. (If the
file drawer icon changes color, but no window opens, you
didn't double-click fast enough; try again.) Various types of
icons inside the window denote executable program files, data
files, and subdirectories on the disk (Figure 3). We'll explain
what these icons mean in a moment.

Figure 3. Icons

Desk File View Options

A:\ Ts
17802B bytes used in 7 itens.

• • • • •
DEG-P.S EfiSIC.PRG ERSIC.RSC CONTROL.RCC MOISK.PRG PRHIC.PRG TERM.TOS

1

If you prefer a more conventional disk directory, you can
drop down the View menu and select Show As Text. The file
icons change into a list of filenames, which includes such
information as file lengths in bytes and the dates on which the
files were last updated. Other options on the View menu let
you sort the directory by filename (alphabetically), file type,
size, or date.

If you're working with a two-drive system, you can call
the directory for drive B by double-clicking on its icon. When
this window appears, it may overlap the window for drive A.

8

u Getting Started

But the drive A window isn't erased; by pointing to it and
clicking the left mouse button once, you can move it atop the
drive B window. A similar click on the drive B window brings
it to the fore.

You can flip back and forth between several windows in
this manner, much like shuffling papers on a real desktop.
Options selected from menus, such as View As Text, always
affect the active window—the window currently on top of the
pile.

Three Kinds of Icons
All other functions of the GEM desktop work in similar ways:
You point to a menu option or icon, then click the left mouse
button once or twice.

As mentioned above, three types of icons can appear in
side the windows of opened file drawers. An executable pro
gram file is any kind of application program that can be loaded
and run—a word processor, a database manager, a terminal
program, a game, a programming language interpreter or com
piler, or whatever. Icons for executable program files are small
squares with a dark band across the top, representing a screen
and menu title bar.

For instance, to run a program, you point to its icon or
filename in the disk directory window and double-click. The
desktop disappears and the program runs. When you exit the
program, the desktop reappears.

The second type of icon which can appear in a disk direc
tory window represents a nonexecutable file. The icon resem
bles a sheaf of papers with one corner folded back. This is a
file that contains some kind of information, but it cannot be
run as a program. For example, it may be a data file created
with a spreadsheet program. To use the file, you must first
load and run the spreadsheet, and then load the data file from
within the program. (There is one exception to this rule, which
we'll cover later.)

If you double-click on a nonexecutable file, something
known as an alert box appears. Alert boxes usually pop open
when you've attempted an action that is either not permitted
or is irrevocable. In this case, you've attempted to run a
nonexecutable file, so the alert box informs you and presents
three options: Show, Print, and Cancel (Figure 4).

CHAPTER ONE

Figure 4. Alert Box

Desk File View Options

m

0:\

38106 bytes used in 3 itens,

(i^FOOOO.FI; IN-iFOOOI.PIB
I

: ^;;;;;tw!

ik You can only print or display
™ tbis docunent, Please click

on appropriate button to
do so,

Show | | Print | | Cancel

If you select the Show option, the computer will try to
display the contents of the nonexecutable file on the screen. If
the file is a text file created with a word processor, for in
stance, you may be able to browse through the document in
this manner without loading and running the word processor.
The computer displays a screenful of text, and you can press
the Return key to scroll through the file a line at a time. Or
press the space bar to scroll through a whole screen at a time.
Pressing the Control and C keys together aborts the Show op
tion and returns you to the GEM desktop.

If you select the Print option, the computer tries to dump
the file to your printer.

Often, however, Show or Print will result in nothing but a
screenful or pageful of seemingly random characters. Data files
which are not pure text files are usually not meaningful when
viewed outside the context of the application programs which
created them. So if you don't want to Show or Print the
nonexecutable file, you can select the Cancel option to make
the alert box disappear and return you to the GEM desktop.

10

Getting Started

To select any of these options, point to the corresponding
small rectangle within the alert box and click the left mouse

— button. These small rectangles—which in this case are labeled
Show, Print, and Cancel—are known as buttons. (Don't con
fuse onscreen buttons with the physical buttons on the mouse

— controller.) As you'll soon discover, buttons within alert boxes
are used for many purposes on the ST.

Subdirectories
The third type of icon that can appear within a disk directory
window is called a folder. It looks just like a manila file folder,
or it's denoted by a diamond character if your directories are
displayed in text format. Either way, a folder is a subdirectory
on the disk. (The terms folder and subdirectory are interchange
able on the ST.)

If you've ever used MS-DOS on an IBM PC or compat
ible, you're probably familiar with subdirectories. In effect, a
subdirectory is a disk directory within a disk directory. To
day's large-capacity floppy disks—not to mention hard
disks—would be unmanageable if it weren't for subdirectories.

Imagine, for example, that a secretary using a word pro
cessor is storing business letters on a floppy. Each letter might
be only about IK long. That means more than 300 files would
fit on a single-sided ST disk, and more than 700 on a double-
sided disk. Sifting through that many entries in a disk direc
tory to locate a certain file would be laborious, to say the least.

Subdirectories help solve that problem by partitioning the
disk into multiple directories. For example, the secretary could
create a subdirectory named PURCHASE.LET for letters re
lated to purchasing. Another subdirectory could be called
CONTRACT.LET for letters related to contracts, and so on.
Each directory is almost like a separate disk. You can load and
save files within directories, delete files in directories, and
copy files from one directory to another. You can have two
files with the same filename stored in two different directo
ries—something which normally isn't allowed on a disk.

It's even possible to create subdirectories within subdirec
tories. For instance, the CONTRACT.LET directory could con
tain a subdirectory of its own called SMITH.LET. This might
contain copies of all letters related to contracts written to Mr.
Smith. And SMITH.LET could contain yet another subdirec
tory called JULYLET, holding copies of letters written to Mr.

11

lJ

CHAPTER ONE

Smith in July. The intelligent use of subdirectories helps keep
your disks organized and your GEM desktop uncluttered.

Opening and Creating Folders
Viewing the contents of a subdirectory is much like opening a
disk directory window. You point to the folder icon or sub
directory name and double-click the left mouse button. In a
few seconds, the folder opens and replaces the disk window
with another window that shows what's in the folder.

To create a folder on a disk, first click on the disk's file
drawer icon or directory window to indicate which disk
should receive the new folder. Then drop down the File menu
and select the New Folder option. An elaborate type of alert
box known as a dialog box opens up. The dialog box contains a
dotted line and a cursor so you can type in the name of the
new folder. (Folder names must conform to the rules for file
names: up to eight characters plus an optional three-character
extender.) Press Return or click on the OK button to create the
folder. Click on the Cancel button if you want to abort the
operation.

Incidentally, when working with folders, you'll probably
encounter references to such terms as root directory and direc
tory pathname. The root directory is simply the main directory
of a disk, the one which appears when you first open the file
drawer. Subdirectories are considered to be branches from the
root directory.

A directory pathname is simply a way of specifying the
disk and subdirectory (or subdirectories) in which a certain file
can be found. For instance, if a file called TEST.DOC is on the
root directory of disk drive A, the full pathname is merely
ATEST.DOC. If a file is in a subdirectory, the backslash char
acter (\)—found on the keyboard next to the Return key—in
dicates a subdirectory name. So the pathname A: \ CONTRACT.
LET \TEST.DOC means that the file TEST.DOC is within the
CONTRACT.LET folder on disk drive A. It's important to
know how to specify a directory pathname when loading and
saving files with application programs.

More Mouse Dexterity
In addition to clicking and double-clicking, another mouse ma
neuver to master is known as dragging. This technique makes
it possible to move icons on the GEM desktop.
12

Getting Started

One application for dragging is to rearrange the GEM
desktop to suit your taste. For instance, normally the desktop
appears with the file drawers for disk drives A and Bin the
upper left corner of the screen, and the trash can icon in the
lower left corner. Suppose you want to move the trash can to
the lower right corner. Simply point the cursor at the icon;
then click and hold the left mouse button. A dotted outline of
the icon should appear. Now, while still holding down the
mouse button, you can move the dotted outline anywhere on
the desktop. If you move it to the lower right corner of the
screen and release the button, the trash can icon reappears at
that position (Figure 5).

Figure 5. Rearranging the Desktop

Desk File Uiew Options ..

Al\ zm
131288 bytes used in i itens,

r'ji=-F-oeeo.f i = ?';necooi .f:s enafooo;: .fi • jr.nFecoi.Pi3

•BdZH

\l

You can move the file drawer icons in a similar fashion.
Note, however, that GEM won't let you move certain icons to
certain places. If you try to move a file drawer onto the trash
can, an alert box tells you that you can't delete an entire disk
in that manner. Nor will GEM let you move the trash can into
a disk directory window.

13

CHAPTER ONE

Other dragging operations imply that you want to per
form certain file-management functions. They take the place of
commands typed at prompts with operating systems like MS-
DOS. To delete a file or folder from a disk, for example, drag
the corresponding icon to the trash can.

Note that, unlike the Macintosh and Amiga trash cans,
the ST's trash can is more like an incinerator; deleted files can
not be recovered. Therefore, GEM pops open an alert box
which gives you a chance to abort this potentially destructive
operation. It's also important to remember that trashing a
folder deletes all the files within that folder. The alert box will
always warn you of the number of items you're about to
delete.

Copying by Dragging
You can also copy files, folders, and entire disks by dragging
icons. There are two ways to copy a file or folder from one
disk to another: Either drag the corresponding icon from the
source disk's directory window to the destination disk's win
dow, or drag the icon from the source's disk window to the
destination disk's file drawer icon.

You can copy the contents of an entire disk by dragging
its file drawer icon atop another disk's icon. And you can copy
a file into a folder by dragging the file icon onto the folder
icon. (Note that this makes a copy of the file in the folder,
leaving the original file intact.)

Windows are as easily manipulated as icons. The active
window—the one on top of the pile if several are displayed—
has various control bars and miniature buttons along its edges.
Pointing to the button in the upper right corner and clicking
the mouse button expands the active window to full-screen
size. Clicking this button again restores the window to its orig
inal size.

The button in the upper left corner of a window is used to
close the window. (Another way to close a window is to select
Close Window from the File menu.) If you close a window
that shows the contents of a folder, it is replaced by the next
higher branch in the directory hierarchy. That is, if the folder
you're closing is contained within another folder, then the
"higher" folder's window will be displayed next. Eventually,
you'll end up with the root directory window displayed on the
screen.

14

_

_

u

Getting Started

Dragging the button in the lower right corner of a win
dow lets you adjust the window's size, making it larger or
smaller. Dragging the top bar lets you move a window any
where on the screen. Clicking on the small arrows displayed

LJ along the bottom and right edges will scroll the material dis
played in the window, assuming some of it is hidden due to
the window's small size.

Multiple Selection
We've covered all the main features of the GEM desktop,
but several additional techniques make the system even easier
to use.

One handy trick is multiple selection. This technique lets
you select more than one icon at a time to perform a certain
function in a single step. For instance, let's say you want to
delete four files from a disk. You could drag them one at a
time to the trash can. But with multiple selection, you can
drag all four of them at once.

There are two ways to do this. The first method is some
times called roping. It works only when the multiple files are
grouped together inside the disk directory window. To rope
the files, move the mouse pointer to the upper left corner of
the file icon or filename which is at the upper left position of
the files you want to rope. Then press and hold the left mouse
button. A small dotted line should appear. Next, still holding
down the mouse button, drag the pointer downward and to
the right. The dotted-line "rope" should expand as you drag.
Keep expanding the rope until it encloses all of the files you
want to select, excluding any others. Then release the mouse
button (Figure 6).

When you release the button, the file icons or filenames
enclosed by the rope should change color to indicate they've
been selected. Now you can drag them all at once to the trash
can, just as you would drag any icon: Press and hold the left
mouse button and drag the files across the desktop. Release
the button to drop the files in the trash (Figure 7).

Obviously, roping works for multiple selection only when
the files are grouped together inside the window. If the files
are scattered among other files in the window, there's no way
to rope them together. That's when you need to use the sec-

— ond method for multiple selection: Simply hold down either

15

Figure 6. Roping

Desk File View Options

FLO

•i m immmm S&^:&'3:M<M^::M

CHAPTER ONE

Shift key, point to a file you want to select, and click the left
mouse button. The file should change color to indicate it's
been selected. You can repeat this process as many times as
necessary, as long you keeping holding down the Shift key.
When you've selected all of the desired files, drag them in the
usual fashion to the trash can.

Either method of multiple selection is good for other
things besides deleting files. You can also use the technique to
copy several files from one disk to another or from one direc
tory to another.

Installing an Application
Another GEM technique lets you make an exception to the
rule that nonexecutable data files can't be loaded and run like
program files. It's called installing an application.

Let's say you've got a word processing program on your
disk and a number of text files that were created with the
word processor. Normally, to edit one of the text files, you'd
have to load and run the word processing program by double-

16

Getting Started

Figure 7. Dropping Files into the Trash
Desk File Uiew Options

13681? bytes used in 6 itens

clicking on its file icon or filename and then load the text file
from within the word processor. But there's a shortcut.

First, click once on the icon or filename of the application
program (in this case, the word processor). It should change
color to indicate it's been selected. Then drop down the Op
tions menu and select Install Application. A dialog box ap
pears. Among other things, you'll see a prompt that reads
Document Type:, followed by a dotted line and cursor. Here's
where you type in a three-character filename extender that
you'll use to identify all of the data files associated with this
particular application program (Figure 8).

For example, you might decide to identify all of your text
files with the filename extension .TXT—SMITH.TXT,
REPORT.TXT, LETTER.TXT, MEMO.TXT, and so on. In that
case, you'd enter .TXT at the Document Type: prompt.

Below the prompt, you'll see three buttons labeled GEM,
TOS, and TOS-takes parameters. If the application program
you're installing supports GEM features—in other words, if it
has drop-down menus and so forth—click on the GEM but-

17

CHAPTER ONE

ton. Otherwise, click on the TOS button. (The TOS-takes pa
rameters button is for special purposes, which are beyond the
scope of this chapter.) Finally, click on the OK button to install
the application. The dialog box goes away, and you're back on
the GEM desktop.

To enjoy the fruits of your labor, try double-clicking on
one of your text files that has the filename extension you spec
ified at the Document Type: prompt. (Make sure the word pro
cessor is on the same disk.) If all goes well, the word processor
should load, run, and automatically load the text file you clicked
on. Thus, two operations are carried out in a single step.

You can install virtually any application program in this
manner. Just be sure that the program is on the same disk as
the data file you select and that no two application programs
are installed with the same three-character filename extender.

Figure 8. Identifying Data Files

Desk File View tUHJEEj

18

A:

178620 bytes used in 7 items•

•
INSTALL IMPLICATION

Application Nane: BASIC ,PRO
Docunent Type: | ^

Application Type:

ffil TOS ||TOS-takes paraneters

Cancel

_

L.flCC MDISK.PRG F

Getting Started

To keep from having to install the application each time
i you switch on your ST or press the Reset button, insert your

boot disk in drive A, drop down the Options menu, and select
Save Desktop. This creates a short file on your boot disk that
GEM checks for each time it boots up. The file contains infor
mation that lets GEM restore the conditions which existed on
the desktop when you created the file. Before selecting Save

i Desktop, you might want to arrange the disk directory win
dows and icons as you'd prefer to see them appear when the
computer first comes to life.

Three Screen Modes
One unusual feature of the ST is its intelligent monitor inter
face. When you boot up the computer, the operating system
checks whether a monochrome or color monitor is attached
and adjusts itself for one of three possible screen modes.

With the monochrome monitor, the operating system
automatically configures the GEM desktop for high resolu
tion—640 X 400 pixels, black-and-white. The display is ex
tremely sharp and stable because of the monitor's 70-hertz
refresh rate, which means it redraws the screen image 70
times per second rather than 60 times as on standard monitors
and TVs. (This is possible because the monitor uses its own
70-hertz oscillator instead of synchronizing with the 60-hertz
power line.) Furthermore, the display is paper white, not blue
white, easier on the eyes. When the monochrome monitor is
hooked up, the operating system won't let you enter the me
dium- or low-resolution mode, which has color.

If the ST is booted up when plugged into its RGB color
monitor, it defaults to the medium- or low-resolution color
mode. Medium resolution has 640 X 200 pixels with four

— simultaneous screen colors, and low resolution has 320 X 200
pixels with 16 simultaneous colors. Because the medium-
resolution screen has the same horizontal resolution as the

— monochrome mode, but only half the vertical resolution, the
aspect ratio is slightly distorted. Icons appear tall and skinny,
and characters are narrower. In low resolution, only 40 col
umns of text can be displayed instead of 80 columns. (See Fig
ures 9, 10, and 11.)

19

CHAPTER ONE

Figure 9. Low Resolution

Desk File Uiew iptions

FLOPPV DISK;

FLOPPV DISK;

TRASH

2»<>t:<&H &;>;>Hf:<*i::ii>tv

references

>ave Desktop
Print Screen

- : : :

el mi n= nftY as; = hnnh inn ni inn hnn= i&a
178628 bytes used in 7 itews

•
DEGAS BflSIC.PRG BASIC.RSC C

n
MDISK.PRG PANIC.PRG TERM.TOS

a
TTTTTI I I I I >

M R

Figure 10. Medium Resolution

Desk File View

20

_

J

Getting Started

Figure 11. High Resolution

Desk File Uiew |'|iumj
-^ "... :h ikW mi Idn::. Y'

\"° V Install teolkatisfliM 1

Set Preferences,,,
\sy Save Desktop *
r" •"".' Print Screen

178020 bytes used in 7 itens,

•
DEGAS BASIC.PRG BASIC.RSC CONTROL.ACC MDISK.PEQ PANIC.FRG TERM.TOS

The low-resolution mode is ideal for graphics programs
that need the maximum number of colors and for STs that are
hooked up to a TV set instead of an RGB monitor. (Only the
520STs made after the spring of 1986 have RF modulators for
TV hookup.)

To change from one screen mode to another, drop down
the Options menu and select Set Preferences. A dialog box ap
pears, and a prompt that reads Set Screen Resolution: is ac
companied by three buttons labeled Low, Medium, and High.
If the ST is hooked up to a color monitor, the High button is
dimmed to indicate it's disabled. If the ST is hooked up to a
monochrome monitor, the Low and Medium buttons are
dimmed (Figure 12). Click on the button for the screen mode
you want, and then click the OK button.

Incidentally, this dialog box also lets you choose whether
GEM will warn you with an alert box whenever you try to
copy or delete a file. Just click on the Yes or No button next to
the prompts Confirm Deletes: and Confirm Copies:.

21

CHAPTER ONE

Figure 12. Setting Screen Resolution

Desk File View HI

If you want your ST to "wake up" in a certain color mode
when you switch it on, adjust the screen for that mode with
Set Preferences and then select Save Desktop.

The Control Panel

GEM lets you make other adjustments to your desktop as
well, thanks to a tool called the Control Panel.

The Control Panel can be found on one of the disks that
came with your ST, usually under the filename CONTROL.ACC.
It's a desk accessory that installs itself in GEM's Desk menu
whenever you boot up with that disk.

What's a desk accessory? It's a program that's specially
designed to load itself into memory when you first switch on
the ST. But after loading, it doesn't run—it just waits invisibly
in the background until it's summoned. To call a desk acces
sory, you select it from the Desk menu. The Desk menu is al
ways available from the GEM desktop and from within any
application program that supports GEM. (In many application
programs, the Desk menu is labeled with the Atari logo sym
bol instead of the word Desk.) Your ST comes with a few desk

22

J
Getting Started

accessories, including the Control Panel and a VT-52 terminal
emulator. Many other desk accessories are available from soft
ware companies and other sources. Some of them are quite
elaborate.

™" A desk accessory is a limited form of multitasking. When
you call up an accessory, it appears on the screen and runs
without interfering with any other application program you

"• happen to be using. When you close the desk accessory, you
can resume using the application program and pick up where
you left off.

The Control Panel is a special desk accessory that lets you
adjust certain characteristics of the GEM desktop. To see how
it works, switch on your ST with the boot disk that contains
CONTROL.ACC. When you drop down the Control Panel,
you should see two accessories installed: Control Panel and
Install Printer. (The Control Panel is actually a double desk ac
cessory that always includes Install Printer.) Select the Control
Panel as you would any menu item.

When the Control Panel opens, you'll see a number of
buttons and slide controls (Figure 13). At the far left and bot
tom of the Panel are three controls for adjusting the screen
colors. Of course, these have no effect in monochrome mode.
If your ST is set up in a color mode, try changing the screen
colors by manipulating these controls.

At the top of the Panel are dotted lines where you can
enter the current time of day and date. To enter these num
bers, click on the appropriate dotted line, type in the correct
information, and press Return.

Below the time/date fields are slide controls which adjust
how soon a key begins autorepeating when it's held down
and how fast it autorepeats. To adjust these controls, point to

—•• the appropriate slider and hold down the left mouse button.
Move the slider to the right or left, and release the button. The
picture of the turtle indicates the direction to move the slider

— for a slower rate, and the picture of the rabbit indicates the di
rection for a faster rate.

Below the slide controls are a series of buttons numbered

— 0-4. These let you adjust how rapidly the left mouse button
must be pressed to register a double-click. The slowest double
click speed is 0 (next to the picture of the lazy mouse); the
fastest double-click speed is 4 (next to the active mouse). You
might want to pick a slower speed until you get used to your ST.

— 23

CHAPTER ONE

Figure 13. The Control Panel

Desk File Uiew Options

FLOPP SD0EHE8-

j
•

TR

Two more buttons below this let you determine whether
keypresses will return audible feedback through the monitor
speaker and whether error messages will be accompanied by a
bell tone. Click these buttons on or off as desired.

Finally, when you've finished making adjustments, close
the Control Panel by clicking on the small button in its upper
left corner. If you messed something up and want to abort the
changes you made, click on the Cancel button near the lower
right corner instead.

Adjustments made with the Control Panel remain effec
tive until the computer is rebooted. If you want certain adjust
ments to be made automatically whenever the ST is switched
on, drop down the Options menu and select Save Desktop
after using the Control Panel.

Secrets of GEM

This chapter isn't a complete treatment of the GEM desktop,
but it does cover the majority of important features. Additional
information can be found in the manual which came with
your ST.

24

Getting Started

Some features of GEM aren't documented in the manual,
— however. For example, many people wonder What is that use

less right mouse button for? True, some application programs
use the right button, but GEM doesn't seem to. The secret is

— that the right button lets you perform operations in an inactive
window without making it active.

For instance, try opening two disk directory windows on
— the desktop. Point to a file within the inactive window while

holding down the right mouse button. Then click the left
mouse button. The file will change color to indicate it's been
selected, even though the window is still inactive. You can
now drag the file to the trash can to delete it, drag it to the ac
tive window to copy it to the other disk, or even run it if it's a
program file. It's no big deal, but it is a little-known secret.

As you continue to explore the ST and its GEM desktop,
no doubt you'll discover other tricks and shortcuts as well.

25

ST System Software,
Inside Out

Bill Wilkinson

The ST's operating system and graphics-processing
environment are loaded with acronyms—TOS,
BIOS, XBIOS, GEMDOS, VDI, and AES. Here's

a quick iook at what they mean.

Okay, you've got your shiny new ST computer plugged in and
running. You can use the mouse to select programs, copy files,
and format disks. It's fun, and it certainly is easier to learn
than figuring out what
COPY B: \ SYSTEM \MSGS.TXT/A = A:

SPCL*.MS?

is supposed to mean. That's a real and possible IBM PC com
mand. But how did the ST system get built?

Collectively, the software built into the Atari is called
TOS (Tramiel Operating System). When the 520ST was first
shipped, TOS was delivered on a disk. If you're still using the
disk-based TOS, stop now. Go out and buy the ROM (Read
Only Memory) version of TOS. It should cost no more than
$25 or so. Installation is not very difficult, but if you have as
many left thumbs as I do, you might be well advised to find a
dealer or service center to install the chips for you. That will
cost maybe another $20 to $30.

TOS in ROM is actually composed of six separate pieces.
Usually, we lump these pieces into two groups of three each:
the graphics-processing section and the underlying operating
system. As we shall see, that operating system—a derivative
of CP/M-68K—is very similar to MS-DOS and PC-DOS,
which are both derivatives of CP/M.

BIOS, XBIOS, and GEMDOS
In one sense, we can say that the lowest level of the ST's op
erating system is the BIOS (Basic Input/Output System), a
holdover from the earliest days of CP/M. At this level, we
find routines for such basic tasks as sending a single character

26

Getting Started

to a device, reading a disk sector (by sector number—a very
dangerous practice), and so on. In CP/M, there was only one
legitimate reason to call the BIOS directly: speed. With TOS,
though, only the BIOS provides some of the facilities which
even a moderately sophisticated program will need (admit
tedly, often because of bugs in the upper levels of the operat
ing system).

On the ST, a BIOS call is implemented as a TRAP instruc
tion in 68000 machine language. All the necessary parameters,
including the BIOS call number, are passed onto the stack. If
you aren't quite sure what we're talking about, don't worry.
Virtually every programming language for the ST has some
way to use these routines which mask the mechanics of TOS
calls. It's a good thing, too, since some of those mechanics can
get pretty hairy.

The next higher component of TOS is the XBIOS (ex
tended BIOS). XBIOS supplies the Atari-unique routines
needed to do such things as access the sound registers, screen
hardware, and so on.

The third component of the operating system is called
GEMDOS (Graphics Environment Manager/Disk Operating
System). Actually, this is a misnomer. The GEMDOS routines
have nothing whatsoever to do with graphics. GEMDOS is es
sentially an MS-DOS or PC-DOS emulator. Want to open a
file? Read a block of bytes? Get a character from the key
board? Given the differences between the 68000 of the ST and
the 8088 of the IBM PC, the similarities between GEMDOS
calls and MS-DOS calls are almost scary.

GEM, VDI, and AES
Okay, enough about the underlying operating system. Let's
take a look at the graphics systems which comprise GEM. The
most familiar part is the GEM desktop which appears when
you turn on your ST. But the desktop is not really a special
program at all; it simply calls the lower level routines. Again,
there are three levels of graphics routines.

The lowest-level graphics, not officially part of GEM, but
merely one means of implementing it, are those called the
Line-A Routines. This sounds cryptic, but it simply refers to the
fact that certain machine instructions of the 68000, including
those of the form $Axxx hex (hence, line-A), are reserved and

27

CHAPTER ONE

cause a special hardware trap into the OS. As you might ex
pect, routines implemented in this fashion are of the most fun
damental type: they draw a line, plot a point, and so forth.
Most are very fast.

The next level up in graphics is the VDI (Virtual Device
Interface). In theory, VDI is capable of supporting several
types of graphics devices in a uniform fashion. For example,
you might use the same set of calls to draw a curve on a plot
ter or on the screen. Unfortunately, no such drivers are yet
available (or, as far as I can tell, are even in the works) for the
ST. Still, the possibility exists.

VDI does all the actual graphics work on the ST. It draws
simple rectangles, bordered ovals, and text in various styles,
sizes, and colors. Someone who learns nothing on the ST ex
cept how to call VDI could still do remarkable graphics work.

Finally, at the highest level, is AES (Application Environ
ment Services). AES is what GEM uses to present you with
that nice, pretty desktop, complete with menus, dialog boxes,
alert boxes, windows, and icons. Perhaps more important to
programmers, though, is the fact that AES allows you to use
all the features of GEM in a relatively consistent, properly
desktop-compatible manner. It is through this mechanism that
even a lowly spreadsheet program can have drop-down
menus, mouse-controlled windows, and all the rest of those
impressive features.

28

u

Li
Odd Facets of GEM

Bill Wilkinson

This article explores some of the GEM desktop
oddities—things you can do to make your system

more useful, things you can do to make your
system crash.

I'm a natural-born pessimist, so let's start with a GEM desktop
crash. The bug we're about to demonstrate infests the ROM
(Read Only Memory) version of the TOS operating system.
Even with this problem, if you don't already have the TOS
ROMs, get them today. The difference in overall system per
formance and capability is only a little short of great.

To see this bug, simply boot your system and bring up
the Control Panel. Select either the date or time field. Then
type an underline character (Shift-hyphen) and watch your
system bomb. The only recovery is to press the Reset button
or turn off the power.

Problem: The Control Panel is a form of dialog box, and
it uses what are known as editable text fields to display and let
you modify the date and time. An editable text field is de
signed to restrict the user to typing certain characters. For ex
ample, the date and time fields of the Control Panel are
editable fields which allow only numbers to be typed. Unfor
tunately, somehow a bug crept into the ROM-based TOS.
Anytime you edit a strictly numeric field, typing the underline
causes something nasty to occur. Editable fields for filenames
have a similar, though usually nonfatal, problem.

Solution: In a GEM application program that needs to ac
cept numeric-only input from the user, there are two choices:
Use an editable field that allows any character, and validate
the user's input after the dialog box has returned, or retrieve
keystrokes one at a time (checking them on the fly), and print
only the valid ones on the screen. The first solution is ugly be
cause the user doesn't get immediate response to incorrect in
put. The second solution is a lot of work. Take your pick.

_ 29

CHAPTER ONE

Modifying DESKTOP.INF
You may already know how to customize the GEM desktop so
that your preferences appear automatically when you boot up
the ST. When you select Save Desktop under the Options
menu, GEM saves a file to the currently active drive, called
DESKTOP.INF, which stores these preferences. You can rear
range the icons on the screen, change screen colors, resize the
windows, and so on, and GEM remembers it all for you.

DESKTOP.INF is an ordinary ASCII file, so it can be
modified with most text editors and word processors. This lets
you personalize GEM even more (see "ST Hints and Tips"
elsewhere in this book).

The first thing we'll do is the easiest. Using a text editor
or word processor that handles ASCII files, load and examine
DESKTOP.INF. You should see one or two lines which con
tain the words FLOPPY DISK (among other things). These are
the labels which appear beneath the disk icons. I usually re
name the labels -Top-Disk- and Bottom-Disk (the dashes indi
cate where I typed a space since typesetting makes it hard to
show spaces).

Save the modified file back on disk in ASCII format. The
next time you boot from that disk, the names should appear as
you have modified them. Just for fun, sometimes I change the
name of the trash can to Junk! or Garbage or something equally
silly.

Rearranging Files
There are even more interesting things you can do with
DESKTOP.INF. If, like me, you have a disk or subdirectory in
which you do most of your work, you'll soon find that you
can't see all of the filenames or icons on the screen at once.
Although it's a minor nuisance, it always seems that the files
(or, more likely, programs) that I want the most are always off
the screen. How can they be forced back on the screen (pref
erably in the upper left position)?

One solution, since the default display mode under the
Show menu is Sort by Name, is to name your favorite files
AARDVARK.PRG or AAABASIC.PRG. But that's messy. A
better method might be to choose Sort by Date if you could
change the file's creation date. But I think Mark Rose, of Opti
mized Systems Software, has hit upon the best scheme.

30

Getting Started

First, he chooses Sort by Type. Second, he renames his
most-used programs so that they have no type (filename ex
tension) at all. Third, he loads DESKTOP.INF and adds a line
or so. To figure out exactly what to add, look for a line in

_ DESKTOP.INF similar to this:
#G 03 FF *.PRG@ @

This line tells the desktop that all files which match the
*.PRG specifier are GEM (G) program files. Now, let's say the
program you want to appear at the top left of the screen was
called PASCAL.PRG and has been renamed simply to PAS
CAL. You would add this line to the end of the DESKTOP.INF
file:

#G 03 FF PASCAL.@ @

This tells GEM that PASCAL is actually a GEM-based
program. Neat, huh? What's more, you can do this for several
files. However, I do not recommend using the *. wildcard in
such a line. General untyped files end up looking like pro
grams—a dangerous deception.

_

_

_

31

GEM Quirks
Bill Wilkinson

These suggestions o//er application programmers
help in dealing with system software problems,

speeding up disk drive performance, and avoiding
GEM crashes.

The Atari ST's hardware is excellent, but all too often, prob
lems with its system software obscure this excellence. Admit
tedly, most users will never actually see these problems, since
software developers work hard to circumvent them. Luckily,
application programmers can make a real contribution to the
users' perceptions of a machine.

Consider the ST's floppy disk drives. In theory, they are
among the fastest available for any microcomputer. And, in
deed, when you load a program, the speed is impressive.
However, when a program starts performing file input/output
using ordinary record sizes, there is so much operating system
overhead to overcome that the ST's performance is only fair.
Creating a new file with 512-byte records is only a little more
than twice as fast on an ST as it is on an Atari 400/800, XL,
orXE.

Possible solution: The application program can read and
write very large blocks to the disk (for example, 4K or bigger),
performing the file buffering itself. Suddenly the performance
is quite good again. This requires a little more work on the
part of the application programmer, but the net effect is pleas
ing for the user.

Similarly, using a hard disk on the ST is an experience
not to be forgotten. For example, compiling an average-length
program with Personal Pascal generally takes one to two min
utes using floppies. When you use a hard disk, those times
improve to 10 or 15 seconds. That's because the hard disk port
on the ST is capable of transferring more than one megabyte
per second.

But something happens as the hard disk starts filling up.
Access times can double before the disk is even half full.

Again, there's a solution: Partition the 20-megabyte disk into
four smaller, 5-megabyte "logical" drives. And, since the ST

32

Getting Started

uses subdirectories so successfully, this is usually a practical
solution.

Gullible GEM

— Perhaps the biggest problem with GEM (the Graphics Envi
ronment Manager) is that it is too gullible; tell it a lie and it
believes you. Consider what happens on an Atari 400/800,

~— XL, or XE when an Atari BASIC programmer uses a PRINT
statement to display a message which is wider than the screen:
The text wraps around to the next line.

When programming with GEM, the easiest way to display
something on the screen is via an alert box. This is the small
window which pops up to report errors and so forth. To dis
play an alert box, a programmer simply defines a string of the
proper form and makes an easy call to a GEM routine. But if
the programmer errs when defining that string (for example,
by entering too many characters or leaving out some special
characters)—crash! Time to hit the old Reset button.

Now, granted, the proper form of that string is easy to
validate before calling GEM, so a well-written application pro
gram will never reveal this particular problem to its user.
However, this is symptomatic of much of GEM. Application
programmers must do a lot of work to insure that GEM is
given only legal values to work with. GEM does not seem to
follow the G7GO rule (Garbage In, Garbage Out). With GEM,
it is more like G7C (Garbage In, Crash!). So be careful if you're
writing programs on the ST. Avoid crashes by double-checking
all data before calling GEM routines.

The Software Explosion
To a beginner, the ST with its GEM operating system looks
complex. And, truly, there is a lot to learn before you can
write programs which show off all the capabilities of the ST.
But, despite my earlier comments, experienced programmers
find that GEM does so much of the work for them that they
can develop fairly complex programs relatively quickly. Too,
the capabilities and accessibility of higher level languages for
the ST (such as C, Pascal, and Modula-2) have made program
mers more productive. As a result, there is arguably more soft
ware available for the ST, at this point in its life, than for any
previous computer at a comparable point in its life.

33

CHAPTER ONE

For instance, one year after the Macintosh was intro
duced, it had far fewer programs available than the ST had a
year after its introduction. Not only that, but the ST programs
have tended to be considerably less expensive than their Mac
intosh counterparts.

One of the reasons so much software is appearing is that
the cost of developing ST programs is relatively low. A part-
time ST programmer can have a full-blown ST development
system for not much over $2,000 (including hard disk, printer,
color and monochrome monitors, development software, and
so forth). In the early days of the Mac, $10,000 was more the
order of the day, so development tended to be restricted to es
tablished software companies.

The flip side of this coin is that the quantity of high-quality
software for the ST is certainly not greater than what was
available for the Macintosh. Since most early Mac developers
were major software companies, their quality standards were
generally higher than those of part-time hackers.

Bottom line: Try to see a demo of any ST software you
are planning to purchase. There are a lot of excellent ST pro
grams, but there are also some turkeys.

34

i •

•

i

' I

u
Switchbox

Todd Heimarck
Version by Kevin Mykytyn

At first, you may think this challenging game of
strategy looks easy and simple, but it takes time to

master and permits many variations.

Playing "Switchbox" is like putting dominos in place for a
chain reaction—either you're setting them in position or
you're knocking them over. Winning requires skill and a sense
of when to go for points and when to lie back and wait for a
better board. The goal is simple: You try to score more points
than your opponent by dropping balls into a boxful of two-
way switches. Each switch has a trigger and a platform. If the
ball lands on an empty platform, it stops dead. But if it hits a
trigger, it reverses the switch and continues. In many cases
dropping a single ball creates a cascading effect—one ball sets
another in motion, which sets others in motion, and so on, all
the way down.

Type in the program, and save a copy before you run it.
Before typing it in, you must turn off the buffered graphics by
clicking on Buf Graphics in the Run menu. You can be in
either medium- or low-resolution mode when you type in the
program, but before running it, you must be in low-resolution
mode. Do this by selecting Set Preferences from the Options
menu on the desktop and clicking on Low.

A Box of Switches

Switchbox is a tale of twos: Each switch has two parts, two
positions, two states, two paths in, and two paths out. The
two parts are the platform and the trigger. A switch can lean
to the left (platform left, trigger right) or to the right (platform
right, trigger left). See Figure 1.

The trigger is weak, and it always allows balls to pass. But
the platform is strong enough to hold a single ball. So the
platform either holds a ball—it's full—or it does not and is
empty. When a ball sits on a platform, the switch is said to be
loaded, or full.

37

CHAPTER TWO

Figure 1. Trigger States

Before: After:
Left switch Right switch

\\

Figure 2. Loaded Trigger

Right
path

In Figure 2, a full switch is over two empty switches. The
platform holds a ball and leans to the left. The trigger extends
to the right. Notice that the switch on top has two pathways
leading in, the left path and the right. The right path leading
out is the left path into one of the switches below. The left
path of the top switch leads into the right path of the other,
the switch below and to the left. If you drop a ball down the
righthand path, it will hit the trigger and flip that switch to
the right. Then it will continue down, hit the lefthand trigger
below, and flip that switch as well.

In the meantime, the ball on the platform is set in motion
(when the switch is flipped), and it hits the trigger. The top
switch is reset to point to the left. The second ball then drops
a level to the platform below, where it stops.

The playing field is composed of five levels, with four
switches in the first level and eight in the bottom level. At the
38

Games

beginning of the game, there are no balls on the field—all
platforms are empty—and the position of each switch is cho
sen randomly.

Moving Down the Path
Players alternate dropping balls into one of eight entry points.
These balls (and others) may or may not make it all the way

— through the switchbox, to one of the 16 exit paths. Balls fall
straight down (with one exception), so a ball's movement is al
ways predictable. When it hits an empty switch, one of two
things can happen. If it lands on the empty platform, it stops
dead in its tracks. But if it lands on a trigger, it falls through to
the next level below.

Moving balls always make it through loaded switches.
Triggers allow balls to continue and move the switch to the
other position. If it's loaded, the dead ball on the platform is
put into motion, and it hits the trigger that just moved over.
This makes the switch go back to its original position, but
with an empty platform. So when a ball hits the trigger of a
loaded switch, its motion continues unabated. The switch
moves, the ball on the platform begins to fall, and it hits the
newly placed trigger. The newly emptied switch moves back
again, and the two balls drop to the next level.

There's one more possibility: a ball can drop onto a plat
form that already holds a ball. Since a platform can't hold
more than one ball, when this happens, one of the balls slides
over to the trigger. So the ball doesn't move straight down,
but slides over to the next pathway. This is the exception to
the rule that balls drop in a straight line. Of course, when the
ball hits the trigger, the switch changes position, causing the
other ball to drop and hit the trigger.

Chain Reaction

At the start of the game, all platforms are empty, so four of
the eight entry paths are blocked. Remember that your turn
ends when a ball hits an empty platform and stops. As the
switches fill up, the chances increase that a ball will descend
through several levels. Your goal is to score points by getting
balls to pass all the way through the maze of the switchbox.
The best way to collect a lot of points is to cause a chain
reaction.

39

CHAPTER TWO

A ball that hits a loaded switch from either side continues
on its way. And the previously inert ball on the platform starts
moving. One enters, two exit. If both of those balls encounter
full platforms, four drop from the switches. The pathways are
staggered, so the effects can spread outward, with more and
more balls cascading toward the bottom.

Rather than taking an easy point or two, it's often worth
your while to build up layers of loaded switches. Watch out
for leaving yourself vulnerable, though. Because players take
turns, you'll want to leave positions where your opponent's
move gives you a chance to create a chain reaction. Defensive
play is the best strategy. Look ahead a move or two, and
watch for an opening that will allow you to score several
points at once.

File Run Edit Debus

Karen *

.

m

•}••<
144

113
S5i

91 61 5 6 9 4 1 II 4 9 6 5 6 9
-,

im

"Switchbox" is a challeng
ing strategy game.

Four Quarters
A game of Switchbox always lasts four rounds. In the first
(equality), each exit counts for 2 points. Your goal is to score
10 points. The second quarter has more points available as
well as a higher goal. If you look at the exits, you'll see that
the farther they are from the middle, the higher their point
value. The numbers increase in a Fibonacci sequence: 1, 2, 3,
5, 8, and so on (each number is the sum of the previous two
numbers: 1+ 2 is 3, 2+ 3 is 5, 3 + 5 is 8,...). The target score in
the second round is 40.

In the third round, the numbers are a bit lower. They in
crease arithmetically: 1, 2, 3, 4, and up (to 8 in the corners). A

40

_

Games

goal of 20 points brings you to round 4, where you can score
big. Here the numbers are squares: 1, 4, 9, 16, all the way to
64 at the edges. In rounds 2-4, it's sometimes prudent to leave
a middle path open for your opponent to score a few points.
Then you can gather a high score on the big numbers to the
left and right.

Each round lasts until one player reaches the goal. At that
point, the other player has one last turn before the round
ends. It's still possible for the losing player to win the round
on this last-chance play. Watch out for barely topping the goal
and leaving a chain reaction open for your opponent.

An arrow points to the scoreboard of the player whose
turn it is. On the other side of the screen, you'll see a number
where the arrow should be. That's the goal for the current
round.

Bonuses

At the conclusion of each round, bonus points are awarded.
Four numbers appear below the scorecards. The first number
is simply the total so far. The second is the total plus a bonus
of the goal for the round if the player's points are equal to or
greater than the goal. For example, if the goal is 20 and you
get 18, there's no bonus. If you score 22, the bonus is the goal
for that round (20), so you'll have 42 points. The third number
under the scoreboard is the difference between scores for the
rounds. If you win by 2 points, you'll have 2 added to your
score, and 2 will be subtracted from the other player's score.
The final number'is the grand total of the first three scores
and bonuses. Rounds 1 and 3 are fairly low-scoring with low
goals. You may want to seed the field with extra balls during
these quarters, so you can collect more points in the second
and fourth quarters.

_

_

Variations

Although the goal of the game is to score the most points,
there's no reason you couldn't agree to play for low score. In a
"lowball" game, you would try to avoid scoring points. You
wouldn't necessarily play backward; you would have to adjust
the strategy of where to place the balls. Fill up the board as
much as possible and leave your opponent in a situation
where he or she is forced to score points.

41

CHAPTER TWO

The DATA statements at the beginning of the program
determine the goal for each round and the point values for the
exit paths. You can prolong the game by doubling the goals.
This also dilutes the value of a big score at the beginning of a
round, preventing one player from winning on the first or sec
ond turn. An interesting variation is to assign negative values
to some slots. If some paths score negative points, you're
forced to think harder about where the balls will drop.

In addition to the numbered keys (1-8), the plus (+) and
minus (—) keys are active. Pressing plus drops a ball at ran
dom down one of the eight entry paths. Pressing minus allows
you to pass your turn to your opponent.

Once you've mastered the regular game, you can add
some new rules. Each player gets three passes per half, similar
to the three timeouts in a football game. If you don't like the
looks of the board, press the minus key to use one of your
passes. After one player has skipped a turn, the other player
must play (this prevents the possibility of six passes in a row).
It's also a good idea to make the rule that a player can't pass
on two consecutive turns. You can also give each player two
random moves to be played for the opponent. In other words,
after making a move, you would inform your opponent that
you're going to give him or her one of your random moves.
Then you'd press the plus key.

Here's one more possible change: Instead of alternating
turns, allow a player to continue after scoring. When a player
drops a ball and scores points, the other player will have to
pass (by pressing the minus key). If the first player scores
again, the opponent passes again and continues to pass until
no more points are scored.

Solitaire

If you'd like to play alone against the computer, you can use
the pass and random turn options. To drop a ball, press a
number key (1-8). The numeric keypad is convenient for
choosing a move. Here are the rules for solitaire play:
1. The computer always scores first. At the beginning of each

round, the computer plays randomly until at least one point
is acquired. Press the plus key for the computer's turn. You
must continue passing (skip your turn with the minus key)
until the computer puts points on the board.

42

_

Games

2. After the first score by the computer, you can begin to play.
When the computer has a turn, press the plus key for a ran
dom move.

3. Whenever you make points, you must pass again until the
computer scores. When the computer gets more points, you
can begin to play again. This rule means that you should
hold back on the easy scores of a few points. Wait until

I there's an avalanche coming.
4. If you're the first to reach the goal, the computer gets a last

chance. Don't make this move randomly. Figure out the best
opportunity for scoring, and play that move for the last-
chance turn.

In the interest of keeping Switchbox a program of man
ageable length, no attempt has been made to provide an
"intelligent" computer opponent. Once you're familiar with
the game, you might find it an interesting project to add some
routines that give the computer a rational basis for picking one
move over another.

Switchbox
10 restore:DIM SW(4,7,1),SP*<1),LB(32,4),AR*(1)

,PT(4,16),SC(l,B):qr=l
20 sp*(0>=,'_":SP*(l>="_//":AR*(0>=chr*(4>+" "

:AR*(1>=" "+chr*(3)
30 COLOR l,l,l,l,l:ql=-2:q2=0:for j=l TO 4:READ

PT<J,0>
40 -for a=0 to l:-for b=0 to 8:sc (a,b) =0:next:nex

t

50 FOR K=l TO 7:READ L:PT<J,K+7)=L:PT(J,8-K)=L:
NEXT K,J

60 DATA 10

70 DATA 2,2,2,2,2,2,2
80 DATA 40
90 DATA 1,2,3,5,8,13,21
100 DATA 20

110 DATA 2,3,4,5,6,7,8
120 DATA 80
130 DATA 1,4,9,16,25,36,49
140 fullw 2:clearw 2:S0T0XY 0,0:INPUT "PLAYER 1"

PI

150 INPUT "PLAYER 2";P2*:P1*=LEFT*(PI*,5):P2*=LE
FT*(P2*,5):PRINT PI*;" VS ";P2*

160 PRINT "IS THIS CORRECT?" :gk=inp (2) :if gkOas
c("Y") and gkOascC'y") then 140

170 SOSUB 410:6QSUB 510:COLOR 1,1,1

_

u

_

CHAPTER TWO

180 FOR RR=1 TO 4:C0L0R 12:gotoxy 0,l+rr:prinT "
"::gotoxy 28,1+rr:prINT ""

190 SOSUB 450:REM PUT SCORES AT BOTTOM

200 QR=1-QR:TY=QR*20:TX=26-TY:CX=TX:CY=0
210 COLOR 2:M*=RIGHT*(STR*(PT(RR,0)),2):BOSUB 11

10

220 cx=6+TY:CY=0:M*=AR*(QR):BOSUB 1110
230 BOSUB 660:IF SC(1-QR,RR) >= PT(RR,0) THEN 25

0:REM END OF ROUND
240 BOTO 200

250 FOR J=0 TO l:FOR K=5 TO 8:SC(J,K)=0:NEXT K,J
260 FOR J=0 TO l:FOR K=l TO 4:SL=PT(K,0):AC=SC(J

,K):SC(J,5)=SC(J,5)+AC
270 SC (J, 6)=SC (J, 6)-(AO=SL) *BL:SC (J, 7)=SC (J,7)+

(SC(J,K)-SC(1-J,K)):NEXT K,J
280 FOR J=0 TO l:FOR K=6 TO 7:SC(J,K)=SC(J,K)+SC

(J,5):NEXT K,J
290 FOR J=0 TO Is FOR K=5 TO 7:SC(J,8)=SC(J,B)+SC

(J,K>:NEXT K,J
300 FOR J=0 TO l:FOR K=5 TO 8:Y*=STR*(SC(J,K)):L

=LEN(Y*):TX=5+J*28-L

310 TY=2+K:CX=TX:CY=TYsM*=Y*sCOLOR 4: SOSUB 1110s
NEXT K,J

320 NEXT RRsREM END OF MAIN LOOP
330 COLOR 1,1,8
340 BOTOXY 9,10:PRINT SPC (19)
350 BOTOXY 9,11 SPRINT " PLAY ABAIN? (Y/N) "
360 SOTOXY 9,12:PRINT SPC (19)
370 FOR A=78 TO 231 STEP 153:LINEF A,100,A,109:N

EXT

380 LINEF 78,100,231,100:LINEF 78,109,231,109
390 A=INP(2):IF A=ASC("Y") OR A=ASC("y") THEN CL

EAR:GOTO 10 ELSE END

410 clear* 2iCOLOR 4,1,7
420 FOR J-1 TO BsBOTOXY 7+2*J,0:PRINT JiNEXT
430 FOR J=82 TO 227 STEP IB.125:LINEF J,0,J,190:

NEXT

440 LINEF 82,9,227,9:RETURN
450 FOR J=l TO 14sK»PT(RR,J)iJJi2+J*2
460 IF K>9 THEN L-INT(K/10) iL**»MID*(STR* (L) ,2, 1)

:SOTO 4B0

470 L*=CHR*(32)

480 gotoxy jj,16:print 1*;:CX=JJ:CY=17
490 gotoxy jj,17:print right*(str*(k),1)i
500 NEXT J:RETURN

510 SOSUB 580:FOR J=0 TO 3:SY=4+J*4sFOR K=0 TO J
+3:SX=12-J*2+K*4

520 CX=SX-lsCY=SY-2:M*= BOSUB 1110:COLOR 0,0,
0,0,0

530 LINEF CX*9,CY*9+10,CX*9+3,CY*9+10sWP=INT(RND
(1)*2)

44

>=— Games

__

540 SW(J,K,0)=WP:SW(J,K,1)=0:GOSUB 650
550 NEXT K,JsCOLOR 9
560 CX=lsCY=0:M*=Pl*:BOSUB 1110

570 CX=29:cY=0:M*=P2*:BOSUB 1110:RETURN
580 LINEF 82,51,64,69:LINEF 64,69,64,172
590 LINEF 64,87,46,105:LINEF 46,105,46,172
600 LINEF 46,123,28,141:LINEF 28,141,28,172
610 LINEF 228,51,246,69sLINEF 246,69,246,172
620 LINEF 246,87,264,105sLINEF 264,105,264,172
630 LINEF 264,123,282,141:LINEF 282,141,282,172
640 RETURN

650 COLOR 2s CX=SX-2:CY=SY-1:M*=SP*(WP):BOSUB 111
0:RETURN

660 FOR J-0 TO 32:LB(J,0)=0sNEXTsNB=l
670 A=inp(2):a*=chr*(a)
680 IF A*="-"THEN RETURN

690 IF A**»" + "THEN A*-STR*(INT(RND(1)*8+l))

700 A«VAL(A*)sIF (A<1)0R(A>8) THEN 670
710 LB(0,0)=1:FOR J=l TO 3sLB(0,J)=0:NEXT:LB(0,4

)-10+A*2

720 EX=1

730 FOR J=0 TO 32s IF LB(J,0) THEN EX=0:BOSUB 760

740 NEXT:sound 1,0,0,0:IF EX THEN RETURN
750 BOTO 720

760 DY-LB(J,0):DX=LB(J,1):LY=LB(J,2):NY=LB(J,3):
NX-LB(J,4):qt-ly*4+ny

770 IF (LY+NY) and ly<4 THEN SOTOXY NX+Q1,LY*4+N
Y+Q2sPRINT " "

780 COLOR 3:LB(J,3) = (NY+1) AND 3:ON NY+1 BOTO 79
0,810,860,880

790 IF LY>3 THEN LB(J,0)=0:BOTO 950:REM SCORINB
ROUTINE

B00 gosub 1120:ON INT(RND(1)*3+l) GOTO 1000,1010
, 1020

810 VX=0:GOSUB 940:IF SW(WY,WX,1)=0 OR (SW(WY,WX
,0)=SD)=0 THEN 840
vx=l-2*sd:lb(j,1)=vx:lb(j,3)=ny+l
LB(J,4)=NX+VX:gotoxy nx+ql+vx,ly*4+ny+q2-(qt
<15):print "o":goto 1050
IF SW(WY,WX,0)=SD THEN LB(J,0)=0:SW(WY,WX,1>
=1:gosub 1120:SOTO 1030
LB(J,3)=NY+l:gosub 1120:ON INT(RND(1)*3+l> B
OTO 1000,1010,1020
LB(J,l)=0:LB(J,4)=NX+DXsgotoxy nx+ql+dx,ly*4
+ny+q2-(qt<15)sprint "o"
goto 1060
if qt<15 then gosub 1120
LB(J,2)=LY+1:B0SUB 940:SW(WY,WX,0)=1-SW(WY,W
X,0)

820

— 830

_

840

850

_

860

870

880

__ 890

45

CHAPTER TWO

900 IF SW(WY,WX,1)=0 THEN 930
910 LB(NB,0)=1:LB(NB,1)=0:LB(NB,2)=LY:LB(NB,3)»0

:LB(NB,4)=NX+2-SD*4:NB=NB+1

920 SW(WY,WX,l)=0:gotoxy nx+ql+2-sd*4,ly*4+ny+q2
-1:print " ":gosub 1070

930 SX=12-WY*2+WX*4sSY=4+WY*4:WP=SW(WY,WX,0):BOS
UB 650:SOTO 1050

940 WY=LYsJX=int(NX/2)+ly-6sWX=int(JX/2):SD=JX A
ND Is RETURN

950 SF=PT(RR,nx/2-2)
960 SB=SC(QR,RR)+SF
970 TX=3+29*QR+(SB >9) + (SB>99) + (SS>999)

980 tY=RR+l:A*=MID*(STR*(SS),2):C0L0R 1
990 CX=TX:CY=TY:M*=A*:SOSUB 1110:SC(QR,RR)=SG:BO

TO 1080

1000 sound 1,15,1,3:wave 1,1,12,90,0:return
1010 sound 1,15,1,4:wave 1,1,12,90,0:return
1020 sound 1,15,6,3s wave 1,1,12,90,0sreturn
1030 for a=12 to 1 step-2ssound 1,15,a,5swave 1,1

,10,20
1040 nextsreturn

1050 return

1060 wave 16,2,0,1000,3s return
1070 wave 16,2,0,18000,5:return
1080 for a=7 to 1 step-1:sound 1,15,1,a:wave 1,1,

12,90,2s next
1090 sound 1,0,0,0:return
1100 REM CHAR COMMAND

1110 gotoxy cx,cysprint m*sreturn
1120 gotoxy nx+ql,ly*4+ny+q2-(qt<15)sprint "o"sre

turn

46

Reversi
Kevin Mykytyn

Article by Philip I. Nelson

Play this adaptation of a classic strategy game on
any Atari ST system with a color monitor. You may

play it with a friend or try to best the computer.

"Reversi" is a fresh translation of a venerable game known by
several different names. Since ancient times, strategists have
delighted in this game's simple, yet challenging premise. This
version is written in ST BASIC and makes good use of the
computer's graphics capabilities.

Getting Started
Type in the program and save a copy before you run it. You
can play Reversi in either low resolution or medium resolu
tion. However, the display looks best in low resolution. The
playing field consists of an 8 X 8 grid of 64 squares. One
player's pieces are black, and the other's are white. If you play
against the computer, you have the white pieces.

Each game begins with four pieces—two black and two
white—placed symmetrically in the middle of the board (Fig
ure 1). The players alternate turns by placing pieces on the
board. Play proceeds until every square is filled or until nei
ther player can make a move. In cases where it's impossible to
move, you must pass your turn.

Playing and Scoring
The object of the game is to have more pieces on the board
than your opponent does at the end of the game. To place a
piece on the board, move the mouse pointer to the desired
square and click the left button once. If the move is legal, a
piece of your color appears in the designated square. The com
puter beeps if you attempt to make an illegal move.

To take a turn, you must place one of your pieces so that
one or more of the opponent's pieces will lie in a straight line
between two of yours. When you enclose an opponent's pieces
in this way, the enclosed pieces will change from the oppo
nent's color to yours. Your score is equal to the number of

— 47

CHAPTER TWO

Figure 1. Beginning Screen

Desk File Run Edit Debug

lOlll;;;;: :Reuersi;i

Figure 2. Before White's Move

Desk File Run Edit Debug

ISIili Reversi:;

_

_

J

u

Games

Figure 3. After White's Move

Desk File Run Edit Debug

^^^^^= •iiiiiR eversi=
-

jjj •
"lima " fc i:j^:ih;i

1111 A am

• 5 1 • 1 1 • • 2 •

11 • n
•

Bit
•

My turn

161 |:::::::::::::::::::v:::::::::::::::::::::::::::::::v:::::::::::x::^p

pieces you have on the board. The program displays both
players' scores at all times and prompts you when it's time to
make a move.

Figures 2 and 3 illustrate the effect of placing a piece on
the board. In Figure 2, the white player is about to place a
piece in the square indicated by the mouse pointer. Figure 3
shows the appearance of the board after that move is made.

Two Levels

If you're playing against the computer, you may choose two
different skill levels. Level 1 is easier than level 2, and it also
plays faster. The higher level offers a greater challenge, but re
quires more time for the computer to calculate each move.
Each of the computer's moves takes about 5 to 10 seconds at
level 1 and about 20 to 50 seconds at level 2. Don't move the
pointer while the computer is thinking; ST BASIC slows down
when the pointer is in motion.

If you analyze the computer's strategy, you'll discover
that it often tries to take the corner squares. The corners are
the most valuable positions on the board because they can't be

49

CHAPTER TWO

changed to the opposite color. Squares on the edge of the
board are also strategically valuable, since they are vulnerable
in only one direction.

Of course, there's no single strategy that works every
time, particularly if you're playing a human opponent. Begin
ners often try to take the lead early"and maintain it through
out the game, but that's not necessarily a winning strategy.
When players are evenly matched, it's common for the score
to seesaw back and forth several times. Dramatic reversals

often occur near the end of the game—hence the name,
Reversi. Experienced players try to think ahead and develop a
strong strategic position with the final moves in mind.

Reversi

10 dim board(9,9),tboard(8,8),dx(7),dy(7),path(
7,1),mess*(2,1),scl(9,9)

20 restore 40s for a=0 to 9s for b=0 to 9:board(a
,b)=4:next b,a

30 -for a=0 to 7: read dx (a) ,dy (a) :next
40 data 0,-1,1,-1,1,0,1,1,0,1,-1,1,-1,0,-1,-1
50 -for a=l to 2:-for b=0 to l:read mess* (a,b) :ne

xt b,a
60 data " Your turn human ","

My turn
70 data " White's turn ","

Black's turn "

80 for a=l to 4:for b=l to 8:read c:scl(a,b)=c:
scl(9-a,b)=c

90 nex t b,a
100 data 16,-4,4,2,2,4,-4,16,-4,-12,-2,-2,-2,-2,

-12,-4

110 data 4,-2,4,2,1,4,-2,4,2,-2,2,0,0,2,-2,2
120 gosub SETSCREEN:p=0:gosub OPTIONS:nt=0
130 START: gosub SCORE
140 i-f np=2 or p=0 then 160
150 gosub TURN: gosub BESTMOVE: i-f js=-50 then 200

else gosub CHECKLEGAL:goto 190
160 gosub ANYMOVEsif flag=0 then 200 else gosub

TURN

170 gosub READMOUSE:gosub CHECKLE6AL
180 if flag=0 then gosub BEEPsgoto 170
190 nd-0:gosub FLIPPIECES:nt=0
200 nt=nt+l:if nt=3 then goto GAMEOVER
210 p=l-p:goto START
220 SCORE: pl=0:p2=0:for a=l to 8:for b=l to 8
230 if board(a,b)=0 then pl=pl+l
240 if board(a,b)=l then p2=p2+l

50

Games

250 next bsnext a:col or 1,1,1:pt=pl+p2
260 gotoxy 2,4:print "WHITE"sgotoxy 29,4sprint "

BLACK"

270 gotoxy 3,6s print pisgotoxy 30,6sprint p2
280 return

290 GAMEOVERs gosub SCOREsgotoxy 0,0:print:gotox
V 4,17

300 if pl=p2 then print "It's a tie!";sgoto 330
310 if pl>p2 then print "White wins!";:goto 330
320 if p2>pl then print "Black wins!";
330 print " - Click mouse button";:gosub GETM0U8

E

340 goto 20

350 TURNi color l,l,l:gotoxy 0,0iprint:gotoxy 4,
17:print mess*(np,p);ireturn

360 ANYMOVE: for tx-1 to Bifor ty-1 to 8
370 gosub CHECKLEGAL

3S0 if flag=l then tx=9:ty=9
390 next ty,tx

400 return

410 CHECKMOVE: bs=-20:for tx=l to 8:for ty=l to
8

420 gosub CHECKLEGAL:ns=sc1(tx,ty)
430 if flag=0 then goto 450

440 if ns>bs or ns=bs and rnd(l)>.5 then bs=ns

450 next ty,tx
460 return

470 BESTMOVE:js=-50snd=l:for tx=l to 8:for ty=l
to 8

480 gosub CHECKLEGAL:if flag=0 then 560
490 for q=l to 8:for r=l to 8:tboard(q,r)=board(

q,r):next q,r

500 gosub FLIPPIECES:fs=scl(tx,ty):if pt>58 then
fs=fs+fl*5

510 ptx=tx:pty=ty:if lev=2 then p=0:gosub CHECKM
OVE:p=l

y520 tx=ptx:ty=pty:for q=l to 8:for r=l to 8:boar
d(q,r)=tboard(q,r)snext r,q

530 if lev=l then bs=0:goto 550
540 if pt>58 then bs=bs+fl*5
550 if fs-bs>js or (fs-bs>js and rnd(l)>.5) then

js=fs-bs:gx=tx:gy=ty
560 next ty,tx:tx=gx:ty=gy
570 if (tx=l or tx=8) and (ty=l or ty=8) then fo

w— r a=0 to 6 step 2:scl(tx+dx(a),ty+dy(a))=8:n
ext a

5S0 return

590 BEEP: sound 1,15,1,2,10:sound 1,0,0,0,0:retu
'—' rn

600 BONG: sound 1,15,8,3s wave 1,1,0,10000,10:ret

u

CHAPTER TWO

610 GETMOUSEs poke contrl,124
620 poke contrl+2,01 poke contr1+6,0
630 vdisys(0)

640 mx=peek(ptsout):my=peek(ptsout+2)
650 if peek(intout)=0 then GETMOUSE —
660 vdisys(0):if peek(intout)<>0 then 660
670 return

680 READMOUSE: gosub GETMOUSE
690 if mx<80 or mx>235 or my<35 or my>169 then R

EADMOUSE

700 tx=int((mx-80)/20)+l:ty=int((my-35)/17)+1
710 if board(tx,ty)<>4 then gosub BEEP:goto READ

MOUSE

720 return

730 FLIPPIECES: f1=0:x=tx:y=ty:gosub PUTPIECE
740 for a=0 to 7

750 if path(a,0)=0 then 800
760 x=tx+dx(a):y=ty+dy(a)
770 for b=l to path(a,1)
780 gosub PUTPIECE:x=x+dx(a):y=y+dy(a)
790 next b

800 next a:return

810 CHECKLEGAL: q=l-p:flag=0:if board(tx,ty)<>4
then return

820 for a=0 to 7:path(a,0)=0
830 if board(tx+dx(a),ty+dy(a))<>q then 890
840 sx=tx+dx(a):sy=ty+dy(a):counter=0
850 checkpath: counter=counter+l:sx=sx+dx(a) :«y"

sy+dy(a)
860 if board(sx,sy)=4 then 890
870 if board(sx,sy)=p then flag=lspath(a,0)=lspa

th(a,l)=counter:goto 890
880 goto checkpath
890 next a:return

900 PUTPIECE: fl=fl+l:board(x,y)=p:if nd=l then
return

910 PUTPIECE2: px=x*20+67spy=y*17+3 —
920 color p,p,p:pcircle px,py,7:gosub BONG
930 return

940 SETSCREEN: openw 2:fullw 2:clearw 2:title*="
Reversi":gosub SETTITLE

950 x1=20:yl=174:x2=300:y2=187:pi=8:gosub BOX
960 color 3,3,3:fill 100,100:color 1,1,1
970 for a=77 to 237 step 20slinef a,12,a,148:nex «*%

t

980 for a=12 to 148 step 17:linef 77,a,237,a:nex
t

990 color 2,2,2:fill 20,20 r>
1000 nd=0:for x=4 to 5:y=x:p=0:gosub PUTPIECE:nex

t

52

r
— Games

_

1010 p=l:x=4:y=5:gosub PUTPIECE:x=5:y=4:gosub PUT
PIECE

1020 return

1030 SETTITLE: a# = gb : gintin = peek(a#+8)
1040 poke gintin+0,peek(systab+8) : poke gintin+2

— ,2
1050 s# = gintin+4 : title* = title* + chr*(0>
1060 poke s#,varptr(title*) : gemsys(105)
1070 return

1080 OPTIONS: a*="Number of players 1 2"
:gosub MENU:np=ans

1090 if np=2 then return
1100 a*="Choose level (1 is easy) 1 2":gosub ME

NU:lev=ans

1110 a*="Do you want to go first Y N":gosub ME
NU:p=ans-l

1120 return

1130 MENU: gotoxy 0,0:print:gotoxy 4,17:print a*;

1140 gosub GETMOUSE:if my<175 or my>187 then 1140

1150 if mx>242 and mx<255 then ans=l:return

1160 if mx>264 and mx<280 then ans=2sreturn

1170 goto 1140

1180 BOXs poke contrl,lis poke contrl+2,2:poke con
trl+6,0:poke contrl+10,pi

1190 poke ptsin,xl:poke ptsin+2,yl
1200 poke ptsin+4,x2spoke ptsin+6,y2
1210 vdisys(0>:return

_

_

_ 53

3-D Tic-Tac-Toe
David Bohlke

This new rendition of an old favorite lets you match
wits against the ST in a three-dimensionai contest.
1/ you like, you can even make changes to the pro
gram which will make the computer piay more ag
gressively or more cautiously. Works with any Atari

520ST or 1040ST computer with a coior monitor.

In "3-D Tic-Tac-Toe," you take on the Atari ST in a battle of
wits. The object of this strategy game is similar to that of the
traditional Tic-Tac-Toe game, except this version takes place in
a simulated three-dimensional space which contains four game
boards. To win, you must place four pieces in a row. The row
may extend across a single plane or vertically through all four
planes. Though it's not a flawless player, the ST is a formida
ble opponent.

Entering Tic-Tac-Toe
Type in the program as listed and save it to disk. The program
works in either low- or medium-resolution mode. When you
run the program, if randomly selects you or the computer to
go first. The computer needs only a few seconds to pick its
move and places a red uppercase C at the selected square. The
ST takes less time to move if you refrain from moving the
mouse pointer around while it is calculating; moving the
pointer freezes normal BASIC operations. You should also
avoid moving the slider bars on the Output window, since this
may jumble part of the game board.

It's your turn when the screen prompt appears. Use the
mouse to move to the square of your choice; then click the left
mouse button. Due to the slowness of ST BASIC, you may
need to hold the button down for as long as one second
before the computer recognizes your choice. A blue uppercase
H appears on the square you have chosen. The H, of course,
stands for the human—you—and the C stands for computer.

54

u

_

_

_

_

u

_

_

u

Games

"3-D Tic-Tac-Toe" chal

lenges you to best the
computer in a three-dimen
sional strategic simulation.

Program Strategy
You may be interested in learning how the ST plays this sim
ple strategy game. The computer does not use a "look-ahead"
technique; rather, it determines its move by assigning a nu
meric value to each empty square. Look at the table for an ex
planation of this value. It shows a sample Tic-Tac-Toe
combination of four squares in a row, along with the cor
responding BASIC line number that assigns the value.

Combination Values

Value

Human wins

Computer wins
33 points

5 points
2 points

77 points
6 points
1 point

Each computer piece is stored with a value of 5 in the V()
array, and each human piece has a value of 1 in the array. So
if a row of four squares contains two computer pieces, that
combination places a value of 10 in the V() array. Line 530
evaluates the pieces in each row and assigns a combination
value to the variable P. Lines 540-600 convert these combina
tion values into point values, which are evaluated to choose
the next move. Note that the order of pieces in the table has

55

Line Pattern

540 HHHH

540 CCCC
550 H_HH

560 _H_H

570 H_

580 CC_C

590 C C

600 C

CHAPTER TWO

no significance: What matters is the number of pieces and
blanks. In the third entry, for instance, the sequence H_HH
merely indicates that the row contains one blank and three
human pieces, in any order. No value is assigned to a row that
contains both computer pieces and human pieces because it's
clearly impossible for either opponent to win on that row.

Program Modifications
This game is designed so that the computer plays a nearly
equal balance of offense and defense. If you would like the
computer to play more aggressively, increase the values for of
fensive moves in lines 590 and 600. For a more conservative
game, you can increase the values in lines 560 and 570. With
a little experience, you'll find that a change of just one or two
points in these four lines will make a significant difference in
the computer's move strategy.

