Valuable collection of software tools
and programming hints

Y 2

A Data Becker book pubhshed by

You Can Count On [F¥¥TIIIIITL
Abacus|iiii

ATA IINET

\/

7S
TRICKS & TIPS

Valuable collection of software
tools and programming hints

By Rolf Briickmann
Lothar Englisch
Jorg Walkowiak
and Klaus Gerits

A Data Becker Book

Published by

Abacus it Software

First Edition, March 1986
Printed in U.S.A.

Copyright © 1985 Data Becker GmbH
Merowingerstr.30
4000 Dusseldorf, West Germany
Copyright © 1986 Abacus Software, Inc.
P.O. Box 7219

Grand Rapids, MI 49510
This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photcopying, recording or otherwise without the
prior written permission of Abacus Software or Data Becker, GmbH.

ATARI, 520ST, 1040ST, ST, TOS, ST BASIC and ST LOGO are
trademarks or registered trademarks of Atari Corp.

GEM, GEM Draw and GEM Write are trademarks or registered trademarks
of Digital Research Inc.

IBM is a registered trademark of International Business Machines.

ISBN 0-916439-47-X

b et ek o ok ek ok ok ek o ek
O\MA-&W_NNNN»—

W W W N = N B W N

N —

NP G) B bt b i s

W R =

BN -

[u—

[S—

Table of contents

ST BASIC

Special BASIC commands

BASIC and GEM

The VDISYS command

Using VDI calls from BASIC

The GEMSYS command

How fast is BASIC?

BASIC and machine language

"Safe" places for machine language programs
The most expensive clock in your house
Automatic hardcopy

Utilities for the ST

Current time display

Printer spooler for the ST
RAM-disk for the ST
Auto-starting TOS applications
Using machine language and C

Hardcopy in color

ST hardcopy

The screen display

Color hardcopy programs

Color dot-matrix printer hardcopy
Color plotter hardcopy

The GEM programming environment
Inside GEM

The Virtual Device Interface

The Application Environment Services
The resource file

Working under TOS

Twenty-one

The next step: A GEM application
PRINIT - An example application
Building a RSC file

PRINIT as a desk accessory

Color Plates

e
QUNEPWRNRNON -

W R -

[y

Chapter 1

C ST BASIC)

Special ST BASIC commands

BASIC and GEM

The VDISYS command

VDI calls from BASIC

The GEMSYS command

How fast is BASIC?

BASIC and machine language

"SAFE" places for machine language programs
The most expensive clock in your house
Automatic hardcopy

Abacus Software Atari ST Tricks and Tips

ST BASIC

Two languages are packaged with the ST—BASIC and LOGO. BASIC is
the most widely used language for personal computers, of course. We
won't talk about all of ST BASIC's commands. You can find out more
about that in other books, such as the ST BASIC Training Guide from
Abacus. Instead, we'll introduce some the features that are unique or
peculiar to this version of ST BASIC.

If you're already familiar with BASIC on other personal computers, then
you should have little trouble adapting to ST BASIC. The syntax of ST
BASIC is very similar to the Microsoft BASIC on the IBM PC,

On the other hand, ST BASIC has some very impressive capabilities. In
particular, ST BASIC has a very flexible interface to the GEM (Graphics

Environment Manager) and to the VDI (Virtual Device Interface). These
provide a convenient way to make use of many powerful ST features.

1.1 The special ST BASIC commands

Below is a short description of the commands unique to ST BASIC.

FOLLOW, UNFOLLOW
The FOLLOW command outputs the value of simple variables when the
contents of that variable change during the program run. This makes it much
easier to search for programming errors. The UNFOLLOW command turns
off the output of variable values. The syntax for UNFOLLOW is:
FOLLOW a,angle%,text$
(other BASIC statements)

UNFOLLOW text$

Abacus Software Atari ST Tricks and Tips

BREAK, UNBREAK

The BREAK and UNBREAK commands are also used for program
debugging. The BREAK command halts the execution of the program when

the corresponding line number is reached. At this time the following is
displayed:

b nnn
Br

The b signifies the BREAK, and nnn is the line number at which the BREAK
was encountered. Br signifies that you are in break mode. Program
execution continues if you press the <RETURN> key.

BASIC is still in the BREAK mode. If the corresponding line number is
encountered again (in a loop, for example), program execution is halted
again. You can disable this with the UNBREAK command. Example:
BREAK 120,512,2013
UNBREAK

TRON, TROFF

The TRON and TROFF commands are also used for program debugging.
They may only be used in command mode.

TRON turns tracing on for the entire program. All line numbers are
displayed as they are encountered during program execution.

TRON i-j turns tracing on for a specific range of lines. All line numbers
with values falling between i and j are displayed as they are encountered
during program execution.

TROFF turns off tracing for the entire program.

TROFF -100 turns off tracing for a specified range of lines.

Abacus Software Atari ST Tricks and Tips

TRACE, UNTRACE

The TRACE and UNTRACE commands are additional commands for
debugging, similar to TRON and TROFF . But in addition to displaying the
line number of the statement being executed, the contents of that line are
also displayed. The syntax is identical to TRON and TROFF.

BLOAD

The BLOAD command loads the contents of a file to a particular range of
memory. You can use the BLOAD command to load machine language
programs or screen images.The syntax is:

BLOAD filename, addr

Here, filename is the name of the file to be loaded. addr is a memory
address and is not checked for validity. You are free to load a file to any
memory location. Remember that if you fail to specify a load address, a fatal
error will occur. In this case, the contents of the file is loaded to the default

address 0. This overwrites the important exception vectors and you'll have
to reboot the ST.

BSAVE

The BSAVE command saves a range of memory to a file. You can use this
command to save a screen image or a machine language program.

The syntax is:
BSAVE filename, addrl, addr2

filename is the name under which the memory range is to be saved. addrl is
the starting memory address and addr2 is the number of bytes to be saved.

Examples:
BSAVE "screen.bin”,&h78000, &h7d00

BSAVE "mprog.bin",&h7£d00,768

Abacus Software Atari ST Tricks and Tips

In the first example, the screen contents of the 520 ST screen of are saved to

the file called screen.bin. In the 1040 ST, the screen memory is located
at £§h£8000.

Immediately following screen memory are 768 bytes of unused memory.
This area may be used for short machine language routines, since it's not

used by the operating system or BASIC. The second example saves the
contents of this unused memory area.

CALL

There are two ways of calling machine language programs from ST BASIC.
The first way is to use the CALL command. The parameters for CALL
specify the address of the desired routine and the values which are to be
passed to it. The address of the routine must be a variable.

address = &h7£d400
CALL address

address = &h7£d00

valuel = 33.33

value2% = 100

z$ = "test"

CALL address(vall,val2%,100,z$,"empty string")

In the first example the routine is called without parameters. The machine
language routine may modify all registers. The value of the stack pointer
must be restored to its value upon entry to the routine. This is because the
routine itself must be ended with RTS. If the stack pointer is not restored,
your program will probably crash..

The second example demonstrates how parameters are specified in the
CALL command. The parameters must be enclosed in parentheses and
separated from each other by commas. All variable types are allowed as
parameters. The parameters are converted to signed 32-bit integers.
Therefore a value of 33 is passed through val1. For strings (z$, "empty

string™") the address of the string is passed, also represented as a 32-bit
value.

How can the data be accessed in the machine language program? When the
machine language program is called, registers AQ, A7, and DO are used. AQ
contains the address of the routine. You may think that this is superfluous,

6

Abacus Software Atari ST Tricks and Tips

because the address of the routine is normally known. You just might be
surprised. Later we will show how helpful the contents of AQ can be.

Register DO contains the number of values passed. It's contained in the
lower 16 bits. This value is also very important for some applications,
especially if the routine can be called with a variable number of parameters.
The use of a 16-bit counter is more than sufficient. Such an enormous
number of parameters cannot be placed in one BASIC line.

Register A7, the user stack pointer, contains the return address to the
BASIC interpreter. Additional information is also placed on the stack. For

example, you can determine the number of parameters in the register Dx
with the instruction MOVE .W 4 (SP), Dx.

With the instruction MOVE.L 6 (SP), Ax you get the start of a table. In
this table are as many long words (32-bit values) as parameters in the CALL
command. In these long words are the values or addresses of the strings.

PEEK

PEEK is a function that returns the contents of memory. In ST BASIC,
PEEK can return 8-bit, 16-bit or 32-bit values.

Normally PEEK returns a 16-bit value. For example, PEEK (0) returns the
contents at the memory locations 0 and 1. The value at memory location 0
is the low-byte, and the value at memory location 1 is the high byte.

The command DEF SEG may be used so that subsequent calls to PEEK
return an 8/16/32-bit value depending on the DEF SEG setup.

To return a 32-bit value, you can use PEEK in conjunction with the
DEFDBL declaration. DEFDBL is always used in conjunction with DEF
SEG, PEEK or POKE.

POKE

POKE is the counterpart of PEEK. The POKE command places a value at a
specific memory location. In ST BASIC the value may be 8 bits, 16 bits or
32 bits long.

Abacus Software Atari ST Tricks and Tips

POKE normally places a 16-bit value in memory. POKE &1000, &2468
will place the hexadecimal value & 68 in memory location £1000 and &24
in memory location £1001 .

After DEF SEG, subsequent POKE commands place 8/16/32-bit values in
memory.

Using POKE in conjunction with the DEFDBL function places 32-bit values
in memory.

DEF SEG

The DEF SEG command sets the segment address for the commands PEEK

and POKE. DEF SEG or DEF SEG=0 sets the segment to the physical
address O in memory. This is the default condition after power-up.

If a value greater than 0 is entered, the segment for PEEK and POKE is set to
this address. The following example will clarify this point. To access the
ST's screen memory you could do the following:

value = PEEK(&h7£d400)

Alternatively, you can set the segment for the desired address. Then the
address specified for PEEK and POKE are to be viewed as relative to the
start of that segment.

DEF SEG=&h7fd00 : REM Address following is
value = PEEK(0) : REM relative to &7FDOO

Remember that in the first example, the contents of addresses §h7 £d00
and §h7£d01 are returned (16-bit-values). In the second example, the
contents of address sh7£d00 are returned (8-bit value).

GOTOXY xpos,ypos

The GOTOXY command positions the cursor on the screen. An output
command (PRINT or WRITE) then starts at this location. The cursor

position specified in this manner also determines the location of the INPUT
command.

Abacus Software Atari ST Tricks and Tips

The X and Y coordinates are relative to the upper left-hand corner of the
screen. Constants can also be used in place of the variables, of course.

Unfortunately, the GOTOXY command to one of the several defective ST
BASIC commands. The X position is not evaluated correctly. The specified
value is (incorrectly) increased by two. This can lead to rather confusing
results. If, however, one of the scroll bars is clicked after the output, the
contents of the output window are reprinted and this time in the proper
positions. You should therefore use caution when working with this
command. Screen masks cannot be easily constructed at the current time.

Try this example to see the problem yourself. After the program is finished,

click the output window scroll box to verify that the updated positions have
changed.

10 GOTOXY 10,10:PRINT "Here is position 10,10"
20 PRINT "1234567890123456789"

Here is an example using GOTOXY in conjunction with the INPUT
command:

GOTOXY x.pos,y.pos:INPUT value

INKEY$

The INKEYS$ function reads the keyboard and returns the ASCII value of
the key pressed. In the current version of ST BASIC, the INKEYS does not
work properly. Characters are not read from the keyboard. This is probably
because of the fact that, before the execution of each command, a test is
made to see if the keys <CONTROL> and G or <CONTROL> and C are
pressed. In this case the program is either ended (<CONTROL>C)
completely or interrupted (<CONTROL> G).

However, the internal keyboard buffer is regularly emptied by this test. The
INKEYS function is then so fast that during the processing, no new key
presses appear in the keyboard buffer. The function will then always return
with no key value. You can use the INPUT$ or the INP function to replace
the INKEY$ function in many cases, however. We will describe both.

Abacus Software Atari ST Tricks and Tips

INPUTS$

The INPUTS function is available only in a few BASIC dialects (such as the
IBM PC). With this function, one or more characters can be read from the
keyboard or from a file. The most interesting feature of this command is that
(almost) no interpretation of control characters is made. The syntax is:

text$ = INPUTS(10)

a$ (i) = INPUTS(10,1)
or

a$ (i) = INPUTS (10, #1)

In the first case, 10 characters are read from the keyboard without
displaying these keys on the screen. The keys <RETURN>, <ENTER>,
<CONTROL> G, and <CONTROL> C can be pressed without interrupting
the input. The only terminating condition besides reaching the specified
number of characters is the input of <CONTROL> Z. This character, with
an ASCII value of 26, is usually used in files as the identifier for the end of
the file. The input of 10 characters is rarely necessary (such as for the
invisible entry of a password). However, if the number is reduced to one,
this command becomes a replacement for the following statement which
does not function correctly in ST BASIC:

10 aS$S=INKEYS$:IF a$="" then 10:' doesn't work on ST

The special keys of the ST keyboard, the function keys and cursor keys, do

not return ASCII values. These keys cannot be read with the INPUTS
function.

In the second and third examples, 10 characters are read from a previously
opened file and placed in a variable. If you work with data records of a set
length, the otherwise special characters like comma, semicolon, quote, and
CR (<ENTER> key) can be read without difficulty. For many applications,
it's also useful for a file to be read character by character. This is possible

by specifying the number of characters to be 1 as the parameter of the
INPUTS$ function.

10

Abacus Software Atari ST Tricks and Tips

INP, OUT

On earlier generation computers with Z-80 or 8080 processors, the INP
command and the OUT command are often used to address the I/O ports
built into these processors. But since the MC68000 used in the ST has no

port addressing, we have to figure out what these commands do in the ST,
and what results they yield.

In the BIOS of the ST there are three function calls with the names
BCONSTAT, BCONIN, and BCONOUT. Almost all of the system input and
output to the screen, printer, RS-232 interface, MIDI interface, and
keyboard processor is performed with these three calls. In assembly

language, these calls are used with the number of the desired device to be
accessed.

The following assignments apply:

Centronics interface/printer
RS-232 interface

Console (keyboard and screen)
MIDI port

Keyboard processor

-huoN»dCEE

These same numbers are used with the INP and OUT commands. You can
therefore address all of the interfaces directly from BASIC. For example,
the command,

OoUT (0),65

outputs the value 65 (ASCII value of the letter A) on the printer. You might
prefer to use the command:

LPRINT "A"™

Doing so seems to work just as well. But try to send the character LF with
ASCII value 10 to the printer by means of LPRINT. You will soon notice
its effect. The ST, or more exactly ST BASIC, sends the character sequence
CR/LF, the ASCII characters 13 and 10—which is completely unnecessary.
This sequence is not used at all when printing graphics with Epson printers
and their compatibles. Neither the bit pattern nor the given number of
graphic bytes agrees with what is expected when this sequence is received.

11

Abacus Software Atari ST Tricks and Tips

It gets even worse. Since the ST sends the character sequence CR/LF after
every 72 characters, we get some really messed up graphics.

But don't worry. The OUT command will solve the problem in this case
very nicely.

Other devices besides the printer can be accessed with the OUT command.
The other interfaces are also available to us. The RS-232 interface can be
fully utilized from BASIC. You can also read from the RS-232 port with the
INP function. With it, a terminal program can be written for the ST in
BASIC with relatively little effort.

The INP and OUT commands using device number 2 allow writing of
BASIC programs under the GEM environment. The entire screen is then
available. For input, the INP (2) behaves like using the function INPUTS.
INP (2) has a decisive advantage, however. The function and cursor keys
also return unambiguous values and can therefore be read.

The MIDI interface, both input and output, can be programmed using device
number 4. Readers with appropriate instruments, such as electronic organs
or synthesizers, can control their devices with ST BASIC. This is assuming
that you know the protocol used for MIDI. With this knowledge, it is
relatively simple to control the devices with a BASIC program.

The last possible device on our list is the keyboard. As you know, the ST
has an intelligent keyboard. It contains its own processor which reads the
keys, the mouse and joysticks. In addition, the keyboard processor contains
a clock. Values can only be sent to the keyboard processor, since the
"answer" is usually discarded by the operating system. INP (4) always
returns the value 16.

VARPTR

VARPTR is a function that returns an address. A variable or file number is
passed to the VARP TR function as the argument:

OPEN "I",1,"xyz.dat"
? VARPTR (#1)

In this example we can make no reasonable interpretation of the return

value. This version of ST BASIC does not correctly support VARPTR using
a file number.

12

Abacus Software Atari ST Tricks and Tips

a$ = "TEST"
ad = VARPTR (a$)
a = 10

adr = VARPTR (a)

In these two examples, the interpretation is relatively simple. Let's look at
the first case.

After the VARPTR function is used, the variable ad contains the address of
the string a$. The string descriptor itself consists of six bytes. The first
byte of the string descriptor contains a flag whose function will be explained
shortly. The second byte in the descriptor specifies the length of the string.
Since the maximum value contained in a single byte is 255, the maximum
length of a string is 255. The third through sixth bytes contain the address at
which the string itself is located in memory.

But if you check these values with the example above, you will be amazed
at the string address. The "address" turns out to be the string itself. All
strings which are one to four characters long are stored directly in the
"address" of the string descriptor. Try changing a$ = "TESTER" and
check its address.

This also clarifies the meaning of the flag, the first byte of the descriptor. If
a zero is entered here, the string is less than five characters—therefore
placed in the descriptor itself. If the hexadecimal value 10 is entered here,
however, the contents of positions three through six are the actual memory
address of the string.

Using the VARPTR function for numerical variables returns the memory
address at which the number is to be found. Real numbers are stored in four
bytes. Integers (such as A%) are stored in two bytes. We will take a closer
look at integer arrays later, since they are well suited for protecting small
machine language programs in memory.

SOUND

The SOUND command of ST BASIC is quite capable and very easy to use.
The sound chip in the ST is the YM-2149. This IC is compatible to the
well-known AY-3-8910, which is used in various other computer systems
(such as MSX computers). This chip offers a broad range of capabilities for

13

Abacus Software Atari ST Tricks and Tips

creating sounds over three different voices. In addition, an external noise

source can be combined to allow the creation of special effects (like drums
or explosions).

The SOUND command has a maximum of 5 parameters, specified as
numerical values. The syntax is as follows:

SOUND voice,volume,note,octave,duration
The value of voice canbe 1, 2, or 3 according to the desired voice.
The value of volume is 1 and 15; 1 is soft and 15 is full volume. This value
is stored according to the voice in bits 0-3 of register 8 (voice 1), 9 (voice

2), or 10 (voice 3).

The variable note allows values between 1 and 12. Since an octave consists
of 12 steps, notes can be played directly.

The octave can be between 1 and 8, meaning that the ST can create sounds
over eight octaves.

The duration can accept values between 1 and 255. The duration is

measured in 20 milliseconds. If you specify a duration of 50, a tone lasting
about 1 second is produced.

The following table shows the assignment of notes to numbers for the
variable note:

1 C 2 C# 3 D
4 D# 5 E 6 F
7 F# 8 G 9 G#
10 A 11 A# 12 H

The concert pitch A (440 Hertz) can be created with the SOUND command:

SOUND 1,15,10,4,255

Octave 4 is the one normally designated as octave zero. Smaller octave
values result in deeper tones; higher values create higher tones.

14

Abacus Software Atari ST Tricks and Tips

WAVE

With the SOUND command alone you can program very nice single-voice
melodies, but they become more interesting and polyphonic with the WAVE
command. This command gives us many more sound capabilities. It is also
harder to understand. It took us a lot of work to understand the construction

and the parameters. For complete understanding, an exact knowledge of the
hardware construction of the sound chip is useful.

Like the SOUND command, the WAVE command also has five parameters.
The first parameter is comparable to the voice parameter of the SOUND
command. With it, the voice that creates the tone can be selected. The
possible values are somewhat different here, however.

The best way to understand WAVE is to take a closer look at a special
register in the sound chip. This is register 7, called the multi-function
register. If bit O of register 7 is set, voice 1 is turned off, If bit 1 is set,
voice 2 is turned off. If bit 2 is set, then voice 3 is turned off. A cleared bit
creates the tone programmed for the voice.

Bits 3 to 5 are responsible for switching noise to the three voices. Here too,
the function is enabled with a cleared bit, while a set bit turns the sound off
for the corresponding voice.

Bits 6 and 7 are responsible for programming the data direction of the two
universal 8-bit ports integrated into the sound chip.But as these two bits
have no function in sound creation, we will not discuss them further here.

The bits O to 5 can be manipulated with the first parameter of the WAVE
command. If the parameter is viewed as a binary value, the individual bits
of the parameter have exactly the reverse function. If the value 1 is passed
as the parameter, bit O of register 8 is cleared, causing voice to be turned on.
All other bits of register 7 are set, turning all of the other functions off. If,
for example, this parameter is 37 (%100101 in binary), voices 1 and 3 are
turned on and voice 2 is turned off. In addition, the noise source is switched
into voice 3. If the first parameter is zero, all the voices and noise sources
are switched off.

The second parameter of WAVE affects three registers of the SOUND chip at
the same time. These are the registers 8, 9, and 10. Not all bits are affected,
only bit 4. Bit 4 in the three registers named determines if the volume of the
three voices is affected by the specification of SOUND (contents of bits 0 to
3 of the three registers; see SOUND) or through a hardware waveform.

15

Abacus Software Atari ST Tricks and Tips

The hardware waveform is a special feature of the sound chip. By using the
waveform, the volume of the tone is changed periodically or even just once.
The waveform offers many possibilities for changing the sound of a tone.

The second parameter must also be viewed as a binary value. The following
list shows the meaning of the bits in the WAVE command:

Bit number Function
1 cleared volume voice 1 from bits 0-3 reg 8
1 set volume voice 1 via waveform
2 cleared volume voice 2 from bits 0-3 reg 8
2 set volume voice 2 via waveform
3 cleared volume voice 3 from bits 0-3 reg 8
3 set volume voice 3 via waveform

The value range is thereby set to 0 through 7. If the value 0 is passed as the
second parameter, the volume of all three voices is determined by the
volume given in the SOUND command. For a value of 5, the volume of
voices 1 and 3 are manipulated by the hardware waveform, while voice 2
runs via the volume set in bits 0 to 3 of register 9.

The third parameter of the WAVE command has a close relationship to the
second parameter. This parameter selects one of the 9 different waveforms.
The possible values can lies between 0 and 15, but some values create
identical waveforms. The possible results are difficult to describe with

words. Accordingly, the values and their corresponding waveforms are
found in Figure 1.

The fourth parameter also manipulates registers in the sound chip directly,
as well as their relationship to the waveform. The sound chip contains two
8-bit registers whose contents affect the period of the waveforms. The value
of this parameter ranges from 0 to 65535. The larger the value, the longer
the period of the waveform. For extremely small values (<1000), the
waveforms are at such a high frequency that an additional audible frequency
results. This can be used for various special effects.

The fifth parameter determines the length of the tone to be created. It is only
effective in the program mode if another SOUND or WAVE command
follows. In the direct mode or from the editor, the tone continues until a key
is pressed, i.e. until the next mouse click.

16

Abacus Software

Atari ST Tricks and Tips

Figure 1

Programmable Sound Generator Waveforms

REG. 15
B2|B1|Bo

— >
Orox

O 4zo00| R

O] X4—+4>

N\
/1
NINNNNNNNN
AN
AVAVAVAVAN
A\
AN
4
A VAV
4

17

Abacus Software Atari ST Tricks and Tips

LINEF

The LINEF command is the simplest graphic function of ST BASIC. With
this command, arbitrary points or lines can be drawn on the screen. Four
parameters are required to specify the starting and ending coordinates of the
line. A line width of one point is preset. Later we will show how to change

not only the line width, but also the line pattern and appearance of the
starting and ending points.

LINEF 10,10,50,40

The line is drawn from coordinate 10,10 to coordinate 50,40.

CIRCLE

The CIRCLE command is for creating draw circles or arcs on the screen.
Either three or five parameters are required. Three parameters are required to
draw simple circles. The first two parameters determine the X and Y
coordinates of the center of the circle, and the third parameter is the radius in
screen units. The fourth and fifth parameters are required only to draw arcs.
These then specify the start and end angle in degrees. Note that the angle is
specified in tenths of a degree.

The following command would create a half circle with a radius of 100
points:

CIRCLE 320,199,100,0,1800

Enter this line to see the zero point for the angle specification as well. The
circle is always drawn counterclockwise from the 3 o'clock position.

Also, the line width is also set to one pixel for the CIRCLE command.
We'll show you how to change the line width later.

You'll notice that the circle isn't really a circle at all. CIRCLE can only draw
a polygon that approximates the shape of the circle. If you use a radius of
30 you can see that the resulting shape is not a circle, but an octagon. If you

need a "real"” circle, you have to calculate the values yourself and draw it
with the LINEF command.

18

Abacus Software Atari ST Tricks and Tips

PCIRCLE

The PCIRCLE command also draws a "circle" or arc. The required
parameters are identical to those of the CIRCLE command. This circle,

however, is filled with a color or pattern. The color and pattern are set with
the COLOR command.

ELLIPSE

In addition to the circle shape, ST BASIC has a command to draw an ellipse
or partial ellipse. For this reason the ELLIPSE command has either four or
six parameters. The first two parameters specify the X and Y position of the
origin, while the following two parameters specify the radius of the ellipse
in the X and Y direction. The (optional) parameters 5 and 6 specify the

angle of a segment to be drawn. These last parameters are the same as for
the CIRCLE command.

ELLIPSE 320,200,100,30,450,2700

PELLIPSE

The "P" in front of the name again designates that the resulting shape will be
filled with the current color and pattern. The parameters are identical to
those of the ELLIPSE command.

COLOR

The COLOR command sets the character color, the color of the fill pattern,
the color of lines drawn with LINEF, and the pattern used when filling
screen sections. A total of five parameters are required.

The first parameter specifies the color for subsequent text output. Only the
values 0 and 1 are possible with monochrome monitors. If 0 js used as the
parameter, the text will be "invisible" i.e. in the background color. With a
color monitor, the value of this parameter depends on the display mode. In
low-resolution mode (320x200), the value range is from O to 15. In
medium-resolution mode (640x200), the values range from 0 to 3.

19

Abacus Software Atari ST Tricks and Tips

The second parameter specifies the color for the next PCIRCLE,

PELLIPSE, and FILL command. The values correspond to those of the
first parameter.

The third parameter determines the color of the lines drawn.

The fourth parameter determines the style used when something is filled:

Yalue Fill
0 no fill
1 solid fill
2 patterns
3 hatching patterns
4 user-defined pattern

Currently, the last pattern (4) is defined as the Atari logo,)| \

The fifth parameter determines the selection of the pattern (0-24) or hatching
(0-12). If this value is 0, no pattern is drawn, independent of other settings.

FILL

The FILL command allows you to fill arbitrary areas. The settings for fill
are made with the COLOR command. The first two parameters for FILL
specify the X and Y coordinates of a point within the area to be filled.

The third parameter is optional. It's a color number representing the screen
coordinate that limits the boundaries for the filling. If this parameter is
omitted, then the fill is bounded by any color except the background color.

FULLW

This command is one of several commands for manipulating windows.
With the FULLW command, any one of the four windows can be set to

maximum size. The four windows present in BASIC are accessible via the
following numbers:

0 EDIT window

1 LIST window

2 OUTPUT window

3 COMMAND window

20

Abacus Software Atari ST Tricks and Tips

By entering:
FULLW 2

the output window is set to the full available screen area. The other three
windows are covered up by the output window.

CLEARW

This command clears any of the four windows. It is comparable to the CLS
command of Microsoft BASIC, but refers to a special window in ST
BASIC. The command,

CLEARW 2
clears the output window. The position of the output cursor is not affected

by this command, so the command GOTOXY 0,0 should generally

follow a CLEARW 2 command. This places the cursor in the upper left
corner.

CLOSEW

Windows can be closed with the CLOSEW command. They then disappear
from the screen completely. The numbers of the windows correspond to
those in the other window instructions.

OPENW

With this command, closed windows (CLOSEW) can be opened again. This
command functions only when at least one other window is open. It appears
to be an error in this version of ST BASIC.

21

Abacus Software Atari ST Tricks and Tips

Summary

This brings us to the end of our description of the special commands of ST
BASIC. The other commands and functions of ST BASIC are equivalent to
those in other BASIC dialects. Since there is a great deal of literature
covering the standard functions and commands, we will not go into them.

We have intentionally postponed a discussion of two special, very powerful
commands. They are the GEMSYS and VDISYS commands. But since these
commands are so complicated and powerful, we have set aside a special

section for them. You will really be surprised by what you can do with them
from ST BASIC.

22

Abacus Software Atari ST Tricks & Tips

1.2 BASIC and GEM

We've already seen some of the features that make ST BASIC a very
complete implementation of the BASIC language. In addition, ST BASIC
has commands that allow easy access to the powerful features of GEM.

GEM, the Graphics Environment Manager, is the visually-oriented user
interface to the operating system. Rather than typing commands into the
computer, the user can perform the equivalent of the command by
manipulating "pictures" on the screen with the mouse.

GEM provides a comprehensive set of services for application programs. If
an application is written to use these standard services, then it's possible to
move that application to any computer that supports GEM.

How can this be possible? It's because the ST has a 68000 processor. The
IBM PC uses an 8088 processor. GEM runs on both the ST and the IBM
PC. If an application is written in a high-level language such as C to run on
the IBM PC with GEM, then it need only be recompiled to run on the ST.
In practice, small program changes are usually necessary, since
hardware-specific aspects of the computer may creep into the application.

But the concept of application portability is a very attractive feature of a
GEM.

We'll now take a closer look at GEM by studying its two main components.
These are the AES, or Application Environment Services, and the VDI, or
Virtual Device Interface.

The AES manages the visual features that are characteristic of GEM
applications: windows, pull-down menus, icons, etc. All of these are
high-level and complex functions which are generally unsuitable for use
from BASIC. There are exceptions, however, as we will see shortly.

The VDI provides the fundamental graphic primitives for displaying text and
graphics or inputting data from the keyboard or mouse. The VDI is
subdivided into the GDOS (Graphic Device Operating System) and the
device drivers. Of particular importance is the device driver. This part of
GEM is hardware-dependent and must be adapted for each output device. In
the current release of GEM for the ST, the only available device driver is for
the display monitor. Additional device drivers will certainly become
available in time.

23

Abacus Software Atari ST Tricks & Tips

1.2.1 The VDISYS command

The VDI performs dozens of different functions. You can use the VDISYS
command to access these functions from ST BASIC.

As part of the VDISYS command, several parameters are passed to GEM.
The parameters consist of five arrays or memory areas in which values are
stored. The arrays are named CONTRL, INTIN, INTOUT, PTSIN,
PTSOUT. These names are reserved variable names is ST BASIC.
Apparently the authors of ST BASIC found the features of the VDI so
powerful that they reserved those variable names. The reserved variable
names represent the address of the arrays, not the array itself. You can see
the address of the arrays by entering:

? contrl;intin;intout,ptsin,ptsout

To be precise, the named arrays are not the actual arrays used by the VDL
Rather, the contents of the named arrays are transfered to the VDI.

Since ST BASIC makes it very convenient to access the array contents,
using the VDI calls are simple. Here's an example:

POKE CONTRL ; (command number)

POKE CONTRL+ 2, (number of parameters in ptsin)
POKE CONTRL+ 4, (number of parameters in ptsout)
POKE CONTRL+ 6, (number of parameters in intin)
POKE CONTRL+ 8, (number of parameters in intout)
POKE CONTRL+10, (sub-function command number)
POKE CONTRL+12, (device handle, between 1 and 10)
REM

POKE INTIN , (first parameter)

POKE INTIN + 2, (second parameter)

POKE INTIN + 4, (third parameter)

to

POKE INTIN
REM

POKE PTSIN , {(first parameter)

POKE PTSIN 2, (second parameter)
POKE PTSIN 4, (third parameter)

+

n, (last parameter)

+ +

24

Abacus Software Atari ST Tricks & Tips

to

POKE PTSIN + n, (last parameter)
REM

VDISYS

REM

In this example, the individual parameters are POKE(into the corresponding
array elements. Since the individual elements are all 16 bits wide, a single
POKE places the value into the array element. This also explains the steps
of two in the POKEs. The elements in the CONTRL array, CONTRL+4 and
CONTRL+8 are not POKEd. After the call these these elements are PEEKed
to determine how many parameters were returned in INTOUT and PTSOUT.
The following example will make this clearer:

Normally, the mouse cursor is invisible. We can call the VDI to make it
visible. As previously mentioned, the VDI performs many different
functions. Each function is uniquely identified by a function code. The
function code for enabling the mouse cursor is 122. For a complete list and

in-depth description of these calls see the GEM Programmer's
Reference from Abacus.

The name for function code 122 is SHOW MOUSE. We POKE the function
code 122 into one element of the CONTRI, array. SHOW MOUSE expects
No parameters to be passed in the PTSTIN array, so we POKE the value 0
into CONTRL+2. One parameter is expected in the INTIN array, so we
POKE the value 1 into CONTRL+6. SHOW MOUSE does not have any
subfunctions, so CONTRL+10 is set to Zero.

CONTRL+12 contains the device handle. When ST BASIC is started, this
element is set to a value of 2 to indicate the screen. Since any value between
1 and 10 is allowed for the device handle for output to the screen, you do
not have to change this element. For a value between 11 and 20 output is
sent to a plotter (if a suitable device driver were present). For a value
between 21 and 30, the output is sent to a printer. These, then, are the
values for the CONTRI, array.

Now to the INTIN array. The counterpart to SHOW MOUSE is a function
called HIDE MOUSE, which disables the mouse's cursor. When HIDE
MOUSE is called, the VDI stores the number of HIDE MOUSE calls in an
element of INTIN. If SHOW MOUSE is called with a value other than zero
in INTIN, one is subtracted from the stored number. The cursor does not
necessarily become visible after the call.

25

Abacus Software Atari ST Tricks & Tips

If INTIN has a value of zero, the number of HIDE MOUSE calls is ignored
and the mouse cursor is enabled regardless.

The complete example looks like this:

1 rem 1 2 1

10 poke contrl, 122
20 poke contrl+2,0
30 poke contrl+6,1
40 rem

50 poke intin, O

60 rem

70 vdisys

80 rem

After the call you'll find a value of zero in CONTRL+4 and CONTRL+8.

This signals that the function has not returned any values in INTOUT or
PTSOUT arrays.

1.2.2 Using VDI calls from BASIC

Most VDI calls can be used from ST BASIC. Some calls are unnecessary or
superfluous since they have counter parts as BASIC commands. It's much
more complicated to draw a line with VDISYS than with the LINEF
command. Similarly, text output is simpler with PRINT than with VDISYS.

Try the examples that follow and decide for yourself whether you can make
use of a given function.

First we'll look at some special effects with text.