3-D Tic-Tac-Toe

100 fullw 2:clearw 2

110 dim b(64),v(64),x(64),m(64,28):gosub 670
120 ' new game

130 clearw 2:color l:print:for s=l to 64:gosub 8
70

140 gotoxy x-1,y:print"\ \";:next
150 for i=l to 64:b(i)=0:x(i)=0:v(i)=0:next:w(l)

=0:mv=0

160 randomize 0:if rnd(l)<.5 then s=int(rnd(1)*6

4)+1:gosub 840:col or 2:goto 370
170 * human moves

180 gosub 840:color 4:print:gotoxy 0,0:prinf'Poi
nt and Click to MOVE"

190 gosub mousexy:mx=int(msx/9):my=int(msy/9.3)
200 sq=0:if msbOl then 190
210 for s=l to 64:gosub 870
220 if y=my-2 and abs(x-mx)<=l then sq=s
230 next:if sq=0 then 190
240 s=sqsgosub 870
250 if b(s)<>0 then 190

260 sx=l:gotoxy x,y:print"H_";:b(s)=1:v(s)=0:gos
ub 520

270 if w(l)>0 then 440

280 * computer moves
290 gosub 840:color 2s print:gotoxy 0,0:print"Ata

ri ST's Move "

300 sx=0sfor s=l to 64:if b(s)>0 or x(s)=0 then

310 else v(s)=0:gosub 520

56

310 next

I 320 s=0:h=0:for i=l to 64
330 if v(i)=h and rnd(l)<.3 and h>0 then h=v(i):

s=i

340 if v(i)>h then h=v(i):s=i

— 350 next

360 if s=0 then gotoxy 0,0:print" DRAM game
";:a*="D"scolor lsw(l)=l: w(2)=2:w(3)=

3:w(4)=4sgoto 460
370 gosub 870sb(s)=5:v(s)=0
380 for i=l to 4:gotoxy x,y:print" *";:sound 1,8

,1,4,10

390 gotoxy x,y:print"C_";ssound 1,8,1,5,10:next:
sound 1,0,0,0,0

400 sx=lsfor i=l to 64:x(i)=0:next:gosub 520
410 if w(l)>0 then 450

420 goto 170
430 ' game over
440 gotoxy 0,0:print"You WIN

"s:a*="H":goto 460

450 gotoxy 0,0:print"Computer WINS ";sa*="C"
460 gotoxy 0,1 sprint"CLICK for new game":
470 for i=l to 4:s=w(i):gosub 870:gotoxy x,y:pri

nt a*;:next:for i=l to 99:next
480 sound 1,8,5,5,10:sound 1,0,0,0,0
490 for i=l to 4:s=w(i):gosub 870:gotoxy x,y:pri

nt" ";snextsfor i=l to 99snext
500 gosub mousexysif msb<>0 then 120 else 470
510 " adjust value array V(64) for computer move

at square s

520 eg=0sJ»lsfor i«l to m(s,0)
530 p=0sfor k»l to 4sp«p+b(m<«,J))iJ-J+lin»«tiqs

0

540 if p=4 or p=20 then for k=0 to 3sw(k+1)=m(s,
j+k-4)snext

550 if p=3 then q=33sgoto 620
560 if p=2 then q=5sgoto 620

— 570 if p=l then q=2:goto 620
580 if p=15 then q=77:goto 620
590 if p=10 then q=6:goto 620
600 if p=5 then q=l:goto 620
610 if sx=l then 620 else 660

620 v(s)=v(s)+q:if b(s)>0 then v(s)=0
630 if sx=0 then 660

640 for k=0 to 3:if b(m(s,j+k-4))=0 then x(m(s,j
+k-4))=1

650 next

660 next:return

_

Games

670 ' load legal win combos into M(64,28)
680 clearw 2scolor Is print" Loading DATA

57

CHAPTER TWO

690 for i=l to 64sm(i,0)=0:next
700 for i=l to 16:a=i*4-3:for j=l to 4sw(j)=a»a»

a+1:next:gosub 820:next
710 for i=l to 4:for j=i to i+48 step 16sn»j
720 for k=l to 4:w(k)=n:n=n+4:next:gosub 820:nex

t:next

730 for i=l to 16:for j=0 to 3:w(j+1)=j*16+i:nex
t:gosub 820snext

740 for i=l to 28sfor j=l to 4sread asw(j)=asnex
tsgosub 820:nextsreturn

750 data 1,21,41,61,2,22,42,62,3,23,43,63,4,24,4
4,64

760 data 1,18,35,52,5,22,39,56,9,26,43,60,13,30,
47,64

770 data 4,19,34,49,8,23,38,53,12,27,42,57,16,31
,46,61

780 data 13,25,37,49,14,26,38,50,15,27,39,51,16,
28,40,52

790 data 1,6,11,16,17,22,27,32,33,38,43,48,49,54
,59,64

800 data 4,7,10,13,20,23,26,29,36,39,42,45,52,55
,58,61

810 data 1,22,43,64,4,23,42,61,13,26,39,52,16,27
,38,49

820 for k=l to 4:l=m(w(k),0)*4+l:m(w(k),0)=m(w(k
),0)+l

830 for p=l to 4:m(w(k),1)=w(p):1=1+1snextsnext:
return

840 color l:mv=mv+l:gosub clrprt:gotoxy 0,2:prin
t"Move # ";mv;sreturn

850 clrprt:gotoxy 0,0:print spc(23);:return
860 ' input s=square to move to, returns x,y as

print position
870 a=int((s-l)/16)ty-a*4+3:b-s-a*16
880 c=int((b-l)/4):y=y+c-2sx»(4-a)*4+c
890 x=x+(b-c*4)*3-ltreturn

900 mouBexyspoke contrl,124:poke contrl+2,0
910 poke contrl+6,0:vdisys(0)
920 msx=peek(ptsout):msy=peek(ptsout+2):msb=peek

(intout)sreturn

58

CHAPTER THREE

Applications
and Education

I- J

Hickory, Dickory,
Dock

Barbara H. Schulak
Version by Kevin Mykytyn and David Florance

Children can learn the concepts of telling time by
relating a digital clock display to a conventional

clock face with this fun, educational program.

"Hickory, Dickory, Dock" offers children an enjoyable way to
learn to tell time. Type in the program and save a copy before
you run it. Before you start to play, select Low Resolution from
the Preferences menu and turn off buffered graphics. If your
ST has the TOS operating system in ROM (Read Only Mem
ory), there may be enough RAM (Random Access Memory)
left to run the program without turning off buffered graphics.

When you run Hickory, Dickory, Dock, the screen will list
five options. Enter a number, 1-5, to choose the option you
want. Four different activities are available. The fourth option,
Practice, lets children practice moving the clock hands before
they start the actual testing. In this option, as the positions of
the clock hands change on the screen, a digital clock display
changes as well. The child can thus see the relationship be
tween the spatial position of hands on a clock face and the
numeric representation of time.

The other three activities test a child's time-telling ability
for hours only, for hours and half-hours, and for five-minute
intervals. When one of these options is chosen, a round clock

-— face and a digital time display will appear on the screen. The
object is for the child to set the clock hands to match the time
shown in the digital display box. The child uses the mouse to

— move the hands and then to enter the answer. After five cor

rect answers have been given, a brief song is played as a re
ward. If three incorrect choices are made, the program
automatically moves the clock hands to the correct position.

_

_

CHAPTER THREE

Desk File Run Edit Debug

"Hickory, Dickory, Dock"offers children a fun way to learn about telling time.

How to Play
Playing is simple and requires only the use of the number
keys (1-5) and the mouse. Beside the clock, in the box in the
lower left corner, you will see a time given in digital form.
Using the left mouse button, move the hands on the clock face
to match this time. Just follow these steps:
• Click with the left mouse button on Hours to move the blue

hours hand.

• Click Minutes to move the red minutes hand.

• When you have set the hands to match the time, click An
swer to enter your answer.

• The ST will let you know if your answer is right or wrong. If
you enter three wrong answers, it will move the hands to the
correct positions for you. If you get five correct answers in a
row, you'll be rewarded with a song.

• Click Quit when you want to return to the main menu.

62

_

_

Applications and Education

Hickory, Dickory, Dock
10 randomize 0s goto 30
20 z=a*.0175sx=int<xc-xr*cos(z))sy=int(yc-yr*si

n(z)):return

30 ch=14:gosub 470:openw 2:fullw 2:clearw 2:ohx
= 130:omx= 130:ohy=75:omy=75

35 color 1,1,1,1,1
40 nr=0sxr=70:yr=60:xc=130:yc=75:gotoxy 7,l:pri

nt "Hickory, Dickory, Dock"
42 gotoxy 11,4:print "COMMAND MENU"
45 gotoxy 0,7:print " 1. Test - hours"
50 print:print " 2. Test - hours and half hou

rs"

60 print:print " 3. Test - five minute interv
als"

70 print:print " 4. Practice":print:print "
5. Quit"

80 k=inp(2):if k<49 or k>53 then 80
90 if k=53 then ch=6:gosub 470:end else if k=5

2 then 250

100 n=k-48:gosub 280
110 hr=int(rnd(l)*12)+1:mn=0:if n=2 then mn=int(

rnd(l)+.5)*30:goto 130
120 if n=3 then mn=int(rnd(1)*12)*5

130 gosub 380:amn=mn:ahr=hr:mn=0:hr=12
140 gosub 340:gosub 420:if k=113 then 30
150 if k=13 then 160

155 goto 140
160 color 2s if amnOmn or ahrOhr then 190

170 nr=nr+l:gotoxy 27,15sprint "Right!":b=lic-5i
gosub 560

180 nw=0:gosub 240:goto 220
190 gotoxy 27,15:print "Wrong!":b=5:c=l:gosub 56

0

200 gosub 240:hr=ahrsmn=amn:nw=nw+l:if nw<>3 the
n 130

U210 gosub 340:for td=l to 4000:next:nw=0:goto 23
0

220 if nr=5 then nr=0:gosub 500
230 for t=l to 500:next:goto 110
240 for td=l to 300:next:sound l,0:gotoxy 27,15:

print " ":return

250 gosub 280

U260 gosub 340:gosub 380:gosub 420:if k=113 then
30 else 260

270 ' draw the clock

280 clearw 2:color 1,5,1,1,1
281 ellipse 151,83,99,83:el 1ipse 151,83,96,80:fi

11 79,30
290 ch=6:gosub 470

63

CHAPTER THREE

300 color 6,4,4,9,2:fill 10,10:fill 200,10
305 color l:ch=7:gosub 470:nr=0:nw=0:for q=l to

12:a=q*30+90:gosub 20
310 x=int(x/8)sy=int(y/8)sif q=ll or q=12 then x

=x-l ~

320 gotoxy x,y:print q:next
322 ch=6:gosub 470:gotoxy 26,0:print " Hours "
324 gotoxy 26,l:print " Minutes"
326 gotoxy 26,2sprint " Quit "
328 gotoxy 28,5s print "ANSWER";

330 xr=xr—7s yr=yr—7:xc=xc+25:yc=yc+5:mn=0s hr=12i
return

340 color l,l,0:linef xc,yc,omx,omy:1inef xc,yc,
ohx,ohy

350 color 1,1,2:a=mn*6+90:gosub 20:linef xc,yc,x
,y:xr=xr/2:yr=yr/2

360 color 1,l,4:omx=x:omy=y:a=hr*30+90+mn/2:gosu
b 20:1inef xc,yc,x,y

370 xr=xr*2s yr=yr*2:ohx=x:ohy=y:return
380 ch=16:gosub 470
385 color 2:gotoxy 2,15:if hr<10 then print " ";

390 q=hr:gosub 410:ch=16:gosub 470:print q*;":";
sif mn<10 then print "0"j

400 q=mn:gosub 410:ch=16:gosub 470:print q$:gosu
b 240s return

410 q*=right*(str*(q),len(str*(q))-l)sreturn
420 k=0sgosub 600s if button=0 then 420
422 if x<226 or x>300 then 420

425 if y<37 and y>31 then mn=mn+5sif mn=60 then
mn=0

430 if y<30 and y>24 then hr=hr+l
440 if hr=13 then hr=l

450 if y<48 and y>42 then k=l13s goto 465
452 if y<74 and y>68 then k=13:goto 465
455 if y<37 and y>24 then 465
460 goto 420
465 return —

470 poke contrl,12:poke contrl+2,1:poke contrl+6
,0

480 poke ptsin,0:poke ptsin+2,ch
490 vdisys (0)sreturn
500 restore 520s for nt=l to 27s read a,b,c
510 sound 1,15,a,b,c*7:sound 1,0s nextssound 1,0:

return __

520 data 8,5,1,8,5,1,8,5,1,10,5,1,10,5,1,10,5,1,
8,5,5

530 data 8,5,1,5,5,2,5,5,1,6,5,2,6,5,1,5,5,5
540 data 5,5,1,3,5,2,3,5,1,10,5,3,8,5,2,8,5,1,1,

6,3

64

_

—•"•

550

-_-

560

570

600

610

620

630

640

650

_

Applications and Education

data 8,5,1,10,5,1,8,5,1,6,5, 1,5,5, 1,3,5, 1,1,
5,6
for a=b to c step 2*sgn(c-b):sound 1,15,a,6
wave 1,1,14,5,5:next:return
poke contrl,124
poke contrl+2,0:poke contrl+6,0
vdisys(0)
x=peek(ptsout):y=peek(ptsout+2)
button = peek(intout)
return

65

Multiple-Choice Test
Generator

C. Regena

Generating test questions is a popular computer
application because a computer can mix up the or
der of questions so that each run is different. "Test

Generator" allows you to create questions for a
multiple-choice test. You can take the test onscreen

or print copies on your printer.

Multiple-choice tests are handy for students to use in their
schoolwork or for adults to brush up on subjects of interest to
them. "Test Generator" gives you a way to make up your own
multiple-choice tests. You can save the questions as a disk file
and load the questions in later. You can print a copy of a test
to be performed on paper, or you can use the computer to
take the test. If you perform the test on the computer, you can
also print that test with your answers and score on the printer.

To generate the multiple-choice test, the computer ran
domly chooses questions from all the possible questions. No
question is repeated. Each question's answers are also printed
in a random order. Therefore, each time you run the program,
the questions appear in a different order and the answers for
each question may be in a different order. If you want to print
ten copies of the test, for example, you can get ten different
variations of the test.

Devising and Editing Test Questions
Test Generator is designed to run in medium resolution on the
80-column screen. Use the Set Preferences option to select me
dium resolution.

The first thing you need to do is create questions for your
test. Run the program; then choose option 1, CREATE NEW
TEST. You will be asked to enter a filename for this set of test
questions. Enter a filename of up to eight characters—for ex
ample, GEOMETRY or HISTORY. Now start entering ques
tions and answers at the prompts. First, enter a question and

66

Applications and Education

press either Return or the Enter key. Next enter the four possi-
~*~ ble answers, one at a time. Finally, enter the number of the

correct answer as you have entered it. For example, 3 indicates
that the third answer is the correct answer.

After you've entered a question and its answers, you may
edit the question as necessary by pressing function keys. To
save the question, press Fl. When you press Fl for the first
question to be saved, you will hear the disk drive. However,
after subsequent questions, the disk will not operate until sev
eral questions have been entered. To stop entering questions,
enter a zero or simply press Return or Enter. After the disk
drive has saved information, you will return to the main menu
screen.

When your test questions are in memory, you may edit
the questions, save them again for a backup copy, print a test,
or perform a test. Once you have created a test (option 1), a
copy of the questions is saved on disk. You may load them by
using option 2 when you want to run the program later.
Before you can perform the other options, you must either cre
ate a test or load a test.

When you edit the questions in memory, each question in
turn appears on the screen with its possible answers and the
correct answer. A list of the function keys and editing options
is displayed. Pressing Fl saves the question and its possible
answers as they are. F2 allows you to change the question. F3
shows the four answers, and you may change any or all of
them. If you want to keep the question or answers as they are,
simply press Return or Enter. Press F4 to change the correct
answer. Whenever you are asked to enter the correct answer,
you will need to input a number from 1 to 4. Press F10 to de
lete the question altogether.

Lines 290-640 contain the subroutine for editing. This
subroutine is called after each question is entered when you
create a test or when you edit the questions in memory. Lines

— 650-710 form a subroutine that enters the number of the cor
rect answer.

Option 4 lets you save the questions in memory. You may
— use it to save a backup copy of the questions or to save test

questions on different disks. Simply enter a filename for the
test, and the computer will save all the questions currently in

— memory.

67

CHAPTER THREE

Taking a Test
The fifth option is to print a hardcopy test on the printer. You
may choose any number of questions to be used in the test, up
to the maximum number of questions in memory. For ex
ample, if you have created a test of 30 questions, you may
choose to print a test containing only 10 of those questions.
LPRINT is the command used to print something on the
printer. If you have long printed lines, you may need to adjust
the printing (by specifying a width or adding spaces) so that
words are not split on the lines. The procedure for printing a
test uses the same code as a test that is being performed, but it
doesn't print the answer chosen and tell whether it is correct
or not. After the test questions are printed, an answer key is
printed as well.

Use option 6 when you want to perform the test on the
computer. Again, you may choose the number of questions
you want for your test. A random question is printed on the
screen with its four possible answers. You need to press 1, 2,
3, or 4 to indicate the correct answer. If your answer is incor
rect, the correct answer is given. You may also choose to print
this test on the printer as you are performing it. The printed
copy shows the questions with their possible answers and the
answers you entered.

How the Program Works
Sequential files are used to save and retrieve information. The
command

OPEN "0,"#2,F$

opens the channel for output or prepares a disk file to save
information. The letter O enclosed in quotation marks stands
for output. I chose to use #2 for any output files. F$ is the file
name which you will be asked to enter when you run the
program.

PRINT #2 prints the information to the disk file. Some
times when you print a list of items, you need to specify the
delimiters between items. In this program it is necessary to put
commas in the list. Line 410 saves the question T$, the four
possible answers in AB$, and the correct answer B. The string
"ZZZ" is used at the end of the questions, and the file is closed
with CLOSE #2 (lines 1090-1100, 1490-1500, and 1560).

68

Applications and Education

_

To load a file or to retrieve the information, the statement
— is

OPEN "I,"#3,F$

This statement opens channel 3 for input. The filename is F$,
which must be a filename for a test that has previously been
saved. INPUT #3 is then used to read the information in the
same order in which it was saved. Again, "ZZZ" is used to
check for the end of input. EOF (end-of-file) is another
method you may prefer to use.

Note: ST BASIC seems to have some problems with file
processing. A problem may occur when you run the program
and load files repeatedly. Extra characters may appear or the
information may get mixed up. Due to the way Atari BASIC
stores variables, you may find it necessary to reload BASIC
and the program after the latter has saved or loaded data from
disk the first time.

The variable N is used to indicate the number of ques
tions that are available. When printing or performing the test,
NT is the number of questions you want in the test. The S$
array is used to prevent repetition of questions. The original
array contains "A" for each element. As a question is chosen,
S$ is changed to "B" so that it will not be chosen again. Lines
1840-1860 randomly choose the question.

Lines 1910-2040 randomly arrange the four answers and
print them. The C array makes sure that answers are not re
peated and that all four answers are used. D is the random
number chosen which will be the correct answer. ANS keeps
track of the answers for the answer key which is printed when
a test is printed. AA$ is the array used to arrange the four
answers.

INP(2) is used rather than INPUT where only one key
needs to be pressed—for example, to enter the answer to the
question. E= INP(2) returns the ASCII code of the key
pressed. If the key pressed is a number from 1 to 4, E must be
49, 50, 51, or 52. If you subtract 48, E will be the actual num
ber pressed. E and EE are used as choices made, and K is used
for the answer chosen. The score is SC, and it is incremented
for each correct answer.

_ 69

CHAPTER THREE

Test Generator

10 REM TEST GENERATOR
20 CLEAR:DEFINT N,B,E,J,K,S
30 DIM T*(50),AB*(50>,B(50),S*(50),A*(4),AA*(4)

,ANS(50)
40 FULLW 2:CLEARW 2:WIDTH 76

50 GOTOXY 4,1
60 PRINT "** MULTIPLE CHOICE TEST **"
70 PRINT:PRINT

80 PRINT "CHOOSE:"

90 PRINT " 1 CREATE NEW TEST"

100 PRINT " 2 LOAD TEST"

110 PRINT " 3 EDIT QUESTIONS IN MEMORY"

120 PRINT " 4 SAVE BACK-UP COPY OF QUESTIONS IN
MEMORY"

130 PRINT " 5 PRINT (HARDCOPY) TEST"
140 PRINT " 6 PERFORM TEST ON COMPUTER"
150 PRINT " 7 END PROGRAM"

160 E=1NP(2)

170 IF E<49 OR E>55 THEN 160

180 EE=E-48:CLEARW 2:GOTOXY 0,0
190 ON EE GOTO 720,1120,1240,1520,1580,1590,2370
200 REM GET 4 ANSWERS

210 L=1:AD*=AB*(NN)

220 FOR J = l TO 3

230 A=INSTR(L,AD«,"/")
240 A*(J)=MID*(AD*,L,A-L)
250 L=A+1

260 NEXT J

270 A*(4)=RIGHT*(AD*,LEN(AD*)-A)
280 RETURN

290 REM EDITING

300 ?:?:? "CHOOSE:"

310 PRINT "Fl —EVERYTHING IS CORRECT; SAVE"
320 PRINT "F2 —CHANGE QUESTION"

330 PRINT "F3 —CHANGE POSSIBLE ANSWERS"

340 PRINT "F4 —CHANGE CORRECT ANSWER"

350 PRINT "F10—DELETE THIS QUESTION"

360 E=INP(2):IF E=196 THEN 640

370 IF E<187 OR E>190 THEN 370

380 ON E-186 GOTO 390,430,490,490
390 PRINT:PRINT "...SAVING..."

400 AB*(K)=A*(l)+"/"+A*(2)+"/"+A*(3)+"/"+A*(4)
410 PRINT #2,T*(K);",";AB*(K>;",";B(K>
420 GOTO 640

430 PRINT:PRINT "QUESTION";K
440 PRINT:PRINT T*(K):PRINT

450 PRINT "ENTER REVISED QUESTION, OR JUST PRESS
<RETURN> FOR NO CHANGES."

460 PRINT:INPUT D*

70

Applications and Education

470 IF LEN(D*)<>0 THEN T*(K)=D*
480 GOTO 300

490 PRINT:PRINT

500 FOR J=l TO 4

510 PRINT J;A*(J)
520 NEXT J:PRINT
530 IF E=190 THEN 620

540 PRINT:PRINT "Press <RETURN> to keep the answ
er"

— 550 PRINT "or enter new possible answer."
560 FOR J=l TO 4

570 PRINT:PRINT J;A*(J)

580 INPUT D*

590 IF LEN(D*)=0 THEN 610

600 A*(J)=D*

610 NEXT J

620 GOSUB 650

630 GOTO 300

640 RETURN

650 PRINT:PRINT "ENTER THE CORRECT ANSWER—1, 2,

3, OR 4";
660 INPUT BB:BB=INT(BB)

670 IF BB>0 AND BB<5 THEN 700
680 PRINT "PLEASE ENTER A NUMBER FROM 1 TO 4. "

690 GOTO 650

700 B(K)=BB

710 RETURN

720 PRINT "CREATE A MULTIPLE CHOICE TEST"

730 ?:?

740 INPUT "ENTER NAME OF TEST FILE: ";F*

750 IF LEN(F*)<>0 THEN 780

760 ?:?"Please enter a name o-f up to 8 character
s. "

770 GOTO 730

780 F*=LEFT*(F*,8):N=0
790 OPEN "0",#2,F*
800 ?:?"You may enter first a question, then -fou

r possible answers."
810 ?"Next indicate the correct answer."

820 ?:?"To stop entering questions, enter 0 or j
ust press RETURN or ENTER."

830 N=N+1:K=N:IF N<51 THEN 870

840 ?:?"This test is designed far up to 50 quest
ions only."

850 ?"You have entered 50 questions."

860 GOTO 1090

870 ?:?:? "ENTER QUESTION";N
880 INPUT T*(N)

B90 IF T*(N)="0" OR LEN(T*(N))=0 THEN 1020

900 PRINT:PRINT

71

CHAPTER THREE

910 PRINT "NOW ENTER POSSIBLE ANSWERS."

920 FOR J=l TO 4

930 PRINT:PRINT "ANSWER";J;":";
940 INPUT A*(J)

950 IF LEN(A*(J))<>0 THEN 980

960 PRINT "PLEASE ENTER AN ANSWER."

970 GOTO 930

980 NEXT J

990 GOSUB 650

1000 GOSUB 300

1010 IF E=196 THEN 870 ELSE 830

1020 N=N-1

1030 ?:?"You have entered";N;"questions."
1040 ?:?"CHOOSE:"

1050 ?"F1—ENTER MORE QUESTIONS"
1060 ?"F2—STOP ENTERING QUESTIONS"

1070 E=INP(2):IF E=187 THEN 830

1080 IF E01S8 THEN 1070

1090 PRINT #2,"ZZZ"
1100 CLOSE #2

1110 GOTO 70

1120 PRINT "LOAD A PREVIOUSLY CREATED TEST"

1130 ?:?:? "ENTER NAME OF TEST."

1140 INPUT F*

1150 IF LEN(F*)=0 THEN 1130

1160 F*=LEFT*(F*,8)
1170 OPEN "I",#3,F*
1180 CLOSE #3:OPEN "I",#3,F*
1190 N=l

1200 INPUT #3,T*(N)
1210 IF T*(N)="ZZZ" THEN N=N-l:CLOSE #3:G0T0 40
1220 INPUT #3,AB*(N),B(N)
1230 PRINT N:N=N+l:GOTO 1200

1240 PRINT "EDIT THE TEST IN MEMORY"

1250 IF NO0 THEN 1290

1260 ?:?"You need to create a test or load a test
II

1270 ?"before you can edit or save questions."
1280 GOTO 70

1290 PRINT:PRINT

1300 INPUT "ENTER NAME OF NEW TEST FILE: ";F*
1310 IF LEN(F*)<>0 THEN 1340

1320 PRINT "Please enter a file name of up to 8 c
haracters."

1330 GOTO 1290

1340 F*=LEFT*(F*,8)
1350 OPEN "0",#2,F*
1360 IF EE=4 THEN 1530

1370 K=l

71

_

_

_

_

Applications and Education

1380 ?:? "To keep a question or an answer without
changing it,"

1390 ?"you may press <RETURN> or <ENTER>."
1400 FOR NN=1 TO N
1410 PRINT:PRINT:PRINT

1420 T*(K)=T*(NN>:PRINT T*(K)

1430 GOSUB 210

1440 FOR J=l TO 4:PRINT J;" ";A*(J):NEXT J
1450 B(K)=B(NN):PRINT "ANSWER = ";B(K)
1460 GOSUB 300

1470 IF E=187 THEN K=K+1

1480 NEXT NN

1490 PRINT #2,"ZZZ"
1500 CLOSE #2

1510 N=K-l:GOTO 40

1520 PRINT "SAVE ANOTHER COPY OF THE QUESTIONS":G
OTO 1250

1530 FOR K=l TO N:PRINT K

1540 PRINT #2,T*(K);",";AB*(K);",";B(K>
1550 NEXT K

1560 PRINT #2,"ZZZ":CLOSE #2
1570 GOTO 40

1580 PRINT "PRINT A TEST":GOTO 1610
1590 PRINT "PERFORM A MULTIPLE CHOICE TEST"
1600 SC=0

1610 IF N>0 THEN 1660
1620 ?:?"You need to create test questions or loa

d a test"

1630 ?"before you can print a test or perform the
quiz."

1640 GOTO 70

1650 REM

1660 ?:?"There are";N;"questions available."
1670 FOR J=l TO N:S*(J)="A":NEXT J
1680 ?"How many do you want for this test?"
1690 INPUT NT

1700 IF NT=0 THEN 40

1710 IF NT<=N THEN 1740
1720 ?:?"Please enter a number from 1 to";N

1730 GOTO 1660

1740 IF EE=4 THEN E=1:G0T0 1820
1750 ?:?"Do you want a hardcopy of the test"
1760 ?"as you are performing it?"
1770 ?" 1 Print test on printer"
1780 ?" 2 Perform test on computer only"

1790 E=INP(2)

1800 IF E<49 OR E>50 THEN 1790

1810 E=E-48

1820 FOR NPROB=l TO NT

1830 CLEARW 2:G0T0XY 0,0

73

CHAPTER THREE

1840 RANDOMIZE 0

1850 X=INT(N*RND)+1

1860 IF S*(X)="B" THEN 1850

1870 PRINT T*(X):PRINT:S*(X)="B"

1880 NN=X:GOSUB 210

1890 IF E=2 THEN 1910

1900 LPRINT:LPRINT:LPRINT T*(X>:LPRINT

1910 FOR J=l TO 4:C(J)=1:NEXT J

1920 D=INT(4*RND)+1:ANS(NPR0B)=D
1930 AA*(D)=A*(B(X)):C(B(X))=0

1940 FOR J=l TO 4

1950 IF J=D THEN 1990

1960 F=INT(4*RND)+1

1970 IF C(F)=0 THEN 1960

1980 AA*(J)=A*(F):C(F)=0

1990 NEXT J

2000 FOR J=l TO 4

2010 PRINT STR*(J);". ";AA*(J)
2020 IF E=2 THEN 2040

2030 LPRINT STR*(J);". ";AA*(J)
2040 NEXT J

2050 IF EE=4 THEN 2210

2060 PRINT:PRINT
2070 REM

2080 K=INP(2)

2090 IF K<49 OR K>52 THEN 2080

2100 K=K-48:PRINT K

2110 IF E=l THEN LPRINT "ANSWER CHOSEN: ";K
2120 IF K=D THEN 2170

2130 PRINT "NO, THE ANSWER IS NUMBER ";STR*(D);".
II

2140 IF E=2 THEN 2190

2150 LPRINT "NO, THE ANSWER IS NUMBER";STR*(D);".
II

2160 GOTO 2190

2170 PRINT "CORRECT":SC=SC+1

2180 IF E=l THEN LPRINT "CORRECT"
2190 PRINT:PRINT "PRESS <RETURN>."

2200 K=INP(2):IF K<>13 THEN 2200
2210 NEXT NPROB

2220 CLEARW 2:GOTOXY 0,0
2230 IF EE=4 THEN 2310

2240 PRINT "OUT OF";NT;"QUESTIONS,"
2250 ?:?"YOUR SCORE IS";SC:PRINT
2260 IF E=2 THEN 70

2270 LPRINT:LPRINT

2280 LPRINT "OUT OF";NT;"QUESTIONS,"

74

__

Applications and Education

2290 LPRINT "YOUR SCORE IS";SC
2300 GOTO 70

2310 LPRINT CHR*(12)
2320 LPRINT "ANSWER KEY":LPRINT
2330 FOR NP=1 TO NT
2340 LPRINT STR*(NP);". ";ANS(NP)
2350 NEXT NP

2360 GOTO 40

2370 END

75

Memory Trainer
C. Regena

Want to improve your memory skiiis? "Memory
Trainer" progressively increases a sequence of

numbers or letters for you to memorize and type
back. See how many characters you can repeat
correctly. This program works in all resolution

modes—low and medium with a color RGB moni
tor, and high with a monochrome monitor.

"Memory Trainer" is a painless way for adults and children
alike to practice their skills of concentration and retention.
When you run the program, you will have a choice of working
with either letters or numbers. If you choose letters, be sure
the Caps Lock key is toggled so that it produces capital letters.
The computer flashes one random character on the screen.
After the character disappears, type in what you have seen. If
you're correct, the computer prints the same character and
then adds another random character to the series. Type both
of these characters in the correct order. The process continues
with one new random character being added each time you
get the series correct. If you miss, the computer backs up one
character. The ST also keeps track of the number of characters
in the longest sequence that you have entered correctly.

Making Choices
You may choose the length of time the sequence appears on
the screen before it's erased. Choose a number from 1 through
9, where 1 is fast and 9 is slow (lines 280-340). The number
you press, E2, is then used as a delay factor in line 480.

Lines 170-270 allow you to choose either letters or num
bers. The variable C is the number of possible characters,
either 26 letters or ten numbers. The variable CI is the start
ing ASCII code number. Line 370 uses these variables to
choose the random character that will be added to the sequence.

The array A$ keeps track of the characters in the se
quence. The program is written to allow a sequence of 99
characters. If you have a good memory, you may increase this

76

I .'

_

_

number by changing the DIMension statement in line 30 and
the limit in lines 690, 900, and 920. Most people seem to have
a short-term memory limit of 5 to 9 digits for a random se
quence they have seen one time. This program is a "trainer"
because, each time one character is added, all previous charac
ters stay the same. Within a few minutes you may be able to
remember a sequence of 30-40 characters.

You may want to add a section of code to this program to
use an entirely different sequence of random characters each
time, instead of only adding a random character at the end
each time.

Line 40 sets the width of the screen at 37 so that 37 char
acters are printed on a line. Without a width setting, the print
ing can go off the edge of the window. The PRINT statement
will not print beyond the width setting, but INPUT can go be
yond the edge of the window. In that case, you wouldn't
know what you were typing. To keep your printing on the
screen, INP(2) is used to receive a keyboard press. Then the
character is printed. To correct your typing, you may press
either the Backspace key or the Undo key. This will erase ev
erything that you've typed so far, and you can then retype the
sequence.

SOUND statements are used to play a prompting beep, to
play an arpeggio for a correct answer, and to play an uh-oh
sound for an incorrect answer. SOUND 1,0 turns off the tones.

If you enter an incorrect answer, the correct sequence will
be displayed. You may then press the space bar to continue. If
you prefer to stop, press the function key F10, and your score
will be displayed.

Memory Trainer
10 REM MEMORY TRAINER
20 DEFINT C,E,N
30 DIM A*(99)

40 FULLW 2:CLEARW 2:WIDTH 37
50 GOTOXY 7,1
60 PRINT "** MEMORY TRAINER **"
70 PRINT:PRINT

U80 PRINT "The computer will flash a series of"
90 PRINT "letters or numbers on the screen."
100 PRINT
110 PRINT "When they clear, you type in the"
120 PRINT "series in the same order, then"
130 PRINT "press RETURN or ENTER."

77

Applications and Education

CHAPTER THREE

140 PRINT
150 PRINT "Try to remember more and more!"
160 PRINT:PRINT

170 PRINT "Choose: 1 Letters"

180 PRINT TAB(10);"2 Numbers" —

190 PRINT

200 E=INP(2)

210 IF E<49 OR E>50 THEN 200

220 E=E-48

230 IF E=l THEN C=26:C1=65 ELSE C=10:C1=48

240 IF E=2 THEN PRINT "NUMBERS":GOTO 270

250 PRINT "LETTERS—Please use Caps Lock to"
260 PRINT TAB(10);"use capital letters."
270 PRINT:PRINT

280 PRINT "Choose how long to see the sequence—
•I

290 PRINT "Press a number from 1 to 9."

300 PRINT "1 is FAST; 9 is SLOW"
310 E2=INP(2)

320 IF E2<49 OR E2>57 THEN 310

330 E2=E2-48

340 PRINT STR*(E2)

350 N=1:NN=1

360 RANDOMIZE 0

370 A*(N)=CHR*(C1+INT(C*RND))
380 CLEARW 2:WIDTH 35

390 AD*="":COLOR 5

400 GOTOXY 0,4:PRINT
410 FOR CC=1 TO N

420 FOR CD=1 TO 500:NEXT CD
430 PRINT A* (CO;
440 AD*=AD*+A*(CC)

450 NEXT CC

460 PRINT

470 COLOR 1

480 FOR CD=1 TO E2*300:NEXT CD

490 GOTOXY 0,5:PRINT SPACE*(N)
500 SOUND 1,15,1,6,5
510 SOUND 1,0
520 GOTOXY 0,7:PRINT
530 B*=""

540 FOR CD=1 TO N

550 E=INP(2)

560 IF E=8 OR E=225 THEN CLEARW 2:GOTO 500 _
570 IF E>96 THEN E=E-32

580 PRINT CHR*(E);
590 B*=B*+CHR*(E)

600 NEXT CD ,—.

610 IF AD*OB* THEN 710

620 SOUND 1,15,1,4,3

78

.-

Applications and Education

U630 SOUND 1,15,5,4,3
640 SOUND 1,15,8,4,31,15,8,4,3
650 SOUND 1,15,1,5,10
660 SOUND 1,0
670 IF N>NN THEN NN=N

680 N=N+1

690 IF N>99 THEN 830

700 GOTO 370

710 GOTOXY 0,4:PRINT
720 COLOR 5

730 FOR CD=1 TO N:PRINT A*(CD);:NEXT CD
740 SOUND 1,15,5,3,10
750 SOUND 1,15,1,3,10
760 N=N-1:IF N<1 THEN N=l

770 SOUND 1,0
780 COLOR 1:WIDTH 37:GOTOXY 0,14
790 PRINT "PRESS THE SPACE BAR TO CONTINUE."

800 PRINT "PRESS F10 TO STOP."

810 E=INP(2):IF E=196 THEN 830

820 IF E=32 THEN 380 ELSE 810

830 CLEARW 2

840 GOTOXY 1,0
850 PRINT "** MEMORY TRAINER **"

860 PRINT:PRINT

870 PRINT "YOU ENDED WITH";N+l;"IN THE SEQUENCE
II

880 PRINT

890 PRINT "YOUR HIGHEST SCORE IS";NN

900 IF N<99 THEN 930

910 PRINT

920 PRINT "THIS PROGRAM ONLY GOES TO 99."

930 PRINT:PRINT

940 PRINT "PRESS Fl TO START OVER"

950 PRINT TAB(7);"F10 TO END"
960 E=INP<2):IF E=187 THEM &<*

970 IF E<>196 THEN 960

980 PRINT:PRINT "END"

990 END

U

_

_

U

_

79

Softball Statistics
Roger Felton

Version by George Milier

"Softball Statistics" makes it easy to keep track of
all the individuai and team results for yourfavor

ite team. You can enter data for each player's
times at bat, hits, runs, and so on. The program
automatically computes batting averages, stores

cumulative results on disk as the season pro
gresses, generates formatted printouts with sorted

rankings for all players, and more. It runs in
medium- or high-resoiution mode on any Atari ST

with TOS in ROM. An 80-coJumn printer is
optional but recommended.

What's the worst position on a softball team? Catchers have to
squat in an uncomfortable stance for an hour or more and
duck hazardous foul balls. The pitcher has to duel with
mighty sluggers and dodge powerful line drives. Whoever's
playing first base has to stretch like a rubber band to nab way
ward throws, while keeping at least one toe on the base. And
outfielders have to scoop up bouncing grounders with the
knowledge that no one is backing them up except the fence.

But as demanding as these positions are, another one may
be worse—that of team statistician. Keeping track of your
teammates' performance is often a laborious, thankless job.
Sometimes the statistician is a reserve player or friend of the
team who doesn't even get to play. Caged in the dugout, the
statistician must document every hit, run, and walk, and boost
team morale by contributing lively chatter. After the game, the
statistician has to spend hours punching numbers into a calcu
lator to figure out everyone's batting average.

"Softball Statistics" makes the job easier. After each
game, the program prompts you to enter vital stats for each
player. Then it automatically calculates the batting averages
and displays sorted rankings on the screen, or it can print
them out. It can also print sorted rankings for hits, runs, and
runs batted in (RBIs). You can merge these game statistics with
data for all previous games, and you can sort updated season

80

' .

U

U

_

_

Applications and Education

results by category and print them, too. Finally, the program
lets you store the cumulative statistics on disk.

If you're a fan of professional or Little League baseball,
you can use Softball Statistics to follow the fortunes of your
favorite team. With modifications, it could be adapted to a
wide variety of sports.

Preparing the Program
Be extra careful when you type Softball Statistics. A mistyped line
can yield inaccurate results even if the program runs without er
rors. Save a copy on disk for safekeeping before running it the
first time. Softball Statistics runs in medium- or high-resolution
mode on any Atari ST with the TOS operating in ROM.

Before you use the program, you'll need to enter your
team's roster. Softball Statistics can handle a team with a max

imum of 20 players. It stores this information in DATA state
ments as part of the program itself. If you're keeping stats for
more than one team, keep a separate copy of the program for
each team.

Note: Due to the way Atari BASIC stores variables, you
may find it necessary to reload BASIC and the program after
the latter has saved or loaded data from disk the first time.

The DATA statements for player information begin at line
2300. The statements must conform to a predefined format: a
two-digit jersey number followed by a space, then the player's
first or last name. Precede one-digit jersey numbers with a
zero—for example, 08 for 8. Names can be any length, but
only the first seven characters will appear on the printout.
Each entry is separated by a comma. Here's an example:
2300 DATA 23 LEE,17 JACKSON,33

JOHNSTON,10 LONGSTREET,04
PICKETT

In the output, JOHNSTON and LONGSTREET would ap-
— pear as JOHNSTO and LONGSTR.

Here, the program is listed with dummy entries in the
DATA statements (such as 44 Jim and 10 PLAYERX). Substi
tute your own team members for these entries. If your team
has fewer than 20 players, leave the remaining dummy entries
in the DATA statements, but substitute the name PLAYERX.
The program must have 20 entries to function, and it ignores the
PLAYERX entries.

81

CHAPTER THREE

Finally, put your own team's name in the TM$ string
statement at line 190. You're ready to run.

Important note: You should avoid tinkering with the
player-name DATA statements once you've started using the
program. Otherwise, you'll have problems when the program
attempts to compute cumulative season totals. If you drop a
player from the roster and replace him or her with another
player, the new player's totals will contain the old player's re
sults as well. To drop a player, substitute a PLAYERX dummy
entry at that position in the DATA statement. Of course, this
means that the dropped player's results will no longer be in
cluded in the team totals for the season. If you want to retain
a dropped player's results in the team totals, leave the player's
name in the DATA statement and enter 999 in response to all
input prompts for that player's stats following subsequent
games (see below).

Compiling Statistics
Once the roster is entered, you can run the program. It begins
by asking for statistics for individual games. The first prompt
asks

Who did you play?

Answer with the opposing team's name—such as Ham's
Diner—and press Return. The next prompt reads

Enter your score and their score
(separated by a comma):

For instance, if your team lost by a score of 9 to 5, you'd
type 5,9 and press Return.

The program now begins asking for individual player sta
tistics. If the first player name on your roster is Kevin, the pro
gram prints

Kevin's statistics for this game:

It then prompts you, one by one, to enter the number of times
at bat, runs scored, hits, runs batted in (RBIs), doubles, triples,
home runs, and walks. At each prompt, type the appropriate
number and press Return. After the last prompt, the program
asks

Is everything OK (Y/N)?

82

Applications and Education

If you made any mistakes while entering the current play-
— er's stats, press N. You'll be given a chance to reenter the

numbers.

When all the player's statistics are correct, press Y at the
— prompt. The program continues to the next player on the ros

ter and repeats the cycle.
If a certain player missed a game, type 999 at the first

— prompt. This automatically enters zeros for all of that player's
stats and skips to the next player. In fact, entering 999 at any
prompt inputs zeros for all of a player's remaining game stats.

Individual Printouts

After you type the last statistic for the last player, the program
will print the message WORKING while it sorts the data. (The
WORKING message appears at other points in the program
during sorts, too, since the sort routine is written in BASIC and
is not particularly fast.) In a few moments, the program says
Do you want a printout of the game's

stats (Y/N)?

Type Y for yes or N for no. If you press N, the program
asks if you want to input data for another game. If you press
Y, it asks

To screen or printer (S/P)?

Type S or P. Softball Statistics then prints the individual
stats for all team members for that game, sorted in descending
order by batting averages (Figure 1). To pause the printout,
press the left mouse button. You can resume after pausing by
pressing the space bar.

The program then asks
Do you want a sorted printout of hits,

RBIs, and run leaders (Y/N)?

Again, type Y for yes or N for no. If you type N, the pro
gram asks whether you want to input stats for another game.
If you answer Y, it asks again whether you want the output
directed to the screen or printer. It then prints sorted rankings
for the various slugging categories for that game (Figure 2). As
before, you can stop the output by pressing the left mouse
button and restart it by pressing the space bar.

83

CHAPTER THREE

Figure 1. Printout of Team Game Stats

ROSTER IS SORTED BY BATTING AVERA6E

i PLAYER AB RUNS HITS RBI 2B 3B HR BB AVG

09 MARTY h 2 r T

J t i 0 0.833

03 JOHN
c
J 2 4 7 % 1 1 0.800

55 MIKE 4 1 3 1 1 0 1 0 0.750

44 JIM 5 4 - 1 2 0 0 0 0.600

08 KEN 4 i 2 1 1 1 0 0 0.500

08 BOB 6 "t 7 2 7 0 0 2 0.500

22 PETE
c

1 7 7 0 0 0 0 0.400

07 BILL
C

J 1 7
i. 0 1 0 0 0 0.400

06 BARRY 6 2 2 3 1 0 0
7

0.333

TOTALS 46 17 26 12 12 2
7

6 0.565

Figure 2. Printout of Slugging Stats

HITS SORT: RBIS SORT: RUNS SORT:

1 PLAYER REIS t PLAYER RUNS

09 MARTY 7 44 JIB 4

03 JOHN 7 08 BOB •?

22 PETE 7 03 JOHN 2

08 BOB 2 06 BARRY 2

44 JIM i 09 MARTY 2

55 MIKE
i 55 MIKE 1

08 KEN i 08 KEN 1

07 BILL 3 22 PETE 1

06 BARRY 0 07 BILL 1

TOTAL RBIS 12 TOTAL RUNS 17

1 PLAYER HITS

09 MARTY
r

J

03 JOHN 4

55 MIKE 3

44 JIM 3

03 BOB 1

06 BARRY
n

08 KEN ?

22 PETE 2

07 BILL 7

TOTAL KITS £u

Finally, the program asks
Do you want to input stats from another

game (Y/N)?

Generally, you'll type N at this prompt unless you're en
tering the results of more than one game. If you type Y, the
program repeats the entire process described above.

84

_

_

_

_

u

Applications and Education

Season Totals

Softball Statistics makes it easy for you to tabulate running to
tals for the entire season by storing game results on disk. After
you've entered and viewed the stats for the most recent game,
the program asks
Would you like to merge in data for the

year (Y/N)?

The first time you run Softball Statistics, of course, you
won't have any previous data on disk. Answer N and skip to
the next prompt. During subsequent runs, answer Y to merge
in data for the year. The program then requests a filename for
the disk data file and merges these existing stats with the re
sults you've entered for the latest game or games.

Season totals are then computed automatically, and the
program asks
Do you want a printout of the year's

stats (Y/N)?

If you answer Y, the program asks if you want output di
rected to the screen or printer, and then prints season totals
for all players. This printout includes the team's wins/losses
record and sorts players in descending order by batting aver
ages (Figure 3).

Figure 3. Printout of Season Totals

STATISTICS FOR T -iE YEAR-

RECORD FOR THE YEAR : WINS 2 LOSSES:1

ROSTER IS SORTED BY BAT' IN!i ftVEF AGE

I PLAYER AB
r

UNS H TS RB! 2| 38

03 JOHN 16 10 11 11 j 4

06 BARRY 18 12 11 8 u 1

07 BILL 17 10 IS 7 3 z

55 MIKE 18 13 10 10
r

J
j

44 JIM 18 9 9 7 n

2

08 BOB 17 12 3 7 4 t

09 MARTY 17 10 8 1? 4
n
L

22 PETE 17 7 A 4 j. 1

08 KEN 17 6 6 7 3 J

TOTALS 155 36 79 71 36 18

HR

1?

8 AVG

7 0,688
r

0.611

7 0.58S

4 0.556
7 3.500

i 0.471

4 3.471
1

0.353

4 0.353

8 0.510

85

CHAPTER THREE

Afterward, the program asks whether you want sorted
printouts for hits, RBIs, and runs, again based on season totals
(these charts resemble those in Figure 2). Finally, the program
gives you the opportunity to save the updated data file on
disk until the next game.

If you typed N after the previous prompt, the program asks
Do you want to save the data (Y/N)?

If you answer Y, the program asks for a filename for the
updated data file, saves the file, and then ends.

Softball Computing
If you're interested in programming, you can learn a lot by
studying Softball Statistics. It's written in straight BASIC with
no machine language. In fact, the input and output routines
beginning at lines 2350 and 2470 are general enough to be
adapted to your own programs.

You don't have to be a programmer, though, to appreciate
Softball Statistics. If you're a softball statistician, no longer do
you have the worst position on the team. Maybe it's the
shortstop....

Softball Statistics

10 TITLE*=" Softball Statistics "+CHR*<0)

20 LP*=SPACE*<2)+"# PLAYER"+SPACE*(4>+"AB"+SPAC

E*<3>

30 LP*=LP*+"RUNS "+SPACE* <2) + "HITS"+SPACE* (3) + "R

BI"+SPACE*<3)

40 LP*=LP*+"2B"+SPACE* <4) + "3B "+SPACE* (4) + "HR "+S

PACE* (4) + " BB"+SPACE* (4) + "AVG "

50 GOSUB CLEARIT

60 IF PEEKCSYSTAB+0) <> 4 THEN 140

'SOFTBALL STATISTICS'"

REQUIRES A MEDIUM OR HI RESOLUTION"

SCREEN.":PRINT

PLEASE RESET RESOLUTION BEFORE"

CONTINUING."

70 PRINT

80 PRINT

90 PRINT

110 PRINT

120 PRINT

130 END

140 GOSUB CLEARIT:GOSUB TITLEBAR

150 D5=5

160 D6=2

170 PL=20

180 DIM B(9),CC<20),IN(21),ST<8),RT<20,8),TT<20,
8),F*<8),NA*<20),R*<21>

190 TM*="Sundogs"

200 C*="0000"

86

_

_

250 READ NA*<J)

260 NA*(J)=MID*(NA*<J),1,10)
270 NEXT J

280 FOR J=l TO PL

290 R*<J)=MID*(NA*<J),1,LEN(NA*(J)))+SPACE*(10-L
EN(NA*(J)))

300 FOR 1=1 TO 8

310 TT(J,I)=0
320 ST <I)=0

330 NEXT I

340 NEXT J

350 GOSUB CLEARIT:GOTOXY 5,10:PRINT "Do you want
to:":PRINT

360 PRINT SPACE*<20);"1) Enter new statistics."
365 PRINT SPACE*(20);"2> Review disk file"
370 A = INP<2)

380 IF A = ASCC'l") THEN 410

390 IF A = ASC("2") THEN 3530

400 GOTO 370

410 GOSUB CLEARIT:PRINT "GAME STATISTICS"

420 PRINT:PRINT "Who did you play"
430 INPUT OT*

440 PRINT:PRINT "Enter your score and their scor
e (separated by a comma)"

450 INPUT YS,TS
460 W=W+ABS(YS >TS)

470 L=L+ABS(TS >YS)

480 FOR J=l TO PL

490 IF MID*(NA*(J), 4, 7)< VPLAYERX" THEN 520
500 R*(J)=R*(J)+"0000000000000000000000000000000

00.000"

510 GOTO 730

520 GOSUB CLEARIT

530 PRINT MID*(NA*(J),4,LEN(NA*(J)));"'s statist
ics for this game:"

540 FOR 1=1 TO 8

550 B(I)=0

560 PRINT F*(I);TAB(14);
570 INPUT B(I)

580 IF LEN(STR*(B(I)))>=D5 THEN 550

590 IF B(I)<>999 THEN 640

_

_

_

Applications and Education

210 FOR 1=1 TO 8

220 READ F*(I)

230 NEXT I

240 FOR J=l TO PL

600 FOR K=I TO 8

610 B(K>=0

620 NEXT K

630 1=8

640 NEXT I

87

CHAPTER THREE

650 PRINT:PRINT"Is everything OK (Y/N) ?" —
660 A* = CHR*(INP(2))

670 IF A* = "N" OR A* = "n" THEN 520

680 GOSUB BUILDR __^_
690 FOR 1=1 TO 8

700 RT(J,I)=RT(J,I)+B(I)
710 TT(J,I)=TT(J,I)+B(I)
720 NEXT I

730 NEXT J

740 GOSUB WORKING

750 MM=0

760 FOR 1=1 TO 8

770 FOR J=l TO PL
780 ST(I)=ST(I)+TT(J,I)

790 NEXT J

800 B(I)=ST(I)

810 NEXT I

820 R*(J)=""

830 GOSUB BUILDR

840 TT*=R*(J)

850 GOSUB AVERAGE:GOSUB CLEARIT

860 PRINT "Do you want to input statistics from
another game (Y/N)?"

870 60SUB GETKEY

880 IF A* = "Y" OR A* = "y" THEN 280
890 GOSUB CLEARIT

900 PRINT "Would you like to merge in data for t
he year (Y/N)?"

910 GOSUB GETKEY

920 IF A* = "N" OR A* = "n" THEN 960

930 GOSUB CHECKFILE

940 W=SW+W

950 L=SL+L

960 GOSUB WORKING

970 FOR J=l TO PL

980 FOR 1=1 TO 8
990 IF A*="N" OR A*="n" OR MID*(NA*(J),4,7)="PLA

YERX" THEN 1040

1000 B(I)=VAL(MID*(R*(J),11+(I-1)*4,4> >

1010 B(I)=RT(J,I)+B(I)
1020 RT(J,I)=B(I)
1030 GOTO 1050

1040 B(I)=RT(J,I)

1050 ST(I)=0

1060 NEXT I

1070 R*(J)=MID*(R*(J>,1,10)

1080 GOSUB BUILDR

1090 NEXT J

1100 MM=1

1110 FOR 1=1 TO 8

88

_

_

Applications and Education

1120 FOR J=l TO PL

1130 ST(I)=ST(I)+RT(J,I)
1140 NEXT J

1150 B(I)=ST(I)

1160 NEXT I

1170 R*(J)=""

1180 GOSUB BUILDR

1190 TT*=R*(J)

1200 GOSUB CLEARIT

1210 PRINT "Do you want a printout of the year's
statistics (Y/N)?"

1220 GOSUB GETKEY

1230 IF A* = "N" OR A* = "n" THEN 1260

1240 GOSUB WORKING

1250 GOSUB AVERAGE:GOSUB CLEARIT

1260 PRINT "Do you want to SAVE the data (Y/N)?"
1270 GOSUB GETKEY

1280 IF A* = "Y" OR A* = "y" THEN 1300
1290 END

1300 GOTO WRITEFILE

1310 '

1320 SHELL:

1330 FOR J=l TO PL

1340 IN(J)=J

1350 CC(J)=VAL(MID*(R*(J),BB,E))
1360 NEXT J

1370 FOR J=PL-1 TO 1 STEP -1

1380 FOR 1=1 TO J

1390 IF CC(IN(I))>CC(IN(I+1)) THEN 1430
1400 TE=IN(I)

1410 IN(I)=IN(I+1)

1420 IN(I+1)=TE

1430 NEXT I

1440 NEXT J

1450 RETURN

1460 '

1470 BUILDR:

1480 IF B(1)=0 THEN 1510

1490 IF B(3)=0 THEN 1510

1500 GOTO 1540

1510 B(9)=0

1520 AV*="0.000"

1530 GOTO 1550

1540 B(9)=INT(B(3)/B(1)*1000+.5)/1000+.0001
1550 FOR 1=1 TO 8

1560 B*=STR*(B(I))

1570 B*=MID*(C*,1,D5-LEN(B*))+MID*(B*,D6,LEN<B*>)
1580 R*(J)=R*(J)+B*

1590 NEXT I

1600 IF B(9)=0 THEN 1660

89

CHAPTER THREE

1610 AV*=STR*(B(9))

1620 IF MID*(AV«,1,1)<>" " THEN 1640

1630 AV*=MID*(AV*,2,6)

1640 IF MID*(AV*,1,1)<>"." THEN 1660

1650 AV*="0"+AV*

1660 R*(J)=R*(J)+MID*(AV*,1,5)
1670 RETURN

1680
r

1690 AVERAGE:

1700 BB=43

1710 E=5

1720 GOSUB SHELL

1730 IF MM=1 THEN 1770

1740 GOSUB CLEARIT

1750 PRINT "Do you want a printout of the game's
statistics (Y/N)?"

1760 GOSUB GETKEY

1770 IF «* = »n" OR A* = "n" THEN 1810

1780 GOSUB PRINTOPT

1790 IF DE = 1 THEN GOSUB SCREENPRNT:GOTO 1810

1800 IF DE =2 THEN GOTO LINEPRNT

1810 RETURN

1820
7

1830 WORKING:

1840 PRINT

1850 PRINT " WORKING..."

1860 RETURN

1870
J

1880 PRINT

1890 PRINT "Do you want sorted printouts of hits,
RBI's, and run leaders (Y/N)?"

1900 GOSUB GETKEY

1910 IF A* = "N" OR A* = "n" THEN 1940

1920 GOSUB PRINTOPT

1930 GOTO 1950

1940 RETURN

1950 GOSUB WORKING

1960 BB=19

1970 E=4

1980 GOSUB SHELL

1990 1=3

2000 IF DE = 1 THEN GOSUB TOSCREEN ELSE GOSUB TOL

INEPTR

2010 BB=23

2020 GOSUB SHELL

2030 1=4

2040 IF DE = 1 THEN GOSUB TOSCREEN ELSE GOSUB TOL

INEPTR

2050 BB=15

2060 GOSUB SHELL

90

u

Applications and Education

2070 1=2

2080 IF DE = 1 THEN GOSUB TOSCREEN ELSE GOSUB TOL

INEPTR

2090 RETURN

2100 '

2110 GETKEY:

2120 A* = CHR*(INP(2))

2130 IF A* = "N" OR A* = "n" OR A* = "Y" OR A* =

2140 RETURN

2150 '

2160 PRINTOPT:

2170 PRINT

2180 PRINT "To screen or printer (S/P)?"
2190 A* = CHR*(INP(2)>

2200 IF A* = "S" OR A* = "s" THEN DE = 1: GOTO 222

0

2210 IF A* = "P" OR A* = "p" THEN DE = 2 ELSE 219
0

2220 RETURN

2230 '

2240 CLEARIT:

2250 CLEARW 2:FULLW 2:GOTOXY 0,0
2260 RETURN

2270 '

2280 DATA Times at Bat,Runs,Hits,RBI's,Doubles,Tr
iples,Home Runs,Walks

2290 REM LIST PLAYERS BY NUMBER & NAME

2300 DATA 01 Kevin,02 Tom,03 Patrick,04 Eddie,05
Gregg

2310 DATA 06 George,07 David H.,08 David F.,09 Se
lby,10 Mark

2320 DATA 11 Neal,12 Byron,13 Paul,14 John,15 Leo
n

2330 DATA 16 David K,17 Mike,18 PLAYERX,19 PLAYER
X,20 PLAYERX

2340 '

U 2350 REM INPUT ROUTINE
2360 CHECKFILE:

2370 ON ERROR GOTO 2600

2380 GOSUB CLEARIT

2390 PRINT"Name for data file";:INPUT FF*
2400 OPEN "I",#1,FF*
2410 INPUT #1,SW,SL
2420 FOR J=l TO PL

2430 INPUT #1,R*(J)
2440 R*(J)=MID*(NA*U> ,1,LEN(NA*(J)))+SPACE* <10-L

EN(NA*(J)))+R*(J)

2450 NEXT J:CLOSE #1:RETURN
2460 '

91

CHAPTER THREE

2470 WRITEFILE:

2480 GOSUB CLEARIT:

2490 PRINT"Name of data file to write";:INPUT FF*
2500 OPEN "0",#1,FF*
2510 PRINT#1,W
2520 PRINT#1,L
2530 FOR J = 1 TO PL

2540 PRINT ttl, MID*(R*(J),11,32)
2550 NEXT J

2560 CLOSE #1

2570 END

2580 '

2590 CHECKERROR:

2600 IF ERR = 53 THEN 2620

2610 PRINT "Error Number ";ERR;" at line ";ERL:EN
D

2620 PRINT "File not found on disk drive specifie

d."

2630 CLOSE 1

2640 RESUME 2390

2650 '

2660 SCREENPRNT:

2670 GOSUB CLEARIT:PRINT:IF MM=1 THEN T*="THE YEA

R":GOTO 2690

2680 T*="THIS GAME"

2690 PRINT "STATISTICS FOR "T*":":IF MM=1 THEN GO

TO 2710

2700 PRINT TM*" VS "OT*" Score:"YS"-"TS:GOTO 2

720

2710 PRINT "RECORD FOR THE YEAR: Wins:"W" Losses

:"L

2720 PRINT :PRINT "Roster is sorted by batting av
erage":PRINT

2730 PRINT LP*

2740 FOR J=l TO PL:GOSUB PAUSE

2750 IF MID*(R*(IN(J>),4,7)="PLAYERX" THEN 2830
2760 PRINT SPACE*(1);MID*(R*(IN(J)),1,10);SPACE*(

i);
2770 FOR 1= 1 TO 8:Q=0:FOR K=0 TO 3
2780 IF MID*(R*(IN(J)),11+(1-1)*4+K,1) <> "0" THE

N 0=1

2790 IF MID*(R*(IN(J)),11+(I-1)*4+K,1>="0" AND Q=
0 AND K=3 THEN PRINT "0";:GOTO 2820

2800 IF MID*(R*(IN(J)),11+(1-1)*4+K,1)="0" AND Q=
0 THEN PRINT " ";:GOTO 2820

2810 PRINT MID*(R*(IN(J)),11+(1-1)*4+K,1);
2820 NEXT K:PRINT SPACE*(2);:NEXT I:PRINT SPACE*(

1);MID*(R*(IN(J)),43,5)
2830 NEXT J:PRINT :PRINT " TOTALS";SPACE*(5);

2840 FOR 1=1 TO 8

92

Applications and Education

2850 Q=0:FOR K=l TO 4:IF MID*(TT*,(1-1)*4+K,1) <>
UJ "0" THEN Q=l

2860 IF MID*(TT*,(I-l)*4+K,1)="0" AND Q=0 AND K=4
THEN PRINT "0";:GOTO 2890

2870 IF MID*(TT*,(I-l)*4+K,1)="0" AND Q=0 THEN PR

— INT SPACE*(1);:GOTO 2890
2880 PRINT MID*(TT*, (I-l)*4+K, 1) ;
2890 NEXT K:PRINT SPACE*(2);:NEXT I:PRINT SPACE*(

1);MID*(TT*,33,5)
2900 PRINT :60T0 1880

2910 *

2920 TOSCREEN:

2930 PRINT :T=0:PRINT :PRINT F*(I)" SORT:":PRINT

2940 PRINT "# PLAYER";space*(6);F*(I):FOR J=l TO

PL:GOSUB PAUSE

2950 IF MID*(R*(IN(J)),4,7)="PLAYERX" THEN 3020

2960 PRINT MID*(R*(IN(J)),1,10);SPACE*(4);
2970 Q=0:FOR K=0 TO 3:IF MID*(R*(IN(J)),BB+K,1) <

> "0" THEN Q=l

2980 IF MID*(R*(IN(J)),BB+K,1)="0" AND Q=0 AND K=
3 THEN PRINT "0":GOTO 3010

2990 IF MID*(R*(IN(J)),BB+K,1)="0" AND Q=0 THEN P
RINT SPACE*(1);:GOTO 3010

3000 PRINT MID*(R*(IN(J)),BB+K,1);:IF K=3 THEN PR
INT

3010 NEXT K:T=T+VAL(MID*(R*(IN(J)),BB,E))
3020 NEXT J:PRINT :PRINT "TOTAL ";F*(I);SPACE*(5)

;T
3030 PRINT : RETURN

3040 '

3050 LINEPRNT:

3060 LPRINT:IF MM=1THEN T*="THE YEAR":GOTO 3080
3070 T*="THIS GAME"

3080 LPRINT "STATISTICS FOR "T*":":IF MM=1 THEN G
OTO 3100

3090 LPRINT TM*" VS "OT*" SCORE:"YS"-"TS:GOTO
3110

3100 LPRINT "Record for the year: Wins:"W" Losse
s:"L

3110 LPRINT :LPRINT "Roster is sorted by Batting
Average":LPRINT

3120 LPRINT LP*

3130 FOR J=l TO PL:GOSUB PAUSE

3140 IF MID*(R*(IN(J)),4,7)="PLAYERX" THEN 3220
3150 LPRINT SPACE*(1);MID*(R*(IN(J)),1,10);SPACE*

(1);

3160 FOR 1= 1 TO 8:0=0:FOR K=0 TO 3

3170 IF MID*(R*(IN(J)),11+(I-1)*4+K,1) <> "0" THE

_

N 0=1

_

93

CHAPTER THREE

3180 IF MID*(R*(IN(J)),11+(I-l)*4+K,1)="0" AND Q=
0 AND K=3 THEN LPRINT "0";:GOTO 3210

3190 IF MID*(R*(IN(J)),11+(I-l)*4+K,1)="0" AND Q=
0 THEN LPRINT " ";:GOTO 3210

3200 LPRINT MID*(R*(IN(J)>,11+(I-l)*4+K,1);
3210 NEXT K:LPRINT SPACE*(2);:NEXT I:LPRINT SPACE

(1);MID(R*(IN(J)),43,5)
3220 NEXT J:LPRINT:LPRINT " TOTALS"+SPACE*(5);
3230 FOR 1=1 TO 8

3240 Q=0:FOR K=l TO 4:IF MID*(TT*,(I-l)*4+K,1) <>
"0" THEN Q=l

3250 IF MID*(TT«,(I-l)*4+K,1)="0" AND Q=0 AND K=4
THEN LPRINT "0";:GOTO 3280

3260 IF MID*(TT*,(I-l)*4+K,1>="0" AND Q=0 THEN LP

RINT SPACE*(1);:GOTO 3280

3270 LPRINT MID*(TT*,(I-l)*4+K,1);
3280 NEXT K:LPRINT SPACE*(2);:NEXT I:LPRINT SPACE

(1);MID(TT*,33,5)
3290 LPRINT:GOTO 1880

3300 '

3310 TOLINEPTR:

3320 LPRINT :T=0:LPRINT :LPRINT F*(I)" SORT:":LPR

INT

3330 LPRINT "#"+SPACE*(2)+"PLAYER"+SPACE*(6);F*(I

):FOR J=l TO PL:GOSUB PAUSE

3340 IF MID*(R*(IN(J)),4,7)="PLAYERX" THEN 3410
3350 LPRINT MID*(R*(IN(J)),1,10)SPACE*(4);
3360 Q=0:FOR K=0 TO 3:IF MID*(R*(IN(J)),BB+K,1) <

> "0" THEN Q=l

3370 IF MID*(R*(IN(J)),BB+K,1)="0" AND Q=0 AND K=
3 THEN LPRINT "0":GOTO 3400

3380 IF MID*(R*(IN(J)),BB+K,1)="0" AND Q=0 THEN L
PRINT SPACE*(1);:GOTO 3400

3390 LPRINT MID*(R*(IN(J)>,BB+K,1);:IF K=3 THEN L
PRINT

3400 NEXT K:T=T+VAL(MID*(R*(IN(J)),BB,E))
3410 NEXT J:LPRINT :LPRINT "TOTAL ";F*(I);SPACE*(

5);T
3420 LPRINT:RETURN

3430 '

3440 PAUSE:

3450 IF PEEK(&HFFFC02) > 0 THEN 3450 ELSE RETURN

3460 '

3470 TITLEBAR:

3480 A# = GB : GINTIN = PEEK(A#+8>

3490 POKE GINTIN+0,PEEK(SYSTAB+8) : POKE GINTIN+2
,2

3500 S# = GINTIN+4 : TITLE* = TITLE* + CHR*(0)

3510 POKE S#,VARPTR(TITLE*) : GEMSYS(105)
3520 RETURN

94

_

|J

Applications and Education

3530 REVIEW:

3540 GOSUB CHECKFILE

3550 w=sw+w

3560 L=SL+L

3570 GOSUB WORKING

3580 FOR J=l TO PL

3590 FOR 1=1 TO 8

3600 IF A*="N" OR A*="n"

YERX" THEN 3620

OR MID*(NA*(J)

3610 B(I)=VAL(MID*(R*(J) ,11+(I-1)*4,4))
3620 B(I)=RT(J,I)+B(I)
3630 RT(J,I)=B(I)
3640 GOTO 3660

3650 B(I)=RT(J,I)
3660 ST(I)=0

3670 NEXT I

3680 R*(J)=MID*(R*(J),1, 10)

3690 GOSUB BUILDR

3700 NEXT J

3710 MM=1

3720 FOR 1=1 TO 8

3730 FOR J=l TO PL

3740 ST(I)=ST(I)+RT(J,I)
3750 NEXT J

3760 B(I)=ST(I)

3770 NEXT I

3780 R*(J)=""

3790 GOSUB BUILDR

3800 TT*=R*(J)

3810 GOSUB CLEARIT

3820 GOSUB WORKING

3830 GOSUB AVERAGE:GOSUB CLEARIT

3840 END

4,7)="PLA

95

Home Financial
Calculator

Patrick Parrish
Version by George Milier

Rarely has there been a program integrating as
many useful loan and investment features as

"Home Financial Calculator." It's versatile, easy to
use, and flexible. Rapid recaicuJation features

make it an ideal tool for "what if" projections. A
calculator mode with memory Jets you soive prob
lems not directly supported by the program, and
you can pass values generated by one caicuiation

to another. This version is for any Atari ST
computer which has TOS in ROM in either me

dium or high resolution.

"Home Financial Calculator" integrates a number of common
financial calculations within a menu-driven package. It also
features a calculator mode, or scratch pad area, where program
variables can be manipulated by using common mathematical
operations.

Be particularly careful when you type the long lines in
this program which contain financial formulas. A mistyped
program may still run, but the results it gives could be
inaccurate.

When you run the program, switch to medium or high
resolution. A main menu offers you a choice of Investment or
Loan calculations. Type I or L to reach the appropriate sub
menu. When you're ready to exit the program, type Q to quit.

Easy "What If" Projections
Before looking at any calculations, let's consider some basics
of the program. Home Financial Calculator repeatedly uses the
following parameters, or variables, in the calculation. When in
the calculator mode (explained below), you'll reference these
eight variables with the single letters outlined below:

96

u

Applications and Education

T Total (also referred to as Future Value, Total Owed, and so
forth, depending on the calculation)

P Present Value (principal)
I Interest Rate

Y Years

M Months

N Number of Periods (of either compounding, deposits, with
drawals, or payments, depending on the application)

D Deposits
W Withdrawals

As you work with Home Financial Calculator, the values
of the eight variables are preserved until you change them.
Whenever the program asks you for an input (for example, In
terest), the current value of that variable is displayed (zero if
no value has been entered yet). If you want to keep the cur
rent value, just press Return. Otherwise, enter the new value
and press Return.

With this feature, Home Financial Calculator makes it
easy for you to generate "what if" projections. Simply run the
same calculation repeatedly, each time changing a previously
entered value. Press Return to keep a value, and change only
one or two values to see the effect on the final result.

You can also store the current value into the calculator

mode's Memory Register or recall a value from the Memory
Register. To see how all this works, let's take a closer look at
your options.

Your Investment Menu

When you type I from the main menu, the Investment
submenu appears (see next page). Determine which option
you want and press the appropriate key.

Each option displays screen prompts which ask you to in-
put several values. These values are stored in the eight vari
ables mentioned above: T for Total (Future Value), P for
Present Value (principal), I for Interest Rate, Y for Years, M for
Months, IV for Number of Periods, D for Deposits, and W for
Withdrawals. Of course, not all calculations require you to en
ter all these values, while others may ask for additional
information.

97

1)

2)

3)

4)

5)
6)
7)
8)

CHAPTER THREE

Future Value with Periodic

Interest

Future Value with Interest

Compounded Continuously
Future Value with Regular
Deposits
Future Value with Cash Flows

Withdrawal of Funds
Net Present Value

Calculator Mode

Return to Main Menu.

Most calculations can be solved for any one of the vari
ables. To solve for a variable, enter an uppercase X at the cor
responding input prompt. For example, you could enter values
for everything except the Interest Rate by typing X at the In
terest Rate prompt. Home Financial Calculator then solves for
the Interest Rate.

Remember, however, that the program can solve for only
one variable during each calculation. If you enter an X at more
than one prompt, the program does not have enough infor
mation to calculate an answer.

Future Value with Periodic Interest

Home Financial Calculator's options are fairly self-explanatory
when you run the program, but let's try an example. We'll cal
culate the future value of an investment drawing periodic in
terest. This kind of investment could be a savings account or
interest-bearing checking account, bonds, or a money market
account. To choose this option, enter 1 at the Investment
submenu.

After the screen clears, the program asks for the first in
put, Future Value, which appears with an asterisk (*). Below
this is a zero, the current value of this variable in memory (all
variables start out with a value of zero). Following this is an
input prompt.

The asterisk preceding Future Value means that this is
one of the variables you can solve for. (A variable not pre
ceded by an asterisk means that variable cannot be solved for
in that particular calculation, so X would be an illegal re
sponse.) If you'd like to calculate the Future Value, enter an X

98

Applications and Education

here, and answer all the other prompts with the appropriate
*"' values.

Let's calculate the future value of a $1,000 investment
drawing 8 percent interest for two years and three months,
with four compounding periods each year. Enter an X for Fu
ture Value, since we'll be solving for this total. Answer Present
Value with 1000 (the principal you're investing); Annual Int

— Rate (%) with 8 (enter the percentage, not a fraction); For # Of
Years with 2; For # Of Months with 3; and # Of Periods (Com
pounding) with 4. After you enter the last value, Home Finan
cial Calculator figures the Total Future Value and displays the
answer, $1195.09.

Now suppose you wish to know the future value of the
same $1,000 investment if you make 9 percent interest.
Choose option 1 on the Investment submenu again and rerun
the calculation. Notice how Home Financial Calculator auto
matically prints the current value of each variable at each
prompt. The Future Value prompt shows a current value of
1195.09 from the previous calculation. Type X at this prompt,
enter 9 for Interest Rate, and press Return at all other prompts
to preserve their values. The result should be $1221.71.

The versatility of Home Financial Calculator becomes ap
parent when you realize how many different ways you can
run this calculation. Using this same menu option, you can
calculate the initial investment (or present value) necessary to
accrue a certain future value with periodic interest, the interest
rate necessary to accrue a future value from a present value, or
the time in years and months it would take to accumulate a
future amount from an initial investment with periodic interest
payments. Just enter an X for the unknown value you're seek
ing and fill in all the other prompts.

Future Value with Interest Compounded Continuously
Option 2, a variation of option 1, handles investments paying
a continuous interest rate. Like option 1, option 2 can handle a
number of calculations. Just place an X in the slot you'd like to
solve for.

Here, after entering all other parameters, you can calcu
late the future value of an investment, the initial investment
required to reach a certain future value, the interest required
to reach a desired future value, or the time required to reach a
certain future value at a specified interest rate.

_ 99

CHAPTER THREE

Notice that any variables used in option 1 will be displayed
with their current values when you run option 2. Recall that
the eight major variables in Home Financial Calculator retain
their values throughout the program until you change them.
This feature is convenient when you're going from one option
to another on the Investment or Loan submenu.

In addition, the values are preserved for use in the calcu
lator mode. For instance, you could compare the effect of con
tinuously compounded interest to periodic interest (option 1)
without having to retype the input.

Future Value with Regular Deposits
If you're interested in setting up an annuity, choose option 3 on
the Investment submenu. You can determine the future value
of an account, such as a savings account, Individual Retirement
Account, or college or vacation fund, which will receive regu
lar deposits where interest is compounded with each deposit.

Option 3 can also tell you the amount of each deposit
necessary to accrue a future value, the interest rate needed to
provide some future value with regular deposits, or the time it
will take to amass a future value with regular deposits.

Future Value with Cash Flows

Option 4 does a single calculation. It always solves for Future
Value, so don't enter an X anywhere. It calculates the future
value of an investment with yearly cash flows (either positive
or negative). The Annual Interest Rate you input here is the
growth rate on the money you've invested.

As an example, suppose you want to determine the value
of a vacation fund collected over four years. You're asked for
the number of years and for the deposit or withdrawal each
year. You deposit $500 in the fund the first year and $200 the
second. The third year you are forced to withdraw $300 (en
tered as —300), and the fourth year, you put in $400. The
fund has a growth rate of 12 percent. Its value after four years
will be $1,017.34.

A future value determination can also tell you whether an
investment is worthwhile. If the future value of all cash flows
is positive or zero, the investment is profitable. A negative fu
ture value, on the other hand, represents a losing investment.

100

•I

Applications and Education

Withdrawal of Funds
If you intend to open an account from which you can regu
larly withdraw funds, choose option 5. With this option, you
can determine the initial deposit required in the account to
cover your withdrawals, the amount you can withdraw regu
larly from this account, the rate of interest you must make on
funds in the account, or the period of time over which you can
make withdrawals.

Net Present Value

Option 6 lets you determine the feasibility of a prospective in
vestment by calculating its net present value. Net present
value is the current value of all future yearly cash flows to an
investment along with any initial cash requirement. The inter
est rate you input here is the rate of return you require on
your investment. A positive net present value indicates a prof
itable investment, while a negative result signifies a losing
investment.

As an example, suppose you have the opportunity to
make a $2,000 investment which would return $1,500 the first
year, cost you $750 the second year, and return $1,900 the
third year. You hope to make 13 percent on your money. With
option 6, you would determine a net present value of $56.87,
representing a profitable investment.

The Calculator Mode

Option 7 puts you in the calculator mode (also available from
the Loan submenu). Calculator mode works much like a hand
held calculator with a single memory. You can type in a value
or recall one from a variable by entering its symbol—T(otal),
P(resent Value), I(nterest Rate), Y(ears), M(onths), N(umber of
Periods), D(eposits), and W(ithdrawals). You can perform sim
ple math on values stored in the Memory Register by using
reverse Polish notation. And you can use the results in future
calculations.

When you enter calculator mode, the calculator command
' line appears on the screen:

V S H R M+ M- M* M/ MR MC
MEM = 0

_

_ 101

CHAPTER THREE

Here are the commands:

V View the values of the eight primary variables
S Store Memory Register into a variable
H Help—prints the command line
R Return to main menu, exit calculator mode
M+ Add the last input to the Memory Register
M— Subtract the last input from the value in the Memory

Register and store the result in the Register
M* Multiply the last input times the value in the Memory

Register and store the result in the Register
M/ Divide the last input into the value in the Memory

Register and store the result in the Register
MR Memory Recall
MC Memory Clear to zero
MEM= Memory Register's current value

If you've run through a sample investment calculation,
you now have some variables in memory. Enter V in the cal
culator mode to see them. The screen displays the eight values
currently in memory for the eight variables.

To work with one of these variables, enter one of their
letters (T, P, I, Y, M, N, D, or W) and press Return. Then type
M+ to add it to the Memory Register (all variables must be
stored in the register before you can perform any operations
on them). Suppose you put the current value for T into the
register and now wish to add $229 to this value. Enter 229,
press Return, type M + , and press Return. The addition is per
formed and the result displayed. To store this value back into
the T variable, enter S for Store. A prompt appears, requesting
the variable in which you intend to store the value. Type T to
store the value into the variable T

You can also use the Memory Register to hold a value not
represented by any of the eight variables. To do this, deter
mine a value using the calculator mode and store it into the
Memory Register with M + . Then, when you're running a cal
culation elsewhere in the program, you can substitute this
value for any of the eight primary variables by typing MR
(Memory Recall) at the appropriate prompt. MR can be used
both in the calculator mode and at any prompt where the pre
vious value is displayed.

102

_

Finally, option 8 on the Investment submenu returns you
to the main menu. Once there, you can perform some loan

Applications and Education

calculations by typing L.

Loan Calculations

Here is the Loan calculations submenu:

1) Regular Loan Payments
2) Remaining Loan Liability
3) Final Loan Payment
4) Single Payment Loan
5) Loan Amortization Schedule
6) Calculator Mode
7) Return to Main Menu

Regular Loan Payments
Option 1 handles a number of calculations for equal payment
loans. You can figure the principal of a loan, the amount of
each regular payment necessary to repay a loan, the annual
interest rate on a loan with regular payments, or the term of
the loan.

Remaining Loan Liability
With option 2, you can determine the remaining balance on a
loan with regular payments after a number of payments have
been made. Enter the principal on the loan, the amount of
each payment, the annual interest rate, the number of pay
ments yearly, and the last payment number.

Final Loan Payment
Option 3 calculates the amount of the final payment on a
loan. In many cases, the last payment of a loan will vary from

— the amount of the regular payment. This option handles situa
tions where the final payment is greater than (balloon pay
ments) or less than the regular payment.

Single Payment Loan
Option 4 calculates the amount owed on a loan that is paid off
with a single payment. You must input the principal on the

103

CHAPTER THREE

loan, its annual interest rate, its term in years and months, and
the number of times a year the interest on the principal is
compounded.

Loan Amortization Schedule

Option 5 displays a loan amortization schedule. Enter the
principal on the loan, the amount of each payment, the annual
interest rate, the term of the loan, and the number of pay
ments yearly. Then enter the period of the year in which the
loan began (for instance, 10 for October) and the range in
years of the amortization schedule you'd like to examine.

Because of the complexity of these calculations, there may
be a delay before the output appears on the screen, especially
if you have chosen to look at the latter years in a long-term
loan repayment schedule (such as a home mortgage). When
the amortization table appears, it displays the payment num
ber, the beginning balance for the period, the amount paid to
ward the loan principal, the amount paid in interest, and the
ending balance. To keep the information from scrolling off the
screen, the program shows only a few payment periods at a
time. Press Return to view another screenful. When the end of
a year is reached, the program gives the total amounts paid on
the principal and interest for the year. In addition, when the
last period of the loan is reached, the program displays the fi
nal payment for the loan.

The last two options on the Loan submenu are the same
as those on the Investment submenu. Remember that you
press Q to quit the program.

Modifying the Program
Home Financial Calculator is written in a modular format for
easy modification. For many routines, it uses common input
labels (lines 4590-4960) and some output labels (lines
4970-5050). If you want to add an investment or loan calcula
tion routine, choose the labels from these lines that fit your
application.

Also, you may wish to add a printer option to the loan
amortization schedule. Examine lines 3140-3840. Here, vari
able D5 (defined in line 140) determines the number of loan
payments considered on each screen. Variables SI, S2, S3, and

104

[J

_

u

u

u

Applications and Education

S4 (defined in lines 150-180) format the output horizontally
on the screen.

Home Financial Calculator

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

245

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

GOSUB 5340

RES = PEEK(SYSTAB+0)

IF RES <> 4 THEN 60

?"Please switch to Medium or High"
? "Resolution.":STOP

COLOR 1,1
DIM V(8)

V*="TPIYMNDW"

C*="VSHR"

C0*="V S H R "

Ci*="M+ M- M* M/ MR MC"
C2*="M+M-M*M/MRMC"

Q*=""

D5=12

Sl = 10

S2=25

S3=40

S4=55

TITLE*=" Home Financial Calculator "+CHR*(0>

GOSUB 5340:GOSUB TITLEBAR

PRINT "INVESTMENTS, LOANS, or QUIT? (Select

A*=CHR*<INP(2))

IF A*="I" OR A* =

IF A*="L" OR A* =

IF A*="Q" OR A* =

GOTO 220

GOSUB 5340

TITLE*=" INVESTMENTS

GOTOXY 10,5:PRINT "1)
ODIC INTEREST"

GOTOXY 10,6:PRINT "2)
REST COMPOUNDED CONTINUOUSLY"

GOTOXY 10,7:PRINT "3) FUTURE VALUE
LAR DEPOSITS"

GOTOXY 10,8:PRINT
FLOWS"

10,9:PRINT

10,10:PRINT
10,11:PRINT
10,12:PRINT
10,14:PRINT

GOTOXY

GOTOXY

GOTOXY

GOTOXY

GOTOXY

"l '

"1'

"q"

THEN

THEN

THEN

260

2120

END

':GOSUB

FUTURE

TITLEBAR

VALUE WITH PERI

FUTURE VALUE WITH INTE

WITH REGU

"4) FUTURE VALUE WITH CASH

5) WITHDRAWAL OF FUNDS"

"6) NET PRESENT VALUE"

"7) CALCULATOR MODE"

"8) RETURN TO MAIN MENU"

"YOUR CHOICE?"J
A=INP<2)-48

IF A<1 OR A>8 THEN 370

ON A GOTO 420,680,920,1310,1500,1890,400,190

105

CHAPTER THREE

400 GOSUB 4060

410 GOTO 190

420 GOSUB 5340

430 TITLE*=" FUTURE VALUE WITH PERIODIC INTEREST
":GOSUB TITLEBAR

440 PRINT

450 GOSUB 4590

460 GOSUB 4630

470 PRINT "*";
480 GOSUB 4720

490 PRINT "*";
500 GOSUB 4760

510 IF E=4 THEN 530

520 GOSUB 4800

530 GOSUB 4850

540 IF EOl THEN 570

550 V<1)=INT(V<2)*(1+V<3)/V(6))~<V(6)*Y)*100+.5)
/100

560 GOSUB 4970

570 IF E<>2 THEN 600

580 V<2)=INT(V(l)/((1+V(3)/V(6))~(V<6)*Y))*100+.
5)/100

590 GOSUB 5000

600 IF E<>3 THEN 630

610 V(3)=INT(<V(6)*<V<1)/V(2))-<1/(V<6)*Y))-V(6)
)*10000+.5)/10000

620 GOSUB 5030

630 IF E<>4 THEN 660

640 V(4)=L0G(V(1)/V(2)>/<V(6)*LOG<1+V<3)/V<6>))
650 GOSUB 5060

660 GOSUB 5210

670 GOTO 260

680 GOSUB 5340

690 TITLE*=" FUTURE VALUE WITH INTEREST COMPOUND
ED CONTINUOUSLY ":GOSUB TITLEBAR

700 PRINT

710 GOSUB 4590

720 GOSUB 4630

730 PRINT "*";
740 GOSUB 4720

750 PRINT "*";
760 GOSUB 4760

770 IF E=4 THEN 790

780 GOSUB 4800

790 IF EOl THEN 820

800 V<l)=INT(V(2)*EXP(V(3)*Y)*100+.5)/100
810 GOSUB 4970

820 IF E<>2 THEN 850

830 V(2)=INT<V(l)/EXP<V<3)*Y)*100+.5)/100
840 GOSUB 5000

106

u

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

Applications and Education

IF E<>3 THEN 880
V<3)=INT(L0G(V(1)/V(2))/Y*10000+.5)/10000

GOSUB 5030

IF E<>4 THEN 660

V(4)=INT(L0G(V(1)/V(2))/V<3)*100+.5)/100

GOSUB 5060

GOTO 660

GOSUB 5340

TITLE*=" FUTURE VALUE WITH REGULAR DEPOSITS
":GOSUB TITLEBAR

PRINT

4590

"♦REGULAR DEPOSIT t"

GOSUB

PRINT

C=6

GOSUB

PRINT

GOSUB

PRINT

GOSUB

3850

"* " ;

4720
>i g it.

4760

IF E=4 THEN 1050

GOSUB 4800

GOSUB 4850

IF EOl THEN 1090
V<1)=INT(V<7)*V<6)*((1+V(3)/V(6))~<V<6)*Y)-1
)/V(3)*100+.5)/100

GOSUB 4970

IF E<>3 THEN 1230

V<3)=.99

1=0

T=INT<V<7)*<((1+V<3)/V<6))~<V<6)*Y)-1>/<V<3)
/V(6)))*100+.5)/100

TE=ABS(V(3)-I)/2

I=V(3)

IF ABS(T-V<1))/VCIX. 00005 THEN 1210
IF T<V<1> THEN 1190

V<3)=V(3)-TE

GOTO 1120

V(3)=V(3)+TE

GOTO 1120

V(3)=INT<V(3)*10000+.5)/10000

GOSUB 5030

IF E<>4 THEN 1260

V(4)=L0G<V(3)*V<1)/<V(6)*V(7))+1)/(V<6)*LOG<
1+V<3)/V(6)))

GOSUB 5060

IF E<>7 THEN 660
V<7)=INT(VU)*(V<3)/V<6))/((1+V(3)/V(6))~<V<
6)*Y)-l)*100+.5)/100

PRINT
PRINT "REGULAR DEPOSITS REQUIRED:*";V(7)

107

CHAPTER THREE

1300 GOTO 660

1310 GOSUB 5340

1320 TITLE*=" FUTURE VALUE WITH CASH FLOWS ":GOSU
B TITLEBAR

1330 PRINT

1340 GOSUB 4720

1350 GOSUB 4760

1360 PRINT "CASH FLOW (+/-)"

1370 PRINT

1380 V(1)=0

1390 FOR 1=1 TO V<4)

1400 PRINT "CASH FLOW - YEAR #";I
1410 INPUT A*

1420 A=VAL<A*>

1430 V(1)=V(1)+A*(1+V(3))~<V<4)-I)

1440 NEXT I

1450 V<l)=INT(V(l)*100+.5)/100
1460 GOSUB 4970

1470 TE=V(1)

1480 GOSUB 5150

1490 GOTO 660

1500 GOSUB 5340

1510 TITLE*=" WITHDRAWAL OF FUNDS ":GOSUB TITLEBA
R

1520 PRINT

1530 GOSUB 4630

1540 PRINT "*REGULAR WITHDRAWAL *"
1550 C=7

1560 GOSUB 3850

1570 PRINT "*";
1580 GOSUB 4720

1590 PRINT "*";
1600 GOSUB 4760

1610 IF E=4 THEN 1630

1620 GOSUB 4800

1630 GOSUB 4850

1640 IF E<>2 THEN 1670

1650 V(2)=INT(V(8)*V(6)/V(3)*<1-(1+V<3)/V(6))"<-V
(6)*Y))*100+.5)/100

1660 GOSUB 5000

1670 IF E<>3 THEN 1810

1680 V<3)=.99

1690 1=0

1700 R=INT<V<2)*V<3>/V<6)*(1/<<1+V(3)/V<6))-<V<6)
*Y)-l)+l)*100+.5)/100

1710 TE=ABS(V(3)-I)/2
1720 I=V(3)

1730 IF ABS(R-V(8))/V(8X.00005 THEN 1790
1740 IF R<V(8) THEN 1770

1750 V<3)=V<3)-TE

108

J

_

u

_

_

_

_

_

_

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

Applications and Education

GOTO 1700

V(3)=V<3)+TE

GOTO 1700

V(3)=INT(V(3)*10000+.5)/10000

GOSUB 5030

IF E<>4 THEN 1840
V(4)=L0G(V(6)*V(8)/(V(6)*V(8)-V(3)«V(2)))/(V
(6)*L0G<1+V(3)/V(6)))

GOSUB 5060

IF E<>8 THEN 660
V<8)=INT(V<2)*V(3)/V<6)*a/< <1+V(3)/V<6>)-<V

(6)*Y)-1)+1)*100+.5)/100

PRINT

PRINT "REGULAR WITHDRAWALS:*";V(8)

GOTO 660

GOSUB 5340

PRINT "NET PRESENT VALUE:*"

PRINT

PRINT "INITIAL INVESTMENT"

C=l

GOSUB 3850

GOSUB 4720

GOSUB 4760

PRINT "CASH FLOW <+/-)"
PRINT

NV=-V<2)

FOR 1=1 TO V<4)

PRINT "CASH FLOW - YEAR # ";I

INPUT A*

A=VAL<A*>

NV=NV+A/((V(3)+1)^1)

NEXT I

NV=INT(NV*100+.5)/100

PRINT

PRINT "NET PRESENT VALUE:*";NV

TE=NV

GOSUB 5150

GOTO 660

GOSUB 5340

TITLE*=" LOANS ":GOSUB TITLEBAR

GOTOXY

GOTOXY

TY"

GOTOXY

GOTOXY

GOTOXY

DULE"

GOTOXY 21,10:PRINT
GOTOXY 21,11:PRINT
GOTOXY 21,13:PRINT

21,5:PRINT

21,6:PRINT

21,7:PRINT
21,8:PRINT
21,9:PRINT

"1> REGULAR LOAN PAYMENTS"

"2) REMAINING LOAN LIABILI

"3) FINAL LOAN PAYMENT"
"4) SINGLE PAYMENT LOAN"
"5) LOAN AMORTIZATION SCHE

"6) CALCULATOR MODE"

"7) RETURN TO MAIN MENU"

"YOUR CHOICE?";

109

CHAPTER THREE

2220 A=INP<2)-48

2230 IF A<1 OR A>7 THEN 2220

2240 ON A GOTO 2270,2690,2870,3030,3140,2250,190
2250 GOSUB 4060

2260 GOTO 190

2270 GOSUB 5340

2280 TITLE*=" REGULAR LOAN PAYMENTS ":GOSUB TITLE
BAR

2290 PRINT

2300 PRINT "*"j
2310 GOSUB 4670
2320 PRINT "*";
2330 GOSUB 4890

2340 PRINT "*";
2350 GOSUB 4720

2360 PRINT "*";
2370 GOSUB 4760

2380 IF E=4 THEN 2400

2390 GOSUB 4800

2400 GOSUB 4850

2410 IF E<>2 THEN 2460

2420 V(2)=INT<V(7)*V(6)/V(3)*(1-<1+V(3)/V<6))A(-V
(6)*Y))*100+.5)/100

2430 PRINT

2440 PRINT "AMT OF PRINCIPAL:*";V<2)
2450 GOTO 2670

2460 IF E<>3 THEN 2600

2470 V<3)=.99

2480 1=0

2490 P=INT(V<7)*V<6)/V(3)*(l-< <1+V(3)/V(6))~<-V<6
)*Y)))*100+.5)/100

2500 TE=ABS<V(3)-I)/2

2510 I=V(3)

2520 IF ABS<P-V(2))/V(2) < .00005 THEN 2580
2530 IF P<V<2) THEN 2560

2540 V(3)=V<3)+TE

2550 GOTO 2490

2560 V<3)=V(3)-TE

2570 GOTO 2490

2580 V<3)=INT<V(3)*10000+.5)/10000
2590 GOSUB 5030

2600 IF E<>4 THEN 2630

2610 V(4)=-L0G(1-V(3)*V(2)/<V(6)*V(7)))/(V<6)*L0G
(V(3)/V<6)+1>)

2620 GOSUB 5060

2630 IF E<>7 THEN 2670

2640 V(7)=INT<V<3)*V<2)/<V<6)*<1-(V(3)/V(6)+1)A<-
V(6)*Y)))*100+.5)/100

2650 PRINT

2660 PRINT "REQ PAYMENT:*";V(7)

110

_

_

_

_

_

_

_

_

Applications and Education

2670 GOSUB 5210

2680 GOTO 2120

2690 GOSUB 5340

2700 TITLE*=" REMAINING LOAN LIABILITY ":GOSUB TI

TLEBAR

2710 PRINT

2720 GOSUB 4670

2730 GOSUB 4890

2740 GOSUB 4720

2750 GOSUB 4850

2760 PRINT "LAST PAYMENT # WAS:"

2770 INPUT A*

2780 A=VAL(A*)

2790 FOR J=l TO A

2800 I=INT(P*V(3)/V(6)*100+.5)/100

2810 P=P+I-V(7)

2820 NEXT J

2830 LI=INT(P*100+.5)/100

2840 PRINT

2850 PRINT "LIABILITY AFTER ";A;" PAYMENTS:*";LI
2860 GOTO 2670

2870 GOSUB 5340

2880 TITLE*=" LAST LOAN PAYMENT

2890 PRINT

2900 GOSUB 4670

2910 GOSUB 4890

2920 GOSUB 4720

2930 GOSUB 4930

2940 GOSUB 4850

2950 FOR J=l TO V<6)*Y

2960 I=INT(P*V<3)/V(6)#100+.5)/100

2970 P=P+I-V<7)

2980 NEXT J

2990 LP=INT(P*100+.5)/100+V(7)

3000 PRINT

3010 PRINT "LAST PAYMENT:*";LP
3020 GOTO 2670

3030 GOSUB 5340

3040 TITLE*=" SINGLE PAYMENT LOAN "

R

3050 PRINT

3060 GOSUB 4670

3070 GOSUB 4720

3080 GOSUB 4930

3090 GOSUB 4850

3100 V(1)=INT(V<2)*<1+V(3)/V(6>>~<Y*V(6>)*100+.5)

/100

3110 PRINT

3120 PRINT "TOTAL OWED:*";V(l)
3130 GOTO 2670

':GOSUB TITLEBAR

:GOSUB TITLEBA

111

CHAPTER THREE

3140 C5=0

3150 N5=0

3160 F=0

3170 P1=0

3180 11=0

3190 GOSUB 5340

3200 TITLE*=" LOAN AMORTIZATION SCHEDULE ":GOSUB
TITLEBAR

3210 GOSUB 4670

3220 GOSUB 4890

3230 GOSUB 4720

3240 GOSUB 4930

3250 PRINT "# OF PAYMENTS YEARLY"

3260 GOSUB 3850

3270 PRINT "ENTER THE PERIOD OF THE YEAR IN WHICH
THE LOAN BEGAN"

3280 INPUT N

3290 NE=N

3300 NP=(V(4)*12+V(5)>/(12/V(6>)

3310 NY=INT(((N-l)+NP)/V(6>+.99)

3320 PRINT "ENTER THE RANGE OF YEARS YOU'D LIKE T
0 EXAMINE (FIRST, LAST)"

3330 INPUT F1,L1
3340 IF LK=NY THEN 3360

3350 L1=NY

3360 FOR J 1= 1 TO LI

3370 IF JKF1 THEN 3390

3380 GOSUB 5250

3390 FOR J=l TO V(6)-N+l

3400 I=INT(P*V(3)/V(6)*100+.5)/100
3410 N5=N5+1

3420 PP=V(7)-I

3430 IF JIONY THEN 3470

3440 IF N50NP THEN 3470
3450 PP=P

3460 F=l

3470 IF JKF1 THEN 3500

3480 PRINT TAB<5);MID*(STR*<N5),2,LEN(STR*(N5))-1
);TAB(SI);INT(P*100+.5)/100;

3490 PRINT TAB(S2);INT(PP*100+.5)/100;Q*;TAB(S3);
3500 P=P+I-V(7)

3510 IF F=0 THEN 3540
3520 P=0

3530 J=V(6)

3540 IF JKF1 THEN 3570

3550 PRINT I;TAB(S4);INT(P*100+.5)/100;
3560 PRINT

3570 11=11+1

3580 P1=P1+PP

3590 C5=C5+1

112

_

_

_

_

_

_

_

_

Applications and Education

3600 IF C50D5 THEN 3670

3610 IF JKF1 THEN 3670

3620 GOSUB 5210

3630 GOSUB 5340

3640 C5=0

3650 IF J=V(6)-N+1 THEN 3670

3660 GOSUB 5250

3670 NEXT J

3680 IF JKF1 THEN 3790

3690 IF F=0 THEN 3720

3700 GOTOXY 0,0

3710 PRINT "FINAL PAYMENT :*

100

3720 PRINT

3730 PRINT "TOTAL INT PAID I

*";INT((PP+I)*100+.5)/

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

*100+.5)/100

PRINT "TOTAL PRINC PAID IN YR ";Jl;":*";INT(
Pl*100+.5)/100

IF F=l THEN 3830

IF J1=L1 THEN 3830

GOSUB 5210

GOSUB 5340

C5=0

P1=0

11=0

N=l

NEXT Jl

GOTO 2670

C=C+1

IF C<>3 THEN 3890

PRINT V(3)*100,
GOTO 3900

PRINT V(C),

INPUT A*

IF LEN(A*)<>0 THEN 3930

RETURN

IF A*<>"MR" THEN 3990

PRINT "MEM=";M;" USE AS VARIABLE HERE (Y/N)

INPUT A*

IF A*="N

V(C)=M

RETURN

IF A*="X

IF A*="x

V(C)=VAL(A*)

IF C<>3 THEN 4040

V(C)=V(C)/100

RETURN

REM CALCULATOR MODE

THEN 3900

THEN E=C:RETURN

THEN E=C:RETURN

113

CHAPTER THREE

4060 GOSUB 5340:TITLE*=" Calculator Mode ":GOSUB

TITLEBAR

4070 M5=0

4080 GOSUB 4410

4090 INPUT A*

4100 IF ASC(A*)>57 THEN 4130

4110 T=VAL(A*)

4120 GOTO 4090

4130 FOR 1=1 TO 8

4140 IF A*OMID*(V*, I, 1) THEN 4170
4150 PRINT V(I)

4160 T=V(I)

4170 NEXT I

4180 FOR J=l TO 6

4190 IF A*OMID*(C2*, (J-1>*2+1,2) THEN 4210
4200 ON J GOSUB 4460,4480,4500,4520,4540,4560
4210 NEXT J

4220 FOR K=l TO 4

4230 IF A*OMID*(C*,K, 1) THEN 4250
4240 ON K GOSUB 4290,4340,4410,4440
4250 NEXT K

4260 IF M5=0 THEN 4090

4270 M5=0

4280 RETURN

4290 FOR 1=1 TO 8

4300 PRINT MID*(V*,I,1);" ";V(D
4310 NEXT I

4320 PRINT

4330 RETURN

4340 PRINT "IN WHAT VARIABLE ";
4350 INPUT A*

4360 FOR 1=1 TO 8

4370 IF A*OMID*(V*, I, 1) THEN 4390
4380 V(I)=M

4390 NEXT I

4400 RETURN

4410 COLOR 2,1:GOTOXY 0,0:PRINT C0*;" ";C1*;" MEM
=";M:COLOR 1,1

4420 PRINT

4430 RETURN

4440 M5=l

4450 RETURN

4460 M=M+T

4470 GOTO 4570

4480 M=M-T

4490 GOTO 4570

4500 M=M*T

4510 GOTO 4570

4520 M=M/T

4530 GOTO 4570

114

_

_

LJ

U

_

Applications and Education

4540 T=M

4550 GOTO 4570

4560 M=0

4570 PRINT "MEM=";M

4580 RETURN

4590 PRINT "*FUTURE VALUE *"

4600 C=0

4610 GOSUB 3850

4620 RETURN

4630 PRINT "*PRESENT VALUE *"

4640 C=l

4650 GOSUB 3850

4660 RETURN

4670 PRINT "PRINCIPAL *"

4680 C=l

4690 GOSUB 3850

4700 P=V(C)

4710 RETURN

4720 PRINT "ANNUAL INT RATE C/.) "

4730 C=2

4740 GOSUB 3850

4750 RETURN

4760 PRINT "FOR # OF YEARS"

4770 C=3

4780 GOSUB 3850

4790 RETURN

4800 PRINT "FOR # OF MONTHS"

4810 C=4

4820 GOSUB 3850

4830 Y=V(C-1)+V(C)/12
4840 RETURN

4850 PRINT "# OF PERIODS (COMPOUNDING, DEPOSITS,
WITHDRAWALS, PAYMENTS) YEARLY"

4860 C=5

4870 GOSUB 3850

4880 RETURN

4890 PRINT "PAYMENTS *"

4900 C=6

4910 GOSUB 3850

4920 RETURN

4930 PRINT "TERM OF LOAN:"

4940 GOSUB 4760

4950 GOSUB 4800

4960 RETURN

4970 PRINT

4980 PRINT "FUTURE VALUE:*";V(1)
4990 RETURN

5000 PRINT

5010 PRINT "REQUIRED INVESTMENT:*";V(2)

115

CHAPTER THREE

5020 RETURN

5030 PRINT

5040 PRINT "ANNUAL INT RATE (7.) REQUIRED: "; V (3) *1
00

5050 RETURN

5060 V(5)=V(4)-INT(V(4))

5070 V(5)=INT(INT(12*V(5)*10+.5)/10)

5080 V(4)=INT(V(4)>

5090 IF V(5)<>12 THEN 5120

5100 V(4)=V(4)+1

5110 V(5)=0

5120 PRINT

5130 PRINT "# OF YEARS AND MONTHS:";V(4);",";V(5)
5140 RETURN

5150 PRINT

5160 IF TE>=0 THEN 5190

5170 PRINT "THIS IS A LOSING INVESTMENT."

5180 RETURN

5190 PRINT "THIS IS A PROFITABLE INVESTMENT."
5200 RETURN

5210 PRINT

5220 COLOR 2,2:PRINT "Press any key to continue";
:COLOR 1,1

5230 A = INP(2)

5240 RETURN

5250 GOSUB 5340

5260 PRINT "LOAN AMORTIZATION SCHEDULE FOR YR ";J
1

5270 PRINT "PRIN *";V(2);" RATE ";V (3) *100; ""/." ; "
PAYM *";V(7)

5280 PRINT

5290 COLOR 3,1
5300 PRINT TAB(5);"#";TAB(11);"BEG BAL";TAB(26);"

PRINC";TAB(41);"INT";
5310 PRINT TAB(56);"END BAL"
5320 COLOR 1,1

5330 RETURN

5340 CLEARW 2:FULLW 2:GOTOXY 0,0
5350 RETURN

5360 TITLEBAR:

5370 A# = GB : GINTIN = PEEK(A#+8)

5380 POKE GINTIN+0,PEEK(SYSTAB+8) : POKE GINTIN+2
,2

5390 S# = GINTIN+4 : TITLE* = TITLE* + CHR*(0)

5400 POKE S#,VARPTR(TITLE*) : GEMSYS(105)
5410 RETURN

116

CHAPTER FOUR

BASIC

Programming

: I

n

J

_

_

ST Hints and Tips
George Miller

With these four tricks, you can set up autobooting
programs, customize your GEM desktop, read a

joystick from ST BASIC, and soup up BASIC'S per
formance with machine language subroutines. All

the techniques work on the 520ST and 1040ST.

The Atari ST computers are extremely powerful and complex
machines. The numerous demo programs that are widely
available offer only peeks at their true capabilities. For pro
grammers, however, the ST's power can be frustrating because
it's so elusive. Virtually no technical documentation is sup
plied with the ST, and the two languages it comes with—Logo
and ST BASIC—have their shortcomings.

If you invest $300 for an Atari development system pack
age, you receive an assembler, a C compiler, and a huge mass
of documentation on the Graphics Environment Manager
(GEM), but most of it is not even ST-specific. The material re
fers to GEM as implemented on the IBM PC.

However, careful study of this mountain of paper can re
veal quite a few "secrets" about the ST. Here are a few of
these tricks which will enhance the power of your computer.

Autobooting Programs
Have you ever wished that a certain program—perhaps a
RAM disk utility, an application, or a language—could run
automatically when you start up your ST? This feature would
be especially handy if you needed to set up a disk for some
one who wants to run a program without understanding any
thing more than how to turn on the computer.

The eight-bit Atari computers can automatically load and
run programs by using AUTORUN.SYS files. Apple has the
HELLO program, PC-DOS and AmigaDOS have batch files,
and the Commodore 128 has provision for autobooting. Al
though it's not documented, so does your ST. You can find
clues on creating an auto-execute file in GEMDOS.

As part of the initialization sequence, the ST looks for a
folder called AUTO on the boot disk. Any files with a .PRG

— 119

CHAPTER FOUR

extender found in the AUTO folder are executed in sequence.
These files are known as COMMAND.PRG files.

It's easy to set up an autoboot program. Place your boot
disk in your drive, then point to the File heading on the menu
bar. Select the New Folder option and create a folder named
AUTO.

Move any program you want to autoboot into this folder.
Anytime you boot your ST from this disk, the program you
have placed in the AUTO folder will run automatically. This
technique works with TOS in ROM or with the earlier disk-
loaded TOS. It's the most foolproof autorun system yet.

There are two caveats: (1) A program that has GEM fea
tures (drop-down menus, windows, and so on) cannot be
autostarting since GEM itself has not been activated at this
stage in the boot process; (2) The AUTO folder is not com
pletely dependable when the current version of the operating
system is used. Sometimes a program in an AUTO folder
won't execute, especially if there are several programs in the
folder. Perhaps this will be corrected in a future revision of
TOS.

Customizing the Desktop
Have you ever tried renaming your disk icons using the Install
Drive option from the Options menu? Some characters can't
be used, and you can't do anything with the trash can.

There is a way to change the names to anything you
want. After saving your desktop, you can edit the file which
stores the information for these options—DESKTOP.INF. For
now, we'll use this technique to change just the icon names.
Be careful not to change any other characters in the file.

First, you'll need a text editor, such as Mince or EMACS,
or even a word processor like ST Writer. If you're using a word
processor, set the left and top margins to zero.

The job itself is rather easy. Load the file DESKTOP.INF.
It should look something like Figure 1.

Each character in this file gives information about your
desktop. Any change will affect what you see on the desktop
and, to a certain extent, even how your ST functions. Use cau
tion, since some changes might not yield the results you ex
pect. To be safe, make sure you're working with a backup
copy of your boot disk. Store the original in a safe location.
(This is always a good idea when you're experimenting with

120

_

_

u

_

_

_

_

_

_

BASIC Programming

Figure 1. DESKTOP.INF

#a000000

#b001100

#c77700070007000700552005055522207

70557075057705504112306

#d

#E 9B 03

#W 00 00 0C01 ID 16 08 A:*.*@
#W 00 00 28 01 IF 17 00 @
#W 00 00 0E 09 2A OB 00 @
#W 00 00 OF OA 2A OB 00 @
#M 00 02 00 FF A FLOPPY DISK@ @
#M 00 03 00 FF B FLOPPY DISK@ @
#T 00 07 02 FF TRASH CAN@ @
#F FF 04 @ *.*@
#D FF 01 @ *.*@
#G 03 FF *.PRG@ @
#F 03 04 *.TOS@ @
#P 03 04 *.TTP@ @

any file on a disk, especially when you're modifying files that
control the operation of your ST.)

Now, move the cursor to the first line that begins with
#M. Change the text, replacing the words FLOPPY DISK, so
the line reads like this:

#M 00 02 00 FF A Disk A@ @

Then change the next line to
#M 00 03 00 FF B Disk B@ @

If you want, you may change the name of the trash can
icon. I called mine Black Hole! as a constant reminder that,
unlike the Amiga or Macintosh, the ST trash can does not let
you easily recover files which are deleted. (There are some
disk utilities available that allow you to recover trashed files
under limited conditions.)

To change the trash can icon, modify the next line to read
#T 00 07 02 FF Black Hole!@ @

The revised DESKTOP.INF file should be similar to
Figure 2.

Finally, save the file back to the disk as DESKTOP.INF.
The file must be saved in ASCII format, so make sure your
text editor or word processor has this feature. If you're using

121

CHAPTER FOUR

Figure 2. Revised DESKTOP.INF

#a000000

#b001100
#c77700070007000700552005055522207

70557075057705504112306

#d

#E 9B 03

#W 00 00 0C01 ID 16 08 A:*.*@
#W 00 00 28 01 IF 17 00 @
#W 00 00 0E 09 2A OB 00 @
#W 00 00 OF OA 2A OB 00 @
#M 00 02 00 FF A Disk A@ @
#M 00 03 00 FF B Disk B@ @
#T 00 07 02 FF Black Hole!@ @
#F FF 04 @ *.*@
#D FF 01 @ *.*@
#G 03 FF *.PRG@ @
#F 03 04 *.TOS@ @
#P 03 04 *.TTP@ @

ST Writer or some other word processors, it may be necessary
to print the file to the disk in order to save it in ASCII format.
With 1ST Word, turn off WP mode, and be sure the top and
left margins are set to zero.

Reading the Joystick
ST BASIC is a fairly generic BASIC that has very few ST-
specific commands. One of the most noticeably missing com
mands when you're trying to write a game is a function for
reading the joystick. The ST works with any of the joysticks
sold for eight-bit Atari and Commodore computers, but there's
no STICK or STRIG function as in eight-bit Atari BASIC.

Actually, a joystick command does exist in the ST, but it's
hidden deep within GEMDOS in the BIOS (Basic Input/Output
System). This is an area not readily available from ST BASIC
unless you use a few special techniques.

An easy way to find out what the joystick is doing is to
ask the intelligent keyboard device (IKBD). The keyboard has
its own microprocessor—a 6301 chip, which is a member of
the 6800 family. The keyboard processor is really a small com
puter system, with input/output lines, RAM, ROM, and even
a serial interface that handles traffic to and from the 68000

122

_ BASIC Programming

U central processing unit. The 68000 is not responsible for con
tinuously polling the keyboard for activity. The 6301 notifies
the 68000 via an interrupt when anything needs processing. In

U addition to reading the keyboard, the 6301 reads the mouse
and the joystick, and performs other functions.

The ST's link to the keyboard processor is through a chip
called an ACIA (Asynchronous Communications Interface
Adapter). The control register for the keyboard ACIA is lo
cated at memory address $FFFC00. The data register is at loca
tion $FFFC02. If you've moved to the ST from an earlier eight-
bit computer, these may be the biggest hexadecimal numbers
you've ever seen. Remember that the 68000 microprocessor in
the ST has 24 address lines, enough for over 16,000,000 bytes
of memory, as compared to the 65,536-byte maximum for ear
lier computers with only 16 address lines. (However, due to
design limitations in the MMU (Memory Management Unit) of
the ST, a maximum of 4,000,000 bytes of memory may be ad
dressed.) For the ST, you must become accustomed to seeing
hexadecimal addresses that are six digits long.

The following program is a short ST BASIC routine that
reads the values of the joystick plugged into port 1 (the rear
joystick connector).

70 POKE &hfffc02,&h0012 'turn off
mouse

80 POKE &hfffc02,&h0014 : joystick =
PEEK(&hfffc02)

90 IF joystick = 511 THEN ? "north"
100 IF joystick = 2559 THEN ?

"northeast"

110 IF joystick = 2303 THEN ? "east"
120 IF joystick = 2815 THEN ?

"southeast"

— 130 IF joystick = 767 THEN ? "south"
140 IF joystick = 1791 THEN ?

"southwest"

— 150 IF joystick = 1279 THEN ? "west"
160 IF joystick - 1535 THEN ?

"northwest"

170 IF joystick < 0 THEN ? "fire button"
180 POKE &hfffc02,&h0008 'turn on

mouse

190 GOTO 70

_

123

CHAPTER FOUR

Line 70 sends a command to the IKBD, via the data regis
ter at $FFFC02, instructing it to turn off the mouse. (Note that
ST BASIC uses &h to indicate hexadecimal numbers.)

Line 80 sends a command via the same address to turn on
the joystick. Every movement of the joystick is reported to the
processor. The joystick position is read by PEEKing the value
returned in $FFFC02.

Lines 90-170 interpret the values returned from the IKBD.
Line 180 turns the mouse back on again. This should be

done before exiting the program so that the user will have
control of the mouse when returning to BASIC or the desktop.

Line 190 makes the routine an infinite loop. You'll need
to press Control-C to stop this demonstration. If the mouse
pointer isn't visible on the screen when the program stops, en
ter the following line and press Return to make the pointer
reappear:

POKE &hfffc02,&h0008

To adapt this routine for use in your own programs, re
place line 190 with 190 RETURN. Then use GOSUB 70 to call
the routine. Replace the PRINT statements in lines 90-170
with statements to perform the desired actions when the joy
stick is pressed in the indicated direction.

Mixing BASIC and Machine Language
To add real speed and power to any BASIC, it's often neces
sary to use machine language (ML) routines for certain tasks.
In ST BASIC, you can run machine language routines by using
the CALL statement. The syntax for CALL is
CALL address variable,parameter list

The address variable is a variable that holds the memory
address of the beginning of the machine language routine.
This location may be the address where the routine was
loaded by using the BLOAD command, or it may be the ad
dress where the ML routine was POKEd. The parameter list is
a list of values that can be passed to the ML routine. Some
routines don't require any values to be passed, so this is
optional.

The program below demonstrates how to POKE an ML
routine into a variable, then use the VARPTR function to find
the address to CALL.

124

BASIC Programming

As your library of ML routines expands, you'll find this
•—- method useful. Although the example program does nothing

but print the letter A on the left side of the menu bar, it does
demonstrate that ML routines give you full access to the ST,
since the menu bar is usually off-limits to BASIC.
110 CLEARW 2 : FULLW 2
120 GOSUB init

— 130 ' ML opcodes in DATA statements
140 DATA &h3f3c,&h0041,&h3f3c,

&h0002,&h4e41,&h588f
150 DATA &h3f3c,&h000d,&h3f3c,

&h0002,&h4e41,&h588f
160 DATA &h3f3c,&h000a,&h3f3c,

&h0002,&h4e41,&h588f,&h4e75
170 FOR i = 1 TO 19 : READ a : POKE

x + (i*2),a : NEXT : 'POKE ml into
ml$

180 CALL x

190 END

200 init : ml$="This is a dummy
variable."

210 x = VARPTR (ml$)
220 RETURN

These tricks demonstrate only a small part of the ST's po
tential. Carefully studying the documentation reveals that
some extremely powerful programming techniques are lurking
just below the surface. If you're a curious programmer, explore
GEM for ways to use the ST's features from within the tight
BASIC framework.

_

125

ST BASIC Sorting
Algorithms

C. Regena

Each of these seven sorting routines is written as a
subroutine that you'll find handy to add to your

own programs.

The function of a computer is to process information. Often,
you'll find that you need to arrange, or sort, data. For ex
ample, you may want to interpret your raw data by sorting a
list of people by age, or you may want to alphabetize a list of
names. There are nearly as many sort routines as there are
programmers, and the names of the sort algorithms vary as
well. For the ST BASIC sort algorithms listed here, I've used
representative names that correspond to how they operate.

Each sort routine is written as a subroutine that may be
called by the main program. The numbers to be sorted are in
the A array, and there are N number of elements. The num
bers will be sorted in ascending order (1, 2, 3, ...). If you prefer
to sort in descending order, you may simply print the results
in reverse order. To sort strings instead of numeric values (or
to alphabetize), use dollar signs for all variables used to hold
strings. You may also define variable names as strings with a
DEFSTR statement near the beginning of the program. See the
section on sorting strings for more information.

SWAP is a handy command in ST BASIC that is often
used in sort routines. SWAP a,b puts the value of a into b, and
the value that was in b will become a. Two values are inter
changed without your having to use a dummy holding variable.

Demonstration Program
To illustrate how these sort routines are used, you may use
the following main "Demo" program. Forty numbers are cho
sen randomly and printed on the screen. These numbers are in
the A() array, and N = 40. Line 190 calls the sorting subrou
tine; then the sorted numbers are printed.

126

_

_

u

u

_

u

BASIC Programming

Program 1. Demo

100 REM DEMO FOR SORTS

110 DIM A(40)

120 FULLW 2:CLEARW 2:WIDTH 37

130 N=40

140 RANDOMIZE 0

150 FOR C=l TO N

160 A<C)=INT<100*RND):PRINT A(C);
170 NEXT C:PRINT:PRINT

180 REM

190 GOSUB SORT1

200 REM

210 FOR C=l TO NzPRINT A<C);:NEXT C
220 FOR C=l TO 7:PRINT:NEXT C

230 END

You may want to use this program to compare the sort
routines. First, type in the main program and enter SAVE
DEMO. For the first sort routine, "Bubble Sort," simply add
the SORT1 subroutine to the main program and then type
RUN. For any of the later sort routines, type the subroutine
(and save it if you wish). Then type MERGE DEMO to com
bine the main program with the particular sort subroutine.
Edit line 190 to call the correct subroutine name and type
RUN.

Bubble Sort

The bubble sort is often called an interchange sort. It passes
through the numbers comparing pairs. If one number is larger
than the next, the two numbers are interchanged. If a switch
has been made during a pass through all the numbers, the
loop of comparisons starts over. The number of passes de
pends on how many items are out of order. The smaller num
bers "bubble" toward the top. Program 2 is a version of the
bubble sort that keeps track of where a switch is made so that
the entire list doesn't need to be compared with each pass.

— This sort is common because it is easy to understand and
to program. It can be fairly quick for short lists or for lists of
numbers that are not very much out of order. However, it can

— be slow for long lists of very mixed-up numbers.

127

CHAPTER FOUR

Program 2. Bubble Sort
1000 SORTlsREM BUBBLE

1010 L=N-1

1020 S=0

1030 FOR C=l TO L

1040 IF A(CX=A(C+1) THEN 1060

1050 SWAP A<C),A(C+1):S=1:L=C
1060 NEXT C

1070 IF S=l THEN 1020

1080 RETURN

Insertion Sort

The insertion sort looks at each element of a list in turn and in
serts the element into its proper order in the preceding list,
moving elements to make room for the inserted number. For
example, the computer looks at the second element and com
pares it with the first element. Then it places the number
either first or second, depending on its value. The third ele
ment then needs to be inserted into the ordered list of two
numbers. At this point, you have three elements in order at
the beginning of the main list of numbers. Next, the fourth el
ement is inserted into the ordered list of three numbers. This
process continues through the list for each element.

Program 3. Insertion Sort

2000 S0RT2:REM INSERTION

2010 FOR C=l TO N-l

2020 D=A(C+1)

2030 FOR K=C TO 1 STEP -1

2040 IF D>=A<K> THEN 2070

2050 A<K+1)=A<K)

2060 NEXT K:K=0

2070 A(K+1)=D

2080 NEXT C

2090 RETURN

Selection Sort

This third sort algorithm could be called a search routine or
selection method. Originally, this sort used another array for
the sorted list. The first pass through the list of numbers
would find the minimum number and place it in the first ele
ment of the new array. The second pass would select the sec
ond smallest element and put it in the second place of the

128

_

u

BASIC Programming

new array. The process would then continue for all the ele
ments. A certain number of passes through the original list
would be required, no matter how much out of order the list
might be.

Program 4 improves this minimum search method to save
memory by using only the original array rather than a new ar
ray. During each pass through the numbers, both the mini
mum and the maximum numbers are selected and are placed
at the appropriate ends. The other numbers are shifted in
ward. The sorted list is filled in from the ends toward the

center.

Program 4. Selection Sort

3000 S0RT3:REM SELECTION

3010 M=N:S=1

3020 L=A(S):J=S:U=L:K=S

3030 FOR T=S TO M

3040 IF A(T)>U THEN U=A<T):K=T

3050 IF A(TXL THEN L=ACT): J=T

3060 NEXT T

3070 IF J=M THEN J=K

3080 SWAP A(M),A(K):M=M-1
3090 SWAP A(S),A(J):S=S+1
3100 IF M>S THEN 3020

3110 RETURN

Heap Sort
The heap sort builds a binary tree structure of numbers where
each number is greater than the numbers under it. If you draw
the structure, it looks like a heap. To get the final list, you
need fewer comparisons than with either the bubble sort or in
sertion sort because you know "parent" numbers are larger
than "offspring " numbers.

Program 5. Heap Sort
4000 S0RT4:REM HEAP

4010 C=N

4020 FOR L=INT<N/2)

4030 D=A<L)

4040 GOSUB CHECK

4050 NEXT L

4060 L=l

4070 FOR C=N-1 TO 1

4080 D=A(C+1)

4090 A(C+1)=A(1)

TO 1 STEP -1

STEP

129

CHAPTER FOUR

4100 GOSUB CHECK

4110 NEXT C

4120 RETURN

4130 CHECK: REM COMPARISON SUBROUTINE

4140 J=L

4150 K=J+J

4160 IF K>C THEN 4230

4170 IF K=C THEN 4190

4180 IF A(K+1)>A(K) THEN K=K+1

4190 IF D>=A(K) THEN 4230

4200 A<J)=A(K)

4210 J=K

4220 GOTO 4150

4230 A(J)=D

4240 RETURN

Shell Sort

The Shell sort is a popular sort routine named for its devel
oper, Donald Shell. Again, fewer comparisons are necessary
because you know some of the numbers are ordered, and you
keep track of where interchanges are made to further reduce
comparisons.

Program 6. Shell Sort
5000 S0RT5:REM SHELL

5010 B=l

5020 B=2*B:IF B<=N THEN 5020

5030 B=INT(B/2):IF B=0 THEN 5080

5040 FOR M=l TO N-B:C=M

5050 D=C+B:IF A(CX=A<D) THEN 5070

5060 SWAP A(C),A(D):C=C-B:IF C>0 THEN 5050
5070 NEXT M:GOTO 5030

5080 RETURN

Determining Which Sort to Use
If you know what kind of list you are starting with, you can
select which kind of sort might be the most efficient. In gen
eral, the selection sort is faster than the bubble sort. Only a
certain number of passes through the numbers are required,
no matter how much out of order the numbers are. If only a
few numbers are out of order, the bubble sort could be quicker
(even for a long list) because fewer passes would be required.

130

BASIC Programming

Quick Sort
The quick sort has become popular in the last few years be
cause it is one of the fastest sorting procedures in BASIC for a
general list (one in which you do not know how the original
list is ordered). Program 7 has been adapted for ST BASIC.

Program 7. Quick Sort

6000 S0RT6:REM QUICK

6010 S(1)=1:S(2)=N:T=1

6020 IF T=0 THEN 6150

6030 T=T-1:C=2*T:L=S(C+1>

6040 M=S(C+2):X=A(L):J=L:K=M+1

6050 K=K-1:IF K=J THEN 6110

6060 IF X<=A<K) THEN 6050

6070 A(J)=A(K)

6080 J=J+1:IF K=J THEN 6110

6090 IF X>=A(J) THEN 6080

6100 A(K)=A(J):GOTO 6050

6110 A(J)=X:IF M-J<2 THEN 6130

6120 C=2*T:S(C+l)=J+1:S(C+2)=M:T=T+1

6130 IF K-L<2 THEN 6020

6140 C=2*T:S<C+1)=L:S(C+2)=K-1:T=T+1:GOTO 6020

6150 RETURN

Sorting Strings
All of these sorts can be converted for use with strings instead
of numbers. You may define A and all other variables that are
set equal to A to be strings by using DEFSTR at the beginning
of the program, such as
102 DEFSTR A,X

You may also use the dollar sign to designate a string variable
name. The sort routines will then alphabetize words or names.

— This last program illustrates the use of strings with the
quick sort. Forty random letters are chosen and printed in the
example. In your own programs, you may be using names of

— people or other words which you want alphabetized.

Program 8. String Sort
100 REM DEMO FOR SORT WITH STRINGS

110 DIM A*(40)

120 FULLW 2:CLEARW 2:WIDTH 36

130 N=40

140 RANDOMIZE 0

150 FOR C=l TO N

131

CHAPTER FOUR

160 A*(C)=CHR*(26*RND+65):PRINT A*(C);" ";
170 NEXT C:PRINT:PRINT

180 REM

190 GOSUB S0RT6S

200 REM

210 FOR C=l TO N:PRINT A*(C);n ";:NEXT C
220 FOR C=l TO 8:PRINT:NEXT C

230 END

6000 S0RT6S:REM QUICK SORT WITH STRINGS

6010 S(1)=1:S(2)=N:T=1

6020 IF T=0 THEN 6150

6030 T=T-1:C=2*T:L=S(C+1)

6040 M=S(C+2):X*=A*(L):J=L:K=M+1

6050 K=K-1:IF K=J THEN 6110

6060 IF X*<=A*(K) THEN 6050

6070 A*(J)=A*(K)

6080 J=J+1:IF K=J THEN 6110

6090 IF X*>=A*(J) THEN 6080

6100 A*(K)=A*(J):GOTO 6050

6110 A*(J)=X*:IF M-J<2 THEN 6130

6120 C=2*T:S(C+1)=J+1:S(C+2)=M:T=T+1

6130 IF K-L<2 THEN 6020

6140 C=2*T:S(C+1)=L:S(C+2)=K-1:T=T+1:GOTO 6020

6150 RETURN

132

Custom Title Bars
for ST BASIC

George Miller

Use this short program to put a custom titie on ST
BASIC'S Output window. It works on ail Atari

ST-series computers.

ST BASIC puts four windows on the screen—Command, List,
Edit, and Output. The Output window is where your pro
grams actually run. This window always displays the same ti
tle at the top of the screen—Output. By now, you may be
tired of staring at this title bar and probably wish there was a
way to change it.

Fortunately, there is a way. There's no built-in BASIC
command, however. You'll have to call a routine in a part of
the ST's operating system known as AES (Application Envi
ronment Services). The job isn't difficult, but the ST BASIC
manual lacks the necessary information for making system
calls.

When you're programming the ST, it's helpful to remem
ber that the operating system contains many routines which
can be of help. These routines are part of GEM, the Graphics
Environment Manager, which is divided into two sections:
AES and VDI (Virtual Device Interface). These libraries contain
almost all the routines necessary to handle screen output.
Although VDI and AES routines are most easily accessed by
programmers using C or machine language, ST BASIC pro
grammers can also call them with the VDISYS and GEMSYS
commands. It requires a little extra effort, though.

The short routine listed here, "Custom Title Bars," is an
example of a GEMSYS call to the AES library. You can insert
it into any ST BASIC program to display your program's title
on the Output window's title bar.

Modifications

Run the routine to see what it does; then modify it in the fol
lowing ways when you use it in your own programs:

— 133

CHAPTER FOUR

1. Change line 20 to assign to the string variable title$ the
name you want to have displayed in the title bar.

2. Delete line 40, the END statement, and insert your own
program at this point. However, be sure you insert an END
statement at the end of your program and before line
63000. Otherwise, your program will fall through into the
subroutine and cause an error.

Before actually making the GEMSYS call in line 64040,
the routine POKEs several parameters into system variables at
the addresses pointed to by the built-in BASIC variable gintin.
The parameters are required by this AES routine. The setup is
done in lines 64010-64040.

You can find more information about calling VDI and
AES routines in the Atari documentation available to software

developers and in COMPUTES's ST Programmer's Guide (COM
PUTE! Books, 1986).

Custom Title Bars

10 FULLW 2 : CLEARW 2
20 title*="new title"

30 GOSUB titlebar

40 END

64000 titlebar : ' New title -for OUTPUT window ro

utine

64010 a# = gb : gintin = PEEK(a#+8)

64020 POKE gintin+0,PEEK(systab+S) : POKE gintin+2
,2

64030 s# = gintin+4 : title* = title* + chr*<0)

64040 POKE s#,varptr(title*) : GEMSYS(105)
64050 RETURN

134

Adding System
Power to ST BASIC

Kevin Mykytyn

ST BASIC Jacks commands for certain operations,
such as reading the mouse pointer, but you can fill

in these gaps by caiiing system routines with the
VDISYS command. After an explanation of VDI

routines and a demonstration of a useful graphics
routine, you'ii iearn how to read the mouse pointer
with VDISYS and find a program for creating your

own custom mouse pointers.

You've probably heard at least two of the three-letter acro
nyms associated with the Atari ST computer: TOS stands for
Tramiel Operating System, a huge system program which, at
the most fundamental level, allows the computer to function.
And GEM stands for Graphics Environment Manager, a sepa
rate system program that handles the ST's graphics-oriented
desktop. GEM, in turn, consists of three separate parts: the
VDI (Virtual Device Interface), a low-level graphics interface
that also handles mouse input; the AES (Application Environ
ment Services), which uses the VDI to manage data and the
desktop; and GEMDOS, which handles disk operations.

Interesting, you may say, but what's the point? For most
BASIC programming, you needn't worry about TOS, GEM,
VDI, AES, or GEMDOS, any more than the average driver
needs to know exactly how an automobile engine works.
These system programs are the invisible machinery that makes
everything else happen.

However, as you may have discovered, ST BASIC lacks
commands to do certain tasks such as drawing a circle or sens
ing the position of the mouse pointer. That's what makes one
of these strange-sounding names, the VDI, an invaluable asset
for BASIC programmers. The VDI holds a treasure trove of
system routines that can do everything from drawing boxes
and circles to rotating character fonts and manipulating raster

— blocks. With ST BASIC'S VDISYS command, you can access

_J 135

CHAPTER FOUR

all of these routines. This compensates in large part for the
missing ST BASIC commands.

VDISYS to the Rescue

In simplest terms, the VDISYS command calls (activates) a
VDI system routine to do a task that would be difficult or im
possible to perform in BASIC. Furthermore, these system
routines execute very quickly—a real plus when you're work
ing with graphics. Whether executed in immediate or program
mode, the VDISYS command always takes this general form:
VDISYSCt)

In this example a simple variable named x appears in the pa
rentheses. It doesn't matter what value this variable repre
sents; it's a dummy parameter, needed only to satisfy the
syntax of the command. Don't try to enter this command yet.
If you do, there's a good chance you'll see the bomb symbol
that signals a system crash. A certain amount of preparation is
always needed before you execute VDISYS.

When a VDISYS command is executed, control passes
from your BASIC program to an internal VDI handler, which
eventually passes control to the VDI routine itself. But first,
the VDI handler looks at certain sections of the computer's
memory, called parameter blocks. The data in the parameter
blocks tells the handler which particular VDI routine you want
to execute. There's also other information that the VDI routine

itself will need. If you don't supply all the information needed
to call a routine, the VDI handler can't carry out your request.

VDI Opcodes
The first thing you must tell the computer is which VDI rou
tine you want to call. Each VDI routine is identified by a
unique opcode number. For instance, the VDI routine used in
Program 1, "Bar Drawing," has the opcode 11. This is a gen
eralized shape-drawing routine. (There are hundreds of VDI
opcodes and associated parameters, so we don't have room
here to list them. But you can find a 42-page list of selected
VDI opcodes in COMPUTEI's ST Programmer's Guide, available
from COMPUTE! Publications.)

136

_

u

_

_

BASIC Programming

Program 1. Bar Drawing

10 fullw 2:clearw 2:color 2,2,2
20 poke contrl,11 'VDI opcode
30 poke contrl+2,2 'number of vertices
35 poke contrl+6,0 'number of attributes
40 poke contrl+10,1 'primitive ID o-f bar comman

d

50 poke ptsin,50 'x coordinate o-f top le-ft corn
er

60 poke ptsin+2,50 'y coordinate of top left co
rner

70 poke ptsin+4,100 'x coordinate of bottom rig
ht corner

80 poke ptsin+6,100 'y coordinate of bottom rig
ht corner

90 vdisys (0)

Once you know a VDI routine's opcode number, that
value must be POKEd into a special place in memory defined
by the reserved variable CONTRL. Try typing PRINT
CONTRL in immediate mode. Even if you haven't given this
variable any value, the computer prints a number on the
screen. ST BASIC always predefines CONTRL along with sev
eral similar variables. The CONTRL variable represents an ac
tual location in memory.

Since the system automatically substitutes this location for
the keyword CONTRL, you don't have to memorize a series
of numbers or worry about where this parameter block really
resides. To select VDI routine 11, for instance, you simply exe
cute POKE CONTRL,ll.

How Many Corners?
Once you've POKEd the VDI opcode 11 into CONTRL, you
must tell the computer how many vertices (corners) are
needed to define the graphic shape you want to draw. Regular
geometric shapes require different numbers of vertices. A tri
angle, for instance, requires a minimum of three corners. A
rectangle, on the other hand, can be defined with only two—
the upper left corner and the lower right one. Of course, a
rectangle has a total of four corners, but the total is not what
we're looking for. The computer cares only about the minimum
number of vertices it takes to draw the shape in question.
After you determine how many vertices are needed, that value

137

CHAPTER FOUR

is POKEd into the location defined by CONTRL+ 2. For ex
ample, in line 30 of Program 1, the statement POKE
CONTRL+ 2,2 tells the computer that you want to draw a
rectangle (defined by only two corners).

Notice that the second POKE is directed two bytes higher
in memory than the first. Now you can see the parameter
block begin to take shape: It's simply a segment of memory
where you place a collection of values. The first byte of the
parameter block is defined by CONTRL, and the remaining lo
cations are defined as even-numbered offsets above that start
ing spot (CONTRL + 2, CONTRL+ 4, and so forth).

The particular routine used in this program (termed a gen
eralized drawing primitive) contains several subroutines (also
called subfunctions), each of which performs a different draw
ing task. To choose a subroutine, you must POKE its identify
ing number (called the primitive ID) into the location defined
by CONTRL+10. In this case, we want to use the bar-drawing
subroutine, whose primitive ID happens to be 1. So, in line 40
of the program, we POKE CONTRL+10,1.

PTSIN and INTIN

The next step is to tell the VDI handler where to place the
graphic shape. Remember that you told the computer earlier
how many vertices it takes to define the shape. To position
the shape on the screen, you must now tell VDI where to put
each vertex. This is done by POKEing horizontal (x) and verti
cal (y) coordinate values into a second parameter block area.

The second parameter block begins at a memory location
defined by the reserved variable PTSIN (Points Input). Again,
you don't need to know the actual memory locations involved;
the computer keeps track of them for you. All you need to do
is POKE the correct numbers into PTSIN (and even-numbered
adjacent locations, in some cases).

Lines 50-80 of the program perform this job by POKEing
the bar's x and y coordinates into memory. The x coordinate of
the first point is POKEd into PTSIN; the first point's y coordi
nate goes into PTSIN + 2. The x coordinate of the second point
goes into PTSIN+ 4, and so on. Keep in mind that you must
supply a pair of coordinate values for every point that you de
fine in CONTRL + 2.

A third parameter block, beginning at the address defined
by the reserved variable INTIN, is used to pass attribute val-

138

•• !

_

_

ues, if any are required by the current subroutine. The term
attribute is a catchall that can include many different param
eters—colors, rotation values, a style index, or whatever—de
pending on which subroutine is called. Since the subroutine
used in this program requires no attributes, we don't need to
POKE any values into this segment of memory. As a signal to
the VDI handler that no attributes are involved, we must also
POKE a zero into location CONTRL+ 6. This location tells the
system how many attribute values to read from the INTIN pa
rameter block.

After all the required values have been POKEd into mem
ory, line 90 of the program executes the VDISYS command,
which calls the VDI routine and draws a bar on the screen.
This may seem an enormous amount of preparation for such a
simple task (which some other computers can do with a single
BASIC statement). On the other hand, it's better than not be
ing able to draw a bar at all. You can cut down on the bulki-
ness of the code by writing setup subroutines that contain all
the necessary overhead.

General Drawing Routine
Though every VDI call requires several preparatory steps, each
individual step is easy to perform. It should be apparent by
now that there's nothing mystical about the process. All you
need to do is leave the right pieces of information in places
where the computer can find them; then signal that you want
the job done. The system itself does the real work.

Though the general procedure is the same in every case,
each VDI routine requires different types and amounts of
information. One of the most useful VDI routines is the gen
eralized drawing primitive in Program 1. Table 1 summarizes
the POKEs you need to call this routine.