26

Abacus Software Atari ST Tricks & Tips

Text effects

VDI function 106 changes the appearance of the characters for text display.
Here's an example:

10 rem 1 2a text effects

100 fullw 2:clearw 2

110 as = "this is normal, intin = »
120 a$(0) = "this is bold, intin = »
130 a$(l) = "this is light, intin = »
140 a$(2) = "this is italic, intin = »
150 a$(3) = "this is underline, intin = »
160 a$(4) = "this is outlined, intin = »
170 gotoxy 6,3

180 ?a$;i

190 for i=0 to 4

200 gotoxy 6,5+2*j3

210 poke contrl »106
220 poke contrl+ 2,0
230 poke contrl+6 ,1
240 poke intin P 271
250 vdisys

260 ? as$(i);271

270 next

280 poke contrl »106
290 poke contrl+ 2,0
300 poke contrl+6 ,1

310 poke intin ' 0
320 vdisys
330 a=inp(2) : rem wait for keypress

This example demonstrates the different special effects. In addition, special
effects may be mixed. For example, setting a value of 9 in INTIN produces
" i ." In lines 280 to 320 the normal display mode is
re-enabled by setting INTIN to zero. Unless you do this, all subsequent
text is displayed with the special effects.

27

Abacus Software Atari ST Tricks & Tips

Change character size

The size of the text can also be changed. A total of six character heights are
possible. Since this also changes the character width, there are some
problems outputting the three larger character heights.

The PRINT command assumes a character width of 8 pixels. Since the
characters can be wider than 8 pixels, the right portion of the character is cut
off. The three smaller character heights can be used without problems.

Here's an example of changing the character height:

1 rem 1 2 2b change character height

10 fullw 2:clearw 2

20 a$(0) = "very small ;, intin ="

30 a$(l) = "small , intin ="

40 a$(2) = "normal , intin = "

50 a$(3) = "large , intin ="

60 as$(4) = "larger , intin = "

70 a$(5) = "gigantic ;, intin = "

80 a(0)=1l:a(l)=9:a(2)=10:a(3)=16:a(4)=18:a(5)=20
90 gotoxy 6,3

100 for i=0 to 5

110 gotoxy 6,5+2*1

120 poke contrl , 107
130 poke contrl+ 2,0
140 poke contrl+6 ,1
150 poke intin ya(i)
160 vdisys

170 ? as$(i)s;a(i)

180 next

190 poke contrl,107
200 poke contrl+ 2,0
210 poke contrl+6 ,1
220 poke intin, 10

230 vdisys

240 a=inp (2) : rem wait for keypress

We can solve the character width problem through programming. More
about this in our next example.

28

Abacus Software Atari ST Tricks & Tips

Graphic Text Output

VDI function 8 outputs text. The string of text may contain special effects

and may be used to correctly display enlarged characters that are only
partially displayed with the PRINT command.

The text to be displayed is placed into the INTIN array. Each character of
the text string occupies the lower byte of the array element (each is 2 bytes
wide). In this example, the text string is placed into the array in lines 220 to
240. The last character of the text string must have a zero value, line 250.

The display location (on the screen) is passed through the PTSIN array.
The display location are actual screen coordinates, not a relative location
within the window. The VDI does not recognize windows; the AES
manages them. The display location is relative to the upper-left corner of the
character to be displayed. A value that positions some of the text off the
screen should be avoided.

Here's the program:

10 rem 1_2 2c graphic text output
100 a$(0) = "small"

110 a$(l) = "somewhat larger"”

120 a$(2) = "normal"

130 as$(3) = "still larger"

140 as(4) = "very large"

150 a$(5) = "gigantic"

160 a(O)=1:a(1)=9:a(2)=10:a(3)=16:a(4)=18:a(5)=20

170 yp(0)=50:yp(1)=62:yp(2)=80:yp(3)=100:
yp (4)=125:yp (5)=160

180 fullw 2:clearw 2

190 for ¢c=0 to 5

200 a=a(c) :a$=as$ (c)

210 gosub setheight

220 for i=1 to len(a$(c))

230 poke intin+(i—1)*2,asc(mid$(a$(c),i,l))

240 next

250 poke intin+(i-1)*2,0

260 poke contrl ;8

270 poke contrl+ 2,1

280 poke contrl+ 6,len(a$(c))+1

290 poke ptsin 100

300 poke ptsin+2 ,yp(c)

310 vdisys

29

Abacus Software Atari ST Tricks & Tips

320
330
340
350
360
370
380
390
400
410
420
430

next c¢

a=10

gosub setheight

a=inp(2) : rem wait for keypress
end

setheight:

poke contrl ;107

poke contrl+ 2,0

poke contrl+6 ,1
poke intin ,a
vdisys
return

Lines 210 and 370 illustrate another feature of ST BASIC: labels. You may
use labels throughout a BASIC program. A label must be defined at the

start of a line and be followed by a colon. Program text may follow the
colon.

One

of the nicest features of labels is that they are valid replacements for line

numbers. So the commands GOTO, GOSUB, ON GOTO, ON GOSUB, and

RES

TORE may be used with labels. Line 340 shows such a replacement.

Line 350 waits for a keypress, which will end the program.

Emmll

Somsoswhat larger

Mormal

=%111 larger

Yery large

Gigantic

30

Abacus Software Atari ST Tricks & Tips

Change direction of text output

You can change the angle of text output using VDI function 13. Only angle
steps of 90 degrees may be specified, and these are given in units of tenths
of a degree. A 90-degree angle is therefore specified as 900 units. The angle
is passed to VDI function 13 through INTIN (line 320).

After you've displayed the text at the desired angle, you must set the angle
back to zero, since all subsequent output is affected by the change.

10 rem 1 2 2d change direction of text output
100 a$ =" round and round"

110 fullw 2:clearw 2

120 for angle = 0 to 3

130 gosub txt.angle

140 for i=1 to len(a$)

150 poke intin+(i—l)*2,asc(mid$(a$,i,l))
160 next

170 poke intin+(i-1)*2,0

180 poke contrl ;8

190 poke contrl+ 2,1

200 poke contrl+ 6,len(a$)+1

210 poke ptsin ;300

220 poke ptsin+2 ,200

230 vdisys

240 next angle

250 a=inp(2) : rem wait for keypress
260 angle =0:gosub txt.angle
270 end

280 txt.angle:

290 poke contrl 13

300 poke contrl+ 2,0

310 poke contrl+6 ,1

320 poke intin rangle*900
330 vdisys

340 return

31

Abacus Software Atari ST Tricks & Tips

Set line type

We've already mentioned that the characteristics of the drawing lines can be
changed. VDI function 15 is used to set the line type. You can choose from
among seven different line types by setting the parameter in INTIN. The
following example displays the different line types available:

1 rem 1 2 2e set line type
10 fullw 2:clearw 2

20 i=20

30 for pattern= 1 to 7

40 gosub set.pattern

50 for c=1 to 20

60 linef 20,c+1i,500,c+i

70 next c

80 i=i+30

90 next pattern

100 a=inp(2) : rem wait for keypress
110 end

120 set .pattern:

130 poke contrl ;15

140 poke contrl+ 2,0

150 poke contrl+ 6,1

160 poke intin spattern
170 vdisys

180 return

In this program, all 7 line types are displayed, each 20 times. Line type 7
appears as a solid line, but can be changed to a user-defined line type. The
next example shows you how to do this.

Abacus Software Atari ST Tricks & Tips

Define line type 7

VDI function 113 is for defining line type 7. The bit pattern for the
user-defined line type is stored in INTIN as a 16-bit word. The leftmost bit
of the word corresponds to the leftmost pixel of the line segment.

10 rem 1 2 2f define line type 7
100 fullw 2:clearw 2:i = 10

110 poke contrl ;113

120 poke contrl+ 2,0

130 poke contrl+ 6,1

140 poke intin r&haaaa : ' pattern
150 vdisys

160 poke contrl 15

170 poke contrl+ 2,0

180 poke contrl+ 6,1

190 poke intin ¢+ 7 ' pattern
200 vdisys

210 for c=1 to 20

220 linef 20,c+i,500, c+i

230 next c¢

240 a=inp (2)

In this example we used a bit pattern $101010101010 1010, which is
equivalent to the hexadecimal number shAAAA. Try defining your own line
types. If the line is drawn vertically, note where the leftmost bit of the word
appears.

33

Abacus Software Atari ST Tricks & Tips

Change line width

To vary the width of a line, you use VDI function 1 6. This saves you the
trouble of using multiple LINEF or CIRCLE commands to make a thicker

line.

The parameter representing the thickness is set in INTIN. Allowable values

are the odd numbers beginning with 3. A value of 2 represents one pixel,
the default value.

10

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

rem 1 2 g change line width
fullw 2:clearw 2

i=20

linef 20,c+i, 500, c+i

i=i+24

f = 3 to 25 step 2

gosub set.width

linef 20, 1,500, 1

i=1i+25

next c¢

c=2:gosub set.width

a=inp (2): rem wait for keypress
end

set.width:

poke contrl ;16

poke contrl+ 2,1

poke contrl+ 6,0

poke ptsin , C
poke ptsin + 2,0
vdisys
return

This program draws the different line thicknesses from 1 pixel to 25 pixels
in width. You might want to call the last line a bar, since it's quite thick!

Abacus Software Atari ST Tricks & Tips

Change appearance of end points

VDI function 108 sets the appearance of the endpoints of a line. If you have
run the previous program, you can see that the endpoints of the line are cut
off square. This is the standard setting for line representation.

But the end points can be drawn with rounded ends. For drafting or
technical work, the lines can be drawn with arrowheads at the ends. It's a

lot of work in BASIC, especially for the larger line thicknesses. But the
VDI makes it much easier to do.

This function also works with the CIRCLE and ELLIPSE commands. You

can change the sample program in such a way to draw a CIRCLE segment
(arc) instead of a line (lines 140 and 180).

VDI function 108 requires parameters to specify the appearance of the
starting and ending points of the line. These are passed in INTIN and
INTIN+2. The values of 0, 1 and 2 are valid. A value of 0 is the default at
power up. A value of 1 specifies that the starting or ending point is an

arrowhead. A value of 2 specifies that the starting and ending point is
rounded.

The following example is based on the one previous, for setting the line
thickness. Therefore, you can just modify the previous program where
needed and don't have to re-type the whole thing.

After one pass, a keypress (anything but <ESC>) is expected. The picture is
then drawn with new end points. Pressing the <ESC> key ends the
program and sets the parameters back to the power-up values.

10 rem 1_2 2h rem end points
100 start = 0:fin =0

110 gosub set.end

120 i=20

130 fullw 2:clearw 2

140 linef 20,c+i,500,c+i
150 i=i+24

160 for ¢ = 3 to 15 step 2
170 gosub set.width

180 linef 20, i,500, i
190 i=i+35

200 next c

210 c=2:gosub set.width

35

Abacus Software Atari ST Tricks & Tips

220 a=inp (2)
230 if a=27 then fin = O:start = 0:
gosub set.end:end
240 fin = fin +1
250 if fin = 3 then fin = O:start = start +1
260 if start = 3 then start = 0
270 gosub set.end
280 goto 120
290 end
300 set .width:

310 poke contrl ;16
320 poke contrl+ 2,1
330 poke contrl+ 6,0
340 poke ptsin ;s C
350 poke ptsin + 2,0

360 vdisys

370 return

380 set.end:

390 poke contrl ;108
400 poke contrl+ 2,0

410 poke contrl+ 6,2

420 poke intin ,start
430 poke intin + 2,fin
440 vdisys

450 return

Desk File Run Edit Debu

36

Abacus Software Atari ST Tricks & Tips

Reading the mouse position

You'll probably notice that there isn't a BASIC function for reading the
position of the mouse. The VDI has a function for this: 124. It also lets you

know if any of the buttons are pressed. VDI function 12 4 requires no
parameters.

The call to this function returns a value in int in. A value of 0 indicates
that no buttons were pressed. A value of 2 indicates that the right button
was pressed. A value of 3 indicates that both buttons were pressed.

The mouse position is returned in the pt sout array. The X-position is
found at element pt sout. The Y-position is found at element ptsout+2.

Both positions are the actual screen positions, not a position relative to a
window.

The following program is more complex than earlier ones. The program is
used to build a screen menu. We have several programming tricks so you
should study the code closely.

When you run the program, a small menu is displayed. Using the mouse,
you can point to the individual menu items and select them by clicking the
mouse button. The first three selections are disabled in this example. But if
you select the fourth, the program is ended.

To emphasize which selection was clicked, it is displayed in bold while the

others appear in fainter type (line 60). You can select the variables active or
inactive according to your taste.

In this example, only the y-position of the mouse is needed to determine
which menu item is selected. The value returned by the VDI is converted
into an output line in line 110. To determine the y-position more easily, the
REM command in line 110 should be removed. The y-position is then
displayed in the upper lefthand corner for each change in the y-position.

1 rem 1_2 2i read mouse position
10 as$(l)="Program load"

20 a$(2)="Program start"

30 a$ (3)="Change Data"

40 a$(4)="Program end"

50 p(l)=7:p(2)=8:p(3)=9%9:p(4)=10

60 activ = 1 : inactiv = 2

70 fullw 2:clearw 2

37

Abacus Software Atari ST Tricks & Tips

80 gotoxy 5,5 : ? "Choose one :"
90 effect = inactiv : gosub text.effect
gosub 210

100 gosub mouse.button

110 outval = int ((y.pos-108)/16)
rem gotoxy 1,1:?y.pos

120 gosub mouse.in : if button = 0 then 100

130 gosub mouse.out

140 if outval <1 or outval > 4 then 90

150 gosub 210

160 effect = activ : gosub text.effect

170 gotoxy 5,p(outval) : ? a$(outval)

180 if outval <> 4 then effect = inactiv
else effect =0

190 gosub text.effect

200 if outval = 4 then select.ende else 100

210 for i=1 to 4

220 gotoxy 5,p(i) : 2 as$(i)

230 next 1

240 return

250 goto 100

260 !

270 mouse.in: rem %k %k %k d Kk Kk ok ok Kk k k k ok kk ok ok ok ok k k ok k kK

280 poke contrl y 122

290 poke contrl+2 ,0

300 poke contrl+6 ,1

310 poke intin , 0

320 vdisys

330 return

340 !

350 mouse .out: rem *kkkkkkkhkkkkkkkkkkkhkkkkkxk

360 poke contrl ;123

370 poke contrl+2 ,0

380 poke contrl+6 ,0

390 vdisys

400 return

410 !

420 mOuse.button: rem *kkkkkkkkkhkhkkhkhkkkkkkkx

430 poke contrl y 124

440 poke contrl+2 ,0

450 poke contrl+6 ,0

460 vdisys

470 button=peek (intout)

38

Abacus Software Atari ST Tricks & Tips

480 X.pos =peek (ptsout)

490 Y.pos =peek (ptsout+2) - 38

500 return

510 !

520 text_effect: rem %k %k %k k k Kk ok kK Kk Kk k Kk ok ok ok ok Kk k k ok ok
530 poke contrl 106

540 poke contrl+2 ,0

550 poke contrl+6 ,1

560 poke contrl+10,1

570 poke intin,effect

580 vdisys

590 return

999 !

1000 Select.ende: rem * %k %k %k k k Kk Kk Kk Kk k k Kk Kk k ok kk k k
1010 poke contrl,122

1020 poke contrl+2,0

1030 poke contrl+6,1

1040 rem

1050 poke intin,0
1060 rem

1070 wvdisys

1080 end

Oesk File PRun Edit Debug

Chonse one !

§ ?ragraﬁ sta;t

39

Abacus Software Atari ST Tricks & Tips

Set Writing mode

There are several write modes built into GEM. Normally, all output to the
screen is done in replace mode.

In replace mode, if something is already displayed on the screen, any new
text or output overwrites or replaces the old text or output.

In transparent mode, the background is not cleared when new text or output
is displayed.

In the XOR mode, each pixel on the screen is reversed.

When you first run this program disable line 160 with a REM or its
abbreviation ('). On a white background, there is no visible difference.
Then when you run the program for the second time, enable line 160 by
removing the REM. The results will clarify the different write modes.

0 rem 1 2 2j set write mode
100 fullw 2:clearw 2:dim x$ (4)
110 x$(1)="normal text, replace mode"

120 x$(2)="text in transparent mode”
130 x$(3)="text is in the xor mode"
140 x$ (4)="text in reverse transparent”
150 color 1,1,1,2,2

160 fill 1,1 : rem out first run

170 for i=1 to 4

180 gosub set.wrt.mode

190 gotoxy 10,6+i: ?2x$ (i)

200 next

210 a=inp (2) : i=1

220 gosub set.wrt.mode
230 end

240 set .wrt .mode:
250 poke intin , 1
260 poke contrl ,32
270 poke contrl+2,0
280 poke contrl+6,1
290 vdisys

300 return

40

Abacus Software Atari ST Tricks and Tips

1.2.3 The GEMSYS command

The VDISYS call is used to access the functions of the Virtual Device
Interface. As you'll recall, the other major portion of GEM is the

Application Environment Services, AES. To access the AES, you use the
GEMSYS command.

Parameters for this command are passed in various ways. These parameters
may differ from those of the VDI. Also, the addresses of the parameter
arrays are not readily available as with the VDISYS command. Instead, a
table containing the address of the arrays is used. The table is accessed by
the reserved variable name GB.

Table GB contains six addresses and is therefore 24 bytes long. The array
names (used by Digital Research) are CONTROL, GLOBAL, INT. IN,
INT.OUT, ADDR. IN and ADDR.OUT. We'll use these names in the
following examples.

The CONTROL array works much like the CONTRL array in the VDISYS
command. As a BASIC programmer, you need not concern yourself with
this array because it's handled by a GEMSYS command in BASIC.

The second address in the GB table points to the GLOBAL array. This array
contains various parameters which should not be changed. The values are
also set by GEM.

The other four arrays function similarly to the VDISYS command. Note that
each element of the INT . IN and INT.OQUT arrays is two bytes in length
(word), while the elements of the ADDR. IN and ADDR.QUT arrays are four
bytes in length (long word).

The AES performs dozens of functions. Under BASIC, it's not possible to
use all of these functions. For example, the keyboard and mouse operations
are handled by interrupt routines. Routines for handling these may not be
performed from ST BASIC. In most cases, the system will crash trying to
handle such a request.

In order to make full use of the functions of the AES, you will have to use a
language such as C, Pascal or Modula 2.

Despite the limitations, you can perform some AES functions from BASIC.
This next example changes the name of the output window.

41

Abacus Software Atari ST Tricks and Tips

1 rem 1 2 3 name output window

10 gosub gem.arrays

20 x1=0:a8="This is our output window"
30 poke in ,3

40 poke int.in+2,2

50 xl=varptr (a$)

60 poke int.in+4,x1 / 2716

70 poke int.in+6,x1 and &hffff

80 poke int.in+8,0

90 poke int.in+10,0

100 gemsys 105

110 end

120 !

50000 gem.arrays:

50003 int.in = peek (gb+8) *2716 + peek(gb+10)
50007 return

In the subroutine gem.arrays, the address of the int . in array is found
and stored in the variable of the same name in line 50003. The variable x1
must be set up so as not to invalidate the result of the later VARP TR
function. The text for the output window is contained in a$. You can put
text of your choice here. But don't get too carrjed away or the text won't fit

in the space provided. The length of the string shouldn't exceed 20
characters.

The parameters are then POKEd into the int .in array. The GEMSYS
command does not differ from the VDISYS command in this respect. In
lines 60 and 70 we pass the address of the string to the array. This address
is found by the VARPTR function (line 50). If you don't completely
understand this parameter-passing, you can refer back to the explanation of
the VARPTR function in the previous section.

Interestingly, we don't POKE any values into the CONTROL array. We
simply give GEMSYS the desired function number directly. ST BASIC
calculates the values for the CONTROL array from this number and then

places these into the array itself. This "luxury" would also be nice for
VDISYS.

42

Abacus Software Atari ST Tricks and Tips

1.3 The speed of BASIC commands

Everyone is interested in how fast the ST will run in BASIC. But how are
you to measure the execution speed? ST BASIC has no way of measuring
time. Fortunately the problem can be solved relatively easily. The operating
system contains an interrupt-controlled counter in memory locations $4BA
to $4BD. The contents of these memory locations constitute a long word, a
32-bit value. The long-word value is incremented 200 times per second.
Thus the resolution of the timer is 5 milliseconds. However, most
commands are processed in a significantly shorter time. Therefore, to
measure the duration of a command, you can execute the command many
times in a loop and then divide the resulting time by the number of passes.
After subtracting the time for the FOR. . . NEXT loop, you'll have an
accurate time for the execution of the command.

We determined the execution time of many commands with the following
short program:

10 rem 1 3 measure execution time of cmd in 130
100 timer = &hdbc

110 timel peek (timer)

120 for i 1 to 10000

130 let a 1

140 next i
150 time2

peek (timer)

160 time = time2 - timel

170 time = (time*5/10000)-.8495

180 ? "the command in 130 requires"time
"milliseconds"

On the average, all ST BASIC commands require between about 0.6 and
1.9 milliseconds. The slowest is the PRINT command. The time to output a
single character is about 4.5 milliseconds. The exact duration of a PRINT is
not so easy to calculate. We did this by determining the time for the
GOTOXY command and noting it. We then determined the time for the line:

130 gotoxy 0, 0:PRINT "a"
and subtracted the time for the GOTOXY. Note the semicolon at the end of

the PRINT output. Without the semicolon the characters CR and LF would
be printed after the "a".

43

Abacus Software Atari ST Tricks and Tips

The times increase dramatically if we remove the GOTOXY command and
the semicolon. Then the screen scrolls on (almost) every output. If you
really want to find out the time required for this, you should reduce the
number of passes to 100 or 200 (lines 120 and 170). Otherwise the test run
is very time-consuming.

The most interesting results are from the floating-point functions like SQR,
SIN, and LOG. These functions are very fast. If we compare the times
determined with those from other computers, we see an enormous increase
in speed. The time for the SQR function on a Commodore 64 is about 54
milliseconds. On the ST the function requires only about 1 millisecond!

The surprising differences of times, compared to the other functions, is
brought about because much of BASIC is written in C. Only the
floating-point functions are written in assembly language. Floating-point
routines were written by Motorola, the developer of the 68000.

44

Abacus Software Atari ST Tricks and Tips

1.4 BASIC and machine language

Do you have a need to mix BASIC and machine language? Most functions
are available directly from BASIC. But it's the word most that made us
decide to investigate further. Recall that the clock time is unavailable from
BASIC. Yet the operating system has an accurate clock that runs in
two-second steps. Here's a way to use the clock from BASIC.

1.4.1 "SAFE" places for machine language programs

We decided to write a machine language program for using the clock. But
first we are faced with another problem. How do we combine a machine
language program and a BASIC program and avoid problems?

The simplest solution is to place the machine language routine in an area of
memory that's safe from BASIC. One choice is the "free" area above the
screen memory. Screen RAM is organized to use the upper 32K of
memory. On the 520ST, screen RAM is located at $78000. On the 1040ST,
it is located at $F8000. The screen occupies 640 x 400 = 32,000 bytes. The
remaining 768 bytes of the 32K area (32K = 32,768) is not used by the
operating system. Assuming that it is small enough to fit, a machine
language program can be POKEA into this area.

A program that uses this area must determine if the computer has 512K or
1024K and select the corresponding address. When a "free" area like this
exists, many programs may want to use this memory for routines. If two
programs try to use the same area simultaneously, then there's a good
chance that there will be serious problems.

So where should machine language routines be located? One trick is to pack
the machine language routine into a string variable. BASIC does not care if
a variable A$ contains text like "Hi there everybody" or a machine

language program. We'll demonstrate how you can transfer machine code to
a string variable shortly.

To read the clock from a machine language program, you use the TRAP #1
instruction with a value of $2C on the stack. This call to the operating
system returns the time in the DO register. The value in DO is coded in
individual bits. To determine the time, you must decode the bits.

45

Abacus Software Atari ST Tricks and Tips

Here's the routine to read the clock:

000000 move.l af,ab address of routine to a5
000002 move.w #$2¢c,-(a7) get function number clock time
000004 trap #1 execute function

000008 addg.l #6,a7 repair stack pointer

00000a move.w do, $10 (a5) write clock time in memory
00000e rts

000010 ds.w 1 space for time

If you assemble this routine and call it from BASIC using the CALL
command, the address of the routine is found in register AQ. The first
instruction transfers the routine address to register A5—we'll need it later.
Next the clock time is determined by calling the operating system using the
TRAP #1 instruction. Then the stack pointer is restored to its original
value. The time is returned in register DO, which is saved in memory.
Register A5 is used to access this "save area," which is 16 bytes ($10) from
the start of the routine.

By assembling this routine, you'll get the opcodes for the machine language
instructions. Here are the opcodes for the routine above:

$2a,$48,$3f,$3¢,%00, $2c, $4e, $41
$54,$8f,$3b,$40,500,510, $4e,$75

The next step is to get these values into a string variable. We can use the
following BASIC statements to do this:

1 rem 1 4 la m/l1l in string

10 for i=0 to 17

20 read byte

30 clkS$=clk$+chr$ (byte)

40 next

50 data &h2a,&h48,&h3f,&h3c,&hOO,&h20,&h4e,&h4l
60 data &h54,&h8f,&h3b,&h40,&h00,&th,&h4e,&h75
70 data &hff,shff

The last two values represent the area to store the clock time. If you do not
reserve the area within the string variable, you will overwrite another
variable stored in memory.

We've written the machine language routine and stored it in a "safe" place in
memory. Now we must find a way to execute the routine.

46

Abacus Software Atari ST Tricks and Tips

To do this, we must know the address at which the string is stored. You
may recall that the VARPTR may be used to determine the address of a string
descriptor. In bytes 3 through 6 the descriptor is the address of the actual
string. This is also the address of our machine language routine, of course.

80 addr = 0
90 addr = varptr (clk$)

The VARPTR function returns an address into the variable addr.

Line 80 is important, by the way. If the variable addr is not initialized, the
results can be corrupted by initialization during the VARPTR function.

Now we call the machine language program to read the clock time. We use
the CALL command.

100 call addr

After this command, the clock time is found in the rightmost two characters
of the string variable c1k$. You can access these "characters" using the
RIGHTS and LEF TS function.

110 time$ = right$(clk$,2)

120 sec=(asc(right$(time$, 1))+
asc(left$(time$,1)) *256) *2

125 print "Total seconds since 12:00 AM " sec

130 goto 100

This method of calling a machine language routine from BASIC has its
drawbacks. A string variable is limited to 256-characters in length.
Therefore the length of the machine language routine is limited too. Passing
parameters through individual strings can be complicated. So we came up
with alternative way to combine machine language and BASIC.

This method is the most flexible option for combining machine language
programs in BASIC programs. The routine is placed in an integer array.

If you examine the structure of an integer array you will see that the
individual elements of the array are located one after the other in memory.
The element with the lowest index lies at the lowest address. Each element
is two bytes in length—just right for the opcodes of the 68000. The size of
a machine language program in an array is not as severely limited as it is
with the string method. Programs can easily be 1000 bytes or longer.

47

Abacus Software Atari ST Tricks and Tips

1 rem 1_4 1b m/l in integer array

10 dim clk%(8)

20 for i=0 to 8

30 read clk% (i)

40 next 1

50 data &h2a48,&h3f3c,&h002¢c,&hd4edl,&h548fF
60 data &h3b40,&h0010,&h4e75,&h0000

As you see, we first dimension the array (line 10) and then place the
program in it. This initialization is shorter than with the previous program
because the data elements are now 16 bits each.

Once again we must determine the address of the routine by using the
VARPTR function. The result of the VARPTR points directly to the first
command of the routine. Therefore we can use the result as the jump
address for the CALL command!

70 ad = 0

80 ad = varptr (clk%(0))
90 call ad

We can also get the result easily. It is contained in array element c1k$ (8).
100 2clk%(8)
Parameters can also be passed to the routine in the same way. You simply

enter the parameters into the appropriate array elements and the program
fetches them from the selected memory locations.

48

Abacus Software Atari ST Tricks and Tips

1.5 The most expensive clock in your house

Some people might consider this program to be rather useless. We disagree,

because the program demonstrates some fundamental programming
techniques.

We have used several graphics capabilities of the ST in the following
program with a short routine for reading the clock time. The following is a
short description of some of the special features of the program:

Several variables are initialized in the first seven lines of the program.

Variable ho is the size of the type for the digital display. If you stop the
program, the ST will not automatically switch back to the normal type size.
This is especially annoying during a test run when you've made a typing
error in the program. For the test run, set this variable to a value of 10. This
will set the type to its normal size.

Variables xm% and ym% determine the center of the dial.

Variables sec.p%,min.p%, hrs.p$% determine the length of the three
pointers.

Variable pi is the value 7t (3.14159), which is not directly available in ST
BASIC.

Next, the type height is set, the array for the machine language program is
set , and the dial is drawn.

The actual program begins in line 1130. Line 1135 checks for the mouse
button. If a button is pressed, the character size is returned to normal. The
machine language program places the seconds in c1k% (20), the minutes
in clk%(21), and the hours in c1k$% (22). After this, a comparison is
made to see if the new value for the seconds is the same as the old value. As
long as this is the case, a new pass through the loop is made. Not until the
seconds have changed is the loop exitted.

The remainder of the program is relatively easy. You should have no trouble
understanding it.

49

Abacus Software Atari ST Tricks and Tips

Figure 1.4-1

G|

Desk File Run Edit Debug

50

Abacus Software Atari ST Tricks and Tips

100

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1135
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

rem clock

h0=25

dim clock$%(23)

xm% = 320:ym% = 200

sec.z% = 115 : min.2z% =105 : std.z% = 80
pi=4*atn (1)

g89 = 89.9*%(pi/180) : g90 = Pi/2 : g91 = 90.1*(pi/180)
clock =0 ‘
fullw 2:clearw 2

gosub height

gosub init.clock

gosub clockface

100p: ' dhhkhkkhkhkhhkhkkhkkhkhkhkhkhkhkkhkkk
gosub mouse.button

clock = varptr (clock%(0))

call clock

if sec% = clock%(20)*2 then loop

' erase hands % Kk ok ok ok ok ok Kk ok kok ok ok ok kk Kk

sec% = clock%(20)*2

color 0,0,0,0,0

dmy% = std% : std% = clock%(22)

if dmy%<> std% then phi = phistd :r¥=std.z%:gosub draw
dmy% = min% : min% = clock% (21)

if dmy%<> min% then phi = phimin :r%=min.z%:gosub draw
phi = phisec : r%=sec.z%: gosub draw

1]

' draw new hands khkkkhkkkkhkhkkk

color 1,0,1,1,1

phisec = sec%*pi/30-g90: r%=sec.z%

phi = phisec : gosub draw

phimin = min%* 6 * (pi/180)-g90 : r%=min.z%
phi = phimin : gosub draw

phistd = std%* 30 * (pi/180)-g9%0 : r%=std.z%
phi = phistd : gosub draw

gosub digital

goto loop

1]

draw: T okkkhkhkhkhhkhkhkhkhkhkhkhkhkhkkhkhkhkk
linef xm% ,ym% ,xm$%$+r%*cos(phi) rYm%+r%*sin (phi)
ym P ym

51

Abacus Software Atari ST Tricks and Tips

1410 1if r%= sec.z% then return

1420

1430 1linef =xm%+1,ym% r¥m%+r¥*cos (phi) +1, ym%+r%*sin (phi)

1440 linef xm% rym5+1l, xm¥+r¥*cos (phi) yym%+r¥*sin (phi) +1

1450 1linef xm¥+1, ym¥+1, xm¥+r¥*cos (phi) +1, ym$+r¥*sin (phi) +1

1460 if r%= min.z%then return

1470 ¢

1480 linef xm%+2,ym% ,xm%+r%*cos(phi)+2,ym%+r%*sin (phi)

1490 1linef xm% ,ym%+2,xm%+r%*cos(phi) ;ym3¥+r%*sin (phi) +2

1500 1linef xm%+2, ym%+2, xm¥+r¥*cos (phi) +2, ym$+r¥*sin (phi) +2

1510 return

1520

1530 Clockface: Thkhkhkhkhkkhkhkkhkhkhkhkhkhkkkhkkhxk

1540 circle xm%,ym%,120,120

1550 circle xm%,ym%,130,130

1560 for std%= 1 to 12

1570 phi = std%* 30 * (pi/180)-g90 : rl%=130 : r0%=120

1580 1linef xm%+r0%*cos(phi),ym%+r0%*sin(phi),
xm%¥+rl¥*cos (phi) , ym%+rl%*sin (phi)

1590 phi = std%$* 30 * (pi/180)-g89 : rl1%=130 : r0%=120

1600 linef xm%+r0%*cos(phi),ym%+r0%*sin(phi),
xm¥+rl%¥*cos (phi), ym%+rl%*sin (phi)

1610 phi = std%* 30 * (pi/180)-g91 : rl1%=130 : r0%=120

1620 1linef xm%+r0%*cos(phi),ym%+r0%*sin(phi),
xm%+rl¥*cos (phi),ym%+rl%*sin(phi)

1630 next std%

1640 for min%= 1 to 59

1650 phi = min%* (pi/30) : r1%=130 : r0%=120

1660 linef xm%+r0%*cos(phi),ym%+r0%*sin(phi),
xm¥+rl¥*cos (phi), ym%+rl%*sin (phi)

1670 next min%

1680 return

1690

1700 dlgital: Tokkhkhkhkkhkhkhkhkkhkhkhkhkhkhkkhkkkkkkk

1710 sec$=str$(sec%): if len(sec$)=2 then
sec$=" 0"+right$ (sec$,1)

1720 minS$=str$(min%): if len(min$)=2 then
min$=" 0"+right$(min$,1)

1730 std$=str$(std%): if len(std$)=2 then
std$=" 0"+right$ (std$, 1)

1740 timdig$=right$ (std$,2)+"Z"+right$ (min$,2)+"2"+
right$ (sec$,2)

1750 gosub printdig

52

Abacus Software Atari ST Tricks and Tips

1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
13930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2075
2080
2090
2100
2110
2120
2130
2160
2170
2180
2190

return
T

height: v ************************
poke contrl ,107

poke contrl+2,0

poke contrl+6 ,1

poke intin,ho

vdisys

return

printdig: rem *k*kkkkkhkkkkkkhkkkkkkkok*k
poke contrl 11

poke contrl+2 ,2

poke contrl+6 ,10

poke contrl+10,10

poke contrl+12,2

poke intin 1

poke intin+2 ,1

for i%=1 to 8

poke intin + (1%*2+2),asc(m1d$(t1md1g$,1 +1))=32
next i%

poke ptsin, 210

poke ptsin+2,80

poke ptsin+4,220

poke ptsin+6,0

vdisys

return

init.clock: Vokkkkkkkkkkkkhkkkdkkkkk

data &h2a48,&h3f3c,&h002¢, &h4edl,&h548f,&h3b40,&h0028
data &h026d,&h001f, &h0028, &head8,&h3200, &h0240,&h003f
data &h3b40,&h002a &hec49, &h3b41,&h002c, 8h4e75

data &h0000,&h0000, &h0000,&h0000

for i% = 0 to 23

read clock%(i%)

next i%

return

mouse.button: ' **xkx*

poke contrl,124: poke contrl+2,0: poke contrl+4,0
vdisys

button = peek (intout)

if button <> 0 then h0=10: gosub height: end

return

53

Abacus Software Atari ST Tricks and Tips

1.6 Automatic hardcopy

To get a hardcopy of the screen, you can press the <ALT> and <HELP>
keys simultaneously. Memory location 1262 is a flag that tells the ST to
print a screen hardcopy. Normally the memory location has a value of -1.
Pressing <ALT> <HELP> increments the value and generates the
hardcopy.