BASIC Programming

Table 1. Generalized Drawing Primitive

u

u
POKE CONTRL, 11
POKE CONTRL + 2, number of vertices

POKE CONTRL+ 6, number of attributes

POKE CONTRL+1C , subfunction number
(primitive ID)

139

CHAPTER FOUR

Again, CONTRL receives the opcode number of the VDI
routine; CONTRL + 2 the number of vertices in the desired
shape; CONTRL+ 6 the number of attributes (if any); and
CONTRL+10 the primitive ID for the subroutine you want.
This particular VDI routine is extremely versatile. It can draw
pie-shaped segments, ellipses, filled or empty rounded rectan
gles, and other graphics images, including text. Table 2 lists
the primitive IDs for each of this routine's subroutines.

Table 2. Drawing Subroutines

Primitive
ID Subroutine

1 Bar

2 Circle

3 Arc

4 Pie

5

6

7

8

9

Ellipse
Elliptical arc
Elliptical pie
Rounded rectangle
Filled rounded rectangle

10 Justified graphics text

To select a specific subroutine, find its primitive ID in the
left column of Table 2; then POKE that value into location
CONTRL + 10. Table 3 summarizes the POKEs needed to set
up the second and third parameter blocks (PTSIN and INTIN).
Remember, the value POKEd into CONTRL+ 2 (number of
vertices) determines how many (x,y) coordinate pairs you must
POKE into the PTSIN parameter block. The x and y coordi
nates for the first vertex go into PTSIN and PTSIN + 2; the
second (x,y) coordinate pair goes into PTSIN+ 4 and
PTSIN+ 6; and so forth.

To draw a circle, ellipse, arc, or pie-shaped segment,
POKE x and y coordinates for the shape's center point into
PTSIN and PTSIN+ 2. A simple circle requires a radius value
in PTSIN+ 8. Arcs and pie shapes built from a part of a circle
require a radius value in PTSIN+ 12. To draw an ellipse, or an
arc or pie shape built from part of an ellipse, POKE the
shape's x radius into PTSIN+ 4 and its y radius into
PTSIN+ 6.

140

u BASIC Programming

Table 3. PTSIN and INTIN Parameter Blocks

POKE PTSIN x coordinate of first vertex

(rectangle)
x coordinate of center

(circle, ellipse)
POKE PTSIN + 2 y coordinate of first vertex

(rectangle)
y coordinate of center

(circle, ellipse)
POKE PTSIN+ 4 x coordinate of second vertex

(rectangle)
x radius for ellipse

POKE PTSIN+ 6 y coordinate of second vertex
(rectangle)

POKE PTSIN+ 8 Radius (circle only)
POKEPTSIN+12 Radius (circular arc or pie only)

POKE INTIN Start angle for arcs and pies
POKE INTIN+2 End angle for arcs and pies

_

\J

u

_

Most of these subfunctions don't require any attribute val
ues. To draw arcs or pie shapes, however, you must POKE two
attribute values into INTIN and INTIN+ 2 to define starting
and ending angles, respectively. Since the angle values are
specified in tenths of a degree, not in whole degrees, these pa
rameters can range from 0 to 3600. The starting angle specifies
where you want the rounded portion of the arc or pie segment
to begin, and the ending angle shows where that portion
should stop. The statement POKE CONTRL+6,2 signals that
you're passing two attribute values to the VDI.

As you'll learn from experimenting with these routines,
VDISYS opens the gateway to a large variety of graphics ca
pabilities. Once you become familiar with the setup process,
you'll probably find yourself using VDISYS more and more.

VDISYS and the Mouse
If you've ever tried to read the ST's mouse controller from
BASIC, you know that BASIC lacks commands to read the
mouse position or button status. Like certain other tasks,
mouse reading can be done from BASIC only with the aid of

141

CHAPTER FOUR

VDISYS. Once you know how to read the mouse, you may
also want to change the mouse pointer's appearance.

Entering ST Programs
Before you type in Program 2, "ST Mouse Pointer Editor,"
here are some tips that will make it easier to enter ST BASIC
programs. First, although it may be obvious, it is far easier to
enter a program from the Edit window than from the Com
mand window. (To move to the Edit window, type EDIT at the
Command window's OK prompt, or choose the Start Edit op
tion from the Edit menu.) The Edit window's full-screen editor
is much more convenient for entering program lines than is
the Command window's single-line interface. You can also run
a program directly from the Edit window (type RUN or choose
the Start option from the Run menu). When the program is
finished, control returns to the Edit window, so you can imme
diately modify or add new lines to the program.

The Edit window has one feature that you may or may
not appreciate. Until you press Return, the line you're working
on will appear in ghost mode (the letters will look gray and
fuzzy). The purpose of ghost mode is to show which lines you
have changed. This is helpful to inexperienced programmers,
but, since ghosted letters are harder to read than normal ones,
it can be an annoyance. To disable ghost mode, enter this line
in the Command window:

POKE SYSTAB+2,0

Another way to ease the task of program entry is to in
crease the speed of the cursor. This is done from the Control
Panel. The second slider from the top (the one with a rabbit
and a turtle) controls the cursor speed. To increase the speed,
click on the slider and drag it to the left (toward the rabbit). To
slow it down, drag the slider to the right. You can also turn
the keyboard beeping sound off and on by clicking the C key
icon in the Control Panel.

Redesigning the Pointer
You need to do two more things before typing in the pointer-
editing program. First, set the computer to medium resolution
(use the Set Preferences option). Second, turn off buffered
graphics from BASIC'S Run menu. If your ST has more than
512K of random access memory (RAM) or the TOS operating

142

_

_

system in read only memory (ROM), the second step may or
— may not be necessary. But in any case, it can't hurt.

Now enter Program 2 and save it to disk. It lets you
change the mouse pointer from the familiar arrow shape to a

— custom design of your own. When you run the program, a grid
appears on the left side of the screen, and the word DONE is
shown on the right. To edit the pointer shape, move the

— mouse pointer into the grid. Then click the button on any
square you want to change. Clicking on a square toggles it on
or off. If the square is on (dark) when you click, it will be
turned off (erased) and vice versa.

Program 2. ST Mouse Pointer Editor
10 fullw 2:clearw 2:color 1,1,1,1

20 dim ar(16,16),shape(30):for a=l to 16:for b=
1 to 16:ar(a,b)=0:next b,a

30 for a=50 to 306 step 16:linef a,20,a,148:nex

t

40 for a=20 to 148 step 8:1inef 50,a,306,a:next

50 gotoxy 48,8:print "done":q=430:r=72:1inef q,
r,q+36,r:1inef q+36,r,q+36,r+10

60 linef q+36,r+10,q,r+10:1inef q,r+10,q,r
70 gosub readmouse:if lbutton=toggle then 70 el

se toggle=lbutton
80 if lbutton then gosub flip:goto 70 else goto

70

readmouse: poke contrl,124
poke contrl+2,0:poke contrl+6,0:vdisys (0)
x=peek(ptsout):y=peek(ptsout+2)
lbutton=peek(intout):rbutton=peek(intout+2)
return

flip:gosub locate
if xp>24 and xp<27 and yp=8 then goto define
it

if xp<l or xp>16 or yp<l or yp>16 then retur
n

if ar(xp,yp) then ar(xp,yp)=0:color l,0:goto
190

ar(xp,yp)=1:color 1,2
fill xp*16+44,yp*8+18:return
defineit: gotoxy 43,12:print "choose hot spo
t":gosub hotspot

poke contrl,111:poke contrl+2,0
poke contrl+6,37:hx=xp:hy=yp
poke intin,xp-l:poke intin+2,yp-1:poke intin
+4,1

240 poke intin+6,0:poke intin+8,1

143

90

100

110

120

130

140

150

_

160

y
170

180

190

__

200

210

220

230

BASIC Programming

CHAPTER FOUR

250 for a=10 to 40 step 2:t=0
260 for b=16 to 1 step-1:t=t-2^(16-b)*(ar<b,a/2-

4)=1):next

270 poke intin+a,t:poke intin+a+32,t:shape((a-10
)/2)=t

280 next:vdisys (0):clearw 2:gotoxy 32,0:print "
defined"

290 print "Do you want to save this shape?":a=in
p(2):if a<>121 then end

300 input "filename";fn*:open "0",#1,fn$:print #
l,hs;hy

310 for a=0 to 15:print #1,shape(a):next:close #
l: end

320 hotspot: gosub readmouse:if lbutton=toggle t
hen 320 else toggle=lbutton

330 if lbutton=0 then 320

340 gosub locate:if xp<l or xp>16 or yp<1 or yp>
16 then 340 else return

350 locate: xp=int(<x-50)/16)+1:yp=int((y-40)/B)
+1:return

Once you're satisfied with the new pointer, move the
mouse out of the grid and click on the word DONE. The pro
gram will ask for the location of the new pointer's hot spot.
The hot spot is a single dot that the computer uses to tell ex
actly what the pointer is pointing at. On the regular mouse
pointer, the hot spot is located at the very tip of the arrow. But
you can place it anywhere within your custom pointer shape.

After you locate the hot spot, the new pointer appears on
the screen. At this point, the program asks whether you want
to save the pointer shape data to a disk file for later use. If
you do, press Y and enter a filename when prompted. If you
press any other key, the program ends without saving the
shape. Program 3, "Pointer Loader," at the end of this article,
provides a method for reloading the shape data from the disk
file and making the custom pointer appear in a BASIC pro
gram of your own.

Reading the Mouse
As we mentioned earlier, ST BASIC has no commands to read
the mouse or the state of the mouse buttons directly. Fortu
nately, there is a VDI routine (appropriately named Readmouse)
which gives this information. It takes only three steps to call
this routine. Since Readmouse has an opcode of 124, we first
execute POKE CONTRL,124 to tell the ST which VDI routine

144

_

BASIC Programming

With this drawing grid (cre
ated by Program 2), you can
create custom mouse point
ers for use in your own ST
BASIC programs.

to call (line 90 in Program 2). This routine doesn't involve any
vertices or attributes, so CONTRL + 2 and CONTRL+ 6 are
POKEd with zeros. Once that brief preparation is complete,
the statement VDISYS(O) actually calls the routine.

Earlier in this article we explained how to pass information
from BASIC to a VDI drawing routine. When that routine has
finished with its work (drawing a graphic shape), we don't
care whether it passed any information back in the other di
rection. But many VDI routines pass significant information
back to BASIC. Thus, calling a routine like Readmouse in
volves a two-way information transfer. You must supply cer
tain data before calling the routine, and when it returns control
to BASIC, the routine sends other information back to you.

Parameter blocks named PTSIN and INTIN are used to

pass data from BASIC to a VDI routine. These parameter
blocks are paralleled by PTSOUT and INTOUT, which per
form the same operations in reverse. Though they're consid
ered reserved variables (which you can use only in certain,
predefined ways), PTSOUT and INTOUT each point to a block
of special storage locations in memory called a parameter block.
Like PTSIN, PTSOUT points to a temporary holding area for
information about x and y position coordinates. Like the
INTIN parameter block, INTOUT defines the area where other
information (such as attribute data) is passed.

145

CHAPTER FOUR

Position and Button Status

To read the mouse pointer's screen location, call the
Readmouse routine and PEEK the memory locations defined
by PTSOUT and PTSOUT+ 2. In Program 2, this is done at
line 110. The statement X= PEEK(PTSOUT) transfers the value
stored in PTSOUT in the variable X, representing the mouse
pointer's horizontal position. Similarly, Y= PEEK(PTSOUT + 2)
makes Y equal to the mouse pointer's vertical position.

To read the status of the mouse buttons, call the Read-
mouse routine and PEEK the locations defined by INTOUT
and INTOUT+ 2. INTOUT returns information about the left
button, and INTOUT+ 2 tells you the status of the right but
ton. If a button is pressed, the value in the corresponding loca
tion is 1; if it's not pressed, the value is 0. Program 2 reads
both mouse buttons at line 120. When the left button is
pressed, the variable LBUTTON is set to 1; when the right
button is pressed, the variable RBUTTON is set to 1. Table 4
outlines the information you need to use Readmouse.

Table 4. Readmouse Parameters

Input Parameters
POKE CONTRL,124
POKE CONTRL+2,0
POKE CONTRL+6,0

Output Parameters
PEEK(PTSOUT)
PEEK(PTSOUT + 2)
PEEK(INTOUT)
PEEK(INTOUT + 2)

Opcode
Number of vertices
Number of attributes

Horizontal mouse position
Vertical mouse position
1 = left button pressed
1 = right button pressed

Customizing the Pointer
Though the ST's familiar arrow pointer is suitable most of the
time, occasionally you may want it to look like something else.
In a drawing program, for instance, why not reshape the
pointer as a pencil or a paintbrush? Once you know how to
modify the pointer's appearance, you can make it look like a
pointing hand, a musical note, a scientific symbol, or whatever
else is needed to give your program a customized look.

The VDI routine that redraws the mouse pointer is called
Set Mouse Form, usually abbreviated as SMF. Because the

146

BASIC Programming

SMF routine requires a lot of information, its setup procedure
— is fairly complex. The first step, as always, is to POKE the

opcode for the VDI routine into CONTRL. Since the opcode
for SMF is HI, Program 2 performs POKE CONTRL,lll at
line 210. Next, you must POKE the number of vertices (0, in
this case) and the number of attributes (37) into CONTRL + 2
and CONTRL+ 6 (lines 210-220).

The mouse pointer can move anywhere on the screen, so
there's no need to provide x and y coordinates for the shape
as a whole. However, you must tell the system where, within
that shape, it should put the hot spot. The hot spot's coordi
nates are defined relative to the upper left corner of the new
pointer shape. POKE the x coordinate value into INTIN and
the y coordinate into INTIN+ 2. At the same time, you should
also POKE 1 into INTIN+ 4 (lines 220-230).

Who Was That Masked Mouse?

The mouse pointer you see on the screen is made of two sepa
rate parts—the pointer shape itself and a second shape called
a mask. Both forms are the same size (16 pixels high and 16
pixels wide), and they appear at the same place on the screen.
Since the pointer and the mask can be different colors, you
can make a two-color mouse pointer. To create the illusion of
solidity, for instance, you might draw the main body of the
pointer in one color and add a darker shadow along its lower
edges. To set the mask's color, POKE the desired color number
into location INTIN+ 6. POKE the pointer's color into
INTIN+ 8.

Once you've defined the colors, you must supply shape
information for both the pointer and the mask. Each shape re
quires 32 bytes (16 words) of data. The figure illustrates how
the 16 words of shape data go together to make up the entire
shape.

If you visualize the pointer shape within a 16 X 16 grid,
the first 16-bit data word is in the top row of the grid, the sec
ond data word represents the second row, and so on. To pass
the shape information to the SMF routine, you must first cal
culate the 16-bit values represented by the on bits within this
grid. When that's done, the data for the mask is POKEd into

u

147

CHAPTER FOUR

Mouse Pointer Data

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

locations INTIN+ 10, INTIN+ 12, ..., INTIN + 40. The pointer
shape data is POKEd into locations INTIN+ 42 through
INTIN+ 72. Don't be concerned if that sounds a bit confusing.
Program 2 does all the calculations and POKEs for you auto
matically. For those who are interested, Table 5 outlines the
information needed by the SMF routine.

Table 5. Set Mouse Form (SMF) Parameters

Input Parameters
POKE CONTRL,lll
POKE CONTRL+2,0
POKE CONTRL+ 6,37
POKE INTIN,X
POKE INTIN+ 2,Y
POKE INTIN + 6,mask color
POKE INTIN+ 8,pointer color
POKE INTIN+10-INTIN+40,mask shape data
POKE INTIN+42-INTIN+72,pointer shape data

Opcode
Number of input vertices
Number of attributes

x = hot spot horizontal coordinate
y = hot spot vertical coordinate

Saving Custom Pointers
Once you've created a custom pointer with Program 2, it ap
pears on the screen and works just like the regular one. How
ever, as soon as you exit BASIC, the pointer reverts to its
usual shape.

148

u

BASIC Programming

To help you incorporate custom pointers into your own
BASIC programs, Program 2 lets you save all the pointer
shape data in a disk file. Program 3 illustrates how to read the
shape data from the disk file and recreate the custom pointer
in another program.

Program 3. Pointer Loader

10 dim shape(30):clearw 2:gotoxy 0,0:input "Fil
ename";fn*:open "I",#l,fn*

20 input #l,hx,hy:for a=0 to 15:input #l,shape(
a):next

30 poke contrl,111:poke contrl+2,0
40 poke contrl+6,37
50 poke intin,hx-1:poke intin+2,hy-1:poke intin

+4,1
60 poke intin+6,0:poke intin+8,1
70 for a=10 to 40 step 2:t=shape((a-10)/2)
80 poke intin+a,t:poke intin+a+32,t
90 next:vdisys (0):clearw 2:gotoxy 0,0:print "d

ef ined"

The first two data items in the disk file are x and y coordi
nates for the pointer's hot spot. The next 16 data items are the
16 words (32 bytes) of shape data for the pointer and mask
forms. After this data has been retrieved, it's simply a matter
of performing the setup and calling the SMF routine just as we
did in Program 2.

To incorporate this routine into your own program, re
place the INPUT statement in line 10 with FN$ = "FILENAME"
(using your own filename in place of FILENAME). Of course,
you could also convert the shape data into DATA statements
contained in the program itself.

149

File Handling
in ST BASIC

Tony Roberts

Until you've learned to use them, files may seem
con/using, even dangerous. But a iittie practice

with them makes working with files only slightly
more difficult than printing to the screen. Several

examples wiii show you how.

Word processors, spreadsheets, and database managers are
considered powerful programs. They all manipulate data and
have the capability of storing the results in files on disk. These
files can be recalled later for further refinement or rearrangement.

These programs are powerful because they can interact
with information that comes from outside sources—from the

disk files. BASIC programmers also have access to this same
type of power if they know how to control disk files.

A file is nothing more than a collection of data arranged
in such a way that some program will be able to read it. It can
be very short, as in a file that keeps track of the high score in
an arcade-type game, or very long, as in a database of hun
dreds of names and addresses.

If you've not yet learned to handle them, files may seem
confusing and dangerous. It is possible for you to accidentally
erase information on a disk when you're working with files,
but it's also easy to learn to avoid such situations. After you've
worked with files a few times, the process is only slightly
more difficult than printing to the screen. With a little practice
and a little thought, your BASIC programs can take on some
of the power and elegance of their bigger brothers.

If you've written or typed in programs that use a lot of
DATA statements, you've worked with programs that are
good candidates for files. Many address-book programs and
magazine-article catalogs, for example, keep all associated data
in DATA statements. The user of the program is expected to
edit the DATA statements as necessary each time the program
is run.

When you know all the information that a program will

150

BASIC Programming

_

work with at the time it's written, you'll have no trouble
— putting that information into DATA statements. However, if

you're writing a program that will be used over a long period
of time—an address book or a home inventory manager, for
example—you don't have all the data on hand. In this case, a
disk file that can be edited and updated as time goes by is
usually preferable.

— Programs that use data files are also more portable, in a
way, than programs that rely on DATA statements. Say, for
instance, your brother wants to use the home inventory pro
gram you have written. Chances are he'll be more comfortable
using a program that doesn't require him to break in and edit
DATA statements.

Two Kinds of Files

The two types of files you can access from BASIC are sequen
tial files and random files. A sequential file is like a letter from
a child at camp. You start at its beginning and read straight
through until you reach the end. On the other hand, a random
file might be compared to a telephone book. Using some kind
of index—in this case, the alphabet—you open the book and
go more or less directly to the information you need.

Sequential files are adequate for most of the applications a
beginning or intermediate programmer will write. In programs
that search through massive amounts of information, however,
the speed of random access becomes important. Random ac
cess files are generally used in tandem with a sequential index
file. In other words, the program uses a sequential file to hold
an index to the random file. When a record from the random
file is needed, the program looks up the information in the in
dex file. The index entry tells the program where to find the
complete information in the random file. This method signifi
cantly reduces searching time when large amounts of data are
involved.

Random files are also handy for those who like to explore
disks and study or change the way information is stored. We'll
discuss this use of random files in detail a little later.

Sequential Files
The BASIC keywords OPEN, CLOSE, INPUT, INPUT #, LINE
INPUT #, PRINT #, and WRITE # are used to control sequen-

151

CHAPTER FOUR

tial files. Program 1, "Score," is a short game program that il
lustrates how to use these commands to open, close, read
from, and write to a file.

Program 1. Score.

20 gosub READFILE
30 gosub PLAYGAME

40 if newscore>score then gosub WRITEFILE
50 end

60

70 READFILE:

80 open "I",#l,"score.dat"
90 input #1,score
100 close #1

110 return

120

130 PLAYGAME:

140 randomize 0

150 clearw 2

160 print "Previous High:";score
170 x=int(rnd*26)+97

180 print chr*(x)
190 y=inp(2)
200 if y=x then newscore=newscore+l:goto 170
210 print "Your Score:";newscore
220 return

230

240 WRITEFILE:

250 open "0",#1,"score.dat"
260 print #1,newscore
270 close #1

280 return

The game is a simple typing test. The computer selects a
random lowercase letter and displays it. You type the letter.
The game continues as long as you type each specified letter
without an error.

The program begins with a GOSUB to the READFILE rou
tine, which opens and reads the disk file that keeps the high
score for the game. The first step in this process is to OPEN
the file.

For sequential files, the OPEN command takes three pa
rameters— mode, file number, and filename.

• The mode is either an uppercase I (input) or an uppercase O
(output).

152

_ BASIC Programming

• The file number is a number, from 1 to 15, which uniquely
—- identifies the file. This number will be used in conjunction

with the input and output commands each time you access
Uthe file. You cannot have two open files with the same file

number, but you can reuse a file number once the first file
using that number has been closed.

• The filename is the name of the file you want to access.
Line 80 of the Score program OPENS a file named

score.dat for input and assigns it the file number 1. Line 90
uses the INPUT # command to read some information from
the file and store it in the variable score. This command oper
ates very much like the INPUT command that requests infor
mation from the keyboard, except a file number is included to
tell BASIC where to find the information.

The CLOSE command in line 100 closes the file and frees
the file number to be used again. Unless the file is reopened,
no more information can be read from it.

When a file number is specified with the CLOSE com
mand, only the file associated with that number is closed. If
CLOSE is used with no parameters, all open files are CLOSEd.
Although several other commands—END, RUN, NEW, LOAD,
and QUIT among them—cause any open files to close, it's
good programming practice to have your program close files
as soon as it has finished accessing them.

Closing a file makes sure that all data that was intended
to be written to the file is written, and that the system's direc
tory entries for that file are updated if necessary. Problems can
occur when a disk with an open file is removed from the drive
or if the system is shut down, either at the power switch or
via a power failure, while a file is still open. These problems
are rare. They can usually be prevented by closing files as

— soon as access to them is no longer needed.
After the program has read the previous high score from

the disk file, it proceeds to the game loop, where it stays until
— the player makes an error. When the game ends, the program

checks to see whether a new high score has been earned. If so,
the program reopens the score.dat file, this time for output,

—' and uses the PRINT # command to print the variable newscore
to the file. Note that if a file opened for output does not exist,
a new file will be created. On the other hand, if the named file
does exist, its previous contents are erased.

When you run Score, you may be surprised to find that it

153

CHAPTER FOUR

halts abruptly with a file-not-found error at line 80. This is be
cause BASIC cannot open a nonexistent file for INPUT. One
way around this problem is to skip the input section of the
program the first time it is run. Run the program using the
command

RUN ,30

The ,30 tells BASIC to start the program at line 30, which calls
the play loop. When the program ends, the score.dat file will
be created. Next time the game is played, it will run normally
from the beginning.

It's a safe bet, however, that most of your data files will
have more than one element. This simple example, however,
provides a foundation to build on. Try making the following
changes to the program.
90 input #l,score,name$
155 input "Enter your first name. ",newname$
160 print name$;" had previous high:,"score
260 print #l,newscore,newname$

Now the data file will keep both the high score and the
name of the player who made that score. When you run the
new program, though, it will again stop with an error. Line 90
tries to read two items from the file—score and name$—but at
this point, the file contains only a single item.

Again, run the program from line 30 to skip the input sec
tion and create a new file that matches the current specifica
tions. This points out a key rule in programming with files:
The input section must be able to read what the output section
has written. There is a similarity here between files and READ
and DATA statements. Note the problem that would occur if
the variables in line 90 were reversed. Before writing variables
to a file, you should have an understanding of how you're go
ing to read them back.

Another Approach
In Program 1, we knew exactly what we wanted from the file.
The program opened the file, read the necessary elements, and
then closed the file. When the number of elements in the file
is unknown, however, it is necessary to take a different ap
proach, as Program 2, "Birthday List," illustrates.

154

u BASIC Programming

Program 2. Birthday List
10 gosub INITIALIZE
20 gosub READFILE
30 gosub PRINTLIST
40 gosub ENTERNAMES
50 gosub PRINTLIST
60 if c-l>recordsread then gosub WRITEFILE
70 end

80

90 INITIALIZE:

100 clear

110 c=0

120 fullw 2:clearw 2

130 erase name*,age,date*
140 dim name*(50),age(50),date*(50)
150 return

160

170 READFILE:

180 on error goto 550
1V0 open "I",#1,"bdaylist.dat"
200 on error goto 0
210 while not eof(1)

220 c=c+l

230 input #l,name*(c),age(c>,date*(c)
240 wend

250 recordsread=c

260 close #1

270 return

280

290 ENTERNAMES:

300 c=c+l

310 input "Name: ";name*(c)
320 if name*(c)="END" or name*(c)="end" then 370

330 input "Birthday: ";date*(c)
340 input "Age: ";age(c)
350 print
360 goto 300
370 return

380

390 WRITEFILE:

400 open "0",#1,"bdaylist.dat"
410 for i=l to c-1

420 write #1,name*(i),age(i),date*(i)
430 next

440 close #1

450 return

460

470 PRINTLIST:

480 clearw 2

490 for i=l to c

155

CHAPTER FOUR

500 if name*(i)="end" or name*(i)="END" then 520

510 print name* (i),date*(i),aged)
520 next

530 return

540

550 ERRTRAP:

560 if err=53 then resume 270

570 print "Error #";err;"in line"jerl
580 end

Program 2 lets you enter the names, birthdays, and ages
of your friends. Then it saves the information you entered to a
disk file. Later, you can run the program again to view the
data or to add more names. When you're finished entering
data, type END to end the program.

For each name you enter, the program saves two string
variables—name$ and date$—and one numeric variable—age.
But the number of names in the list is undefined. In order to
know how much to read, the program uses the EOF (end of
file) function to detect the end of the file. The statement
while not eof(l)

in line 210 sets up a loop that reads the three variables for
each name until there's no more data left in the file. When the
end of a file has been reached, EOF becomes true. The num
ber in parentheses after EOF is the file number of the file
you're reading.

In line 230 of this example, the order in which the vari
ables appear is significant. Variables must be read or input in
the same order in which they have been written. It's possible
to read a numeric variable into a string, but an attempt to read
a string into a numeric variable will result in an error.

Since Program 2 begins, as did Program 1, by reading a
file from the disk, you might expect it to halt with a file-not-
found error the first time it is run. In this case, however, we've
allowed for that problem by setting up an error trap in line
180. The ON ERROR command in that line causes program
control to be diverted to line 550 if an error, such as a file-not-
found error, is detected.

As this routine is written, it checks to see whether the er
ror was error number 53 (File not found on disk drive speci
fied). If that's the case, the program is told to RESUME at line
270, which exits the READFILE routine and continues with the

156

BASIC Programming

rest of the program. If any other error is encountered, the pro
gram will end.

The statement

on error goto 0

in line 200 turns off the special error trapping and returns
responsibility for error handling to BASIC.

Trapping Errors
There's a lot of potential for errors when you're working with
files. Nothing is more frustrating than entering a lot of data
and having the program crash. A good program identifies
likely spots for errors, traps those that occur, and provides a
graceful way to continue the program.

When you set up error-trapping routines, there are a cou
ple of things to remember. First, the ON ERROR statement
must direct flow to a line number, not to a line label. Second,
when you use the RENUM command to renumber your pro
gram, you'll have to edit any line numbers after RESUME in
your routine. RENUM fails to adjust line number references
after RESUMES.

After you finish adding names to the birthday list, the
program reopens the data file, this time for output, and uses a
loop to write all the data in the name$, date$, and age arrays
to the disk. Opening a file for output erases the contents of
any file on the disk with the same name.

When you're working with sequential files, you must fol
low the example of this program and open the file for input,
read all the information into memory, add to the information,
edit it or sort it, open the file for output, and write all the
information back to disk. It is not possible simply to append

— new information to the end of an existing sequential file.
The WRITE # command in line 420 writes the data out to

disk. It is much more convenient to use than the PRINT #
command used in the previous program.

PRINT # works in the same way that PRINT or LPRINT
works, except the information is sent to the disk. If you sepa-

—I rate the variables with semicolons, no space will be left be
tween the values on the disk. If you separate the variables
with commas, spaces will be inserted after the first value to

—I move the data to what would be the next tab position. Al
though this approach worked fine in the Score program, it can

— 157

CHAPTER FOUR

present problems the next time the data is read with an IN
PUT # command.

WRITE #, on the other hand, is designed with INPUT #
in mind. As it prints to disk, WRITE # encloses strings in quo
tation marks and prints commas between each value. This
makes inputting the information later much easier. When
using BASIC dialects that have no WRITE # command, pro
grammers use the PRINT # command, but they must take
responsibility for keeping data items separate. The following
line writes the same information to disk as does line 420 of
the Birthday List program:
print #l,chr$(34); name$(i); chr$(34); ","; age$(i); ",";

chr$(34); date$(i); ","; chr$(34)

Seeing Is Believing
Seeing the information as it's stored on disk will give you a
better understanding of what your WRITE # or PRINT # state
ment is doing. This will help you set up your programs so that
data can be retrieved without error.

Program 3, "File Read," allows you to read through data
files sequentially to see how the information is stored. The
program provides two ways to view the data—character by
character or line by line. You'll probably find the character
method too slow to be useful, but it is included for the sake of
discussion.

Program 3. File Read
10 gosub INITIALIZE
20 if type=49 then gosub CHARREAD else gosub LI

NEREAD

30 end

40

50 INITIALIZE:

60 fullw 2: clearw 2

70 line input;"Please enter a filename. ";filen
ame*

80 Print "Read file by: 1. Character"

90 print space*(14);"2. Line"
100 type=inp(2)

110 if type=49 or type=50 then return
120 print chr*(7);:goto 100
130

140 CHARREAD:

150 open "I",#l,filename*

158

BASIC Programming

160 while not eof(1)

170 a*=input*(l,#l)
180 if asc(a*)=13 then print chr*(13):goto 200

190 print a*;
200 wend

210 close #1

220 return

230

240 LINEREAD:

— 250 open "I",1,filename*
260 on error goto 340
270 line input #l,a*
280 print a*
290 goto 270
300 close #1

310 on error goto 0
320 return

330

340 ERRTRAP:

350 if srr = 62 then resume 300

360 print "Error #";err;"in line";erl
370 end

The program uses the INPUTS command to accomplish
the character-by-character display of the file. Line 170 sets a$
equal to one character read from file #1. The program then
prints a$ and goes on to get the next character. If line 180 is
omitted from the program, carriage returns are ignored, and
characters are printed, one after another, filling the lines.
When INPUTS finds a carriage return character, it apparently
tosses it out before printing it. Line 180 skirts this limitation
by identifying when a carriage return is read and forcing it to
be printed.

The CHARREAD routine uses the while not eof(l) con
struct to control the loop that plucks the data from the disk.
Since the information is being read a character at a time, the
end of the file can be detected without error, and the loop can
be exited gracefully.

The LINEREAD routine, on the other hand, presents a
different problem. This routine uses LINE INPUT # to fetch
data one line at a time. LINE INPUT # can read strings of up
to 254 characters. It gathers data from the disk until in reaches
a carriage return (ASCII 13, hex OD) not immediately preceded
by a linefeed (ASCII 10, hex 0A). The next LINE INPUT #
statement picks up where the previous one left off.

J 159

CHAPTER FOUR

In most cases, though, when a carriage return is stored
in a disk file, it is stored as a carriage return/linefeed com
bination. LINE INPUT # reads through the carriage return
character, but leaves the linefeed character for the next LINE
INPUT # to pick up.

What happens in this example is that LINE INPUT #
reads lines from the disk until the final carriage return is
reached. At that point, there's a linefeed character left to be
read. The next LINE INPUT # reads the linefeed, but it con
tinues reading, looking for a carriage return. Since there is no
carriage return, the program halts on an error 62, indicating
that the end of the file has been reached.

Having anticipated this problem, however, the LINEREAD
routine has set an error trap to detect this condition and exit
from the program smoothly.

The File Read program can help you see how information
is stored in your data files, but it can't show you everything.
Try using this program to view BASIC.PRG, and you'll be dis
appointed. If you choose the character read option, you'll see
one character before the program ends; the line read option
will show you nothing.

The reason for this is that the second character in the
BASIC.PRG file is an ASCII 26 (hex 1A), also known as Con-
trol-Z. With sequential files, Control-Z signals the end—you
can read no further. To get the clearest picture of how data is
stored on the disk, we'll have to turn our attention to random
files.

Random Files

Random files most often are used in applications where por
tions of large databases are manipulated, sorted, edited, and
printed. The Department of Motor Vehicles in your state, for
example, probably uses a random file system to store infor
mation about you and your automobiles. Given an index item,
such as your license tag number, the program can quickly dis
play all information pertaining to you. This information can be
corrected if necessary and quickly rewritten to the master file
without your having to read in and rewrite every other bit of
data in the file.

This capability results in great efficiency for businesses or
governmental agencies with huge amounts of data to manipu
late, but for home programmers and their typically smaller

160

u

BASIC Programming

databases, the additional work required to set up a random fil
ing system is probably more than it's worth. If your applica
tion is sophisticated enough that random access files would be
of benefit, you should probably consider writing the program
in a language other than BASIC, as well.

For those reasons, the following discussion of random
files is somewhat abbreviated. It focuses on how random files
can be used in small utility programs rather than on the intri
cacies of setting up a full-blown database with random files.

Program 4, "Random Read," explores in detail any disk
file, providing you with complete information about how data
is stored. Such detailed information is essential if you need to
convert data from one format to another. This can be useful
when you want to use the data files of one program with an
other program. A common example is when someone who has
just purchased a new word processor wants to use files created
by an old program without the labor of retyping. By examin
ing the structure of the data files of each of the word proces
sors, you can determine what conversion needs to be done to
make the files compatible.

Although Random Read contains no code that writes
information to the disk, it is appropriate here to recommend
that whenever you're exploring and experimenting with disk
files you do so with backup copies. Do not experiment with
your only copy of a valuable document or program. Enough said.

Program 4. Random Read
10 gosub SETUP
20 open "R",#l,filename*,128
30 field #1, 128 as a*
40 numrecs=lof(1)

50 if offset>0 then gosub FIXOFFSET
60 while loc (1 Xnumrecs

70 get #1
80 gosub NEXTRECORD
90 gosub PRINTRECORD
100 wend

110 close #1

120 end

130

140 FIXOFFSET:

150 record=offset!/128

160 offset!=offset!-(offset! mod 128)

170 get #l,record-l
180 return

161

CHAPTER FOUR

190

200 PRINTRECORD:

210 for i=0 to 127 step 16

220 print using "######";offset!;
230 print ":";
240 for j=l to 16

250 b*(j)=mid*(a*,i+j,1)
260 hx*=hex*(asc(b*(j)))

270 if len(hx*)=l then hx*="0"+hx*

280 if j=8 then form*="\ \! " else form*="\ \"

290 print using form*;hx*;
300 next j

310 print space*(2);
320 for k=l to 16

330 if asc(b*(k))>32 then print b*(k); else prin
t ". ";

340 next k

350 offset!=offset!+16

360 print
370 next i

380 return

390

400 NEXTRECORD:

410 if first=0 then first=l:goto 460
420 printsprint "Press a key to continue, Escape

to quit."
430 dummy=inp(2)
440 if dummy=27 then close #l:end
450 gotoxy 0,12: print space*(40)
460 gotoxy 0,1

470 print "Displaying record #" ;loc (1) ;"of ";nutnr
ecs

480 print
490 return

500

510 SETUP:

520 dim b*(16)

530 fullw 2:clearw 2

540 width 80

550 first=0

560 gotoxy 0,0
570 input "Specify a filename, ".filename*
580 input "Specify an offset. ",offset!
590 return

Random files are opened in much the same way as se
quential files. The differences are these: An uppercase R is is
used to indicate the file mode; a fourth parameter, record

162

BASIC Programming

length, is added to the open statement; and a FIELD statement
is used to describe how the data within the record is to be used.

There also are significant differences in the way data is
moved to and from the disk. In general terms, here's what
happens. When a file is opened, BASIC sets aside a buffer in
memory to act as a way station between the disk file and the
program. When information is requested from the disk, it is
read a record at a time and placed in the buffer where the pro
gram can use it. Going from program to disk is similar. A
record's worth of data is placed in the buffer; then the buffer
contents are written to disk. The GET # command is used to
move data from disk to buffer. PUT # writes data from the
buffer to the disk.

In line 20 of Program 4, the final parameter, 128, is the
record length. Record length can range from 1 to 4096. If no
length is specified, it defaults to 128 bytes. In line 30, the
FIELD statement describes how the data in the record is to be
used. In this program, the entire buffer, 128 bytes, is assigned
to the buffer variable a$. A field statement such as

field #1, 64 as a$, 64 as b$

assigns the first half of the buffer to a$ and the latter half
tob$.

Now that the file is open and fielded, line 40 uses the
LOF (length of file) function to find out how long the file is in
records, not in bytes as the BASIC manual indicates. You can
find the number of bytes in a random file by specifying a
record length of 1 in the OPEN statement. This is accurate
only as long as the file contains fewer than 65536 bytes. After
that, the counter rolls over like the odometer on an aging
automobile.

At any rate, line 40 discovers the number of records in
the target file and assigns that value to the variable numrecs.
The comparison in line 60 employs the LOC function to make
sure the end of the file has not been reached, but tests the cur
rent record number—as supplied by LOC—against the value
stored in numrecs.

When the the program runs, you are asked to specify a
filename and an offset. If the offest is between 0 and 127, the
file display starts with the first record. If it's between 128 and

l 255, the display begins with the second record, and so on.
The format for the display in this program is much like

that commonly found with disk editor programs. Each record
— 163

CHAPTER FOUR

is displayed on eight screen lines. First you see the offset, then
the hexadecimal values for the first 16 bytes of the block. The
line is completed by an ASCII representation of those same 16
bytes.

The program allows you to step through a file, a block at
a time, viewing the data. If you want to move to a distant sec
tion of the file, quit the program and rerun it specifying the
desired offset. If an offset greater than zero has been specified,
the program uses the full form of the GET # command to
move to the start of the desired record.

The optional second parameter of GET # is the record
number that is to be read. If the second parameter is not speci
fied with GET #, the next available record is read. The FIX-
OFFSET routine identifies the appropriate record number; then
it reads the previous record. This places the file pointer on the
desired record, so the next time the GET # statement in line
70 is executed, the proper record is read.

Once again, this program does not allow you to change
any data in the disk file (as would be possible with a commer
cial disk editor program). Modifications could be made to per
mit this capability, but they are beyond the scope of this
discussion.

Another deficiency of this program is that it will not dis
play an incomplete record at the end of a file. Say, for ex
ample, that you have a file that measures 150 bytes. In
measuring the number of records in the file (line 40), the LOF
function returns the number of complete records. In this case,
the function returns a 1, for the first 128 bytes. The remaining
22 bytes are not accessible by the program.

Altering Data
Once you've studied a file with Random Read, you can use a
program such as Program 5, "Conversion Example," to alter
the data throughout the file. I've used this program to make
STWriter files compatible with other word processors.

STWriter, which shipped with early versions of the ST,
stores carriage returns on disk as ASCII 0. This unusual ar
rangement made it a real nightmare to use STWriter files with
other word processors or for telecommunications. Studying the
STWriter files to learn how they were stored, however, made it
relatively simple to modify them for other uses.

164

BASIC Programming

•""

Program 5. Conversion Example
•

10 gosub SETUP

20 gosub OPENFILES
30 gosub COMPARE

40 close

50 end

60
r

70 COMPARE:

80 while not eof(1)

90 get #1

100 if asc(a*)=0 then print #2,crlf*; else print
#2,a*;

110 gotoxy 1,2

120 print using "#####";counter

130 counter=counter-l

140 wend

150 return

160
?

170 OPENFILES:

180 open "R",#l,infile*, 1

190 field #1,1 as a*
200 counter=lof(1)-1

210 open "0",*2,outfile*
220 gotoXY 1,2
230 print using "#####";counter;
240 print " bytes to convert."
250 return

260
J"

270 SETUP:

280 fullw 2:clearw 2

290 gotoxy 0,5
300 crlf*=chr*(13)+chr*(10)

310 input "File to convert. ",infile*
320 input "Name for new file. ",outfile*
330 if infile*Ooutfile* then 370

340 clearw 2

350 print chr*(7);"« * * File names must differ
* * *"

360 goto 290

370 return

Conversion Example opens the source file (#1) as a ran
dom access file with a record length of one byte. At the same
time, the program opens a destination file (#2) as a sequential
file. Line 90 GETs a byte from file #1. Then line 100 checks to
see whether that byte is ASCII 0. If not, the character is sim
ply printed to file #2, and the program continues. If the char-

165

CHAPTER FOUR

acter is an ASCII 0, a carriage return/linefeed combination is
printed to file #2.

Those who purchased their STs a little later probably re
ceived the 1ST Word word processor rather than STWriter. Al
though 1ST Word has a lot more going for it than its
predecessor does, it's not without quirks. For example, normal
space characters are stored as ASCII 30 rather than the usual
ASCII 32. Another example is that 1ST Word uses ASCII 32 as
a "fixed space" character. The result is that if you import a file
from an outside source—say, from a telecommunications ser
vice—and attempt to edit it, you'll be confounded by the in
compatibility of space characters.

The solution: Edit line 100 of Conversion Example to
check for ASCII 32 and to print an ASCII 30 to the output file
when it finds one . The new line might look like this:
100 if asc(a$)=32 then print #2 chr$(30); else print #2,a$

With a couple of other quick modifications, you could use
this program to search for and strip printer codes out of a file
or to alter those codes for use with another printer. Although
the program is relatively slow, it shows that an understanding
of files and the use of a short BASIC program can solve a data
file problem and save you quite a bit of time.

Because BASIC limits the maximum number of records in
a random file to 32767, you should not attempt to use this
technique on files longer than 32767 bytes.

Worth the Effort

Although it takes a little study and a little practice to master
file-handling commands, it's certainly time well spent. The
application of disk files at the proper times can improve the
usefulness and appearance of your programs.

As you can see from the examples, a program need be
neither long nor complex to make use of disk files. In fact,
once you've grown comfortable with disk file handling, you'll
probably find that some of the most useful programs you
write will be very short routines that use disk files in one way
or another.

166

Using GEMSYS and
VDISYS in ST BASIC

Philip I. Nelson

To beginning programmers, GEMSYS and VDISYS
— are among the most mysterious and forbidding

commands in ST BASIC. The names themselves
suggest connections with GEM and VDI, two

important components in the conglomerate of
hardware and software that makes up the Atari ST

computer. But what exactly can you do with
GEMSYS and VDISYS?

Both GEMSYS and VDISYS are designed to give BASIC pro
grammers access to system routines. These routines, actually
machine language programs located in ROM, allow you to
perform tasks that would be difficult or impossible with ordi
nary BASIC commands. The VDISYS statement permits you to
call VDI (Virtual Device Interface) routines. The VDI contains
dozens of low-level routines that can do many different tasks.
These routines draw circles, ellipses, and boxes; manipulate
raster blocks; change character fonts; and read the screen loca
tion of the mouse pointer. The GEMSYS statement serves a
similar function for an AES (Application Environment Ser
vices) routine. AES routines are considered high-level routines.
In this context, low-level simply means that the routine per
forms a single, comparatively simple task such as drawing a
line. High-level means that the routine performs a more com
plex job such as displaying a dialog box and retrieving input
from the user. Thus, AES contains routines to control such
GEM features as windows, menus, and dialog boxes.

Accessing VDI and AES Routines
Both GEMSYS and VDISYS take a form which is technically
that of a BASIC function. That is, each ends with a pair of pa
rentheses, inside which you supply some information. But
they're really special-purpose commands unique to the ST.

167

CHAPTER FOUR

Like the CALL statement, their main purpose is to call a ma
chine language routine located somewhere in the computer's
memory. However, CALL is designed primarily for user-written
ML routines. It requires that you know the actual memory ad
dress where the routine begins. GEMSYS and VDISYS work
only with system routines and don't require that you know
where the system routine is located. The ST finds the routine
for you automatically and handles several other details as well.

Virtually every GEMSYS and VDISYS call requires a cer
tain amount of preparation. If you try to use either command
without the setup that it requires, the result is often a system
crash. To regain control, you must either press the Reset
switch or turn the computer off and on again. The ST is not a
forgiving computer where system routines are involved, and
this emphasizes an important fact: Like other system software,
AES and VDI routines are designed first and foremost for the
computer's own use. GEMSYS and VDISYS provide a "back
door" through which you can use them from BASIC, but none
of these routines was designed with BASIC in mind. The bulk
of the ST's operating system was written in the C language,
which uses conventions different from BASIC to pass infor
mation from one program to another. The setup procedures re
quired for these routines are quite convenient in a C program,
but cumbersome in BASIC.

Parameter Blocks

Every AES and VDI routine expects to receive certain infor
mation from you, the programmer, when it is called. The
amount and character of the information varies from one rou
tine to the next. It may be as simple as the number of an error
message you wish to display in a dialog box, or as complex as
a set of coordinates and vertices for a graphics drawing rou
tine. In every case, the information is passed through known
memory locations, which the system itself monitors for you.
These locations—actually memory zones of a predefined
size—are known as parameter blocks.

Let's look at the entry points for the various parameter
blocks. Enter the following line in the BASIC Command win
dow and press Return:
PRINT contrl, intin, intout, ptsin, ptsout, gb

168

_ BASIC Programming

_

Even if you've never defined these variables, the ST prints six
j numbers, indicating that it has already assigned values to

them. ST BASIC treats the variables CONTRL, INTIN,
INTOUT, PTSIN, PTSOUT, and GB as reserved, meaning they
can be used only for a special purpose. An error occurs if you
try to redefine their values.

Each of these six variables points to a different parameter
block used to access a VDI or AES routine. The first five—
CONTRL, INTIN, INTOUT, PTSIN, and PTSOUT—are used
with VDISYS, while the last one—GB—is used with GEMSYS.
As a convenience, ST BASIC lets you refer to the various
parameter blocks with variable names rather than with abso
lute numeric values. You don't need to know the actual ad
dress where CONTRL begins, for instance. If you POKE a
value into CONTRL, the ST automatically finds that parameter
block for you.

Program 1 shows how to use parameter blocks and also
demonstrates a very useful VDI drawing routine. If you are
using a color monitor, switch to medium resolution before
running the program.

Program 1. VDI Drawing Routine
REM VDI 11, generalized drawing primitive
FULLW 2:CLEARW 2
POKE CONTRL, 11 :REM Opcode for VDI routine
POKE CONTRL+2,2 :REM Number of vertices for

shape
POKE CONTRL+6,0 :REM Nothing in INTIN
POKE CONTRL+10,8 :REM Primitive ID for round
ed rectangle
POKE CONTRL+12,1 :REM Device handle
FOR j=50 TO 1S0 STEP 3
POKE PTSIN, j :REM X coord of upper left
corner

POKE PTSIN+2,j :REM Y coord of upper left
corner

POKE PTSIN+4,200 :REM X coord of lower right
corner

POKE PTSIN+6,j+50:REM Y coord of lower right
corner

VDISYS(0) :REM Do the deed!

NEXT

GOTO 110

u

100

110

120

130

140

150

_

160

170

180

190

_
200

_

_

210

220

230

240

169

CHAPTER FOUR

In order to use any AES or VDI routine, you must know
the opcode, or identifying number, for that routine. For VDI
routines, the opcode is always POKEd into the location de
fined as CONTRL. In Program 1, that job is performed in line
120, where we execute POKE CONTRL, 11. This statement
stores the value 11 in the first two-byte segment of the
CONTRL parameter block.

CONTRL, as we've seen, always receives the opcode
number of the VDI routine we wish to call. In line 130, the
next location in the CONTRL area, CONTRL+ 2, receives the
number of vertices (corners) required to define the shape to be
drawn. Since the shape-drawing routines in VDI routine 11 al
ways involve regular (symmetrical) shapes, this number is
easy to determine. A triangle, for example, requires three verti
ces. A rectangle like the one in Program 1 requires only two
opposite vertices.

Many VDI routines require a value in location CONTRL+6,
line 140, which defines the number of attributes for a particu
lar routine. The term attributes is a bit of a catchall that can
include anything from a style index to color rotation values.
VDI routine 11 requires no attributes, so we simply POKE
CONTRL+ 6, 0.

Primitive ID

The next POKE for VDI routine 11 goes into location
CONTRL + 10 (line 150). This segment of the CONTRL pa
rameter block is very important for this particular routine,
since it tells VDI which of the ten different drawing subrou
tines you wish to call. ST software developers call this value a
primitive ID. A graphics primitive is a low-level routine that
performs a single function such as drawing a line or simple
geometric shape. In this case, we want to draw an open rect
angle with rounded corners. That's just one of the ten differ
ent subroutines accessible within VDI routine 11. Table 1 lists
the ID numbers for the subroutines available in this routine.

The values in Table 1 select which shape VDI routine 11
will draw. To invoke one of these subroutines, you must
POKE the corresponding primitive ID number into location
CONTRL+10. The rest of the preparation depends on which
subroutine you choose. Table 2 summarizes the values to
POKE into PTSIN and INTIN for all the various routines.

170

u

BASIC Programming

Table 1. Drawing Subroutines

Primitive ID Draws
1 Bar

2 Circle

3 Arc

4 Pie

5 Ellipse
6 Elliptical arc
7 Elliptical pie
8 Rounded rectangle
9 Filled rounded rectangle

10 Justified graphics text

Line 160 places the number representing the device han
dle in CONTRL+ 12. In this case, the device handle is 1,
representing the screen. Sometimes it may be necessary to use
another VDI routine to determine the value of the handle.
When it is necessary to determine the handle, use VDI routine
100, Open Virtual Work Station.

Most of the remaining preparation for the VDI routine in
volves setting x and y coordinates. VDI routine 11 can draw a
variety of different graphic shapes; in this case, we're using it
to draw a rounded rectangle. Before calling the routine, you
must define for VDI the location of four points on the
screen—the x and y location of the rectangle's upper left cor
ner, and the x and y location of its lower right corner. The pa
rameter block where these points are stored is defined,
appropriately enough, by the reserved variable PTSIN (PoinTS
INput). Lines 180-210 store the coordinate values in the area
beginning at PTSIN. Like the CONTRL parameter block, the
PTSIN parameter block is a reserved memory area. Each
screen coordinate is treated as a two-byte value; the value of
the first coordinate is POKEd into PTSIN, the second is
POKEd into PTSIN + 2, and so forth.

Not all of these locations need to be used in every case. A
rectangular shape requires two pairs of x and y coordinates to

— define its upper left and lower right corners. A perfect circle
requires only two x and y values to locate its center on the
screen; however, you must also supply a radius value in

— PTSIN+ 8 to define its size. The other rounded shapes—an el
lipse, arc, or pie segment—require both x and y radius values.

171

CHAPTER FOUR

Table 2. PTSIN and INTIN Values

Location Value
PTSIN x coordinate of first vertex (rectangle)

x coordinate of center (circle, ellipse)
PTSIN + 2 y coordinate of first vertex (rectangle)

y coordinate of center (circle, ellipse)
PTSIN+4 x coordinate of second vertex (rectangle)

x radius for ellipse
PTSIN+ 6 y coordinate of second vertex (rectangle)
PTSIN+8 Radius (circle only)
PTSIN+12 Radius (circular arc or pie only)
INTIN Start angle for arcs and pies
INTIN+2 End angle for arcs and pies

What Goes into INTIN?

Where VDISYS is concerned, PTSIN has a fairly clear func
tion: It stores coordinates or other values for the points needed
to create a graphic shape on the screen. But many VDI
routines require extra information that doesn't fit into such a
neat category. As mentioned above, the INTIN parameter
block serves as a pipeline for such miscellaneous bits of data,
collectively termed attributes. Location CONTRL+ 6 tells VDI
the number of attributes you wish to send. Program 1 stores a
zero in this location to signal that subroutine 9 doesn't need
any attributes. When attributes are involved, you must be
careful to POKE a corresponding number into CONTRL+ 6
before calling the VDI routine. If you omit this step, the com
puter will probably crash.

VDI routine 11 requires attributes only when you wish to
draw an arc or pie shape. With both of these shapes, you must
define starting and ending angles to indicate where the
rounded portion of the shape begins and ends. The angle
value is defined in tenths of a degree (not in whole degrees).
When you draw either of these shapes, you must signal to
VDI that two attributes are being passed (with POKE
CONTRL+6,2). Then POKE the value of the shape's starting
angle into INTIN and its ending angle into INTIN+ 2. Like
CONTRL and PTSIN, the INTIN parameter block is divided
into two-byte segments. The first segment is defined by loca
tion INTIN; the rest are defined by locations INTIN+ 2,
INTIN+ 4, and so on.

172

—

u

Call of the Wild
— After the required setup chores have been performed, it's fi

nally safe to call the VDI routine. This is done with the state
ment VDISYS(O). If you're wondering what the zero inside the

— parentheses signifies, the answer is nothing. It's a dummy pa
rameter, which means that the ST doesn't care what you put

U there. You can replace the zero with 123 or any numeric
value. The same is not true of GEMSYS, however (see below).

Program 1 demonstrates the fundamental mechanics of
using VDISYS or GEMSYS in ST BASIC. First, you store the
needed information in memory; then you call the desired sys
tem routine. Once you've performed the setup, the computer
does the rest of the work. Though the preparatory tasks may
seem cumbersome, the computer works very quickly once con
trol has passed to the system routine. It may seem a lot of
work, but it's better than not being able to perform the opera
tion at all.

Many system routines do jobs that are otherwise impossi
ble in BASIC. However, not every system routine is useful in
the BASIC environment. Some simply duplicate a function
that BASIC already provides. For instance, you can draw an
open circle with a VDISYS call, but that operation offers no
real advantage over BASIC'S own CIRCLE statement. Other
system routines don't work because they conflict with BASIC
itself. On the other hand, there are certain advantages to
working in BASIC. For example, since BASIC has already cre
ated an Output window for your use, it's usually not neces
sary to open a virtual workstation and obtain a device handle
before drawing or printing to the screen.

Two-Way Pipeline
The routine demonstrated in Program 1 involves a one-way
information flow—from BASIC to VDI. When the routine is
finished, VDI returns information in the form of an error code.
But the main object is to pass VDI the information it needs to
carry out the appointed task. There are other routines, how
ever, whose purpose is to pass data in the opposite direction—
from the system back to BASIC. Program 2 demonstrates one
such routine. VDI routine 124 tells you where the mouse
pointer is located and which of the mouse buttons is pressed.

_

_

BASIC Programming

173

CHAPTER FOUR

Program 2. Read Mouse Pointer

100 REM VDI 124, read mouse pointer
110 POKE CONTRL,124
120 POKE CONTRL+2,0 :REM No vertices
130 POKE CONTRL+6,0 :REM Nothing in INTIN
140 VDISYS(0) :REM vq_mouse
150 x=PEEK(PTSOUT)

160 y=PEEK(PTSOUT+2)

170 button=PEEK(INTOUT)

180 PRINT "x=";x
190 PRINT "y=".y
200 PRINT "button is";
210 IF button=0 THEN PRINT " not";
220 PRINT " pressed"
230 BOTO 110

Again, the first step in calling any VDI routine is to POKE
the appropriate opcode number (124, in this case) into the lo
cation defined by CONTRL. Since it's impossible to pass infor
mation of any significance from BASIC to the mouse pointer,
you might think that no more preparation is necessary. Why
not call the routine immediately with VDISYS? In most cases,
you'd get away with this, but it's always prudent to signal to
VDI that no vertices or attributes are involved by POKEing ze
ros into CONTRL + 2 and CONTRL+ 6. Remember, VDI and
AES routines aren't intended to be called from BASIC at all.
To obtain consistent results, you should make sure that impor
tant locations such as CONTRL + 2 can't possibly contain left
over values from a previous program or other activity by the
user.

PTSOUT and INTOUT

Program 2 introduces two new variables, PTSOUT and
INTOUT. The PTSOUT (PoinTS OUTput) parameter block is
the converse of PTSIN. It serves as an information conduit
from the VDI back to your BASIC program. In Program 2, the
points returned in PTSOUT are the current x and y coordi
nates of the mouse pointer. Similarly, the parameter block be
ginning at INTOUT (INTeger OUTput) serves as a return area
for other information relevant to that routine. To learn what
VDI has to say, simply PEEK locations PTSOUT and
PTSOUT + 2 for the screen coordinates and PEEK location
INTOUT for the button status.

174

BASIC Programming

U

In summary, VDISYS involves five separate parameter
blocks, each of which begins at the location stored in a re
served variable. The CONTRL parameter block holds the most
fundamental data such as the number of the VDI routine you
wish to call. The PTSIN and INTIN blocks hold information
you need to pass from BASIC to the VDI before calling the
routine. And the PTSOUT and INTOUT blocks serve as way
stations for information that VDI returns to you. Though the
system may seem awkward at first, it does have a logical orga
nization. More to the point, it works.

Using GEMSYS
The GEMSYS statement calls an AES system routine from
BASIC. It works in the same general manner as VDISYS,
which we discussed in the preceding section. First, you plant
needed information in a memory area where the AES can find
it; then you call the desired routine with a GEMSYS com
mand. The AES contains powerful, high-level routines which
are generally more complex than VDI routines. Some AES
routines, for instance, can create a dialog box, hold an interac
tive dialog with the user, erase the dialog box and restore the
underlying screen, and finally, inform you of the results of the
dialog. The price you pay for this increased power is that
GEMSYS offers the BASIC programmer even less convenience
than VDISYS.

ST BASIC reserves several variables for use with VDISYS.
For GEMSYS, only one reserved variable is available—GB.
Like the reserved variables CONTRL, PTSIN, INTIN,
PTSOUT, and INTOUT, this variable defines the beginning
address of a special memory area. Contained in this area are
six addresses, each of which points in turn to an AES param
eter block.

In other words, the AES, like VDI, communicates with
BASIC through a group of parameter blocks. But BASIC does
not give you a reserved variable containing the location of
each different AES block. Instead, a single reserved variable—
GB—points to the beginning of a 24-byte zone that contains
the addresses of the six parameter blocks used to access AES
routines. Table 3 contains the names usually given to these
parameter blocks and the locations used to access them.

_

_

_

175

CHAPTER FOUR

Table 3. AES Parameter Blocks

Location Parameter Block
GB CONTROL

GB+4 GLOBAL

GB + 8 GINTIN
GB + 12 GINTOUT

GB + 16 ADDRIN
GB+20 ADDROUT

One of the GB structure's most notable features is that ev
ery address is located four bytes past the next. Remember that
the contents of these locations are memory addresses. Since
the 68000 microprocessor's address space includes 32-bit ad
dresses, we need four bytes to hold the pointer to each param
eter block. If you refer to the GB structure with another BASIC
variable, use a double-precision variable (A#, and so forth) to
prevent address overflow.

Of these six parameter blocks, the last four—GINTIN,
GINTOUT, ADDRIN, and ADDROUT—are most commonly
used. GINTIN and GINTOUT, like INTIN and INTOUT in the
case of VDISYS, pass integer values from BASIC to AES and
from AES to BASIC, respectively. ADDRIN and ADDROUT
pass addresses back and forth between the two environments.
At first it may not be obvious why you would want to pass an
address to a routine. The next program in this section will
demonstrate a typical use for this technique: After creating a
string which an AES routine needs, you pass the address of
the string to make it accessible to AES. By telling AES where
the string is located, you make it possible for the system rou-
tine to use it.

Why Me? —
If this is your first exposure to using AES routines in BASIC,
you are probably asking why anyone would design such a di
abolically cumbersome scheme for accessing a system routine. —
The answer, again, lies in the fact that GEM (which includes
both VDI and AES) was written in the C language and was
designed as a transportable system that could be used on —-
many different computers. In C programs, it is convenient and
hence very common to pass information from one routine to

176

BASIC Programming

another through control structures such as the six AES param
eter blocks. ST BASIC, at least in the incarnation available at
the time of this writing, supports only a few, rudimentary
GEM features. The most powerful, interactive GEM entities
(such as interactive dialog boxes) are completely inaccessible
with ordinary BASIC commands. So the BASIC programmer
isn't left with much choice. You can either learn to use control
structures designed for another language or do without AES
features entirely.

Putting AES to Work
Despite this seemingly complex scheme, some AES routines
are quite easy to use. Program 3 demonstrates a very powerful
AES routine.

Program 3. Form Alert
100 REM AES 52, form_alert
110 FULLW 2:CLEARW 2

120 a#=GB :REM Get the key to Pandora's box.
130 gintin=PEEK(a#+8) :REM From me to AES.
140 gintout =PEEK(a#+12):REM From AES to me.
150 addrin# =PEEK(a#+16):REM Passes address of t

ext*.

160 defbutn=l :REM default exit button.

170 POKE gintin ,defbutn:REM Press RETURN to cho
ose this one.

180 REM First value in text* chooses the icon...

190 REM 0=none, 1=N0TE, 2=WAIT, 3=ST0P
200 text*="CIDC!Your message goes here lor herein

r here I or even here!3"

210 text*=text*+"CHiI Boo! IWhee..3"+CHR*(0)+CHR*(

0)

220 POKE addrin#,VARPTR(text*):REM Tell AES wher
e text* is.

230 GEMSYS(52) :REM form_alert
240 PRINT "You chose "j
250 ON PEEK(gintout) GOTO Hi, Boo, Whee
260 PRINT "Something is rotten in Denmark":END
270 Hi: PRINT "Hi":END

280 Boo: PRINT "Boo!":END

290 Whee: PRINT "Whee..."

u

Program 3 requires more setup than do the VDI routines
illustrated in the previous section, but it does far more than
draw a simple graphics shape. Using the AES routine known

177

CHAPTER FOUR

as form_alert, it creates a familiar-looking dialog box which
delivers a message to you and invites one of three responses.
Dialog boxes of the type shown in Program 3 are familiar to
every ST owner, but you may not have realized how easy
they are to control from BASIC.

Program 3 begins by storing the address of GB in a dou
ble-precision variable named A#. Once this location is known,
we use A# as a reference point to find the addresses of the pa
rameter blocks where we need to store information for the
AES routine. Note that we don't care, about the actual loca
tions of these memory areas; it's sufficient to refer to them in
relative terms, using the addresses we originally PEEKed from
the GB control structure. Like the key to Pandora's box, the
address in GB is the key that unlocks a host of powerful
instrumentalities.

Before we can call the AES routine with GEMSYS, it's
necessary to POKE two values into memory. The first POKE,
in line 170, defines which button in the alert box will be cho
sen if you exit by pressing Return instead of clicking the
mouse. The second POKE, in line 220, is a little trickier. It
uses the VARPTR function to tell AES the address where the
string TEXTS begins. TEXTS contains all of the text which
we'll want the ST to display inside the alert box. When creat
ing your own strings for use with this routine, make sure that
they're null terminated—with zero bytes, CHR$(0)—as shown
in this example.

Once you've stored these two items of information in
places where AES can find them, you can call the form_alert
routine with the statement GEMSYS(52). The value 52 inside
parentheses is very significant; it tells the ST which AES rou
tine to execute. Note the difference between the way that
VDISYS and GEMSYS receive the opcode for the routine that
you wish to invoke. VDISYS ignores whatever you put in its
parentheses and expects you to POKE the desired routine's
opcode into CONTRL. GEMSYS expects you to supply the
opcode within its parentheses and pays no attention to what's
in CONTRL.

The ST ordinarily calls the form_alert routine when it
wants to advise you of a situation that calls for two, or occa
sionally three, responses. For instance, when you copy or de
lete a file from the desktop, the ST displays a small alert box
indicating the number of files to be copied or deleted. You

178

_

_

_

_

BASIC Programming

may proceed by pressing Return or by clicking the box labeled
OK. To cancel the operation, click on the box labeled Cancel.

It's no accident that you're provided with two different
ways to select the positive option, but only one way to cancel
it. The form_alert routine lets you choose which, if any, of the
available options is chosen by pressing Return. If you supply a
zero, form_alert ignores Return and waits until you click one
of the displayed boxes. Otherwise, it assigns Return to box 1,
2, or 3, depending on whether you POKE a 1, 2, or 3 into the
location defined as GINTIN.

Form_Alert Text String
Form_alert also expects you to supply a string containing
three separate items of information. Note that each item is en
closed in square brackets. The first item in the form_alert
string is a number from 0 to 3. This value indicates which
icon, if any, you want to appear in the left portion of the dia
log box. If the icon number equals 0, no icon appears. Values
of 1, 2, and 3 are used to select the Note (exclamation point),
Wait (question mark), and Stop (stop sign) icons, respectively.

The second portion of the string contains the text message
that you want to display in the box. This can consist of as
many as five lines of text. Each line is separated from the next
by an OR (I) symbol.

The third and final portion of the form_alert string con
tains the text for the option boxes you wish to display within
the dialog box. Naturally, you should supply text of some kind
for every available option. At the end of the form_alert string
are two terminating zero bytes. Don't forget to include the
terminator bytes. If you forget, the routine may crash.

Once the text string has been defined, you inform AES of
its location by POKEing its beginning address into the location
defined as ADDRIN. Then comes the GEMSYS call itself.

After control returns to BASIC, you will usually want to know
— which of the available options has been chosen. This infor

mation is returned in the location defined by GINTOUT. If
GINTOUT equals 0, the routine has failed (this condition is

—— rarely detected from BASIC, since the failure of a system rou
tine frequently involves a total system crash). If GINTOUT
equals 1, the first button in the dialog box has been chosen; if

— it contains the value 2, the second button has been clicked,
and so forth.

179

CHAPTER FOUR

Program 3 illustrates how to set up this routine and re
trieve the information that it returns to BASIC. The dialog box
strings may appear trivial, but they point up the fact that you
aren't limited to dichotomous yes/no, OK/Cancel situations.
Use this dialog routine whenever you wish to present a special
message with one, two, or three selectable options.

Error Boxes

Program 4 illustrates an even simpler sort of dialog box, which
is called with AES routine 53.

Program 4. Form_Error Routine
100 REM AES 53, form_error
110 FULLW 2:CLEARW 2

120 a#=GB :REM Get the key to Pandora's box.
130 gintin=PEEK(a#+8) :REM From me to AES.
140 gintout =PEEK(a#+12):REM From AES to me.
150 ernum=4 :REM Error # for the error you want

to display.
160 POKE gintin ,ernum :REM Pass the error # to

AES.

170 GEMSYS(53) :REM form_error
180 PRINT "You chose ";peek(gintout)

The routine used in Program 4 is known as form_error,
and it displays a box containing an error message. The content
of the message is determined by the error number you POKE
into GINTIN. To view other messages, change the value of
ERNUM in line 150 from 4 to some other number. Some er

rors, such as number 11, include a specific message; others are
identified only with a TOS error number.

Reshaping the Mouse Pointer
If you use the ST for any length of time, you'll probably be
come familiar with several different pointer shapes. The arrow
pointer usually appears in the desktop; when the computer is
busy accessing the disk drive or setting up an application, the
pointer changes to a busy-bee shape. These shapes, and sev
eral others, are selectable under program control with another
AES routine known as graf_mouse. Program 5 shows how to
use it.

180

_

_

u

_

U

_

_

_

_

BASIC Programming

Program 5. Reshape the Mouse Pointer
100 REM AES 78, graf_mouse
110 FULLW 2:CLEARW 2

120 PRINT "Which mouse pointer shape do you want
?"

130 PRINT "0 = Ye 01de Arrow"

140 PRINT "1 = I-beam cursor"

150 PRINT "2 = Busy bumblebee"
160 PRINT "3 = Pointing hand"
170 PRINT "4 = Grabbing hand"
180 PRINT "5 = Skinny crosshair"
190 PRINT "6 = Chubby crosshair"
200 PRINT "7 = Outlined crosshair"

210 PRINT "Enter a number from 0-7 (9 to quit)"
220 INPUT a*:IF a*="9" THEN END

230 IF LEN(a*X>l or a*<"0" or a*>"7" THEN GOTO

120

240 a#=GB : REM Get key to Pandora's box
250 gintin =PEEK(a*+8) :REM From me to AES
260 gintout=PEEK(a#+12) :REM From AES to me
270 POKE gintin, VAL(a*):REM gr_monumber
280 GEMSYS(78) :REM graf_mouse
290 IF PEEK(gintout)=0 THEN PRINT "Bombed":END
300 PRINT:PRINT "So move the pointer already.

II

310 PRINT:GOTO 120

The graf_mouse routine, AES 78, lets you choose from
eight different predefined pointer shapes according to the
needs of the moment. In addition to the arrow and the bee,
you can choose an I-beam cursor shape, a pointing hand, a
grabbing hand, and three different crosshair shapes. After
POKEing the desired value into GINTIN, we call the routine
with GEMSYS(78). BASIC imposes its own constraints on the
pointer, making it invisible whenever you press a key. Move
the mouse to make the pointer reappear in its new form.