Knowing this, you can POKE memory location 1262 to get "automatic"
hardcopy:

poke 1262,0

Alternatively, you can issue a VDI function 5 to perform hardcopy as
follows:

contrl Pe)
contrl+ 2,0
contrl+ 6,0
contrl+10,17

By the way, the hardcopy can be interrupted by pressing <ALT> <HELP>
while it's printing.

Desk File Run Edit Debug
LIST

10 REM THIS IS AK EXAMPLE TO SH
20 PRINT "POKE 1262,0 CAUSES R
I8 POKE 1262,8 FPII(E 1262,8 CAUSES A HARDCOPY

o]
b CONNRHD

I

Ok 18 REM THIS IS AN EXAMPLE TD SHOM AUTOMATIC HARDCOPY
Dk 28 PRINT "POKE 1262,0 CRUSES A HARDCOPY"

Dk 38 POKE 1262,0
LIST
0k RUN

54

2.1
2.2
2.3
2.4
2.5

CHAPTER 2

C Utilities for the ST)

Current time display

Print spooler for the ST
RAM-disk for the ST
Auto-starting TOS applications
Using machine language and C

Abacus Software Atari ST Tricks and Tips

Utilities for the ST

This chapter contains a very powerful set of utility programs. These are
mostly machine language programs that change or extend the functions of
the operating system. All are memo -resident, and will make it easier to
work with the ST and other applications.

Each utility is preceded by a brief description of the program, its application
and its capabilities. The source code for each program is written in 68000
assembly language.

Each is documented so that you can makes changes or enhancements
according to your needs. But to do so, you'll require an assembler.

If you program only in BASIC, you can use the BASIC loader to create the
program. A BASIC loader contains the machine language utility in the form
of DATA statements. The BASIC loader uses a checksum to insure that
input errors are eliminated. By running the BASIC loader, you create a
program file on the disk that's normally created by the assembler and linker,
Once you've run the BASIC loader for each utility, you can then start each
of them by clicking the appropriate icon with the mouse.

57

Abacus Software Atari ST Tricks and Tips

2.1 Current time display

In the following utility we'll show you three programming techniques to use
in your own programs. The first technique lets you execute a program
periodically. The second technique shows you where in memory to place a
short program so it's not destroyed later by other programs. The third
technique shows you how to use the ST's system fonts.

This utility creates a digital clock in the upper righthand corner of the
screen. It's displayed whenever you are working on the desktop or with
GEM programs. In both of these cases, the top line of the screen is a status
line and the last 10 characters are normally unused.

To work correctly, the clock time is continually redisplayed. To do this we
use the ST's vertical blank interrupt (VBL). The VBL is called each time the

computer has completed displaying a complete video picture. This happens
70 times a second with the monochrome monitor.

The VBL routine checks a jump table containing the addresses of user
routines to be executed during the VBL. The table normally has 8 entries. A
zero value indicates that the entry is not used. To execute a user routine, you
must search the table and place the address of your routine into the first

unused entry. From then on, this routine is executed 70 times per second
during a VBL interrupt.

Now we have to find a place for the program itself. In order to explain the
program, we'll repeat part of an earlier chapter.

If the program is smaller than 3 full pages (768 bytes), you can place the
program above screen memory. After power-up the ST reserves the top

32K of memory for the screen display. On the 520 ST the screen occupies
$78000 to $7FFFF.

You'll recall that the screen is a maximum of 640x400 pixels, which equates
to 256,000 bits, or 32,000 bytes. A 32K area contains 32,768 bytes, so the
last 768 bytes of screen memory are "left over." Screen memory occupies
only the area from $78000 to $7FCFF, inclusive. The memory from

$7FDO0 to $7FFFF is not used for screen output. So this area can be used
for a short routine.

To install the utility, an initialization routine must copy the program to this
memory area and then set the VBL vector to point to this address.

58

Abacus Software Atari ST Tricks and Tips

The VBL table is part of the system variables. To access a system variable,
the ST must be in the supervisor mode. Then we need to find an unused
entry in the VBL list, save the address of this entry in register A2 and copy
our utility to its proper location. The length of the utility is a counter. The
destination address is the length of the utility plus 32000, the length of the
screen. Now we can copy the utility to the top of the screen memory. Then
we call the routine to initialize the time display and finally set the VBL
vector to our routine and return to the desktop.

The init routine returns a pointer to the font which we will use to display
the time. To do this we use a special part of TOS (line A routine) that
Ieturns a pointer to a vector array of the three system fonts in register A1.
Next we get the address of the second font, the 8x16 pixel font which is the
standard for monochrome display. We set the VBL counter to 1 which will
start our routine after the next VBL.

A counter is used because we don't have to display the time 70 times a
second. We decrement the counter each time through the routine and update
the display only when the counter is zero. The display routine resets the
counter. This routines gets the clock time from the processor and is identical
to the corresponding BIOS function which returns the time in DOS format
with a resolution of 2 seconds. The keyboard processor however keeps time
exactly to the second in BCD format. This time is saved by the ST at
address $A46 at the label t ime in the program listing. The three bytes, the
hour, the minute and the second are in the 24-hour format but are written to
the screen by the routine wrtbcd.

The routine wrt char writes a character contained in register DO to the top
line of the screen. The cursor position is contained in the register D6 (a
value between 0 and 79). The current position within the screen memory is
determined from the cursor position and the base address of the screen
memory. Then the address of the point, the offset of the next raster line, the
number of scan lines and the height of the character are determined from the
font header. In the routine at label loop, the data from the font definitions
is copied to the screen, raster line by raster line, until an entire character is
written. The program will work on a monochrome monitor without
changes.

Why didn't we write the characters to the screen with the BIOS or
GEMDOS routine? Why did we copy the system font data to the screen
memory? The answer is that we are working within an interrupt routine.
Using the BIOS or GEMDOS routines, a screen output can be interrupted
and the cursor may be moved to a different position on the screen. To avoid

59

Abacus Software Atari ST Tricks and Tips

this, we would have to save the cursor position, set the cursor to the top
line, write the character to the screen and then set the cursor to its original
position. If another font were being used, then our display time would
become confused. By accessing the system fonts directly, we avoid these
problems and perform the work at faster speeds.

Figure 2.1 shows the time display in the status line of the desktop.

Following is the assembly language listing of the program. If you do not
have an assembler, the short BASIC program will create an equivalent
machine language program to display the time. Running the BASIC loader
creates a program file called TIME.PRG. You can start it as usual by
clicking its icon.

60

Atari ST Tricks and Tips

Abacus Software

Figure 2.1

ARSI

DAd IHILASIO SHI FAHILASI

BN g

A28 ¥I19

D¥4°HOZS3

4

DU PO TTT SEgT OHO IO

A3 IIHIS

519 AddoT4

G5BT 90

mE:ts ru..:,_ 3114 xmua

61

Abacus Software Atari ST Tricks and Tips

display current time
use vertical blank interrupt

LE 2/8/85

* % o * %

v_bas_ad equ $d44e screen address

hz 200 equ S$4ba 200hz system timer
gemdos equ 1
setexec equ 5
bios equ 13
keep equ $31
gettime equ 23
super equ 38 execute in supervisor mode
xbios equ 14
move.l 4 (sp) , a0 calculate program
size
move.l #$100,d6
add.l 12 (a0) ,d6
add.l 20 (a0) ,d6
add.1l 28 (a0) ,d6
bsr init program init.
clr - (sp)
move.l d6, - (sp) number bytes
move #keep, - (sp)
trap #gemdos
init dc.w linea
moveq $#2*4,d0 font number
lea fontptr (pc),a3
move.l (al,d0), (a3) mark font pointer
move #gettime, - (sp)
trap #xbios
addg.1l #2,sp
move a0, d7
pea sup_rout (pc)

62

Abacus Software

Atari ST Tricks and Tips

move

trap

addqg.1

rts

Sup_rout:
move
and
1s1l
move

move
lsr
and
move

move

moveq

1lsr
move

move

move.l
add.1l

pea
move

move
trap

addqg.1l
move.l

rts

hz int

move. 1l
cmp.1l

bne

add.l

movem. 1

#super, - (sp)

#xbios
#6, sp

do,d7
#%$11111,4d0
#1,d0
d0, second

d0,d7

#5,d0
#%111111,d0
d0, minute

d7,do0
#11,d1
dl,do
d0, hour

#$2700, sr

hz_ 200, time
#200,time

hz int (pc)
#$45, - (sp)

#setexec,—(sp)

#bios
#8, sp
d0,hz save

d0-d7/a0-a6, - (sp)

time, do
hz_200,d0
no_show

#200, time

63

execute rest in *
supervisor mode

seconds in binary

interrupts disabled

timer c interrupt
vector

200hz vector mark
save regs
one second yet?

no

next second

Abacus Software

Atari ST Tricks and Tips

addg
cmp
bne
clr
addqg
cmp
bne
clr
addqg
cmp
bne
clr

show_time:

no_show

wrtdec:

wrtdecl

moveq

move
bsr
bsr

move
bsr
bsr

move
bsr

movem. 1l
move.l
rts

move
addqg
sub
bpl
add
move
move
bsr
move
bra

#1, second
#60, second
show_time
second
#1,minute
#60,minute
show_time
minute

#1, hour
#24,hour
show_time
hour

#70,d6

hour, do0
wrtdec
wrtcol

minute, d0
wrtdec
wrtcol

second, d0
wrtdec

check seconds

next minute

check minutes

check hours

cursor position

get hour

get minute

get second

(sp)+,d0-d7/a0-a6

hz_ save, - (sp)

#s$2f,d1
#1,d1
#10,d0
wrtdecl
#$3a,do0
d0, - (sp)
dl,do
wrtchar
(sp) +,d0
wrtchar

64

address of routine

number 10

one digit

output
unit
output

Abacus Software

Atari ST Tricks and Tips

wrtcol moveq

#$3a,do

ATARI ST

36
38
52
76
80

font
82

$a000

80

lowest ascii-code in font
highest ascii-code in font
linewidth

ptr to font data

status of next raster line in

number of raster lines / char

bytes per screen line

write character to to graphic ram
character
cursor column

*
* system font
* LE 9/8/85
*
adelow equ
adehigh equ
cellwd equ
fontdat equ
formwd equ
*
formhg equ
linea equ
linel equ
*
* do =
* dée =
*
wrtchar:
moveq
move
addq
*
move.l
add.l
move.l
move. 1l
move
*
move
*
subg
loop move.b
*
add

#0,d1

d6,dl

#1,d6
fontptr(pc),a3
_V_bas_ad,dl
dl, a4

fontdat (a3),a0
formwd (a3),d2
formhg(a3),d7
#1,d7

(a0, do) r (a4)

#linel, a4

65

move cursor to next
column

get font pointer
plus screen address

font data pointer
offset of next
raster line in font
form height (number
pf scan lines)

onscreen raster
line
pointer to next

Abacus Software

Atari ST Tricks and Tips

fontptr
hz_ save
second
minute
hour
time

add

dbra
rts

ds.
ds.
ds.
ds.
ds.
ds.

e s s HE

d2,a0

d7, loop

RPRRPRPP

66

screen line
pointer to next
raster line in font

Abacus Software Atari ST Tricks and Tips

BASIC loader for display time

100 open "R",1,"b:time.prg",16: rem disk b

110 field#1,16 as bin$

120 a$="": for i=1 to 16: read x$: if x$="*"then 150

130 a=val ("&H"+x$) : s=s+a:a$=a$+chr$(a): next

140 lset bin$=a$: rec=rec+l: put 1, rec: goto 120

150 data 60,1A,00,00,01,82,00,00,00,00,00,00,00,00,00,00
160 data 00,00,00,00,00,00,00,00,00,00,00,00,20,6F,00,04
170 data 2C,3C,00,00,01,00,DC,A8,00,0C,DC,A8,00,14,DC,A8
180 data 00,lC,61,0A,42,67,2F,06,3F,3C,00,31,4E,41,A0,00
190 data 70,08,47,FA,01,48,26,B1,00,00,3F,3C,00,17,4E,4E
200 data 54,8F,3E,00,48,7A,O0,0C,3F,3C,00,26,4E,4E,5C,8F
210 data 4E,75,30,07,C0,7C,OO,lF,E3,48,33,C0,00,00,01,78
220 data 30,07,EA,48,C0,7C,00,3F,33,C0,00,00,01,7A,30,07
230 data 72,0B,E2,68,33,C0,00,00,01,7C,46,FC,27,00,23,F9
240 data 00,00,04,BA,00,00,01,7E,06,B9,00,00,00,C8,00,00
250 data 01,7E,48,7A,00,16,3F,3C,00,45,3F,3C,00,05,4E,4D
260 data 50,8F,23,C0,00,00,01,74,4E,75,48,E7,FF,FE,20,39
270 data 00,00,01,7E,BO,B9,00,00,04,BA,66,6A,06,B9,00,00
280 data 00,C8,00,00,01,7E,52,79,00,00,01,78,0C,79,00,3C
290 data 00,00,01,78,66,32,42,79,00,00,01,78,52,79,00,00
300 data 01,7A,0C,79,00,3C,00,00,01,7A,66,1C,42,79,00,00
310 data 01,7A,52,79,00,00,01,7C,0C,79,00,18,00,00,01,7C
320 data 66,06,42,79,00,00,01,7C,7C,46,30,39,00,00,01,7C
330 data 61,20,61,36,30,39,00,00,01,7A,61,16,61,2C,30,39
340 data 00,00,01,78,61,0C,4C,DF,7F,FF,2F,39,00,00,01,74
350 data 4E,75,72,2F,52,41,90,7C,00,0A,6A,F8,DO,7C,00,3A
360 data 3F,00,30,01,61,06,30,1F,60,02,70,3A,72,00,32,06
370 data 52,46,26,7A,00,28,D2,B9,00,00,04,4E,28,41,20,68
380 data 00,4C,34,2B,00,50,3E,28,00,52,53,47,18,B0,00,00
390 data D8,FC,00,50,DO,C2,51,CF,FF,F4,4E,75,00,00,00,00
400 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
410 data 00,50,0E,OC,OE,0A,16,0C,12,06,08,08,06,08,08,06
420 data 08,08,08,0a,0a,Oc,00,00,00,00,00,00,00,00,00,00
430 data *

440 close 1:if s<> 25074 then ? "ERROR in DATA !!": end
450 print "Ok."

67

Abacus Software Atari ST Tricks and Tips

2.2 Print spooler for the ST

Have you ever sat in front of your computer and waited for a 10-page listing
to print? While waiting, you could be doing other work on the computer.

Here's a very useful utility to cut the time spent waiting for lengthy
printouts.

The speed of a printer depends on the printer mechanism, which is usually
much slower that the rate at which the computer sends data to the printer.
Because of this speed discrepancy, some printers contain a buffer that holds
data temporarily as it arrives from the computer. The data is retrieved from
the buffer as the print mechanism is ready to print it.

A typical size for a buffer is 2K—roughly one page of text. If the document
to be printed is larger than 2K, the buffer fills up and the computer stops
sending data to the printer until the buffer can accept more data. One way to
avoid this computer-waiting-for-data problem is to install a larger print
buffer. Unfortunately, these are rather expensive. But we have a computer

with 512K or 1024K of memory. Why not put the print buffer in the ST
itself?

Enter the print spooler. To better understand this utility program, we'll
briefly describe how data is transferred from the computer to the printer.

Data is transferred one byte at a time over a Centronics interface. So that the
computer and the printer can agree on the time of the transfer, two
handshake lines are used. If the printer is ready to accept data, it signals the
computer by setting the BUSY handshake line low. The computer then
sends the data to the printer. When the data is sent, the computer sets the
STROBE handshake line low.

To set up an intermediate buffer for the data, two routines are needed to
coordinate the data flow. One routine writes the data that is normally sent to
the printer to the buffer. Another routine sends the data from the buffer to
the printer when the printer is ready to accept data.

This program is set to manage a buffer of up to 63K. By clicking the
mouse, the program reserves a 32K buffer. This is enough for about 15
pages of text. By running the program as a TTP (TOS Takes Parameters)
file, you can specify the buffer size—any value between 1 and 63 sets the
size in kilobytes.

68

Abacus Software Atari ST Tricks and Tips

If you anticipate using the print spooler often, you can have have it installed
each time you boot the operating system. Place a folder called AUTO on the
operating system diskette and copy the program to this folder. When the
system is booted, all the programs in the AUTO folder are executed
alphabetically.

Here's a short description of the print spooler:

So that the print spooler reserves enough space for both itself and the
buffer, the size of the memory area is determined. This is found in the base
page, which is 256 bytes long. It immediately precedes the program. The
address of the base page is found on the stack. The lengths of text, data,
and block storage segments are added to the length of the base page.

The base page also contains the command line. The command line is the text
that we entered as parameters of the program to start the program. The
parameter represents the buffer size (in kilobytes). The parameter in the
command line is converted to a binary number. If a parameter is omitted, a
32K buffer is the default. By shifting the number in a register, the value is
converted to the exact buffer size.

Next we change the system for the TRAP#13 instruction to point to our
print spooler program. In this program we'll test the parameter on the stack,
to determine if either the printer output or the printer status is being
requested. If a service other than these two is requested, then the original
TRAP#13 routine is performed.

There are several situations that our print spooler must consider:

* If the buffer is empty, we try to output the character
directly to the printer.

« If the printer is not ready to accept a character, or the buffer
is not empty, then we write the character to the buffer.

« If the buffer is full, then we wait 30 seconds. If the buffer
does not have space after 30 seconds we inform the
requester that the character cannot be output. This occurs
when the buffer is full and the printer is not accepting any
more data.

69

Abacus Software Atari ST Tricks and Tips

How do we get data from the buffer to the printer?

The BUSY line of the printer generates an interrupt when it is ready to
receive the next character. By vectoring this interrupt to our routine labeled
busyint, we can transfer data from the buffer to the printer. In this
interrupt routine, we check to see if there is data remaining in the buffer. If
so, one character is removed and sent to the printer. This ends the interrupt
routine; control is returned to the interrupted program. The advantage of this
method is that the computer doesn't spend time waiting for the printer.

If you install this print spooler and send a 10-page document to the printer,
the computer will be ready for further processing in a very short time—even
though the printer continues to work for several minutes afterwards.

Following is the assembly language listing for the print spooler program.
There is also a BASIC loader program to create an equivalent machine
language program on diskette.

70

Abacus Software

Atari ST Tricks and Tips

* % % % %

bios
keep
gemdos
setexec
conout
constat
prn
savptr
hz 200

xbios
mfpint
*

mfp

psg
isrb
*

default

*

timeout

*

nextchr

print spooler for atari st

LE/RB,

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ

equ
equ
equ

equ

equ

move.l
move.l
add.1l
add.l
add.1l

moveq
moveq
lea
move.b
sub.b

5/11/85
13
$31 hold resident prg
1
5 set xception vector
3 output character
8 output status
0 device # of printer
$4a2 save area/ register
$4ba 200 hz system count
14
13 mfp interrupt
installed
$fffall mfp 68901
$££8800 psg ym 2149
$10 interrupt service
register b
32 standard buffer
size in kb
30 30 seconds timeout
compute program size
4 (sp),al base page address
#$100,d6 size of base page
12 (a0),d6 plus text length
20(a0),d6 plus data length
28 (a0),ds6 plus bss length
buffer size from command line
#0,d47
#0,d0
129(a0) ,a0 command line pntr
(a0) +,doO get character
#'0',d0

71

Abacus Software Atari ST Tricks and Tips

bmi exit no number
cmp .b #9,d0
bgt exit no number
mulu #10,d7 next place
add d0,d7
bra nextchr
exit tst d7 has no. been input?
bne ok yes
move #default,d? otherwise take
* default number
ok ext.1 a7
moveq #10,d0
1s1.1 d0,d7 convrt valu to bytes
add.l d7,de6 add to place needs
move d7, length and enter in iorec

initialize wvectors

move.l #trapl3,-(sp) new vector

move #45, - (sp) vector number
move #setexec, - (sp)

trap #bios set vector
addg.l #8,sp

move.l dO,trapsve note old vector

move.l #busyint,-(sp)

move #0, - (sp) int number

move #mfpint, - (sp)

trap #xbios centronics interrupt
* enabled

addg.l #8,sp

clr - (sp)
move.l dé6,-(sp) number of bytes
move tkeep, - (sp) hold resident program
trap #gemdos back to desktop
* new trap#13 routine
trapl3 move.l sp,a2 mark ssp
btst #5, (sp) call from supervisor?
bne super yes
move.l usp,a?2 otherwise use usp

72

Abacus Software

Atari ST Tricks and Tips

subg
super cmp
bne
cmp
bne

move.

move

move.
move.

move
bsr

move.
move.

move

move.

rte

normal:
cmp
bne
cmp
bne

moveq

bsr
move
bsr
cmp
bne

moveqg

room rte

norml

Jmp
print move
bsr
move
cmp

move.l

$#6,a2

#conout, 6 (a2)

normal
#prn, 8 (a2)
normal

savptr,al
(sp)+,-(al)
(sp)+,-(al)
al,savptr

10(a2),d1
print

savptr,al
(al)+,- (sp)
(al)+, - (sp)
al, savptr

#constat,6(a2) printer status ?

norml
#prn, 8 (a2)
norml

#-1,d0
getptr
tail(a0),d2
wrap

head (a0),d2
room

#0,d0

trapsve, al
(a0)

#$2700, sr
getptr

head (a0),d2
tail (a0),d2

73

conout-call ?
printer ?

pointer to save area
retain status

return address

save ptr updates

character

return address
status

over old trap#l3
vector

status ok taken

get pointer

room in buffer?
yes
busy, no room

to old trap #13
interrupt block

pntr to iorec & mfp

buffer empty?

Abacus Software

Atari ST Tricks and Tips

loop

notbusy lea

inbuff
bsr
cmp
beg

move

inbuffl move.l
move.b

move

moveq

rts

buffull move.l

add.1l
move

wait cmp

bne

cmp.1l

bhi

moveq

rts

inbuff

#0, (al)
inbuff

psg,a2
#15, (a2)
dl, 2 (a2)

#14, (a2)
(a2),dO
#$df, do
do, 2 (a2)

#$20,d0
do, 2 (a2)

#-1,d0

tail (a0),d2
wrap

head (a0),d2
buffull
(a0) ,al

dl, (al,d2)
d2,tail (a0)
#-1,d0

hz 200,d0

no char in buffer

printer busy ?
yes,in buffer

psg address
reg. number port b
output databyte

reg number port a

strobe low

strobe high

ok

increment

write pointer

buffer full?

yves

buffer address

write char to buffer
mark new tail index
character disposed of

#timeout*200,d0 num seconds to wait

#$2300, sr
head (a0),d2
inbuffl

hz 200,d0
wait

#0,d0

74

interrupts freed up
more room in buffer?
yes—-char into buffer
time up yet?

no-keep waiting

char not disposed of

interrupt routine for sending a character
to the printer

Abacus Software

Atari ST Tricks and Tips

busyint
*

empty

getptr
*

wrap

*

nowrap

iorec
length

buffer
len
head
tail

trapsve
buf

movem.l dO0O-d2/a0-a2,-(sp) retain

bsr
move
cmp
beq
bsr
move.l
move.b
bsr
move
bclr
movem. 1
rte

lea

lea
rts

addqg
cmp
bcs
moveq

rts

.data
dc.
ds.
dc.
dc.

£ s 5+

equ
equ
equ
equ

.bss
ds.1l
equ

getptr

head (a0),d2
tail (a0),d2
empty

wrap

(a0) ,a2
(a2,d2),d1
notbusy
d2,head (a0)
#0,isrb (al)

register
get pointer

send buffer empty?
yes- ready

incremnt read pointer
buffer address

send char from
buffer to printer
mark new head index
clr service bit

(sp) +,d0-d2/a0-a2 restore registers

iorec, al
mfp,al
$#1,d2

len (a0),d2

nowrap
#0,d2

buf

O

*

75

pointer to
buffer file record

pointer to next pos.
reachd end~of-buffer?
no

otherwise start

at the beginning

buffer address
buffer size
write index
read index

offset in iorec

alter trap#13 vector

start of buffer memory

Abacus Software Atari ST Tricks and Tips

BASIC loader for print spooler

100 open "R",1,"b:spool.prg",16: rem drive b

110 field#1,16 as bin$

120 a$="": for i=1 to 16: read x$: if x$="+*"then 150

130 a=val("&H"+x$): s=s+a:a$=a$+chr$(a): next

140 lset bin$=a$: rec=rec+l: put 1,rec: goto 120

150 data 60,1A,00,00,01,B0,00,00,00,0A,00,00,00,04,00,00
160 data 0o0,00,00,00,00,00,00,00,00,00,00,00,20, 6F,00,04
170 data 2¢,3¢,00,00,01,00,DC,A8,00,0C,DC,A8,00,14,DC, A8
180 data 0o0,1c,7&,00,70,00,41,E8,00,81,10,18,90,3C, 00, 30
190 data 68, 0E,BO, 3C, 00,09, 6E,08,CE,FC, 00, 0A,DE, 40, 60, EA
200 data 4a,47,66,02,7E,20,48,C7,70,0A,E1,AF,DC,87,33,C7
210 data 0o0,00,01,B4,2F,3C,00,00,00,7C, 3F,3C,00,2D, 3F, 3C
220 data 00,05, 4E, 4D, 50, 8F, 23,C0,00,00,01,BA, 2F, 3C, 00, 00
230 data o1,e6c, 3r,3c,00,00,3F,3C,00,0D, 4E, 4E, 50, 8F, 42, 67
240 data 2F,06,3F,3C,00,31,4E,41,24,4F,08,17,00,05, 66,04
250 data 4E,6A,5D,4A,0C,6R,00,03,00,06,66,30,0C,6A,00,00
260 data 00,08,66,28,22,79,00,00,04,A2,33,1F,23,1F,23,C9
270 data 00,00,04,72,32,2A,00,0A,61,42,22,79,00,00,04,A2
280 data 2F,19,3F,19,23,C9,00,00,04,A2,4E,73,0C,6A,00,08
290 data 00,06,66,20,0C,6A,00,00,00,08,66,18,70,FF, 61,00
300 data 00,C2,34,28,00,08,61,00,00,C8,B4,68,00,06,66,02
310 data 70,00,4E,73,20,79,00,00,01,BA, 4E,DO, 46,FC,27,00
320 data 61,00,00,A0,34,28,00,06,B4,68,00,08,66,2E,08,11
330 data 00,00,66,28,45,F9,00,FF,88,00,14,BC, 00,0F, 15, 41
340 data 00,02,14,BC,00,0E,10,12,C0,3C,00,DF,15,40,00,02
350 data 80,3cC,00,20,15,40,00,02,70,FF, 4E, 75, 34,28,00, 08
360 data 61, 6E,B4,68,00,06,67,0E,22,50,13,81,20,00,31,42
370 data 00,08,70,FF, 4E,75,20,39,00,00,04,BA,D0,BC, 00,00
380 data 17,70,46,FC,23,00,B4,68,00,06,66,DC,B0,B9,00,00
390 data 04,BA,62,F2,70,00,4E,75,48,E7,E0,E0,61,24,34,28
400 data 00,06,B4,68,00,08,67,0E,61,26,24,50,12,32,20,00
410 data 61,82,31,42,00,06,08,A9,00,00,00,10,4C,DF,07,07
420 data 4E,73,41,F9,00,00,01,B0,43,F9,00,FF,FA, 01, 4E, 75
430 data 52,42,B4,68,00,04,65,02,74,00,4E,75,00,00,01,BE
440 data 00,00,00,00,00,00,00,00,00,44,06,12,06,88,AE,18
450 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
460 data *

470 close 1l:if s<> 29742 then print "Error in DATA!!"™: end
480 print "Ok.™

76

Abacus Software Atari ST Tricks and Tips

2.3 RAM-disk for the ST

If you've done any program development on the ST, then you're familar
with the number of steps required to create an executable PRG file from the
source. You need the editor, source file, compiler or assembler, linker, etc.
In addition, several temporary files are created and deleted. These
activities—editing, compiling and linking—are disk-intensive activities.
Longer programs may take 15 minutes or more to compile. In our opinion,
too much of the time is spent loading and saving data in disk files.

One way to speed up the process is to use a hard drive. This speeds up disk
access by about 30 times. Another alternative, which is faster and much less
expensive, is the RAM disk.

What is a RAM disk? Quite simply, a RAM disk is a disk drive facsimile
that's located in memory. By setting aside an area of memory in the ST and
treating it like a peripheral device—a disk drive—you can get a super fast
and super cheap disk drive.

When data from the computer is sent to a RAM disk, it is not sent to the
disk controller, but to the reserved memory. And it's done at the lightning

speed of the 68000 processor—not at the plodding mechanical speed of a
real disk drive.

Reading and writing to and from the RAM disk is equivalent to copying data
from one area of memory to another.

To simulate the RAM disk, several routines are required. One routine is tied
to the operating system. Three vectors are patched. These vectors are
designed to be used by the hard disk, but can be used for our purposes
here. They involve calls to the BIOS for reading/writing sectors, getting the
BIOS parameter block (contains information about the physical organization
of a disk) and determining if the diskette is changed.

The RAM disk here will have the designation C. This corresponds to a
value of 2 in the BIOS (0O=drive A, 1=drive B, etc.). In the program, the
normal vectors are altered to point to our routines. We determine if the RAM
disk (drive C) is the intended destination by checking the drive number on
the stack. If drive C is not the destination, we return control to the normal
vector for drives A and B.

77

Abacus Software Atari ST Tricks and Tips

When starting the RAM disk program, the size of the RAM disk is passed
as a parameter. You specify the capacity of the RAM disk in kilobytes (same
as for the print spooler). You are not limited to the preset disk sizes (180,

360, and 720K)—any size from 80K to 640K (on a 1040 ST) can be
specified.

On a 520 ST, values from 100 to 220K are possible. If you don't specify a
parameter, the default is 100K. Using the assembler, you can change the
default RAM disk capacity by changing the appropriate source code.

Using the BASIC loader, you must change the underlined values with your
new default value (high byte, low byte; example, for 300K: 01 2C). The
RAM disk program automatically configures the BIOS parameter block for

the specified parameter, creates a boot sector in RAM, and initializes the
directory.

To install the RAM disk, execute the RAMDISK.PRG program, with or
without parameters. The capacity of the RAM disk is specified by installing
this application from the OPTIONS menu as a TTP (TOS Takes Parameters)
file. When the RAMDISK .PRG application is started, simply enter the
desired capacity in the dialog box and press <RETURN>. Next click the
icon for drive A and choose the selection INSTALL DISK DRIVE from
the OPTIONS menu. Enter C for the disk drive identifier, and RAM DISK
for the icon label. Then click the INSTALL box. A new disk icon appears
on the screen with the label RAM DISK.

You can now open the RAM disk by double-clicking this icon. A window
with the identification C then appears, containing 0 objects with O bytes.
You can copy programs or files from drive A or B to the RAM disk. This is
done exactly as if we were using actual disk drives.

Try loading a program from the RAM disk. Programs up to 100K will load
in less than one second!

How can we best use the RAM disk? If you write a lot of programs and
documents you should put the editor and source program on the RAM disk.
If you have enough room, put the compiler, assembler and linker on the
RAM disk also. A complete assembler pass may take up to ten minutes with

a regular disk drive. The same pass will take less than a minute with the
RAM disk.

78

Abacus Software Atari ST Tricks and Tips

Warning: Remember that your data on the RAM disk is only in RAM—it
will be lost forever when you turn the power off! Copy the results of your
work from the RAM disk to a real disk drive before turning the computer
off! You should also do the same before you start untested programs that
might cause the system to crash. :

Here are a few hints for working with the RAM disk:

* It's not possible to back up an entire floppy disk to the RAM
disk, or vice versa. Instead, try the following method. Open a
window of the drive ro which you want to copy. Then drag the
icon of the diskette from which you want to copy into the
window.

* You should also not try to format the RAM disk. Doing so may
damage the diskettes in drives A and B. Instead, draw a box
around all the file icons on the RAM disk, and drag them to the
trash. This is done very quickly with the RAM disk.

* You can also automatically install the RAM disk after
power-up. To do this, place a folder titled AUTO on your
system disk and copy the installation program RAMDISK . PRG
to it. When you select SAVE DESKTOP from the OPTIONS
menu, your configuration with the installed RAM disk is stored
in the file DESKTOP . INF. Make sure this file is saved on
drive A and not drive C. If it is saved on drive C copy it to
drive A. From then on, every time the system is booted, the
RAM disk is automatically installed as drive C.

INSTALL DISK DRIVE

Drive Identifier: C ;
Icon Label: RAM_DISK. ___

lénstalf] | Renove | | Cancel

79

Abacus Software

Atari ST Tricks and Tips

LE/RB,

* % % ¥

hdv_bpb equ
hdv_rw equ
hdv_mediach

drvbits equ
*

gemdos equ
keep equ

xbios equ
super equ

default equ
*

init move.l
move.l
add.1l
add.1l
add.1l

moveq
moveq
lea

nextchr move.b

sub.b
bmi
cmp.b
bgt
mulu
add
bra

exit tst
bne

RAM disk for ATARI ST
6/11/85

$472
$476

equ $47e

S4c2

1
$31

14
38

100

4 (sp) ,a0
#$100,d6
12 (a0),de6
20(a0),ds6
28 (a0),ds6

#0,d7
#0,d0

129 (a0),a0

(a0)+,do

#'0',d0
exit
#9,d0
exit
#10,47
do,d?7
nextchr

d7
ok

bios parameter block
read/write sectors

bit vectors of
active drives

standard capacity
in kb

base page address
size of base page
text length

data length

bss length

pointer to
command line
first character
from command line

number?

next digit

input done there?

Abacus Software

Atari ST Tricks and Tips

ok

init1l

install

iloopl

move.w

moveq
move
add
1s1.1
1sl.1
add.l

move.l
move

trap
addqg.1l

clr
move.l

move
trap

move.1l
move., 1l
move.1l
move.l
move.l

move. 1l

moveq
lea
move

move.l
dbra

lea

#default,d7 default value

#0,d1

d7,d1 capacity in k

#9,d1 plus 9 k

#8,d1

#2,d1 * 1024

dl,de add to memory
requirements

#initl, - (sp)
#super, - (sp) initialization in
supervisor mode

#xbios

#6, sp

- (sp)

d6, - (sp) number of bytes
tkeep, - (sp) leave resident prg
#gemdos return to desktop

hdv_bpb, bpbsave
#bpb,hdv;bpb

hdv_rw, rwsave set vectors to

new routines
#rw,hdv_rw

hdv_mediach,mediasave
#media, hdv_mediach

#0,d1
ramdisk, a0
#2*%9*512/4-1,d0

clear tracks 0 and 1
dl, (a0)+ of ram disk
d0,iloopl

generate boot sector
ramdisk+11,a0

81

Abacus Software

Atari ST Tricks and Tips

bloop
*

bpbl
*

rw

rwl

lea
moveq
move.b

dbra

move

1sl
add
lea
move.b
lsr
move.b

or.1l
rts

cmp
beqg

move.l
jmp

move.l
rts

cmp
beq

move.l
jmp
move
ext.1l
1s1l.1
1s1l.1

move.l

boottab, al

#tabend-boottab-1,d0

(al)+, (a0) +

d0,bloop

d7,numcl

#1,d7
#18,d7

ramdisk+19, a0

d7, (a0) +
#8,d7
d7, (a0)

#%100,drvbits

#2,4 (sp)
bpbl

bpbsave, al
(a0)

#bpbtab, d0

#2,14 (sp)
rwl

rwsave, al
(a0)

12 (sp),d0
do

#8,d0
#1,d0

6 (sp),al

82

copy data in
boot sector

capacity in kb
in bpb

sector capacity
plus 18 sectors

low-byte
high-byte
inform drive c
drive c ?

yes

old routine

pointer to bios
parameter block

drive c ?
yes

old routine

recno, logical
sector number

times 512

buffer address

Abacus Software

Atari ST Tricks and Tips

move
subqg
lea

add.1l

move
btst
beq
exg

rloop0
rloop

move

dbra
dbra

moveq

rts

media cmp

beqg
move.l
jmp
medial moveq
rts
.data
bpbtab:
recsiz: dc.w
clsiz dc.w

*

clsizb dc.w
*

rdlen dc.w
*
fsiz dc.w
fatrec dc.w
datrec dc.w
*

numcl ds.w

move.b

10 (SP) ,dl
#1,d1
ramdisk,al
do,al

4 (sp),doO
#0,d0
rloop0
al,al

#511,4d0
(al)+, (a0)+
d0, rloop
dl, rloop0
#0,d0

#2,4 (sp)
medial

mediasave, a0
(a0)

#0,d0

$200

$400

83

number of sectors

basis address
plus relative
address in ram disk

rwflag
read?
yes
exchange destination
and source

Copy a sector
to buffer

next sector
ok

drive ¢ ?
yes

old routine

diskete not changed

sector size
cluster size

in sectors
cluster size

in bytes
directory length
in sectors

fat size

fat sectors
sectors for
data management
capacity in kb

Abacus Software Atari ST Tricks and Tips

flags ds.w 8

boottab: * data in 8086 format
dc.b 0,2 bytes per sector
dc.b 2 sectors per cluster
dc.b 1,0 reserved sectors
dc.b 2 fats
dc.b 112,0 directory entries
ds.b 2 sectors on media
dc.b 0 media descriptor
dc.b 5,0 sectors per fat
dc.b 9,0 sectors per track
dc.b 1,0 sides
dc.b 0 hidden

tabend equ *
.bss

bpbsave ds.1l 1 room for old

* ' floppy vectors

rwsave ds.l 1

mediasave ds.l 1

ramdisk equ * ram disk starts here

A}
e
51T ert BA.

S5ICWRST

31855 bytes used in 9 items.

e

i il it
| i |

DESK §.ACC CESK2.ACC DESKZ .RCC DESKTOR JINF

FN

i
i
i
V_2_3.EAS 1_E.ERS

9

FO3.BAS P@S .EAS

18788 bytes used in 24 itens.

84

Abacus Software Atari ST Tricks and Tips

BASIC loader for RAM disk

100 open "R",1,"b:ramdisk.prg",16: rem drive b

110 field#1,16 as bin$

120 a$="": for i=1 to 16: read x$: if x$="*"then 150

130 a=val("&H"+x$) : s=sta:a$=a$+chrs$(a): next

140 lset bin$=a$: rec=rec+l: put 1,rec: goto 120

150 data 60,14,00,00, 01,5E,00,00,00,32,00, 00,00,0C,00,00
160 data 00,00,00,00, 0o0,00,00,00,00,00,00, 00,20,6F,00,04
170 data 2c,3c,00,00, 01,00,DC, 28,00, 0C,DC, A8,00,14,DC, 28
180 data 00,1c,7E, 00, 70,00,41,E8,00,81,10, 18,90,3¢C,00,30
190 data 6B, 0E,R0, 3C, 00,09, 6E,08,CE,FC, 00, 0A,DE, 40, 60,EA
200 data 4A,47,66,04, 3E,3C,00,64,72,00, 32, 07,D2,7¢C,00,09
210 data E1,89,E5,89, bc,81,2F,3¢,00,00,00, 62, 3F,3C,00,26
220 data 4E, 4E, 5C, 8F, 42,67,2F,06,3F,3C, 00, 31,4E,41,23,F9
230 data 00,00,04,72, 00,00,01,90,23,FcC, 00, 00,00,E8,00,00
240 data 04,72,23,F9, 00,00,04,76,00,00,01, 94,23,FC,00,00
250 data 01,00,00,00, 04,76,23,F9,00,00,04, 7E, 00,00,01,98
260 data 23,FC, 00,00, 01,4a,00,00,04,7E,72,00, 41,F9,00,00
270 data 01,9c, 30, 3cC, 08,Fr,20,C1,51,C8,FF,FC, 41,79,00,00
280 data 01,A7,43,F9, 00,00,01,78,70,11,10,D9, 51,C8,FF,FC
290 data 33,c7,00,00,01, 6C,E3,4F,DE,7C, 00,12, 41,F9,00,00
300 data 01,AF,10,C7, El,4F,10,87,00,B9,00,00, 00,04,00,00
310 data 04,C2,4E,75,0C, 6¥,00,02,00,04,67,08, 20,79,00,00
320 data 01,90,4E,DO, 20,3¢,00,00,01,5E, 4E, 75,0C, 6F, 00,02
330 data 00,0E,67,08,20, 79,00,00,01, 94, 4E,DO, 30,2F,00,0C
340 data 48,C0,E1, 88, E3,88,20,6F,00,06,32,2F, 00,0A,53,41
350 data 43,F9,00,00,01, %c,p3,c0,30,2F,00,04,08, 00,00,00
360 data 67,02,C1,49,30, 3¢,01,FF,10,D9,51,C8,FF, FC,51,C9
370 data FF,F4,70,00,4E, 75,0¢C, 6F,00,02,00,04,67, 08,20,79
380 data 00,00,01,98, 4E, po,70,00,4E,75,02,00, 00, 02,04,00
390 data 00,07,00,05, 00,06,00,12,00,00,00,00, 00,00,00,00
400 data 00,00,00,00,00, 00,00,00,00,00,00,02,02, 01,00,02
410 data 70,00,00,00, 00,05,00,09,00,01,00,00, 00,00,00, 4C
420 data 1c,06,0E, 06, OE, 06,0c,10,06,CE, 0C, 20,08, 10,1c, 2E
430 data *

440 close 1:if s<> 26687 then ? "Error in DATA!!": end
450 print "OQk."

85

Abacus Software Atari ST Tricks and Tips

2.4 Auto-starting TOS applications

On early versions of ST, the operating system is loaded from disk to
memory and started. To initiate this procedure, the ST has a boot ROM
which automatically executes when the computer is turned on. The boot

ROM loads a special boot sector from the system diskette, which in turn
loads the rest of the operating system.

The boot sector occupies the first sector on the system disk (track zero,
sector one) and contains data about the disk format, capacity, number of
tracks and sectors, and size and organization of the directory. The boot

program is contained only on a systems disk. So that the ST can recognize a
system disk, the checksum of this sector is $1234.

Normally, after the operating system is loaded, the GEM desktop is started.
But the operating system can start a program called COMMAND . PRG instead.
This may be a user program which runs under TOS, for example. How do
we get the operating system to do this?

Within the boot sector is a flag which determines whether the desktop or
COMMAND . PRG is started. If the flag is zero, the desktop is started. If the
value at the address is not zero, COMMAND . PRG is started. The value of the
flag is copied to the system variable cmdload which is found at $482.

After the operating system is loaded, it uses cmdload to decide which
program to start.

To be able to start an application on boot-up, we must modify the boot
sector. Following is a small utility program to do this.

The program performs several functions:

First the boot sector from drive A is read and the flag for cmdload is set in
the boot sector.

Now we can rewrite the boot sector to drive B. But, recall that there is a
checksum to identify the boot sector. Changing a value within the sector
changes the checksum. The operating system will no longer recognize the
disk as a systems disk. Instead of determining the new checksum, we can

let the operating system do it for us. Function protobt creates a boot
sector or changes one already existing.

86

Abacus Software Atari ST Tricks and Tips

We specify that the boot sector is to be executable and all other parameters
are to remain unchanged. This routine recalculates the checksum and
rewrites the boot sector.

Finally we can copy the application to be automatically started after booting
to the modified disk. The program must have the name COMMAND . PRG.

If we reboot with this disk in drive A, this program is automatically started!

This program requires a disk with a boot sector to be in drive A, such as the
system disk. This program will read the boot sector and then write the
modified boot sector to drive B.

87

Abacus Software Atari ST Tricks and Tips

*

* modification of boot sectors for cmdload

* LE 11/11/85

*

gemdos equ 1

xbios equ 14

floprd equ 8 read sector

flopwr equ 9 write sector

protobt equ 18 genrate boot sector
cmdload equ Sle offset in boot sector

* load boot sector

move #1,- (sp) one sector

move #0, - (sp) side zero

move #0, - (sp) track zero

move $#1, - (sp) sector zero
move #0, - (sp) drive a

clr.1l - (sp)

move.l #buffer,-(sp) buffer address
move #floprd, - (sp) boot read sector
trap #xbios

add.1l #20, sp

tst do error occurred-?
bne exit yes—- break

boot sector modified

lea buffer, a0l buffer address
move.b #1,cmdload(a0)set cmdload flag

make boot sector operational again

move #1,-(sp) make boot sector

* operational
move #-1,-(sp) disk type stays same
move.l #-1,-(sp) serial number

stays the same

88

Abacus Software Atari ST Tricks and Tips

move.l #buffer,-(sp) boot sector address
move #protobt, - (sp)call function

trap #xbios

add.1l #14,sp

write altered boot sector back in

move #1,-(sp) one sector
move #0, - (sp) side zero
move #0, - (sp) track zero
move #1,-(sp) sector zero
move #1, - (sp) drive b

clr.1 - (sp)

move.l #buffer,-(sp) buffer address
move #flopwr, - (sp) boot zero
trap #xbios

add.1 #20, sp

exit clr - (sp)
trap #gemdos return to desktop
.bss

buffer ds.b 512 room for a sector

89

Abacus Software Atari ST Tricks and Tips

100 open "R",1,"b:cmdload.prg”,16 : rem drive b

110 field#1,16 as bin$

120 a$="": for i=1 to 16: read x$: if x$="*"then 150

130 a=val("&H"+x$): s=s+a:a$=a$+chr$(a): next

140 lset bin$=a$: rec=rec+l: put 1l,rec: goto 120

150 data 60,1A,00,00,00,84,00,00,00,00,00,00,02,00,00,00
160 data 00,00,00,00,00,00,00,00,00,00,00,00,3F,3C,00,01
170 data 3¥,3C,00,00,3F,3C,00,00,3%¥,3C,00,01,3F,3C,00,00
180 data 42,A7,2¥,3C,00,00,00,84,3F,3C,00,08,4E,4E,DF,FC
190 data 00,00,00,14,4A,40,66,54,41,F9,00,00,00,84,11,7C
200 data 00,01,00,1E,3F,3C,00,01,3F, 3C,FF,FF,2F,3C,FF,FF
210 data FF¥,FF¥,2F,3C,00,00,00,84,3F,3C,00,12,4E,4E,DF,FC
220 data 00,00,00,0E,3F¥,3C,00,01,3F,3¢C,00,00,3F,3C,00,00
230 data 3F,3C,00,01,3F,3C,00,01,42,A7,2F,3C,00,00,00,84
240 data 3F,3C,00,09,4E, 4E,DF,FC,00,00,00,14,42,67,4E, 41
250 data 00,00,00,18,16,1A7,28,00,00,00,00,00,00,00,00,00
260 data *

270 close 1:if s<> 8275 then print "Error in DATA !!"™: end
280 print "Ok."

90

Abacus Software Atari ST Tricks and Tips

2.5 Using machine language and C

In this section we'll demonstrate how to use machine language subroutines
from C programs.

Writing a program in C is usually much easier and faster than writing it in
machine language. But when it comes to optimizing time-critical parts of a
program, you must often rewrite these sections in machine language. Since
the C compiler creates an assembly language program as an intermediate

step, you might be tempted to optimize these parts by hand—changing the
assembly language program.

How can you pass parameters between the C program and assembly

language subroutine and get a result back? Parameters are usually passed on
the stack:

int parameterl, parameter2;
long parameter3;
function(parameterl,parameterZ,parameter3);

The C compiler generates the following assembler language statements from
the above call:

move.l parameter3, - (sp)
move .w parameter?2, - (sp)
move .w parameterl, - (sp)
jsr _function
addqg.1l #8, sp

Note that the parameter list is processed from the back to the front, and also
that the function is called with the JSR instruction. The C compiler places
an underline character in front of the subroutine name. So that the linker can
find the name in the assembly language program, it is declared as global.

For the assembly language program, the parameters are found on the stack
as follows:

8 (sp) long, parameter3
6 (sp) word, parameter?
4 (sp) word, parameterl
0 (sp) long, return address from jsr call

91

Abacus Software Atari ST Tricks and Tips

You must ensure that the types of the parameters in the call match those in
the subroutine; the compiler and linker cannot check types.

You must also pay attention to the register usage. An assembly language
subroutine may change the contents of registers DO-D2 and A0-A2. No
other register contents may be changed. If a function returns a result, it is
expected in register DO. In this case, the compiler assumes that the function
value is of type int or word, as with the following call:

a=function (parameter) ;

If the function returns a 1long result, it must be explicitly declared before
the function is called, like this:

long function();
long a;

a=function(parameter);

Armed with this knowledge, you should be able to use assembly language
subroutines. Following is an example of such a subroutine; it displays the
directory. You'll see several GEMDOS calls. Toward the end of the listing
is the short program main.

The function expects two parameters: The first determines the drive (0=A,
1=B); the second is a selection string that you can specify to select
subdirectories, for example. If the second parameter is a null string, then all

files are displayed. Twenty files are displayed per screen. Pressing a key
displays the next twenty files.

92

Abacus Software

Atari ST Tricks and Tips

* % % X %

)

bios
conin
conout
con

*

gemdos
wrtstr
setdrv
setdma
getspc
sfirst
snext

cr
1f

filetyp

wrtchar

blank

newline

wrttxt

Display directory

LE 11/11/85

BIOS-functions

equ
equ
equ
equ

13 TRAP#

2 console input

3 console output
2 console device#

GEMDOS-functions

equ
equ
equ
equ
equ
equ
equ

equ
equ

equ

move
move
move
trap

addqg.

rts

move.

bra

lea

move.

move
trap

addqg.

1 TRAP#

9 string output

Se drive selection

$la declare dma-address

$36 free bytes

Sde search first

$4f search next

13 carriage return

10 line feed

%$11001 file attribute

d0, - (sp) output char in d0

#con, - (sp)
#conout, - (sp)
#bios

#6, sp

#' ',do
wrtchar

crlf (pc),al
a0, - (sp)
#wrtstr, - (sp)

#gemdos
#6, sp

93

output blanks

new line

text address
string output

Abacus Software

Atari ST Tricks and Tips

*
*
*

rts
.globl
6 (sp)

4 (sp)
0 (sp)

_directory:

dirl

dircont
nxtfile

move
move.l
movem. 1

move.l
move.l
move
trap
addqg.1l
move
move
trap
addg.1l
tst.b
bne
lea
move
move.l
move
trap
addqg.1
tst
bne
moveq
bsr
move.l
bsr
bsr
move
bsr
bsr
move
bsr

_directory

filename pointer

drive number
return address

4 (sp) ,curdrv
6 (sp),a0

d3-d7/a3-a6,-(sp)

a0,a3
#dmabuf, - (sp)
#setdma, - (sp)
#gemdos

#6, sp
curdrv, - (sp)
#setdrv, - (sp)
#gemdos
#4,sp

(a3)

dirl
allfile(pc),a3
#filetyp, - (sp)
a3, -(sp)
#sfirst,-(sp)
#gemdos

#8, sp

d0

enddir
#20~-1,d7
wrtname
size,d0
wrtlng

blank
date,d3
wrtdate
blank
time,d3
wrttime

94

open access for C

drive number
filenames

retain
C-register

dma buffer address

select drive

filename onhand?
yes

'* %' 35 name

filename pointer

file onhand?

number of lines
output filename
size in bytes
output as dec num.

date
output
blank line
time
output

Abacus Software

Atari ST Tricks and Tips

enddir

*
return

wrtname
*

namloop

extens

bsr
move
trap
addg.l
tst
dbne
bne
move
move
trap
addg.1l
bra

move
addqg
move.l
move
trap
addqg.l
move
bsr

lea
bsr
movem. 1

rts
lea

clr
move.b
beq
cmp.b
beqg

addqg
bsr
bra
cmp

beqg
addqg

newline
#snext, - (sp)
#gemdos
#2,sp

do
d7,nxtfile
enddir
#con, - (sp)
#conin, - (sp)
#bios

#4,sp
dircont

curdrv, - (sp)
#1, (sp)
#buffer, - (sp)
#getspc, - (sp)
#gemdos

#8, sp
buffer+2,d0
wrt3dec

kfree(pc),al
wrttxt

new line
look for next file
onhand?

no
wait for keypress

and continue

drive
l=a, 2=b

free space on disk
size

show as 3-digit
dec. number

(sp)+,d3-d7/a3-aé6 C-register

filenam, a6

deé
(a6)+,do
endnaml
#'.',d0
extens

#1,d6
wrtchar
namloop
#9,d6

contue
#1,d6

95

return
filename formatted
output

get character
name to end?

continue via
extension

output character

fill name to 8

places

Abacus Software

Atari ST Tricks and Tips

bsr
bra

contue move.

beqg
addg
bsr
bra
endnaml cmp
beqg
bsr
addqg
bra

wrtdate bsr
move
and
bsr
bsr
move
lsr
and
bsr
bsr

move
lsr
1lsr
add
bra

wrtpkt move.

bra

wrttime bsr
move
1sr
1lsr
bsr
bsr

move
1sr
and

blank
extens
(ab6) +,do
endnaml
#1,d6
wrtchar
contue
#14,d6
return
blank
#1,d6
endnaml

blank
d3,do
#%$11111,d0
wrt2dec
wrtpkt
d3,do
#5,d0
#%1111,d0
wrt2dec
wrtpkt

d3,do
#8,d0
#1,d0
#80,d0
wrt2dec

#'.',d0
wrtchar

blank
d3,do
#8,d0
#3,d0
wrt2dec
wrtcol

d3,do

#5,d0
#%111111,d0

96

fill with blanks

extension output

end of name?

£fill with blanks

date display
isolate day

and display
'.' as separator

isolate month and
display
'.' as separator

isolate year
add offset
and output

output period

output time

isolate hour

and output

as separator

isolate minutes

Abacus Software

Atari ST Tricks and Tips

wrtcol

wrt3dec
*

wrt2dec

wrtlng
*

wrtlngl

wrtdec5

wrtdecO

and output
':' as separator

isolate seconds
and output

output colon

display d0 as
3-digit no.
suppress leading
zeroes

d0 as 2-digit
decimal number
leading zeroes not
suppressed

to decimal

suppress leading
zeroes flag

10*d3.1 to d3

bsr wrt2dec
bsr wrtcol
move d3,do
and #%11111,d0
1sl #1,d0
bra wrt2dec
move.b #':',d0
bra wrtchar
moveq.l #3,d6
clr d4
ext.1l do
bra wrtlngl
moveq #2,d6
ext.1l do0
st d4
bra wrtlngl
hex number in d0.1
clr d4
moveq #10,d6
movem.l dl1-d3/dé6-d7, - (sp)
move.l do0,d7
moveq #1,d2
move.l d6,dl
subqg.l #1,d1
beqg wrtdecl
move d2,d3
mulu #10,d3
swap d2
mulu #10,d2
swap d3
add d3,d2
swap d2

97

Abacus Software

Atari ST Tricks and Tips

wrtdecl
wrtdec3

wrtdec?2

wrtdecid

wrtdec6

allfile
kfree
crlf

dmabuf
time
date
size
filenam
curdrv
buffer

swap
move
subqg.1l
bne
clr.1
cmp. 1
blt
addqg.l
sub.1
bra
tst.b
bne
tst
bne

cmp
beqg

bsr

bra
add.b
bsr

st
subg.1
bne
movem. 1
rts

dc.b
dc.b

.bss

ds.
ds.
ds.
ds.
ds.
ds.
ds.

U0+ 50

d3
d3,dz2
#1,d1
wrtdecO
do
d2,d7
wrtdec2
#1,d0
d2,d7
wrtdec3
do
wrtdecd
d4
wrtdec4d

#1,d6
wrtdecid

blank

wrtdecb
#'0',d0
wrtchar
d4
#1,d6
wrtdec5

zero?
no-- output

suppress leading
zeroes

last place?

yes—- display zero

leading zeroes

displayed as blanks

display number
set flag

(sp) +,d1-d3/d6-d7

"*.*",0

all files

" K free."

cr,1£f,0

22
1
1
1
14
1
16

dma buffer for gemdos
time

date

file size

file name

current drive number
file size buffer

98

Abacus Software Atari ST Tricks and Tips

The following short program in C can serve as a test for the directory
subroutine.

/*

* test program for directory display
* LE 11/11/85

x/
main ()

directory (0,"");
/* drive a, all files *x/

directory (1,"*.PRG");
/* drive b, prg-files only */

If you call the C source program direc.c and the assembly language
program dir.s, then you would use the following command line after
compilation and assembly for linking:

dir.68k=apstart,direc,dir

99

Abacus Software Atari ST Tricks and Tips

BASIC loader for directory display

1000 open"R",1,"b:dir.prg",16

1010 field#1,16 as bin$

1020 a$="":for i=1 TO 16:read d$:if d$="*"then 1050

1030 a=val("&H"+d$) :s=s+a:a$=a$+chr$(a) :next

1040 1lset bin$=a$:rec=rec+l:put 1,rec:goto 1020

1050 data 60,1a,00,00,02,72,00,00,01,64,00,00,04,42,00,00
1060 data 00,00,00,00,00,00,00,00,00,00,00,00,2A, 4F,2E,7C
1070 data 00,00,07,D6,2A,6D,00,04,20,2D,00,0C,D0,AD, 00,14
1080 data DO,AD,00,1C,DO,BC,00,00,01,00,2F,00,2F, 0D, 3F, 00
1090 data 3F,3C,00,4A, 4E, 41,DF,FC,00,00,00,0C, 4E,B9, 00, 00
1100 data 00,4a,2F, 3c,00,00,00,00,4E,41,22,2F,00,04,30, 3C
1110 data 00,C8,4E,42,4E,75,4E,56,FF,FC,2E,BC,00,00,03,CE
1120 data 42,67,4E,B9,00,00,00,9A,54,8F,2E,BC,00,00,03,CF
1130 data 3F,3C,00,01,4E,B9,00,00,00,97,54, 8F, 4E, 5E, 4E, 75
1140 data 3F,00,3F,3cC,00,02,3F,3C,00,03,4E, 4D, 5C, 8F, 4E, 75
1150 data 10,3¢C,00,20,60,EA,41,FA,01,E2,2F,08,3F,3C,00,09
1160 data 4E,41,5C,8F,4E,75,33,EF,00,04,00,00,08,06,20, 6F
1170 data 00,06,48,E7,1F,1E, 26,48, 2F,3C,00,00,07,DA, 3F, 3C
1180 data 00,1A,4E, 41, 5C, 8F, 3F,39,00,00,08,06, 3F,3C, 00, OE
1190 data 4E,41,58,8F,4A,13,66,04,47,FA,01,94,3F,3C,00,19
1200 data 2f,0B,3F,3C,00,4E, 4E, 41,50, 8F, 4A,40,66,46,7E,13
1210 data 61,70,20,39,00,00,07,F4,61,00,01,14,61,92,36,39
1220 data 00,00,07,F2,61,00,00,9E,61,86,36,39,00,00,07,F0
1230 data 61,00,00,cCc0,61,80,3F,3C,00,4F, 4E, 41,54, 8F, 44, 40
1240 data 56,CF,FF,CE,66,0E,3F,3C,00,02,3F,3C, 00,02, 4E, 4D
1250 data 58,8F,60,BA,3F,39,00,00,08,06,52,57,2F,3C, 00,00
1260 data 08,08,3F,3C,00,36,4E,41,50,8F,30,39,00,00,08,0A
1270 data 61,00,00,AC,41,FA,01,1C,61,00,FF, 40,4C,DF,78,F8
1280 data 4E,75,4D,F9,00,00,07,F8,42,46,10,1E,67,28,B0, 3C
1290 data 00,2E,67,08,52,46,61,00,FF,08,60,EE,BC,7C,00,09
1300 data 67,08,52,46,61,00,FF,0A,60,F2,10,1E,67,08,52,46
1310 data 61,00,FE,EE,60,F4,BC,7C,00,0E,67,C4,61,00,FE,F2
1320 data 52,46,60,F2,61,00,FE,EA,30,03,C0,7C,00,1F, 61,56
1330 data 61,18,30,03,EA,48,Cc0,7C,00,0F,61,4A,61,0C,30,03
1340 data EO,48,E2,48,D0,7C,00,50,60,3C,10,3C,00,2E,60,00
1350 data FE,BO,61,00,FE,BC,30,03,E0,48,E6,48,61,28,61,16
1360 data 30,03,EA, 48,C0,7C,00,3F,61,1C,61,0Aa,30,03,C0,7C
1370 data 00,1F,E3,48,60,10,10,3C,00,3A,60,00,FE, 84,7C,03
1380 data 42,44,48,c0,60,0C,7C,02,48,C0,50,C4,60,04,42,44
1390 data 7C,0A,48,E7,73,00,2E,00,74,01,22,06,53,81,67,1A
1400 data 36,02,C6,FC,00,0A,48,42,C4,FC,00,0A,48,43,D4,43

100

Abacus Software Atari ST Tricks and Tips

1410 data 48,42,48,43,34,03,53,81,66,E6,42,80,BE, 82, 6D, 06
1420 data 52,80,9E,82,60,F6,4A,00,66,10,4RA,44,66,0C,BC,7C
1430 data 00,01,67,06,61,00,FE,3A,60,04,D0,3C,00,30,61,00
1440 data FE,20,50,C4,53,86,66,B0,4C,DF, 00,CE, 4E, 75, 2A, 2E
1450 data 2A,00,20,4B,20,66,72,65,65,2E,0D,0A,00,00,00,01
1460 data 00,02,01,01,02,01,01,00,01,01,02,01,01,01,01,01
1470 data 0o0,00,00,00,00,00,00,00,00,00,01,00,00,01,00,03
1480 data 05,00,05,05,00,00,01,01,02,01,00,10,07,01,02,01
1490 data 00,00,00,00,00,00,00,00,00,00,01,01,01,02,01,01
1500 data 02,01,01,02,01,01,01,01,02,01,01,01,00,00,00,00
1510 data 00,00,00,00,00,00,00,00,02,01,01,01,01,01,06,01
1520 data 01,04,01,01,01,03,01,02,01,01,04,02,01,08,01,01
1530 data 00,00,00,00,00,00,01,01,01,09,01,01,01,01,01,01
1540 data 01,00,00,05,01,00,00,00,00,00,00,00,00,00,00,00
1550 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
1560 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
1570 data 00,00,04,03,00,08,03,00,06,01,00,08,01,00,08,01
1580 data 00,04,01,01,03,01,01,00,05,00,01,01,01,00,05,00
1590 data 00,01,01,00,01,01,00,00,00,00,00,00,00,00,00,00
1600 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,02
1610 data 02,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
l620 data 00,00,00,00,00,00,00,00,00,00,00,00,05,01,00,05
1630 data 01,00,01,01,00,01,01,00,02,05,00,06,01,00,02,01
1640 data 00,01,01,00,06,05,00,00,00,00,00,01,01,00,01,00
1650 data 02,01,00,02,01,01,01,01,01,00,00,00,00,00,00,00
1660 data 00,00,00,00,00,00,00,00,00,01,02,03,01,02,01,01
1670 data 01,01,01,01,00,01,01,00,01,02,00,2A,2E,50,52,47
1680 data 00,00,00,00,00,04,2E,1E,08,08,0A,34,10,0E, 2C,0C
1690 data 0C,2A,08,0E,18,00,00,00,00,00,00,00,00,00,00,00
1700 data *

1710 close 1:if s<> 49400 then print"ERROR IN DATA!":end
1730 print "Ok."

101

Abacus Software

Atari ST Tricks and Tips

Sample screen dump of directory display program

CHOLOAD PRG

DIR 0
DIR S
DIR PRO
CHMDLOAD BAS
DIREC 0
DISKTINE BRK
SPOOL BARS

RAMDISK BAS
RAMDISK PRG
SPOOL PRO
CHOLOAD 5
DIREC €
DISKTIME S
RAMDISK S
SPOOL 5
DISKTIME 8RS
gISKIIHE PRG

7363
iaig
333
1
43934
2138
1362
443
441
13138
F¥a!
4683
3563
78348
1333
443

102

12.88.38
i2.98.98
84.81.36
29.85.85
04.81.36
24.81.86
84.81.86
29.85.85
84.01.86
84.81.35
04.81.80
g4.61.36
64.81.348
64.81.36
2):355 5
29.85,35
84.61.36
84.81.86
23.85.85
23.83.85

12:36:312
i2:38:57
19:15:18
18:22:34
i9:13:24
19:19:28
13:i9:32
17:34:86
19:19:42
19:19:43
i9:19:5

19:70:87
iﬁziazﬁﬁ
i9:728:18
?,EﬁgE
i3¥14=3§

Lé;igzig

iﬁ 23:;%
13 zgsgﬂ
18126334

Chapter 3

(Hardcopy in colorj

3.1 ST hardcopy

3.2 The screen display

3.3 Color hardcopy programs

3.3.1 Color dot-matrix printer hardcopy
3.3.2 Color plotter hardcopy

Abacus Software Atari ST Tricks and Tips

3.1 ST hardcopy

One of the ST's most fascinating features is its great graphic capabilities.
We don't have to tell you how crisp the hi-res mode is with the
monochrome monitor. You can enjoy its graphics the minute you turn it on.

But there is one problem: how do we put these terrific images on paper? To
be sure, there is as hardcopy routine in GEM. But this works only on a
"normal" dot matrix printer. The various colors are shown as levels of grey.
There is even a routine for a special color printer, but we never found out
which one. Consequently, we wrote our own routine—and it's written so
that it can be easily adapted to other printer models.

We also tried to get hardcopy on standard (color) plotters with a demo
version of the drawing program GEMDRAW. We ran into problems with
this, because we didn't know of a suitable hardcopy algorithm. But we
solved this problem as well, as you'll see shortly.

We have also included a section on the layout of the graphics RAM. This

layout will certainly prove useful when you implement your own graphics
ideas.

The programs are all documented, so it won't be hard to modify them to suit
your own needs. In addtion, we have listed both programs in BASIC, so
even if you don't have an assembler you can still use the programs.

Included in this chapter are many high-quality screen photos and
hardcopies.

Note: For publishing reasons the color pages must be bound together. All
the color illustrations are labeled as Plates. All Plates are located in the color
section at the end of this book.

105

Abacus Software Atari ST Tricks and Tips

3.2 The screen display

The ST's screen display is memory mapped from video RAM. This is both
a strength and weakness. 32K of video RAM is set aside for the screen
display.

For graphics, the setup of video RAM is ideal. Points can be easily set and
reset, thereby making graphics display extremely fast.

For text, the setup is less than ideal. To display a character, the character's
image is copied pixel by pixel from the RAM-based font set directly to video
RAM. This method is much slower than other hardware character
generators, and the slow speed is especially noticeable during scrolling,

when a large amount of memory must be moved. This would be unbearable
if the 68000 wasn't so fast.

Obviously the ST is designed to optimize graphics at the expense of text.
Let's talk more about the ST's graphics.

In high-resolution mode (640x400), the ST allows two colors: black and
white. Figure 3.2-1 illustrates the relationship of video RAM to the screen
display. Since there are only two colors in hi-res mode, one bit suffices to
determine the color. Thus one bit in video RAM corresponds to one point
on the screen. The high-order bit of the first word of video RAM
corresponds to the upper left-hand point of the screen. Figure 3.2-2 is a
hardcopy of this screen display mode.

In medium-resolution mode (640x200), the ST allows four colors. How is
the color represented in video RAM? In this mode, two bits of video RAM
correspond to one point on the display. The two bits represent the color of
that point. Two bits can contain up to four different values: 0,1, 2and3.
As you can see from figure 3.2-3, the two bits are adjacent words in video
RAM. So that the display appears full with a reduced number of vertical

points, a point in medium resolution mode is stretched, so that a point is
really a short vertical line.

106

Abacus Software Atari ST Tricks and Tips

Figure 3.2-1
High Resolution Mode (2)

Graphic Screen

O e @ o ¢ @ o o o o

w

Video Ram

107

Atari ST Tricks and Tips

Abacus Software

Figure 3.2-2

68/62/5

Wd £2:5

13NBd T0ULNOD

|-

108

Abacus Software

Atari ST Tricks and Tips

Figure 3.2-3

Medium Resolution Mode (1)

(@

}_l

W e o ¢ o ¢ o o o o N

w

Color

Graphic Screen

Video Ram

109

Abacus Software Atari ST Tricks and Tips

You can see the results of the stretched pixels in figure 3.2-4. The letters
appear to be taller than in hi-res mode.

In low-resolution mode (320x200), the ST allows up to 16 colors. This is
done similarly to the medium resolution mode, but four bits are are used to
represent one "point” on the screen. Four bits can contain up to 16 different
values, each one representing a different color. Figure 3.2-5 illustrates how
four adjacent words are used to represent one point. A "point” is stretched
horizontally and vertically.

You can see the results of the stretched pixels in lo-res mode in figure
3.2-6.

110

Atari ST Tricks and Tips

Figure 3.2-4

Abacus Software

HEHAL

veeee— o "
et i ¥ 7 A
g
H

T
I
| =]

I

LR antss

SSERE SR
Yol
: 2
Son |

e
[
S

IS N

BR—

*LIMIeEy

= wf L4014

TTIE)

X2
[
i ‘
[T}
-
Qe
(e
=
[T
[- Y]
)
=
o
el
| pue
Cd
[N]
a2
]
=01

-2

T

Jor

suoTyd) Malp ellf yse(

111

Abacus Software

Atari ST Tricks and Tips

Figure 3.2-5

Low Resolution Mode (0)

0 1 e o o o o o o o o o o ({39
O I N N I T
1 Graphic
. Screen
399 i

Color

Video Ram

112

Atari ST Tricks and Tips

Abacus Software

Figure 3.2-6

ATy

i
-.r.. " o .. .:.Eﬁﬂ
--u W-u- G --“ s - - »--m"”" UH
R . - K -
| 1adueg % F_Eu__ . Wy .
R oo Ek. 4
..E..su&.l ; ".am .v,.»#"..d gxﬂ% s I . R F

%

{jw_.v_mn Z|lT

S8/°62/5 Hd ££:6

e S St

m:n—vno e

TINUd _T081NDD :
[t

L

113

Abacus Software Atari ST Tricks and Tips

3.3 Color hardcopy programs

Next we have two programs for getting hardcopy. One produces hardcopy
to a color dot-matrix printer, and the other to a plotter.

We've chosen to use common peripherals. We've used Epson devices
because they are readily available and reasonably priced. These routines

may be adapted for other devices by changing a few constants in the
program.