Growing and Shrinking Boxes
Another aspect of the AES has to do with the management of
windows and menus. Some of these are superfluous to this
discussion, since ST BASIC already contains commands to
open windows, clear them, and so forth. However, BASIC
doesn't include commands to perform all the detail work. For
instance, when you double-click a GEM application from the
desktop, you'll often see a rapidly expanding box which grows

181

CHAPTER FOUR

to the ultimate size of the application's window. Conversely,
when you close an application, a shrinking box appears to in
dicate graphically that the program has shut down. These ef
fects are created with two matching AES routines known as
graf_growbox and graf_shrinkbox.

Program 6. Growing and Shrinking Boxes

100 REM graf_growbox (AES 73) and graf_shrinkbox
(AES 74)

110 FULLW 2:CLEARW 2

120 PRINT "Move mouse pointer..."
130 PRINT "Hold button to quit"
140 a#=GB :REM Get the key to Pandora's box
150 gintin=PEEK(a#+8) :REM From me to AES
160 gintout=PEEK(a#+12) :REM From AES to ma
170 REM Read pointer position, button
180 POKE CONTRL,124:VDISYS(0 >
190 x=PEEK(PTSOUT):y=PEEK(PTSOUT+2)
200 IF PEEK(INTOUT)=1 THEN CLOSEW 2:END

210 REM Set starting box's location/size
220 POKE gintin, 1 :REM x coord
230 POKE gintin+2, 1 :REM y coord
240 POKE gintin+4, 9 :REM width
250 POKE gintin+6, 9 :REM height
260 REM Set ending box's location/size
270 POKE gintin+8, x :REM x coord
280 POKE gintin+10, y :REM y coord
290 POKE gintin+12,50 :REM width
300 POKE gintin+14,50 :REM height
310 GEMSYS(73) :REM Draw growing box
320 GEMSYS(74) :REM Draw shrinking box
330 IF PEEK(gintout)=0 THEN PRINT "Bombed":END
340 GOTO 180

When you run Program 6, the growing box moves from
the upper left corner of the screen to the current mouse posi
tion; the shrinking box moves from the pointer back to the
corner again. Move the pointer to several different screen loca
tions to confirm that the boxes can appear anywhere, even on
the window borders, without disturbing the underlying
graphics.

Since graf_growbox and graf_shrinkbox are very similar,
Program 6 uses the same BASIC sequence to perform the
setup for both routines (lines 220-300); then it calls both in
succession (lines 310-320). These routines require considerably

182

_

Lmore setup than the ones we've seen so far. First, you must
tell AES the screen location of the first box in the animated se
ries by supplying its x (horizontal) and y (vertical) coordinates.

L These values are POKEd into locations GINTIN and
GINTIN+ 2, respectively, and indicate the location of the
starting box's upper left corner. Next, you must supply the
width and height of the starting box in terms of pixels. These

— values are POKEd into locations GINTIN+ 4 and GINTIN+ 6.

After defining the location and size of the starting box, you
must define the same values for the ending box in the animated
series. POKE the x and y coordinates of the ending box's up
per left corner into locations GINTIN+ 8 and GINTIN+ 10. To
indicate the size of the ending box, POKE its width and height
(in pixels) into GINTIN+ 12 and GINTIN+ 14, respectively.

The actual values that you supply for the starting and
ending boxes will depend on whether you're calling
graf_growbox or graf_shrinkbox. When you want the box to
grow, define a small starting size and a large ending size; then
call graf_growbox with GEMSYS(73). To display a shrinking
box, you'll need to start with a large box and end with a small
one, calling GEMSYS(74).

Many other GEM routines are useful in the BASIC envi
ronment. Of course, in order to use any system routine, you
must know its opcode as well as the setup procedures it re
quires. In addition to knowing about specific routines, you will
find it helpful to have a general understanding of GEM and
how its various components work together. You can find addi
tional information about these subjects in COMPUTEI's ST Pro
grammer's Guide.

r.,

u

_

BASIC Programming

183

CHAPTER FIVE

Sound
and Graphics

;

n

_

_

_

_

ST Graphics
Brian Flynn

This article delves into the creation of graphics on
the ST, showing how to use BASIC statements for

drawing lines and shapes and how to add VDI
routines to your games and applications software.

Have you seen the Atari demos of the seagull soaring majesti
cally along the rocky ocean coast and the soccer ball bouncing
endlessly back and forth? If you haven't, then quickly beg or
borrow copies of the demo disks and run them. You won't be
disappointed, for the impressive displays of bird and ball illus
trate the tremendous picture-drawing and animation capabili
ties of the 520 and 1040 computers.

In this article we'll explore how to produce high-quality
graphics on the ST color and monochrome monitors. The first
section will describe and illustrate each of the BASIC state
ments for drawing lines, circles, and other shapes. The second
section will cover Virtual Device Interface routines. These
lightning-fast, high-powered POKE procedures are almost in
dispensable in many games and in other types of applications
software. In the final section, I'll share some tricks and tips on
using BASIC and VDI graphics in the same program.

Each of the BASIC programs presented here runs on both
the monochrome and color monitors. If you're using the color
monitor, however, set the resolution to medium when you
first load the ST Language Disk (click on the Set Preferences
bar in the Options menu).

Rudiments of ST Graphics
With ST BASIC'S powerful and easy-to-use graphics, you can
draw anything from boxes and bears to circles and clowns. In
deed, with enough time and patience you could even draw
something as complicated as the Atari computer itself.

There are nine statements in the Atari's graphics vocabu
lary; each is explained in Table 1. You can use these state
ments to draw shapes, to fill the shapes with different
patterns, and to add color to your creations.

187

CHAPTER FIVE

Table 1. Graphics Statements

In using the following graphics statements, remember that the
Atari always measures distances in pixels, that x values run
horizontally and y values vertically, and that the point (0,0) is
the upper left corner of the screen.

FULLW 2

Expands the Output window to its maximum size.

CLEARW 2

Clears the Output window.

COLOR text color, fill color, line color, index, style
The first three parameters set colors, and the last two establish
the type of pattern used in filling a shape (see Program 2).

FILL x, y

Fills a polygon (a closed figure with three or more sides) with
the current fill-color. The x and y values are the coordinates of
any pixel within the boundaries of the shape.

CIRCLE x, y, radius, start angle, end angle
The first two parameters are the horizontal and vertical coordi
nates of the circle's center. The next value is the radius of the
circle, or the distance in pixels from the center to the boundary.

The last two parameters are optional. They're used to
draw shapes that resemble the slices of a pie. The angles are
measured in tenths of degrees (0-3600). Specifying start and
end values of 0 and 900, for example, results in a quarter-circle.

PCIRCLE x, y, radius, start angle, end angle
This statement draws a solid rather than a hollow shape. Oth
erwise, it works just like CIRCLE.

ELLIPSE x, y, x-radius, y-radius, start angle, end angle
An ellipse is an oval, or egg-shaped, figure. The parameters are
similar to those of the CIRCLE statement, except that radii are
specified for each axis.

PELLIPSE x, y, x-radius, y-radius, start angle, and angle
Draws a solid rather than a hollow ellipse.

LINEF xl,yl,x2,y2

Draws a straight line from pixel (xl,yl) to pixel (x2,y2).

188

• i

Sound and Graphics

Shapes
Program 1 draws a box, circle, ellipse, and slice of pie on your
screen. The program is written in modular style for ease of un
derstanding, but remember that computer programming isn't a
spectator sport. So take two minutes to key in the program
(use automatic line numbering from the Command window)
and run it.

Program 1. Figure Drawing

100 REM PROGRAM 1-1

110 GOSUB KEYVALUES

120 GOSUB DRAW.BOX

130 GOSUB DRAW.OTHER.SHAPES

140 GOSUB GOODBYE

150 END

160

170 KEYVALUES:

180 DEFINT A-Z

190 FULLW 2: CLEARW 2

200 ST = 3 - PEEK<SYSTAB>: REM SCREEN TYPE <l=CO

LOR; 2=MCHR0ME)
210 REM X & Y OFFSETS FOR BOX

220 DATA -20,-10, -20,10, 20,10
230 DATA 20,-10, -20,-10
240 FOR I=1T0 5

250 READ X.OFFSET(I),Y.OFFSET(I)
260 NEXT

270 REM RADII

280 RADIUS = 30

290 X.RADIUS = 40

300 Y.RADIUS = 10*ST

310 COLOR 1,1,1,1,1
320 RETURN

330

340 DRAW.BOX:

350 X0 = 120: Y0 = 30*ST

360 FOR I=1T0 4

370 XI = X0+X.OFFSET(I) : Yl = Y0+Y.OFFSET(I)

380 X2 = X0+X.OFFSET(1+1): Y2 = Y0+Y.OFFSET(1+1>

390 LINEF X1,Y1,X2,Y2
400 NEXT

410 RETURN
420

430 DRAW.OTHER.SHAPES:

440 PCIRCLE 240,60*ST,RADIUS
450 PELLIPSE 360,90*ST,X.RADIUS,Y.RADIUS
460 PCIRCLE 480,120*ST,RADIUS,0,900

- 189

CHAPTER FIVE

470 RETURN

480
r

490 GOODBYE:

500 GOTOXY 1,16: PRINT "Press any key
510 S = INP(2)

520 CLEARW 2

530 RETURN

Here's how the program works. First, line 190 expands
the Output window to full width (FULLW 2) and clears it
(CLEARW 2). You'll probably want to do this in all of your
BASIC programs.

Next, line 200 creates a variable called Screen Type, or ST
for short. Location SYSTAB (this is a reserved word in BASIC)
contains a 1 for the monochrome monitor and a 2 for the color
monitor in medium resolution. Hence, 3 minus this value
gives a 1 for the color screen (which uses 200 pixels vertically)
and a 2 for the black-and-white (which uses 400 pixels verti
cally). Simply multiplying all y-axis shape dimensions by ST,
then, makes every figure the same size on both monochrome
and color monitors (each uses 600 pixels horizontally). This
makes intuitive sense, and I use the variable in almost every
program I write.

The DATA statements of lines 220 and 230 contain x and
y offsets from a central point (X0,Y0) in line 350. The first pair
of values corresponds to the upper left corner of the box, and
the rest continue in counterclockwise fashion. To change the
box's size, simply change the offsets.

While the PCIRCLE and PELLIPSE statements are straight
forward, it's instructive to change the values of the radii to see
the impact. Finally, line 510 keeps the Output window active
until an input (INP) is received from the keyboard (device 2).

Fill

Unlike many other BASIC dialects that I've used, ST BASIC
has a variety of handy patterns that you can use to fill shapes.
To see what's available, enter and run Program 2.

Program 2. Patterns

100 REM PROGRAM 1-2

110 GOSUB KEYVALUES

120 GOSUB BOXES

130 GOSUB GOODBYE

190

Sound and Graphics

140 END

150

160 KEYVALUES:

170 DEFINT A-Z

180 FULLW 2: CLEARW 2
190 ST = 3 - PEEK(SYSTAB): REM SCREEN TYPE (1=C0

LOR; 2=MCHR0ME)
200 REM X & Y OFFSETS FOR BOX

210 DATA -10,-10, -10,10, 10,10
~-" 220 DATA 10,-10, -10,-10

230 FOR I=1T0 5

240 READ X.OFFSET <I),Y
250 Y.OFFSET(I) = Y*ST

260 NEXT

270 RETURN

280

290 BOXES:

300 FOR STYLE = 0 TO 4

310 FOR INDEX = 1 TO 24

320 X0 = INDEX*25-10: Y0 = STYLE*25*ST + 15*ST

330 ' DRAW & FILL BOX

340 FOR I=1T0 4

350 XI = X0+X.OFFSET(I) : Yl = Y0+Y.OFFSET(I)

360 X2 - X0+X.OFFSET(1+1): Y2 = Y0+Y.OFFSET(1+1)

370 LINEF X1,Y1,X2,Y2
380 NEXT I

390 COLOR 1,1,1,INDEX,STYLE
400 FILL X0,Y0
410 ' CONTINUE

420 NEXT INDEX,STYLE
430 RETURN

440

450 GOODBYE:

460 GOTOXY 1,16: PRINT "Press any key"
470 S = INP<2>

480 CLEARW 2

490 RETURN

The Atari draws five rows of 24 boxes. The rows corre
spond to these five styles:
0 Hollow

1 Solid

2 Patterns

3 Hatching
4 Atari logo

The columns correspond to an index for each particular style.
Index 22 and style 2, for example, together give a checkered
pattern.

191

CHAPTER FIVE

The correct syntax for filling shapes is
COLOR 1,1,1,INDEX,STYLE

You can substitute other numbers for the Ts (see line 390).
Experiment with COLOR by changing the l's to other num
bers between 1 and 16.

You might want to save this program on disk. Then you
can easily access it to select a fill pattern for any application.

Color

The Atari has 512 different colors. In medium resolution on

the color monitor, when you first boot up your system, four
are available at one time—white, black, red, and green. Using
these same colors in program after program, however, be
comes awfully dull. Fortunately, there's an easy way to access
the others from BASIC. Take a look at Program 3.

Program 3. Color Changes

100 REM PROGRAM 1-3

110 GOSUB KEYVALUES

120 60SUB CIRCLES

130 GOSUB GOODBYE

140 END

150

160 KEYVALUES:

170 DEFINT A-Z

180 RANDOMIZE 0

190 FULLW 2: CLEARW 2
200 ' INITIAL COLORS (WHITE, BLACK, BLACK, BLA

CK)

210 DATA 1911,0,0,0
220 FOR I=0TO 3: READ KOLOR<I) : NEXT
230 ' PUT THEM INTO MEMORY

240 LC# = 1114: POKE LC#,VARPTR(KOLOR(0)>
250 RETURN

260

270 CIRCLES:

280 ' GET TWO RANDOM COLORS

290 FOR I=1T0 2

300 RED(I) = B*RND

310 GREEN(I) = 8*RND

320 BLUE(I) = 8*RND

330 KOLOR(I) = 256*RED(I) + 16*GREEN(I) + BLUE(I

)

340 NEXT

350 ' PUT THEM INTO MEMORY

192

u

Sound and Graphics

360 POKE LC#,VARPTR(KOLOR(0))
370 ' DRAW CIRCLES

380 FOR 1=2 TO 3

390 COLOR 1,1,1,1,1
400 PCIRCLE 200*(I-l),80,50
410 GOTOXY 22*1-24,12: PRINT KOLOR(I-l);SPACE*(3

)

420 NEXT

430 * CONTINUE

440 GOTOXY 15,15
450 PRINT "Press Q to Quit, or any other key to

continue"

460 X - INP(2)

470 IF X <> 81 AND X <> 113 THEN CIRCLES
480 RETURN

490

500 GOODBYE:

510 ' RESET COLORS

520 CLEARW 2

530 KOLOR(l) = 1570: KOLOR(2) = 609
540 POKE LC#,VARPTR(KOLOR(0))
550 RETURN

Let's examine Program 3. First, in the KEYVALUES sub
routine, four colors are read into a vector called KOLOR. Line
240 POKEs into location 1114 (LC#), the starting address of
the vector. Note that VARPTR, variable pointer, is a reserved
word in BASIC; it tells where a variable is stored. When the
magic location 1114 is not a zero, the Atari knows not to rely
on default colors, but instead to branch to the address that
contains the new palette.

But why is white equal to a weird number like 1911? The
Atari produces screen colors based on eight different intensi
ties (0-7) of the primary colors red, green, and blue (8 X 8 X
8 = 512). Each screen color is stored in a 3-bit field using the
11 rightmost bits of a 16-bit byte:

Red Green Blue

0000011101110111

7 X 256 7 X 16 7X1

Turning on the primary colors to full intensity produces
white (11101110111 binary = 1911 decimal). Turning them
off produces black.

With this arithmetic in mind, lines 290-340 of the pro
gram randomly generate two different screen colors. And lines

193

CHAPTER FIVE

380-420 use them to color circles.

There's only one more point to note. The Atari stores col
ors internally in a different order from the way you access
them from BASIC:

Internal BASIC Default
Code Color Code Color

0 -0 white

15 -^ -,1 black
l-><V*-2 red
2 ~~"*"3 green

This is why line 380 reads 1= 2 TO 3 rather than 1=1 TO 2.
Finally, under each circle, the program displays the num

ber of the screen color that's been shown. You may want to
jot down the numbers of the colors that you find pleasing for
use in your own programs.

The VDI Connection
For many applications, ST BASIC'S graphics statements like
CIRCLE and LINEF are fine. In other cases, however, greater
speed and flexibility are needed. That's where the virtual de
vice interface (VDI) routines come in handy. These built-in
POKE procedures enable you to perform scores of useful
operations.

In this section we'll discuss three of the more valuable
graphics routines—writing text to any screen location, drawing
a box, and drawing any kind of shape at all. These are routines
that you'll find yourself using in program after program.

Writing Text
When you run a BASIC program, the word OUTPUT appears
at the top of the screen. Wouldn't it be nice to change this title
to something more meaningful? Program 4 shows you how.

Program 4. New Screen Titles

100 REM PROGRAM 1-4

110 GOSUB KEYVALUES

120 GOSUB TITLEBAR

130 GOSUB GOODBYE

140 END

150 7

160 KEYVALUES:

194

170 DEFINT A-Z

— 180 FULLW 2: CLEARW 2

190 ST = 3 - PEEK(SYSTAB): REM SCREEN TYPE (l=CO

LOR; 2=MCHR0ME)
200 RETURN

210

220 TITLEBAR:

230 T* = " New Title Bar "

— 240 AT* = CHR*(14)+CHR*(15)

250 T* = CHR*(32) + AT* + T* + AT* + CHR*(32)

260 COLOR 2

270 Y = 15*ST+4: CN* = "ON": GOSUB TEXT.WRITE

280 RETURN

290

300 TEXT.WRITE:

310 LN = LEN(T*>

320 IF CN* = "ON" THEN X = 312 - LN*8/2

330 POKE CONTRL,8: POKE CONTRL+2,1: POKE CONTRL+
6,LN

340 FOR Q = 1 TO LN

350 POKE INTIN + (Q-l)*2,ASC(MID*(T*,Q,1))
360 NEXT Q

370 POKE PTSIN,X: POKE PTSIN+2,Y
380 VDISYS(0)

390 RETURN

400

410 GOODBYE:

420 COLOR 1

430 GOTOXY 1,16: PRINT "Press any key"
440 S = INP(2)

450 CLEARW 2

460 RETURN

First, the TITLEBAR subroutine establishes the new title
and embellishes it with the Atari logo (lines 230-250). Next,
line 270 computes the y coordinate of the pixel to write to

— (Y= 19 for the color screen and Y= 34 for the monochrome). It
also sets the variable CN$ to "ON" for centering the expres
sion horizontally.

— The TEXT.WRITE subroutine is the heart of the program,
and I use it in many applications. Lines 330-380 are the actual
VDI procedure; the following BASIC reserved words are worth

— noting:

Word Meaning
CONTRL Control

INTIN Information input
PTSIN Points input

_

Sound and Graphics

195

CHAPTER FIVE

These words represent locations in memory, and storing val
ues in them tells the Atari what to do. POKE CONTRL,8 in
line 330, for example, invokes the routine for displaying text.
POKE CONTRL + 6,LN stores the length of the title. Lines
340-360 place in memory the ASCII code of each character of
the string. And line 370 stores the x and y coordinates of the
pixel to write to. Finally, line 380 executes the VDI routine.

You can use this procedure not only for title bars, but also
to write anything anywhere on the screen. Simply place your
string in T$, turn CN$ on or off as appropriate, assign a pixel
coordinate to y (and to x if necessary), and then GOSUB
TEXT.WRITE.

Drawing a Box
ST BASIC lacks a command for drawing a rectangle in a single
swoop. Instead, you must use the LINEF statement, with all
four corners addressed.

Program 5 presents a VDI routine for drawing and filling
a box. It's easy to use and extremely fast. Lines 210-230 de
fine the horizontal and vertical dimensions of the shape. Note
that YDELTA on the monochrome screen (ST = 2) is twice the
pixel length of its color-screen counterpart.

Program 5. Box Fill

100 REM PROGRAM 1-5
110 GOSUB KEYVALUES
120 GOSUB PICTURE
130 GOSUB GOODBYE

140 END

150

160 KEYVALUES:

170 DEFINT A-Z

180 FULLW 2: CLEARW 2
190 ST = 3 - PEEK(SYSTAB): REM SCREEN TYPE (l=CO

LOR; 2=MCHR0ME)
200 * X & Y OFFSETS FOR BOX

210 DATA 20,10
220 READ XDELTA, Y

230 YDELTA = Y*ST

240 COLOR 1,2,1,4,2
250 RETURN

260

270 PICTURE:

280 Y = 80*ST

196

Sound and Graphics

290 FOR I=1T0 10

300 X = 50*1+25: GOSUB DRAW.BOX
310 NEXT

320 RETURN

330

340 DRAW.BOX:

350 POKE CONTRL,11: POKE CONTRL+2,2: POKE CONTRL
+6,0

360 POKE CONTRL+10,1
370 POKE PTSIN,X-XDELTA : POKE PTSIN+2,Y-YDELTA
380 POKE PTSIN+4,X+XDELTA: POKE PTSIN+6,Y+YDELTA
390 VDISYS(0)

400 RETURN

410

420 GOODBYE:

430 GOTOXY 1,16: PRINT "Press any key"
440 S = INP(2)

450 CLEARW 2

460 RETURN

The PICTURE subroutine calls for drawing ten boxes.
DRAW.BOX (line 340) is the actual VDI procedure. Here's
how it works. First, the 11 (line 350) is the operations code
(opcode, for short) that denotes the routine for drawing one of
ten built-in shapes. Next, the number 2 is POKEd into mem
ory. This tells VDI that there are two key vertices to our fig
ure: the upper left corner of the box and the lower right
corner. Providing the other two corners, by the way, would
give superfluous information since a rectangle is uniquely de
fined by one corner and its opposite. POKE CONTRL+10,1
tells VDI to draw a bar (8 would produce a rounded rectan
gle), and the next two lines give the x and y coordinates of our
two corners. Finally, VDISYS(O) executes the routine.

Drawing a Windmill
Circles, pies, and ellipses, and boxes, bars, and rectangles are
nice, but what about drawing something different? As Pro
gram 6 shows, this is easy with VDI.

197

CHAPTER FIVE

Program 6. Odd Shapes

100 REM PROGRAM 1-6

110 GOSUB KEYVALUES

120 GOSUB MILL.DATA

130 GOSUB VANE.DATA

140 GOSUB DRAW.WINDMILL

150 GOSUB GOODBYE

160 END

170

180 KEYVALUES:

190 DEFINT A-Z

200 FULLW 2: CLEARW 2

210 ST = 3 - PEEK(SYSTAB): REM SCREEN TYPE (l=CO

LOR; 2=MCHR0ME)
220 DIM X.MILL(12),Y.MILL(12),X.VANE(18),Y.VANE(

18)

230 RETURN

240

250 MILL.DATA:

260 DATA -2,-2,-12,7,-12,11,-3,11,-3,6,4,6,4,11,
13,11

270 DATA 13,7,3,-2,-2,-2
280 FOR I=1T0 11

290 READ X.MILL(I),Y
300 Y.MILL(I) - ST*Y

310 NEXT

320 RETURN

330

340 VANE.DATA:

350 DATA -1,-6,-8,-12,-15,-8,-3,-5,-3,-4,-15,-1
360 DATA -8,3,-1,-3,2,-3,9,3,16,-1,4,-4,4,-5,16,

-8

370 DATA 9,-12,2,-6,-1,-6
380 FOR I=1T0 17

390 READ X.VANE(I),Y
400 Y.VANE(I) = ST*Y

410 NEXT

420 RETURN

430

440 DRAW.WINDMILL:

450 X = 310: Y = B0*ST

460 COLOR 1,2,1,1,1
470 ' MILL

480 POKE CONTRL,9: POKE CONTRL+2,11: POKE CONTRL
+6,0

490 CNT = 0

500 FOR I=iTO 11

510 POKE PTSIN+CNT,X+X.MILL(I)
520 POKE PTSIN+CNT+2,Y+Y.MILL(I>

198

Sound and Graphics

530 CNT = CNT + 4

540 NEXT I

550 VDISYS(0)

560 ' VANE

570 COLOR 1,3,1,4,2
580 POKE CONTRL,9: POKE CONTRL+2,17: POKE CONTRL

+6,0
590 CNT = 0

600 FOR I=1T0 17

— 610 POKE PTSIN+CNT,X+X.VANE(I)
620 POKE PTSIN+CNT+2,Y+Y.VANE(I)
630 CNT = CNT + 4

640 NEXT I

650 VDISYS(0)

660 RETURN

670

680 GOODBYE:

690 60T0XY 1,16: PRINT "Press any key"
700 S = INP(2)

710 CLEARW 2

720 RETURN

The first step in drawing a shape is to plot it on graph pa
per (Figure 1). Pick a central point of the figure, and then
draw dots around it for the ST to follow. The more dots you
draw, the more accurate will be the ST's reproduction. Now,
compute the x and y coordinates of each dot, with the central
point representing the origin. These ordered pairs are shown
in the MILL.DATA and VANE.DATA subroutines.

DRAW.WINDMILL is the workhorse of the program. It
draws the mill and then the vane. POKE CONTRL,9 invokes
the VDI routine for drawing and filling a polygon. The 11 in
line 480 represents the number of points in the windmill, with
the x and y coordinates POKEd into memory in lines 500-540.
Drawing the vane works the same way.

I've used this VDI procedure to draw knights, horses,
monkeys, and rabbits. The time-consuming part is plotting the
points on paper. But it's well worth the effort when you see
the ST faithfully reproduce the shapes on your monitor.

199

CHAPTER FIVE

Figure 1. Windmill

-13 > I \

-12 fl*) j
• IB

1

\
-11

,4

/
'

/ N.

-10
s
/

\ ' V

-9
>

*
>

/ >

-8 *> • \
> 1 >

-7 •«
••

- ».

«. «
j

-••
.«•

r *

-6 -

', •
'

*•

-5 1<
X -

>••

-4 f k

-3
•»"

.J '•
- ^

-2 .. '

*
r

- > * *•* * •,

-1 .
'« /

/
>

*•

0 N \ ' •

<
*'

+ 1 \

\j
J n k

•

+ 2
1

\
i' \

J

t

+ 3 V '/
r i

\

+ 4 /r'i '
\

/

+ 5 ^'

+ 6
r

•* «

+ 7 t» 4i

+ 8

+ 9

+ 10

+ 11 * •H » 11

+ 12

+ 13

+ + +

Integrating BASIC and VDI
Now, let's draw two boxes on the screen, each the same size
and located side by side (Program 7). The only catch is that
we'll draw one using BASIC'S LINEF statement and the other
using VDI.

Program 7. Drawing Boxes

100 REM PROGRAM 1-7
110 GOSUB KEYVALUES

120 GOSUB BASIC.BOX

130 GOSUB VDI.BOX

140 GOSUB GOODBYE

150 END

160
r

200

_ Sound and Graphics

170 KEYVALUES:

180 DEFINT A-Z

— 190 FULLW 2: CLEARW 2
200 ST = 3 - PEEK(SYSTAB): REM SCREEN TYPE (l=CO

LOR; 2=MCHR0ME)
210 IF ST = 1 THEN CS = 3 ELSE CS = 0: REM COLOR

SCREEN

220 COLOR 1,2,2,1,1
230 RETURN

— 240

250 BASIC.BOX:

260 ' X & Y COORDINATES OF
270 ' UPPER-LEFT & LOWER-RIGHT CORNERS
280 Xl=200: Yl=100: X2=250: Y2=150
290 LINEF X1,Y1,X1,Y2: LINEF X1,Y2,X2,Y2
300 LINEF X2,Y2,X2,Y1: LINEF X2,Y1,X1,Y1
310 FILL 225,125
320 RETURN

330

340 VDI.BOX:

350 XI=300: X2=350: ' NEW X COORDINATES

360 POKE CONTRL,11: POKE CONTRL+2,2: POKE CONTRL
+6,0

370 POKE CONTRL+10,1
380 POKE PTSIN, XI: POKE PTSIN+2,Yl
390 POKE PTSIN+4,X2: POKE PTSIN+6,Y2
400 VDISYS(0)

410 RETURN

420

430 GOODBYE:

440 GOTOXY 1,16: PRINT "Press any key"
450 S = INP(2)

460 CLEARW 2

470 RETURN

The first box goes from coordinates (200,100) in its upper
left corner to coordinates (250,150) in its lower right. The sec-

— ond goes from (300,100) to (350,150). In both cases, then, the
y coordinates are the same (100 and 150). Hence, the boxes
should appear at the same level, right?

—— When Program 7 runs, however, we find that VDI draws
its box higher. This is because to VDI row 0 is the top edge of
the screen (Table 2). But to BASIC it's the first line beneath
the title bar.

201

CHAPTER FIVE

Table 2. BASIC vs. VDI Vertical Positions

Color Screen

Title Bar

VDI Line

21

ST BASIC Line 0 22

1 23

2 24

Monochrome Screen

Title Bar
VDI Line

37

ST BASIC Line 0 38

1 39

2 40

You'll need to keep this anomaly in mind whenever you
use VDI and BASIC graphics in the same program.

Fortunately, this quirk is not very difficult to overcome. I
use the magic formula 19*ST + CS. The variable ST is familiar
from our earlier programs; it stands for Screen Type (1 = me
dium-resolution color; 2 = monochrome). The variable CS
equals 3 for the Color Screen and 0 for the black-and-white.
Hence, the formula equals either 22 or 38, values that jibe per
fectly with the rows in Table 2.

To fix the glitch with our boxes, then, adjust the y coordi
nates by adding these lines to the program.
355 Y1=Y1+19*ST+CS

356 Y2 = Y2 + 19*ST + CS

The BASIC and VDI graphics routines presented here will
enable you to draw a wide variety of fancy shapes and figures.
You may want to use ST graphics to enhance a game or to
embellish a financial, home, or statistical application.

For additional VDI routines, COMPUTEI's ST Programmer's
Guide is a source that I've found useful and understandable. In
any event, there's enough in this article to get you started—
and who knows? You may end up drawing a soaring gull or a
bouncing ball.

202

< I

MODified Shapes for
Atari ST

Robert G. Geiger

With this program, you can create pleasing graph
ics and also gain valuable information about using
GEMSYS and VDISYS in ST BASIC. With the tech

niques explained here, you can draw on a full
screen graphics area (without BASIC'S usual

window borders], manipulate dialog boxes, and
monitor mouse events.

Paul Carlson's article "MODified Shapes for IBM" (COMPUTE!
magazine, May 1986) is interesting both as a tutorial on the
MOD operator and for its outstanding graphics. Since ST
BASIC also has the MOD operator, the logic used in the IBM
program works equally well on the Atari ST. But the ST is ca
pable of doing much more. With the aid of GEMSYS and
VDISYS, not only can you replicate the original program, but
you can also add such distinctive ST features as dialog boxes
and mouse input.

Type in "MODified Shapes for ST" and save a copy
before you run it. When you type the program, you'll notice
that several lines (those containing VDISYS or GEMSYS calls)
are more than 80 characters long. This is done so that all the
information for each GEM call is on one program line. The ST
BASIC editor lets you enter lines up to 255 characters in length
if the first character in the second screen line is a space.

If you have a 520ST with 512K RAM and the TOS operat
ing system on disk instead of in ROM (Read Only Memory),
you must turn off buffered graphics before you run the pro
gram. If your ST has more than 512K of memory or TOS in
ROM, you should have enough memory to run the program
without taking this step.

The program runs in any screen resolution—low or me
dium resolution on a color monitor, or high resolution on a
monochrome monitor. However, low resolution is truest to the
four-color IBM screen used in the original program. In me
dium or high resolution, the design occupies only part of the
screen.

203

CHAPTER FIVE

From PC to ST

If you're familiar with IBM BASIC, you may find it instructive
to compare the original program with the ST version. Some
statements in the PC/PCjr program, such as KEY OFF, are un
necessary in ST BASIC and can be omitted. Most of the pro
gram logic, which simply manipulates variables, works on the
ST with no modification at all.

However, other operations require different commands.
For instance, at the conclusion of the IBM program, the
INKEY$ statement is used to make the program pause until
you press a key. ST BASIC lacks INKEY$, but you can substi
tute the INP(2) function. And though the LINEF command in
ST BASIC differs a bit in syntax, it can draw lines much as the
IBM version does. The IBM clears the screen with CLS, but the
ST uses CLEARW 2, and so on.

It's possible to translate most of the IBM program by
making BASIC substitutions, but if you confine yourself to or
dinary BASIC commands, you'll end up with a translation
that's almost, but not quite, satisfactory. One major problem
involves the ST BASIC Output window. When you open the
window to full-screen size with FULLW 2:CLEARW 2, part of
the visible screen area is taken up by the window border, title
line, and menu bar. In low resolution, the usable screen area is
fewer than 40 characters wide, and you can print only 17 lines
of text before the window's contents begin to scroll upward.

Because screen space is taken up by the window borders,
it seems impossible to duplicate the IBM's 320 X 200 pixel
screen exactly. Even worse, while IBM BASIC defines the up
per left corner of the screen as coordinate (0,0), ST BASIC
considers coordinate (0,0) to be the upper left point inside the
Output window. As a result, any graphics designed to occupy
the entire IBM screen will be clipped in the ST BASIC Output
window.

Full Screens in ST BASIC

The solution is to use system calls for screen output. GEM
(Graphics Environment Manager) allows you to draw any
where on the screen, including the areas normally occupied by
the BASIC windows themselves. Two of the more important
parts of GEM are the VDI (Virtual Device Interface), which
handles low-level mouse input and graphics display, and the

204

Sound and Graphics

AES (Application Environment Services), which handles more
complex routines such as managing windows, drop-down
menus, icons, and dialog boxes.

The basic method of calling a VDI routine is to store the
information it requires into reserved memory locations which
are defined by the reserved variables CONTRL, PTSIN, and
INTIN. These memory locations are known as parameter
blocks. Every VDI routine requires different information, and
some VDI routines don't need information in all three param
eter blocks. Once this preliminary work is done, you call the
VDI routine with the statement VDISYS(O). The zero is a
dummy parameter, which can be any numeric value. If you'd
like to learn more about VDISYS routines, see "Adding Sys
tem Power to ST BASIC," elsewhere in this book.

The procedure for calling an AES routine is similar. First,
you store the information it requires in memory; then you call
the routine with a GEMSYS statement. But different information
must be passed to the routine, and the number enclosed in the
parentheses is significant. For instance, GEMSYS(52) calls AES
routine 52 (see below). This program uses VDISYS to create
graphics and GEMSYS to handle user input.

"MODified Shapes for Atari
ST" demonstrates how to

draw graphics on the entire
screen surface, including
areas normally occupied by
BASIC'S window borders.

Dialog Boxes
Some of the most useful AES functions involve various forms
of the dialog box, a box that appears on top of the current

205

CHAPTER FIVE

screen display whenever it's time for you to select an option,
respond with a yes or no answer, and so forth. When the in
teraction is over, GEM restores the screen and lets you con
tinue where you left off. Dialog boxes are a powerful way of
creating a friendly atmosphere in your programs. The full ca
pabilities of the dialog box are beyond the scope of BASIC
(unless you have the Resource Construction Set utility from the
ST Development System), but two forms of the dialog box—the
alert box and the error box—are available.

When you run MODified Shapes, it begins by displaying
a dialog box with three options labeled EX1, EX2, and EX3.
Depending on which option you click on, the program will
create example screen 1, 2, or 3. When you make a choice, the
box disappears, the screen is redrawn, and the program pro
ceeds. This dialog box is created with AES routine 52, known
as FORM-ALERT. It creates a dialog box and tells GEM to get
input from it, as well. To use FORM_ALERT, you must store
two items of information in memory and then call the routine
with GEMSYS(52). After the interaction is finished,
FORM_ALERT passes one item of information back to you.

With the aid of GEMSYS,
you can call system
routinesfrom BASIC to cre
ate dialog boxes like the one
shown here.

Most of the information needed by FORM_ALERT can be
passed in the form of a BASIC string. First, the string is de
fined. Then you POKE the address of the beginning of the
string in a reserved variable area known as ADDRIN (AD-
DRess IN). This tells GEM where the string is located.

206

Sound and Graphics

The FORM_ALERT string begins with a code number in
dicating which sort of icon you want the box to contain. You
may choose a stop sign icon, an exclamation point, or a ques
tion mark. These icons appear frequently during GEM desktop
operations and are familiar to every ST user. After the icon
number comes the text which you want to print inside the
box. If an icon is also used, the box has enough room for up
to five lines of text.

Buttons in a Box

The next portion of the string contains the text you want to
appear inside the buttons. Don't confuse this sort of button
with the physical button on the ST mouse device. In this con
text, a button is a smaller boxed-in area within the dialog box.
Point to the dialog button with the mouse and then click the
left mouse button to select that option.

You may include as many as three dialog buttons in a sin
gle dialog box. If you include just one button, its box may
contain up to 20 characters of text. You can also outline one of
the buttons with a heavier line to indicate that it can be se
lected by pressing Return as well as by clicking with the
mouse.

Line 70 of the program creates a typical FORM_ALERT
string. Notice that each component of the string is enclosed in
a set of square brackets in this sequence:
[icon code] [message text] [button text]

Notice also that new lines within the message text and button
text are separated by the logical OR character (I). You obtain
this character by pressing the backslash key (\) while holding
down the Shift key.

After creating a string and POKEing its location into
memory, you must POKE a value into the location defined as
GINTIN to indicate which button is to be chosen by pressing
Return. POKE 0 into this location to indicate that Return

should be ignored. POKE GINTIN with 1, 2, or 3 to indicate
the first, second, or third button, respectively.

When the FORM_ALERT dialog is over, you need some
way to learn what choice has been made. This output is re
turned in the location defined as GINTOUT, which you can
PEEK from BASIC. When GINTOUT equals 1, the first dialog
button has been clicked. Values of 2 and 3 indicate that the

207

_

CHAPTER FIVE

second and third dialog buttons have been clicked. Again,
keep in mind that these are buttons within the dialog box on
the screen, not physical buttons on the mouse.

Reading Mouse Events
MODified Shapes uses another AES routine, number 21,
known as MOUSE—EVENT, to pause until you press both
mouse buttons. The MOUSE_EVENT routine requires three
inputs, which are passed in locations beginning at GINTIN.
The first value to be passed indicates the number of clicks to
be detected. The second value indicates the mouse button to

be read. And the third indicates the button condition you wish
to look for. The number of clicks should be either one or two.

For the second value, use the value 1 to indicate the left but
ton, 2 to indicate the right button, and 3 to indicate both but
tons. The third value determines which condition—being
pressed or not being pressed—the routine checks for. In most
cases, this value will be 1, which means that you want to
know when the indicated button is pressed. If you supply 0,
the routine tells you whether the button is not pressed.

By calling GEM and AES routines, not only can you
mimic the IBM's graphics, but you can also add the ST's own
signature to the program in the form of dialog boxes and
mouse input. The accompanying table summarizes the various
VDI and AES routines used in this program, along with the
program lines in which each routine is called.

VDI and AES Routines

Set_Color Representation
(Lines 20, 30, 570, 580)

Input Parameters
POKE CONTRL,14
POKE CONTRL+ 2,0
POKE CONTRL+6,4
POKE INTIN,0-15
POKE INTIN + 2,0-1000
POKE INTIN + 4,0-1000
POKE INTIN + 6,0-1000

Clear_Workstation

(Lines 40, 170, 310, 440)

208

Opcode
Number of vertices

Number of attributes

Number of pen color
Red intensity
Green intensity
Blue intensity

Sound and Graphics

Input Parameters
POKE CONTRL,3
POKE CONTRL+2,0
POKE CONTRL+6,0

Opcode
Number of vertices

Number of attributes

Show—Cursor

(Lines 50 and 110)

Input Parameters
POKE CONTRL,122
POKE CONTRL+2,0
POKE CONTRL+6,1
POKE INTIN,0

Opcode
Number of vertices

Number of attributes

Reset flag

Note: The VDI normally makes note internally of how often the HIDE
CURSOR call is used. To disable this function, set the reset flag to zero.

Form—Alert

(Lines 60-80, 120-140)

Input Parameters
POKE GINTIN,0 Button simulated by pressing

Return

X#=ADDRIN ADDRIN is addressed as a

double-precision variable
POKE X#,VARPTR(Message$)

Output Parameters
KEY=PEEK(GINTOUT) Value of the button clicked

Input Parameters
POKE CONTRL,123
POKE CONTRL+2,0
POKE CONTRL+6,0

Opcode
Number of vertices

Number of attributes

Polyline
(Lines 240, 380, 510)

Input Parameters
POKE CONTRL,6 Opcode

POKE CONTRL+ 2,2
POKE CONTRL+6,0
POKE PTSIN,X1
POKE PTSIN+ 2,Y1
POKE PTSIN+4,X2
POKE PTSIN+ 6,Y2

Number of vertices

Number of attributes

X coordinate of first point
y coordinate of first point
X coordinate of second point
y coordinate of second point

Evnt_Button

(Lines 290, 420, 560)

Input Parameters
POKE GINTIN,1-2
POKE GINTIN+ 2,1-3
POKE GINTIN+ 4,1

Number of clicks for action
Mouse button(s) to be read
Button condition to detect

209

CHAPTER FIVE

MODified Shapes for ST

10 A#=GB:CONTROL=PEEK<A#):GLOBAL=PEEK(A#+4):GIN

TIN=PEEK(A#+S):GINT0UT=PEEK(A#+12>lADDRIN-PE

EK<A#+16)

20 POKE CONTRL,14:POKE CONTRL+2,0:POKE CONTRL+6
,4:POKE INTIN,0:POKE INTIN+2,0:POKE INTIN+4,
0:POKE INTIN+6,0:VDISYS(0)

30 POKE CONTRL,14:POKE CONTRL+2,0:POKE CONTRL+6
,4:POKE INTIN,1:POKE INTIN+2,1000:POKE INTIN
+4,1000:POKE INTIN+6,1000:VDISYS(0)

40 POKE CONTRL,3:POKE CONTRL+2,0:POKE CONTRL+6,
0:VDISYS(0)

50 MAINMENU: POKE CONTRL,122:POKE CONTRL+2,0:PO
KE CONTRL+6,1:POKE INTIN,0:VDISYS<0)

60 N#=ADDRIN:POKE GINTIN,0:'FORM_ALERT
70 MENU*="t13CiMODified Shapes for STMCEX 1!EX

2!EX 33"+CHR*<0)+CHR*<0)

S0 POKE N#,VARPTR <MENU*):GEMSYS(52)
90 C=PEEK <GINTOUT):POKE CONTRL,123:POKE CONTRL+

2,0:POKE CONTRL+6,0:VDISYS(0)
100 IF C=3 THEN GOTO EX3 ELSE IF C=2 THEN GOTO E

X2 ELSE GOTO EX1

110 EXITBOX: POKE CONTRL,122:POKE CONTRL+2,0:POK
E CONTRL+6,1:POKE INTIN,0:VDISYS(0)

120 M#=ADDRIN:POKE GINTIN,1:'FORM_ALERT box
130 TEXT*="C33 Z!Fini shed?3 CYES!N03"+CHR*(0)+CHR*

(0)

140 POKE M#,VARPTR(TEXT*):GEMSYS<52):C=PEEK(GINT
OUT)

150 IF C=2 THEN GOTO MAINMENU ELSE GOTO BYE

160 EX1: SU=.1:RU=1-SU:II=1:C=1

170 POKE CONTRL,3:POKE CONTRL+2,0:POKE CONTRL+6,
0:VDISYS<0)

180 FOR J=0 to 3:II=-II:JJ=liF0R 1=0 to 6:JJ=-JJ

: IF KJ or I>6-J THEN 280

190 IF J<2 or I>2 THEN C=C MOD 3+1

200 IF J=3 THEN C=C MOD 3+1

210 X(1)=0:X(2)=39:X<3)=78:Y(1)=0:Y(3)=0:IF II=J

J THEN Y<2)=48 ELSE Y(2)=-4B

220 FOR N=l to 11:X1=3+X<3)+I*39:Y1=175-Y<3)-J*4

8+II*JJ*24

230 FOR M=l to 3:X2=3+X(M)+I*39:Y2=175-Y(M)-J*48

+II*JJ*24:C=C MOD 3+1

240 COLOR 1,1,C:POKE CONTRL,6:POKE CONTRL+2,2:PO
KE CONTRL+6,0:POKE PTSIN,XI:POKE PTSIN+2,Yl:
POKE PTSIN+4,X2:P0KE PTSIN+6,Y2:VDISYS<0)

250 X1-X2:Y1=Y2:NJ»M MOD 3+1

260 XD <M> =RU*X(M)+SU*X(NJ):YD <M)=RU*Y(M)+SU*Y <NJ

)iNEXT M

210

Sound and Graphics

270 FOR P=l to 3:X(P)=XD(P):Y(P)»YD(P):NEXT P,N

280 NEXT I,J
290 POKE BINTIN,l:POKE BINTIN+2,l:POKE GINTIN+4,

1:GEMSYS(21)-.GOTO EXITBOX

300 EX2: SU=.12sRU-l-SU

- 310 POKE CONTRL,3:POKE CONTRL+2,01 POKE CONTRL+6,
01VDISYS(0)

320 FOR 1=0 to 3:FOR J=0 to 3:IF I MOD 2=J MOD 2

THEN 340

330 Y(1)-49:Y(2)-0:Y(3)«0»Y(4)=49:GOTO 350

340 Y(1)=0:Y (2) -49: Y (3) -49i Y <4) -0

350 X(1)-20:X(2)-20:X <3)=89:X <4)-89

360 FOR N=0 to 18:X1=X(4)+I*69:Y1=Y(4)+J*49

370 FOR M=l to 4:X2-X(M)+I*69:Y2-Y(M)+J*49

380 COLOR 1,0,M MOD 2+1:POKE CONTRL,6»POKE CONTR
L+2,2:P0KE CONTRL+6,0:POKE PTSIN,XllPOKE PT8
IN+2,Y1:P0KE PTSIN+4,X2:P0KE PTSIN+6,Y2:VDIS
Y8(0)

390 X1=X2:Y1=Y2:NJ=M MOD 4+1
400 XD(M)=RU*X(M)+SU*X(NJ >:YD(M)=RU*Y(M)+SU*Y <NJ

):NEXT M

410 FOR P=l to 8:X(P)=XD<P):Y<P)=YD(P):NEXT P,N,
J,I

420 POKE GINTIN,1:POKE GINTIN+2,1:POKE GINTIN+4,
1:GEMSYS(21):GOTO EXITBOX

430 EX3: SU=.2:RU=1-SU

440 POKE CONTRL,3:POKE CONTRL+2,0:POKE CONTRL+6,
0:VDISYS(0)

450 FOR J=0 to 2:F0R 1=0 to 2:IF J=0 AND I<>1 TH

EN 550

460 IF 1=1 THEN E=31 ELSE E=0

470 X(1)=0:X(2)=25:X(3)=75:X(4)=100:X(5>=75:X(6>

=25

480 Y(1)=31:Y(2)=0:Y(3)=0:Y(4)=31:Y(5)=62:Y(6)=6
2

490 FOR N=0 to 20:X1=35+X(6)+I*75:Yl=223-Y(6)-J*

62-E

500 FOR M=l to 6:X2=35+X(M)+I*75:Y2=223-Y(M)-J*6

2-E

510 COLOR 1,0,M MOD 3+1:POKE CONTRL,6:POKE CONTR
L+2,2:P0KE CONTRL+6,0:POKE PTSIN,XI:POKE PTS
IN+2,Y1:P0KE PTSIN+4,X2:POKE PTSIN+6,Y2:VDIS
YS(0)

520 X1=X2:Y1=Y2:NJ=M MOD 6+1

530 XD(M)=RU*X(M)+SU*X(NJ):YD(M)=RU*Y(M)+SU*Y(NJ

): NEXT M

540 FOR P=l to 6:X(P)=XD(P):Y(P)=YD(P):NEXT P,N
550 NEXT I,J
560 POKE BINTIN,l:POKE GINTIN+2,1:POKE GINTIN+4,

1:GEMSYS(21):GOTO EX ITBOX

211

CHAPTER FIVE

570 BYE: POKE CONTRL,14:POKE CONTRL+2,0:POKE CON
TRL+6,4:P0KE INTIN,0:POKE INTIN+2,1000:POKE
INTIN+4,1000:POKE INTIN+6,1000:VDISYS(0)

580 POKE CONTRL,14:POKE CONTRL+2,0:POKE CONTRL+6
,4:POKE INTIN,1:POKE INTIN+2,0:pOKE INTIN+4,
0:POKE INTIN+6, 0:VDISYS(0):END

212

NEOchrome: The
Rainbow Machine

Advanced Color Features
of NEOchrome

Lee Noel, Jr., and Selby Bateman

Many of the most attractive and powerful features
of the NEOchrome painting program from Atari
are largely undocumented. Here, an experienced

artist shows you how to open up special features of
this remarkable graphics program and even pro

duce color animation on your ST. Operates only in
low-resoiution graphics mode.

The NEOchrome Sampler painting program was shipped free
with every ST during the first year of the computer's availa
bility. A full-featured version of NEOchrome is now being sold
commercially. Both versions offer ST owners excellent graphics
software that really takes advantage of the computer's superb
color graphics system. Even the Sampler (NEOchrome version
0.5), while missing a few of the more sophisticated drawing
tools of its successor, is an attractive and powerful computer
painting package.

In fact, it's difficult to find a graphics program that
matches NEOchrome's speed, flexibility, and ease of use. Its
simplicity also makes it an excellent introduction to the icon-
based software environment that has become so popular.

If you look just below the surface, you'll discover
NEOchrome's special power to create magic with color. This is
of little use to owners of monochrome ST systems, but it
opens up a world of amazing possibilities for those with color
displays. With a basic understanding of these features, you'll
be surprised at how easily you can create paintings and de
signs that show off all of the ST's graphics capabilities. Before
exploring some of these features, let's take a quick look at how
the ST and NEOchrome work with color.

213

CHAPTER FIVE

Using Color
NEOchrome operates only in the ST's low-resolution graphics
mode. Here, the computer offers a rich palette of 512 different
colors, and any 16 of these can be displayed simultaneously.

Most low-resolution graphics programs allow you to set
these 16 colors by adjusting their individual RGB levels. (RGB
simply stands for red, green, and blue, which are the three
primary colors of video display. The different colors you see
on your monitor are generated by mixing the three primaries
together in various proportions.) In this mode, the ST offers
eight levels for each primary color. This gives 8X8X8 pos
sible RGB combinations—hence, the ST's 512 colors.

The RGB system may seem complicated at first, but it's
really rather straightforward once you examine it. However,
the unexpected results of color mixing can frequently baffle
even experienced users. For example, yellow is produced by
mixing the highest levels of red and green. An artist combin
ing similarly colored paints might expect to see brown as the
end product. But the colors we see that come from paint and
other pigments are the result of reflected light. Computer-
generated colors are directly transmitted light. It's as if the dis
play screen is composed of thousands of tiny, brightly shining
light bulbs. These small light bulbs are picture elements, called
pixels for short, that make up what you see on the screen.

Typically, computer graphics programs allow you to ad
just RGB levels with a display made of movable sliders, much
like those on the control boards found in recording studios.
However, without considerable experience, it's hard to predict
the exact color results of moving the sliders about. In cases
where small adjustments are made, it's almost impossible. The
particular mossy green you're trying to create might require
the most outlandish RGB values you can imagine. And that
can lead to frustration no matter how patient the computer
artist.

But not if you're using NEOchrome. The program provides
you with a color chart just like those used by professional
graphic designers. Instead of trying to calculate the correct
RGB settings, you simply look on the chart for the color you
want. Given the ST's polychromatic range, chances are good
that you'll find exactly what you're looking for.

214

Sound and Graphics

NEOchrome's Color Chart

The chart in the center of the NEOchrome menu can display at
one time 208 of the ST's 512 colors. All 512 colors are avail
able by horizontally scrolling the chart. You can scroll by
holding down the right mouse button and dragging the chart
left or right. Since nearly half the ST's possible colors appear
together in the chart window, you can also make selections
based on nearby alternatives and their appearance relative to
the other colors visible in the chart. With this system, you're
no longer restricted to blindly juggling RGB numbers. Where
color selection is concerned, there's no substitute for the good,
old-fashioned human eye.

Transferring colors from the chart into the 16 palette posi
tions is a straightforward operation. Figure 1 will help identify
and locate important color chart features.

Figure 1. Color Chart and Palette Features

SIXTEEN COLOR PALETTE

1 »

BACKGROUND
AND BORDER
COLOR

CURRENTLV SELECTED COLOR
INOTE INDICATOR TRIANGLE*

CURSOR
COLOR

1 , —

0 "•.. jT-j

ICHART CURSORL

••••••

••••••••Mill
?m C;:lK

••••
liar

•••
•HI

••••••I ••••

!••••••«••'
HIXER RRER

COLOR CHART
(COLOR MAP WINDOWJ

Select any particular color from the chart by left-clicking
on it with the mouse. (Right-clicking won't work. It's reserved
for the right-dragging process used to scroll the color chart.) A
square cursor indicates the selection, and the appropriate color
information is transferred to the mixer area. Here, the color
sample window shows a large patch of the selected color, and
its RGB values are also displayed.

Although using the numeric RGB information is often

215

CHAPTER FIVE

cumbersome when you're initially trying to select colors, hav
ing it supplied to you in this way is quite valuable. Keeping a
record of RGB values may help you remember a particularly
striking color or sequence of colors. Moreover, RGB numbers
provide a precise method of describing colors to other ST users.
As a result, simple black-and-white printed material can con
tain exact instructions for coloration of graphic design work.

Once specified, RGB numbers can then be used to select
colors directly from the mixer area. The three digits in the
mixer correspond in position to the three letters making up the
abbreviation RGB. In other words, the leftmost digit is the red
value, and the other two complete the pattern. Left-clicking on
one of the digits increases its value by one. Right-clicking de
creases by the same amount. Changes made to the RGB levels
are instantly reflected in the color sample window, which dis
plays the new color, and in the chart itself, where the cursor
moves to surround the newly specified color. In many cases,
the cursor will jump off the visible part of the chart, but you
can easily find it again simply by scrolling a new section of
chart into view. Just playing around with this system can be
fascinating, and it helps make clear the complexities involved
in picking a particular color from RGB values alone.

Moving a color into one of the 16 palette positions along
the top of the menu section near the middle of the screen is as
simple as a double-click of the mouse. First, select the desired
palette position. (It's always best to double-check that the
small indicator triangle is below the correct position.) Then
double-click on either of the two available sources of the new
color, either in the color chart or from the sample window. If a
color appears on the chart, but is not in the mixer area, dou
ble-clicking on its chart square will transfer the relevant infor
mation into the mixer. It will also transfer the color directly
into the currently selected palette position. The reverse is also
true. Double-clicking on a palette position will transfer that
color's RGB values into the mixer area and sample window.
The cursor in the color chart will also shift to reflect that color.
This technique provides a handy way to check on the RGB
values of an established palette. Such values can then be re
corded prior to any experimental changes to the palette.

NEOchrome's color chart offers an unbeatable combination
of simplicity (what you see is what you get) and flexibility
(RGB values can be utilized, but without the usual frustration
and confusion).

216

Sound and Graphics

Ramp Lines
Easy access to the ST's multitude of colors is particularly help
ful when you're using another of NEOchrome's unusual fea
tures, ramp lines. Not surprisingly, ramp lines are available
only by using the line-drawing tool. The line-drawing tool is
as easy to use as NEOchrome's other features. Pressing the left
mouse button establishes the starting point for a line. Drag
ging stretches an elastic straight line out to any position indi
cated by the onscreen mouse pointer, and releasing the left
button fixes both the line and its endpoint.

Ramp lines are created with the line-drawing tool in al
most exactly the same way as normal lines, but the right
mouse button is used instead of the left. Figure 2 shows some
important points and gives an idea of the appearance of the
ramp lines themselves. Naturally, printing these lines in black
and white restricts the illustrations to four tones of gray plus
white rather than the colorful combination you'll see on your
screen.

Figure 2. Color Ramp Pointers and Ramp Lines

rn^M
VARIOUS RAMP LINES

IRAMP POINTERS]

!>:
U
Mi

J
J

•C\~\

i

i j
4 L 11

1

; '•':•Jo

fUj A f*r£"'

rtW^f

PIIIIHI

£•••

•UQ

••••••Hi

THE MAGNIFV WINDOW
SHOWS A CLOSE-UP
VIEW OF THE RAMP
LINE RECTANGLE

VISIBLE IN THE MAIN
DRAWING AREA

217

CHAPTER FIVE

The keys to understanding ramp lines are the ramp point
ers, the two pointed palette blocks that you normally see at
either end of the NEOchrome palette. (These are sometimes re
ferred to as notches.) A ramp line follows the path an ordinary
line would, but it is made up of all the colors between (includ
ing those under) the two ramp pointers.

In Figure 2, there are four colors between the pointers, so
all lines made by right-dragging are drawn with these colors.
Normally, the small triangular indicator under the palette will
dictate the drawing color, but ramp lines always take their col
ors from the range specified by the pointers.

The magnify window (created in the color chart window
whenever the onscreen pointer is in the drawing area) shows
details of the short ramp lines drawn in the box above it. The
four-pixel-long lines display one pixel of each of the ramp col
ors. The eight-pixel lines show paired colors. The program
routine within NEOchrome that forms ramp lines tries to divide
the colors evenly along the length of each line, although exact
division isn't possible if the length of the line isn't a precise
multiple of the number of colors in the ramp range. This un-
evenness can be seen on the side walls of the magnify box. By
carefully watching ramp lines as they're drawn, it's possible to
tell exactly how long they are simply by counting the number
of pixels devoted to the final color. This can be a timesaving
trick in many circumstances.

Colors in Ramp Lines
When a ramp line is drawn, the first color to appear is always
the one under the left ramp pointer. As a result, colors always
go into ramp lines following the ramp range in left-to-right or
der. Initially, this tends to give the impression that ramp lines
are rigid in construction, but this is not so. Since the line itself
can be drawn in any direction, the colors can also be made to
flow accordingly. A quick look at Figure 2 will confirm that
the colors are running in any number of directions, but always
in the same sequence.

You can alter the positions of the ramp pointers by right-
dragging them with the mouse to the desired location. Any
block on the palette row is acceptable, and both pointers can
even be set in the same position, forming a double-ended
block. The sole limitation is that the pointers can never cross
over each other.

218

Sound and Graphics

With these movable pointers, it's easy to establish many
different ramp ranges within the full palette. Ramp lines can
be drawn with any of them, so legions of differently colored
ramp lines can be placed on the screen at the same time. For
tunately, ramp lines always retain the characteristics of the
color range with which they were originally drawn. This means
that their colors are stable, unless of course there are alter
ations to the palette positions you've selected for that screen.

Using Ramp Lines
Although ramp lines are quite beautiful in themselves, it might
seem that they have little practical application in the creation
of paintings and designs. But, like many first impressions of
NEOchrome, this one vanishes after a little exploration.

Figure 3. Ramp Lines Expanded into Shaded Areas

Bis
H-

lllill!

llll •
|INITIAL RAMP LINE

FIGURE 3Z RRMP LIMES COM BE

BUILT IMTO ERSILV HRNIPULRTEC

ijjjifli

Figure 3 shows how these lines can be applied in a practi
cal manner. Merely by using the copy-box tool, a few short
segments of ramp lines can be rapidly expanded into large
areas of shade (and color on a monitor screen). As you can
see, the original line segments were tiny, but the overall robot
assemblage is quite a solid figure. Doing such work is quick

219

CHAPTER FIVE

and takes little practice. By preassembling elements like those
on the left side of the figure and saving them to disk, it's pos
sible to build up files of ramp line building components for
later projects. With an unrestricted palette (again, ours is re
duced for printing purposes), such work can be rich, smooth,
and detailed. One final point: The barlike objects in the upper
left portion of Figure 3 are made of ramp lines which are five
pixels long—one pixel for each of the four gray tones, plus
white. In most cases, ramp lines look very smooth when
they're made of single-pixel color elements. Since such lines
are naturally of the minimum possible length, they offer the
NEOchrome artist a method of producing top-quality graphics
with economical use of color.

Animation

Probably the most impressive feature of NEOchrome lies in its
ability to animate the palette by color cycling. This, too, is
closely tied to the ramp pointers, so ramp lines and palette
animation are relatives of a sort. Keeping this in mind may
help explain the concept.

As a matter of fact, one of the easiest ways to see color
cycling in action is to draw a number of ramp lines on the
screen. Then, all you need to do is to right-click the mouse on
either of the palette animation arrows that appear on the ends
of the mixer area in the NEOchrome menu. Figure 4 shows de
tails of the minimal controls needed for cycling effects.

Figure 4. Animation Features

NOTE RAMP POINTERS AT PALETTE POSITIONS 5 AND 15

1 2 3 4 £ S 7 8 9 IP 11 IS 13 14 15 16

: !

s
Ul

iii

!.>'!

J
J
T

u.

,-c;':''-i
; i. il &

jj... &

Q $

220

. •:•:•••
^HiliiiiiErilill!!;!!!!!;!!!!!!;!!:!!:::!'
'III !!ii eIIe!!!!]!:!!!!! 111! !!!i!;!!l:il!!;; !!=!!:

iiii illSISISi ISSi si is si
•:: IM !::: :!:: :::: :::! Ill:

:i;:;;;;;;i;:i!!::i:;:il::i:iii
iiiiiliiiii iii:iii:iiiiiiii;!:;!:::

Sound and Graphics

In the case of the figure, as soon as one of the animation
-— arrows is activated by a right click, the colors between the

ramp pointers at positions 2 and 15 will begin to cycle repeat
edly through the entire range. For example, right-clicking on

•— the left animation arrow will initiate a sequence in which the
color in position 2 moves into 15, 15 moves into 14, and all
the rest shift leftward one place accordingly. Incidentally, left-

—- clicking on either arrow will shift the ramp range one step in
the direction indicated by the arrow, but not continuously.
This effect can be useful for making adjustments to a static
palette or for a step-by-step preview of full-scale color cycling.

Operating Color Cycling
Once color cycling has been set up, ramp lines drawn with the
specified range take on a life of their own. Depending on the
direction in which a line has originally been drawn, the ramp
colors will appear to move through it. Cycling started by right-
clicking on the other palette animation arrow will, of course,
reverse the flow of color 180 degrees.

Other rules for operating the system are equally straight
forward. Once cycling has started, you can stop it by a left or
right click on the opposite arrow. Restarting animation then
takes another right click. If cycling has been established, its
rate can be increased by left-clicking on the active arrow. The
rate is decreased by right-clicking.

NEOchrome can also remember animation information. If
you establish an animation sequence and save the picture to
disk while it's still running, speed and duration details will be
saved as well. The active animation can then be correctly
played back by the SLIDENEO slide show program that ac
companies NEOchrome. It's very important not to stop cycling
when you're making the save. Although this contradicts the
documentation that accompanies the program, it's the only
method that works.

Ramp line animation is excellent for fancy displays and
for certain special effects, but color cycling also enables the
NEOchrome user to mimic classic, Disney-type animation. This
type of animation can be difficult to comprehend, but
NEOchrome makes it so easy that it's worth the attempt. By

221

CHAPTER FIVE

the way, some writers label this technique simulated animation,
but that terminology is misleading. In this context, animation
itself is simulated motion. If a drawing looks like it's really
moving, then it's animated.

Meet Ernesto

In Figure 5, you can see the creation of a cartoon character,
Ernesto, the top-hatted platypus. From his basic standing pose
at the top left side of the figure, three sequential imaginary
running poses are developed. The copy-box tool makes the
process relatively simple. The drawings are assembled into the
sequence shown in the bottom half of the figure. The intention
is to have Ernesto run from the right side of the picture to
somewhere off the screen on the left.

Figure 5. Drawings for a Palette Animation

BASIC POSES FOR AN

ANIMATION SEQUENCE

THE POSES ARE COMBINED INTO A COMPLETE SEQUENCE

Figure 6 shows how Ernesto and the running sequence
are set up to match palette positions. Ten positions, 6 through
15, are assigned to the nine drawings in the sequence. How
ever, only one of the positions, number 9, produces a dark im
age of the character. The rest are drawn in what will be the
eventual background color. As a result, eight of the drawings
will be invisible at all times since they will simply blend into
the background color. Consequently, the one dark drawing of
Ernesto will appear to run across the display.

222

_

Sound and Graphics

Figure 6. Palette and Drawings Adjusted for Animation

•I
10 11 12 13 14 15 16

Position 6, as shown by the arrow, is dedicated to a non
existent part of the sequence to create a brief delay onscreen.
That is, when the palette is cycled to the left—the planned di
rection for Ernesto's run—this provides a timing delay before
the darkly colored image reappears on the right side of the
screen. Tricks like this are essential to realistic animation and
are not easily learned. However, working with NEOchrome re
moves a lot of the drudgery. If an animation is close to what
you want, but still not quite right, save it to disk. You can
then afford to experiment to your heart's content; your previ
ous efforts are safely stored away.

Background Details
Palette positions 1-5 and 16 can be used to build up back
ground details of the picture, but one important factor must be
kept in mind. One of these blocks must be reserved for the
same color as the eight invisible Ernestos. The colors in the
palette blocks between the ramp pointers are constantly
changing and therefore are unsuitable for this purpose. Balanc
ing color demands for this type of animation is a critical area
of planning.

In Figure 7, a city skyline is drawn around Ernesto and
filled with the background blending color—causing eight of
the Ernesto figures to disappear. This is actually the tone from
palette position 5 in Figure 6. You'll notice that the light

223

CHAPTER FIVE

drawings of the platypus have been adjusted to match. In the
bottom half of the figure, window details have been painted
onto the buildings around the still visible heads and torsos of
the eight pale Ernestos. As indicated by the fill icon, these will
then be filled in with the background blending color from po
sition 5.

Figure 7. Background and Details Added to Sequence

J
m Am

Figure 8 shows a single Ernesto, frozen in one frame of
his endless run. The finished animation works sucessfully: As
the colors cycle, eight background-color Ernestos stay invisi
ble. The dark color, however, is cycled through all nine posi
tions (and the tenth delay block), thus creating the impression
that Ernesto is racing across the screen on a typically urgent
platypus errand.

There is virtually no limit to the number of animated ob
jects that can be simultaneously displayed by this method. On
the other hand, since only one range of colors can be cycled at
any point in time, there are severe limits on the colors avail
able for animation. For example, a bird could fly parallel to
Ernesto, and a streetcar could travel in the opposite direction.

224

_

_

Sound and Graphics

Figure 8. The Finished Animation

m

However, they would have to move against the same colored
background and would need to appear in Ernesto's dark color.
Clever scene design can do much to overcome these limits,
but animation always requires considerable work and fore
thought. Happily, NEOchrome goes a long way toward reduc
ing such effort to enjoyably challenging levels.

When you combine palette animation with ramp lines and
the excellent color chart, it becomes apparent that NEOchrome
is a powerhouse graphics program. Contrary to first impres
sions, you'll find that the program has plenty of muscle under
its mild-mannered exterior. And best of all, using this pro
gram's exceptional power is downright easy.

225

Doodler
D. W. Neuendorf

Learn how to write a Logo program that takes ad
vantage of GEM's built-in features and user inter

face. "Doodier" is for any Atari ST with Logo.

When Atari first started shipping the 520ST in the summer of
1985, ST BASIC wasn't quite ready. The only programming
language supplied was Digital Research's Logo. When I bor
rowed a friend's 520ST, I decided to put Logo to work in a
drawing program. This version of Logo, however, has been
translated from Digital's Logo for the IBM PC, and it doesn't
run particularly fast on the ST. After some experimenting, I re
alized that it's too slow to support a full-fledged drawing utility.

Not yet ready to write off the ST/Logo combination, I
considered alternatives. Calls to the operating system were
out, since there was only a limited memory map and no CALL
statement. Furthermore, Logo restricts the areas of memory ac
cessible to the EXAMINE and DEPOSIT commands (similar to
BASIC'S PEEK and POKE). Even hand-assembled machine
language routines are useless without a way to call them.

Then I remembered GEM—Digital Research's Graphics
Environment Manager, which sits as a shell on TOS, the ST's
operating system. In Logo, GEM has a Settings menu that lets
you change line-drawing colors, line-drawing widths, fill col
ors and patterns, and other parameters. There must have been
some reason that Atari included all these settings in a drop
down menu, duplicating many of the Logo commands. One
very good reason, I concluded, was to avoid forcing someone
like me to code a complex user interface in Logo, which would
bog down the program. After all, the Settings menu is quite
similar to the menu I planned to include in my drawing
program.

Then, I took a hard look at what's really needed to draw
pictures on the ST. If we let GEM handle the fancy features
via its Settings menu, all we need is an easy way to fill areas
and draw lines, circles, and boxes. Providing these functions is
well within Logo's capabilities. "Doodler" is the result.

226

_

Sound and Graphics

The author created this pic
ture with "Doodler."

Drawing with Doodler
To use Doodler, run Logo and type in the listing below. Be
sure to save at least one copy before you try to use Doodler
for the first time. Next, you should decide which screen reso
lution mode you wish to use. The monochrome screen gives
you the highest resolution—and thus the capability of drawing
finely detailed pictures—but it allows only black and white.
The low-resolution mode allows 16 different colors, but there's
the loss of some detail. The medium-resolution mode offers

more detail than low resolution, with up to 4 colors. If you
wish to draw in a mode other than the one currently selected,
you must quit Logo and return to the GEM desktop, then se
lect Set Preferences from the Options menu. After making
your selection, run Logo again.