Both hardcopy programs are designed so they can be started simply and
easily. Each copies itself behind video RAM (where there are 768 bytes

free) and remains there while the ST's power is on. Hardcopy is activated
by <ALT> <HELP>.

Some of the pictures reproduced in the color plate section are done with the
permission of Atari Corp. Our thanks especially to Sig Hartmann.

114

Abacus Software Atari ST Tricks and Tips

3.3.1 Color dot-matrix printer hardcopy

This program was a difficult one for us to write.

First we had to decide how to represent the screen on paper. Without color,
the screen appears dark while the paper is white. We decided to make light
colors on the screen appear light on the paper as well. This may sometimes
result in unsatisfactory pictures, as in Plate 4.

This version of the hardcopy works with an Epson JX-80, which is a color
version of the popular FX-80. The JX-80 has a wide color ribbon. The
three basic colors and black are organized in narrow bands on the ribbon.
This yields seven colors that the printer can produce automatically. This
program is limited to these seven colors.

To change the color, a motor moves the ribbon color in front of the
printhead. Each screen line is scanned for a specific color and the
appropriate pixels on the line are printed in this color.

If the entire 16-color spectrum of the low-resolution mode is used, the
hardcopy may take considerable time to complete. For example, hardcopy in
Plate 7 takes about one-half hour to complete.

Following is the assembly language listing for the color printer hardcopy:

115

Abacus Software

Atari ST Tricks and Tips

jx—-80 hardcopy

bit of corresponding color found

dummy for dumb loader

* Epson
* org
gemdos equ
xbios equ
prchar equ
sbase equ
getres equ
aff equ
afc equ
pwf equ
hmf equ
vmf equ
zbl equ
zwf equ
ZWC equ
znf equ
zZnc equ
baf equ
ZZC equ
zol equ
ab equ
f1l equ
* bit
* bit
ctf equ
maf equ
pflag equ
super equ
stcol equ
dummy lea
clr.l
move.w
trap
addqg.l
move.l
move .w
trap
addg.1l
movea.l
adda.w
lea
lea

Scba

1

14

5

2

4
-2 no. colors
-4 color counter
-6 words/pixel
-8 hor multipl
-10 vert multipl
-14 base line
-16 no. words/line
-18 no. words counter
=20 no. points/line
=22 no. points counter
-24 vert status
-26 line counter
-30 line offset
-31 even bits found
-32 div flags
0
1 O=test / l=print
-48 color table
-64 mask no.
S4ee flag alt/help
32 supervisor mode
7 setcolor
dummy, a0

-(a7)

#super,-(a7)

#gemdos

#6,a7

do,de

#sbase,-(a7)

#xbios

#2,a7

do, a0

#57400, a0

(a0) ,a2

start (pc),al

116

Abacus Software Atari ST Tricks and Tips

move.l #fin-start-1,d0
reloc move.b (al)+, (a0)+
dbra do, reloc

movea.l $456,a0
adda #28,a0
move.l a2, (a0)

move.l d6,-(a7)
move.w #super,-(a’7)
trap #gemdos
addg.l #6,a7
* rts in case basic is called
clr.l —-(a7)
trap #gemdos
start:
tst pflag want hardcopy?
beq st0 yes—-
rts

**

* *

* parameter initialization *
* *
**

st0 link a6, #-66 ceate room for working space
move.w #sbase,-(a7) get physical
trap #xbios screen base
addg.l #2,a7
move.l d0,zbl(a6)

move.w #getres,-(a7)
trap #xbios
addg.l #2,a7

1sl.w #1,d0

move.w d0, (a6)

lea aft (pc) ,al
move.w O0(al,d0.w),aff(a6)
moveq #1,d7 if high-res, prepare color no.

117

Abacus Software

Atari ST Tricks and Tips

stl

stl0

stll

stl2

st2

st21

moveq
move.b
clr.b
cmpi.w
beqg
move.
move.
move.
move.
trap
addqg.
clr.w
clr.b
move .w
moveq
1sl.w
1sr.b
or.b
lsr.w
dbra

£ £ € =

|

move.b
cmpi.b

bls
moveq
move
move
and
bne
lsr
dbra

moveq
clr.w
andi
cmpi.w
bls
bset.1
lsl.w
dbra

cmpi.b

#8,d0
#7,ctf (ab)
ctf+l (a6)
#1,aff (a6)
st52

aff (a6),d?
#-1,-(a7)
d7,-(a7)

#stcol,-(a7)

#xbios
#6,a7
d4

maf (a6,d7.w)

do,d1
#2,d5
#4,d1
#4,d1
d1,d4
#4,d1
d5,st10

and mask no.

hi-res ?
yes

color to dO

hue > d4

d4,maf (a6,d7.w)

#1,d44

st22
#2,d6
#$444,45
d5,d3
do0,d3
stl2
#1,d5
d6,stll

#2,d4

das
#$7££,d3
#s$££f,d3
st21l
d4,ds
#4,d3
d4,st2

#7,d5

black intensity under
stepped?

yes—-—

load mask

look for highest bit

found >
mask set below

determine color (to d5)

white?

118

Abacus Software

Atari ST Tricks and Tips

st22
st5

st50

st51

st52

bne
cmpi.b
bhi
addg.b
clr
move.b
cmpi.b
bne
subg.b
dbra

moveq
moveq
cmpi.b

bls
lsr
cmpi.b

bls
clr
move.b
dbra

move.w
lea
move.w
lea
move.w
lea
move.w
lea
move .w
lea
move.w
lea
move.w
move.w
clr.b
bra

st5

no--—

#5,maf (a6,d7) pure white?

st5 yes—--

#2,maf (a6,d7) thin out mask and

ds set black

d5,ctf(a6,d7.w)

#6,d5 yellow?

st50 no--

#2,maf (a6,d7) widen mask

d7,stl

#15,47

#8,d0

#3,maf (a6,d7) brightness > lowest
intensity?

st52 no--

#1,d0

#6,maf (a6,d7.w) brightness > highest
intensity?

st52 no--

do

d0,maf (a6,d7.w)

d7,st51

(a6),d0

pwt (pc) ,al

0(al,d0.w),pwf (ab)

hmt (pc) ,al

0(al,d0.w),hmf (a6)
vmt (pc) ,al
0(al,d0.w),vmf (a6)
zwt (pc) ,al
0(al,d0.w),zwf (ab)
znt (pc),al
0(al,d0.w),znf (a6)
bat (pc),al
0(al,d0.w),baf (a6)
#50,zzc (a6)

fl(a6)

nl0

119

Abacus Software Atari ST Tricks and Tips

khkkkkhkkhkkkhkhkhkkhkhhkhkhkhhkhkhkhhhkhkhkhkkhkhkkhkhhkkkhkhkhkkkhkhkhkhkkkhkhkkhkkhkkhkhkkkkkk
*

*
* next line *
* *

hkhkkhkkkhkkhkhkkhkhkhkhkhkkhkkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkkhkkkhkhkhkhkhkkhkhkkhkhkkkhkhkkhkkhkkhkhkhkkhkkkkkk

nl:
subg.w #1,zzc(af) line counter run through?
beq exit yes—-—
move.l zbl(a6),d? line basis
addi.l #640,d47 to increment
move.l d7,zbl{(a6) a line

nl0 lea lftab(pc),ad linefeed
moveq #4,d7 on
bsr 1f printer
move.w aff(a6),afc(a6) color counter
movea.l zbl (a6),a3 line basis
bra sl0

AAKAkAKkAAhkAA A hkAAAAKAAAhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkAhkkkhkhkhkhkhkhkhkhkhkkhkhkixk

* *

* next color *

* *

AAAKRKKKRKRAKAAKKAKAAKRAKA R AKRAKA AR ARk KA AhhkA Ak hkhkhkhkkhkkhkhkkhkhkhkkhkhkkkhkhkkkkkkx

sl:
tst.w pflag hardcopy break?
bne exit yes—-
subg.w #1,afc(ab) color counter done running?
bmi nl yes—- new line
bra slo0
s100 bchg.b #1,f1(a6) last run just a test ?
bne sl no—— it was printed
btst.b #0,fl(a6) point in the line found?
beq s100 no-—-
lea ctf(afb),al
adda.w afc(a6),al
clr.w dé
move.b (al),deé
cmpi.b #7,d6 white?
beg s100 yes—-- don't print it

120

Abacus Software Atari ST Tricks and Tips

lea prel (pc),ab color change
moveq #3,d7 on
bsr 1f printer
lea ct (pc),al
move.b 0(al,d6.w),do0
bsr chout
lea pre2 (pc),ab
moveq #5,47
bsr 1f
sl0 move.w 2zwf(a6),zwc(a6) no. of words/line
bclr.b #0,fl(aé6)
lea 0,a4
move.w afc(a6),d7 color number sought
clr.w do
move.b maf(a6,d7.w),d0 load mask
lea mask (pc) , a0
move.l 0(a0,d0.w),d2
bra sw0

**

* *

* next word *

* *

**

SW:
subg.w #1,zwc(a6) word counter run?
beqgq s100 yes——
movea.l zol(a6),ad line offset
adda.w pwf(a6),ad words/pixel
adda.w pwf(a6),ad *2

swo0 move.w #$8000,d5 bitmask for test
move.l a4,zol(a6) save line offset
bra sb0

**

* *

* next bit *
* *

**

sb:
1sr.w #1,d5 all bits in word ready?

121

Abacus Software

Atari ST Tricks and Tips

sb0

beq
move.w
clr.b
movea.l
bra

SwW

znf (a6),znc(ab) no. of pins/line

d4
zol (ab6) ,a4
tb

yes—-

Ahkhkkhkkkkhkhkhkhkhhkhhkhkkhhhkhhkhkhkhhkhkhkkhhkkhkhhhkhhkhkhhkkkkhkkkkhkkhkkkkk

*
*
*

next pin

*
*
*

AhkhkkkkhAkARkhkhkhkhkhkhhkkhkhhkhkhhkkhkhkhhhkkhkhkhkhkhkhkkhkhkhhkhkhkhkhkhkhkkhkkhkhkkkkkkx

bs:

bs0

bs00

bsl

clr.l
move.w
subg
1sl.b
or.b
dbra
adda.w
subg.w
bne
tst.b
begq
bset.b
btst.b
beg
clr.1l
move.w
subg
move.b
and.b
bsr
ror.l
dbra
bra

d7

vmf (a6) ,d7
#1,47
#1,d4
ab(a6),d4
d7,bs0

baf (a6),ad
#1,znc (ab)
tb

d4

bs00
#0,fl(a6)
#1,£f1 (as6)
sb

47

hmf (a6) ,d7
#1,d47
d4,do
d2,do
chout
#8,d2
d7,bsl

sb

vertical multiplier

vertical condition of points

pin counter run?
no-- test points
a point given?

no—-—

should it be printed?

no--

horizontal multiplier

byte masked
and output

rotate raster mask

khkhkhkkkhkhkhkkhkhkhkhkkkhkhkkkhkhkhkhkhhhkhkhkhkhhkkhkhkhkhhkkhhkhkhkkhhkhkhkkhkkhkhkkkkkhkkkkx

*
*
*

test bit

*
*
*

KA KA AAAKAKA KR A KA A AAAAKRAKRAKRAAAA AR A AR A A A ARk A Ak kkhkhkhkhkhhkhkkhkhkhkkhkkk

122

Abacus Software Atari ST Tricks and Tips

tb:

clr.w d3

clr.1l dé

move.w pwf(a6),dé6 words/pixel

move.w d6,d0

1sl.w #1,d0 next word

subg.b #1,d6

lea 0(a3,ad),a0

lea 0(a0,d0.w),a5
tbl 1sl.b #1,d3 bits collected for color
* number

subg.l #2,a5

move.w (a5),d7

and.w ds5,d7 bit set?

beq tb2 no--

bset.l #0,d3
tb2 dbra de6,tbl

clr.b ab(a6)

cmp . w afc(a6),d3 color number being sought?

bne tb3 no--

bset.b #0,ab(aé6) point marked as found
tb3 bra bs

**

* *

* output *

* *

**

exit:
unlk a6 free up workspace
move.w #-1,pflag hardcopy ready
rts

**

* *

string on (a5) output with counter in 47 *

*
**

*
*

1f:
andi.l #S$Sffff,d7

123

Abacus Software Atari ST Tricks and Tips

subqg #1,47

1f0 move.b 0(a5,d7),d0
bsr chout
dbra d7,1£f0
rts

khkkkkkhkkkhkhkhhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkkhkhkhhkhkhkhkhkhhkhkkhkhkhkhkhkkkhkhkhkhkkkhkkkk
*

*
* character in d0 to printer *
* *

khkkhkkkhkhkkhkhkhkhkhkhkkhhkhkkhkrkhkkhkhkhkhkkhkhkkhkhkhkkhkhkkhkkhkhkhhkkhkhkhkkhkhkhkkhkhkhkhhhkhkkhkhk

chout:
move.w do0,-(a7)
move.w #prchar,-(a7)
trap #gemdos
addg.l #4,a7
rts

AhkhkhkkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkAkAAAkhkhkhkhkhkkkhkhhkhkhkhkhkkkkkkhkhhkhkhkhkkhkkkkhkkx
*

*
* constants *
* *

khkhkhkkhkhksrhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkkhkhkkkkhkhkhkkhkhkhkhkhkhkhkhkhhkkkhkhkhkkkkkhkkkk

aft dc.w 15,3,1 no. of colors
pwt dc.w 4,2,1 words belonging to a pixel
hmt dc.w 2,1,1 horizontal doubling
vmt dec.w 2,2,1 vertical doubling
zwt dc.w 20,40,40 words/line
znt dc.w 4,4,8 pins/line
bat de.w 160,160,80 vertical state of lines
mask dec.1l $44001100 color dimming
dc.1 S$aabb5aab55 averaging out from
dc.1l -1 full
ct dc.b 0,2,6,2,1,3,4,0 printer color
1ftab dc.b 24,"Jg",27,13 linefeed 8 pins
prel dc.b "y",27,13 color choice
pre2 dc.b 2,128,4,"*",27 graphic mode & point counter
fin equ *
.end

124

Abacus Software Atari ST Tricks and Tips

The data in the last 6 lines can be changed to adapt the program to other
printers. Here you can enter the printer-specific control codes. Note that the
control sequences are arranged in reverse order.

If you do not have an assembler but still want to make changes "by hand" in
the BASIC program, make sure that the length and position of the strings

don't change. If this happens, you'll have to change the reference
addresses.

The machine language program for loading from BASIC differs slightly
from the assembler version. Since the program is called with CALL, it must
be terminated with RTS and not with TERM via GEMDOS.

5 rem BASIC loader for Epson JX-80 hardcopy
10 dim a%(415)

20 for 1i=0 to 415

30 read a% (i)

40 next i

50 b=varptr (a%(0))

60 call b

70 end

950 data &H42A7, &«H3F3C, &H0020

960 data &H4E41, §H5C8F, §H2C00, &H3F3C, §H0002, §H4E4E, §H548F, §H2040
970 data &HDOFC, §H7D00, §H45D0, §H43FA, §H0028, §H203C, § HO000, §HO2F9
980 data &HlODQ,&HSlCB,&HFFFC,&H2079,&HOOOO,&H0456,&HDOFC,&H001C
990 data &H208A,&H2F06,&H3F3C,&H0020,&H4E41,&H5C8F,&H4E75,&H4E41
1000 data &H4AT9, &HO0000, ¢HO4EE, &H6702, §HAETS5, §H4E56, § HFFBE, § H3F3C
1010 data &HOOOZ,&H4E4E,&H548F,&H2D40,&HFFF2,&H3F3C,&H0004,&H4E4E
1020 data &H548F,&HE348,&H3C80,&H43FA,&H0288,&H3D7l,&HOOOO,&HFFFE
1030 data &H7E01,&H7008,&H1D7C,&H0007,&HFFDO,&H422E,&HFFD1,&HOC6E
1040 data &HOOOl,&HFFFE,&H6700,&HOOQA,&H3E2E,&HFFFE,&H3F3C,&HFFFF
1050 data &H3FO7,&H3F3C,&HOOO7,&H4E4E,&H5C8F,&H4244,&H4236,&H7OCO
1060 data &H3200,&H7A02,&HE949,&HE809,&H8801,&HE849,&H51CD,&HFFF8
1070 data &H1D84,&H70CO,&HOC04,&H0001,&H633A,&H7C02,&H3A3C,&H0444
1080 data &H3605,&HC640,&H6606,&HE24D,&H51CE,&HFFF6,&H7802,&H4245
1090 data &H0243,&H07FF,&HOC43,&HOOFF,&H6302,&H09C5,&HE94B,&H51CC
1100 data &HFFFO, §HOCO05, §HO007, 4H660E, §HOC36, §H0005, §H70C0, §H6206
1110 data &H5436, §H70C0, §H4245, 4H1D85, §H70D0, §HOCO5, §HO006, 4HE604
1120 data &H5536, §H70CO, §H51CF, &HFF86, s HTEOF, §H7008, § HOC36, & H0003
1130 data &H7OC0,&H63OC,&HE248,&HOC36,&HOOOG,&H7OCO,&H6302,&H4240
1140 data &H1D80, &§H70CO, §H51CF, 4HFFE4, §H3016, §H43FA, §HO1CA, §H3D71
1150 data &HO000, «HFFFA, 4H43FA, £H01C6, §H3D71, §H0000, s HFFF8, s H43FA
1160 data &HO1C2, &H3D71, &4HO0000, 4HFFF6, §H43FA, §HO1BE, §H3D71, £50000
1170 data &HFFFO, &H43FA, §H01BA, §H3D71, §H0000, &HFFEC, §H43FA, §HO1B6
1180 data &H3D71, &§H0000, &HFFE8, 4H3D7C, 640032, 4 HFFE6, §H422E, s HFFEQ
1190 data &H6016, «H536E, ¢HFFE6, £4H6700, §H014C, &H2E2E, ¢ HFFF2, §H0687

125

Abacus Software Atari ST Tricks and Tips

1200 data &HO0000,&H0280, &H2D47,&HFFF2, §H4BFA, §H01A4, §H7E04, §H6100
1210 data &H0140,&H3D6E, &HFFFE, §HFFFC, §H266E, §HFFF2, §H6054, §H4A79
1220 data &H0000, &HO4EE, &H6600, §HOL11E, §H536E, §HFFFC, §H6BC4, §H6042
1230 data &HO86E, &H0001, &4HFFEO, §H66E6, §HO82E, §H0000, §HFFEO, §H67F0
1240 data &H43EE, ¢HFFDO, &HD2EE, §HFFFC, §H4246, §H1C11, &HOCO6, §H0007
1250 data &H67DE, &H4BFA, &HO15E, §HTE03, &§H6100, 8§HOOF6, §H43FA, §H0148
1260 data &H1031, &H6000,&H6100,8HOOFE, &§H4BFA, §H014B, §H7E0S5, §H6100
1270 data &HOOEO, §H3D6E, §HFFFO, &HFFEE, 4§ HO8AE, §H0000, §HFFEQ, §H49F9
1280 data &H0000,&HO0000, &H3E2E, §HFFFC, &H4240, §H1036, §H70C0, §H41FA
1290 data &HO1OA, &H2430, §H0000,&H6012, §H536E, §HFFEE, §H6792, ¢H286E
1300 data &HFFE2, §HD8EE, &§HFFFA, ¢HD8EE, §HFFFA, &H3A3C, §H8000, £¢H2D4C
1310 data &HFFE2, &H6004, §HE24D, &H67EO, §H3D6E, §HFFEC, §HFFEA, §H4204
1320 data &H286E, ¢HFFE2, &4H6044,&H4287, §H3E2E, §HFFF6, £§H5347, §HE30C
1330 data &H882E, &HFFE1, &H51CF, &HFFF8, ¢HD8EE, & HFFES, §H536E, &HFFEA
1340 data &H6628,&H4A04,4H6706, &8HOBEE, §H0000, § HFFEO, §H082E, §HO001
1350 data &HFFEOQ, &§H67CO, &H4287, &H3E2E, ¢HFFF8, &H5347, &§H1004, §HC002
1360 data &H6162, ¢HEO9A, &H51CF, §HFFF6, §H60AA, §H4243, §H4286, &H3C2E
1370 data &HFFFA, §H3006, &HE348,&H5306, §H41F3, & HC000, §H4BFO, §H0000
1380 data &HE30B, &H558D, &H3E15, &HCE45, §H6704, & HO8C3, §H0000, §H51CE
1390 data &HFFFO,&H422E, §HFFE1, §HB66E, &HFFFC, §H6606, §HOS8EE, & H0000
1400 data &HFFE1l, &H6082, ¢H4ESE, §H33FC, &4HFFFF, §H0000, §HO4EE, §H4E75
1410 data &H0287,&H0000, §8HFFFF, &H5347,&H1035, §H7000, §H6106, &H51CF
1420 data &HFFF8, &H4E75, &H3F00, §H3F3C, &H0005, §H4E41, §H588F, §H4ET75
1430 data &HOOOF, &H0003, §H0001, &H0004, §H0002, &HO001, §H0002, £§HO0O01
1440 data &HO001,&H0002,&H0002, &§H0001, §H0014, §H0028, £§H0028, §HO004
1450 data &HO0004, &H0O008, §HOOAOQ, §HOOAO, §H0050, §H4400, &H1100, §HAASS
1460 data &HAASS5, §HFFFF, §HFFFF, §H0002, §H0602, §H0103, §H0400, §H184A
1470 data &HB1BOD, &H721B, 4HODO2, §H8004, §H2A1B

126

Abacus Software Atari ST Tricks and Tips

3.3.2 Color plotter hardcopy

Hardcopy to a plotter is quite different than hardcopy to a dot-matrix printer.

While it's possible to draw point by point with the dot-matrix printer, the
method is really not practical with a plotter. By nature of its construction, a
plotter is suited to drawing lines. How do we write a program to make the
plotter draw actual lines, rather than a series of points?

We can distinguish a line on the screen because of our familiarity with them
as geometric forms. But a program recognizes a line only as a set of points.
The programming objective is to make the computer recognize points that
belong together, and then draw them as a curve or line.

Our program uses the following method to accomplish this "point-to-line"
conversion:

When a point is found, we lower the pen and then turn a quarter of a
rotation to the left (in screen memory) to see if a point is set there. If not, we
rotate right (in screen memory) in eigths of a step to search for points in
these directions. If we find a point, we move the pen to it, and start the
procedure all over again. This continues until there is no bordering point is
found at the current location.

This complex-sounding procedure has the effect that all the contours of
larger objects are traced. This is important for the appearance of the finished

picture. You can clearly see this effect in the unfinished picture of figure
3.3.2-2.

This procedure has a disadvantage. After a point is found, it is removed
from the screen, so that in later searches it is no longer recognized.
Consequently, this procedure destroys the screen image. But it allows you
to follow the program's progress on the screen.

127

Abacus Software Atari ST Tricks and Tips

Figure 3.3.2-1

e ¢ LY. S5 San
L pf v 30 Abpon '

3139k St
EeXI - XK 43P er

128

Atari ST Tricks and Tips

Abacus Software

Figure 3.3.2-2

N

BRI MO it VIR e rP e s egred o d

' Y IV XY ok [0
.uo.é:t- »¥

ey o b S P T g QiR LB PP P * PP e g P TRLAR GBS ¢

129

Abacus Software Atari ST Tricks and Tips

When the hardcopy is completed, the screen is completely white. Therefore,
make sure that your picture is saved, otherwise it will be destroyed.

The program is designed for the Epson HI-80 plotter. You can easily adapt
it for other plotters, since the command language is completely
parameterized.

The operation of the program takes longer than for the dot-matrix printer
hardcopy. To allow for change of pens, for more than four colors, the
plotter stops at the next color change after you press <ALT> <HELP> keys.
Once you've changed the pens, press <ALT> <HELP> again to continue.

The results are seen in Plate 6. Compare this with Plate 5. You can clearly
see the limits of a plotter with multicolor use.

In contrast to the dot-matrix printer hardcopy, Plate 7, the color of the
background is ignored. It is always white.

You can stop the current color output by pressing <ALT> <HELP> three
times.

In Plate 8 you see a peculiarity of plotter hardcopy. In medium resolution
mode, the vertical dimesion becomes distorted, because a single "point" on
the screen is actually two pixels. But since this program doesn't correspond
with this, the picture becomes compressed. You may also notice the text is
in German, TOS is easily configured for foregin languages.

Figure 3.3.2-3, dot-matrix hardcopy, and figure 3.3.2-4, plotter hardcopy,
show the difference in results. Notice that diagonal lines are smoother on
the plotter hardcopy.

The assembly language listing follows.

130

Abacus Software Atari ST Tricks and Tips

Figures 3.3.2-3

\UNTITLED,GEM

A

Edit Font Page Arrange Pattern Line Color

QO

—y

.y

(VU

X

wi

Y &~

0o I‘I’TTY‘[’V"VTT"'Y T YT Y T T T T IV T T IV T YT Y TYYT Y Y vvvruvnrwnnvunrnnn’rn I
i - i i S
~. - ISR Y .]»,,_:
=0 DT OR Tl T E] <

131

Atari ST Tricks and Tips

Abacus Software

Figures 3.3.2-4

IOI0RWIS LI

TIIT Y TYITyTY

Y 4
3=

10109

autq

H30'QITLILNNN:B

ulalieq

abueJday abeq 3U04 3Ip3 al4 NSag

132

Abacus Software Atari ST Tricks and Tips

* Epson HI-80 plotter hardcopy

* org $cbha

gemdos equ 1

bios equ 13

xbios equ 14

bconout equ 3

prt equ 0

phybas equ 2

setscr equ 5

super equ 32

intin equ 8

ptsin equ 12

wrmod equ 36

init equ $a000

setpix equ $a001

getpix equ $a002

yvko equ 2

pflag equ $4ee flag alt/help
apix equ -4 total no. of pixels
pscalx equ -6 factor x

pscaly equ ~8 factor y

adir equ -10 precise direction
pdir equ =12 orig. direction
maxx equ -14 number of x pixels
maxy equ -16 number of y pixels
ccol equ -18 precise color number
acol equ -20 number of colors
comma equ =22 comma w/ draw

KAhhhkhkhkkhkhhkhhhhh kA RAAhkh kA kA hkhk kA kA hk kA Akhdkdkkhkhkokhkkkhkdkdkkkkkk

* *
* program moves behind video ram *
* *

**

dummy lea dummy, a0 dummy for dumb loader
clr.1 -{(a7) set up
move.w #super,-(a7) a privileged
trap #gemdos regis-
addg.l #6,a7 ter
move.l d0,dé
move.w #phybas,~-(a7) program start

133

Abacus Software

Atari ST Tricks and Tips

trap #xbios
addg.l #2,a7
movea.l d0,a0
adda.w #57d00,a0
lea (a0),a2
lea start (pc) ,al
move.l #fin-start-1,d0
reloc move.b (al)+, (a0)+
dbra do0, reloc
movea.l $456,a0
adda #28,a0
move.l a2, (al)
move.l dé6,-(a7)
move #super,-(a7)
trap #gemdos
addg.l #6,a7
* rts
clr -(a7)
trap #gemdos
start:
tst pflag
beq param
rts

is
video-basis
+

length of

video-ram

load counter
move
program

program hooks up

to the

vblank~-queue

priv.-

status

re-

turns

if called from basic

terminate

hardcopy desired?
yes—-—

AR A AR A AR A A A A Ak kAR A A Ak Ak ARk kA ARk kA AR kA AKR A A Ak khhAhkhkhAAkkhkAAR &

*

* parameter initialization

*

*
*
*

AhkkhkhkkhhhhhhkhhAkk kA hkAAkkhhkkhhhkhkhkkhhkhhkkhkhkhkkhkkhkkkhkhkhkkhkhkkhkkkkkkk

param move
trap
addqg.
move
move.
move.
move
trap
adda.
dc.w
link

-

#phybas, - (a7)
#xbios

#2,a7
#-1,-(a7)
do,-(a7)
do,-(a7)
#setscr,-(a’7)
#xbios
#12,a7

init

a6, #-24

get physical
screen

basis

and

match

with

logical
basis

get screen parameters
make room for work register

134

Abacus Software

Atari ST Tricks and Tips

movea.l intin(a0),a3
movea.l ptsin(a0l),a4

clr wrmod (a0) set write mode
move (a0) ,d7 no. of planes
andi #6,d7
lea scalx (pc),a0
move 0(a0,d7),pscalx(as6)
lea scaly(pc),al
move 0(a0,d7),pscaly(aé6)
lea max(pc) ,a0
move 0(a0,d7),maxx(ab6)
lea may (pc) ,a0
move 0(a0,d7) ,maxy (a6)
lea colc(pc),al
move 0(a0,d7),acol(ab)
move maxx (a6) ,d6
mulu maxy (a6) ,dé
nove. d6,apix(a6)
move #1,ccol(a6) color no. 1
initl cmpi #1,pflag stop for color choice?
bne init3 no—-—
bsr caps
init2 cmpi #2,pflag -go on?
bne init2 no-—-
clr pflag
init3 bsr setcol color choice
bsr home plotter in output state
pea -1 search begins at upper left

AAAAAKAAKAAAKAKAA A A AR AAKRAAARARAA ARk Ak kAARAAhkhhkhkhkhkhkhkhkhkhkkkkkkkkkkkkhk

*
*
*

look for first pixel in a line

*
*
*

khkkhkkkkhkkhkhhkkhkhhhkhkhhkhkkhkhkkkhkhkhhkkhkhhhkkhkhkhkhkhkkhkhkkkhkkkkhkhkkkkhhkk

srch move.l

(a7)+,4d7
addg.1l #1,d7

cmp.l apix(a6),d7
beq exit yes—~
move.l d7,-(a7)
bsr chkpix

135

alil pixels viewed?

save current position
look for next point

Abacus Software Atari ST Tricks and Tips

cmp ccol (a6),do looked for color?
bne srch no-—-—
move #3,adir (a6) search direction is right

**
*

*

*
draw connected points *

*
**

*

plot bsr mov plotter to new position
bsr pendwn pen down
bsr erase clear point found
plotl clr do
bsr nexpix look for a connected point
tst do past color found?
bne plot2 yes—-
bsr = outcr delimiter output
bsr penup pen up
bra srch
plot2 bsr draw lines to next point
bsr erase clear point drawn
bra plotl look for next point

**
*

*
*

*
look for next connected point *

*
**

nexpix subg #2,adir (a6) 1/4-turn left
andi #7,adir (a6) 0-7 only allowed
move adir(a6),pdir(a6) mark output direction
bra nex3
nexl movem (a7)+,d3-d4 get old coordinates
addg #1,adir (a6) 1/8-turn right
andi #7,adir (a6) only 0-7 allowed
move pdir (a6),d7
cmp adir(aé6),d7 output point again?
bne nex3 no--

136

Abacus Software

Atari ST Tricks and Tips

nex3

clr
rts
move
1sl
lea
adda
movem
jsr
cmp
bne

addg.l
rts

do

adir (a6),d4d7
#1,d7
j(pc),al
0(a0,d7),a0
d3-d4,-(a7)
(a0)
ccol(aé6),do
nexl

#4,a’7

Jjump

dependent upon

direction

save previous

coordinates

jump

past colors found?

no-look in another direction

correct stack
connect the dots

AhkkkhkhkhkkhkhkhhhkAhkhhkhhkkhkhkkhkhkhkhkhhkhkhhkhkhkhkhkhkhkkhkhkkhkhkkhkkhkhkkhkhkkkhkkkkk

*
*
*

*

direction~dependent jumps *

*

AhkhkhhkAhhkhkAhkRAA kAR A hAAAkhhkkhkhkAhhhhkkhkhkhkAkhkhhkhkhkhkkkhkhkkhkdkhkkhkhkkxkkk

re

ru

un

lu

dc.w

addg
cmp
bcs
rts

addqg
crp
bcs
rts

addq
crmp
bes
rts

addg
cmp
bcs
rts

re-j, ru-j,un-j,lu-j,li~j,lo-j,0b-3j, ro-j

#1,d3
maxx(a6) ,d3
askpix

#1,d3
maxx(a6) ,d3
un

#1,d44
maxy (a6),d4
askpix

#1,d4
maxy(a6),d4
1i

right
reached end-of-line?
no—-

lower right
end-of-line?
no--

bottom
end-of-screen?
no--

lower left
end-of-screen?
no--

137

Abacus Software Atari ST Tricks and Tips

1i subg #1,d3 left
bpl askpix still no end
rts

lo subg #1,d3 upper left
bpl ob still no end
rts

ob subg #1,d4 top
bpl askpix still no end
rts

ro subg #1,d4 upper right
bpl re still no end
rts

Ahkkhkhkkhhkhkhhhhhhkhhk Ak kA Ak hkhkhkhkkhkhhkkkh kA kkhkhkkkhkhkdhhkhkkkkkkkk*

* *

* test for set pixels *

* *

KAk hkhAkhhkhk kA Ak kA Ak ARk kAR khk Ak khkAkk kAR Ak hhAkhhkhkhhhkkhkhkkhkhkkkkkkdkkk

chkpix divu maxx(a6) ,d7 convert
move d7,d4 d7 to
swap a7 Yy
move d7,d3 and x
askpix cmpi #3,pflag ruin the color?
bcs askl no--—
move #1,pflag eventual pen change enabled
bra exit color ready >
askl move d3, (a4) coordinates
move d4,vko (a4) loaded
dc.w getpix line a reads point
rts

LEREEE R R R R R R R R R R R R R R T 3 R S S A UGN AT R

* *

* pixel cleared *

* *

LR R Rk R R b R R R o e o T S R NI AR AR

138

Abacus Software

Atari ST Tricks and Tips

erase

move
move
clr
dc.w
rts

d3, (a4)
d4,yko (ad)
(a3)
setpix

load coordinates

colro 0
line a sets point

AhkkhkhkhkkhkhkkhkhkhhkhkkAhkhhkAkhkhhkkhkhhkhhkkhhkkhkhkhhkhkhkhkhkkkkkkhkhkkhkkkhkkxk

*
*
*

*

diverse output-routines *

*

AhkhAAA A A AA A kAR kAR A AAKRAAAA A KA R KA AA A kA A kA hkrhkhkhhkhkkhkhkkkhkdkkkkkkk

home

setcol

penup

pendwn

mov

draw

lea

bra

lea
bsr
lea
move
move.b
bsr
bra

lea
bra

clr
lea
bra

lea
bsr
bsr
bra

tst
bne
st

lea
bsr
bra

hm(pc) ,a2

outstrx

scols(pc),a2

outstrx

scoln(pc),a2

ccol(a6),d7

-1(a2,d7),d0

outchr
outcr

pup (pc) ,a2
outstrx

comma (a6)
pdw (pc) ,a2
outstrx

mv (pc) ,a2
outstrx
outcor
outcr

comma (a6)
drawl
comma (a6)
dr (pc) , a2
outstrx
outcor

plotter in home position

color put in from ccol

pen up

pen down

positioning w/o pen

positioning w/ pen

139

Abacus Software Atari ST Tricks and Tips

drawl bsr outcom

outcor move d3,deé6 coord pair output as ascii

mulu pscalx(aé6),d6

bsr outw

bsr outcom output comma
move maxy (a6) ,d7 reversal of
sub d4,d7 y—-coordinate

move d7,deé6
mulu pscaly (a6),d6

outw move.l #1000,d7 hex no. in d6 output as ascii

outwl andi.l #$3fff,de6
divu d7,de6

outw3 move dé6,do
ori #48,d0
bsr outchr
swap deé
outwd divu #10,d4d7
bne outwl
rts
outstrx clr d2 string output (counter-1 on (a2))
move.b (a2)+,d2
outstr move.b (a2)+,d0 string in (a2) output
* (counter in d2)
bsr outchr
dbra d2,outstr
rts
caps lea cap (pc) ,a2
bsr outstrx
outcr move #13,d0 c/r
bra outchr
outcom move #44,d0 comma

outchr movem.l d0-d2/a0-a2,-(a7)
andi #255,d0
move do,-(a?7) character in do0

140

Abacus Software

Atari ST Tricks and Tips

move
move
trap
addqg.l

#prt,-(a7)
#bconout, - (a7)
#bios

#6,a7

output to

printer

movem.l (a7)+,d0-d2/a0-a2

rts

**

*
*
*

output

*
*
*

Ik kA AR R Ak kAR ARk kA AR KAk k kA A A Ak kA A Ak kR Ak khkkkhkhkk Ak kkkkkkkk k%

exit

exitx

addqg
move
cmp
bpl
unlk
move
bsr
bra

#1,ccol (ab)
acol (a6),d7
ccol(a6) ,d7
initl

a6
#-1,pflag
home

caps

color sought +1

all colors utilized?
no--

free up reserved space
hardcopy-flag cleared
plotter in home position
pen tip

hkkhkhkhkhhhhhhkhkkhhkkhkkhhkhkkhkhkkhkkhkhkkkkkhhhhhhkhhkhkhhkhkhkhhhkhkkkkkxkx

*
*
*

constants

*
*
*

hhkkkhkkdhkhhkhhkhkhkhkhkhhkkkkhhkhhkhkkhkhkkkhkhhkhhkhhkhkhhkhkhkhkrakkhkkhkhkhkhkhkxkkx

scalx
scaly
max
may
colc
mv
cap
pup
pdw
dr

hm
scols
scoln
fin

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
equ
.end

o 2N o 2N o BN o K o i o AN o SN o AR INE AR N A

4,4,4

4,4,4
640,640,320
400,200,200
1,3,15

1 ’ "MA"
3,"sp-1"
5,"MRO, 0", 13
5,"DRO, 0", 13
1, "DA"

3,13, "HO", 13
1,"sp”

x factors

y factors

number of x pixels
number of y pixels
number of colors
move absolute

pen change

move relative (pen up)
draw relative (pen down)
draw absolute

home position state
color change

"123412341234123"

*

141

Abacus Software Atari ST Tricks and Tips

You can adapt the program to a different plotter. The commands for the
HI-80 plotter are defined in the last section under constants, and can be
easily adapted for another plotter.

scalx and scaly specify the number of steps the plotter will make for a
point on the screen. The number of steps depends on the thickness of the
pen. In this example, the pen thickness is 0.4 mm.

Here's the equivalent BASIC loader:

5 rem BASIC loader for plotter hardcopy
10 dim a%(411)

20 for i=0 to 411

30 read a% (i)

40 next i

50 b=varptr(a% (0))

60 call b

70 end

950 data &H42A7, &H3F3C, &§H0020

960 data &H4E41, &§H5C8F, &H2C00, §H3F3C, §H0002, §H4E4E, §H548F, s H2040
970 data &HDOFC, &H7D0O0, §H45D0, &H43FA, §H0028, §H203C, §H0000, £§HO2F1
980 data &H10D9, §H51C8, §HFFFC, &H2079, §H0000, §H0456, § HDOFC, §HO01C
930 data &H208A, &¢H2F06, &H3F3C, &H0020, §H4E41, &§H5CSF, sH4ETS, sH4E41
1000 data &H4AT9, ¢HO0000, §HO4EE, &H6702, 6 H4E75, §H3F3C, §H0002, §HAE4E
1010 data &H548F, §H3F3C, &HFFFF, &H2F00, §H2F00, § H3F3C, §H0005, § HAE4E
1020 data &HDFFC, §H0000, §HOOOC, &HA000, §H4E56, s HFFES, &§H2668, §H0008
1030 data &H2868, §HO00C, §H4268, &H0024, §H3E10, £§H0247, §HO006, §HA1FA
1040 data &H0264, §H3D70, &§H7000, &HFFFA, §H41FA, §H0260, §H3D70, £§H7000
1050 data &HFFF8, §¢H41FA, §H025C, &H3D70, §H7000, §HFFF2, §HA41FA, §H0258
1060 data &H3D70, §H7000, §HFFFO, &H41FA, §H0254, §H3D70, §H7000, s HFFEC
1070 data &H3C2E, &HFFF2, &§HCCEE, &HFFFO, §H2D46, §HFFFC, §H3D7C, §HO001
1080 data &HFFEE, §H0C79, §H0001, &§HO000, §HO4EE, §H6614, ¢H6100, s HO1CE
1090 data &HOC79, £H0002, §HO000, &§HO4EE, §H66F6, £§H4279, §HO000, §HO4EE
1100 data &H6100, §H012C, §H6100,&H0120, §H4879, §HFFFF, §HFFFF, sH2E1F
1110 data &H5287, ¢HBEAE, &HFFFC, £H6700, §H01CC, §H2F07, §H6100, §HOOD2
1120 data &HBOGE, §HFFEE, 4H66E8, &¢H3D7C, §H0003, §HFFF6, §H6100, §HO12C
1130 data &H6100, §HO11E, §H6100, §HOOE4, §H4240, §H6118, §H4A40, sH660A
1140 data &H6100, &H0180, §H6100,&H0104, §H60C4, §H6100, §H0118, §H6100
1150 data &HOOCA, ¢H60E4, ¢H556E, &HFFF6, §H026E, §HO007, §HFFF6, § H3D6E
1160 data &HFFF6, §HFFF4, ¢H601C, &§H4COF, 6H0018, §H526E, §HFFF6, 4 HO26E
1170 data &HOO007, ¢HFFF6, §H3E2E, &§HFFF4, 6 HBEGE, §HFFF6, §H6604, §H4240
1180 data &H4ET5, ¢H3E2E, &HFFF6, &§HE34F, §HA1FA, §H0016, §HDOFO, §H7000
1190 data &H48A7, &H1800, §H4EQ0, ¢HBOGE, §HFFEE, §8H66CA, &§H588F, §H4ETS
1200 data &HO0010, &§HOO1A, §H0024,&HOO2E, &§H0038, §HOO3E, §H0044, §HOO4A
1210 data &H5243, ¢HB6G6E, §HFFF2, §H6542, §H4ETS5, §H5243, (HB66E, §HFFF2
1220 data &H6502,&H4E75, 05244, §HB86GE, §HFFFO, §H652E, §HAETS5, §H5244

142

Abacus Software Atari ST Tricks and Tips

1230 data &HBB6E, &HFFFO, §H6502, §H4ET75, €H5343, ¢H6ALE, §HAETS, sH5343
1240 data &H6A02, &HAETS, §H5344, sH6A12, ¢HAETS5, &§H5344, §H6AC2, sHAETS
1250 data &HBEEE, §HFFF2, §H3807, &H4847, §H3607, §H0C79, &§HO003, £§HO000
1260 data &HO4EE, §H650C, §H33FC, &H0001, £H0000, §HO4EE, §H6000, §HOOD6
1270 data &H3883, 613944, §H0002, §HA002, §HAE75, §H3883, §H3944, £§H0002
1280 data &H4253, ¢HAOOL, §H4E75, &H45FA, §H0113, £H6000, &H0082, sH45FA
1290 data &HO0110, &H6100, §HOO7A, &H45FA, §HO10B, §H3E2E, 4HFFEE, §H1032
1300 data &HT70FF, §H6100, §H0084, &H6000, &HOOTA, &H45FA, § HOODE, §H605FE
1310 data &H426E, §HFFEA, §H45FA, ¢HOODB, §H6054, §H45FA, sH00C6, §H614E
1320 data &H6116, §H605E, §H4AGE, &HFFEA, §H660C, §H50EE, s HFFEA, §H45FA
1330 data &HOOCS8, §H613A, §H6002, ¢H614E, s H3C03, §HCCEE, 4 HFFFA, §H610E
1340 data &H6144, §H3E2E, §HFFFO, §H9E44, §H3CO07, §HCCEE, §HFFF8, §H2E3C
1350 data &H0000, §HO3E8, §H0286, £HO000, §H3FFF, §HBCCT, §H3006, §HO040
1360 data &HO0030,&H6124, &H4846, &HBEFC, §HOOOA, §H66ES, s HAETS, §HA242
1370 data &H141A, §H101A, &H6112, &H51CA, &HFFFA, §H4E75, §H4SFA, §H0067
1380 data &H61EC, §H700D, §H6002, &H702C, §H48E7, §HEOED, &§H0240, § HOOFF
1390 data &H3FO00, §H3F3C, &H0000, §H3F3C, £§H0003, §HAE4D, §H5CSF, §HACDF
1400 data &HO0707, 8H4ET75, §H526E, &HFFEE, §H3E2E, §HFFEC, &§HBEGE, & HFFEE
1410 data &H6A00, §HFDFO, §H4ESE, §H33FC, &HFFFF, §H0000, §HO4EE, §H6100
1420 data &HFF26, §H60B8, §H0004,&H0004, £§H0004, §H0004, 6H0004, §HO004
1430 data &H0280, §H0280, §H0140, &H0190, §HOOC8, §HOOCS, §HO001, §HO003
1440 data &HOOOF, &H014D, §H4103, &H5350, &H2D31, §H054D, §H5230, §H2C30
1450 data &HODO5, §H4452, §H302C, &H300D, §H0144, &H4103, §HOD48, §H4FOD
1460 data &HO0153,&H5031, §H3233,&4H3431, &H3233, 6H3431, §H3233, §H3431
1470 data &H3233

143

Chapter 4

(T he GEM programming environment)

N
NNNNE
W -

4.2

4.3.1
4.4
4.5

Inside GEM

The Virtual Device Interface

The Application Environment Services
The resource file

Working under TOS

Twenty-one

The next step: A GEM application
PRINIT - An example application
Building a RSC file

PRINIT as a desk accessory

Abacus Software Atari ST Tricks and Tips

The GEM programming environment

GEM is designed to be an easy-to-use interface between the user and the
ST. Additionally, GEM is designed to provide a convenient means for the
programmer writing applications for the ST itself.

In principle, it is simpler and faster to write a program for the ST than to
write a program for a different computer. GEM contains dozens of
subroutines which perform a variety of powerful functions. The

programmer can use these routines simply by including them in his
application.

Designing applications for the ST is quite different than designing them for
other computers.The programmer is responsible for maintaining the work
station, window management, mouse and keyboard inputs, etc. Most ST
programmers build their own collection of subroutines into a library to
handle their programming housekeeping chores.

Next we'll introduce you to several GEM routines that each application may
use. We'll also describe how accessories and applications may be
developed.

147

Abacus Software Atari ST Tricks and Tips

4.1 Inside GEM

GEM is the graphics-oriented interface that makes the ST so easy to use . A
user takes for granted the enormous complexity of this operating system that
isolates him from the details of mouse control, icon structure, drop-down

menu construction or window manipulation. He need not be concerned with
the technical aspects of the ST.

How long would it take a programmer to produce an application if he had to
write his own routines for all these tasks?

GEM's routines relieve the programmer of many of the repetitive details of
using the ST. Most of the programming languages available for the ST offer
libraries that provide access to GEM. The naming conventions are more or
less uniform for the programming languages—allowing a programmer to
easily move to a different language if he wants.

GEM has simple routines for performing data input and output, and
complex routines for managing dialog boxes.

The two main parts of GEM are the VDI, or Virtual Device Interface, and
the AES, or Application Environment Services.

The VDI provides services for the hardware components of the computer. It
handles all the device-specific details, such as converting coordinates for

screen output or printer output, providing the graphics primitives such as
line, circle or fill, or writing text to a disk file.

The AES handles the "larger” tasks such as windows, drop-down menus
and icons. It is responsible for controlling the mouse and keyboard input.
The AES also handles multi-tasking operations. You may recall that the
print spooler and clock display run concurrently while another application is
active. These are multi-tasking operations.

148

Abacus Software Atari ST Tricks and Tips

4.1.1 The Virtual Device Interface

The VDI consists of two parts:

* the GDOS, or Graphics Device Operating System, which contains a
number of the device-independent graphics routines

* the GIOS, or Graphics Input/Output System, which contains the
device-specific routines and fonts for performing input and output.

The VDI recognizes two coordinate systems:

» NDC — or normalized device coordinates
* RC — or raster coordinates

Raster coordinates correspond to the physical points on a device. On the ST

screen, these range from 320x200 through 640x400. On a plotter, they
measure the x and y steps.

Normalized device coordinates refer to an idealized screen surface. The NDC
orientation corresponds to our usual Cartesian system: point 0,0 lies at the
lower left corner, and the largest values for x and y lie at the upper right
corner of the drawing surface. The range of values for the NDC is from 0, 0
to 32767, 32767, and corresponds to a geometrically correct screen with
very high resolution.

The programmer can select the coordinate system he wants to use. If you
use the NDC, the GDOS converts the coordinates to the appropriate raster
coordinates. Thus, if you ask to draw a square of 100 units, it appears
square on the display. If you use RC, the coordinates are not converted.
You yourself are responsible for making the object appear square.

The major advantage of using the NDC is that graphics can be exchanged
between different peripheral devices. For example, the display screen has an
aspect ratio of 1: 1.8. A square on the display screen is actually 1" x 1.8". If
this picture is sent to a printer using raster coordinates, the square will no
longer appear square on the hardcopy. Using the NDC, the square will
appear correctly on the hardcopy.

The VDI makes the necessary conversions. Graphics of any type appear on

any peripheral device in the proper ratio. The disadvantage of NDC is that it
takes much longer to convert a graphic point to the coordinate system,

149

Abacus Software Atari ST Tricks and Tips

compared to the speed of raster coordinates. For this reason it is advisable
to work with the RC. However, the RC requires you to be more meticulous
when writing programs to ensure they remain portable.

4.1.2 The Application Environment Services

The AES is composed of several parts:

« the subroutine libraries
the dispatcher

the shell

the desk accessory buffer
the menu/alarm buffer

e o o o

The menu/alarm buffer makes possible the fast operation of GEM. For
example, the menu data buffer stores the part of the screen that is overlaid
by a drop-down menu. After using the drop-down menu, a subroutine of
the AES restores the desktop at lightning speed. Neither the application nor
the programmer need be concerned with these details. As long as there is

enough memory to save one-fourth of the screen contents, the AES can
perform its tasks.

The desk accessory buffer is used similarly. In addition to data, utility
programs such as PRINIT (the Print Initialize utility in this section) can be
stored in the desk accessory buffer.

The dispatcher makes it possible for the ST to process several tasks
simultaneously. "Simultaneous" is a relative term—for us it means at
apparently the same time.

To conserve valuable processing time, the dispatcher has two lists. The first
is the ready list, in which all the currently-running programs are listed and
are waiting for a CPU assignment. The other is the not ready list, in which
all processes which are waiting for a certain event to occur are listed.

150

Abacus Software Atari ST Tricks and Tips

Such an event could be:

a keypress

pressing a mouse button

a mouse movement

a report

the elapse of a time interval

Thus our printer initialization utility is first put on the nor ready list and

waits until the desk accessory FXINIT (FX-80 Initialize) is called to install
the utility.

After FXINIT is installed, the printer initialization utility is removed from
the not ready list and placed in the ready list. The dispatcher then "rotates"
the tasks on the ready list. The first task from the ready list is processed for
a predetermined amount of time, after which it is placed at the end of the
ready list. Then the next task on the ready list is briefly processed, put at the
end of the ready list, and so on. Using this method, the dispatcher evenly
divides the CPU's time between the currently running program, a

background program such as a print spooler, and the operating system. The
dispatcher can manage up to six tasks.

The AES is a library containing subroutines to manipulate windows, read
and handle the mouse, display system messages, interact with dialog boxes,
and display drop-down menus.

The screen manager assumes control of the mouse when the cursor is
positioned outside the work surface of the currently active window. The
contents of the window are defined as the work surface. The title and
information line are not part of the work surface. The screen manager
becomes active when the user exits the bordered area of the topmost
window—such as when he uses the drop-down menus of the menu bar. It

supervises the actions of the user and lets him know if the current window
needs to be redrawn.

The shell is also part of the AES. After the desktop is accessed, the shell is
placed at the top of the ready list. It is responsible for calling an application.
The desktop passes information to the shell indicating whether it is a TOS or
GEM application, and gives the pathname to the application's subdirectory
(folder). The desktop then terminates and the shell is responsible for loading
and starting the application. When the application ends, the shell is called
again to reactivate the desktop or start another application.

151

Atari ST Tricks and Tips

Abacus Software

Figure 4-1

Fd° LINISd

430" LIMIAd

Sl 201

J2dgt 24530 SoEt 14233

a0 0 u

'SW}I ¢ UT pasn salfg GG3T17

J33UTdg [1RISUT
'B13U0] Z£ISY 13§
[aueg 10J3UD]
J01eINU] ZGIh
LINI +88-%4

P A SN A A e R hr SR ST N AW AR AR AT AN 8T A S

voipuT doyysag
suoiydp MatTh 914 REEH

152

Abacus Software Atari ST Tricks and Tips

Before writing a program for the ST, we must first distinguish between an
application and an accessory.

An application is what we normally think of as a program on a conventional
non-GEM computer. A wordprocessor or database management system is

an example of an application. Applications are normally loaded into main
memory and then started.

An accessory is a mini-application loaded into the accessory buffer during
the boot procedure of TOS, and concurrently started. The role of an
accessory is to wait until it is called into action by a main application.

4.1.3 The resource file

GEM uses a concept called a resource file to make applications flexible and
easy to change. The resource file contains the structure of the pull-down
menus, and the text of dialog boxes and alert messages. If the text of a
menu or message needs to be altered, the program does not have to be
changed. Instead, only the resource file need be changed.

The resource file for an application has the extension .RSC. It may be
edited using the Resource Construction Set, which we'll discuss shortly.

Separating the text from the program makes it is easy to adapt an application
to different countries. A developer need only edit the resource file to "move"
an application, for example, from German to English. See Plate 8 for an
example that uses TOS itself.

153

Abacus Software Atari ST Tricks and Tips

4.1.4 Working with TOS

Adapting an application to use the features of GEM is quite complicated.
For this reason, many applications have been "ported” to the ST and do not
use any of the GEM features such as pull-down menus or icons.

By sidestepping GEM, applications that were developed for other
computers (in C, for example) can be easily adapted to the ST. By ignoring
the special AES and VDI calls, the C programmer can be as comfortable
with the ST as with a non-GEM computer.

The next example is a C program that does not use GEM. Instead, it is a
pure TOS application.

154

Abacus Software Atari ST Tricks and Tips

4.2 Twenty-one

We'll explore TOS programming by writing a simple game. The name of
the game's Twenty-one. It's not the same game as the card game
Blackjack, but a simple strategy game of the Nim variety.

Twenty-one is a two-player game. A counter is initially set to zero. Each
player takes alternate turns, adding one or two to the counter. The winner is
the player who reaches exactly twenty-one points on his turn. Naturally,
one player is represented by the computer.

Here's one possible winning strategy in Twenty-one. Our goal, reaching a
count of twenty-one, may be split into several subgoals. One strategy is to
avoid reaching a count of 19 on our turn, or else our opponent will be able
to reach 21. Instead, we want our opponent to reach 19—that is one of our
subgoals. By the same token, another of our subgoals is to reach 16, since
then our opponent cannot prevent us from reaching 19. If our opponent
adds 1 to 16, then we add 1—thereby forcing him to reach 19 or 20.

By following a similar strategy we find these subgoals: 1, 4, 7, 10, 13, 16,

and 19. Our strategy is to perform a corresponding move (+1 or +2) that
will reach the next winning number.

Let's give a little thought to the structure of the program. It is a linear
program, with parts for game initialization (init), game state output
(output), player move (computer), evaluation and termination.

In the first section, the game instructions are displayed on the screen, the

counter is set to zero, and the player is given a choice as to who will make
the first move.

The player move section is made up of a simple function followed by a
multiple choice (getchr, switch case). Getchar is a standard C
library function to read a single digit. For this game, a single call is
sufficient, since we'll only need to read a single digit. This value is then
added to the counter using the increment operator ++. The C statement
state++ is similar to the BASIC statement. state=state+1 .

Before the next player's turn, we check to see if the winning score has been
reached within the main loop of the program— while (state<goal).

155

Abacus Software Atari ST Tricks and Tips

This is done using:
if (state==goal) break;

With the routine computer (), the computer will always try to reach the
next winning subgoal. If this isn't possible because the opponent has

reached the same subgoal, then it doesn't matter if the move is +1 or +2 (+1
is the default) .

If you're a beginning user of the C language, these explanations may
interest you:

A C program is made up of a sequence of functions. When the program is
started, the function main () is called. Every C program must contain a
main () function.

You may use the # include and #define statements.

The #include statement instructs the compiler to insert the file stdio.h
at this point in the source file. stdio.h contains the standard input/output
functions commonly used by C programs. Providing these functions as a

standard library ensures that this source program can run on other
computers after compilation.

The #define statement lets you define symbolic constants. For example,
you can define the symbol YES with the value of 1 (for true) or the symbol
NO with a value of O (for false). For each subsequent occurence of a symbol
within the source file, the compiler substitutes the corresponding value.
This makes it easier to read and write programs, since the symbolic
constants are more understandable than pure numeric or alpha values.

156

Abacus Software

Atari ST Tricks and Tips

/* 21

- JW 16.08.1985 21 gamex*/

#include "stdio.h"

#define YES 1
#define NO 0

int objt,stand, sp,game;

main ()

{

start:

hello();

init () ;

if (sp == YES)

{
output () ;
player () ;

}

while (stand<obijt)
{
output () ;
computer () ;
if (stand == objt)

break;

output () ;
player () ;
}

end () ;

printf ("Another game ?\n");

game=getchar () ;
if (game == 'y')
{
goto start;
}

157

Abacus Software Atari ST Tricks and Tips

hello ()
{
printf ("**xxxx*x T WE N T Y — O N E **xx%x*x\n");
printf ("Object of the game is to get the \n");
printf (" number 21 by adding by 1 or 2. \n") ;

init ()

objt=21;
stand=0;
printf ("\n\nWant to start?");

game=getchar () ;
if (game == 'y')
sp = YES;
else sp = NO;
printf ("\n");

output ()
{

printf ("Game standing: %d\n",stand);
}

player ()
{
sp = YES;
game=0;
printf ("\nWant to raise by 1 or 2 2\n");

game = (getchar() - '0');
switch (game)
{
case 1
{
printf ("\nOkay !\n");
stand++;
break;

158

Abacus Software Atari ST Tricks and Tips

case 2

{
printf("\nThat's fine, too!\n");
stand++;
stand++;
break;

}

default

{
printf ("\nNot so many!!\n");
player () ;

computer ()
{
sp = NO;
switch (stand)
{

case 2:

case 5:

case 8:

case 11:

case 14:

case 17:

case 20:

{
plusone () ;
break;

}

case 1:

case 4:

case 7:

case 10:

case 13:

case 16:

case 19:

{
printf ("\nI raise by 2.\n");
stand++;
stand++;

159

Abacus Software Atari ST Tricks and Tips

break;
}
default:
{
plusone () ;
}

plusone ()

{
printf ("\nI raise by 1.\n");
stand++;
}
end ()
{
if (sp == YES)
printf ("\n\nYou win!.\n\n");
else
printf ("\n\nI was very lucky. \n\n");
}

160

Abacus Software Atari ST Tricks and Tips

Since a basic loader for this program would be quite large and really serve
no useful purpose, we have not included one. For the BASIC programmers
we have included the same program written in BASIC. You can compare
the BASIC version with the C source code.

10 rem 21 program in basic

20 rem

30 YES = 1

40 NO = 0

50 rem main program

60 rem

70 gosub hello

80 start: gosub init

90 if sp = YES then gosub output: gosub player

100 while stand < obj

120 gosub output

130 gosub computer

140 if stand =obj then goto 150

145 gosub output: gosub player
150 wend

160 gosub ende
170 print"Another Game?";
180 game$ = input$ (1)

190 if game$ = "y" then goto start
200 end
210 rem
220 rem

500 hello: fullw 2: clearw 2

510 print"***x*x* T WE N T Y -~ O N E **%x%xxmn
520 print"Object of the game is to get the"
530 print"number 21 by adding 1 or 2 "
540 return

550 rem

600 init: obij=21

610 stand = 0

620 print: print” Want to start"

630 game$ = input$(1)

640 if game$ = "y" then sp= YES else sp = NO
645 print

650 return

660 rem

700 output :print”Game standing:";stand
705 print

161

Abacus Software Atari ST Tricks and Tips

710 return

720 rem

800 player: sp = YES

810 game = 0

820 print "Want to raise by 1 or 2 ";
830 input game

850 if game = 1 then print"OK" : stand=stand+1
return

860 if game = 2 then print"OK" : stand=stand+2
return

870 print”Not so many": goto 810: rem call player
880 return

890 rem

900 computer: sp = NO

910 if stand 1 goto plustwo

911 if stand 4 goto plustwo

912 if stand 7 goto plustwo

913 if stand 10 goto plustwo

914 if stand 13 goto plustwo

915 if stand 16 goto plustwo

916 if stand 19 goto plustwo

920 if stand 2 goto plusone

921 if stand 5 goto plusone

922 if stand 8 goto plusone

923 if stand 11 goto plusone

924 if stand 14 goto plusone

925 if stand 17 goto plusone

926 if stand 20 goto plusone

930 goto plusone : rem default
950 plusone: print"I raise by one"
955 stand= stand +1

958 return

960 plustwo: print "I raise by two"
965 stand = stand + 2

968 return

980 rem

1000 ende: if sp = YES then print "You win" else

print"I was very lucky"
1010 return

oo

162

Abacus Software Atari ST Tricks and Tips

4.3 The next step: A GEM application

Now that you've become acquainted with the C language and understand
terms like include resource files and symbolic constants, we want to
introduce you to a GEM application.

As previously illustrated, GEM, and especially the Virtual Device Interface,
provides a very convenient user interface for a variety of graphic devices.
The VDI can convert the output of any device—a raster screen, a dot-matrix
printer, or a pen plotter—to the proper device-specific codes. The
programmer need not concern himself with these codes.

To make use of any VDI services, the programmer must pass a request
through a series of parameters. These parameters are five arrays:

* the control array (contrl)

* the input array (intin)

* the input array for point coordinates (ptsin)

» the output array (intout)

* the output array for point coordinates (pt sout)

All array elements are two bytes long, so corresponding variables are
defined as integers in C. In the following example, the definitions appear at
the beginning of the global variables.

The first step in a GEM program is to initialize these arrays. Next the
workstation parameters are set, in order to open the workstation. The VDI
function OPEN WORKSTATION loads the corresponding driver (not yet

implemented on the ST), sets the output device for graphics operation, and
prepares it for subsequent use.

At this time, certain workstation characteristics may be specified. For
example, we may request that lines appear as black and dotted, rather than

as solid lines. A variety of characteristics may be specified and passed on as
parameters, shown as follows:

163

Abacus Software Atari ST Tricks and Tips

* Line type (dashed, shaded,...)

* Color of lines

* Marker type

* Color of the poly marker

* Type style

* Type color

« Fill pattern for drawing polygons
* Fill pattern

» Fill color

Most of these parameters have defaults with a value of 1.

One parameter is particularly important to us. Within the input array
(int_in), the value of one element (10) determines the coordinate system.
A value of zero selects normalized device coordinates (NDC) and a value of

two selects raster coordinates (RC). Since we place a priority on speed, we
select RC.

open_vwork ()
{
int i;
for (i = 1; 1 <10; i++) {
int _in[i] = 1;
}
int_in[10] = 2;
v_opnvwk (int_in, &handle, int out);

To initialize the workstation we call v_opnvwk (int_in, &handle,

int_out) Using the value passed by handle, we can address the work
area created for our application.

If you look at main (), you will notice two other GEM calls.
Appl init prepares a similar control array to use the AES. An

identification code (ap_id) is returned to the application. The code is used

to distinguished between multiple applications using the same resources
(multi-tasking).

Draw () is our actual main program—in this example, where we draw the
outline of a house.

164

Abacus Software Atari ST Tricks and Tips

Each GEM application must be properly terminated. Memory and other
resources must be released so that other applications may make use of them.

Here are a few notes concerning the following listing:
All source statements preceding draw () may be placed in a separate file. In

other programs these statements may be #included. To ensure the

orderly termination of your application, the last lines of the program should
be:

desktop () ;

At the end of the listing you'll find the c1ick () function. This allows you
to view the screen until the left mouse button is pressed.

165

Abacus Software Atari ST Tricks and Tips

/***/

[xEFKxKX program: HOUSELl.C kkkk [

/**x*** draw a house -- wait for the left mouse key eV

/***** JIW October 1985 ****/

/***/
/* include files */

#include "obdefs.h" /* first time all are brought in */

#include "define.h™

#include "gemdefs.h"

#include "osbind.h"

#include "gembind.h"

int contrl[l2];
int intin[128];
int ptsin[128];
int intout[128];

int ptsout[128];

int handle, i; /*
int phys_handle; /*
int pxyarray[12]; /*
int int_in[11]; /*
int int_out[57]; /*

int ap_id; /*

int dummy;

main ()

{

/*global variables

/* enough space for all purposes

virtual workstation handle
physical workstation handle
Array for x,y coordinates
input in GSX array

output from GSX array

i.d. of application

ap_id=appl_init();

/* initialize

/* Desktop maintenance
open_vwork () ;
/* Set up workspace
graf_mouse (256, &dumny) ;

/* Mouse stuck

draw () ;

v_gtext (handle, 1,350, "Please click LEFT button..");

/* produce artwork

166

*/

*/

*/
*/
*/
*/
*/

GEMAES array-structures */
handle=graf_handle (&dummy, &dummy, &dummy, &dummy) ;

*/

*/

*/

*/

Abacus Software Atari ST Tricks and Tips

click(); /* wait for left mouse key cen */
desktop(); /* End-of-program */

open_vwork ()

{

int i;
for (i = 1; i <10; i++4){
int_in[i] = 1;
/* init int_in array: linetype, color, */
} /* fillstyles etc. */
int_in([10] = 2;
/* used RC - coordinates */
v_opnvwk (int_in, &handle, int_out);
/* now it can go */
}
desktop ()
{
v_clsvwk (handle) ; /* workstation assigned */
appl_exit (); /* no more GEM calls */
}
click() /* wait for mouse click (left) */

{
evnt_button(l,1,1,&dummy,&dummy,&dummy,&dummy);
}

/*—-here follows the program section —--%*/

draw ()
{
int style; /* Variable for fill pattern */
style = 3; /* Choose fill pattern */
pxyarray[0] = 100; /* x—-coordinate Point 1 */
pxyarray[1l] = 100; /* y-coordinate point 1 */
pxyarray([2] = 100; /* Point 2 */

167

Abacus Software

Atari ST Tricks and Tips

pxyarray[3]
pxyarray|[4]
pxyarray[5]
pxyarray([6]
pxyarray|[7]
pxyarray|[8]
pxyarray|[9]

pxyarray{10]
pxyarray([11]

v_pline (handle,

300;
500;
300;
500;
100;
300;

50;

100;
= 100;

/* Point 3

6, pxyarray):;

*/

/* Polygon in workspace : x/
/* 6 points with coordinates fr.pxyarray */

vsf_interior (handle, style);

/* set fill interior style: solid/hollow*/
v_fillarea (handle,

/* fill from polygon-generated */

6, pxyarray):;

/* surface

HOUSE1,PRG

168

*/

Abacus Software Atari ST Tricks and Tips

Hopefully we've succeeded in running an application on the desktop. The

next step is the creation of a routine open_window (), which prepares a
window as a work area for us.

Let's first give some thought to the size that our window should have. In
GEM, the convention is to specify the upper left corner of an object as the

reference point in pixel coordinates, and then specify the width and height,
also in pixel units, relative to this point.

But few of us want to count out pixels or do conversions. The desktop is

actually a window of maximum size. The VDI function wind get returns
these measurements to us.

Let's build upon the previous program HOUSE1 with the call:
wind get (0, WF_WORKXYWH, &xdesk, &ydesk, &wdesk, &hdesk) ;
Remember to enter the new variables in the declaration list:

int xdesk, ydesk, wdesk, hdesk;

The wind create () function is used to create a window. It returns a
window number (wi_handle) for identification. To create a window
several parameters are specified. Each characteristic of a window is
assigned one bit in an integer, as follows:

0x0001 NAME title line with name

0x0002 CLOSER close field

0x0004 FULLER field for full size (top right)
0x0008 MOVER window can be moved
0x0010 INFO info line (such as 123456 bytes used)
0x0020 SIZER enlargement field (lower left)
0x0040 UPARROW arrow up

0x0080 DNARROW arrow down

0x0100 VSLIDE vertical slider

0x0200 LFARROW arrow left

0x0400 RTARROW arrow right

0x0800 HSLIDE horizontal slider

169

Abacus Software Atari ST Tricks and Tips

If your window is just a border around the work area with a title line, the
first parameter when calling wind create must have a value of 1. To
close the window during termination, the first parameter is set to three (bit
00000011). Using bits can become complicated. One alternative is to use
symbolic constants, which are defined within an #include file for this
purpose.

The above symbols are standardized. In the case of C language, they are
found in the file GEMBIND . H. The programmer can then use just the
symbolic constants within his program:

#define WI_KIND (SIZER MOVER FULLER CLOSER NAME)

Once the window format is set, the title is set using the function
wind_ set (), and the window is finally opened.

We recommend that you place this sequence of instructions in a separate file

to be #included in programs (thanks to the symbolic constants they can
be easily used for any window):

open_window ()

{
wi_handle=wind_create(WI_KIND,xdesk,ydesk,wdesk,hdesk);
wind_set (wi_handle, WF_NAME, " Tips & Tricks ",0,0);
wind_open(wi_handle,xdesk,ydesk,wdesk,hdesk);

}

This creates a window on the screen. But many of the window features are
inoperative. The event library, a part of the AES, tests for the special
features. To determine if a mouse button is pressed, for example, we use
the function in c1ick () and test for the state evnt button .

Messages between the user and GEM are communicated through an array
called the message buffer (msgbuff). The message is placed in the first
element msgbuff (1). An indentifcation code for which this message

applies is placed in msgbuff (2) . Information about required parameters
are placed in the remaining entries.

If a menu entry is selected with the mouse—for example, the code 10 for
MN_SELECTED—it is placed in msgbuff (0). The pointer to the menu
(e.g. DESK or FILE) is placed in msgbuff (3), and the pointer of the

selected object is placed in msgbuff (4). This lets you determine the
desired action.