Before you begin drawing with Doodler, clear the Graph
ics window by typing CS and pressing Return at a Logo top-
level question mark (?) prompt. Then type SKETCH. You'll
probably'-want to expand the Logo Graphics window to full
screen size to give yourself more room to work. You can alter
Doodler's pen color at any time, along with the background
color, line width, fill color, and fill pattern settings. Just drop
down the Settings menu and select the Graphics option. Click
the pointer on the setting you want to change; then type in
the appropriate number and click on the OK box.

To draw with Doodler, you connect a series of lines, end
to end. Choose the beginning of a series of line segments by
moving the mouse pointer to the first desired endpoint and

227

CHAPTER FIVE

pressing the left button. For all button presses in Doodler,
hold down the button for at least a second or two; Logo can
not detect a faster press. If a Doodler command doesn't get a
response, you're probably not holding down the button long
enough.

You can specify subsequent endpoints the same way. You
can draw a continuous line by holding down the left button
while moving the mouse. However, because Logo isn't very
adept at reading the buttons, you must move the mouse very
slowly to draw smooth lines. To end the series of connected
line segments, move the pointer outside the drawing area and
press the left button. If you're using a full-size Graphics win
dow, the best place outside the drawing area is the upper right
corner of the screen beyond the menu bar.

To fill an area with color, place the mouse pointer inside
the area and press the right button. Be sure the area you're
trying to fill is completely enclosed by lines. If there are any
gaps, the fill "spills out" and colors the entire background.

To draw circles or boxes, press the right button while the
pointer is outside the drawing area. A prompt asks you to
press the C or B key for a circle or box, respectively. Pressing
any other key exits the circle/box mode. After you press C to
choose a circle, point to the desired center and press the left
button. Then move the pointer to the desired radius and press
the button again. If you press B to choose a box, point first to
its lower left corner and press the left button. Then point to its
upper right corner and press the button again.

You can erase portions of your drawing by dropping
down the Settings menu, selecting the Graphics option, chang
ing the line color to match the background color, then drawing
over the parts you want to erase. You may also want to widen
the line setting for this purpose.

How It Works

The top-level procedure, SKETCH, does a little initializing
before it invokes the main procedure, PT, which executes re
peatedly. PT stores the current mouse status in the variable T,
and then analyzes it for the state of the left and right mouse
buttons. Each mouse button has two functions, depending on
whether the pointer is inside or outside the drawing area
when the button is pressed.

228

Sound and Graphics

Pressing the left button (indicated in ITEM 3 of MOUSE)
specifies the endpoints in a series of connected line segments.
DRAW? sets a flag, depending on whether ITEM 5 of MOUSE
is TRUE (pointer inside the drawing area) or FALSE (pointer
outside the drawing area). This flag, in turn, controls whether
DR draws another line segment or sets a new starting point.

Pressing the right button (indicated in ITEM 4 of MOUSE)
fills an area with the current fill pattern if the pointer is within
the Graphics window boundaries (ITEM 5 of MOUSE is
TRUE), or, it initiates circle or box drawing if the pointer is
outside the Graphics window (ITEM 5 of MOUSE is FALSE).
The circle and box prompts are drawn in the pen-reversed
mode; then they're selectively erased by being redrawn in the
same place. Although it can be hard to read these prompts
over existing screen graphics, the alternative—printing to the
Dialog window—stops the program.

You can save your artwork by using the Save Pic option
in the File menu. Reload previous drawings with the Load Pic
option in that same menu. When you reload pictures, you
must set the screen for the same resolution that was in effect
when the picture was saved. For example, you cannot load a
picture drawn on the low-resolution screen into a medium-
resolution Graphics window.

The lesson for programmers here is that programming on
the ST is very different from programming on earlier comput
ers with traditional operating systems. Whether you're using
Logo or a very fast compiled language, it would be a mistake
to ignore the high-level tools available in GEM and TOS. Not
only is it a waste of effort to write everything from scratch,
but it's also wise to stick to the user interface that is already
thoroughly familiar to every ST owner.

Doodler in Logo

TO SKETCH
HIDETURTLE

PENUP

MAKE "GFILL "TRUE

MAKE "TF 0

PT

END

TO PT

MAKE "T MOUSE

IF ITEM 3 :T CDRAW7J

229

CHAPTER FIVE

IF ITEM 4 :T CBCORF]

PT

END

TO DRAW?

IF ITEM 5 :T [DR] [MAKE "TF 03

END

TO DR

IF (:TF = 0)

CPENUP SETPOS :T MAKE "TF 13

EPENDOWN SETPOS :T PENUP3

END

TO BCORF

IF ITEM 5 :T

CSETPOS PIECE 1 2 :T FILL]

CBORC3

END

TO BORC

MAKE "POOL ITEM 5 TURTLEFACTS

BCMSG

MAKE "CH READCHAR

BCMSG

SETPC :PCOL

IF (:CH = "B> CBX3

IF <:CH = "C> CCIRC3

MAKE "TF 0

END

TO BCMSG

SETPOS C-70 803

SETH 0

TMSG tCircle: Press C3

TMSG CBox: Press B3

TMSG [Abort: Press any]
TMSG C# # # # other key]

END

TO TMSG :MESSAGE

PENREVERSE

TURTLETEXT :MESSAGE

PENUP

BACK 18

END

TO BX

MAKE "GFILL "FALSE

BOX MBP

230

_

Sound and Graphics

MAKE "GFILL "TRUE

END

TO CIRC

MAKE "GFILL "FALSE

CIRCLE MCP

MAKE "GFILL "TRUE

END

TO MBP

GETPOINTS

MAKE "PAR3 ABS ((FIRST :PAR2> - (FIRST :PAR1)>
MAKE "PAR4 ABS ((LAST :PAR2) - (LAST :PAR1>)

OUTPUT (SENTENCE :PAR1 :PAR3 :PAR4)

END

TO MCP

GETPOINTS

MAKE "PAR3 (ABS ((FIRST :PAR2) - (FIRST :PAR1>>>

A 2

MAKE "PAR4 (ABS ((LAST :PAR2) - (LAST :PAR1))) A

2

OUTPUT SENTENCE :PAR1 SQRT (:PAR3 + :PAR4)

END

TO GETPOINTS

MAKE "PARI GETPOS

DELAY

MAKE "PAR2 GETPOS

END

TO GETPOS

MAKE "T MOUSE

IF (ITEM 3 :T> [OUTPUT PIECE 1 2 :T3

GETPOS

END

TO DELAY

REPEAT 10 [MAKE "JUNK SIN 53

END

231

Making Music
on the ST

David Florance

"MELODYST" is an easy-to-use music-generating
program. Even if you know nothing about music,
you'il quickly iearn how to incorporate music into

your own programs.

The Atari ST provides users with some exciting prospects in
the area of music and sound. In this article we'll deal specifi
cally with making music on the ST through internally pro
cessed software. The programs here are written entirely in ST
BASIC. If you want to explore ST music in more depth, you
might want to explore C and Pascal, which afford greater ac
cess to the ST's capabilities.

SOUND

First, let's see how ST BASIC handles music. We have two
useful statements at our disposal, SOUND and WAVE. The
SOUND statement gives access to the tone generator for mak
ing songs and melodies. Its syntax is
SOUND voice, volume, pitch, range, duration

The voice parameter chooses one of the ST's channels through
which the note can be heard. The ST has three channels,
usually referred to as A, B, and C. In programming, the num
bers 1, 2, and 3 designate channels A, B, and C, respectively.
The second parameter, volume, controls the level of the note's
loudness. The choices here are 0-15; for soft notes, use a
lower number. The third parameter, pitch, tells the ST what
note to play. As you can see from Table 1, each of the notes in
the chromatic tonal scale is represented by a number, 1-12.

The ST takes the number specified for pitch and can tell
which frequency to generate. However, it can play far more
than just these 12 notes. With the fourth parameter, range, you
can specify one of eight octaves. (An octave is one set of 12
pitch values. It's called an octave because there are 7 pitches
that are natural, not sharped or flatted, before the notes start

232

Sound and Graphics

Table 1. Chromatic Scale

Note Name Number

C 1

CH orDl> 2

D 3

D{(or Eb 4

E 5

F 6

F ft or G \> 7

G 8

G# orAb 9

A 10

A|} or B\> 11

B 12

to repeat on the eighth pitch.) Thus, the ST can play 96 (8 X
12) different notes. Octaves 2-6 are the most frequently used
octaves for creating songs. For range, you can use a number
from 1 through 8.

The final parameter, duration, tells the ST how long the
note will be sounded. Values permitted are 0-65536. Each unit
of duration is equal to approximately 1/60 second, so a dura
tion of 60 causes the note to be sounded for about one second.

Type the following statement in direct mode (without a line
number at the OK prompt) and hear what happens:
SOUND 1,15,10,4,60:SOUND 1,0,0,0,0

The ST will play in voice 1 (channel A) at maximum vol
ume 15, pitch 10 (note A) in a range of 4 (fourth octave) for a
duration of 60 (about one second). Then it will turn off every
thing it has turned on by placing zeros in all the parameters
for voice 1.

WAVE

The second BASIC statement useful for music applications is
WAVE. It allows you to alter the shape of the note to be
sounded. The syntax is
WAVE oscillator, envelope, form, period, length

The first parameter, oscillator, tells the ST what kind of
SOUND is wanted—either periodic (tonal), aperiodic (noise),
or both. This number is put into the sound register's first six
bits. Bits 0-2 are for tone, and 3-5 are for noise. Refer to
Table 2.

233

CHAPTER FIVE

Table 2. WAVEs

WAVE Result

0 All voices quiet
1 Voice 1 SOUNDs tones

2 Voice 2 SOUNDs tones

3 Voices 1 and 2 SOUND tones

4 Voice 3 SOUNDs tones

5 Voices 1 and 3 SOUND tones

6 Voices 2 and 3 SOUND tones

7 All three voices SOUND tones

8 Voice 1 SOUNDs noise

16 Voice 2 SOUNDs noise

24 Voices 1 and 2 SOUND noise

32 Voice 3 SOUNDs noise

40 Voices 1 and 3 SOUND noise

48 Voices 2 and 3 SOUND noise

56 All three voices SOUND noise

63 All three voices SOUND tones and noise

Note that any combination is allowed and gives the obvi
ous result. For example, WAVE 17 turns voice 1 to tones and
voice 2 to noise. Figure 1 shows how the bits are configured.

Figure 1. Noise and Tones

32 16 8 4 2 1

Noise Tones

The next parameter, envelope, uses bits to designate which
voices will be controlled by the envelope generator. Using a 1
means let voice 1 through; 3 means let voices 1 and 2 through;
and 7 means let all voices through.

The parameter form lets you choose a waveform. All
sounds take the general shape of the attack-decay-sustain-
release envelope that you see in Figure 2. Attack determines
the amount of time it takes for a note to reach its maximum,
or peak, volume level. Decay controls how quickly a sound
falls from its peak level to its sustained volume. Sustain is the
volume at which a sound is held during the middle portion of
its cycle, and Release is the time it takes for the sustained vol
ume to reach silence.

234

Sound and Graphics

Figure 2. ADSR Envelope

Sustain •

When numbers are put into the form parameter, the shape
changes. Figure 3 shows the built-in shapes and their numbers.

Figure 3. Waveforms

Binary Dec Waveform Shape

OOXX 0-3 \
01XX 4-7 A
1000 8 WWN
1001 9 \
1010 10 WW
1011 11 \l
1100 12 AAA/WW
1101 13 1
1110 14 AAAA
1111 15 A

235

CHAPTER FIVE

Period designates the time between the cycles of the
form, and length tells the ST how long to wait before execut
ing the next BASIC command. Type in this short program,
"WAVESAMP," if you'd like to experiment with the WAVE
statement.

Program 1. WAVESAMP

10 ' wave sampler
15 •fullw 2:clearw 2

20 input "Oscillator (1,3, or
30 input "Envelope (1,3, or
40 input "Form (0-15)

50 input "Period (0-65535)
60 input "Delay (0-65535)
80 wave osc,env,form, per,del
90 rem for x = l to 8H or y=l to

7) ";osc
7) ";env

";form
" 5 Per
";del

12:sound l,15,y,
x, 1:next y,x

100 goto 20

Notice line 90 in WAVESAMP. If you take the REM out
of the line, you'll hear a chromatic scale along with the wave
form you designated.

Making Music with MELODYST
Type in the three programs at the end of this article and save
them to disk. The main program," MELODYST," is a melody
editor. It uses the ST's sound generator chip to allow you to
create, listen to, edit, store, and recall melodies, which can
then be added to your own programs. It runs only in low-
resolution mode. The other two programs are actually subrou
tines designed to enable you to use files created with
MELODYST in your own programs. These programs are sim
ple in construction so that they'll be easy to use.

When you run MELODYST, a command window will ap
pear and show you six options: NAME NOTES, PLAY NOTES,
LOAD NOTES, SAVE NOTES, EDIT NOTES, and GOTO
BASIC. The first option, NAME NOTES, allows you to create
melodies. If you're familiar with the traditional tonal scales,
you already know how to use this option. Simply type in the

236

Sound and Graphics

note value (pitch) you desire along with its octave and dura
tion. If you're not familiar with musical staves and clefs, you
can use Figure 4 to transcribe sheet music to your Atari ST.

Figure 4. Musical Notes

— ^
G

-F

D

— -E-

-&-

Look at each note on your sheet music, find its cor
responding value in Figure 4, and type in the name of the
note when you're prompted for PITCH. If there's a sharp ((j)
or flat (\f) beside the note or anywhere in the music, you must
add that to the note value. Here's a point to remember: If a
line goes through the middle of a note head (the circular part
of the note), the note is said to be on that line. If not, it is said
to be on a space. The program MELODYST and the computer
handle sharps only. You can use Table 3 to convert all flats to
sharps.

Table 3. Converting Flats to Sharps

Cb
Db
Eb
Fb
Gb
Ab
Bb

B

c8
D«
E

n

4
The ST's octaves start with C. If you encounter a C b,

you'll have to enter it as a B in the next lower octave. Since
the ST has a range of eight octaves, use Figure 5 to find the

237

4-1- I I
•4-J I

(fl
0)
>

u

o

in

09

00

238

Sound and Graphics

-a

~4

mi

CHAPTER FIVE

octave of the note you want. Notice that not all octaves are
given. The octaves that are not shown are used only infre
quently for melodies. Find the octave in which your note falls,
and enter that value for OCTAVE. For example, if you want to
enter a flatted middle C, enter B in octave 3. Then refer to Ta
ble 4 to enter the time allowed for your note to sound.

Table 4. Note Duration

Note Note Name Duration

J Thirty-second 2

5

10

20

30

40

60

80

120

J Sixteenth

} Eighth

J Quarter

J. Dotted quarte

J Half

J. Dotted half

o Whole

o- Dotted whole

When you've determined the time value, enter that num
ber for DURATION. Don't worry if you're not sure how fast
or slow your piece should go. MELODYST lets you adjust that
later. Follow the three steps above until you have entered
your melody in full. Remember that on sheet music the top
note is almost always the melody.

239

CHAPTER FIVE

Listening to Your Creation
When you choose the next option, PLAY NOTES, you can
hear the notes you've entered. MELODYST allows variance in
the general speed of the piece you've entered. In musical
terms this is known as the tempo. You can choose a tempo
from 1 to 255, with 1 being the least amount of delay between
notes, and 255, the most. Specific control is combined with the
note values you have designated. In other words, the larger
the note values that you have entered are, the more the tempo
will alter the speed of the piece. Table 5 gives suggestions on
tempo. The range is from presto (quick) to lento (slow).

Table 5. Tempo

Designate Tempo
Presto 1--5

Vivace 6--15

Allegro 16--30

Moderato 31--50

Andante 51--80

Adagio 81--120

Largo 121--170

Lento 171--255

When you've determined the tempo of your piece, enter a
number between 1 and 255, inclusive, to respond to the
TEMPO prompt. Next, MELODYST will ask you for a WAVE
FORM. Choose a number between 0 and 14, inclusive, for one
of the ST's built-in shape generators. Experiment with differ
ent values for different sounds. There is one more listening
parameter, called PERIOD, which controls how fast each note
cycles (it may not be audible). Experiment until you find one
you like.

When you're through listening, a dialog window will ap
pear asking whether you want to hear the piece again. The
third and fourth options, LOAD NOTES and SAVE NOTES,
allow you to load and save the melody to disk. The option
called EDIT NOTES allows just that—you can change the pa
rameters for any note you have created. The last option,
GOTO BASIC, returns you to ST BASIC when you've finished
the session.

As you continue using MELODYST, you'll find that mak
ing music becomes less and less laborious. If you know little
about music, MELODYST can double as a tutorial. Don't be

240

Sound and Graphics

surprised if you become more adept at reading music by using
the program.

Music in Your Own Programs
It's easy to use songs created with MELODYST in your own
programs. Program 3, "MELOADER," is a subroutine which
can be inserted into any ST BASIC program. Call the subrou
tine, replacing the f$ in line 5000 with the name of your
MELODYST file. Make sure your song file is on the same disk
as your program, and this routine will load the notes you have
saved into the variables p°/o(nn), r°/o(nn), d°/o(nn), and e$(nn).

Program 4, "MELPLAY," also is a subroutine that you can
insert into any ST BASIC program. It takes the variables
loaded with MELOADER and uses the SOUND statement to
play through them. Be sure to specify a value for the variable
de, which is inside a delay loop and controls the tempo. If you
don't do this, your song may play faster than you would like.
Call the subroutine, and the music will be played. You'll need
to use both MELPLAY and MELOADER (or similar routines
that you may write) for this process to achieve the desired re
sults. Note as well that in line 10 MELOADER DIMs the vari

ables needed. If your program contains a line 10, to avoid
conflict, RENUMber your program before MERGEing the sub
routine into your program, or RENUMber MELOADER's
line 10.

The Sound Generator

The Atari ST is equipped with the Yamaha YM-2149, which is
a member of the same family of sound chips as the GI AY-3-
8190. These programmable sound generators (PSGs), some of
which were used in earlier micros and were developed for ar
cade games, are 16-register synthesis sound chips. When
accessed from GEM, the YM-2149 displays impressive power
for generating and altering sounds. It has three independently
programmable voices, a programmable tonal pitch and white
noise mixer, two 8-bit data ports, analog output, a D/A digital
converter, software controllable envelopes for attack, decay,
sustain, and release, and an amplitude control block for vol
ume output. All these are top-quality attributes that demon
strate just how well the Atari ST is put together. While it is
impracticable to seek full use of this dynamic chip through

241

CHAPTER FIVE

BASIC, it is well-suited for use with other languages. If you
want to explore the ST's sound capabilities in greater depth,
you might consider C or Pascal. You can see, even through
simply conceived BASIC programs like MELODYST, that the
YM-2149 is quite versatile.

Program 2. MELODYST

10 rem MELODYST

20 openw2:fullw 2:clearw 2:gosub 9600
22 if peek (systab) <>4 then print "This program

requires LOW RESOLUTION.":end

24 print "This program politely ignores"
25 print "you i-f you don't enable the"
26 print "CAPS LOCK. Please make sure"
27 print "it is on."

28 -for f = l to 5000:next:clearw 2

30 dim n(255) ,p7. (255) ,r7.(255) ,d7. (255),e*(255)
35 nn=l:er*="

40 for x=l to 6:read a*(x):next

200 * main loop
210 gosub 3000
220 i-f en=l then closew 2:closew 1: end

240 goto 200
500 * name opt
505 nn=l:gosub 9500
510 clearw 2:color 1,4,1,6,2:fi11 2,2
520 gotoxy 6,4:print er*:gotoxy 6,4:print "Note

number ";nn
530 gotoxy 6,5:print er*:gotoxy 6,5:input "Pitch

"SP*
540 n*(l)=left*(p«, 1>:n*(2)=right*(p*, 1) :p7.(nn) =

asc(n*(l))-64

550 if p7. (nnXl or p7.(nn)>7 then gosub 520
560 e*(nn)=p$:gosub 7000
565 if len(p*)>2 then 520
567 if n*(2>="#" then p7. (nn) =p7. (nn)+1: if p7. (nn) =

13 then 520

569 gotoxy 6,6:print er*
570 gotoxy 6,6:input "Octave ";r"/. (nn) :if rZ(nn)<

1 or r7.(nn)>8 then 570

580 gotoxy 6,7:print er*
590 gotoxy 6,7: input "Duration ";d7.(nn>
600 gotoxy 6,9:print er*
602 gotoxy 6,9:input "More <Y/N>";r*
610 if r*="N" then 640

630 nn=nn+l:goto 510
640 return

700 en=l:return

242

Sound and Graphics

1000 ' save opt
1005 fullw 2:clearw 2:color 1,2,1,1,1:fi11 10,10
1010 gotoxy 15,i:print "SAVE"
1015 gotoxy 10,3:input "Filename";f*
1016 f*=mid*(f*,1,10):gotoxy 10,5
1020 print "Save ";f*
1030 gosub 9200:gosub 8100
1035 if peek(gt)=2 then return
1040 if peek(gt)=l then 1045
1045 open "0",#l,f*
1050 for x= l to nn:write #1, p% (x),r7. (x),d7.(x),e* (

x)

1060 next

1070 close #1

1999 r«turn

2000 ' load opt
2001 gosub 9500:on error goto 9400
2005 fullw 2:clearw 2:color 1,2,1,1,1:fi11 10,10
2010 gotoxy 15,l:print "LOAD"
2015 gotoxy 10,3:input "Filename";f*
2016 f*=mid*(f*,1,10):gotoxy 10,5
2020 print "Load ";f*
2030 gosub 9200:gosub 8100
2035 if peek(gt)=l then 2045
2040 if peek(gt)=2 then return
2045 x=0:open "I",#l,f*
2046 on error goto 0
2047 while not eof(1)

2049 x=x+l

2050 input #l,p7.(x),r7.(x) ,d7.(x) ,e*(x)
2070 wend

2080 close #1

2999 nn=x:return

3000 color 1,3,1,1,l:clearw 2:fill 10,10:rem init

3005 for x=l to 6:gotoxy 7,x+5:print x;">>>>>>>>
"a*(x):next

3010 gotoxy 12,3:print "COMMAND MENU"
3015 gotoxy ll,15:print "CLICK TO CHOOSE"
3020 gosub 8000:if button=0 then 3020
3030 if x<64 or x>240 then 3020

3040 if y<78 or y> 130 then 3020
3050 if y<86 then ch=l:goto 3060
3052 if y<94 then ch=2:goto 3060
3054 if y<103 then ch=3:goto 3060
3056 if y<112 then ch=4:goto 3060
3058 if y<121 then ch=5:goto 3060
3059 if y<130 then ch=6
3060 on ch gosub 500,6000,2000,1000,5000,700

3099 return

243

CHAPTER FIVE

4000 rem print out incorrect value message
4499 return

4500 gotoxy 15,7:print " "
4999 return

5000 ' edit opt
5005 fullw 2:clearw 2

5010 gotoxy 6,5:print "EDIT"

5020 for es=l to nn

5046 print "Note #"es" "e*(es):next
5050 gotoxy 0,16:print "Which note to change";:in

put r*:r=val(r*)
5052 if r<l or r>nn then gotoxy 0,16:print er*:go

to 5050

5054 clearw 2:gotoxy 6,6:print "Note # "r
5056 gotoxy 6,7:print "Pitch "e*(r):gotoxy 6,8:pr

int "Octave "r7.<.r)

5058 gotoxy 6, 9: print "Duration "d7. (r)
5060 gotoxy 6,10:input "New Pitch";np*
5062 n*(l)=left*(np*, 1) :n* (2) =r ight* (np*, l):p7.(r)

=asc(n*(l))-64

5064 if p7. (r)<l or p7.(r)>7 then 5005
5066 e*(r)=np*:f1=1:gosub 7000
5068 if n*(2)="#" then p7. (r)=p7.(r)+1: if p7.(nn)=13

then 5005

5089 gotoxy 6,11:input "New Octave";nr*
5090 gotoxy 6,12:input "New Duration";nd*:clearw

2:gotoxy 6,7
5092 print "Note # "r:gotoxy 6,8:print "Pitch "np

*:gotoxy 6,9
5094 print "Octave "nr*:gotoxy 6,10:print "Durati

on ";nd*
5095 gotoxy 6,12:input "OK";ok*:if ok*<>"Y" then

5005

5097 nr=val (nr*> : r7. (r) =nr: nd=val (nd*) :d7. (r)=nd

5098 gosub 9300:gosub 8100:if peek(gt)<>2 then 50
05

5099 return

6000 ' play opt
6005 clearw 2:color 1,6,1,1, 1:fi11 10,10
6006 gotoxy 6,1:input "Tempo (1-255)";de:if de<1

or de>255 then 6006

6007 gotoxy 6,2:input "Waveform (0-14)";wv:if wv<
0 or wv>14 then 6007

6008 gotoxy 6,3:input "Period (0-4096)";pe:if pe<
0 or pe>4096 then 6008

6009 gotoxy 6,5:print "Playing your creation..."
6010 wave 1,1,wv,pe:for pn=l to nn

6020 sound 1, 12, p7. (pn) ,r7. (pn) ,d7. (pn)
6025 for j=l to de:next j:sound 1,0,0,0,0
6030 next:sound 1,0,0,0,0:gosub 9100:gosub 8100

244

u

_

_

Sound and Graphics

6040 if peek(gt)=l then 6010
6099 return

7000 nt=nn:if fl=l then fl=0:nt=r

7002 on p7. (nt) gosub 7010,7020,7030,7040,7050,706
0,7070:return

7010 p7.(nt)=10:return
7020 p7.(nt) =12: return
7030 p7.(nt)=l: return
7040 pii(nt) =3: return
7050 pX(nt)=5:return
7060 p7.(nt) =6: return
7070 p7. (nt) =8: return
8000 ' mouse check

8010 poke contrl,124
8020 poke contrl+2,0:poke contrl+6,0
8030 vdisys(0)
8040 x=peek(ptsout):y=peek(ptsout+2)
8050 button = peek(intout)
8060 return

8100 gb#=BB

8110 gn=PEEK(gb#+8)
8120 gt=PEEK(gb#+12)
8130 ad#=PEEK(gb#+16)
8140 db=l

8150 POKE gn ,db
8180 POKE ad#,VARPTR(msg*)
8190 GEMSYS(52)

8199 return

9000 data NAME NOTES,PLAY NOTES,LOAD NOTES,SAVE N
OTES,EDIT NOTES,GOTO BASIC

9100 msg*="C23C!Play it again?!3"
9110 msg*=msg*+"CYes!No3"+CHR*(0)+CHR*(0)
9120 return

9200 msg*="C33[JPlease confirm.13"
9210 msg*=msg*+"COK!Cancel 3"+CHR*(0)+CHR*(0)
9220 return

9300 msg*="C2DCIMore Editing?!]"
9310 msg*=msg*+"C Yes!No3"+CHR*(0)+CHR*(0)
9320 return

9400 gb#=gb
9410 gn=peek(gb#+8):gt=peek(gb#+12)
9420 er=2:poke gn,er
9430 gemsys(53)
9450 resume 200

9500 ' clear variables

9510 for c=l to 255: p7. (c)=0:r7. (c)=0
9520 d7.(c)=0:e*(c)="":next

9530 return

9600 gb# = gb

245

CHAPTER FIVE

9605 gn=peek(gb#+8)
9610 poke gn+0,peek(systab+8)
9615 poke gn+2,2
9620 st# = gn+4:gosub 9700
9625 msg*= msg*+chr*(0)
9630 poke st#,varptr(msg*)
9635 gemsys(105)
9640 return

9700 msg*="MELODYST"
9710 return

Program 3. MELOADER

10 dim p7. (255) ,r7.(255) ,d7.(255) ,e* (255)
5000 nn=0:open "I",#l,f*:* where f* is name of yo

ur music file

5010 while not eof(1)

5020 nn=nn+l

5030 input #l,pX(nn),r1/.(nn),d"/.(nn),et(nn)
5040 wend

5050 close #1

5060 return

Program 4. MELPLAY
5100 for pn=l to nn
5110 sound 1, 12,p7.(pn) ,r7. (pn) ,d7. (pn)
5120 for j=l to de:next j:sound 1,0,0,0,0
5130 next:sound 1,0,0,0,0
5140 return

246

C Programming

n

Introduction to
C Programming

Sheldon Leemon

The C language's portability, structured design,
and reusable /unctions are making it increasingly
popular as an alternative to BASIC. A comparison
of a program written in BASIC and in C shows you

similarities and differences.

As recently as 1984, the C programming language was virtu
ally unknown to microcomputer owners. The only book avail
able on the subject was The C Programming Language, coauthored
by Brian Kernighan and Dennis Ritchie, who invented C. And
K & R, as programmers refer to it, made no mention of C pro
gramming on microcomputers (you can tell that serious pro
grammers wrote it, because the book starts with Chapter 0).
But though the Kernighan and Ritchie book is still considered
the standard reference, today you can walk into almost any
well-stocked bookstore and choose from dozens of books on
every aspect of C programming. Most of these books concern
C programming on microcomputers.

C and Microcomputers
Despite its recent surge in popularity, C is not a new program
ming language. It was designed at Bell Laboratories in 1971
for the purpose of implementing the UNIX operating system
on mini- and mainframe computers. Clearly, though, some
thing has happened in the microcomputer industry recently to
push this language into a new prominence. That "something"
is the evolution of the personal computer from a low-priced
novelty into a serious tool.

The first personal computers had 8-bit processors that ran
at a clock speed of 1 or 2 MHz (megahertz). By current stan
dards, they contained a very limited amount of RAM; 64K was
the absolute maximum. And disk storage was neither very
large nor very fast. All of this changed with the advent of a
new generation of more powerful (and expensive) machines

249

CHAPTER SIX

like the IBM PC and the Apple Macintosh. Suddenly, there
were personal computers that had 16- and 32-bit processors
running at clock speeds of 4 and 8 MHz with a minimum of
128K or 256K of memory and enormous disk storage capaci
ties on cheap hard disks. The question then became, Can the
software keep up with hardware developments?

While some machine language programs like Visicalc were
state-of-the art on the first personal computers, owners of the
new PCs began to expect large, full-featured programs like Lo
tus' 1-2-3. Just as these programs were much more powerful
than their predecessors, so too were they larger and more dif
ficult to create. No longer could a single programmer sit down
alone and expect to create a state-of-the art program in assem
bly language. The common pattern for developing this sophis
ticated type of software was to have a number of programmers
working on different parts of a program. Because of the size
and complexity of the programs, and the number of program
mers involved, assembly language became less and less a via
ble alternative for the development of commercial programs.

As a result, more microcomputer programmers have
turned to C as the development language of choice. C has a
number of features that make it particularly well suited for
developing the kind of large, complex commercial programs
that PC owners expect. As with most high-level languages,
developing and maintaining C programs is easier than writing
them in assembly language. Since C is not as sophisticated or
complex as many other high-level languages, however, it pro
duces relatively compact programs that execute fairly quickly.
And, because C has fewer restrictions than other high-level
languages, it's possible to program very close to the hardware
level where necessary. Programs written in C interact well
with machine language programs, which makes it possible to
write speed-critical portions of a program in assembly language.

A Compiled Language
C is a compiled language that produces stand-alone machine
language programs, rather than the semi-interpreted pseudo
code that some other high-level compiled languages produce.
Not only do such programs tend to run more quickly, but they
also may be sold more freely, since there usually is no need
for the developer to license a "runtime package" that is

250

_

_

_

C Programming

needed to execute the program. In fact, some C compilers pro
duce actual assembly language source code, which is then as
sembled as handwritten programs would be. Programmers can
fine-tune this source code to produce the best performance.

Since C was developed for writing operating system pro
grams, it stands to reason that one of C's features is the degree
to which it allows programmers to maximize the performance

— of a program. Because operating system programs control all
of the computer's operations, the overall performance of a
computer depends on the performance of its operating system.
The proof of the excellent performance of C programs can be
found in the ST's own GEM operating system, which was de
veloped largely in C.

The Power of a Structured Language
Besides good performance, C offers a number of other features
that make it attractive for program development. It is a struc
tured language, which encourages programmers to develop
large programs based on a number of small, general subpro
grams. There are many advantages to this type of program
ming. First, programmers are able to narrow their scope, so
they have to work with a relatively small amount of code at a
time. Second, programmers can develop "libraries" of func
tions, which are usable in other programs. For example, if a
programmer finds that the same type of data entry screens are
often used in programs, he or she might write a general func
tion to set up such screens and include this function in all pro
grams, thus sparing duplication of effort. So, while C has a
very small set of built-in functions, its ability to include librar
ies of C or assembly language functions makes it, in effect,
highly extensible. It enables programmers to write any new
"commands" that they may want, and they can then use these
new commands as if they were part of C. In fact, it's possible
to assemble a number of these functions into a new "lan
guage" that provides commands to perform highly specialized
tasks. Many commercial vendors offer C extension packages
that provide complete libraries of database functions, telecom
munications functions, graphics functions, and the like. You
can buy the skeleton of a working program and add your own
user interface rather than having to develop the whole thing
from scratch.

251

CHAPTER SIX

Portability of C
Not only can the C functions that you create be used in pro
grams other than the one for which they were originally cre
ated, but frequently they can be used on other computers as
well. That is because C is a fairly portable language. Although
no absolute standard has been defined for the language, in
practice, most implementations are quite compatible with one
another. Almost all adhere to the basic definition of the lan
guage laid down in the Kernighan and Ritchie book. And
many implementations have standardized on the extensions
added to the language by the various official UNIX releases.
The only area where there are major hardware-related differ
ences is in input/output operations, particularly in the graph
ics environment. Obviously, the portions of programs dealing
with icons, drop-down menus, and the like, will not easily be
transported from the ST to other computers (unless they hap
pen to run the GEM operating system). But as long as these
functions are isolated in their own subprograms, the amount
of hardware-specific translation work that must be done to get
the program running on another machine can be kept to a
minimum.

Writing C Programs
Some BASIC programmers are intimidated by C's image as a
difficult language to master. Yet once you get used to its dis
tinctive syntax and style, it's possible to begin writing C pro
grams in just a short time. Perhaps the best way to demonstrate
that C isn't so mysterious is to show a C program. We'll look
at two program listings, one in C and one in BASIC. Each pro
duces a list of the prime numbers from 2 to 50. If your math
needs a refresher, primes are numbers that are not evenly di
visible by any number. The list that is produced looks like
this:

2

3

5

7

11

47

252

C Programming

First, here's the C language version:
/* Sieve.c —Finds the prime numbers from 2 to SIZE */

#include <stdio.h>

main()

{
int num, x, count; /* declare & initialize variables */
#define SIZE 50

char flags[SIZE + l];
num = 2;

for (x = num; x <= SIZE; x = x+1)
flags[x]=l; /* set all flags */

while (num <SIZE/2)
{

for (x = 2*num; x <= SIZE; x = x+num)
flags[x] = 0; /* eliminate multiples */

num = num +1;
}
for (x = 2; x <= SIZE; x = x+1)

if (flags[x])
printf("%2d \n",x); /* print the primes */

}

Now, here is the same program written in ST BASIC:
100 REM Sieve.bas—Finds the primes between 2 and size
110'

120 DEFINT a-z 'declare and initialize variables
130 size = 50

140 DIM flags(size-fl)
150 num = 2

160'

170 FOR x = num TO size
180 flags(x) = 1 'set all flags
190 NEXT

200'

210 WHILE (num < size/2)
220 FOR x = 2*num TO size STEP num

230 flags(x)=0 ' eliminate all multiples
240 NEXT x

250 num = num+1

260 WEND

270'

280 FOR x=2 TO size

280 IF flags(x) THEN PRINT USING "##";x 'print the primes
300 NEXT x

253

CHAPTER SIX

BASIC and C

As you can see, the two programs are not all that different.
Let's compare them statement by statement. To begin with,
the C program has no line numbers. A single statement can
take up one line or many lines. The compiler doesn't get con
fused, since each statement in C ends with a semicolon, and
multiple statements that are grouped together in a single block
are enclosed in braces—{ }. The arrangement of statements on
the line is to a large extent left up to the individual program
mer. The programmer then can do whatever is necessary to
make the program neat and readable. As you can see, the var
ious parts of the C program are grouped together in a way
that makes them visually distinct.

The first statement, which starts with the characters /*, is
a remark. It corresponds to the REM statement in line 100 of
the BASIC program. In C, the remark can extend over many
lines until the closing */ characters. It's especially important to
include many remarks in a C program, since the language is
compact and each statement can do a lot of work. Without
comments, you may find it difficult to remember what a line
of C code actually does.

Next comes the line main(). This marks the start of a func
tion named main. All C programs are composed of functions,
which are small subprograms. Every C program has at least
one function called main, and this is where program execution
begins. The parentheses after main show that it is a function.
Some functions use values, called parameters, that are passed
to them by other functions; these functions will contain the
names of the variables listed within the parentheses. But since
main() is the first function to execute, other functions can't
pass it any values. Its parentheses are empty.

After the name of the function is a brace—{. Braces are
plentiful in C programs. They mark the beginning and end of
function definitions and the beginning and end of compound
statements within a function. As you see here, most program
mers use different levels of indention to help visually match
up left braces with their corresponding right braces.

Three statements come after the initial brace:

int num, x, count; /* declare & initialize variables */
#define SIZE 50
char flags[SIZE+l];

254

_

C Programming

The first is roughly equivalent to the DEFINT statement in
line 120 of the BASIC program. It declares that variables
named num, x, and count are integers. To tell the truth,
though, the BASIC line is more for instruction than for func-
tion. BASIC is not a strongly typed language: Most of the
time, you don't have to worry whether a simple numeric vari
able should be stored internally as an integer or as a floating-
point value (although most BASICs give you the option to
specify which will be used when necessary). Unless you spe
cifically declare the storage type you want used with one of
the DEF statements, BASIC assumes a default type and goes
its merry way. With C, however, declaration statements are
not optional. You must take responsibility for deciding how
much storage space is allotted for each variable. You can even
specify where exactly in memory information is stored. So,
whenever you want to use a variable in C, you must declare
ahead of time whether it will be stored as a long or short inte
ger, single- or double-precision floating point, or as text char
acters. These declarations are usually made in a block at the
top of the function definition.

Of course, BASIC does require that you declare the size of
a subscripted variable array. In this respect, the DIM statement
in line 140 of the BASIC program is very similar to the C dec
laration of the flags array.

The middle statement in this trio of C lines is somewhat
more complicated to explain. Where the BASIC program as
signs the value 50 to a variable called size, the C program uses
the #define statement to define a macro called SIZE as the
number 50. The C language possesses a facility known as the
preprocessor. This allows programmers to define terms which
will be replaced by the specified terms when they are found in
the program. In these two programs, we use the terms size and
SIZE to refer to the size of the group of numbers in which we
are looking for primes. This makes it easy to change the size
of the group; we need only to change the value of the size
term. In BASIC, the size value must be assigned to a variable,
even though its value stays constant; in BASIC, that's the only
symbolic way to represent a number. But in C, we can use the
#define operator to define a symbolic value. All this means is
from that point on in the program, every time the compiler
sees the word SIZE, it will substitute the number 50. We can
assign a symbolic meaning to SIZE, which makes the program

255

CHAPTER SIX

easier to read, without having to waste storage space in our
program by creating a variable for this constant value.

Differences in BASIC and C

When we compare the bodies of the two programs, we find
that there are only small differences. The first is that the form
of the for loop used by each language is somewhat different.
The BASIC format contains the starting condition of the loop,
the terminating condition, and the increment condition sepa
rated by the words TO and STEP. The increment condition
may be left out, in which case it is assumed that the loop vari
able will be increased by one each time through the loop. In
C, the three conditions are enclosed in parentheses and are
separated by semicolons. Although, in this particular program,
each condition is related to the variable x, it is interesting to
note that in C, unlike BASIC, the three conditions do not all
have to relate to the same variable. We could declare a loop
that begins with setting the value of y to 0, and ends when z
is equal to 50.

The second difference is that BASIC uses the NEXT state

ment to mark the end of a FOR loop, while C expects the loop
to consist of either a single statement or of a compound state
ment enclosed in braces. This compound statement may be
composed of any number of lines. The same is true of the if
conditional statement. The compound if statement may stretch
over several lines, unlike BASIC, where IF must take up only
one line. Likewise, where BASIC uses the WEND statement to
define the end of the WHILE statement, C accomplishes the
same thing by enclosing the whole body of the WHILE state
ment within braces.

Another difference is the way in which the results are
printed. The C program uses a function called printfO. This is
not part of the language proper, but is part of the standard li
brary of I/O routines. It's an example of a function that takes
parameters. The text and variables that the function operates
upon appear within the parentheses that follow the function
name. The printf function performs roughly the same task as
BASIC'S PRINT USING statement. The % and d characters

specify that a decimal number is to be formatted. The number
2 specifies that the numbers are to be printed with digits
before the decimal place, but none after. BASIC'S PRINT
USING template ## does roughly the same thing. The C

256

C Programming

printfO function allows for multiple substitutions, while sepa-
— rate BASIC statements are required for each formatted column.

C's Special Features
The example C program should make it pretty clear that, once
you get past the formal requirements of function names,
braces, and declaration of variables, C is not as strange as you
might have thought. Of course, C is not just BASIC in another
guise. It has a number of powerful features that distinguish it
quite clearly from BASIC. But, thankfully, there are enough
similarities that a beginning programmer can produce working
code right away and then learn to take advantage of C's spe
cial features a few at a time.

For most BASIC programmers, C's added features will be
quite welcome. For example, C has a multitude of powerful
math and logic operators. The statement x + = num; may be
less recognizable than x = x + num; but over the course of a
long program, it makes for a lot less typing. In C, you can use
either form. There are a number of features in C that let you
pack a lot into one line. For example, you can make multiple
assignments using the = operator. The statement
a = b = c = d = 0;

is just fine in C. Assignments can be made to a value that is
the result of a function as well as to a constant value, as in the
statement

a = b = c = d = getcharO;

where getcharO reads in the character from the keyboard. You
can even make assignments at the same time you make com
parisons. For example, the statement
if ((a = b) < c) DoThis();

first assigns the value of b to a; then it compares that value to
c and calls the function DoThis if the new value of a is less

than that of c.

More Compact
Admittedly, the C program above was, to some extent, written
to look as much as possible like the BASIC program. Here is
another version that is a bit more C-like:

257

CHAPTER SIX

/* Sievel.c —Finds the prime numbers from 2 to SIZE */

#include <stdio.h>

#define SIZE 50

main()

{
int num = 2, x, count; /* declare & initialize variables */
char flags[SIZE + l];

for (x = num ;x <= SIZE; x++)
flags[x]=l; /* set all flags */

while (num++ <SIZE/2)
for (x = 2*num; x <= SIZE;x += num)

flags[x]=0; /* eliminate multiples */

for (x = 2; x<= SIZE; x++)
if (flags[x])

printf("%2d \n",x); /* print the primes */

}

We've taken several C shortcuts here. First, the variable
num is assigned a value in the line in which it is declared. As
stated earlier, you can assign a value to a variable just about
anywhere. Also, we use the + = operator. Finally, we use the
+ + increment operator in three places. With this operator, we
can say x++ instead of x=x+l. Note also that the + + oper
ator can be used to increment one of the variables being com
pared as part of the condition of the while statement. The + +
after the variable num means that after the comparison has
been made to determine whether the while loop should con
tinue, the value of the variable is increased by one. If the + +
came before the variable name, its value would be increased
before the comparison was made.

The C Environment

One aspect of C programming that BASIC programmers will
need to adjust to is the C program development environment.
The process of writing a C program is very different from that
of writing a BASIC program. C is a compiled language, which
means that you must first create a text file containing the pro
gram instruction. This is called the source code. Since C does
not come with a built-in text editor as BASIC does, you must
use a separate word processor or text editor program to create
the source. Next, you must run the compiler program, which
takes the program instructions from the source code file and