170

Abacus Software Atari ST Tricks and Tips

The name MN_SELECTED is the designation for the symbolic constant

defined in the #include file. The following symbolic constants are also
used:

MN_SELECTED Menu entry selected
WM_REDRAW The window must be redrawn
WM _TOPPED This window should be activated
WM CLOSED The close field was activiated
WM _FULLED The maximum size was set

WM _ARROWED A arrow was clicked

WM _HSLID The horizontal slider was used
WM VSLID The vertical slider was used
WM_MOVED The window was moved

WM NEWTOP The window was activiated
AC_OPEN Sent to the accessory selected in the desk menu
AC_CLOSE Sent to the accessory to be closed

To use all of the GEM window features, an application must handle all of
the above conditions.

Using the evnt_multi () call, an application can be made to wait for a
message, a mouse event, or a keypress, for example.

If you've written an application that seems to "hang up", but the pointer can
still be moved with the mouse, then the ST probably hasn't crashed.
Instead, you have not requested it to wait for an external event. Your
application should probably be designed as a large loop that can't be exited
until a specific termination condition is fulfilled. This can be a mouse click
or the activation of the close field.

An example of this:
do (
evnt multi(....);
window_control;
your program follows here;
) while close field is not activated
The outline above is typical for an application. An accessory requires a

somewhat different structure. For the time being, the following example
demonstrates how to shrink, enlarge and move the window.

171

Abacus Software Atari ST Tricks and Tips

/**/

[Rkkkkkkk Program: HOUSE3.C Xkkkkkk [
[Fxx KK KKk KKk complete window control Thkkkkk [
[HHHE KKK Kk JW October 1985 Kx KK KKK [

/**/

/* include files */
#include “obdefs.h™ /* first time around, so it gets all */
#include "define.h"™ /* data necessary ... */

#include "gemdefs.h"
#include "osbind.h"
#include "gembind.h"

/* Definition for later reference */

#define WI_KIND (SIZER|MOVER|FULLER | CLOSER | NAME)

/* work window: Title, border...... */
#define MIN_WIDTH (2*gl wbox)
#define MIN HEIGHT (2*gl_hbox)

extern int gl_apid;

/*global variables */
int contrl[1l2];
int intin({128];
int ptsin[128];
int intout[128];
int ptsout[128]; /* enough space for all cases x/
int handle, i; /* virtual workstation handle */
int phys _handle; /* physical workstation handle */
int pxyarray([12]; /* Array for x,y coordinates */
int int in[11]; /* Input in GSX array */
int int_out[57]; /* Output from GSX array */
int wi_handle; /* Handling the applicable window */
int top window; /* Open window */
int xdesk, ydesk, wdesk, hdesk;

/* Parameters for window size */

int xold, yold, hold, wold;
int xwork, ywork, hwork, wwork;

int mx, my; /* x and y coordinates of mouse x/
int butdown;

172

Abacus Software Atari ST Tricks and Tips

int ap id; /* Bpplication id */
int menu_id; /* Working window id */
int fulled;
int hidden;

int msgbuff[8]; /* event message buffer */
int keycode; /* contains char. codes from evnt keybrd */
int gl_wchar, gl hchar; /* Char. height */

int gl_wbox, gl _hbox;

int dummy;

/**/

/* Necessary initialization */
/**/

open_vwork ()

{

int i;
for (i = 0; i <10; i++4){
int_in[i] = 1;
/* init int_in array: linetype, color, */
} /* fillstyles etc. */
int in[10] = 2; /* RC - coordinates used */
handle=phys_ handle;
v_opnvwk (int_in, &handle, int_out); /* off we go... */

}

/**/

/* open window */
/**/

open_window ()

{
wi handle=wind create (WI_KIND, xdesk, ydesk,wdesk, hdesk) ;
wind set (wi_handle, WF _NAME," The T&T House",0,0);

graf_growbox (xdeskt+wdesk/2,ydesk+hdesk/2,gl wbox,gl hbox,xde
sk, ydesk,wdesk, hdesk) ;

173

Abacus Software Atari ST Tricks and Tips

wind open(wi_handle, xdesk, ydesk, wdesk, hdesk) ;

wind_get (wi_handle, WF_WORKXYWH, &xwork, &ywork, &wwork, &hwork) ;
}

/**/

/* Show mouse / conceal mouse */
/**/

show_mouse ()
{

graf_mouse (257, &dummy) ;
}

hide_ mouse()
{
graf _mouse (256, &dummy) ;

/**/

/* clipping parameter set x/
/**/

set clip(x,y,w,h)

int x,y,w,h;

{

int clip([4];
clip[0]=x;
clip{ll=y;:
clip[2]=x+w;
clip[3]=y+h;
vs_clip(handle,1,clip);

174

Abacus Software Atari ST Tricks and Tips

/**/

/* Re-appear after windo manipulation */
/**/

do_redraw (xc, yc, wc, he)
int xc,yc,wc,he;

{

GRECT t1,t2;

hide mouse();
wind update (TRUE) ;
t2.g_x=xc;
t2.g_y=yc;
t2.g_w=wc;

t2.g _h=hc;

wind_get(wi_handle,WF_FIRSTXYWH,&tl.g_x,&tl.g_y,&tl.g_w,&tl.
g_h);
while (tl.g w && tl.g_h)
{
if (rc_intersect (&t2,s&tl))
{
set_clip(tl.g x, tl.g y, tl.g w, tl.g h);
draw_house () ;

}

wind_get(wi_handle,WF_NEXTXYWH,&tl.g_x,&tl.g_y,&tl.g_w,&tl.g
_h);
}
wind_ update (FALSE) ;
show_mouse () ;

/**/

/* Read from events: Window, Mouse, Keyboard */
/**/

multi ()
{

int event;

do{

175

Abacus Software Atari ST Tricks and Tips

event = evnt_multi (MU _MESAG | MU_BUTTON | MU KEYBD,
1,1,butdown,

0,0,0,0,0,
0,0,0,0,0,
msgbuff,0,0,&mx,&my,&dummy,&dummy,&keycode,&dummy);

/**/

/* WINDOW() : Window management: shifting, sizes. etc. */
/**/

wind update (TRUE) ;

if (event & MU MESAG)
switch (msgbuff{0]) {

case WM _REDRAW:

do_redraw(msgbuff[4],msgbuff[S],msgbuff[G],msgbuff[7]);
break;

case WM _NEWTOP:

case WM_TOPPED:
wind set (wi_handle,WF_TOP,0,0,0,0);
break;

case WM_SIZED:

case WM _MOVED:
if(msgbuff[6]<MIN_WIDTH)msgbuff[6]=MIN_WIDTH;
if(msgbuff[7]<MIN_HEIGHT)msgbuff[7]=MIN_HEIGHT;

wind_set(wi_handle,WF_CURRXYWH,msgbuff[4],msgbuff[S],msgbuff
[6],msgbuff[7]);

wind get (wi_handle, WF_WORKXYWH, &xwork, &ywork, &wwork, &hwork) ;
break;

case WM _FULLED:
if (fulled) {
wind calc (WC_WORK,WI_KIND, xold,yold,wold, hold,
&xwork, &ywork, &wwork, &hwork) ;

wind_set(wi_handle,WF_CURRXYWH,xold,yold,wold,hold);}
else(

176

Abacus Software Atari ST Tricks and Tips

wind_calc(WC_BORDER,WI_KIND,xwork,ywork,wwork,hwork,

&xold, &yold, &wold, &hold) ;
wind_calc (WC_WORK,WI_KIND, xdesk, ydesk, wdesk, hdesk,

&xXwork, &ywork, &wwork, &hwork) ;

wind_set(wi_handle,WF_CURRXYWH,xdesk,ydesk,wdesk,hdesk);

}
fulled ~= TRUE;

break;
} /* switch (msgbuff[0]) */

if ((event & MU _BUTTON) && (wi_handle == top_window))
if (butdown) butdown = FALSE;
else butdown = TRUE;

if (event & MU KEYBD) {
do_redraw (xwork, ywork, wwork, hwork) ;

}

wind update (FALSE) ;

}while (! ((event & MU MESAG) && (msgbuff{[0] ==

WM_CLOSED))) ;
/* Enclosure was chosen

wind_close(wi_handle);

graf_shrinkbox(xwork+wwork/2,ywork+hwork/2,gl_wbox,gl_hbox,x
work, ywork, wwork, hwork) ;
wind delete (wi_handle) ;
v_clsvwk (handle) ;
appl _exit();

/* Free up memory x/
/* assign workstation */
/* and goto Desktop */

main ()

{
appl_init(); /* initialize GEM AES array-structures */

phys_handle=graf_handle (&gl _wchar, &gl hchar,
&gl_wbox, &gl _hbox);

177

Abacus Software

Atari ST Tricks and Tips

open_vwork ()

open_window() ;

’

hidden=FALSE;
fulled=FALSE;
butdown=TRUE;

multi();

/* Handling the Desktop
wind get (0, WF_WORKXYWH, &xdesk, &ydesk, &wdesk, &hdesk);

/* Open workspace

/* Open application window
graf_mouse (ARROW, &dumnmy) ;

/*

Mouse form

/* What does the user do? */

/*-— Program follows from here to end of source—-*/

draw_house ()
{
int style;
int temp(4}];

vsf_interior(handle,2);
vsf_style (handle, 8) ;
vsf color(handle,0);
temp [0]=xwork;
temp[l]=ywork;

temp [2]=xwork+wwork-1;
temp [3]=ywork+hwork-1;
v_bar (handle, temp) ;

style = 3;
pxyarray[0]
pxyarray([1l]
pxyarray[2]
pxyarray[3]
pxyarray (4]
pxyarray|[5]
pxyarray|[6]

100;

100;

100;
300;
500;
300;
500;

/* Fill-pattern variable

178

/*
/*
/-k
/*

/

/*
/*
/*
/*

/*

blank screen £fill
set f£fill solid
set color to white
set coordinates

* draw large bar

Choose fill-pattern
x—-coordinate point 1
y-coordinate point 1
Point 2

Point 3

*/

*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/

Abacus Software Atari ST Tricks and Tips

pxyarray[7] = 100;

pxyarray[8] = 300;

pxyarray[9] = 50;

pxyarray[10] = 100;

pxyarray[1l1l] = 100;

vsf_color (handle, 1) ; /* set color to black */

v_pline (handle, 6, pxyarray) ; /*Polygon in workspace */
/* 6 points w/ coordinates in pxyarray*/

vsf_interior(handle, style);
/* set fill interior style: solid/hollow*/

v_fillarea(handle, 6, pxyarray);
/* £ill Polygon-enclosed surface x/

v_gtext (handle,10,gl_hchar*3,"This is the T&T

House. ™) ;

}

HOUSE3 . PRG

179

Abacus Software Atari ST Tricks and Tips

Since a basic loader for this program would serve no useful purpose, we
have not included one. For the BASIC programmers we have included the
HOUSES3 program written in BASIC. You can compare the BASIC version
with the C source code. You will notice that the BASIC version is much
shorter since BASIC takes care of the necessay GEM initializations. Parts

of the program should look familiar. They are from Chapter 1 and merged
into this program.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

rem house3 in basic

gosub gem.arrays
x1=0:a$="This is the T&T house"
poke int.in ,3

poke int.in+2,2

x1l=varptr (a$)

poke int.in+4,x1 / 2716
poke int.in+6,x1 and &hffff
poke int.in+8,0

poke int.in+10,0

gemsys 105

rem main

fullw 2:clearw 2

gosub house : rem draw
]

mouse:rem read right mouse button

poke contrl, 124

poke contrl+2,0

poke contrl+4,0

vdisys

button = peek (intout)

if button <>2 then goto mouse

end

house: style = 2 : index = 3 : colour =1
linef 100,100,100,300

linef 100,300,500,300

linef 500,300,500,100

linef 500,100,300,50

linef 300,50 ,100,100

color colour,colour,colour,style, index
£fi11 150,150

180

Abacus Software Atari ST Tricks and Tips

340

350
360
370
380

¥

Thi

gotoxy 0,0: print"This is the T&T house,
right mouse button to exit";
return

gem.arrays:

int.in = peek (gb+8) *2716 + peek (gb+10)
return

Desk File Run Edit Debug

s is the

181

Abacus Software Atari ST Tricks and Tips

4.3.1 PRINIT - An example application

Now that we've used some pratical GEM techniques, let's create our first

real application. Then we'll show you how to create an accessory, for use
within DESK on the menu bar.

The application is a short program to set a printer to different type fonts,
margins, etc. This is a good candidate for a desk accessory. The alternative

way to set up the printer is to use BASIC to send sequences of CHR$
statements to the printer.

To make our application easy to use we'll use a "dialog box" for the input.
What is the quickest and easiest method for creating this type of dialog box?

The Resource Construction Set (RCS), which is part of the Atari
Development Package lets you easily create dialog boxes. With this utility
program, all of the required menu structures can be created and later
edited—in no time at all. The RCS creates .RSC files, which contain all of
the specifications concering the dialog box and the required inputs. These
specifications are loaded into memory by the rsrc_load (filename)
function when the program is later executed.

The biggest advantage of using resource files is that they can be easily
changed. This allows for quick translations of your application into a
foreign language. To change the following application for use in Germany

only the resource file would have to be edited and not the complete
program.

Our application program sets several parameters for the Star SG-10 printer.
To show the flexibility of resource files, we will later change the application
to a desk accessory to work with an Epson FX-80 printer.

In the next section we'll show you all of the necessary steps for
constructing the PRINIT . RSC file.

182

Atari ST Tricks and Tips

Abacus Software

[} ey H* 31303

183

Figure 4-2

£ § s ’ : X SRBERLE ﬁﬁﬂ.ﬂa.ﬂ
iR e % i 5 : SR {088 : o e : -) e

suorydp Malp 814 ¥sag

Abacus Software Atari ST Tricks and Tips

4.4 Building a RSC file

Start the Resource Construction Set from the ST Development System
utilities disk. Two windows will appear on the screen. In the top one, the
RESOURCE PARTBOX, all of the components available are pictured.

You must now decide if you want to build a MENU or a DIALOG tree,
within which the user can select between several alternatives.

These two types are the most-used, but there is also the ALERT tree, which
is very similar in structure to the DIALOG tree and is used to send messages
to the user. In addition, the RCS recognizes the tree FREE, which places
almost no restrictions on the programmer. The only condition that applies to
this tree is that no object may extend outside of another, while the others
must observe certain formatting rules.

The tree symbolized by a question mark is only a place holder until the
programmer finally knows what it does and correspondingly, what to call it.
If a tree of type unknown (?) is found within the resource file, you can rest
assured that the program will crash.

To start building our tree, drag the icon for a DIALOG tree to the lower
window. The RCS displays its own dialog box (Figure 4-3) and asks us to
name this tree. Enter SGMENU (in uppercase) and press <RETURN> or
click the OK box. The dialog box will disappear.

Next move the mouse pointer to the lower window. Then select the dialog
box SGMENU and OPEN it from the FILE menu or by doubling clicking. A
new window is opened on top of the lower window.

Select the component BOXTEXT from the upper window and drag a copy of
it to the lower window, SGMENU. We will use BOXTEXT, a simple box
containing text, in order to name the various print options (ELITE,

ITALIC, ...);forour application we will need seven boxes of this type.
We can use the copy operation to make this task easier. To do this select
BOXTEXT in the lower window and drag it to the desired screen position,
but this time holding down the <SHIFT> key. Repeat this procedure until
you have the appropriate number of BOXTEXT boxes. See Figure 4-4 for
the placement of the boxes. Now open each BOXTEXT and enter the
following in the TEXT field: ELITE, PROPO, ITALICS, CONDEN,

NLQ, SKIP, MARGIN.

184

Atari ST Tricks and Tips

Abacus Software

Figure 4-3

WEE]

130053 907810
] [OH3H]
[334 |

~INHIHOS :3WUN [NMONOIND

‘0071 13913s

‘}qnop UT 41 'BUTIIPA UBYM 5133443
pardadxaun 3ney Aew adAy 333JJ0dUT
ue BUTSOOY) INDILAWY ‘33d1 SIyY
40 aweu pue adRy ayl abueys fiew noy

I

NH3IHDT

=] /=
="l so0ywia

X08144d 324n0S3IH

1eqo1o [ELTEXTY o114 vseq

185

Atari ST Tricks and Tips

Abacus Software

Figure 4-4

1%31%09
dI¥s

0N
NIGHOJ

SITTULT

B

R XX

aaaaa

A 3 SHD1¥L SN

L INT 8T 95
N3RS
2
o8 T [
[7] 3L] a3 11703 ONTMIS [NOLLNG

e e e e L S e e e e s e

Teqoig suoladp 3TI4 NS3(Q

186

Abacus Software Atari ST Tricks and Tips

Each of the ON/OFF switches in the SGMENU (see Figure 4-2) is seperated
by a shaded box (the third element from the right within the PARTBOX -
see Figure 4-4). Drag it into the lower window and resize it to the desired
size by clicking on the edge and moving the outline. Place this box to the
right of the first BOXTEXT box.

Double click this box or select Open from the File menu. The RSC
presents you with another dialog box, by which you set the parameters for
the appearance of this box (see Figure 4-5.) Select a shaded background
and the number 1 from the Background choices. Now press the OK box.

So that we may select each ON or OFF they will be represented by a
BUTTON. Select a BUTTON in the partbox and position it to one side of the

shaded box just created. Then move a copy of this button to the other side
of the shaded box.

Open the left BUTTON with a double click and enter ON as the text. You
should also select SELECTABLE and RADIO BUTN. Then press the OK
box. Open the BUTTON on the right side and enter the text OFF. Select
SELCTABLE and RADIO BUTN for this box (see Figure 4-6.) Resize these

boxes for the most pleasing asppearence. Then place these boxes next to the
first BOXTEXT.

After this is done, copy the three boxes for each BOXTEXT present. Edit
the boxes next to MARGIN so that ON is 0 and OFF is 10.

The last important control element for you to create is another BUTTON with
the text "OK" and define it as SELECTABLE, DEFAULT, and EXIT. Drag
the BUTTON below the BOXTEXTs and OPEN it to make your choices.
Resize this box to create a symetrical appearence.

We're done, except for the title field, which consists of a large BOX outfitted
with three elements of type TEXT. Select a box from the parts box and drag
it into the lower window. Resize this box to fit, then open the box and add
shading. Next select TEXT from the parts box and move it into the box.
Copy text so you have three TEXTs in the box. Open the top TEXT and
input SG10 INIT as text, select Lg Font . Select the second text, OPEN
it and enter ABACUS Tricks and Tips. This time choose Sm Font.
The third TEXT is opened and todays date is input as Sm Font.

Now OPEN the work window fully by clicking the box in the upper right
hand corner. Then resize the large white box and repostion for appearence.

187

Abacus Software Atari ST Tricks and Tips

Now we must create the references so that our program later knows exactly
which box has been selected. The function NAME within the OPTION menu
of the title line serves this purpose.

You need to assign names only to objects which will be assigned a program
function later. In our case we used the descriptions; ELITEIN,

ELITEOUT, PROPIN, PROPOUT, ITALIN, ITALOUT, CONDENIN,
CONDENOT, NLQIN, NLQOOT, SKIPIN, SKIPOUT, MARGINO,

MARGIN10, and EXIT for the OK field. Select each item (ON, OFF,
0, 10) and from the OPTIONS menu Name them accordingly.

Then click the close box on the window so that the DIALOG icon appears in
the lower window. Next enter the File menu and tell the RCS to save the
whole thing under the name "PRINIT.RSC" with the Save As option.

This will create the desired files, PRINIT.RSC, PRINIT.DEF and
PRINIT.H. Then click the close field of the lower window so the RCS
view window is empty again. Quit the RCS.

On your diskette you will find the following files:

PRINIT.RSC - the resource file for the following program

PRINIT.H - aninclude file with all of the symbolic constants
PRINIT.DEF - anRCS file

Now that we have instructed you in the use of the RCS, here is a brief look
at all of the components in the file as well as the optional parameters
required for C programming.

The first thing listed is the object type. Most of the objects which you use

for constructing your resources are of type BOX. They may be one of the
following:

G_IBOX, G_BOX empty boxes
G_BOXCHAR contains a single character

If there are strings in the RSC file they are one of the following:

G_STRING a text string
G _BUTTON a string enclosed by a box
G TITLE a string within a menu bar

188

Atari ST Tricks and Tips

Abacus Software

Figure 4-5

1] x_?m_.wﬂmﬂ m« 1 JalaeJey]
2 EBER
i 1 JapJog
|

i punoJbyaeg

ipaylafas | Q355043 | N1ng 0IOvY
| 03788SI0] [a3NTINO] [1TX3 |

ERLTE

A0

LLIX3Hanol] WERGICTEE | 1706430 |

| 31861103 | [aINIINI | TE¥IITaS mw 1X31X08

i 1S [NOLlNg

x08144d 907010

1eqolg svotidp uw_m ¥s3q

189

Atari ST Tricks and Tips

Abacus Software

Figure 4-6

NI9W

dI¥S

[a3sso¥d | [TOENRRTE]

ND :1¥3L

| slfse |

[03718¥ST0 | [GINTILN0] |

1153 |

[1I%3HIN0L] | QIMDQWHS | |

1108430 |

(37861103] | G3¥03H] | ERCCIREREN

FOHUNT

(L]

[

| T 11163 ~— —i1I03 ONIULS

]

1¥31%08
[NOLLnG

X08.144d 907910

Teqo[n suoridg aftd ¥sag

190

Abacus Software Atari ST Tricks and Tips

In addition, the RCS recognizes formatted text types, which are used for
messages to be edited (such as in the file selection menu):

G_TEXT is a formatted string
G_BOXTEXT formatted string within a box
G_FTEXT editable text

G_FBOXTEXT editable text within a box

After putting the desired objects in the tree, you must set the object status
and some flags:

Selected draws an object in reverse

Crossed crosses a box

Checked displays a checkmark to the left of an object

Disabled represents the object at half intensity

Outlined the object contains another border (not
together with Shadowed)

Shadowed draws a shadow around the box (not with
Outlined)

Selectable the object can be activated during the course
of the program

Default pressing the <RETURN> key selects this
object; it is display with a dark border

Exit ends a dialog

Editable the object contains editable text

Rbutton the object belongs to a group of which only
one can be selected

Hidetree the object is not drawn with an
Objc_Draw call

Touchexit as soon as the mouse pointer is over such an

object, the dialog is ended (without a clock
operation)

On the following pages is a listing of the printer initialization program. Note
that the . H file was merged into the main file by using a text editor.

191

Abacus Software

Atari ST Tricks and Tips

If you have create a RSC file with the Resource Construction Set, note the
values defined for each symbol so that these may be used in your C
programs. For example, the value for the symbol EXIT is 5. The values in
your . H file will differ from the ones in the following PRINT . H listing.
Consult the . H file listing that you create and use these values in place of

those below.

/*********************************/
/* This file was created by the
/* authors using the RCS. The

/* values in your .H file will

/* differ from these.

Substitute

/* the values from your listing
/* in the printer initialization
/* listing.

/* PRINIT.H file

created by RCS

*/
*/
*/
*/
*/
*/
*/
*/

/*********************************/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SGMENU 0
EXIT 5
ELITEIN 7
PROPIN 10
PROPOUT 11
ITALIN 13
ITALOUT 14
CONENIN 16
CONDENOT 17
NLQIN 19
NLQOUT 20
SKIPIN 22
SKIPOUT 23
MARGINO 26
MARGIN10 25
ELITEOUT 8

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

192

TREE */

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE
TREE

#0
#0
#0
#0
#0
#0
#0
#0
#0
#0
#0
#0
#0
#0
#0

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Abacus Software Atari ST Tricks and Tips

/**/

/* Printer initialization program */
/* for STAR SG-10 printer */

/**/

/**/

/* Use #include "PRINIT.H" or merge file into text using your editor */

/* Your values from the RSC will be different from those listed below */
/**/

#define SGMENU 0 /* TREE */
#define EXIT 5 /* OBJECT in TREE #0 */
#define ELITEIN 7 /* OBJECT in TREE #0 */
#define ELITEOUT 8 /* OBJECT in TREE #0 */
#define PROPIN 10 /* OBJECT in TREE #0 */
#define PROPOUT 11 /* OBJECT in TREE #0 */
#define ITALIN 13 /* OBJECT in TREE #0 */
#define ITALOUT 14 /* OBJECT in TREE #0 */
#define CONDENIN 16 /* OBJECT in TREE #0 */
#¥define CONDENOT 17 /* OBJECT in TREE #0 *x/
#define NLQIN 19 /* OBJECT in TREE #0 *x/
#define NLQOUT 20 /* OBJECT in TREE #0 */
#define SKIPIN 22 /* OBJECT in TREE #0 */
#define SKIPOUT 23 /* OBJECT in TREE #0 *x/
#define MARGINO 26 /* OBJECT in TREE #0 */
#define MARGIN10O 25 /* OBJECT in TREE #0 */
long menu_tree; /* Address OF RSC-Objects */

/**/
/* Definition BUTTON in Menus */

/**/
#define SELECTED 0x0001

#define NORMAL 0x0000

#define WI_KIND 0x0001 /* Window has Name line */

/**/

/* Printer codes for */
/* : STAR SG-10 */
/**/
#define RET 13 /* Return */
#define ESC 27 /* Escape */
#define BELL 7

#define SMALL 15 /* Small print */
#define SMALLOFF 18

#$define ELITE 77 /* Elite *x/
#define ELITEOFF 80

#define PROPORTIONAL 112 /* Proportional */

193

Abacus Software Atari ST Tricks and Tips

#define PSET 1 /* on *x/
#define PRESET 0 /* off x/
#define ITALIC 52 /* Italic */
#define ITALICOFF 53

#define NLQO1 66 /* NLQ mode */

#define NLO2 4
#define NLQOFF 5

#define SKIP 78 /* Skip over Perforation */
#define SKIP1 6 /* 6 lines *x/
#define SKIPOFF 79

#define LMARG 108 /* left margin set */
#define LMAROFF 0 /* left margin reset */
#define POS10 10 /* Print at position 10 */

/**/

/* global Variables */
/**/
int contrl{12]; /* Controll-Arrays */
int intin[128];

int
int
int
int

int

int

int

ptsin[128];
intout {128];

ptsout[128]; /* reserve space for all parameters */
pxyarray(12]; /* Array for x,y coordinates */
int_in{113; /* Input in GSX Array */
int out[57]; /* Output from GSX Array */
handle, i; /* virtual workstation handle */
phys_handle; /* physical workstation handle */
wi_handle; /* Window handle */
ap_id; /* Code number of application *x/
gl_hchar, gl wchar; /* Height and widthof character */
gl_wbox, gl hbox;

xwork, ywork, wwork, hwork; /* dimensions of window *x/
xdesk, ydesk, wdesk, hdesk; /* Desktop dimensions */
xold, yold, hold, wold;

/* temporary variables for window manipulation*/

xobj, yobj,wobj, hobj; /* coordinates of objects */
mausx, mausy; /* where was mouse when pressed? */
dummy ; /* ... dummy parameter */
event; /* which event occured at the moment */
title, item; /* Menu title and actual object */

194

Abacus Software Atari ST Tricks and Tips

/**/
/* Window open, close */
/*******’k**/
open_window ()
{
wi_handle=wind_create(WI_KIND,xdesk,ydesk,wdesk,hdesk);
graf_growbox(xdesk+wdesk/2,ydesk+hdesk/2,gl_wbox,gl_hbox,xdesk,
’ ydesk, wdesk, hdesk) ;
wind_open(wi_handle, xdesk, ydesk, wdesk, hdesk) ;
wind_get(wi_handle,WF_WORKXYWH,&xwork,&ywork,&wwork,&hwork);

close_window ()
{
wind close(wi_handle);
graf_shrinkbox(xwork+wwork/2,ywork+hwork/2,gl_wbox,gl_hbox,xwork,
ywork, wwork, hwork) ;
wind_delete(wi_handle);

open_vwork ()
{
int i;
for (1 = 1; 1 <10; i++){

int_in(i] = 1; /* init int_in array: line type, color, */
} /* £111 styles usw. */
int_in[10] = 2; /* use RC - coordinates */

handle=phys_handle;
v_opnvwk (int_in, &handle, int out); /* set window

ce */

/*************************************‘k********************************/
/* Main program */
/**/
main ()

int ende; /* is TRUE when EXIT box selected */
long gemdos():; /* for gemdos-call */
ap_id=appl init(); /* initialize GEM AES Array-Structures */

phys_handle=graf_handle(&gl_wchar,&gl_hchar,&gl_wbox,&gl_hbox);

/* Parameter for Desktop established * /
wind_get (0, WF_WORKXYWH, &xdesk, sydesk, swdesk, §hdesk) ;
open_vwork () ; /* Work station opened */

195

Abacus Software Atari ST Tricks and Tips

if(!rsrc_load(FILENAME)) /* RsC-file loaded */
{

form_alert (1," (3] [Bad Copy?|PRINIT.RSC|could not be found.] [Abort]"™);
close_window;

desktop () ;

}
if(rsrc_gaddr(0,0,&menu_ﬁree)== 0)

{

form alert (1, "[3]
close_window;
desktop () ;

}
rsrc_gaddr (R_TREE, SGMENU, &émenu_tree) ;
form_center (menu_tree, &xobj, &yob], &wobj, &hobj) ;
form _dial (0, xobj, yobj,wobj, hobj);
form dial(1,1,1,1,1,x0bj,yob]j,wob]j, hobj);

[Fatal error!|Resource File not OK.][Abort]"):;

objc_draw(menu_tree,O,MAX_DEPTH,0,0,wdesk,hdesk);
graf mouse (3, &dummy) ; /* Mouse = Hand */

while (ende != TRUE){
event=evnt_button(1,1,1, &émausx, &mausy, &dummy, &dummy) ;
/* Wait for left button click */

item=objc_find(menu_tree, SGMENU, 13, mausx,mausy) ;

/* which object in menu_tree at Mouse position*/

switch (item) {
case ELITEIN:

objc_change (menu_tree, ELITEIN, O, xwork, ywork, wwork, hwork, SELECTED, 1) ;

objc_change(menu_tree,ELITEOUT,O,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5,ELITE) ;
gemdos (0x5,BELL) ;
break;

case ELITEOUT:
objc_change (menu_tree, ELITEOUT, O, xwork, ywork, wwork, hwork, SELECTED, 1) ;

objc_change (menu_tree, ELITEIN, O, xwork, ywork, wwork, hwork, NORMAL, 1) ;
gemdos (0x5,ESC) ;
gemdos (0x5,ELITECFF) ;
gemdos (0x5,BELL) ;
break;

196

Abacus Software Atari ST Tricks and Tips

case CONDENIN:
objc_change(menu_tree,CONDENIN,O,xwork,ywork,wwork,hwork,SELECTED,l);

objc_change(menu_tree,CONDENOT,O,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5, SMALL) ;
gemdos (0x5,BELL) ;
break;

case CONDENOT:
objc_change(menu_tree,CONDENOT,0,xwork,ywork,wwork,hwork,SELECTED,l);

objc_change(menu_tree,CONDENIN,0,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5, SMALLOFF) ;
gemdos (0x5,BELL) ;
break;

case PROPIN:
objc_change(menu_tree,PROPIN,O,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change (menu_tree, PROPOUT, 0, xwork, ywork, wwork, hwork, NORMAL, 1) ;
gemdos (0x5,ESC) ;
gemdos (0x5, PROPORTIONAL) ;
gemdos (0x5,PSET) ;
gemdos (0x5, BELL) ;
break;

case PROPOUT:
objc_change(menu_tree,PROPOUT,O,xwork,ywork,wwork,hwork,SELECTED,l);

objc_change(menu_tree,PROPIN,O,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5,ESC) ;
gemdos (0x5, PROPORTIONAL) ;
gemdos (0x5,PRESET) ;
gemdos (0x5,BELL) ;
break;

case ITALIN:
objc_change(menu_tree,ITALIN,O,xwork,ywork,wwork,hwork,SELECTED,l);

objc_change (menu_tree, ITALOUT, O, xwork, ywork, wwork, hwork, NORMAL, 1) ;
gemdos (0x5,ESC) ;
gemdos (0x5, ITALIC) ;
gemdos (0x5,BELL) ;
break;

197

Abacus Software Atari ST Tricks and Tips

case ITALOUT:
objc_change(menu_tree,ITALOUT,O,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,ITALIN,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdes (0x5, ITALICOFF) ;
gemdos (0x5,BELL) ;
break;

case NLQIN:
objc_change(menu_tree,NLQIN,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,NLQOUT,0,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5,ESC) ;
gemdos (0x5,NLQ1) ;
gemdos (0x5,NLQ2) ;
gemdos (0x5,BELL) ;
break;

case NLQOUT:
objc_change(menu_tree,NLQOUT,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,NLQIN,O,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5,NLQ1) ;
gemdos (0x5, NLQOFF) ;
gemdos (0x5, BELL) ;
break;

case SKIPIN:
objc_change(menu_tree,SKIPIN,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,SKIPOUT,0,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5,ESC) ;
gemdos (0x5, SKIP) ;
gemdos (0x5, SKIP1);
gemdos (0x5,BELL) ;
break;

case SKIPOUT:
objc_change(menu_tree,SKIPOUT,0,xwork,ywork,wwork,hwork,SELECTED,I);

objcnchange(menu_tree,SKIPIN,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5, SKIPOFF) ;
gemdos (0x5, BELL) ;
break;

198

Abacus Software Atari ST Tricks and Tips

case MARGINO:
objc_change (menu_tree, MARGINO, O, xwork, ywork, wwork, hwork, SELECTED, 1) ;

objc_change (menu_tree, MARGIN10, 0, xwork, ywork, wwork, hwork, NORMAL, 1) ;
gemdos (0x5,ESC) ;
gemdos (0x5, LMARG) ;
gemdos (0x5, LMAROFF) ;
gemdos (0x5,BELL) ;
break;

case MARGIN1O:
objc_change(menu_tree,MARGINl0,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,MARGIN0,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5, LMARG) ;
gemdos (0x5,P0S10) ;
gemdos (0x5,BELL) ;
break;

case EXIT:

objc_change (menu_tree, EXIT, 0, xwork, ywork, wwork, hwork, SELECTED, 1) ;
gemdos (0x5,RET) ;
form_dial (3, xobj,yobj,wobj, hobj);
form dial(2,1,1,1,1,x0bj,yob]j,wobj,hobj);
ende=TRUE;
break;

} /* End switch */

} /* End while */
desktop() ;

} /* End main() */
desktop ()
{

v_clsvwk () ;
appl_exit ();

199

Abacus Software Atari ST Tricks and Tips

If you don't have an SG-10 or Epson-compatible printer you will have to
substitute the appropriate codes for your printer in the program.

Small changes, which provide only aesthetic changes are the calls to
graf growbox and graf_ shrinkbox within the window routines.
They cause the box to appear to grow and shrink.

Something new is the call to the RSC file. And since rsrc_load() isa
function, it also returns a function value, namely TRUE or FALSE. In case

of an error in the loading procedure, an alert tree can be displayed and
program execution terminated.

An important call is to rsrc_gaddr () . This function returns a pointer to
the object desired.

Example:

After the start of the program the entire tree must be displayed from first to
last object. We must therefore find out where the root of the tree, in our case
the SGMENU tree, is located in memory.