258

_

C Programming

creates a new file containing a series of machine code instruc
tions called the object code. Sometimes the compiler is broken
down into two or three programs, each of which must be run
in order to perform some intermediate step in the compilation
process. Even then, the job is not complete. After the source
code is compiled into object code, you must run a linker pro
gram. It combines your program with the code for the library

~~~ functions that the program uses and thus creates an executable
file (one whose name has the extender .PRG, .TOS, or TTP).
Errors may occur at any phase in the process because of faulty
coding or even simple typographical errors. When they hap
pen, you must generally start over, load your text editor, and
check the source code for errors.

Streamlining C
Programming in C is obviously more complicated than typing
in BASIC program lines and then entering RUN. There are a
couple of important ways, however, in which you can auto
mate and streamline the process. The first is by using a pro
gram that gives you batch processing capabilities. These
programs are generically known as DOS shells, and a number
of software manufacturers sell inexpensive versions.

DOS shells provide the command-line type interface of
operating systems like MS-DOS and CP/M. Instead of clicking
on the icon of the program you want to run, you type a com
mand like "Compile myfile". The batch file processing ca
pabilities of these DOS shell programs enable you to create a
text file that contains the commands necessary to run the com
piler and linker programs in the order needed to create an exe
cutable program. When you run the batch file, all the steps for
turning your source code into a running program are taken
care of, automatically. You're then free from having to per
form the many intermediate steps each time you want to com
pile your program.

A more sophisticated program-creation utility called a
"Make" program can also be used to accomplish the same
thing. Some compilers, like the Megamax C compiler, come
with program-generation facilities built in. These make the
process of moving from the edit phase to the compile-and-link
phase (and back again) almost completely automatic.

The second way to reduce the time needed to create a C
program is by using a RAM disk. A RAM disk program sets

259



CHAPTER SIX

aside an area of the computer's memory for use as the elec
tronic equivalent of a disk drive. You can use this device, just
like its physical equivalent, to load and save programs and
data files, but it provides nearly instantaneous transfer of data.
Using a RAM disk is almost like having the editor, compiler,
linker, and source code all resident in memory at once, instead
of your having to load them in from disk each time you need
them. This cuts down the time wasted between each stage of
the process to the point where you can go from source code to
a working program in just a few seconds. With half a mega
byte or a megabyte of memory to work with, the ST comput
ers give you lots of room for big RAM disks. There are plenty
of RAM disk programs available, both from commercial ven
dors and from sources in the public domain.

The C programming language is far too large a subject to
allow us to explore every detail in this introduction. But as
with any big task, you can learn C one step at a time. Once
you try C programming, you may discover that taking full ad
vantage of the power of your Atari ST need not be as difficult
as you once may have thought.

260



Moving Objects in C
Charles Brannon

Two C programs demonstrate that sprite simulation
and animation on the ST is possible without using

the advanced techniques of machine language.

Animation is an essential part of a computer's capabilities. Of
course, we couldn't play games on a machine without mov
able objects, but the very nature of the ST's visual operating
system depends upon the ability to move objects (the cursor,
icons, sliders, windows) around the screen.

Movable objects are often implemented with special sprite
display circuitry. However, the ST video hardware doesn't
have any provision for sprites. On machines like the Atari
400/800/XL/XE, Commodore 64, and Amiga, sprites greatly
simplify game programming (or any programming that em
ploys movable objects). Sprites exist on a separate video plane,
so they don't interfere with an underlying background display.
Since the video hardware merges the sprites with the video at
hardware speed, sprites can be moved quickly without tying
up the microprocessor. On the other hand, the 68000 has
power to spare; it can easily simulate sprites by virtue of its
high-speed memory-moving capabilities.

ST Sprites?
The best way to simulate sprites on the ST is to write your
own routines in machine language. Yet our two example pro
grams are written entirely in C, using only documented op
erating system routines. The core of the animation is based on
a function called vrO—cpyfm() (for VDI Raster Opaque Copy
Form), which can be found in the Virtual Device Interface
(VDI) library. It's used to copy a rectangular block from one
area of memory to another; it can be used to copy one part of
the screen to another or to copy a shape from a memory
buffer to any part of the screen. GEM uses this function to dis
play icons and other screen objects.

These memory buffers are supported through a C lan
guage structure called a memory form definition block, or MFDB.
The contents of an MFDB include a pointer to the memory

261



CHAPTER SIX

containing the shape data; variables specifying the width,
height, and number of bit planes (range of allowable colors) in
the shape; as well as a flag specifying whether the format of
the shape data conforms to the GEM standard or is machine-
specific, using the same memory organization expected by the
video hardware.

Here's how C language defines an MFDB structure:
struct MFDB

{
char *fd_addr; /* address of raster */
int fd_w; /* width in pixels */
int fd_h; /* height in rows */
int fd_wdwidth; /* width in words */
int fd_stand; /* 0 for ST, 1 for standard */
int fd_nplanes; /* how many planes */
int fd_rl, fd_r2, fd_r3; /* reserved */

};

Inside the MFDB

The first entry is a 32-bit (long word) pointer to an area of
memory holding either the source image or destination area. A
value of zero here is special: It tells the ST to use screen mem
ory as the destination. You could use the actual screen mem
ory address returned by Physbase(), but this technique is more
portable (a value of zero on IBM GEM would point to the IBM
display memory). Usually, this is a pointer to an integer or
character array holding the screen memory image of the shape.

The next two entries, fd—W and fd—h, hold the width and
height of the image in pixels. The next item, fd—wdwidth, spec
ifies the number of words needed to hold one row of the
shape. You always round up to the nearest word; a width of
23 would round up to two words (32 bits), whereas a shape
16 bits wide would fit neatly in one word. This routine is most
efficient when there are no fringe words outside the width of
the image. For example, the shape with a width of 23 pixels
has an unused fringe of 9 bits. This slows down the operation,
since these unused bits have to be ignored during the screen
merge. Of course, even if you use only 23 pixels, you have to
pad out your data to a full two words for each row of the shape.

There are two standards for storing shape data, selected
through fd—stand. One format is compatible with other GEM-
based computers, and the other is specific to the screen mem-

262

• .



C Programming

ory layout of the host computer (in this case, the ST). Our ex
ample programs use the standard color format, but you must
use the system-specific format if you use this function in low-
res (320 X 200) mode. The standard format has a value of 1,
and 0 is used for the system-specific mode.

In monochrome mode, each word in screen memory holds
the value of 16 pixels. Each bit in the word controls the cor
responding bit on the screen, with the leftmost (most signifi
cant) bit controlling the first pixel on the screen. A value of 0
is white, and 1 is black (the opposite of most other machines
in monochrome mode). Both the system-specific and standard
modes use this same layout for monochrome mode.

In medium resolution, though, you need two bits per
pixel to specify up to four colors per pixel (00, 01, 10, 11).
GEM gets this information from two separate areas of mem
ory. In standard mode, the left-bits of the pixel value come
from one area of memory, and the right-bits from another. For
example, refer to Figure 1 to see how the shape we use in Pro
gram 1 is composed.

Figure 1. Bit Planes

1 i i i 1 1 1 1 1 1 1 1 1 1 1 1

i 1 1 i 0 0 0 0 0 0 0 0 1 1 1 1

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i i i 1 1 1 1 1 1 1 1 1 1 1 1 1

bit plane zero

+
! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1

bit plane one

1 1 11 1 1 11 11 11 11 11 11 11 11 1 1 1 1 11 1 1 1 1

18 10 10 10 00 00 00 00 00 00 00 08 ie 10 10 10

01 81 01 01 00 00 00 00 00 00 00 00 01 01 01 01

11 1 1 11 1 1 1 1 1 1 11 11 1 1 11 11 11 1 1 11 11 11

pixel values

The ST-specific format for medium resolution puts each
pair of words next to each other in memory. The left-bits
come from the first word, and the right-bits from the second.
The value of the first pixel on the screen is formed by pairing
the leftmost bit of word 0 with the leftmost bit of word 1. This
is illustrated in Figure 2.

263



CHAPTER SIX

Figure 2. Word Pairs

one continuous section of memory

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 u 11 1 1 11 1 1 1 1 11 1 1 1 1 1 1 t\ 11 1 1 1 1 1 1

10 10 10 10 00 00 00 00 00 00 00 00 10 10 16 10

01 01 01 01 00 00 00 00 00 00 00 00 01 01 01 01

1 1 11 1 1 1 1 1 1 11 11 11 11 11 11 1 1 1 1 11 11 11

each pair of words merged for each line

We've already mentioned that you must use the ST-
specific format to animate in low-res. Here we have four con
secutive words that together define 16 pixels. The leftmost bit
from each of the four words is concatenated to give a four-bit
pixel value in the range 0-15.

Image Conversion
If you use the standard form definition mode, you must con
vert it to ST-specific format before you use the copy raster
function. Fortunately, there is a function provided that can
convert back and forth from either format. It has this form:

vr_trnfm(work_handle,&srcfdb,&srcfdb);

Here, we are transforming the contents of the MFDB
called srcfdb. The vr—trnfm() function looks at the fd—stand
value to see what kind of conversion it should do. The func
tion converts the data and toggles fd—stand.

In deciphering the shape data, the copy raster function
looks at the word width to figure out how many words to
fetch per line, at the pixel width to see how many bits of the
words should be used, and at the height to see when to stop
drawing. The fd—planes value tells the system how many
planes of data there are (in standard mode) or how many con
secutive words are needed to form 16 pixels.

You could use just one MFDB to control many shapes, but
it's most convenient to use one MFDB structure for every
shape, since different shapes have different widths and
heights. In Program 1 we use two: one for the source image (a
colored box) and one for the destination (the screen). When

264



you use zero for the fd—addr, you can ignore all the other val-
I I ues in the structure.

Using Vro_cpyfm()
— Before you can do anything, you must define the MFDB struc

ture within your program, as shown in Program 1.
The copy raster function looks like this:

vro_cpyfm(work_handle,mode,pxyarray,&shape,&destfdb);

You should be familiar with work—handle, the same value
needed by all the VDI functions, the value returned by the
V—opnvwk() (open virtual workstation) call. Pxyarray holds the
upper left and lower right coordinates of the source and des
tination rectangles. The copy raster function copies from
(xl,yl)-(x2,y2) in the source image to (x3,y3)-(x4,y4) in the des
tination area. These coordinates are stored in this order in the
array specified by pxyarray. The next two entries are the ad
dresses of the MFDB structure for the source and destination
rasters.

The mode value is one of the following values:

XOR 6

REPLACE 3

ERASE 4

TRANS 7

REVTRANS 13

This specifies the logical operation used to combine the
source and destination bitmaps. REPLACE is the most straight
forward: It completely overwrites the destination rectangle
with the source image. Any 0-bits in the source image over
write the background of the display. In ERASE mode, the
areas of the screen overlapped by 1-bits in the display are
erased (turned to zero). Areas covered by zeros in the source
image are left untouched. In TRANSparent mode, only the 1-
bits in the source image overwrite the destination image; areas
overlapped by zeros are left alone. Reverse transparent mode
inverts the ones and zeros in the source image before it
merges the data as in transparent mode (the actual source data
is unaffected).

The most interesting value, XOR, toggles the state of 1-
bits in the display overlayed by 1-bits in the source image.
You can use it to draw a shape on the screen; then reverse it

C Programming

265



CHAPTER SIX

to remove the shape—without erasing the background in the
process (we'll speak more about this magic later).

Put() Your Shapes
In my programs I simplify all this with a function called put(),
which is similar to Microsoft Advanced BASIC'S PUT func
tion. It assumes you've defined the destination MFDB for
the screen as destfdb (see Program 1) and have initialized
destfdb.fd—addr=0. Along with the mode, you just pass to
put() the address of the source image MFDB, followed by the
x and y position where you'd like the shape to appear on the
display. I've defined the four modes in my program as
fdb-KOR, fdb-REPLACE, fdb-TRANS, fdb-REVTRANS, so you
can use these constants instead of numeric values. A call to
draw a shape at position (20,30) on the screen, using the RE
PLACE mode, might look like this:
put(&shape,20,30,fdb_REPLACE)

You can use two methods to animate an object without
erasing the background graphics. The first method preserves
and restores the background as the shape passes over it.
Before you draw a shape, save the rectangular area that would
be overlapped by the shape in a buffer. When you move the
shape to the next position, you then restore the overwritten
area from the buffer.

This works fine for one shape or for shapes that don't
pass through each other. But imagine what happens when
these kinds of shapes do pass over each other. Each shape first
saves the image of the shape it overlaps. After the shapes pass
through each other, they have both restored the area they
overlapped, leaving behind images of the shapes.

The other method relies on a special binary mathematical
operation known as exclusive OR (XOR). The binary truth ta
ble for XOR is (0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR
1= 0). If you know something about binary math, you can see
that XOR works much like binary OR, or even like normal ad
dition, except that when you XOR two ones together you get a
zero. (Interestingly, binary addition yields the same result, but
with a carry of one that must be added to the bit to the left.)
When you copy a shape to the screen, you can specify the
way the bits in the shape are combined with the bits in the
background image.

266



A Magic Stamp
Let's use a simple example. On a monochrome ST system,
white is represented by 0 and black by 1 (the opposite of most
computers—the ST monitor displays its screen in reverse to
simplify programming). If you XOR a black shape (1) against a
white background (0), you will see the shape 0 XOR 1 as 1
(black). On the other hand, if screen memory is filled with l's
(black), and you attempt to XOR a shape made of 0's (white),
you will see nothing, since 0 XOR 1 is 1 (black).

But notice what happens if you put a black shape against
a white background and then copy the black shape back on
top of itself. The first operation is 1 XOR 0= 1. When you
XOR the black shape on top of itself, though, the operation is
1 XOR 1= 0. The shape has removed itself. This method
works no matter what the background data is; XOR is a re
versible operation.

One way to think of XOR animation is that you're using a
rubber stamp inked with a magic negative ink—an ink that re
verses the color of whatever it touches. Naturally, stamping
twice is the same as not stamping a shape at all. If you're
careful, you can stamp two different shapes so that they over
lap. Then, when you restamp those shapes, the background
will be completely restored. The only problem is that the area
where the shapes overlap is reversed. The l's in the shapes
XOR together in the overlapped area to give white.

It's a little more complicated with a color display, since
the XOR is performed on the binary screen data. A binary pat
tern of 11 XORed with a binary pattern of 10 gives a result of
01. Two different colors, when overlapped, give a third color.
Despite this color variation, though, using XOR is fast and ef
fective as a technique for sprite simulation. When shapes are
moving quickly, you rarely notice the strange overlap effects.

The XOR method of animation is fast and flexible. When
we move an object, we first erase any previous image of the
shape, then redraw it at the new position. (Notice that this is
the opposite of moving the shape to the new position and
then erasing the old image, since erasing the old image could
remove part of the object at its new position. XOR lets us per
form this erasure without cutting holes in the background
display.

267

u

u

U

C Programming



CHAPTER SIX

Let's See Some Action

At this point, you're probably anxious to see all this really
work. Type in Program 1, and compile and link it. It was writ
ten with the Megamax Ccompiler, but it should work with any
other C compiler with the proper library and header files.
When you run it, you'll see a rectangle smoothly moving and
bouncing off the edges of the screen. Press the mouse button
to exit the program.

The program is controlled by the main() function. We first
define the variables we'll be using. The variables x, y, prev-X,
and prev—y hold the horizontal and vertical position of the
shape. The variables xacc and yacc store the acceleration of the
shape, expressed in terms of displacements. Xacc and yacc are
added to x and y each time to bump the shape to its next loca
tion. After we initialize the program, we used init—fdb to cre
ate the source MFDB (srcfdb). The border off of which we'll
bounce is defined by the width and height of the screen, ad
justed by the width and height of the shape.

The values of xacc and yacc are set to 1, the slowest
speed. Try different values here and recompile to see how fast
you can get these to go.

Before we enter the main loop, the shape is put() at its
original position. The animation loop first erases the previous
image before updating the shape at its new location, so we
have to give it a previous image to erase. (If we didn't, the
first put() would draw an image instead of erasing, leaving be
hind an image of the rectangle).

Within the loop we save the current position of the shape,
then adjust the position according to xacc and yacc. If these
positions fall beyond the legitimate borders of the screen, the
acceleration is reversed by negating it, and the x and y posi
tions are adjusted back to their previous values.

Vertical Synchronization
The VsyncO call makes sure the video beam is at the top of
the screen before we erase the shape. This helps minimize
flicker, since the shape is usually erased only within the first
few lines of the display. We then draw the shape at its new
position.

Since VsyncO usually returns only somewhere within
1/60 second later, it can be too slow if you want really fast

268



C Programming

motion or if you want to animate many shapes. Delete it and
recompile to see a real speed demon, albeit a flickery devil.

The loop continues until you click the mouse button,
monitored by the clicked() function.

This program is expanded upon in Program 2, where we
animate many shapes. In fact, you can change the constant
NUMSPRITES to move as many shapes as you like. Of course,
the more shapes you move, the slower they all move, but you
may be surprised by how quickly they can go.

Program 2 is the core of an arcade-action game called
"AstroPanic!," published in the premiere issue of COMPUTEl's
Atari ST Disk & Magazine, proving that arcade-action games
are possible in C without resorting to machine language. The
best results, of course, are achieved by bypassing the operat
ing system and updating screen memory directly with machine
language, but that's a challenge for more ambitious program
mers. I think you'll find the method discussed here more than
adequate for a wide variety of applications.

269



O

P
ro

gr
am

1.
S

h
a

p
e

A
n

im
a

ti
o

n

/*
D

em
on

st
ra

te
sa

ni
m

at
io

n
w

ith
M

FD
B

s
*/

#
in

c
lu

d
e

<
d

e
fi

n
e
.h

>
#i

nc
lu

de
<

ge
m

de
fs

.h
>

#
in

c
lu

d
e

<
o

b
d

e
fs

.h
>

#
in

c
lu

d
e

<
o

s
b

in
d

.h
>

#
in

c
lu

d
e

<
s
td

io
.h

>

#d
ef

in
e

H
ID

E_
M

O
U

SE
gr

af
_m

ou
se

(M
_O

FF
,&

du
m

m
y)

#d
ef

in
e

SH
O

W
_M

O
U

SE
gr

af
_m

ou
se

(M
_O

N
,&

du
m

m
y)

/*
gl

ob
al

va
ri

ab
le

s
*

/

in
t

du
m

m
y;

in
t

w
or

k_
ha

nd
le

,c
on

tr
l[

12
],p

xy
ar

ra
y[

10
];

in
tin

tin
[1

28
],i

nt
ou

t[
12

8]
,p

ts
in

[1
28

],p
ts

ou
t[

12
8]

;
in

t
w

or
k_

in
[l

l]
,w

or
k_

ou
t[

57
];

st
ru

ct
m

y
_

fd
b

{
ch

ar
*f

d_
ad

dr
;

/*
ad

dr
es

s
of

ra
st

er
in

t
fd

_w
;

/*
w

id
th

in
pi

xe
ls

*
/

in
t

fd
_h

;
/*

he
ig

ht
in

ro
w

s
*

/
in

tf
d_

w
dw

id
th

;
/*

w
id

th
in

w
or

ds
*

/
in

tf
d_

st
an

d;
/*

0
fo

r
ST

,
1

fo
r

st
an

da
rd

*
/

in
t

fd
_n

pl
an

es
;

/*
ho

w
m

an
y

pl
an

es
*

/
in

t
fd

_r
l,

fd
__

r2
,

fd
_r

3;
/*

re
se

rv
ed

*
/

}
sr

cf
db

,d
es

tf
db

;

#
d

e
fi

n
e

fd
b

_
X

O
R

6

#
d

e
fi

n
e

fd
b

_
R

E
P

L
A

C
E

3
#

d
e
fi

n
e

fd
b

_
E

R
A

S
E

4

I
I

I

7

i
i

I

n > H M I—
<

X



I
I

I
I

#
d

e
fi

n
e

fd
b

_
T

R
A

N
S

7

#
d

e
fi

n
e

fd
b

_
R

E
V

T
R

A
N

S
1

3

m
a
in

()

{
in

t
i,

x,
y,

xa
cc

,y
ac

c,
pr

ev
_x

,p
re

v_
y,

xb
or

de
r,

yb
or

de
r;

ap
p

l_
in

it
()

;
in

it
_

w
o

rk
st

at
io

n
()

;
H

ID
E

_
M

O
U

S
E

;
v

_
cl

rw
k

(w
o

rk
_

h
an

d
le

);
v

sw
r_

m
o

d
e(

w
o

rk
_

h
an

d
le

,1
);

v
st

_
co

lo
r(

w
o

rk
_

h
an

d
le

,1
);

in
it

_
fd

b
()

;
xb

or
de

r=
w

or
k_

ou
t[

0]
—

sr
cf

db
.f

d
_

w
;

yb
or

de
r=

w
o

rk
_

o
u

t[
1]

—
sr

cf
db

.f
d

_
h

;
x

ac
c=

l;
ya

cc
=

l;
x

=
0;

y
=

0;
p

u
t

(&
sr

cf
db

,x
,y

,f
db

_X
O

R
);

d
o {

p
re

v
_

x
=

x
;

p
re

v
_

y
=

y
;

/*
sa

ve
ol

d
po

si
ti

on
*

/
x

+
=

xa
cc

;
y

+
=

ya
cc

;
/*

up
da

te
to

ne
xt

po
si

ti
on

*
/

/*
ch

ec
k

fo
r

b
o

u
n

ce
*

/
if

(x
<

0
Ix

>
x

b
o

rd
er

)
x

ac
c=

—
xa

cc
,

x
+

=
xa

cc
;

if
(y

<
0

1y
>

yb
or

de
r)

y
ac

c=
—

ya
cc

,y
+

=
ya

cc
;

V
sy

nc
()

;
/*

er
as

e
on

ly
n

ea
r

of
f-

sc
re

en
*

/
pu

t(
&

sr
cf

db
,p

re
v_

x,
pr

ev
_y

,f
db

_X
O

R
);

/*
er

as
e

pr
ev

io
us

*
/

pu
t(

&
sr

cf
db

,x
,y

,f
db

_X
O

R
);

/*
d

ra
w

ne
xt

*
/

}
w

hi
le

(!
cl

ic
ke

d(
))

;
T

er
m

in
at

e(
O

);

I
I

(
I

(

n o O
Q >
-( D 3 3 5" (J
O



T
er

m
in

at
e(

fl
ag

)
in

t
fl

ag
;

{
S

H
O

W
_

M
O

U
S

E
;

v
_

cl
sv

w
k

(w
o

rk
_

h
an

d
le

);
ap

pl
_e

xi
t(

);
ex

it(
fl

ag
);

} /*
w

ai
ts

fo
r

a
pe

ri
od

of
tim

e
*

/
de

la
y(

pe
ri

od
)

in
t

pe
ri

od
;

n

ev
nt

_t
im

er
(p

er
io

d,
0)

;
* T

l

/*
re

tu
rn

s
TR

UE
if

m
ou

se
bu

tto
n

cli
ck

ed
,e

lse
FA

LS
E

*/
^

in
t

cl
ic

ke
d(

)
<?$ C

O
in

t
p

st
at

u
s;

K
vq

__
m

ou
se

(w
or

k_
ha

nd
le

,&
ps

ta
tu

s,
&

du
m

m
y,

&
du

m
m

y)
;

re
tu

rn
(p

st
at

u
s

!=
0)

;
} w

ai
t_

fo
r_

cl
ic

k
()

{
ev

nt
_b

ut
to

n(
l,

0x
00

01
,0

x0
00

1
,&

du
m

m
y,

&
du

m
m

y,
&

du
m

m
y,

&
du

m
m

y)
;

pu
t(

sh
ap

e,
xp

os
,y

po
s,

m
od

e)
st

ru
ct

m
y

_
fd

b
*s

ha
pe

;
in

t
xp

os
,y

po
s,

m
od

e;

1
1

1
I

I
'

!
1



h
o

v
j

I
I

I
I

px
ya

rr
ay

[0
]=

0;
px

ya
rr

ay
[1

]=
0;

px
ya

rr
ay

[2
]=

sh
ap

e-
>

fd
_w

—
1;

px
ya

rr
ay

[3
]=

sh
ap

e-
>

fd
_h

—
1;

px
ya

rr
ay

[4
]=

xp
os

;
px

ya
rr

ay
[5

]=
yp

os
;

px
ya

rr
ay

[6
]=

xp
os

+
px

ya
rr

ay
[2

];
px

ya
rr

ay
[7

]
=

yp
os

+
px

ya
rr

ay
[3

];
vr

o_
cp

yf
m

(w
or

k_
ha

nd
le

,m
od

e,
px

ya
rr

ay
,s

ha
pe

,&
de

st
fd

b)
;

} in
it

_
w

o
rk

st
at

io
n

()

{
in

t
i;

w
or

k_
ha

nd
le

=
gr

af
_h

an
dl

e(
&

du
m

m
y,

&
du

m
m

y,
&

du
m

m
y,

&
du

m
m

y)
;

fo
r

(i
=

0
;i

<
1

0
;w

o
rk

_
in

[i
+

+
]=

l)
;

w
or

k_
in

[1
0]

=
2;

v_
op

nv
w

k(
w

or
k_

in
,&

w
or

k_
ha

nd
le

,w
or

k_
ou

t)
;

} /*
cr

ea
te

a
si

m
pl

e
re

ct
an

gu
la

r
sh

ap
e

*
/

in
it

_
fd

b
()

{
st

at
ic

in
t

im
ag

e[
]=

{0
xf

ff
f,

0x
f0

0f
,0

x0
00

0,
0x

ff
ff

,
O

xf
ff

f,
0x

00
00

,0
xf

00
f,

0x
ff

ff
};

d
es

tf
d

b
.f

d
_

ad
d

r=
0

;
/*

sc
re

en
m

em
o

ry
*

/
sr

cf
d

b
.f

d
_

ad
d

r=
(c

ha
r

*)
im

ag
e;

/*
ra

st
er

m
em

o
ry

*
/

sr
cf

d
b

.f
d

_
w

=
1

6
;

/*
w

id
th

in
pi

xe
ls

*
/

sr
cf

db
.f

d_
h

=
4;

/*
he

ig
ht

in
ro

w
s

*
/

sr
cf

db
.f

d_
w

dw
id

th
=

l;
/*

w
id

th
in

w
or

ds
*/

sr
cf

d
b

.f
d

_
st

an
d

=
l;

/*
st

an
d

ar
d

FD
B

*
/

/*
ch

an
ge

nu
m

be
r

of
pl

an
es

to
1

fo
r

m
on

oc
hr

om
e

*
/

sr
cf

db
.f

d_
np

la
ne

s=
2;

/*
tw

o
pl

an
es

*
/

I
I

{
I

(

n o 0
Q D 3 3 3
'

e
ra



V
I

/*
if

yo
u

co
m

pi
le

th
is

w
ith

a
m

on
oc

hr
om

e
sy

st
em

,
re

m
ov

e
ne

xt
lin

e
*

/
vr

_t
rn

fm
(w

or
k_

ha
nd

le
,&

sr
cf

db
,&

sr
cf

db
);

P
ro

g
ra

m
2.

M
u

lt
ip

le
S

h
ap

e
A

n
im

at
io

n

/*
D

em
on

st
ra

te
s

an
im

at
io

n
w

ith
m

ul
ti

pl
e

M
FD

B
s

*
/

#
in

c
lu

d
e

<
d

e
fi

n
e
.h

>

#i
nc

lu
de

<
g

em
d

ef
s.

h
>

#
in

c
lu

d
e

<
o

b
d

e
fs

.h
>

#
in

c
lu

d
e

<
o

s
b

in
d

.h
>

#
in

c
lu

d
e

<
s
td

io
.h

>

#d
ef

in
e

H
ID

E
_M

O
U

SE
gr

af
_m

ou
se

(M
_O

F
F

,&
du

m
m

y)
#d

ef
in

e
SH

O
W

_M
O

U
SE

gr
af

_m
ou

se
(M

_O
N

,&
du

m
m

y)
/*

gl
ob

al
va

ri
ab

le
s

*
/

in
t

du
m

m
y;

in
t

w
or

k_
ha

nd
le

,c
on

tr
l[

12
],

px
ya

rr
ay

[1
0]

;
in

ti
nt

in
[1

28
],

in
to

ut
[1

28
],

pt
si

n[
12

8]
,p

ts
ou

t[
12

8]
;

in
t

w
or

k_
in

[l
l]

,w
or

k_
ou

t[
57

];

st
ru

ct
m

y
_

fd
b

{
ch

ar
*f

d_
ad

dr
;

/*
ad

dr
es

s
of

ra
st

er
*

/
in

t
fd

_w
;

/*
w

id
th

in
pi

xe
ls

*
/

in
t

fd
_h

;
/*

he
ig

ht
in

ro
w

s
*

/
in

t
fd

_w
dw

id
th

;
/*

w
id

th
in

w
or

ds
*

/
in

t
fd

_s
ta

nd
;

/*
0

fo
r

ST
,1

fo
r

st
an

da
rd

*
/

I
]

)
)

n > T
l

H C
O X



(
(

I
I

i
I

I

in
t

fd
_n

pl
an

es
;

/*
h

o
w

m
an

y
pl

an
es

*
/

in
t

fd
_

rl
,

fd
_

r2
,

fd
_

r3
;

/*
re

se
rv

ed
*

/
}

sr
cf

db
,d

es
tf

db
;

#
d

e
fi

n
e

fd
b

_
X

O
R

6
#

d
e
fi

n
e

fd
b

_
R

E
P

L
A

C
E

3

#
d

e
fi

n
e

fd
b

_
E

R
A

S
E

4

#
d

e
fi

n
e

fd
b

_
T

R
A

N
S

7

#
d

e
fi

n
e

fd
b

_
R

E
V

T
R

A
N

S
1

3

#
d

e
fi

n
e

N
U

M
S

P
R

IT
E

S
8

#
d

ef
in

e
rn

d(
x)

(R
an

do
m

(
)%

(x
))

m
a
in

!
)

•-*

{
er

a
in

t
xb

or
de

r,
yb

or
de

r,
sp

ri
te

;
in

t
p

re
v

_
x

,p
re

v
_

y
;

in
tx

[N
U

M
S

P
R

IT
E

S
],

y[
N

U
M

S
P

R
IT

E
S

],
xa

cc
[N

U
M

S
P

R
IT

E
S

],
ya

cc
[N

U
M

S
P

R
IT

E
S

];
ap

pl
_i

ni
t(

);
in

it
_

w
o

rk
st

at
io

n
(

);
H

ID
E

_
M

O
U

S
E

;
v

_
cl

rw
k

(w
o

rk
_

h
an

d
le

);
in

it
_

fd
b

(
);

xb
or

de
r=

w
or

k_
ou

t[
0]

—
sr

ef
db

.f
d

_
w

—
1;

y
b

o
rd

er
=

w
o

rk
_

o
u

t[
1]

—
sr

ef
db

.f
d

_
h

—
1;

fo
r

(s
pr

it
e=

0;
sp

ri
te

<
N

U
M

S
P

R
IT

E
S

;s
pr

it
e

+
+

)
{

xa
cc

[s
pr

it
e]

=
0;

ya
cc

[s
pr

it
e]

=
0;

w
hi

le
(x

ac
c[

sp
ri

te
]=

=
0

Iy
ac

c[
sp

ri
te

]=
=

0
)

{
xa

cc
[s

pr
it

e]
=

4—
rn

d(
9)

;



v
i

O
N

} T
er

m
in

at
e(

fl
ag

)
in

t
fl

ag
;

{

d
o { }

ya
cc

[s
pr

it
e]

=
4

—
rn

d(
9)

;
} x[

sp
ri

te
]=

rn
d(

xb
or

de
r)

;
y[

sp
ri

te
]

=
rn

d(
yb

or
de

r)
;

p
u

t
(&

sr
cf

db
,x

[s
pr

it
e]

,y
[s

pr
it

e]
,f

db
_X

O
R

);

fo
r

(s
pr

it
e

=
0;

sp
ri

te
<

N
U

M
S

P
R

IT
E

S
;s

pr
it

e+
+

)

p
re

v
_

x
=

x
[s

p
ri

te
];

p
re

v
_

y
=

y[
sp

ri
te

];
x[

sp
ri

te
]+

=
xa

cc
[s

pr
it

e]
;

y
[s

pr
ite

]
+

=
ya

cc
[s

pr
it

e]
;

if
(x

[s
pr

it
e]

<
l

Ix
[s

pr
it

e]
>

xb
or

de
r)

xa
cc

[s
pr

it
e]

=
—

xa
cc

[s
pr

it
e]

,x
[s

pr
it

e]
=

p
re

v
_

x
;

if
(y

[s
pr

it
e]

<
l

Iy
[s

pr
it

e]
>

yb
or

de
r)

ya
cc

fs
pr

it
e]

=
—

ya
cc

[s
pr

it
e]

,y
[s

pr
it

e]
=

p
re

v
_

y
;

p
u

t
(&

sr
cf

db
,p

re
v_

x,
pr

ev
_y

,f
db

_X
O

R
);

p
u

t
(&

sr
cf

db
,x

[s
pr

it
e]

,y
[s

pr
it

e]
,f

db
_X

O
R

);
}

}
w

hi
le

(!
cl

ic
ke

d(
))

;
T

er
m

in
at

e(
O

);

S
H

O
W

_
M

O
U

S
E

;
v

_
cl

sv
w

k
(w

o
rk

_
h

an
d

le
);

ap
p

l_
ex

it
()

;

;

n x > H M C
O X



1
1

(
1

1

V
I

V
I

ex
it(

fl
ag

);
} /*

w
ai

ts
fo

r
a

pe
ri

od
of

ti
m

e
*

/
de

la
y(

pe
ri

od
)

in
t

pe
ri

od
;

{ } /*
re

tu
rn

s
T

R
U

E
if

m
o

u
se

b
u

tt
o

n
cl

ic
ke

d,
el

se
FA

L
SE

*
/

in
t

cl
ic

k
ed

()

{
in

t
ps

ta
tu

s;
vq

_m
ou

se
(w

or
k_

ha
nd

le
,&

ps
ta

tu
s,

&
du

m
m

y,
&

du
m

m
y)

;
re

tu
rn

(p
st

at
us

!=
0)

;
} w

ai
t_

fo
r_

cl
ic

k
()

{ } pu
t(

sh
ap

e,
xp

os
,y

po
s,

m
od

e)
st

ru
ct

m
y

_
fd

b
*s

ha
pe

;
in

t
xp

os
,y

po
s,

m
od

e;
{

px
ya

rr
ay

[0
]=

0;
p

x
y

ar
ra

y
[l

]=
0;

px
ya

rr
ay

[2
]

=
sh

ap
e-

>
fd

_
w

—
1;

px
ya

rr
ay

[3
]=

sh
ap

e-
>

fd
_

h
—

1;
px

ya
rr

ay
[4

]=
xp

os
;

px
ya

rr
ay

[5
]=

yp
os

;
px

ya
rr

ay
[6

]=
xp

os
+

px
ya

rr
ay

[2
];

px
ya

rr
ay

[7
]=

y
p

o
s

+
px

ya
rr

ay
[3

];

ev
nt

_t
im

er
(p

er
io

d,
0)

;

ev
nt

_b
ut

to
n(

l,
0x

00
01

,0
x0

00
1,

&
du

m
m

y,
&

du
m

m
y,

&
du

m
m

y,
&

du
m

m
y)

;

[
i
l
l

n *
a

>
i

o er
a

>
-i D 3 3 3
'

e
ra



k,
vr

o_
cp

yf
m

(w
or

k_
_h

an
dl

e,
m

od
e,

px
ya

rr
ay

,s
ha

pe
,&

de
st

fd
b)

;
N

}
0

0

in
it

_
w

o
rk

st
at

io
n

()
{

in
t

i;
w

or
k_

ha
nd

le
=

gr
af

_h
an

dl
e(

&
du

m
m

y,
&

du
m

m
y,

&
du

m
m

y,
&

du
m

m
y)

;
fo

r
(i

=
0;

i<
10

;w
or

k_
in

[i
+

+
]=

l)
;

w
or

k_
Jn

[1
0]

=
2;

v_
op

nv
w

k(
w

or
k_

in
,&

w
or

k_
ha

nd
le

,w
or

k_
ou

t)
;

/*
cr

ea
te

a
si

m
pl

e
re

ct
an

gu
la

r
sh

ap
e

*
/

in
it

_
fd

b
()

n

{
5

st
at

ic
in

ti
m

ag
e[

]=
{0

xf
fff

,0
xf

00
f,0

x0
00

0,
0x

fff
f,

>
0x

fff
f,0

x0
00

0,0
xf

00
f,0

xf
fff

};
^

d
es

tf
d

b
.f

d
_

ad
d

r=
0

;
/*

sc
re

en
m

em
or

y
*

/
M

sr
cf

db
.f

d_
ad

dr
=

(c
ha

r
*)

im
ag

e;
/*

ra
st

er
m

em
or

y
*

/
sr

cf
db

.f
d_

w
=

16
;

/*
w

id
th

in
pi

xe
ls

*
/

£Q
sr

cf
db

.f
d_

h
=

4;
/*

he
ig

ht
in

ro
w

s
*

/
X

sr
cf

db
.fd

_w
dw

id
th

=
l;

/*
w

id
th

in
w

or
ds

*/
sr

cf
db

.f
d_

st
an

d=
l;

/*
st

an
da

rd
FD

B
*

/
/*

ch
an

ge
nu

m
be

r
of

pl
an

es
to

1
fo

r
m

on
oc

hr
om

e
*

/
sr

cf
db

.f
d_

np
la

ne
s=

2;
/*

tw
o

pl
an

es
*

/
/*

if
yo

u
co

m
pi

le
th

is
w

ith
a

m
on

oc
hr

om
e

sy
st

em
,

re
m

ov
e

ne
xt

lin
e

*
/

vr
_t

rn
fm

(w
or

k_
ha

nd
le

,&
sr

cf
db

,&
sr

cf
db

);

)



HAPTER SEVEN

Pascal
rogramming



I !



_

_

A First Look at
Pascal Programming

Tony Roberts

When BASIC is not fast enough, or when you want
to create real GEM applications, Pascal might be
your solution. It's easier to create, maintain, and
debug than machine language. But because it's a

compiled language, it has greater speed than
BASIC can provide. Here's a brief look at how the

language developed and how it's structured.

Judging by the notices left on bulletin boards and information
services across the country, many Atari ST programmers who
are looking for an alternative to BASIC and Logo are turning
to Pascal in an effort to get the most out of their computers.

The Pascal alternative gives the faster execution that is
possible with a compiled language, and, in addition, the lan
guage's structure supplies an environment that's helpful and
comforting to many programmers. More importantly, Pascal
can provide programmers with efficient and convenient access
to GEM and its menus, windows, and dialog boxes.

BASIC is adequate for many types of programs, but when
a programmer wishes to create a real GEM application, BASIC
falls short. For such tasks, a programmer must turn to machine
language, C, or Pascal. Of the latter two—both high-level lan
guages—C produces faster, more efficient, and more compact
code, but it's more difficult to use.

Pascal's Beginnings
Pascal was born from a desire to give beginning programmers
an ideal learning environment. At least, ideal according to
Niklaus Wirth, Pascal's developer.

Wirth's philosophy is that programming is simply prob
lem solving. His method for solving a problem is to break the
problem down into its smallest parts and then to systemati
cally solve those small problems. The expected outcome of
this approach is that programmers who study Pascal will learn

281



CHAPTER SEVEN

good programming habits that can be carried forward no mat
ter what language they eventually may use.

Pascal came into being in the late 1960s and early 1970s,
years before personal computers were as ubiquitous as they
are now. Programming students of that day did not sit at the
keyboard learning by trial and error. They scratched out pro
grams on paper, checking and rechecking to eliminate errors,
before their programs were ever run.

When he created Pascal, Wirth hoped to produce a simple
teaching tool. He had no expectation that the language would
evolve into a successful development language. As a result,
the original Pascal was quite without frills. However, though
the original was sparse, Wirth wanted his language to be able
to run on any computer, so he made the language extensible.
That is, he made it possible to extend Pascal to accommodate
the specific demands of different systems. As interest in the
language grew over the years, this extensibility has made it
possible for programmers to add the frills and functions
needed to transform the teaching language into a language ca
pable of producing sophisticated business and applications
software.

Until recently, Pascal did not find much acceptance in
microcomputer circles, largely because of memory limitations.
The introduction of Borland's Turbo Pascal for IBM and CP/M
computers, however, has given Pascal a boost. Turbo provided
an easy-to-use programming environment that ran on the mi
crocomputers most commonly found in businesses. Millions of
programmers suddenly became aware of the power of Pascal
and found they could write applications for their workplaces
that ran faster than BASIC; at the same time programs were
easier to create, debug, and maintain than machine language.

Any programmer who has worked with Turbo Pascal, or
with any other implementation of the language, should have
little trouble programming TOS applications on the Atari ST
with a generic 68000 Pascal compiler. TOS applications, how
ever, are unable to control the ST's GEM interface, and so
they fail to satisfy the goal of the programmer who wants full
control over the machine. To be truly useful to ST program
mers, Pascal must be extended again, to provide easy access to
menus, windows, and dialogs. These extensions require a size
able addition to the original language and take time and study
to master, but the time spent seeking out a compiler that con-

282



Pascal Programming

tains the extensions and learning to use them is well worth
— the effort.

So, although Pascal has grown up and changed a bit over
the years, its underlying structure has stayed the same. Pascal

— remains a language of many rules, the theory being that if you
program by the rules, you will have fewer unexpected problems.

Pascal is a strongly typed language, which means that
variable use is rigidly controlled. An integer variable in Pascal
cannot freely intermix with a real variable as is possible in
BASIC. These strict guidelines help to reduce the possibility of
errors when the program is run by screening out incompatibil
ity when the program is created.

Why Pascal?
As a compiled language, Pascal is a much faster language than
BASIC, an interpreted language. As a high-level language,
Pascal's syntax is more like English than are the low-level
commands of machine language. A hybrid, Pascal offers speed
approaching that of machine language without the need to com
municate directly with the 68000 chip in its native language.

Another benefit of programming in Pascal is that, because it
is high-level and structured, Pascal source code tends to be self-
documenting. Because Pascal programmers generally use mean
ingful variable and procedure names such as Phone—Number,
Total—Amount, or Make—Menu, and because of the rules re
garding how the program is to be written, it's usually much
easier to understand a Pascal program listing that it is to un
derstand a BASIC listing for the same program. Since Pascal
programs make easier reading, they're also easier to modify
and update as time goes by.

When to Use Pascal

Pascal, unlike BASIC, really is not the correct tool for small,
one-shot programming projects. Imagine dropping a few flakes
of your breakfast cereal on the floor. You wouldn't rush out to
the hardware store to rent a steam cleaner. You would proba
bly get the broom and dustpan and be done with it. On the
other hand, some jobs are too big for the broom.

Pascal is a good language for programs that will be re
used. Writing Program X in BASIC usually takes considerably
less time than writing the same program in Pascal. However,

283



CHAPTER SEVEN

if you run the program often enough, the faster execution time
and the convenience of the GEM interface of the Pascal pro
gram will make up for the difference.

The reason that Pascal programming is considerably
slower than BASIC programming lies in the difference be
tween an interpreted language and a compiled language.
(Some Pascal interpreters exist, but their purpose is more to
teach the language than to produce functional programs.) With
an interpreted language, such as BASIC, the commands are in
terpreted and translated into machine language as the program
is run. This translation takes its toll on execution time. In a
compiled language, the translation occurs during the compila
tion phase. The finished program runs much more quickly, but
creating the finished program is more complicated.

To write a BASIC program, you follow these general
steps:

• Load BASIC.

• Write a few lines of code.

• Run the program.
• Make changes if necessary; then run it again.

On the other hand, here's what happens with a compiler:

• Load the editor.
• Write the program.
• Save the source code file.
• Load and run the compiler.
• If there are errors (and there will be errors), reload the editor

and correct them.
• Reload and rerun the compiler.
• Repeat above two steps until all errors are corrected.
• Load and run the linker.
• After a successful link, load and run the program.
• If errors occur as the program runs, or if you want to make

changes or modifications, reload the editor and repeat the se
quence again.

As was mentioned earlier, the tradeoff for all this work is
speed in execution. If you want to write an action game or a
specialized database program or any application that manipu
lates large amounts of data, this speed is important. Pascal
programming can be as enjoyable as any other programming,
but, unless you have a serious application in mind, you may
find it too time-consuming.

284



Pascal Programming

How Pascal Works
In a broad sense, Pascal is much the same as BASIC. Program
flow is controlled through various looping devices. The FOR-
NEXT, IF-THEN-ELSE, and WHILE structures will be familiar
to BASIC programmers. In both languages, variables are as
signed values which are manipulated during the program run.
The differences end, however, when it comes to the rules re-
garding how the program is written.

Although BASIC has some generally accepted conven
tions, it's really a free-form programming language; the style
and structure of the program are up to you. For example, al
though the variable i is a commonly used loop control vari
able, there is no rule that requires it. Long lists of DATA
statements usually appear at the end of a program, but it's
really a matter of choice.

Pascal, on the other hand, has several rules that cannot be
broken. Some programmers argue that these rules are imposi
tions that hinder creativity; others feel that the rules provide a
helpful frame in which to work. Time can be spent deciding
how the program will work rather than deciding how the pro
gram will be written.

A Pascal program consists of the following items:

• Program identifier
• Constant declaration

• Type declaration
• Variable declaration

• Definition of functions and procedures
• The main program

The program identifier is a line that gives the program a
name, as in the following line:

— program Stock—Analysis;

This line serves mainly to notify the compiler of the code's
starting point. Note that all Pascal statements are terminated
with a semicolon.

The program's constant declaration section supplies values
that are not altered during the run of the program. Although it
is not necessary to declare these values as constants, doing so
makes the program easier to read and understand. Say, for ex
ample, that your program compares current weather condi
tions with the area's average conditions over the past 30 years.
You might use the following constant declarations:

— 285



CHAPTER SEVEN

CONST

Normal_Jan_Hi = 48.8;
Normal_Feb_Hi = 51.4;
Normal_Mar_Hi = 59.4;
etc.

Later, in the body of your program, a statement might read:
if temperature > Normal_Jan_Hi then ...;

This line obviously is clearer than the statement would have
been had the constant not been declared. Would a casual
reader (or even you, the programmer) be able to decipher the
meaning of this statement?

if temperature > 48.8 then ...;

Type declaration is a tricky subject that is usually ignored
by beginning programmers. Pascal's predefined data types—
which include integer, character, real, Boolean, byte, and, in
many implementations, string—suffice for many applications.
However, Pascal allows programmers to invent new variable
types if they wish. For example, in a card game simulation,
you might declare a variable type called Suits with the follow
ing statement:

TYPE

Suits = (Club,Diamond,Heart,Spade);

This means that for a variable of the type Suits, there are
only four possible values: Clubs, Diamonds, Hearts, and
Spades. Assuming that the variable card had been declared as
being of the type Swirs, the following would be a vaild pro
gram statement:
if (card = Heart) or (card = Diamond) then Write('It's a red card');

You may well write programs that require no type or con
stant declarations, but you'll be hard-pressed to write a useful
program that makes no use of variables. Every variable in a
Pascal program must be declared before it's used. This require
ment not only helps keep a program organized and structured,
but it tells the compiler what variables are coming and how
the programmer plans to use them. Armed with this infor
mation, the compiler can look for and point out possible errors
in variable use. Here's an example of a variable declaration:

286



Pascal Programming

VAR

employee : string[20];
employee_id : integer;
Pay_Per_Hour : real;
Pay_Per_Week : real;
hours—worked : real;
full—time : Boolean;

TVia firct- cfafcimont inHirThe first statement indicates that the program will use a
variable called employee, which is a string with a length of 20
characters; employee—id is an integer variable (a whole num
ber). Pay—Per-Hour, Pay-Per—Week, and hours—worked can all
represent fractional amounts, so they are declared as real vari
ables. And full—time is Boolean, a variable that can have one
of two values—True or False.

Now that the variables have been declared, the compiler
can help you debug your program. How? Let's say the pro
gram contains these lines:
employee—id := hours—worked;
full—timer := True;

When the program is compiled, both lines will generate an er
ror. In the first line, the variables are of different type. The
compiler will not let you assign the value held in hours—worked
(a real value) to the variable employee—id (an integer variable)
because the types are incompatible. In the second line, the
compiler would stop and warn that full—timer is an undeclared
variable. The programmer accidentally added an r to the vari
able name full—time, and the compiler was unable to recognize
it. This type of inconspicuous error in a BASIC program can
be very difficult to track down and correct, but in Pascal, the
compiler finds and points out the problem.

The colon-equal sign (:= ) in the above lines is Pascal's
— way of assigning values to variables. The equal sign is used

alone when testing values as in the following statement:
if full-time = False then Print-Check;

Functions and procedures, which are often called subpro
grams, are Pascal's workhorses. They are used to solve each of
the small problems encountered in a program. They follow the
same rules as programs. That is, they can contain their own
constant, type, and variable declarations; they can contain
functions and procedures of their own; and they must contain
a main program section.

287



CHAPTER SEVEN

Subprograms allow programmers to extend the language.
The Pascal extensions discussed earlier in this article are es
sentially collections of subprograms that you buy when you
purchase a particular version of the language. Just as a specific
set of extensions can make Pascal compatible with a specific
type of computer, another specific set of extensions can make
the language more compatible with a specific programmer.

If you're a mathematician, you might develop a set of
subprograms that efficiently handle calculations common in
your work. If you work extensively with data files, you'll prob
ably develop a set of procedures and functions that open,
close, and read files in a way that suits you.

If you wanted to print the output of your programs in Pig
Latin, you could devise a subprogram to handle the conver
sion, and that subprogram could be included in any of your
programs that required it.

The ability to reuse completed and debugged subpro
grams is a great timesaver for any serious programmer. Once
you've built up a library of subroutines that solve the prob
lems you most often encounter, you'll feel much more com
fortable tackling larger and more sophisticated projects.

The main body of a Pascal program always comes at the
end of a source code listing and is enclosed by the begin and
end. keywords. The main program in Pascal is seldom long
and generally serves to pass control to one or more subpro
grams. Assuming that the subprograms Initialize, Menu—Loop,
Print—Report, and Shut—Down had been previously declared
and defined, the following could be a valid main program
section:

BEGIN

Initialize;
Menu_Loop;
Print—Report;
Shut—Down;

end.

The Initialize procedure might make sure that certain vari
ables are initialized and that the user is given any necessary
instructions. Menu—Loop would likely be where all the action
takes place. Depending on the choice made by the user, the
program could branch to one or several other subroutines.
After Menu—Loop is finished, presumably when the user se
lects the "Quit" option, Print—Report takes over and prints out

288



Pascal Programming

some information based on what happened during the pro-
gram run. Finally, the Shut—Down routine takes over, making
sure that disk files are closed and that the screen is returned to
the proper color and resolution.

Scope
Another difference between Pascal and BASIC is scope, which
refers to the range in which a variable is effective. A variable
that is declared at the top of a program is called a global vari
able, and its scope is the entire program. That is, the variable
can be referred to or manipulated anywhere in the program.

When a variable is called within a subprogram, its scope
is limited to that subprogram. When the subprogram is called,
Pascal creates the variable and tracks it, but when the subpro
gram is exited, the variable is deleted and the space it occu
pied in memory is made available for other use.

The same variable can be reused in another subprogram
or in the main program itself without conflict. This feature
makes it possible to create subprogram libraries that can be re
used easily in future programming projects.

Learning the Language
If you've seen any of the numerous books on Pascal, you'll no
doubt understand that the language involves a great deal more
than these few pages can describe. If you want to learn the
language, arm yourself with one or more tutorial texts and
gather as many source code listings as you can find. The man
uals supplied with most Pascal compilers don't attempt to
teach the language. As you struggle to write your first pro
grams, you'll look again and again to the references.

Find a compiler that provides a comfortable working envi-
ronment. With some programs it's easy to switch from editor
to compiler to linker to executing program. Some programs
help you correct compile errors by reloading the source code
and returning you to the problem with a helpful message.
Some Pascal programs have been extended to take full advan
tage of the Atari ST and its GEM environment.

Don't be disheartened if the going is slow at first. Think
back to your first days with BASIC, and you'll see that it, too,
was tedious at the beginning. Once you've written a few pro
grams and have developed an understanding of the language,
you'll be guided more by your creativity than by the manuals.

_

289



Event Management
and Windows

in Pascal
Program by Mark Rose

Text by Bill Wilkinson

Event management and windows in the GEM envi
ronment are two of the most misunderstood topics
of ST programming. This article sheds some light

on these areas and shows you what a well-
structured GEM program looks like.

When Apple introduced the Macintosh computer, the com
pany dubbed it "the computer for the rest of us." Since a fully
equipped Macintosh originally cost as much as a pretty fair
used car, Apple certainly wasn't referring to the price. Instead,
the emphasis was that the Macintosh is a powerful machine,
easy for even a complete novice to use. So true. Imagine being
able to copy a file by pointing to a little picture and then drag
ging an outline of that picture to another picture which shows
a second disk drive. No more cryptic commands such as
PIP/QVF B: \ WORK \ =A: \BUSY \*.DAT

or worse. Apple's question: What could be better?
Atari's response: How about a computer that is affordable

for the "rest of us"? Seen at first glance, the desktop of the
Atari ST looks amazingly like that of the Macintosh. Upon
closer examination, you see several not-so-subtle differences.
Just as an example, the Macintosh allows custom pictures
(icons) to be drawn and associated with particular types of
files. The Atari ST has only three fixed icons—folders, pro
grams, and data files—which are often more than a little con
fusing because, for example, BASIC programs are considered
to be data files.

Still, the most outstanding features of the Macintosh are
maintained: a mouse that is easy to use, a visual desktop, and,
naturally, windows. The logical consequence of all this is that
programmers who want their products to mesh well with the

290



_

ease and grace of the ST must learn how to "do windows."
Lj This discussion then will focus on two of the most misun

derstood topics of ST programming: event management and
windows in the GEM environment. The program accompany-
ing this article is designed to show a well-structured GEM pro
gram. Since we are principals in Optimized Systems Software
(OSS), and since OSS produces a popular language for the
Atari ST known as Personal Pascal, it is not surprising that this
program is written in Personal Pascal.

You say you don't have Personal Pascal? No problem. This
isn't a practical program anyway (though it certainly could
serve as the basis for one). Its purpose is simply to instruct
you in programming techniques, and the methods and algo
rithms apply equally well, whether you program in Pascal, C,
Modula-2, assembler, or any language which gives you full ac
cess to the power of GEM. (Which is another way of saying
that BASIC and Logo users don't really need to know much of
this stuff. But when you get tired of the self-imposed limita
tions of those languages, come back and read this again.)

Personal Pascal comes with a special library of functions
and procedures that give programmers access to a reasonably
good selection of GEM features. In reading the example pro
gram and the following material, you will find that several of
these special library routines are not explained. This is only
reasonable; who cannot deduce the purpose of a procedure
named Paint_Color? On the other hand, we'll briefly explain
routines with less obvious names and/or purposes. Long de
scriptions are unnecessary, since Personal Pascal users can find
them in their manuals, and users of other languages will either
have to invent their own routines or use names and calling se
quences dissimilar to those given here. We have attempted to
make the program as readable as possible so that it will not
cause any confusion.

— What Window_Demo Does

In good programming style, we've given our program a read
able name: "Window_Demo." In typical computer style, when
we put it on disk, we were forced to call the program
"WINDDEMO", since TOS allows only eight characters in a
filename. After you have compiled the source code (or other-

—* wise made a copy of the runnable program), you simply need
to click on the icon in the desktop which bears the name

— 291

Pascal Programming



CHAPTER SEVEN

"WINDDEMO.PRG". It will load and start to run.
The first obvious change will be in the menu bar at the

top of the screen. Along with the familiar Desk designation,
you will find Sizes, Shapes, and Patterns. If you move the
mouse pointer up to the menu bar, you can touch on one of
these names and be rewarded with a drop-down menu. For
example, if you choose Sizes, a drop-down menu will appear
containing the selections Small, Medium, and Large. Beside
one of these selections will be a checkmark. If you choose a
different selection and click on it, the drop-down menu will
disappear, but when you reselect it, your new choice will have
the checkmark next to it.

Similarly, there are three shapes (Square, Circle, and
Wedge) and three patterns (Solid, Checkered, and Open); you
can choose one shape and one pattern. The real magic of this
program occurs, however, when you point the mouse at the
Desk title in the menu bar: In addition to any desk accessories
already present on your boot disk, a selection titled New Win
dow appears. Choose it by clicking on it, and the action will
begin.

First, a window appears, filling the desktop except for the
menu bar area. Its title is Window 1 (or a higher number if this
is the second or subsequent time you have chosen New Win
dow). This window is typical of the characteristics of GEM
windows in several ways: it has a title, move bar, close box,
and size box. The implication is that you can point the mouse
at the size box and drag the corner of the window to make it
smaller. You can also move the window by dragging it via the
bar containing its title, though we suggest you do this after you
have shrunk it somewhat. If you can run the "WINDDEMO"
program at this time, we suggest that you create several win
dows right away, shrinking and moving each to different sizes
and positions on the screen. .

Now, the meaning of Sizes, Shapes, and Patterns becomes
obvious: If you point the mouse somewhere in the interior of
the frontmost window, a shape of the type you "check-
marked" will appear. Its size and interior pattern will also
match your choices. If you have a color monitor, the program
chooses three colors cyclically (more on this later). You can
move the mouse pointer and click to request as many as ten
shapes per window.

Notice that you can change your choice of shape, size,

292



Pascal Programming

and pattern at any time, either while working in the same
-~- window or before moving to another window. The best part,

though, comes when you move or resize your windows again:
All of your work is not forgotten. The objects remain in the

— same relative positions within the windows.
If you ran this program in a nonwindowed environment

(for example, on a typical eight-bit computer like an Atari
— 130XE), none of this would be very difficult or extraordinary.

But let's take a closer look at the programming techniques nec
essary to accomplish all this in GEM's multiwindow environment.

When the Bottom Is the Top
We'll follow the logical flow of the program, not the physical
order of the listing. With Pascal programs, that usually means
we have to start at the bottom of the listing, because the top
of the program starts there.

Before we start, let's introduce some of the types and
variables used in the program. In particular, you need to know
that any types which seem undefined in the program are un
doubtedly described in,the file "GEMTYPE.PAS", which is in
cluded in this compilation via the following program line:
{$1 GEMTYPE.PAS }

The $1 is also used to include the files "GEMCONST.PAS"
(predefined constants) and "GEMSUBS.PAS" (external support
routines). This mechanism, or similar ones, is common to
many compiled languages. Some languages, such as C, have a
feature like this in the definition of the language. Others, such
as Pascal, have acquired one through common usage: Personal
Pascal's use of $1 has historical precedents.

In this program the most difficult type to understand is
probably window^nfo, the last type defined. If you remem
ber what appeared on the screen when we ran this program,
you will soon see why this type is so complex: Each window
has a title (name) and may contain from zero to ten objects
(obj_count). The objects must be described, and for this we
use an object—list.

In fact, this list is an array of ten elements, each of which
is called an object_info and each of which describes the
shape, location (both horizontal and vertical within the win-
dow), size, pattern, and color of a corresponding object. With
a little perusal, you will see the rationale for the names and

Lj



CHAPTER SEVEN

organization of the given types. What is perhaps not so obvi
ous is the need for all this record keeping. Doesn't GEM take
care of windows for us? As we shall see, the answer is an
often surprising no.

Before we leave the types, we want to mention one nicety
of Pascal in general and Personal Pascal in particular: Notice
the definition of shape—kinds. Nowhere else in this program
will you see square, circle, or wedge defined as either var or
type. Simply by defining shape—kinds as we have, we have
produced an enumerated type. As a consequence, at any place
in this program where we need a value to assign to a variable
of type shape—kinds, we can use only one of these three
names as that value. Although obviously represented inter
nally to the compiler as numbers, enumerated types allow us
to write exceptionally well-structured programs, since it's im
possible to make the error of assigning a number too small or
too large to a variable of such a type.

On, then, to the end of the program, which is actually its
beginning. Look for the comment only a dozen lines or so
from the end, which marks the start of the main program
code. Can you believe how small this program really is? If we
were to translate the program lines into English, this is how
they might sound:

If we can successfully initialize GEM, then we need to ini
tialize our window descriptors, describe ("make") our new
menu bar, draw and adjust that menu, and make sure the
mouse is represented (on the screen) by an arrow. Only
then can we call for our master event scheduler (which
really does all the work). When we are finished process
ing events, we will erase the menu that we drew and exit
cleanly from GEM.

Seems so simple, right? But then what are all these pages
and pages of listing for? Hang in there.

A special note: In writing this program, we purposely fol
lowed some OSS programming standards. Most of them are
for form only, but at least one of these rules will make it eas
ier for you to understand the program: Library and built-in
routines always start with a capital letter; routines in the cur
rent program always start with a lowercase letter. Thus, you
can instantly tell that Init_Gem and Draw_Menu among oth
ers are library routines, while init_windows and make_menu,
for example, will be found somewhere in this program listing.

294



Pascal Programming

The purposes of the library routines used in the main pro-
— gram control all seem fairly obvious: Init_Gem simply asks

GEM to initialize itself. Draw_Menu causes the menu pointer
passed as its argument to replace the current contents of the

— menu bar. Set—Mouse changes the form of the mouse icon (in
our example, it changes to the usual arrow, in case the busy-
bee icon is present because the program was loaded off disk).
And so forth. Once again, we'll not attempt to explain every
one of these library routines. If you use a little imagination,
you'll probably guess correctly what they do.

From here on, the subtitles used in this narrative will cor
respond to the names of the program routines being described.
Just scan through the listing until you find a procedure or
function of the same name and prepare to learn more about
GEM windows.

init—windows (page 308)
This simple routine initializes our windows array. Setting the
handle to indicate No_Window tells later routines that this el
ement of the array is available for use. Note that the name we
build for this array element corresponds to its array index.
Neat and clean. Note also another powerful feature of Pascal:
The with construction allows us to omit the record name des
ignator in assignments and expressions. If we had not used a
with here, both handle and name would have needed the
record designator windows[index]. preceding them.

make_menu (page 321)
This routine illustrates one of the nicest features of a flexible
GEM library: the capability of creating menus dynamically.
There is no reason that you could not create routines to do
this in any language, but as of this writing no standard library
routines to do so exist for other than Personal Pascal users.

The concept is fairly simple: Ask for a new menu, telling
the library routine how many titles and subtitles it will contain
and what name to "register" it under (the name which ap
pears under the standard word Desk at the left end of the
menu bar). Then add a bunch of titles, each associated with
the menu handle returned by New_Menu. Finally, add subti
tles (or Menu Items), associating each with the menu handle
and the appropriate title. And that's about it.

295



CHAPTER SEVEN

In our make_menu routine, we also set up the current
(default) values for the size, shape, and pattern of objects
which will be drawn.

adjust—menu (page 316)
Another simple routine: After any change to the menu (or
after it's drawn for the first time), we need to put checkmarks
on the menu items chosen by the user. So, for each of the
three possible checked items, we call Menu_Check, telling it
the handle of our menu and the item index which will get the
checkmark. The last parameter is always a Boolean true or
false, which indicates whether to add or remove the check.

event-loop (page 320)
It's been far too easy so far, hasn't it? Here's where the going
gets tough. The real basis for this entire program is the simple
repeat-until loop of this procedure. Yet, really, only three
things seem to happen here.
• We get an event, which can be either a message or the press

of a mouse button (E_Message or E_Button).
• We disallow further events until we are done with menu pro

cessing via the call to Begin_Update.
• If the event is a message, we do one thing (do_message).
• If it is not a message, we assume it is a button click and do

something else (do_button).
• We allow more events to occur (End—Update).

The Get—Event library function (which is essentially iden
tical to evnt_multi in the Atari C library) deserves some atten
tion. The first argument to this function tells GEM what kinds
of events our program will handle. Each bit of the argument
specifies a class of events that we are looking for. In this in
stance, we've chosen only the message and button events
mentioned above.

The nature and number of the rest of the arguments to
this function depend on which events we have chosen to
monitor. Generally, those which we have coded false, junk, or
zero do not enter into this particular usage. Of the other argu
ments, the three following the first one indicate what kind of
button event we are waiting for (in this case, for the left but
ton to be pressed). The msg buffer is actually a general-purpose
array which is used to return all sorts of information to us (as

296



Pascal Programming

_

we'll see later). Finally, mouse—x and mouse—y return the hor-
—' izontal and vertical position of the mouse (in this case, when

the button is pressed).
Simple? Perhaps, but consider that a more complex pro

gram would have to handle keyboard events, mouse and win
dow "collisions," and timers that count down to zero. And
you really should handle all these events, because GEM has a

— few nasty bugs which crop up when a program ignores one or
more of them, usually when desk accessories are also active.
For our example, however, let's see where these events can lead.

do_message (page 318)
If you've thought about how this program is used, you might
be wondering just how much work the programmer must do.
For some operations, there is surprisingly little to do. For ex
ample, if the user moves the window via the move bar or
changes its dimensions via the size box, the first entry in the
msg buffer indicates this choice. Other elements in the array
give the handle of the window in question as well as its new
location and size.

If you examine the code of the do_message procedure,
you'll see that whenever we get either a WM_Sized or
WM_Moved message (WM stands for Window Message), we
simply pass the request back to GEM as a Set—WSize call.
This may not be what you want to do in your own program.
For example, we place no lower limit on the size of a window;
the user can shrink it down to a box with no active drawing
area. Is there a certain minimum size you want your program
to support? Then just test for it here and ignore messages
which try to make the window too small (or, alternatively,
translate a request for a too-small window into a Set—WSize to
your acceptable minimum).

But before we can go moving or changing the size of any
window, we have to create one. Do you recall what causes this
to happen in this program? The user must click on the New
Window item under the Desk title in the menu. But all menu
selections cause a message of MN_Selected (MeNu Selected),
so let's see what happens when we call the do_menu routine.
First, note that we are passing two elements of the message
buffer array as parameters to the procedure. When the mes
sage is MN_Selected, these elements contain the indices to the

— 297



CHAPTER SEVEN

selected title and item (subtitle) within the menu. Is it begin
ning to make sense?

do_menu (page 317)
Since there are only four possible titles in our menu, we need
to check for only these cases. But we've never found out the
title index for the system-supplied Desk title. Not to fear: If it's
not one of the other titles, it must be the Desk title, and that
further means it must be our New Window item. Do you see
why? It is the only item under that title which "belongs" to
our program—any other items belong to desk accessories.

If the user has chosen to change the current shape, size,
or pattern for subsequently selected objects, we simply erase
the checkmark from the prior "current" item and make note of
the new current item. The call to adjust_menu near the end of
this procedure is used to place a checkmark beside the new se
lection. And the last line, a call to Menu—Normal, is needed to
"deselect" the title which has been placed in reverse video by
GEM. This is only cleanup work, but it's necessary.

The real work here occurs when the user has indeed re
quested a New Window by clicking on that item under the
Desk title. But, in keeping with good structured programming
techniques, that will be handled by yet another routine.

do_open (page 315)
If we get here, it's time to open a new window. Since GEM
limits us to seven windows, we first check to see whether that
many already exist. If this would be the eighth window, we is
sue a nasty message in the form of an alert box. Notice how
simple alert boxes are in GEM: a single call to Do_Alert pass
ing a single string and a default button number. The default
button number is always necessary, but it may be zero. When
multiple buttons are present, the value returned from
Do_Alert indicates which button has been "pressed" and is
not just junk, as it is here.

Now, finally, we're ready to open a new window. First, we
call which—window (which will not be explained since its
usage and coding are obvious) to find an empty slot in our
windows array. Again, we get to use Pascal's with keyword to
simplify the coding.

Notice how easy it is to ask GEM for a New_Window.

298



Pascal Programming

The first parameter may look confusing, but it's simply a word
•—- wherein individual bits request various possible features of a

window. Here, we are asking four things:

• To give the window a name
• To allow the user to change the size of the window
• To allow the window to be moved via the move bar

• To allow the window to be closed

Several other options are also possible—for example, an info
(or subtitle) line, a full box, and scroll bars. (A good example
of a truly full-blown GEM window is that which appears in
the desktop to show you the contents of a disk directory.)

If we have asked to give the window a name (and we
did), we must pass the desired name as the second parameter.
The last four parameters specify the limits of the position (x
and y, horizontal and vertical) and size (width and height) of
the window to be created. A special feature of the Personal
Pascal library is that if all four of these parameters are zero (as
they are here), a window of maximum size placed anywhere
on the screen is allowed. This is convenient, since the program
need not worry about screen resolution. Theoretically, GEM
can still reject our request, so we provide another alert box
message to handle this possibility.

If we finally get through all that, we can open our win
dow, using the handle returned by the call to New_Window.
The trailing four parameters to Open_Window are, once
again, the position and size of this window. This time, though,
they specify how the window will appear when it is first
drawn on the screen. The meaning of all zero parameters is
the same: Make the window as big as possible. Note that,
even if we created a smaller window here, the zeros in the call
to New_Window would allow the user to expand the window
to full screen size.

And that's it; the rest is clean-up work. We can't empha
size this enough: You should not draw anything in the window at
this time, even if you know what is going to appear there. Doing
so is one of the most common mistakes made by newcomers
to GEM. Don't do it. Wait for GEM to tell you when it wants
you to draw your goodies in the window. Confused? Keep
reading.

299



CHAPTER SEVEN

do_button (page 319)
In discussing the event loop, we mentioned that we were ask
ing GEM for both messages and button events. We're not done
with messages yet, obviously, but let's take a peek at what the
button events are for. If you look again at the code for
event—loop, you'll notice that do_button is called with two
parameters: the horizontal and vertical position of the mouse
when the button is pressed. What then?

Not too surprisingly, the first thing we do here in
do_button is wait for the user to release the button. This in

volves another call to Get—Event (which we will not detail,
but you should note the differences between this call and the
one in event—loop). The rest of the routine is simple: If the
mouse button is pressed while the mouse pointer is within the
front window and if we "own" the front window, then we
want to add a new object to that window at the given mouse
position.

But we have an artificial restriction that no window may
contain more than ten objects. If the current window already
contains that many objects, we'll issue another one of those
handy alert boxes. However, if everything is okay, we'll add
this object to the current window.

add_object (page 313)
This is by no means the most elegant of routines. In fact it
looks downright messy. But it performs the very important
task of adding an object's definition to the object—list within
the appropriate element of the windows array.

After adding this object to the count, we obtain the co
ordinates (and size) of the current window. This is necessary
because the mouse coordinates are given in absolute units, yet
we want to store them in the list using numbers which are rel
ative to the origin of the current window. Confused about
where x and y are defined? Once again, notice the handy with
clause: They're part of the object—info within the object—list,
which in turn is part of a window—info record in the windows
array (whew!).

The size, shape, and pattern are set within this same
object—info entry using values which will be meaningful later.
The color is chosen to cycle through the three possible fore
ground colors of a medium-resolution screen. (Though the

300



Pascal Programming

color choice is unnecessary in monochrome and uses only 3 of
•—' 15 available colors in low resolution, this method at least in

sures compatibility of the program with all resolutions.)
We now need to draw the object we just added. Since the

rest of this routine (from Set—Clip onward) is similar to what
happens during a redraw, we'll postpone discussion of the
called routines for a few more paragraphs— especially since
we shouldn't even be adding objects yet. We've not learned
how to clear out the interior of our window yet.

do_message (page 318)
Back here again. In the previous discussion of this routine, we
purposely left do_message before finishing it. We didn't look
at what happens when some of the possible messages occur.
For example, when a user asks to close a window (by clicking
on the close box at the top left of that window), we call the
do_close routine with the handle of the window that's to be
closed. Even though do_close is one of this program's proce
dures, we don't need to discuss it here since it's very simple.

The WM_Topped message does need some explanation:
When the user clicks on a window which is not the current

(front) window, GEM tells us to prepare to make the selected
window become the front one. If we have no clean-up work to
do, we need do no more than call the library Bring—To_Front
routine, even if that window is partially obscured by another
window. Once again, this concept is misunderstood by new
comers to GEM, who try to redraw the contents of that win
dow at this point. Don't do it. Wait for a WM_Redraw
message.

A WM_Redraw message is the real heart of the GEM
windowing system. Any time GEM determines that all or part
of one of your windows needs to be redrawn, it will tell you
so with this message. This is why you shouldn't start drawing
in a window when you first create it, or when the user moves
it or brings it to the front: GEM will tell you when it is time to
do so. As a point of interest, you usually don't get in big trou
ble if you violate this rule unless your program is a desk ac
cessory or unless there are desk accessories also doing their

,own thing with the screen. But why take chances?
Okay, so what do we do when we get a WM_Redraw

message? We call do_redraw, passing the window handle and
the position and size as parameters.

— 301



CHAPTER SEVEN

do_redraw (page 312)
Now we come to the most important point of this entire dis
cussion: What must your program do when GEM hands you a
redraw message? Consider, as an example, the situation where
several overlapping windows are covered by a desk accessory's
window. What happens when the desk accessory finally asks
GEM to remove its window from the screen? Each of those sev

eral windows must be redrawn. And we're about to show how.

A simplistic approach might be to start with the rearmost
window, completely drawing its contents, and then work our
way forward. But, if several complex screens need updating,
even the powerful 68000 used in the Atari ST is a little short
on speed for this method. GEM knows this, so it always tries
to keep the amount of screen processing to a minimum. It
does this by keeping track of the screen's contents through a
set of rectangles. Before we get into how that relates to our
program, let's look at the housekeeping which is necessary in
any screen redraw routine.

GEM has given us the handle of the window it wants us
to work with, and that handle is what our do_message rou
tine has passed to this procedure. So we need only use
which—window to determine which element of our windows
array contains the information describing the window in ques
tion. Before doing anything else, we temporarily remove the
mouse from the screen. (Sidelight: Many early ST demo pro
grams omitted this last step. That's why many otherwise nice
screen displays had "holes" in their middles when the mouse
got moved later.)

The call to First—Rect is our first evidence of the way
GEM keeps track of all the windows on the screen. This par
ticular call asks GEM to tell us the position (x and y) and size
(w and h) of the first rectangle which needs to be redrawn:
Note the while loop which terminates only when GEM uses a
size of zero to indicate that there are no more such rectangles.

GEM's redraw rectangles may or may not coincide with the
boundaries of our window, so we use the call to Rect_Intersect
to limit that position and size only to the portion that lies
within the window in question. Rect_Intersect is a Boolean
(true or false) function which obligingly tells us whether any
portion at all of GEM's redraw rectangle lies within our win
dow. Presuming that at least some portion of it does come

302



._

Pascai Programming

within our bounds, we're ready (at last) to start modifying the
screen.

We begin by telling GEM to limit its drawing of objects
(which can include text) to the now-intersected rectangle in
question. Then we use Paint—Rect to change that entire area to
a solid white color. Finally, we call yet another routine to draw
the list of objects that the user has placed in this window.

This last call, to draw_list, is really the only part which
must be modified if we are using this program to update some
other kinds of windows (such as text windows). All other calls
in this procedure can and should remain essentially unchanged.

We'll look at how the list of objects is drawn in a mo
ment, but first let's look at the tail of this routine. Note the
call to Next—Rect, where we get another possible rectangle
which needs updating. Remember, if the rectangle size is zero,
the while will stop this whole process. At that time, we'll
allow the mouse to reappear. This do_redraw procedure, or
one very similar to it, should be the heart of any proper
window-oriented GEM program.

draw_list (page 311)
This routine and the next are the only ones which are truly
unique to our particular program. And draw_list is extraordi
narily simple: It obtains the coordinates of the upper left cor
ner of the working area of the current window (via the call to
Work—Rect; the size is also obtained, but we ignore it here).
Then, one by one, it processes the list of objects (if any) in this
window.

If you have trouble following some of the code here, re
member the importance of with. The reference to obj_count is
actually a reference to windows[index].obj_count; objects and
handle are similarly referenced).

draw_object (page 310)
Now we're finally going to call a routine to put a shape on the
screen. After all the build-up, this routine is almost anti-
climactic. We tell GEM about the user's choice of pattern and
which color to use, and then a shape of the user's choice is
drawn in the selected size. And that's the end.

Perhaps we should explain the seemingly strange num
bers used in the various "Paint" calls. For example, a call to

303



CHAPTER SEVEN

Paint—Rect does what the name implies; it paints a rectangle.
In keeping with common GEM usage, we specify a rectangle
by its top left coordinates and its width and height (and since
the width and height are the same, we should get a square).
But as smart as GEM is, it still hasn't figured out that we're
trying to draw within the bounds of one particular window, so
we must adjust the x and y position of the square by adding
the coordinates of the top left corner of our window.

Similarly, the Oval (circle) and Arc (wedge) must have
their positions adjusted and use an appropriate radius value
(halved in the case of the circle to make it appear the same
size as a square).

Six Exercises

If you managed to wade through this discussion, you're proba
bly ready to tackle a window-based GEM program. May we
suggest a few projects or areas for further study.

1 The most obvious project would be a translation of
our program from Personal Pascal to another language (or even
to another Pascal dialect if the Pascal you are using doesn't
have similar GEM support libraries). This task shouldn't be
very difficult; you need only to figure out the routines in AES
and VDI that the Personal Pascal routines are calling. Gener
ally, our library routines consist of either a one-for-one trans
lation of a lower-level routine or a set of logical calls to several
such routines. On a few occasions, we've actually created more
routines in order to avoid forcing the user to pass a parameter
which selects between two possible meanings of a VDI or AES
routine.

2 Another project that interests us is an improvement to
the draw_object procedure. Currently, we always draw each
object in the object list. But suppose that one or more objects
are not even partially within the bounds of our clipping rect
angle (see do_redraw): Why should we take time to call GEM
to redraw hidden objects? We wrote this program for clarity
and simplicity, and GEM doesn't care because it displays noth
ing when an object (or part of an object) is drawn outside the
clipping rectangle. It wouldn't be very difficult to use
Rect—Intersect to find out whether the square or circle is
within the clipping area. The wedge is somewhat harder, but a
little work with geometry will help a lot here.

304



Pascal Programming

3 An easy add-on might be to allow the user to choose
— the color of an object (another menu item?). Doing this right

implies that your program must determine the resolution of
the current screen (not too hard—a call to an XBIOS routine).
It would be nice to display the color choices by color instead
of by name, but that part of this project is probably beyond all
but expert GEM programmers. Stick with allowing the user to
choose orangish purple and the like.

4 A severe shortcoming of our program is obvious if
you run it in medium (four-color) resolution. The so-called cir
cles become tall, skinny ovals, and the squares are anything
but. What has happened? Quite simply, we chose to ignore the
fact that the color pixels are not truly square. In low-resolution
mode, the discrepancy is almost unnoticeable, but in medium
resolution, the unbalanced "aspect ratio" becomes apparent.
So a really good program should determine the aspect ratio of
the screen currently in use and compensate for it when the ob
jects are drawn. This method won't be completely accurate,
but for starters you could try doubling the width of drawn ob
jects in medium resolution. Or get fancy and calculate actual
multipliers; then your program should work on virtually any
present or future GEM system.

5 Consider what a multiwindow text-editing program
must do. Everything we've said about windows and redraw
events applies equally well here. Drawing text on the screen
can be painfully slow if you don't carefully choose your win
dow locations and redraw areas. You'll need tc do a bit of

homework or experimentation before tackling this one if you
want fast screen updates.

6 Our restriction of a maximum of ten objects per win
dow is purely artificial. In fact, simply by changing the value
of the constant max_objects at the head of this program, you
can raise that number dramatically. Still, any constant number
here is actually a kind of arbitrary limitation. A better method
would be to use a linked list of objects, where each new ob
ject's definition would be dynamically allocated via Pascal's
new command. And, of course, more flexibility in the defini
tions of the objects would be nice. We have the beginnings of
a real drawing program here. What about lines, polygons, fill
patterns, and so forth? If you're really ambitious, our simple
example could turn into a winner of a program.

— 305



w o O
N

W
in

d
o

w
_

D
e
m

o

p
r
o
g
r
a
m
W
i
n
d
o
w
_
D
e
m
o
;

c
o
n
s
t

{
W
e
'
r
e

g
o
i
n
g

t
o

g
i
v
e

n
a
m
e
s

t
o

a
f
e
w

s
p
e
c
i
a
l

n
u
m
b
e
r
s

h
e
r
e

s
o

w
e

c
a
n

u
s
e

t
h
e

n
a
m
e
s

f
r
o
m

n
o
w

o
n
,

i
n
s
t
e
a
d

o
f

j
u
s
t

p
u
l
l
i
n
g

n
u
m
b
e
r
s

o
u
t

o
f

a
h
a
t
.

}

{
$
1

G
E
M
C
O
N
S
T
.
P
A
S
}

{
C
o
n
s
t
a
n
t
s

f
r
o
m

t
h
e

P
a
s
c
a
l

G
E
M

l
i
b
r
a
r
i
e
s

}

m
a
x
_
w
i
n
d
o
w
s
=
7
;

{
T
h
e

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

w
i
n
d
o
w
s

w
e

c
a
n

h
a
v
e

o
p
e
n

}
m
a
x
_
o
b
j
e
c
t
s

=
1
0
;

{
T
h
e

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

d
r
a
w
n

i
n

e
a
c
h

w
i
n
d
o
w

}

t
y
p
a
{
$
1

G
E
M
T
Y
P
E
.
P
A
S
}

{
T
y
p
e

d
e
c
l
a
r
a
t
i
o
n
s

f
r
o
m

t
h
e

P
a
s
c
a
l

G
E
M

l
i
b
r
a
r
i
e
s

}

{
W
e

n
e
e
d

t
o

r
e
c
o
r
d

s
e
v
e
r
a
l

p
i
e
c
e
s

o
f

i
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

e
a
c
h

o
b
j
e
c
t

s
o

w
e

c
a
n

p
r
o
p
e
r
l
y

d
r
a
w

i
t

w
i
t
h
i
n

a
w
i
n
d
o
w
.

W
e
'
l
l

h
o
l
d

t
h
i
s

i
n
f
o
r
m
a
t
i
o
n

i
n

a

r
e
c
o
r
d

o
f

t
y
p
e

'
o
b
j
e
c
t
_
i
n
f
o
'
.

}
s
h
a
p
e
_
k
i
n
d
s

•
(
s
q
u
a
r
e
,

c
i
r
c
l
e
,

w
e
d
g
e

)
;

o
b
j
e
c
t
_
i
n
f
o

=
r
e
c
o
r
d

s
h
a
p
e
:

s
h
a
p
e
_
k
i
n
d
s
;

{
T
h
e

'
x
'

a
n
d

'
y
'

f
i
e
l
d
s

h
o
l
d

t
h
e

p
o
s
i
t
i
o
n

o
f

t
h
e

o
b
j
e
c
t

"
r
e
l
a
t
i
v
e
"

t
o

t
h
e

u
p
p
e
r

l
e
f
t

c
o
r
n
e
r

o
f

t
h
e

w
i
n
d
o
w
'
s

w
o
r
k
s
p
a
c
e

a
r
e
a
.

}

x
,

y
,

s
i
z
e
,

p
a
t
t
e
r
n
,

c
o
l
o
r
:

i
n
t
e
g
e
r
;

•
n
d
;

{
S
i
n
c
e

e
a
c
h

w
i
n
d
o
w

c
a
n

h
o
l
d

s
e
v
e
r
a
l

o
b
j
e
c
t
s
,

w
e

n
e
e
d

s
o
m
e

s
u
i
t
a
b
l
e

d
a
t
a

s
t
r
u
c
t
u
r
e

t
o

h
o
l
d

i
n
f
o
r
m
a
t
i
o
n

o
n

m
u
l
t
i
p
l
e

o
b
j
e
c
t
s
.

F
o
r

s
i
m
p
l
i
c
i
t
y

i
n

t
h
i
s

d
e
m
o
,

w
e

h
a
v
e

c
h
o
s
e
n

a
s
i
m
p
l
e

a
r
r
a
y
.

F
o
r

m
o
r
e

c
o
m
p
l
e
x

a
p
p
l
i
c
a
t
i
o
n
s
,

a
l
i
n
k
e
d

l
i
s
t

s
t
r
u
c
t
u
r
e

w
o
u
l
d

p
r
o
b
a
b
l
y

b
e

m
o
r
e

a
p
p
r
o
p
r
i
a
t
e
.

}
o
b
j
_
r
a
n
g
e
•

0
.
.
m
a
x
_
o
b
j
e
c
t
s
;

)
•

I
•

I
I



I
I

I
I

I
I

w o

o
b
j
e
c
t
_
l
i
s
t

=
a
r
r
a
y
!
1
.
.
m
a
x
_
o
b
j
e
c
t
s

]
o
f
o
b
j
e
c
t
_
i
n
f
o
;

{
N
o
w

w
e

c
o
m
e

t
o

t
h
e

d
e
f
i
n
i
t
i
o
n

o
f

t
h
e

r
e
c
o
r
d

w
h
i
c
h

w
i
l
l

h
o
l
d

a
l
l

t
h
e

i
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

a
w
i
n
d
o
w
.

W
e

n
e
e
d

t
o

h
o
l
d

t
h
e

"
h
a
n
d
l
e
"

r
e
t
u
r
n
e
d
b
y

G
E
M
,

t
h
e

n
a
m
e

o
f

t
h
e

w
i
n
d
o
w
,

a
n
d

t
h
e

o
b
j
e
c
t
s

t
h
a
t

w
e
r
e

d
r
a
w
n

i
n

i
t
.

}
w
i
n
d
o
w
_
r
a
n
g
e
=
N
o
_
W
i
n
d
o
w
.
.
m
a
x
_
w
i
n
d
o
w
s
;

w
i
n
d
o
w
_
i
n
f
o

-
r
e
c
o
r
d

h
a
n
d
l
e
:

i
n
t
e
g
e
r
;

{
G
E
M
'
s

w
i
n
d
o
w

h
a
n
d
l
e

}
n
a
m
e
:

W
i
n
d
o
w
_
T
i
t
l
e
;

{
N
a
m
e
o
f
o
u
r
w
i
n
d
o
w

)
o
b
j
_
c
o
u
n
t
:

o
b
j
_
r
a
n
g
e
;

{
C
o
u
n
t

o
f
o
b
j
e
c
t
s

i
n
t
h
e
w
i
n
d
o
w

}
o
b
j
e
c
t
s
:

o
b
j
e
c
t
_
l
i
s
t
;

{
A
n
d
t
h
e
a
r
r
a
y

t
h
a
t

h
o
l
d
s

t
h
e
m
}

e
n
d
;

{
N
o
w
w
e
g
e
t
t
o
o
u
r
g
l
o
b
a
l

v
a
r
i
a
b
l
e

d
e
f
i
n
i
t
i
o
n
s
.

W
e
r
e
a
l
l
y
o
n
l
y
n
e
e
d
a
f
e
w

p
i
e
c
e
s

o
f

i
n
f
o
r
m
a
t
i
o
n

g
l
o
b
a
l
l
y
.

}

{
V
a
r
i
a
b
l
e
s

n
e
e
d
e
d

t
o

d
r
a
w

o
r

k
e
e
p

t
r
a
c
k

o
f

o
u
r

m
e
n
u
:

}

{
T
h
e
p
o
i
n
t
e
r
u
s
e
d
t
o

r
e
f
e
r
t
o
t
h
e
e
n
t
i
r
e
m
e
n
u
f
o
r
d
r
a
w
i
n
g
o
r
e
r
a
s
i
n
g

}
m
e
n
u
:

M
e
n
u

P
t
r
;

{
M
e
n
u

t
i
t
l
e

i
n
d
i
c
e
s

}

s
i
z
e
_
t
i
t
l
e
,

s
h
a
p
e
_
t
i
t
l
e
,

p
a
t
t
e
r
n
_
t
i
t
l
e
:

i
n
t
e
g
e
r
;

{
m
e
n
u

s
u
b
t
i
t
l
e

i
n
d
i
c
e
s

}

s
i
z
e
_
s
m
a
l
l
,

s
i
z
e
_
m
e
d
i
u
m
,

s
i
z
e
_
l
a
r
g
e
,

s
h
a
p
e
_
s
q
u
a
r
e
,

s
h
a
p
e
_
c
i
r
c
l
e
,

s
h
a
p
e
_
w
e
d
g
e
,

pa
tt
er
n_
so
li
d,

pa
tt
er
n_
ch
ec
ke
d,

pa
tt
er
n_
op
en
:

in
te
ge
r;

{
V
a
r
i
a
b
l
e
s
u
s
e
d
t
o

h
o
l
d

i
n
f
o
r
m
a
t
i
o
n
a
b
o
u
t
t
h
e

w
i
n
d
o
w
s

w
e

h
a
v
e

o
p
e
n
:

}

1
1

(
1

1

•-
a

D e
n

O D
^

*
V

>
-i O O
Q •~
t

Q 3 3 O
Q



g
{
Th
e

ar
ra
y
th
at

ho
ld
s

al
l

of
th
e

wi
nd
ow

in
fo
rm
at
io
n

re
co
rd
s

)
Qo

wi
nd
ow
s:

a
r
r
a
y
!

1
.
.
m
a
x
_
w
i
n
d
o
w
s

]
o
f
w
i
n
d
o
w
_
i
n
f
o
;

{
a
n
d
t
h
e
c
o
u
n
t

o
f

h
o
w
m
a
n
y

w
i
n
d
o
w
s
w
e
h
a
v
e

o
p
e
n

}
w
i
n
d
o
w
_
c
o
u
n
t
:
w
i
n
d
o
w
_
r
a
n
g
e
;

{
W
e

a
l
s
o

n
e
e
d

t
o

k
e
e
p

t
r
a
c
k

o
f

t
h
e

c
u
r
r
e
n
t

c
h
o
i
c
e
s

t
h
e

u
s
e
r

h
a
s

m
a
d
e

a
b
o
u
t

t
h
e

n
e
x
t

o
b
j
e
c
t

t
o

b
e

d
r
a
w
n
.

T
h
e
s
e

c
h
o
i
c
e
s

a
r
e

s
t
o
r
e
d

a
s

t
h
e

m
e
n
u

i
t
e
m

i
n
d
i
c
e
s

w
h
i
c
h
t
h
e
u
s
e
r
s
e
l
e
c
t
e
d
.

W
h
e
n
a
n
e
w
o
b
j
e
c
t
i
s

a
d
d
e
d
,

t
h
e
s
e
v
a
l
u
e
s

wi
ll

b
e
co
nv
er
te
d
t
o
th
e

va
lu
es

ac
tu
al
ly

st
or
ed

i
n
ev
er
y

'o
bj
ec
t_
in
fo
'

r
e
c
o
r
d
.

)

c
u
r
_
s
i
z
e
,

c
u
r
_
s
h
a
p
e
,

c
u
r
_
p
a
t
t
e
r
n
:

i
n
t
e
g
e
r
;

•n
{$
1
GE
MS
UB
S.
PA
S}

{
Su
bp
ro
gr
am

de
fi
ni
ti
on
s

fr
om

th
e

Pa
sc
al

li
br
ar
y
}

H M e
n

M
im
t_
wi
nd
ow
s
-
Th
is

ro
ut
in
e

pe
rf
or
ms

al
l

th
e

in
it
ia
li
za
ti
on

of
th
e

wi
nd
ow

<J
in
fo
rm
at
io
n

va
ri
ab
le
s.

W
e
ne
ed

t
o

se
t

th
e

co
un
t
o
f
wi
nd
ow
s
t
o

ze
ro
,

M
s
i
n
c
e
w
e
d
o
n
'
t

h
a
v
e
a
n
y
w
i
n
d
o
w
s

o
p
e
n
ye
t.

W
e
a
l
s
o
s
e
t
t
h
e
'
h
a
n
d
l
e
'

f
i
e
l
d

2
o
f
e
a
c
h
r
e
c
o
r
d
t
o
t
h
e
v
a
l
u
e

'
N
o
_
W
i
n
d
o
w
'
,

a
n
i
l
l
e
g
a
l

w
i
n
d
o
w
h
a
n
d
l
e

v
a
l
u
e

d
e
f
i
n
e
d
i
n
t
h
e

G
E
M
C
O
N
S
T
.
P
A
S

f
i
l
e
,

a
s
a
n

i
n
d
i
c
a
t
i
o
n

t
h
a
t

t
h
e

r
e
c
o
r
d

i
s

fr
ee

t
o
b
e
us
ed

wh
en

a
ne
w

wi
nd
ow

is
op
en
ed
.

We
wi
ll

al
so

se
t
u
p
th
e

na
me

o
f
e
a
c
h
w
i
n
d
o
w

he
re
.

I
n
a

re
al

pr
og
ra
m,

yo
u

w
o
u
l
d
p
r
o
b
a
b
l
y

wa
nt

t
o

al
lo
w

th
e

us
er

to
sp
ec
if
y
a
na
me

fo
r
a

wi
nd
ow
,

so
yo
u'
d

wa
nt

t
o
se
t

up
th
e
na
me

s
o
m
e
t
i
m
e

la
te
r,

pe
rh
ap
s

wh
en

a
w
i
n
d
o
w

is
a
c
t
u
a
l
l
y

op
en
ed
.

}

p
r
o
c
e
d
u
r
e

i
n
i
t
_
w
i
n
d
o
w
s
;

v
a
r i
n
d
e
x
:

w
i
n
d
o
w
_
r
a
n
g
e
;

i
i

m
a

•

n X



1
1

1
i

i
i

i:
c

b
e
g
i
n

wi
nd
ow
_c
ou
nt

:-
0;

{
W
e

st
ar
t

ou
t

wi
th

n
o
wi
nd
ow
s.

}
f
o
r

i
n
d
e
x

:
»
1
t
o

m
a
x
_
w
i
n
d
o
w
s

d
o

w
i
t
h

w
i
n
d
o
w
s
[
i
n
d
e
x
]

d
o

b
e
g
i
n

h
a
n
d
l
e

:
-
N
o
_
W
i
n
d
o
w
;

{
E
a
c
h
w
i
n
d
o
w
n
a
m
e
i
s
'
W
i
n
d
o
w
#

',
w
h
e
r
e
t
h
e

'#
'

i
s
r
e
p
l
a
c
e
d
b
y

t
h
e

i
n
d
e
x

o
f

t
h
e

w
i
n
d
o
w

i
n

t
h
e

'
w
i
n
d
o
w
s
'

a
r
r
a
y
.

}

n
a
m
e

:
-
c
o
n
c
a
t
(

'
W
i
n
d
o
w

'
,

c
h
r
(
o
r
d
C
0
'
)
+
i
n
d
e
x
)
,

'
'

)

e
n
d

en
d;

£

wh
ic
h_
wi
nd
ow

-
At

va
ri
ou
s

ti
me
s
w
e
wi
ll

ne
ed

t
o
co
nv
er
t

fr
om

a
wi
nd
ow

h
a
n
d
l
e
w
h
i
c
h
w
a
s

r
e
t
u
r
n
e
d
b
y

G
E
M

i
n
t
o
t
h
e
i
n
d
e
x

o
f

t
h
e

w
i
n
d
o
w

i
n
o
u
r

'w
in
do
ws
'

ar
ra
y.

Th
e

fo
ll
ow
in
g

ro
ut
in
e

se
ar
ch
es

th
e

ar
ra
y

fo
r
a
wi
nd
ow

|T
3

w
h
o
s
e
h
a
n
d
l
e
m
a
t
c
h
e
s
,

a
n
d
r
e
t
u
r
n
s

t
h
e
i
n
d
e
x
i
n
t
o
'
w
i
n
d
o
w
s
'

i
f
a
m
a
t
c
h
i
n
g

O
w
i
n
d
o
w
i
s

f
o
u
n
d
.

O
t
h
e
r
w
i
s
e
,

t
h
e
v
a
l
u
e
'
N
o
_
W
i
n
d
o
w
'

i
s
r
e
t
u
r
n
e
d
t
o
s
h
o
w

t
h
a
t
n
o
m
a
t
c
h
i
n
g

w
i
n
d
o
w

wa
s

fo
un
d.

Th
is

r
o
u
t
i
n
e

c
a
n
a
l
s
o
b
e
c
a
l
l
e
d

w
i
t
h

th
e

va
lu
e

'N
o_
Wi
nd
ow
'

as
th
e

'w
in
d_
ha
nd
le
'

pa
ra
me
te
r.

In
th
is

ca
se

it
w
i
l
l
l
o
o
k
f
o
r
a

r
e
c
o
r
d
i
n
'
w
i
n
d
o
w
s
'

w
i
t
h
'
N
o
_
W
i
n
d
o
w
'

a
s
a
h
a
n
d
l
e

(i
.e
.,

a
f
r
e
e

e
n
t
r
y
)
,

s
o
w
e
c
a
n
a
l
s
o
u
s
e
t
h
i
s

r
o
u
t
i
n
e
t
o
s
e
a
r
c
h
f
o
r
f
r
e
e

e
n
t
r
i
e
s

i
n

'
w
i
n
d
o
w
s
'
.

}

f
u
n
c
t
i
o
n
w
h
i
c
h
_
w
i
n
d
o
w
(

w
i
n
d
_
h
a
n
d
l
e
:

i
n
t
e
g
e
r

):
w
i
n
d
o
w
_
r
a
n
g
e
;

v
a
r i
:

i
n
t
e
g
e
r
;

{
U
s
e
d
t
o

i
n
d
e
x
t
h
r
o
u
g
h

t
h
e

'
w
i
n
d
o
w
s
'

a
r
r
a
y

}
f
o
u
n
d
:

b
o
o
l
e
a
n
;

{
U
s
e
d

t
o

i
n
d
i
c
a
t
e

w
h
e
n

w
e

f
i
n
d

a
m
a
t
c
h
i
n
g

w
i
n
d
o
w

}

b
e
g
i
n

i
:
=

*£
>

f
o
u
n
d

:
-

f
a
l
s
e
;

g
i

:-
1;



I
—
>

o

w
h
i
l
e

(
i
<
=

m
a
x
_
w
i
n
d
o
w
s
)

a
n
d

n
o
t

f
o
u
n
d

d
o

{
I
f

w
e

f
i
n
d

a
m
a
t
c
h
i
n
g

w
i
n
d
o
w
,

t
h
e
n

s
e
t

o
u
r

e
x
i
t

f
l
a
g

}
i
f
w
i
n
d
o
w
s
[
i
]
.
h
a
n
d
l
e

=
w
i
n
d
_
h
a
n
d
l
e

t
h
e
n

f
o
u
n
d

:
=

t
r
u
e

e
l
a
e

i
:
-

i
+

1
;

i
f

f
o
u
n
d
t
h
e
n

w
h
i
c
h
_
w
i
n
d
o
w

:
=
i

e
l
s
e

w
h
i
c
h
_
w
i
n
d
o
w
:
=
N
o
_
W
i
n
d
o
w

e
n
d
;

n X >
{
dr
aw
_o
bj
ec
t
-
Dr
aw

a
si
ng
le

ob
je
ct

in
a

wi
nd
ow
.

Th
e
pa
ra
me
te
r

'o
bj
'

is
^

th
e

re
co
rd

th
at

ho
ld
s

al
l

of
th
e

re
le
va
nt

in
fo
rm
at
io
n.

We
al
so

re
ce
iv
e

£5
th
e

tw
o
pa
ra
me
te
rs

'x
O'
,

an
d

'y
O'
,

wh
ic
h

ar
e

th
e

co
or
di
na
te
s
o
f
th
e

£r
j

u
p
p
e
r

l
e
f
t

o
f

t
h
e

w
i
n
d
o
w

i
n

w
h
i
c
h

w
e

a
r
e

d
r
a
w
i
n
g
.

S
i
n
c
e

t
h
e

c
o
o
r
d
i
n
a
t
e
s

i
n

'
o
b
j
'

a
r
e
"
r
e
l
a
t
i
v
e
"

t
o
t
h
e
o
r
i
g
i
n
o
f
t
h
e

w
i
n
d
o
w
,

w
e
n
e
e
d
t
o
a
d
d
i
n

M
t
h
e
s
e

u
p
p
e
r

l
e
f
t

v
a
l
u
e
s
.

}
<
J

M

p
r
o
c
e
d
u
r
e
d
r
a
w
_
o
b
j
e
c
t
(
v
a
r

o
b
j
:

o
b
j
e
c
t
_
i
n
f
o
;

x
O
,
y
O
:

i
n
t
e
g
e
r

)
;

b
e
g
i
n

w
i
t
h

o
b
j

d
o

b
e
g
i
n

P
a
i
n
t
_
S
t
y
l
e
(
p
a
t
t
e
r
n

)
;

{
S
e
t
t
h
e

s
t
y
l
e

a
n
d
c
o
l
o
r

o
f

o
u
r

o
b
j
e
c
t

P
a
i
n
t
_
C
o
l
o
r
(

c
o
l
o
r

)
;

{
N
o
w

w
e

d
r
a
w

t
h
e

c
o
r
r
e
c
t

o
b
j
e
c
t
.

}
c
a
s
e

s
h
a
p
e

o
f

s
q
u
a
r
e
:

P
a
i
n
t
_
R
e
c
t
(

x
O
+
x
,

y
O
+
y
,

s
i
z
e
,

s
i
z
e

)
;

c
i
r
c
l
e
:
P
a
i
n
t
_
O
v
a
l
(
x
O
+
x
+
(
s
i
z
e
D
I
V

2
)
,

y
O
+
y
+
(
s
i
z
e
D
I
V

2
)
,

s
i
z
e
D
I
V

2
,

s
i
z
e
D
I
V

2
)
;

1
)
1

!
)



w

1
I

w
e
d
g
e
:

P
a
i
n
t
_
A
r
c
(

xO
+x
,

yO
+y
,

si
ze
,

si
ze
,

22
50
,

3
1
5
0

e
n
d

e
n
d

e
n
d
;

{
dr
aw
_l
is
t
-
Dr
aw

th
e

en
ti
re

ob
je
ct

li
st

fo
r
a
wi
nd
ow
.

Si
nc
e

ne
w

ob
je
ct
s

a
r
e
a
d
d
e
d

a
t
t
h
e
e
n
d

o
f
t
h
e

'
o
b
j
e
c
t
s
'

a
r
r
a
y
,

a
n
d

s
i
n
c
e
o
b
j
e
c
t
s

d
r
a
w
n

l
a
t
e
r
s
h
o
u
l
d
b
e
"
o
n
t
o
p
o
f
"
p
r
e
v
i
o
u
s

o
b
j
e
c
t
s
,

w
e
w
i
l
l
g
o
f
o
r
w
a
r
d
t
h
r
o
u
g
h

t
h
e
'
o
b
j
e
c
t
s
'

ar
ra
y,

c
a
l
l
i
n
g

'
d
r
a
w
_
o
b
j
e
c
t
'

f
o
r
e
a
c
h
e
l
e
m
e
n
t
.

B
e
f
o
r
e

w
e

st
ar
t

dr
aw
in
g,

w
e
ne
ed

t
o
d
e
t
e
r
m
i
n
e

th
e

u
p
p
e
r

le
ft

c
o
r
n
e
r
o
f
t
h
e
wi
nd
ow
,

so
we

d
o
a
'W
or
k_
Re
ct
'

ca
ll
,

wh
ic
h

re
tu
rn
s

th
e

co
or
di
na
te
s

of
th
e

wi
nd
ow

w
o
r
k
s
p
a
c
e

ar
ea
.

N
o
t
i
c
e

th
at

th
is

r
o
u
t
i
n
e

do
es

n
o
t
s
e
t
t
h
e
c
l
i
p
p
i
n
g

re
ct
an
gl
e,

si
nc
e
i
t

is
d
e
s
i
g
n
e
d
t
o
b
e
c
a
l
l
e
d

f
r
o
m
t
h
e
re
dr
aw

ro
ut
in
e.

I
t
a
s
s
u
m
e
s
t
h
e
p
r
o
p
e
r

c
l
i
p
p
i
n
g

h
a
s
a
l
r
e
a
d
y
b
e
e
n

s
e
t
u
p
.

}

p
r
o
c
e
d
u
r
e
d
r
a
w
_
l
i
s
t
(

i
n
d
e
x
:

w
i
n
d
o
w
_
r
a
n
g
e

);

w
o

rk
_

x
,

w
o

rk
_

y
,

w
or

k_
w

,
w

o
rk

_
h

:
in

te
g

e
r;

i:
o

b
j_

ra
n

g
e
;

b
e
g
i
n

w
i
t
h

w
i
n
d
o
w
s
[
i
n
d
e
x
]

d
o

b
e
g
i
n

Wo
rk
_R
ec
t(

ha
nd
le
,

wo
rk
_x
,

wo
rk
_y
,

wo
rk
_w
,

w
o
r
k
_
h

);
f
o
r

i
:
*
1
t
o

o
b
j
_
c
o
u
n
t

d
o

d
r
a
w
_
o
b
j
e
c
t
(

o
b
j
e
c
t
s
[
i
]
,

wo
rk
_x
,

w
o
r
k
_
y
)

e
n
d

e
n
d
;

1
(
1

1

o i-
J

O O
Q i-
l

D 3 O
P



1
—
»

M

{
d
o
_
r
e
d
r
a
w

-
R
e
d
r
a
w

a
p
o
r
t
i
o
n

o
f
a
w
i
n
d
o
w
.

T
h
i
s

r
o
u
t
i
n
e

i
s

c
a
l
l
e
d
w
h
e
n

G
E
M

h
a
s
se
nt

u
s
a
r
e
d
r
a
w
m
e
s
s
a
g
e
.

T
h
e
p
a
r
a
m
e
t
e
r
s

'x
O'
,

'y
O'
,

'w
O'
,

a
n
d

'h
O'

a
r
e

t
h
e

r
e
c
t
a
n
g
u
l
a
r

a
r
e
a

o
f

t
h
e

s
c
r
e
e
n

w
h
i
c
h

n
e
e
d
s

t
o

b
e

r
e
d
r
a
w
n
.

W
e

wi
ll

in
te
rs
ec
t

th
at

re
ct
an
gl
e

wi
th

th
e

ar
ea

o
u
r
w
i
n
d
o
w

oc
cu
pi
es

a
n
d
dr
aw

an
y
gr
ap
hi
ca
l

ob
je
ct
s

wh
ic
h

oc
cu
py

th
os
e

ar
ea
s.

Th
e

'd
o_
re
dr
aw
'

ro
ut
in
e

do
es
n'
t

a
c
t
u
a
l
l
y

pu
t
a
n
y
n
e
w
da
ta

on
to

th
e

sc
re
en

it
se
lf
;

it
ju
st

fi
nd
s

o
u
t
t
h
e
i
n
d
e
x
o
f
t
h
e
w
i
n
d
o
w
i
n
o
u
r
'
w
i
n
d
o
w
s
'

a
r
r
a
y
a
n
d
c
a
l
l
s

'
d
r
a
w
li
st
'

t
o
dr
aw

th
e

wi
nd
ow
's

ob
je
ct
s

af
te
r

se
tt
in
g
th
e
pr
op
er

cl
ip
pi
ng

va
lu
es
.

}

p
r
o
c
e
d
u
r
e

d
o
_
r
e
d
r
a
w
(

w
i
n
d
o
w
,

xO
,

yO
,

wO
,

hO
:

i
n
t
e
g
e
r

);

v
a
r x
,

y
,

w
,

h
:

i
n
t
e
g
e
r
;

i
n
d
e
x
:

w
i
n
d
o
w
_
r
a
n
g
e
;

b
e
g
i
n

i
n
d
e
x

:-
w
h
i
c
h
_
w
i
n
d
o
w
(

w
i
n
d
o
w

);
{
F
i
n
d
ou
t
t
h
e
w
i
n
d
o
w
'
s

i
n
d
e
x

}
{
T
h
e

n
e
x
t

c
o
d
e

i
s

c
o
p
i
e
d

a
l
m
o
s
t

v
e
r
b
a
t
i
m

o
u
t

o
f

t
h
e

P
e
r
s
o
n
a
l

P
a
s
c
a
l

ma
nu
al
.

Th
e
on
ly

re
al

di
ff
er
en
ce

is
th
e

ca
ll

t
o
'd
ra
w_
li
st
'.

}

H
i
d
e
_
M
o
u
s
e
;

F
i
r
s
t
_
R
e
c
t
(

w
i
n
d
o
w
,

x
,

y
,

w
,

h
)
;

w
h
i
l
e

(
w

<
>

0
)

o
r

(
h

<
>

0
)

d
o

b
e
g
i
n

i
f
R
e
c
t
_
I
n
t
e
r
s
e
c
t
(

xO
,

yO
,

wO
,

hO
,

x,
y,

w,
h

)
t
h
e
n

b
e
g
i
n

{
A
t

t
h
i
s

p
o
i
n
t
,

x
,

y
,

w
,

a
n
d

h
h
o
l
d

t
h
e

c
o
o
r
d
i
n
a
t
e
s

o
f

a
r
e
c
t
a
n
g
l
e
w
e
n
e
e
d
t
o

r
e
d
r
a
w
.

W
e
f
i
r
s
t
s
e
t
t
h
e
c
l
i
p
p
i
n
g
t
o

th
es
e

va
lu
es
,

pa
in
t

th
e

ar
ea

wh
it
e,

an
d

th
en

ca
ll

'd
ra
w_
li
st
'

t
o

r
e
d
r
a
w

a
n
y

o
b
j
e
c
t
s

t
h
a
t

o
c
c
u
p
y

t
h
i
s

a
r
e
a
.

}
S
e
t
_
C
l
i
p
(

x
,

y
,

w
,

h
)
;

P
a
i
n
t
_
S
t
y
l
e
(

S
o
l
i
d

)
;

I
)

I



I
I

I
I

I
I

I

P
a
i
n
t
_
C
o
l
o
r
(

W
h
i
t
e

)
;

P
a
i
n
t
_
R
e
c
t
(

x,
y,

w,
h

)
;

d
r
a
w
_
l
i
s
t
(
i
n
d
e
x

)
e
n
d
;

Ne
xt
_R
ec
t(

wi
nd
ow
,

x,
y,

w,
h

);
{
Mo
ve

to
th
e

ne
xt

re
ct
an
gl
e

e
n
d
;

S
h
o
w
_
M
o
u
s
e

e
n
d
;

{
ad
d_
ob
je
ct

-
Ad
d
a
ne
w
ob
je
ct

to
th
e

li
st

in
wi
nd
ow

'i
nd
ex
'

us
in
g

th
e

c
u
r
r
e
n
t
l
y

s
e
l
e
c
t
e
d
d
r
a
w
i
n
g

at
tr
ib
ut
es

(s
iz
e,

sh
ap
e,

a
n
d
pa
tt
er
n)
.

Th
e

c
o
o
r
d
i
n
a
t
e
s
w
h
e
r
e
t
h
e
u
s
e
r

w
a
n
t
e
d
t
h
e

o
b
j
e
c
t

a
r
e
p
a
s
s
e
d

i
n
t
h
e

v
a
r
i
a
b
l
e
s

'm
x'

a
n
d
'm
y'

(f
or

"m
ou
se

x"
a
n
d
"m
ou
se

y"
).

Si
nc
e
w
e
wa
nt

t
o
st
or
e

th
e

p
o
s
i
t
i
o
n
o
f
th
e

ob
je
ct

"r
el
at
iv
e"

t
o
th
e

u
p
p
e
r

le
ft

c
o
r
n
e
r
o
f
th
e

wi
nd
ow
,

w
e
n
e
e
d
t
o

s
u
b
t
r
a
c
t

t
h
e
u
p
p
e
r
l
e
f
t
c
o
o
r
d
i
n
a
t
e
s

f
r
o
m
t
h
e
s
e
v
a
l
u
e
s

(
t
h
e

up
pe
r

le
ft

p
o
s
i
t
i
o
n

is
a
d
d
e
d
b
a
c
k
i
n
w
h
e
n
e
v
e
r

th
e

w
i
n
d
o
w

is
re
dr
aw
n)
.

T
h
e
d
r
a
w
i
n
g

a
t
t
r
i
b
u
t
e
s

a
r
e
s
t
o
r
e
d
a
s
m
e
n
u
i
t
e
m
in
di
ce
s,

s
o
w
e
h
a
v
e

t
h
r
e
e

I
F
s
t
a
t
e
m
e
n
t
s
t
o
c
o
n
v
e
r
t
t
o

v
a
l
u
e
s
t
o

s
t
o
r
e

i
n
t
h
e

'
o
b
j
e
c
t
_
i
n
f
o
'

r
e
c
o
r
d
.

T
h
e

c
o
l
o
r

o
f
t
h
e

o
b
j
e
c
t
s

j
u
s
t

c
y
c
l
e
s

t
h
r
o
u
g
h

t
h
e

r
a
n
g
e

1
t
o

3
.

}

p
r
o
c
e
d
u
r
e

a
d
d
_
o
b
j
e
c
t
(

in
de
x:

w
i
n
d
o
w
_
r
a
n
g
e
;

mx
,

my
:

i
n
t
e
g
e
r

);

v
a
r w
x
,

w
y
,

w
w
,

w
h
:

i
n
t
e
g
e
r
;

b
e
g
i
n

w
i
t
h

w
i
n
d
o
w
s
[
i
n
d
e
x
]

d
o

b
e
g
i
n

w
o
b
j
_
c
o
u
n
t

:
•
o
b
j
_
c
o
u
n
t
+

1;
w

W
o
r
k

R
e
c
t
(

h
a
n
d
l
e
,

w
x
,

w
y
,

w
w
,

w
h

)
;



r
—
*

w
i
t
h
o
b
j
e
c
t
s
[
o
b
j
_
c
o
u
n
t
]

d
o

b
e
g
i
n

x
:
=

m
x
-
w
x
;

y
:
-
m
y
-
w
y
;

{
D
e
t
e
r
m
i
n
e

t
h
e

o
b
j
e
c
t
'
s

s
i
z
e
.
.
.

}
i
f
c
u
r
_
s
i
z
e
=
s
i
z
e
_
s
m
a
l
l
t
h
e
n

s
i
z
e

:
-
1
5

e
l
s
e
i
f
c
u
r
_
s
i
z
e
=
s
i
z
e
_
m
e
d
i
u
m
t
h
e
n
s
i
z
e

:
=
4
5

e
l
s
e

s
i
z
e

:
=

7
0
;

{
a
n
d

t
h
e

o
b
j
e
c
t
'
s

s
h
a
p
e
.
.
.

}

i
f
c
u
r
_
s
h
a
p
e
-

s
h
a
p
e
_
s
q
u
a
r
e
t
h
e
n
s
h
a
p
e

:
-
s
q
u
a
r
e

e
l
s
e
i
f
c
u
r
_
s
h
a
p
e
-
s
h
a
p
e
_
c
i
r
c
l
e
t
h
e
n
s
h
a
p
e

:
-
c
i
r
c
l
e

e
l
s
e

s
h
a
p
e

:
=
w
e
d
g
e
;

(
t
h
e

f
i
l
l

p
a
t
t
e
r
n

a
s

w
e
l
l
.
.
.

}

i
f
c
u
r
_
p
a
t
t
e
r
n
-
p
a
t
t
e
r
n
_
s
o
l
i
d
t
h
e
n
p
a
t
t
e
r
n

:
-
1

e
l
s
e
i
f
c
u
r
_
p
a
t
t
e
r
n

=
p
a
t
t
e
r
n
_
c
h
e
c
k
e
d
t
h
e
n
p
a
t
t
e
r
n

:=
-
2
3

e
l
s
e

p
a
t
t
e
r
n

:
=

0
;

{
a
n
d
f
i
n
a
l
l
y
s
e
t
t
h
e
c
o
l
o
r

(w
e

j
u
s
t

c
y
c
l
e

t
h
r
o
u
g
h

c
o
l
o
r
s

1
t
o

3
i
n
o
r
d
e
r
t
o
g
e
t

a
p
l
e
a
s
i
n
g

r
e
s
u
l
t
)
.

}
c
o
l
o
r

:
=

(
o
b
j
_
c
o
u
n
t
M
O
D

3)
+

1
e
n
d
;

{
N
o
w

w
e

n
e
e
d

t
o

d
r
a
w

t
h
e

n
e
w

o
b
j
e
c
t

o
n
t
o

t
h
e

s
c
r
e
e
n
.

W
e

f
i
r
s
t

s
e
t

t
h
e
c
l
i
p
p
i
n
g

r
e
c
t
a
n
g
l
e

t
o
o
u
r
w
i
n
d
o
w
'
s

w
o
r
k
s
p
a
c
e

ar
ea
,

a
n
d
t
h
e
n

j
u
s
t
c
a
l
l

'
d
r
a
w
_
o
b
j
e
c
t
'
.
}

S
e
t
_
C
l
i
p
(

w
x
,

w
y
,

w
w
,

w
h

)
;

H
i
d
e
_
M
o
u
s
e
;

d
r
a
w
_
o
b
j
e
c
t
(

o
b
j
e
c
t
s
[
o
b
j
_
c
o
u
n
t
]
,

wx
,

w
y

);
S
h
o
w

M
o
u
s
e

e
n
d

e
n
d
;

I
/

I



'
'
I
.
I

I
I

I
I.

.
I.

{
do
_c
lo
se

-
Cl
os
e
a
wi
nd
ow

sp
ec
if
ie
d
by

'w
in
d_
ha
nd
le
'.

We
ne
ed

to
fi
nd

th
e

i
n
d
e
x

o
f

t
h
e

w
i
n
d
o
w

i
n

o
u
r

'
w
i
n
d
o
w
s
'

a
r
r
a
y
,

a
s
k

G
E
M

t
o

c
l
o
s
e

a
n
d

d
e
l
e
t
e

t
h
e

w
i
n
d
o
w
,
a
n
d
t
h
e
n

r
e
m
o
v
e
t
h
e

w
i
n
d
o
w

f
r
o
m
o
u
r

r
e
c
o
r
d
s
,

a
l
s
o
.

}

p
r
o
c
e
d
u
r
e
d
o
_
c
l
o
s
e
(

w
i
n
d
_
h
a
n
d
l
e
:

i
n
t
e
g
e
r
)
;

v
a
r i
n
d
e
x
:

w
i
n
d
o
w
_
r
a
n
g
e
;

b
e
g
i
n

>-
q

i
n
d
e
x

:
-
w
h
i
c
h

w
i
n
d
o
w
(

w
i
n
d

h
a
n
d
l
e

)
;

P
C
l
o
s
e
_
W
i
n
d
o
w
(

w
i
n
d
_
h
a
n
d
l
e

)
;

o
D
e
l
e
t
e
_
W
i
n
d
o
w
(

w
i
n
d
_
h
a
n
d
l
e

)•
w
i
n
d
o
w
_
c
o
u
n
t

:
-
w
i
n
d
o
w
_
c
o
u
n
t

-
1;

l-
0

wi
nd
ow
s[
in
de
x]
.h
an
dl
e

:-
No
_W
in
do
w;

£j
e
n
d
;

Cr
q

D 3 3
{
do
_o
pe
n
-
Tr
y
t
o
op
en

a
ne
w
wi
nd
ow

wi
th

n
o
ob
je
ct
s.

W
e
ca
n
su
cc
es
sf
ul
ly

c
r
e
a
t
e
a
n
e
w
w
i
n
d
o
w
o
n
l
y
i
f
b
o
t
h

1)
W
e
h
a
v
e
n
'
t

a
l
r
e
a
d
y

o
p
e
n
e
d
t
h
e
m
a
x
i
m
u
m

(j
q

n
u
m
b
e
r
o
f
w
i
n
d
o
w
s
,

a
n
d

2)
G
E
M

r
e
t
u
r
n
s
u
s
a

v
a
l
i
d

w
i
n
d
o
w

h
a
n
d
l
e
.

I
f
w
e

a
r
e
s
u
c
c
e
s
s
f
u
l
,

w
e

o
p
e
n
t
h
e

w
i
n
d
o
w
t
o

t
h
e
m
a
x
i
m
u
m

s
i
z
e

a
v
a
i
l
a
b
l
e
.

N
o
t
e

t
h
a
t
n
o
d
r
a
w
i
n
g
o
p
e
r
a
t
i
o
n
s

a
r
e
p
e
r
f
o
r
m
e
d
i
n
t
h
i
s

r
o
u
t
i
n
e
!

T
h
e
f
i
r
s
t

e
v
e
n
t
w
e
w
i
l
l
r
e
c
e
i
v
e
a
f
t
e
r
o
p
e
n
i
n
g
a
n
e
w
w
i
n
d
o
w
w
i
l
l
b
e
a
r
e
q
u
e
s
t
f
r
o
m

G
E
M

t
o

r
e
d
r
a
w

o
u
r

n
e
w

w
i
n
d
o
w
,

s
o

w
e

d
o
n
'
t

n
e
e
d

t
o

d
o

a
n
y
t
h
i
n
g

h
e
r
e
.

}

p
r
o
c
e
d
u
r
e

d
o
_
o
p
e
n
;



O
J

M

j
u
n
k
:

i
n
t
e
g
e
r
;

n
e
w
_
i
n
d
e
x
:

w
i
n
d
o
w
_
r
a
n
g
e
;

b
e
g
i
n

i
f
w
i
n
d
o
w
_
c
o
u
n
t

=
m
a
x
_
w
i
n
d
o
w
s

t
h
e
n

ju
nk

:=
Do
_A
le
rt
(

'[
1]
[T
he
re

ar
e
n
o
mo
re

wi
nd
ow
s

av
ai
la
bl
e]
[
O
K

]'
,
1
)

e
l
s
e

b
e
g
i
n

n
e
w
_
i
n
d
e
x

:
=
w
h
i
c
h
_
w
i
n
d
o
w
(

N
o
_
W
i
n
d
o
w

);
w
i
t
h

w
i
n
d
o
w
s
[
n
e
w
_
i
n
d
e
x

]
d
o

b
e
g
i
n

ha
nd
le

:=
Ne
w_
Wi
nd
ow
(

G
_
N
a
m
e
I
G
_
S
i
z
e
|
G
_
C
l
o
s
e
|
G
_
M
o
v
e
,

na
me
,

0
,

0
,

0
,

0
)
;

i
f
h
a
n
d
l
e
=

N
o
_
W
i
n
d
o
w
t
h
e
n

ju
nk

:=
Do
_A
le
rt
(

'
[
3
]
[
G
E
M

is
ou
t
o
f
wi
nd
ow
s!
]!

O
K

]'
,

1
)

e
l
s
e

b
e
g
i
n

o
b
j
_
c
o
u
n
t

:
=

0
;

O
p
e
n
_
W
i
n
d
o
w
(

h
a
n
d
l
e
,

0
,

0
,

0
,

0
)
;

w
i
n
d
o
w
_
c
o
u
n
t

:
=
w
i
n
d
o
w
_
c
o
u
n
t

+
1;

e
n
d

e
n
d

e
n
d

e
n
d
;

{
ad
ju
st
_m
en
u
-
Pu
t

ch
ec
km
ar
ks

be
si
de

th
e
me
nu

it
em
s

co
rr
es
po
nd
in
g

to
th
e

c
u
r
r
e
n
t

d
r
a
w
i
n
g

a
t
t
r
i
b
u
t
e
s
.

}

p
r
o
c
e
d
u
r
e
a
d
j
u
s
t
_
m
e
n
u
;

I
I

I
I



O
J

i
—
»

v
i

I
(.

(

b
e
g
i
n

M
e
n
u
_
C
h
e
c
k
(

me
nu
,

c
u
r
_
s
i
z
e
,

t
r
u
e

);
M
e
n
u
_
C
h
e
c
k
(

me
nu
,

c
u
r
_
s
h
a
p
e
,

t
r
u
e

);
M
e
n
u
_
C
h
e
c
k
(

me
nu
,

c
u
r
_
p
a
t
t
e
r
n
,

t
r
u
e

)
e
n
d
;

{
do
_m
en
u
-
Pe
rf
or
m
a
me
nu

op
ti
on
.

Ex
ce
pt

fo
r

th
e

de
sk

ti
tl
e,

al
l

of
th
e

me
nu
s

ju
st

ch
an
ge

th
e

cu
rr
en
t

at
tr
ib
ut
es

fo
r
d
r
a
w
i
n
g

ob
je
ct
s

(s
iz
e,

sh
ap
e,

et
c.
),

so
we
'l
l

ju
st

er
as
e

th
e
ch
ec
km
ar
k
b
y
th
e

ol
d

at
tr
ib
ut
e,

a
n
d

r
e
m
e
m
b
e
r

t
h
e

n
e
w

a
t
t
r
i
b
u
t
e
.

A
t

t
h
e

e
n
d

o
f

t
h
e

r
o
u
t
i
n
e
,

w
e

c
a
l
l

'a
dj
us
t_
me
nu
'

t
o
pu
t
a
ch
ec
km
ar
k

be
si
de

th
e

ne
w

at
tr
ib
ut
e.

If
th
e

m
e
n
u

s
e
l
e
c
t
e
d

i
s

t
h
e

d
e
s
k

t
i
t
l
e
,

w
e

c
a
l
l

t
h
e

r
o
u
t
i
n
e

'
d
o
_
o
p
e
n
'

t
o

t
r
y

o
p
e
n
i
n
g

a
n
e
w

w
i
n
d
o
w
.

}

p
r
o
c
e
d
u
r
e

d
o
_
m
e
n
u
(

t
i
t
l
e
,

i
t
e
m
:

i
n
t
e
g
e
r

);

b
e
g
i
n

i
f

t
i
t
l
e

=
s
i
z
e
_
t
i
t
l
e
t
h
e
n

b
e
g
i
n

M
e
n
u
_
C
h
e
c
k
(

m
e
n
u
,

c
u
r
_
s
i
z
e
,

f
a
l
s
e

);
c
u
r
_
s
i
z
e

:
=
i
t
e
m

e
n
d

e
l
s
e

i
f

t
i
t
l
e

=
s
h
a
p
e
_
t
i
t
l
e
t
h
e
n

b
e
g
i
n

M
e
n
u
_
C
h
e
c
k
(

m
e
n
u
,

c
u
r
_
s
h
a
p
e
,

f
a
l
s
e

);
c
u
r
_
s
h
a
p
e

:
=
i
t
e
m

e
n
d

e
l
s
e

i
f

t
i
t
l
e

=
p
a
t
t
e
r
n
_
t
i
t
l
e

t
h
e
n

b
e
g
i
n

M
e
n
u
_
C
h
e
c
k
(

me
nu
,

c
u
r
_
p
a
t
t
e
r
n
,

f
a
l
s
e
)
;

I
I

i
I
.

i



G
O

c
u
r
_
p
a
t
t
e
r
n

:
=

i
t
e
m

e
n
d

e
l
s
e

{
t
i
t
l
e

m
u
s
t

b
e

t
h
e

d
e
s
k

t
i
t
l
e

}
d
o
_
o
p
e
n
;

a
d
j
u
s
t
_
m
e
n
u
;

M
e
n
u
_
N
o
r
m
a
l
(

m
e
n
u
,

t
i
t
l
e

)
e
n
d
;

{
d
o
_
m
e
s
s
a
g
e

-
H
a
n
d
l
e

a
m
e
s
s
a
g
e

e
v
e
n
t

f
r
o
m

G
E
M
.

}

p
r
o
c
e
d
u
r
e
d
o
_
m
e
s
s
a
g
e
(
m
s
g
:

M
e
s
s
a
g
e
_
B
u
f
f
e
r

)
;

b
e
g
i
n

c
a
s
e

m
s
g
[
0
]

o
f

M
N
_
S
e
l
e
c
t
e
d
:

d
o
_
m
e
n
u
(

m
s
g
[
3
]
,

m
s
g
[
4
]

)
;

W
M
_
T
o
p
p
e
d
:

B
r
i
n
g
_
T
o
_
F
r
o
n
t
(

m
s
g
[
3
]

)
;

W
M

_R
ed

ra
w

:
d

o
_

re
d

ra
w

(
m

sg
[3

],
m

sg
[4

],
m

sg
[5

],
m

sg
[6

],
m

sg
[7

]
);

W
M

_
S

iz
ed

,
W

M
_M

ov
ed

:
S

et
_

W
S

iz
e(

m
sg

[3
],

m
sg

[4
],

m
sg

[5
],

m
sg

[6
],

m
sg

[7
]

)
,-

W
M
_
C
l
o
s
e
d
:

d
o
_
c
l
o
s
e
(

m
s
g
[
3
]

)
e
n
d

e
n
d
;

{
i
n
_
w
i
n
d
o
w
-
T
e
s
t
t
o
s
e
e
i
f
a
p
o
i
n
t

i
s
w
i
t
h
i
n
t
h
e
w
o
r
k
i
n
g

a
r
e
a
o
f
a
w
i
n
d
o
w
.

R
e
t
u
r
n
t
r
u
e
,

i
f
t
h
e
p
o
i
n
t
i
s
w
i
t
h
i
n
t
h
e
w
o
r
k
s
p
a
c
e
,

a
n
d
f
a
l
s
e
o
t
h
e
r
w
i
s
e
.

}

f
u
n
c
t
i
o
n

i
n
_
w
i
n
d
o
w
(

px
,

py
,

w
i
n
d
_
h
a
n
d
l
e
:

i
n
t
e
g
e
r

):
b
o
o
l
e
a
n
;

i
i



N
O

I
I

v
a
r x
,

y
,

w
,

h
:

i
n
t
e
g
e
r
;

b
e
g
i
n

W
o
r
k
_
R
e
c
t
(

w
i
n
d
_
h
a
n
d
l
e
,

x
,

y
,

w
,

h
)

i
n
_
w
i
n
d
o
w

:
=

(
p
x
>
=

x
)

a
n
d

(
p
y
>
=

y)
a
n
d

(
p
x

<
x
+
w
)

a
n
d

(
p
y

<
y
+
h
)

e
n
d
;

{
d
o
_
b
u
t
t
o
n

-
H
a
n
d
l
e

a
m
o
u
s
e

b
u
t
t
o
n

e
v
e
n
t
.

T
h
i
s

r
o
u
t
i
n
e

i
s

c
a
l
l
e
d

w
h
e
n

t
h
e

m
a
i
n

e
v
e
n
t

l
o
o
p

g
e
t
s

a
"
m
o
u
s
e

b
u
t
t
o
n

d
o
w
n
"

e
v
e
n
t
.

T
h
e

p
o
s
i
t
i
o
n

o
f

t
h
e

m
o
u
s
e

w
h
e
n

t
h
a
t

e
v
e
n
t

o
c
c
u
r
r
e
d

i
s

p
a
s
s
e
d

i
n

t
h
e

p
a
r
a
m
e
t
e
r
s

'
m
o
u
s
e
_
x
'

a
n
d

'
m
o
u
s
e
_
y
'
.

W
e

f
i
r
s
t
n
e
e
d
t
o
w
a
i
t

f
o
r
t
h
e
m
o
u
s
e

b
u
t
t
o
n

t
o
b
e

r
e
l
e
a
s
e
d
,

t
h
e
n

c
h
e
c
k

t
o

s
e
e

t
h
a
t

1
)

t
h
e

m
o
u
s
e

p
o
s
i
t
i
o
n

i
s

i
n

t
h
e

t
o
p

w
i
n
d
o
w
,

a
n
d

2
)

t
h
e

t
o
p

w
i
n
d
o
w

i
s

o
n
e

o
f

o
u
r

w
i
n
d
o
w
s
.

I
f

t
h
e
s
e

t
w
o

c
o
n
d
i
t
i
o
n
s

a
r
e

t
r
u
e
,

a
n
d

t
h
e

w
i
n
d
o
w

d
o
e
s
n
'
t

a
l
r
e
a
d
y

c
o
n
t
a
i
n

t
h
e

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s
,

w
e
c
a
l
l
'
a
d
d
_
o
b
j
e
c
t
'
t
o

i
n
s
e
r
t
t
h
e

n
e
w
o
b
j
e
c
t
.

I
f
w
e

a
l
r
e
a
d
y

h
a
v
e

t
h
e

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s
,

w
e

j
u
s
t

i
n
f
o
r
m

t
h
e

u
s
e
r

w
i
t
h

a
n

a
l
e
r
t

b
o
x
.

}

p
r
o
c
e
d
u
r
e

d
o
_
b
u
t
t
o
n
(

m
o
u
s
e
_
x
,

m
o
u
s
e
_
y
:

i
n
t
e
g
e
r

)
;

v
a
r j
u
n
k
,

i
n
d
e
x
:

i
n
t
e
g
e
r
;

m
s
g
:

M
e
s
s
a
g
e
_
B
u
f
f
e
r
;

b
e
g
i
n

j
u
n
k

:
=
G
e
t
_
E
v
e
n
t
(

E
_
B
u
t
t
o
n
,

1
,

0
,

1
,

0
,

f
a
l
s
e
,

0
,

0
,

0
,

0
,

f
a
l
s
e
,

0
,

0
,

0
,

0
,

m
s
g
,

j
u
n
k
,

j
u
n
k
,

j
u
n
k
,

j
u
n
k
,

j
u
n
k
,

j
u
n
k

I
I

(
I

(

Q e
n

O D
_

T
3

"
i

O O
Q 3



M O

i
n
d
e
x

:
=
w
h
i
c
h
_
w
i
n
d
o
w
(
F
r
o
n
t
_
W
i
n
d
o
w
)
;

i
f

i
n
_
w
i
n
d
o
w
(
m
o
u
s
e
_
x
,
m
o
u
s
e
_
y
,

F
r
o
n
t
_
W
i
n
d
o
w

)
a
n
d

(
i
n
d
e
x

<
>

N
o
_
W
i
n
d
o
w
)

t
h
e
n

i
f
w
i
n
d
o
w
s
[
i
n
d
e
x
]
.
o
b
j
_
c
o
u
n
t
<
m
a
x
_
o
b
j
e
c
t
s
t
h
e
n

a
d
d
_
o
b
j
e
c
t
(

i
n
d
e
x
,

m
o
u
s
e
_
x
,
m
o
u
s
e
_
y

)
e
l
s
e j
u
n
k

:
=
D
o
_
A
l
e
r
t
(

'
[
1
]
[
Y
o
u
'
'
v
e

a
l
r
e
a
d
y

a
d
d
e
d

t
h
e
l
m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s
!
]
[

O
K

]
'
,
1
)

e
n
d
;

{
e
v
e
n
t
_
l
o
o
p
-
T
h
e

"
h
e
a
r
t
"
o
f
t
h
e
p
r
o
g
r
a
m
.

H
e
r
e

w
e

l
o
o
p

f
o
r
e
v
e
r
,

w
a
i
t
i
n
g

f
o
r

u
s
e
r

e
v
e
n
t
s
,

a
n
d

g
o

t
o

s
u
b
o
r
d
i
n
a
t
e

r
o
u
t
i
n
e
s

t
o

p
r
o
c
e
s
s

t
h
e
m
.

I
f

w
e

j
u
s
t

g
o
t

a
"
c
l
o
s
e

w
i
n
d
o
w
"

m
e
s
s
a
g
e
,

a
n
d

c
l
o
s
i
n
g

t
h
e

w
i
n
d
o
w

l
e
f
t

u
s

w
i
t
h

n
o

o
p
e
n

w
i
n
d
o
w
s
,

t
h
e
n

w
e

a
r
e

f
i
n
i
s
h
e
d

a
n
d

w
e

r
e
t
u
r
n

t
o

o
u
r

c
a
l
l
e
r
.

N
o
t
e

t
h
a
t
t
h
e
e
v
e
n
t
p
r
o
c
e
s
s
i
n
g
i
s
b
r
a
c
k
e
t
e
d
b
y
'
B
e
g
i
n
_
U
p
d
a
t
e
'

a
n
d

'
E
n
d
_
U
p
d
a
t
e
'
.

T
h
e

f
i
r
s
t

c
a
l
l

d
i
s
a
b
l
e
s

t
h
e

m
e
n
u

a
t

t
h
e

t
o
p

o
f

t
h
e

s
c
r
e
e
n

s
o

w
e

w
o
n
'
t

b
e

i
n
t
e
r
f
e
r
e
d

w
i
t
h

w
h
i
l
e

p
r
o
c
e
s
s
i
n
g

o
u
r

e
v
e
n
t
.

}

p
r
o
c
e
d
u
r
e

e
v
e
n
t
_
l
o
o
p
;

e
v
e
n
t
,

j
u
n
k
,

m
o
u
s
e
_
x
,
m
o
u
s
e
_
y
:

m
s
g
:

M
e
s
s
a
g
e
_
B
u
f
f
e
r
;

i
n
t
e
g
e
r
;

b
e
g
i
n

r
e
p
e
a
t

e
v
e
n
t

:
=
G
e
t
_
E
v
e
n
t
(

E
_
M
e
s
s
a
g
e
I
E
_
B
u
t
t
o
n
,

1
,

1
,

1
,

0
,

f
a
l
s
e
,

0
,

0
,

0
,

0
,

f
a
l
s
e
,

0
,

0
,

0
,

0
,

m
s
g
,

j
u
n
k
,

j
u
n
k
,

j
u
n
k
,

m
o
u
s
e
_
x
,

m
o
u
s
e
_
y
,

j
u
n
k

)
B
e
g
i
n
_
U
p
d
a
t
e
;

{
M
a
k
e

s
u
r
e

n
o

n
e
w

m
e
n
u

s
e
l
e
c
t
i
o
n
s

o
c
c
u
r

}

I
I

)

n X > m e
n

< 2

I
I

i



1
1

(
1

1

i
f

e
v
e
n
t
S
E
_
M
e
s
s
a
g
e

<
>

0
t
h
e
n

d
o
_
m
e
s
s
a
g
e
(

m
s
g

)
e
l
s
e

d
o
_
b
u
t
t
o
n
(

m
o
u
s
e
_
x
,

m
o
u
s
e
_
y

)
;

E
n
d
_
U
p
d
a
t
e

{
A
l
l
o
w
m
e
n
u

s
e
l
e
c
t
i
o
n
s
a
g
a
i
n

}
u
n
t
i
l

(
e
v
e
n
t
&
E
_
M
e
s
s
a
g
e

<
>

0)
a
n
d

(
m
s
g
[
0
]

=
W
M
_
C
l
o
s
e
d
)

a
n
d

(
w
i
n
d
o
w
_
c
o
u
n
t

=
0)

;
e
n
d
;

(
m
a
k
e
_
m
e
n
u

-
C
r
e
a
t
e

a
n
e
w
m
e
n
u
a
n
d
a
d
d
a
l
l
o
f
o
u
r
t
i
t
l
e
s

a
n
d
it
em
s.

T
h
e

p
o
i
n
t
e
r

t
o

t
h
e

n
e
w
l
y

c
r
e
a
t
e
d

m
e
n
u

i
s

s
t
o
r
e
d

i
n

t
h
e

v
a
r
i
a
b
l
e

'
m
e
n
u
'
.

}

p
r
o
c
e
d
u
r
e
m
a
k
e
m
e
n
u
;

b
e
g
i
n

{
W
e

n
e
e
d

a
m
e
n
u

w
i
t
h

r
o
o
m

f
o
r

1
2

t
i
t
l
e
s

a
n
d

i
t
e
m
s

}

m
e
n
u

:
=
N
e
w
_
M
e
n
u
(

1
2
,

'
N
e
w

w
i
n
d
o
w
!
'

)
;

(
S
e
t

u
p

w
i
n
d
o
w

t
i
t
l
e
s

}

s
i
z
e
_
t
i
t
l
e

:
=
A
d
d
_
M
T
i
t
l
e
(

m
e
n
u
,

'
S
i
z
e
s

'
)
;

s
h
a
p
e
_
t
i
t
l
e

:
=
A
d
d
_
M
T
i
t
l
e
(

m
e
n
u
,

'
S
h
a
p
e
s

'
)
;

p
a
t
t
e
r
n
_
t
i
t
l
e

:
=
A
d
d
_
M
T
i
t
l
e
(

m
e
n
u
,

'
P
a
t
t
e
r
n
s

'
)
;

{
T
h
e
n

t
h
e

i
n
d
i
v
i
d
u
a
l

i
t
e
m
s

s
i
z
e
_
s
m
a
l
l

s
i
z
e
_
m
e
d
i
u
m

s
i
z
e
_
l
a
r
g
e

A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

s
i
z
e
_
t
i
t
l
e
,

A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

s
i
z
e
_
t
i
t
l
e
,

A
d
d

M
I
t
e
m
(

m
e
n
u
,

s
i
z
e

t
i
t
l
e
,

s
h
a
p
e
_
s
q
u
a
r
e

:
=
A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

s
h
a
p
e
_
t
i
t
l
e
,

S
m
a
l
l

'

M
e
d
i
u
m

'

L
a
r
g
e

'

'
S
q
u
a
r
e

(
I
I
I

Q e
n

O B
~

"V >-
(

O O
Q <
~

t
O 3 3 i—

.

3 O
Q



O
J

s
h
a
p
e
_
c
i
r
c
l
e

s
h
a
p
e
_
w
e
d
g
e

p
a
t
t
e
r
n
_
s
o
l
i
d

p
a
t
t
e
r
n
_
c
h
e
c
k
e
d

p
a
t
t
e
r
n
_
o
p
e
n

A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

s
h
a
p
e
_
t
i
t
l
e
,

'
C
i
r
c
l
e

'
)
;

A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

s
h
a
p
e
_
t
i
t
l
e
,

'
W
e
d
g
e

'
)
;

-
A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

p
a
t
t
e
r
n
_
t
i
t
l
e
,

'
S
o
l
i
d

'
)

=
A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

p
a
t
t
e
r
n
_
t
i
t
l
e
,

'
C
h
e
c
k
e
r
e
d

'
)

«
A
d
d
_
M
I
t
e
m
(

m
e
n
u
,

p
a
t
t
e
r
n
_
t
i
t
l
e
,

'
O
p
e
n

'
)

(
S
e
t

t
h
e

i
n
d
i
c
e
s

o
f

o
u
r

i
n
i
t
i
a
l

d
r
a
w
i
n
g

a
t
t
r
i
b
u
t
e
s

}
c
u
r
_
s
i
z
e

:
=
s
i
z
e
_
s
m
a
l
l
;

c
u
r
_
s
h
a
p
e

:
=

s
h
a
p
e
_
s
q
u
a
r
e
;

c
u
r
_
p
a
t
t
e
r
n

:
=
p
a
t
t
e
r
n
_
3
o
l
i
d

e
n
d
;

{
F
i
n
a
l
l
y
!

T
h
e
m
a
i
n
p
r
o
g
r
a
m
co
de
.

W
e

ju
st

w
a
n
t
t
o
i
n
i
t
i
a
l
i
z
e

GE
M,

t
h
e
n

in
it
ia
li
ze

ou
rs
el
ve
s.

W
e
dr
aw

th
e

me
nu
,

an
d
g
o
t
o
'e
ve
nt
_l
oo
p'

fo
r

th
e

d
u
r
a
t
i
o
n

o
f
t
h
e
p
r
o
g
r
a
m
.

W
h
e
n
i
t
r
e
t
u
r
n
s
,

w
e

j
u
s
t
c
l
e
a
n
u
p
a
n
d
f
i
n
i
s
h
.

b
e
g
i
n

i
f

I
n
i
t
_
G
e
m
>
=

0
t
h
e
n

b
e
g
i
n

i
n
i
t
_
w
i
n
d
o
w
s
;

m
a
k
e
_
m
e
n
u
;

D
r
a
w
_
M
e
n
u
(

m
e
n
u

)
;

a
d
j
u
s
t
_
m
e
n
u
;

S
e
t
_
M
o
u
s
e
(

M
_
A
r
r
o
w

)
;

e
v
e
n
t
_
l
o
o
p
;

E
r
a
s
e
_
M
e
n
u
(

m
e
n
u

)
;

E
x
i
t
_
G
e
m

e
n
d

e
n
d
.

I
1

J

n X > X
I
H M J
«

c
n

m < z



APPENDIX A

A Beginner's Guide to
Typing In Programs

—

A computer cannot perform any task by itself. Like a car with
out gas, a computer has potential, but without a program, it
isn't going anywhere. Most of the programs in this book are
written in a computer language called BASIC.

BASIC Programs
Computers can be picky. Unlike the English language, which
is full of ambiguities, BASIC usually has only one right way of
stating something. Every letter, character, and number is sig
nificant. Common mistakes are substituting the letter O for the
numeral 0, a lowercase / for the numeral 1, or an uppercase B
for the numeral 8. Also, you must be sure to enter all punctua
tion marks, such as colons and commas, just as they appear in
the book. Spacing also can be important. To be safe, type in
the listings exactly as they appear.

DATA Statements

Some programs contain a section, or sections, of DATA state
ments. These lines provide information needed by the pro
gram. They are especially sensitive to errors.

If a single number in any one DATA statement is mis
typed, your machine may lock up, or crash. The keyboard
may seem dead, and the screen may go blank. But don't panic.
No damage has been done. To regain control, turn off your
computer and then turn it back on. This will erase whatever
program was in memory, so always save a copy of your program
before you run it. If your computer crashes, you can load the
program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er
ror message when the program is run. The error message may
refer to the program line that READs the data. However, the
error is still in the DATA statements.

Get to Know Your Machine
You should familiarize yourself with your computer before at
tempting to type in a program. Learn the statements you use

Li 323



APPENDIX A

to store and retrieve programs from tape or disk. Save a copy
of your program so that you won't have to type it in every
time you want to use it. Learn to use your machine's editing
functions. How do you change a line if you make a mistake?
You can always retype the line, but you should at least know
how to backspace.

If you're working in the Edit window, you can select Help
Edit from the Edit menu to get a list of the single-key editing
features built into BASIC.

Hints for Entering ST BASIC Programs
Here are some tips that will make it easier to enter ST BASIC
programs. First, although it may be obvious, it is far easier to
enter a program from the Edit window than from the Com
mand window. (To move to the Edit window, type EDIT at
the Command window's OK prompt, or choose the Start Edit
option from the Edit menu.) The Edit window's full-screen
editor is much more convenient for entering program lines
than is the Command window's single-line interface. You can
also run a program directly from the Edit window (type RUN
or choose the Start option from the Run menu). When the
program is finished, control returns to the Edit window, so
you can immediately modify or add new lines to the program.

The Edit window has one feature that you may or may
not appreciate. Until you press Return, the line you're working
on will appear in ghost mode (the letters will look gray and
fuzzy). The purpose of ghost mode is to show which lines you
have changed. This is helpful to inexperienced programmers,
but, since ghosted letters are harder to read than normal ones,
it can be an annoyance. To disable ghost mode, enter this line
in the Command window:

POKE SYSTAB+2,0

Another way to ease the task of program entry is to in
crease the speed of the cursor. This is done from the Control
Panel. The second slider from the top (the one with a rabbit
and a turtle) controls the cursor speed. To increase the speed,
click on the slider and drag it to the left (toward the rabbit).
To slow it down, drag the slider to the right. You can also turn
the keyboard beeping sound off and on by clicking the C key
icon in the Control Panel.

324



APPENDIX B

~ Using the First Book of
Atari ST Disk

If you prefer not to type in the programs in COMPUTEi's First
Book of Atari ST, a companion disk is available that includes all
the programs in the book. You can purchase if by calling toll-
free 1-800-346-6767 (in New York, 1-212-887-8525). Or you
can use the coupon in the back of this book.

The disk that you have purchased from COMPUTE!
Publications includes a number of different types of files. On
the disk you'll find a menu program written in BASIC that can
be used to run any of the BASIC programs on the disk; some
data files used by the menu program; all the BASIC programs
from the disk; Pascal and C source files; and Pascal and C ex
ecutable files.

The disk does not contain BASIC or Logo; you'll find
these programs on the Language Disk that came with your ST.

Using the Disk
If you have TOS on disk, insert the TOS disk in drive A. If
you have TOS in ROM, insert your Language Disk in drive A.
Turn on your ST. Once TOS has loaded, select the proper
resolution for the program you want to run (see the specific
article) by selecting Set Preferences from the Options menu.

Programs in Chapters 2-5 are written in BASIC (except
"Doodler," which is written in Logo). They require that you
first load BASIC from your Language Disk. If the Language
Disk is not in drive A, insert it. Next, double-click the left
mouse button while pointing to the icon for disk A. Find the
icon for BASIC.PRG and double-click on it with the left mouse
button.

Once BASIC has loaded, turn off buffered graphics: Pull
down the Run menu, select Buf Graphics, and click the left
mouse button. If you pull down the Run menu again, there
should now be no checkmark next to Buf Graphics.

Insert COMPUTEI's First Book of Atari ST disk into drive A,
type

RUN MENU

325



APPENDIX B

and press RETURN. Follow the screen prompts to load the de
sired program. Anytime you're finished with a program and
want to return to the menu, also type RUN MENU. To run
Doodler, you'll need to load Logo.

C and Pascal Programs
Chapters 6 and 7 contain one BASIC program, SIEVE.BAS.
The rest of the programs in Chapters 6 and 7 are written in C
or Pascal. The disk contains both the source code and the exe
cutable code for each program. You can run the executable
code from the desktop by double-clicking the left button on
the appropriate icon. You can examine or print the source
code files from the desktop by double-clicking the left mouse
button on the file icon and then selecting Show or Print from
the dialog box. In order to modify and compile the source
code, however, you'll need an editor and a C compiler for the
C programs and Personal Pascal from OSS for the Pascal
program.

Here is a list of the files in Chapters 6 and 7.
Article Filename

Introduction to C SIEVE.BAS
Introduction to C SIEVE.PRG

Introduction to C SIEVE.C
Introduction to C SIEVE2.PRG

Introduction to C SIEVE2.C

Chapter
6

6

6

6

6

6 Moving Objects in C
6 Moving Objects in C
6 Moving Objects in C
6 Moving Objects in C

7 Event Management and
Windows in Pascal

7 Event Management and
Windows in Pascal

326

MFDB.PRG

MFDB.C

MULTIFDB.PRG

MULTIFDB.C

Type of File
BASIC

Executable

C source code

Executable

C source code

Executable

C source code

Executable

C source code

WINDDEMO.PRG Executable

WINDDEMO.PAS Pascal source code



*/ (in C programs) 254
% (in C programs) 256
— (in C programs) 257
+ (in C programs) 258
:= 287

(I ) See OR, logical
ACIA 123

address variable 124

ADDRIN 176, 179, 206
ADDROUT 176

AES (Application Environment
Services) 26, 28, 133, 135, 167,
175-83, 205

alert box 33, 298
animation, NEOchrome 220
animation in C programs 261
array element 295
array index 295
attack (musical) 234
attributes 170, 172
attribute values 138

audio/video port 4
autobooting 119
backslash ( \ ) 12, 207
bank-switching 4
BASIC 200, 281

and C 254-57

writing 284
batch processing 259. See also DOS

shells

begin (Pascal keyword) 288
binary mathematics 266
BIOS 26, 122
BLOAD 124

Boolean math 296

boot disk 119

braces (in C programs) 254
buffer 163

buffered graphics 37
button events 300
buttons 11, 207
C (language) 133, 168, 176, 249,

281

and BASIC 254-57
animation 261

programming 249-60
writing programs 252-60

CALL 124, 168, 226
CHARREAD 159

Chromatic Scale (table) 233
CIRCLE 188

CLEARW 188, 204
clicked( ) 269
CLOSE 151, 153
CLS 204

color 192-94

color cycling 220-22
Command window 142

compiled language 250, 258, 283
COMPUTE!'s First Book of Atari ST

disk, using 325, 326
constant declaration 285

CONTRL 137, 140, 169, 170, 175,
178, 195, 205

Control Panel 22-24, 142
Control-Z 160

Converting Flats to Sharps (table)
237

copy-box tool 219
copying 14
crash, computer 172, 179
cursor 142

d (in C programs) 256

Index

decay (musical) 234
declaration statements 255

#define 255

DEFSTR 126, 131
delimiters 68

DEPOSIT 226
desk accessory 22
dialog box 12, 168, 175, 180, 203,

205-7

directory pathname 12
disk directory 8
disk drives 4

dollar signs, for strings 126
DOS 7

DOS shells 259

double-clicking 8, 216
dragging 12-14
drawing 196-201
DURATION 239

duration (musical) 233, 237
editable text fields 29

Edit window 142

ELLIPSE 188

END 153

end. (Pascal keyword) 288
enumerated type 294
envelope (musical) 234
EOF 156

ERASE 265

error code 173

errors 157

EXAMINE 226

executable program file 9
external support routines 293
Fibonacci sequence 40
FIELD 163

filename 153

files 150-66

drawers 7

mode 162

number 153

rearranging 30
FILL 188, 190-92
fill icon 224

1ST Word word processor 5, 122,
166

FIX-OFFSET 164

flats (musical) 237
folder 11, 12
form (musical) 234, 235
form_alert routine 179-80, 206
FULLW 188

function 295

functions and procedures 287. See
also subprograms

GB 169, 175
GEM 5, 27, 135, 204, 251
GEM desktop 5-25, 27

bug 29
crash 29

customizing 119, 120-22
modifying 30

GEMDOS 26, 27, 135
GEMSYS 133, 167, 168, 175
generalized drawing primitive 138
GET # 163, 164
getchar( ) 257
ghost mode 7, 142, 324
gintin 134
GINTN, GINTOUT 176, 179
global variable 289
GOSUB 152

graphics 187-202, 203

graphics primitive 170
Graphics Statements (table) 188
handle (in Pascal programs) 295
hard disk interfaces 4
hot spot, pointer 144
icons 7, 9-11
IKBD (intelligent keyboard device)

122

immediate mode 137

indention 254

index file 151

initialization sequence 119
INKEYS 204
INP 190, 204

INP( ) 69
INPUT 69, 151, 153
INPUT* 151, 158
INPUTS 159

installing an application 16-19
Install Printer option 23
intelligent keyboard device. See

IKBD

INTIN, INTOUT 138, 145, 169,
172, 174, 175, 195, 205

joystick 119, 122-24
KEY OFF 204

Language Disk 187, 325
LBUTTON 146

left-clicking 215
line-A routines 27

line-drawing tool 217
LINEF 188, 196, 204
LINE INPUT # 151, 159
line label 157

line number 157, 254
LINEREAD 159, 160
linker program 259
LOAD 153

LOC 163

LOF 163

Logo 5, 226
loop

C 256, 269
Pascal 285

repeat-until 296
LPRINT 157

macro 255

magnify window 218
main( ) 254
mask 147

Megamax C compiler 259, 268
memory addresses 176
memory form definition block. See

MFDB

memory management unit. See
MMU

memory register 97
menu titles 7

MFDB (Memory Form Definition
Block) 261-66

MMU (Memory Management Unit)
123

MOD 203

mode 152

mode value 265

monochrome monitor 4

Motorola 68000 microprocessor 3
mouse 12, 141-49, 207

controller 6, 141
customizing 146
pointer 180
reading 144-46

msg buffer 296, 297

327



multiple-choice test 66
multiple screen windows 6
multiple selection 15
multitasking 23
music 232-46

Musical Notes (figure) 237
NEOchromeprogram 5, 213-25

color chart 215

NEW 153

nonexecutable file 9
Note Duration (table) 239
numeric values 126

object code 259
octave 232, 237
Octaves (figure) 238
offset 163

ON ERROR 156

opcode 170, 178, 197
opcode number 136
OPEN 151

operations code 197
OR 266. See also XOR

OR, logical (I) 179, 207
oscillator (musical) 233
Output window 133, 204
palette blocks 218
parallel port 4
parameter 254
parameter blocks 136, 145, 168-70,

175, 205
parameter list 124
parentheses 254, 256
Pascal programming 281-89

main body 288
programs 285

PCIRCLE 188
PELLIPSE 188

period (musical) 235
PERIOD 240

Personal Pascal 32, 291, 295
pitch (musical) 232, 237
pixels 214
pointer 262
predefined constants 293
preprocessor 255
prime numbers 252
primitive ID 138, 170-72
PRINT 157

PRINT # 151, 157
printr() 256
procedure, Pascal 295
program identifier 285
pseudo-code 250
PSG (Programmable Sound

Generators) 241
PTSIN, PTSOUT 138, 145, 169,

171, 174, 175, 195, 205
put() 266
PUT # 163

328

question mark (in Logo programs)
227

QUIT 153
RAM disk 259

ramp lines 217-20
ramp pointers 218
random files 151, 160-64
range (musical) 232
RBUTTON 146

READ 154

READFILE routine 152, 156
record length 162
records 163
redraw 302

release 234

remark 254

RENUM 157

REPLACE 265
reserved memory 171, 205
reserved variables 175

RESUME 156, 157
REVerse TRANSparent mode 265
right-clicking 215
root directory 12
roping 15
RUN 142, 153
Save Pic option 229
screen modes 19-22

screens, full 204
semicolon 254, 256, 285
sequential files 68, 151-60
set mouse form. See SMF

Settings menu 226
shape storage modes, converting

264

sharps (musical) 237
SKETCH 227, 228
SL1DENEO program 221
sliders 214

SMF (Set Mouse Form) 146
sorting routines 126-32
SOUND 232
sound generator 241
source code 258
source image 264
sprites 261-69
sprite simulation 261
ST BASIC 5, 135, 203, 204, 324

file processing 69
ST Writer word processor 120, 164
Start option 142
static palette 221
STICK 122

STRIG 122
string, define 33
strings 126

sorting 131
structured language 251

subfunctions 138

subprograms 287
subroutines 138

sustain (musical) 234
SWAP 126

SYSTAB 190
system routines 135-49, 168
tempo 240
Tempo (table) 240
text, writing 194-96
text editor 120

timing delay 223
TOS 5, 26, 135, 203, 282
TRANSparent mode 265
TRAP 27

trash can 7, 121
Turbo Pascal 282

two-drive system 8
type 31, 293-94
type declaration 286
typing in programs 142, 323, 324
UNIX operating system 249
value 294
variables 81, 126, 255, 285, 293
VARPTR 124, 178, 193
VDI 26, 28, 133, 135, 167, 187,

194-202, 204
calling the system routine 173
library 261
opcodes 136
Raster Opaque Copy Form 261
system routine 136

VDI and AES Routines (table)
208-9

VDISYS 133, 135-41, 167, 168,
173-75, 178, 205

vertical synchronization 268
vertices 137, 170
voice (musical) 232
volume (musical) 232
vro_cpyfm( ) 261, 265
Vsync() 268
VT-52 terminal emulator 23
WAVE 232, 233
Waveforms (figure) 235
WAVEs (table) 234
windows 291-304

active 9

Wirth, Niklaus 281
with (Pascal keyword) 295
WRITE # 151, 157, 158
XBIOS 26, 27
XOR 265-67



To order your copy of COMPUTEI's First Book of Atari ST Disk,
— call our toll-free US order line: 1-800-346-6767 (in NY 212-

887-8525) or send your prepaid order to:

COMPUTEI's First Book of Atari ST Disk
COMPUTE! Publications
P.O. Box 5038
F.D.R. Station

New York, NY 10150

All orders must be prepaid (check, charge, or money order), NC
residents add 4.5% sales tax. NY residents add 8.25% sales tax.

Send copies of COMPUTEI's First Book of Atari ST Disk at
$15.95 per copy. (203BDSK)

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

a Payment enclosed
a Charge a Visa a MasterCard a American Express

Acct. No. Exp. Date

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

(Required)

329





_

—

CHARTER SUBSCRIPTION FORM

DYES!
Sign me up for six
issues (a fullyear's
subscription) at the
special introductory
price of just $59.95.
I save more than $17
off the newsstand
price.

• Payment enclosed • Charge my VlSA/MasterCard

Credit Card #_ Exp. Date-

Signature.

Name_

Address-

City_ -State- _Zip_

Outside U.S.A., please add S6 (Cl.S.) per year for postage.

Here's your chance to cash in with big
savings on COMPUTED AtariST Disk &
Magazine—the exciting new publication
devoted exclusively to the special needs
and interests of Atari ST users like you.

• Sam Tramiti Speak* Out

• Sttnmu-vCf'S Rtpoft \

• ST Sem A Nam M olx
ST cemmimit)

• On This Month's Ohk:

:iit!ii! ;•• IK>«<1 aitltot

m

Every other month, COMPUTE!*
AtariST Disk & Magazine brings you ex
citing new action-packed programs
already on disk! Just load and you're
ready to run.

You can depend on getting at least
five new programs in each issue—high-
qualityapplications, educational, home fi
nance, utility, and game programs you
and the entire family will use, enjoy, and
profit from all year long.

And here's even more good news.
Subscribe now to COMPUTE!* Atari ST
Disk & Magazine and take advantage of
big Charter Subscription savings. Get a
full year's subscription for just $59.95.
You save over $17 off the newsstand

price.
No other publication gives you more

for your Atari ST than COMPUTEls Atari
ST Disk & Magazine. So sign up now by
using the coupon above—or call 1-800-
247-5470 (in Iowa 1-800-532-1272).



NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7551 DES MOINES, IA

POSTAGE WILL BE PAID BYADDRESSEE

COMPUTERS Atari ST

Disk & Magazine
RO. Box 10775

Des Moines, IA 50347-0775

1.1.1.II II..I..II,.,III,,.I...II...I.I.In.I.II

NEW FOR ATARI ST USERS

COMPUTE!'S ATARI ST
DISK & MAGAZINE

Only COMPUTEt's Atari ST Disk &
Magazine gives you all this and more
in each big issue:

TOP QUALITY PROGRAMS: Applica
tion programs for home and business.
Utilities. Games. Educational programs for
the youngsters. All are already on an
enclosed disk and ready to run. For exam
ple: a typical disk might contain an elabo
rate adventure game written in BASIC, a
programming utility written in machine
language, a dazzling graphics
demo in compiled Pascal, and a
useful home or business ap
plication written in Forth or C.

NEOCHRONE OF THE
MONTH: What are computer
artists doing with the Atari ST?
Each issue contains a Neo-
chrome picture file—ready to
load and admire.

REGULAR COLUMNS: If
you're a programmer—or would
like to be—you'll love our col

umns on ST programming techniques and
the C language. Or check out our column
on the latest events and happenings
throughout the ST community. Or send
your questions and helpful hints to our
Reader's Feedback column. •

REVIEWS: Honest evaluations of the
latest, best software and hardware for the
Atari ST.

NEWS & PRODUCTS: A comprehen
sive listing of all the new software and

peripherals for your ST.

AND MORE: Interviews with
ST newsmakers, reports on the
latest industry trade shows, and
overviews of significant new
product introductions.

Don't miss a single big issue. Sub
scribe to COMPUTEFs Atari ST
Disk & Magazine now through
this special money-saving offer.
Return coupon above or call
1-800-247-5470 (in Iowa
1-800-532-1272).
COMPUTE! Publications, Inc.

RETURN COUPON ABOVE TO ENJOY
CHARTER SUBSCRIPTION PRIVILEGES






	Front Cover
	Title
	Copyright

	Contents
	Foreword
	1: Getting Started
	Introduction to the ST
	ST System Software, Inside Out
	Odd Facets of GEM
	GEM Quirks

	2: Games
	Switchbox
	Reversi
	3-D Tic-Tac-Toe

	3: Applications and Education
	Hickory, Dickory, Dock
	Multiple-Choice Test Generator
	Memory Trainer
	Softball Statistics
	Home Financial Calculator

	4: BASIC Programming
	ST Hints and Tips
	ST BASIC Sorting Algorithms
	Custom Title Bars for ST BASIC
	Adding System Power to ST BASIC
	File Handling in ST BASIC
	Using GEMSYS and VDISYS in ST BASIC

	5: Sound and Graphics
	ST Graphics
	MODified Shapes for Atari ST
	NEOchrome: The Rainbow Machine
	Doodler
	Making Music on the ST

	6: C Programming
	Introduction to C Programming
	Moving Objects in C

	7: Pascal Programming
	A First Look at Pascal Programming
	Event Management and Windows in Pascal

	Appendices
	A: A Beginners Guide to Typing In Programs
	B: Using the First Book of Atari ST Disk

	Index
	Adverts
	Back Cover