So we call rsrc_gaddr () and tell the AES what we're looking for:
namely the object SGMENU is a tree (R_TREE) . The address of SGMENU
should be assigned to the pointer smenu_tree:

rsrc_gaddr (R_TREE, SGMENU, &menu_tree) ;

To display the tree or any other object, we call Object_Draw, a function
which draws partial sections of a tree:

objc_draw(menu tree, 0,MAX DEPTH, 0,0, wdesk, hdesk) ;

The parameters, in order of their occurrence determine which tree is drawn,
starting with which object (here zero, the first), up to chich (the maximum
number can be read under INFO in the RCS), and finally a surface which
will be prepared for this task.

The call to Object_Find within the main loop outputs the number of the
object under the mouse pointer after entering the mouse position—which is
given as the fourth and fifth parameters of event button. This is then
compared to all of our object numbers, for which the symbolic constants

stand, in order, until a match is found and the corresponding action is
carried out.

200

Abacus Software Atari ST Tricks and Tips

The Object_Change statements there have no other function then to
make the object in question black.

The form_dial statemenrts in the program listing display the dialog box.
They release the corresponding memory space—the underlying screen area
must be saved—draw the growing or shrinking box, and then release the
previously occupied memory area again.

For those of you who do not have a C compiler the following BASIC

loaders will create the PRINIT.RCS and SGINIT.PRG programs on your
disk.

100 rem BASIC loader to create PRINIT.RSC for SGlOINIT.PRG
1000 open"R",1,"a:prinit.rsc",16

1010 field#1,16 as bin$

1020 as$="":for i=1 TO 1l6:read d$:if d$="*"then 1050

1030 a=val("&H"+d$) :s=s+a:a$=a$+chr$ (a) :next

1040 1set bin$=a$:rec=rec+l:put 1,rec:goto 1020

1050 data 00,00,01,E4,00,CC,00,CC,00,CC,00,00,00,24,00,CC
1060 data 00,00,05,14,00,22,00,01,00,0A,00,00,00,00,00,00
1070 data 00,00,05,18,53,47,31,30,20,49,4E,49,54,00,00,00
1080 data 20,20,66,72,6F,6D,3A,20,41,42,41,43,55,53,BA,73
1090 data 20,54,69,70,73,20,26,20,54,72,69,63,6B,73,20,20
1100 data 00,00,00,4A,57,20,31,30,2E,38,35,00,00,00, 4F, 6B
1110 data 61,79,20,21,00,4F,4E,00,4F,46,46,00, 4F, 4E, 00, 4F
1120 data 46,46,00,4F,4E,00,4F,46,46,00,4F, 4E, 00, 4F, 46, 46
1130 data 00,4F,4E,00,4F,46,46,00,4F,4E,00,4F, 46,46,00,31
1140 data 30,00,20,30,00,45,4C,49,54,45,00,00,00,50,52, 4F
1150 data 50,00,00,00,49,54,41,4C,49,43,00,00,00,43, 4F, 4E
1160 data 44,45,4E,00,00,00,4E,4C,51,00,00,00,53, 4B, 49,50
1170 data 00,00,00,4D,41,52,47,49,4E,00,00,00,00,00,00,24
1180 data 00,00,00,2E,00,00,00,2F,00,03,00,06,00,00,11,80
1190 data 00,00,FF,FF,00,0A7,00,01,00,00,00,30,00,00,00,51
1200 data 00,00,00,52,00,05,00,06,00,02,11,A0,00,00,FF,FF
1210 data 00,21,00,01,00,00,00,53,00,00,00,5C,00,00,00,5D
1220 data 00,05,00,06,00,02,11,80,00,00,FF,FF,00,09,00,01
1230 data 00,00,00,95,00,00,00,98B,00,00,00,9C,00,03,00,06
1240 data 00,00,11,60,00,00,FF,FF,00,06,00,01,00,00,00,9D

201

Abacus Software Atari ST Tricks and Tips

1250 data 00,00,00,A2,00,00,00, A3,00,03,00,06,00,00,11,60
1260 data 00,00,FF,FF,00,05,00, 01,00,00,00,A4,00,00,00,AB
1270 data 00,00,00,AC,00,03,00, 06,00,00,11,60,00,00,FF,FF
1280 data 00,07,00,01,00,00,00, AD,00,00,00,B4,00,00,00,B5
1290 data 00,03,00,06,00,00,11,60,00,00,FF,FF,00,07,00,01
1300 data 00,00,00,B6,00,00,00,BA,00,00,00,BB,00,03,00,06
1310 data 00,00,11,60,00,00,FF,FF,00,04,00,01,00,00,00,BC
1320 data 00,00,00,C1,00,00,00,C2,00,03,00,06,00,00,11,60
1330 data 00,00,FF,FF,00,05,00,01,00,00,00,C3,00,00,00,CA
1340 data 00,00,00,CB,00,03,00,06,00,00,11,60,00,00,FF,FF
1350 data 00,07,00,01,FF,FF,00,01,00,21,00,14,00,00,00,10
1360 data 00,02,11,20,00,00,00,00,00,24,00,13,00,05,00,02
1370 data 00,04,00,14,00,00,00,20,00,FF,33,A2,00,06,00,0l
1380 data 00,18,00,03,00,03,FF,FF,FF,FF,OO,15,00,00,00,00
1390 data 00,00,00,CC,00,07,00,00,00,09,00,01,00,04,FF,FF
1400 data ¥F,rr,00,15,00,00,00,00,00,00,00,E8,00,00,00,01
1410 data 00,18,06,00,00,0l,FF,FF,FF,FF,00,15,00,00,00,00
1420 data 00,00,01,04,00,09,00,02,00,06,06,00,00,06,FF,FF
1430 data ¥F,rr,00,14,00,07,00,00,00,00,00,5E,00,06,00,11
1440 data 00,18,00,01,00,09,00,07,00,08,00,14,00,00,00,20
1450 data 31,FF,11,E1,00,0F,00,06,00,0F,00,01,00,08,FF,FF
1460 data FF,FF,OO,lA,OO,ll,O0,00,00,00,00,65,00,00,00,00
1470 data 00,06,00,01,00,06,FF,FF,FF,FF,00,1A,00,11,00,00
1480 data 00,00,00,68,00,0A,00,00, 00,05,00,01,00,0C,00,0A
1490 data 00,0B,00,14,00,00,00,20, 31,FF,11,61,00,0F, 00,07
1500 data 00,0F,00,01,00,0B,FF,FF, FF,F¥,00,12,00,11,00,00
1510 data 00,00,00,6C,00,00,00, 00,00,06,00,01,00,09,FF,FF
1520 data FF,FF,00,1A,00,11,00, 00,00,00,00,6F,00,0A,00,00
1530 data 00,05,00,01,00,0F, 00, op,00,0E, 00,14,00,00,00,20
1540 data 31,FF,11,61,00,0F,00,09, 00,0r,00,01,00,0E,FF,FF
1550 data FF,FF,00,1A4,00,01,00, 00,00,00,00,73,00,00,00,00
1560 data 00,06,00,01,00,0C,FF, FF,FFr,Fr,00,14,00,01,00,00
1570 data 00,00,00,76,00,02,00, 00,00,05,00,01,00,12,00,10
1580 data 00,11,00,14,00,00,00, 20,31,FF,11,61,00,0F, 00, 0A
1590 data 00,0F,00,01,00,11, F¥,FF,rr,rr,00,14,00,11,00,00
1600 data 00,00,00,7A,00,00, 60,00,00,06,00,01,00,0F,FF,FF
1610 data FF,FF,00,13,00,11,00, 00,00,00,00,7D,00,0A,00,00
1620 data 00,05,00,01,00,15,00, 13,00,14,00,14,00,00,00,20
1630 data 31,FF,11,61,00,0F, 0o0,0B,00,0F,00,01,00,14,FF,FF
1640 data FF,FF,00,1A,00,11, 00,00,00,00,00,81,00,00,00,00
1650 data 00,06,00,01,00,12,FF, FF,FF,Fr,00,14,00,11,00,00
1660 data 00,00,00,84,00,03, 00,00,00,05,00,01,00,18,00,16
1670 data 00,17,00,14,00,00,00,20,31,FF,11,61,00,0F,00,0D

202

Abacus Software Atari ST Tricks and Tips

1680 data 00,0F,00,01,00,17,FF,FF,FF,FF,00,1A,00,11,00,00
1690 data 00,00,00,88,00,00,00,00,00,06,00,01,00,15,FF,FF
1700 data FF,FFr,00,1a,00,11,00,00,00,00,00,8B,00,0A,00,00
1710 data 00,05,00,01,00,14,00,19,00,19,00,14,00,00,00,20
1720 data 31,FF,11,61,00,0F,00,0E,00,0F,00,01,00,18,FF,FF
1730 data FF¥,FFr,00,1a,00,01,00,00,00,00,00,8F,00,0A,00,00
1740 data 00,05,00,01,00,1B,FF,FF,FF,FF,00,1A,00,11,00,00
1750 data 00,00,00,92,00,0F,00,0E,00,06,00,01,00,1C,FF,FF
1760 data FF¥,fFr,00,16,00,00,00,20,00,00,01,20,00,06,00,06
1770 data 00,08,00,01,00,1D,FF,FF,FF,FF,00,16,00,00,00,20
1780 data 00,00,01,3c,00,06,00,07,00,08,00,01,00,1E,FF,FF
1790 data FF,Fr,00,16,00,00,00,20,00,00,01,58,00,06,00,09
1800 data 00,08,00,01,00,1F,FF,FF,FF,FF,00,16,00,00,00,20
1810 data 00,00,01,74,00,06,00,0A,00,08,00,01,00,20,FF,FF
1820 data FF,Fr,00,16,00,00,00,20,00,00,01,90,00,06,00,0B
1830 data 00,08,00,01,00,21,FF,FF,FF,FF,00,16,00,00,00,20
1840 data 00,00,01,Ac,00,06,00,0D,00,08,00,01,00,00,FF,FF
1850 data FF¥,Fr,00,16,00,20,00,20,00,00,01,C8,00,06,00,0FE
1860 data 00,08,00,01,00,00,01,E4,00,00,00,00,00,00,00,00
1870 data *

1880 <close 1:if s<> 57208 then print"ERROR IN DATA!":end
1900 print "Ok."

203

Abacus Software Atari ST Tricks and Tips

100 rem BASIC loader to create SGl0INIT.PRG

1000 open"R",1,"sglOinit .prg", 16

1010 field#1,16 as bin$

1020 as$="":for i=1 TO 16:read d$:if d$="*"then 1050

1030 a=val ("gH"+d$) :s=s+a:a$=a$+chr$ (a) :next

1040 1set bin$=a$:rec=rec+1l:put l,rec:goto 1020

1050 data 60,1A,00,00,14,30,00,00,02,24,00,00,09,70,00,00
1060 data 00,00,00,00,00,00,00,00,00,00,00,00,2A,4F,2E,7C
1070 data 00,00,1A,54,2A,6D,00,04,20,2D,00,0C,D0,AD,00,14
1080 data DO,AD,OO,lC,DO,BC,00,00,01,00,2F,00,2F,0D,3F,OO
1090 data 3F,3C,00,4A,4E,41,DF,FC,O0,00,00,0C,4E,B9,00,00
1100 data 02,00,2F,BC,00,00,00,00,4E,41,22,2F,00,04,30,3C
1110 data 00,C8,4E,42,4E,75,4E,56,FF,FC,3E,B9,00,00,1F,92
1120 data 3F,39,00,00,lF,BA,3F,39,00,00,1F,C2,3F,39,00,00
1130 data 1F,C0,3F,3C,00,01,4E,B9,00,00,13,36,50,8?,33,C0
1140 data 00,00,1F,B8,3E,B9,00,00,1F,92,3F,39,00,00,1F,BA
1150 data 3F,39,00,00,1F,C2,3F,39,00,00,1F,C0,3F,39,00,00
1160 data 1C,74,3F,39,00,00,1E,A2,30,39,00,00,1F,92,48,C0
1170 data 81,FC,00,02,3F,00,30,39,00,00,1F,C2,D1,57,30,39
1180 data 00,00,1F,BA,48,C0,81,FC,00,02,3F,00,30,39,00,00
1190 data 1F,C0,D1,57,4E,B9,00,00,11,02,DF,FC,00,00,00,0E
1200 data 3E,B9,00,00,1F,92,3F,39,00,00,1F,BA,3F,39,00,00
1210 data lF,C2,3F,39,00,00,1F,CO,3F,39,00,00,1F,B8,4E,B9
1220 data 00,00,13,70,50,8F,2E,BC,00,00,1C,98,2F,3C,00,00
1230 data 1E,D2,2F,3C,00,00,1E,D6,2F,3C,00,00,1E,D4,3F,3C
1240 data 00,04,3F,39,00,00,lF,B8,4E,B9,00,00,13,DE,DF,FC
1250 data 00,00,00,10,4E,5E,4E,75,4E,56,FF,FC,3E,B9,00,00
1260 data lF,B8,4E,B9,00,00,13,AA,3E,B9,00,00,lC,98,3F,39
1270 data 00,00,1E,D2,3F,39,00,00,1E,D6,3F,39,00,00,lE,D4
1280 data 3F,39,00,00,1C,74,3F,39,00,00,1E,A2,30,39,00,00
1290 data 1C,98,48,C0,81,FC,00,02,3F,00,30,39,00,00,1E,D6
1300 data D1,57,30,39,00,00,lE,D2,48,CO,81,FC,00,02,3F,00
1310 data 30,39,00,00,1E,D4,D1,57,4E,B9,00,00,11,54,DF,FC
1320 data 00,00,00,0E,3E,B9,00,00,1F,88,4E,B9,00,00,13,C4
1330 data 4E,5E,4E,75,4E,56,FF,FA,3D,7C,00,01,FF,FE,60,14
1340 data 30,6E,FF,FE,D1,C8,D1,FC,00,00,1E,DA,30,BC,00,01
1350 data 52,6E,FF,FE,0C,6E,00,0A,FF,FE,6D,E4,33,FC,00,02
1360 data 00,00,1E,EE,33,F9,00,00,1C,96,00,00,1C,94,2E,BC
1370 data 00,00,1E,FA,2F,3C,00,00,1C,94,2F,3C,00,00,1E,DA
1380 data 4E,B9,00,00,0E,3E,50,8F,4E,5E,4E,75,4E,56,FF,FA
1390 data 4E,B9,00,00,0F,6E,33,C0,00,00,lE,DB,ZE,BC,00,00
1400 data 1C,74,2F,3C,00,00,1E,A2,2F,3C,00,00,1F,74,2F,3C
1410 data 00,00,lF,BG,4E,B9,00,00,11,A6,DF,FC,00,00,00,0C

204

Abacus Software Atari ST Tricks and Tips

1420 data 33,¢0,00,00,1C,96,2E,BC, 00,00, 1F, 92, 2F, 3C, 00, 00
1430 data 1r,BA, 2F, 3¢, 00,00, 1F,C2,2F,3C, 00,00, 1F,CO0, 3F, 3C
1440 data 00,04,42,67,4E,B9,00,00,13,DE,DF,FC,00,00,00,10
1450 data 61,00,FF, 42, 2E,BC,00,00,15,E4,4E,B9,00,00,12,E8
1460 data 4A,40,66,1C,2E,BC,00,00,15,EF, 3F, 3C, 00,01, 4E, B9
1470 data 00,00,10,96,54,8F,20,3C,00,00,01,2C,61,00,0B, 6E
1480 data 2E,BC,00,00,1E,CE, 42,67,42,67,4E,B9,00,00,13, 02
1490 data 58,8F,4A,40,66,1C,2E,BC,00,00,16,24,3F,3C,00,01
1500 data 4E,B9,00,00,10,96,54,8F,20,3C,00,00,01,2C, 61,00
1510 data 0B, 3C,2E,BC,00,00,1E,CE, 42,67,42,67,4E,B9,00,00
1520 data 13,02,58,8F,2E,BC,00,00,1C,76,2F,3C,00,00,1E,A4
1530 data 2F,3¢C,00,00,1E,C6,2F,3C,00,00,1E,C4,2F,39,00,00
1540 data 1E,CE, 4E,B9,00,00,10,B8,DF,FC,00,00,00,10,3E,B9
1550 data o00,00,1cC,76,3F,39,00,00,1E,A4,3F,39,00,00,1E,C6
1560 data 3F,39,00,00,1E,C4,42,67,4E,B9,00,00,10,3C,50, 8F
1570 data 3E,BY,00,00,1C,76,3F,39,00,00,1E,A4,3F,39,00,00
1580 data 1E,C6,3F,39,00,00,1E,C4,3F,3C,00,01,3F,3C,00,01
1590 data 3F,3c,00,01,3F,3c,00,01,3F,3C,00,01,4E,B9, 00,00
1600 data 10,3c,DF,FC,00,00,00,10,3E,B9,00,00,1F,92,3F, 39
1610 data 00,00,1F,BA,42,67,42,67,3F,3C,00,22,42,67,2F, 39
1620 data 00,00,1E,CE,4E,B9,00,00,12,0A,DF,FC, 00,00, 00, 0E
1630 data 2E,BC,00,00,1C,9A,3F,3C,00,03,4E,B9,00,00,11,E8
1640 data 54,8F,60,00,0A,58,2E,BC,00,00,1C, 93, 2F, 3C, 00,00
1650 data 1¢C,9a,2F,3C,00,00,1E,9E,2F,3C,00,00,1D, 9C, 3F, 3C
1660 data 00,01,3F,3c,00,01,3F,3C,00,01,4E,B9,00,00,0F,E2
1670 data DF,FcC,00,00,00,12,33,C0,00,00,1B,70,3E,B9,00,00
1680 data 1E,9E,3F,39,00,00,1D,9C,3F,3C,00,0D, 42,67,2F, 39
1690 data 00,00,1E,CE, 4E,B9,00,00,12,54,DF,FC, 00,00, 00, 0A
1700 data 33,c0,00,00,1E,A0,30,39,00,00,1E,A0,60,00,09,D8
1710 data 3E,BC,00,01,3F,3¢,00,01,3F,39,00,00,1C, 98, 3F, 39
1720 data 00,00,1E,D2,3F,39,00,00,1E,D6,3F,39,00,00,1E,D4
1730 data 42,67,3F,3cC,00,07,2F,39,00,00,1E,CE, 4E,B9, 00, 00
1740 data 12,8E,DF,FC,00,00,00,12,3E,BC,00,01,42,67,3F, 39
1750 data 00,00,1cC,98,3F,39,00,00,1E,D2,3F,39,00,00,1E,D6
1760 data 3F,39,00,00,1E,D4,42,67,3F,3C,00,08,2F,39,00,00
1770 data 1E,CE, 4E,B9,00,00,12,8E,DF,FC,00,00,00,12, 3E,BC
1780 data 00,18B,3F,3cC,00,05,4E,B9,00,00,0E,F4, 54, 8F, 3E,BC
1790 data 090,4D,3F,3C,00,05,4E,B9,00,00,0E,F4,54, 8F, 3E, BC
1800 data 00,07,3F,3C,00,05,4E,B9,00,00,0E,F4,54,8F, 60,00
1810 data 09, 4c¢,3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1C, 98
1820 data 3F,39,00,00,1E,D2,3F,39,00,00,1E,D6,3F,39,00,00
1830 data 1E,D4,42,67,3F,3C,00,08,2F,39,00,00,1E,CE, 4E,B9
1840 data 00,00,12,8E,DF,FC,00,00,00,12,3E,BC,00,01,42,67

205

Abacus Software Atari ST Tricks and Tips

1850 data 3F,39,00,00,1C, 98, 3F,39,00,00,1E,D2, 3F, 39, 00, 00
1860 data 1E,DS6,3F,39,00,00,1E,D4,42,67,3F,3C, 00,07, 2F, 39
1870 data 00,00, 1E,CE, 4E,B9,00,00,12, 8E,DF,FC, 00,00, 00,12
1880 data 3E,BC,00,1B,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F
1890 data 3E,BC,00,50,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F
1900 data 3E,BC,00,07,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F
1910 data 60,00,08,Aa,3E,BC, 00,01, 3F,3C,00,01,3F, 39, 00,00
1920 data 1c,98,3F,39,00,00,1E,D2,3F,39,00,00,1E,D6, 3F, 39
1930 data 00,00,1E,D4,42,67,3F,3C, 00,10, 2F, 39,00, 00, 1E,CE
1940 data 4E,B9,00,00,12,8E,DF,FC,00,00,00,12,3E,BC, 00,01
1950 data 42,67,3F,39,00,00,1C, 98,3F,39,00,00,1E,D2, 3F, 39
1960 data 00,00,1E,D6,3F,39,00,00,1E,D4, 42,67, 3F, 3C, 00,11
1970 data 2F,39,00,00,1E,CE, 4E,B9,00,00,12, 8E, DF, FC, 00, 00
1980 data 00,12, 3E,BC,00,0F, 3F, 3C, 00,05, 4E,B9, 00, 00, OE, F4
1990 data 54, 8F, 3E,BC, 00,07, 3F, 3C, 00,05, 4E,B9, 00, 00, OE, F4
2000 data 54,8F,60,00,08,18,3E,BC, 00,01, 3F,3C,00,01,3F, 39
2010 data 00,00,1cC,98,3F,39,00,00,1E,D2, 3F, 39,00, 00, 1E,D6
2020 data 3F,39,00,00,1E,D4,42,67,3F, 3C, 00,11, 2F, 39,00, 00
2030 data 1E,CE,4E,B9,00,00,12,8E,DF,FC, 00,00,00,12, 3E, BC
2040 data 00,01,42,67,3F,39,00,00,1C, 98, 3F,39,00,00, 1E, D2
2050 data 3F,39,00,00,1E,D6,3F,39,00,00,1E,D4, 42, 67, 3F, 3C
2060 data 00,10,2F,39,00,00,1E,CE, 4E,B9, 00, 00,12, 8E,DF, FC
2070 data 00,00,00,12,3E,BC, 00,12, 3F, 3C, 00,05, 4E,B9, 00, 00
2080 data OE,F4,54,8F,3E,BC,00,07,3F, 3¢, 00,05, 4E,B9, 00, 00
2090 data OE,F4,54,8F,60,00,07,86,3E,BC, 00,01, 3F,3C, 00,01
2100 data 3F,39,00,00,1C, 98,3F,39,00,00, 1E,D2, 3F, 39,00, 00
2110 data 1E,DS,3F,39,00,00,1E,D4, 42,67, 3F, 3C, 00, 0A, 2F, 39
2120 data 00,00, 1E,CE, 4E,B9,00,00,12, 8E,DF, FC, 00, 00,00, 12
2130 data 3E,BC,00,01,42,67,3F,39,00,00,1C, 98, 3F, 39,00, 00
2140 data 1E,D2,3F,39,00,00,1E,D6, 3F,39,00,00,1E,D4, 42, 67
2150 data 3F,3cC,00,0B,2F,39,00,00,1E,CE, 4E,B9, 00,00, 12, 8E
2160 data DF,FC,00,00,00,12,3E,BC, 00, 1B, 3F, 3C, 00, 05, 4E, B9
2170 data 00,00,0E,F4,54, 8F, 3E,BC, 00,70, 3F, 3C, 00, 05, 4E, B9
2180 data 00,00,0E,F4,54,8F, 3E,BC, 00,01, 3F, 3C, 00, 05, 4E, B9
2190 data 00,00,0E,F4,54,8F, 3E,BC, 00,07, 3F, 3C, 00, 05, 4E, B9
2200 data 00,00,0E,F4,54,8F,60,00,06,D4, 3E,BC, 00,01, 3F, 3C
2210 data 00,01,3F,39,00,00,1C, 98, 3F,39, 00,00, 1E,D2, 3F, 39
2220 data 00,00,1E,D6,3F,39,00,00,1E,D4, 42, 67, 3F, 3C, 00, 0B
2230 data 2F,39,00,00,1E,CE, 4E,B9,00, 00,12, 8E, DF,FC, 00, 00
2240 data 00,12,3E,BC,00,01,42,67,3F,39,00,00,1C, 98, 3F, 39
2250 data 00,00, 1E,D2, 3F,39,00,00, 1E,D6, 3F, 39,00, 00, 1E, D4
2260 data 42,67,3F,3C,00,0A,2F,39,00,00,1E,CE, 4E,B9, 00, 00
2270 data 12, 8E,DF,FC,00,00,00,12, 3E,BC, 00, 1B, 3F, 3C, 00, 05

206

Abacus Software Atari ST Tricks and Tips

2280 data 4E,B9,00,00,0E,F4, 54, 8F, 3E,BC, 00,70, 3F, 3C, 00,05
2290 data 4E,B9,00,00,0E,F4, 54, 8F, 42,57, 3F, 3C, 00,05, 4E, B9
2300 data 60,00,0E,r4,54,8F, 3E,BC, 00,07, 3F,3C, 00,05, 4E, B9
2310 data 60,00,0E,F4,54,8F,60,00,06,24,3E,BC, 00,01, 3F, 3C
2320 data 0o0,01,3r,39,00,00,1C,98,3F,39,00,00,1E,D2, 3F, 39
2330 data 00,00,1E,D6,3F,39,00,00,1E,D4,42,67,3F,3C,00, 0D
2340 data 2F,39,00,00,1E,CE, 4E,B9, 00,00, 12, 8E,DF,FC, 00, 00
2350 data 00,12, 3E,BC,00,01,42,67,3F,39,00,00,1C, 98, 3F, 39
2360 data 00,00,1E,D2,3F,39,00,00,1E,D6,3F,39,00,00, 1E,D4
2370 data 42,67,3F,3C,00,0E,2F,39,00,00,1E,CE, 4E,B9, 00, 00
2380 data 12,8E,DF,Fc,00,00,00,12,3E,BC,00, 1B, 3F,3C, 00,05
2390 data 4E,B9,00,00,0E,F4,54,8F,3E,BC, 00,34, 3F,3C, 00,05
2400 data 4E,B9,00,00,0E,F4,54,8F,3E,BC,00,07,3F,3C,00,05
2410 data 4E,B9,00,00,0E,F4,54,8F,60,00,05,82,3E,BC,00,01
2420 data 3F,3¢C,00,01,3F,39,00,00,1C,98,3F,39,00,00,1E,D2
2430 data 3F,39,00,00,1E,D6,3F,39,00,00,1E,D4,42,67,3F, 3C
2440 data 00,0E,2F,39,00,00,1E,CE, 4E,B9,00,00,12,8E,DF,FC
2450 data 00,00,00,12,3E,BC,00,01,42,67,3F,39,00,00,1C, 98
2460 data 3F,39,00,00,1E,D2,3F,39,00,00,1E,D6,3F, 39,00, 00
2470 data 1E,D4,42,67,3F,3C,00,0D,2F,39,00,00,1E,CE, 4E, B9
2480 data 00,00,12,8E,DF,FC,00,00,00,12,3E,BC, 00, 1B, 3F, 3C
2490 data 00,05,4E,B9,00,00,0E,F4,54,8F, 3E,BC,00, 35, 3F, 3C
2500 data 00,05,4E,B9,00,00,0E,F4,54,8F,3E,BC, 00,07, 3F, 3C
2510 data 00,05, 4E,B9,00,00,0E,F4,54,8F,60,00,04,E0,3E,BC
2520 data 00,01, 3F, 3cC,00,01,3F,39,00,00,1C,98,3F,39,00,00
2530 data 1E,D2,3F,39,00,00,1E,D6,3F,39,00,00,1E,D4, 42,67
2540 data 3F,3C,00,13,2F,39,00,00,1E,CE, 4E,B9,00,00,12, 8E
2550 data DF,FcC,00,00,00,12,3E,BC,00,01,42,67,3F,39,00,00
2560 data 1c,98,3F,39,00,00,1E,D2,3F,39,00,00,1E,D6, 3F, 39
2570 data 00,00,1E,D4,42,67,3F,3C,00,14,2F,39,00,00,1E,CE
2580 data 4E,B9,00,00,12,8E,DF,FcC,00,00,00,12,3E,BC,00,1B
2590 data 3F,3C,00,05,4E,B9,00,00,0E,F4,54, 8F, 3E,BC, 00, 42
2600 data 3F,3C,00,05,4E,B9,00,00,0E,F4,54, 8F, 3E,BC, 00,04
2610 data 3F,3C,00,05,4E,B9,00,00,0E,F4,54,8F,3E,BC,00,07
2620 data 3F,3C,00,05,4E,B9,00,00,0E,F4,54,8F,60,00,04,2E
2630 data 3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1C, 98, 3F, 39
2640 data 00,00,1E,D2,3F,39,00,00,1E,D6,3F,39,00,00,1E,D4
2650 data 42,67,3F,3C,00,14,2F,39,00,00,1E,CE, 4E,B9, 00,00
2660 data 12,8E,DF,FcC,00,00,00,12,3E,BC,00,01,42,67,3F, 39
2670 data 00,00,1C,98,3F,39,00,00,1E,D2,3F,39,00,00,1E,D6
2680 data 3F¥,39,00,00,1E,D4,42,67,3F,3C,00,13,2F,39,00,00
2690 data 1E,CE,4E,B9,00,00,12,8E,DF,FC,00,00,00,12,3E,BC
2700 data 00,1B,3F,3C,00,05,4E,B9,00,00,0E,F4,54, 8F, 3E,BC

207

Abacus Software Atari ST Tricks and Tips

2710 data 00,42,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F, 3E, BC
2720 data 00,05,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F, 3E, BC
2730 data 00,07,3F,3C,00,05,4E,B9,00,00,0E,F4,54, 8F, 60,00
2740 data 03,7c,3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1C, 98
2750 data 3F,39,00,00,1E,D2,3F,39,00,00,1E,D6, 3F, 39,00, 00
2760 data 1E,D4,42,67,3F,3C,00,16,2F,39,00,00,1E,CE, 4E, B9
2770 data 00,00,12,8E,DF,FC,00,00,00,12,3E,BC, 00,01, 42,67
2780 data 3F,39,00,00,1C,98,3F,39,00,00,1E,D2, 3F, 39,00, 00
2790 data 1E,D6,3F,39,00,00,1E,D4,42,67,3F,3C, 00,17, 2F, 39
2800 data 00,00,1E,CE, 4E,B9,00,00,12,8E,DF,FC, 00, 00,00, 12
2810 data 3E,BC,00,1B,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F
2820 data 3E,BC,00,4E,3F,3C, 00,05, 4E,B9,00,00,0E,F4,54, 8F
2830 data 3E,BC,00,06,3F,3C,00,05,4E,B9,00,00,0E,F4, 54, 8F
2840 data 3E,BC,00,07,3F,3C,00,05,4E,B9,00,00,0E,F4,54, 8F
2850 data 60,00,02,CA,3E,BC,00,01,3F,3C,00,01,3F,39,00,00
2860 data 1C,98,3F,39,00,00,1E,D2,3F,39,00,00,1E,D6, 3F, 39
2870 data 00,00,1E,D4,42,67,3F,3C,00,17,2F,39,00,00, 1E,CE
2880 data 4E,B9,00,00,12,8E,DF,FC,00,00,00,12,3E,BC, 00,01
2890 data 42,67,3F,39,00,00,1C, 98, 3F,39,00,00,1E,D2, 3F, 39
2900 data 00,00,1E,D6,3F,39,00,00,1E,D4, 42,67, 3F,3C, 00,16
2910 data 2F,39,00,00,1E,CE, 4E,B9,00,00,12, 8E,DF,FC, 00, 00
2920 data 00,12, 3E,BC,00,1B,3F,3C, 00,05, 4E,B9, 00,00, OE, F4
2930 data 54,8F,3E,BC, 00, 4F, 3F, 3C, 00,05, 4E,B9, 00,00, OE, F4
2940 data 54,8F,3E,BC,00,07,3F,3C,00,05,4E,B9, 00,00, 0E, F4
2950 data 54,8F,60,00,02,28,3E,BC,00,01,3F,3C,00,01,3F, 39
2960 data 00,00,1C,98,3F,39,00,00,1E,D2, 3F, 39, 00,00, 1E,D6
2970 data 3F,39,00,00,1E,D4, 42,67, 3F, 3C,00, 1A, 2F, 39, 00,00
2980 data 1E,CE,4E,B9,00,00,12,8E,DF,FC,00,00,00,12, 3E,BC
2990 data 00,01,42,67,3F,39,00,00,1C, 98, 3F, 39,00,00, 1E,D2
3000 data 3F,39,00,00,1E,D6,3F,39,00,00,1E,D4, 42, 67, 3F, 3C
3010 data 00,19,2F,39,00,00,1E,CE, 4E, B9, 00,00, 12, 8E, DF, FC
3020 data 00,00,00,12,3E,BC,00,1B, 3F, 3C, 00, 05, 4E, B9, 00, 00
3030 data OE,F4,54,8F,3E,BC,00, 6C, 3F,3C, 00,05, 4E,B9, 00, 00
3040 data OE,F4,54,8F,42,57,3F,3C,00,05,4E,B9, 00,00, 0E, F4
3050 data 54, 8F,3E,BC,00,07,3F,3C,00,05,4E,B9, 00,00, OE, F4
3060 data 54,8F,60,00,01,78,3E,BC, 00,01, 3F,3C,00,01,3F, 39
3070 data 00,00,1cC,98,3F,39,00,00,1E,D2, 3F,39,00,00, 1E,D6
3080 data 3F,39,00,00,1E,D4,42,67,3F,3C,00,19,2F, 39,00, 00
3090 data 1E,CE,4E,B9,00,00,12,8E,DF,FC,00,00,00,12,3E,BC
3100 data 00,01,42,67,3F,39,00,00,1C,98,3F,39,00,00, 1E, D2
3110 data 3F,39,00,00,1E,D6,3F,39,00,00,1E,D4,42, 67, 3F, 3C
3120 data 00,1A,2F,39,00,00,1E,CE, 4E,B9, 00, 00,12, 8E,DF, FC
3130 data 00,00,00,12,3E,BC,00,1B, 3F, 3C, 00,05, 4E, B9, 00, 00

208

Abacus Software Atari ST Tricks and Tips

3140 data 0E,F4,54,8F,3E,BC,00,6C,3F,3C,00,05,4E,B9,00,00
3150 data OE,F4, 54, 8F, 3E,BC, 00,05, 3F, 3C, 00,05, 4E, B9, 00, 00
3160 data OE,F4, 54, 8F, 3E,BC, 00,07, 3F,3C, 00,05, 4E,B9, 00, 00
3170 data 0E,F4,54,8F,60,00,00,C6,3E,BC,00,01,3F,3C,00,01
3180 data 3F,39,00,00,1C,98,3F,39,00,00,1E,D2,3F,39,00,00
3190 data 1E,DS6, 3F, 39, 00,00, 1E,D4, 42, 67, 3F, 3C, 00, 05, 2F, 39
3200 data 00,00, 1E,CE, 4E,B9,00,00,12, 8E,DF,FC, 00, 00,00, 12
3210 data 3E,BC, 00, 0D, 3F, 3C, 00,05, 4E,B9, 00,00, 0E,F4, 54, 8F
3220 data 3E,B9,00,00,1C,76,3F,39,00,00,1E,A4,3F,39,00,00
3230 data 1E,Cs6, 3F,39,00,00, 1E,C4,3F,3C, 00,03, 4E,B9, 00,00
3240 data 10,3c, 50, 8F, 3E,B9, 00,00,1C, 76, 3F,39, 00,00, 1E,Ad
3250 data 3r,39,00,00,1E,C6, 3F,39,00,00, 1E,C4, 3F, 3C, 00,01
3260 data 3F,3c, 00,01, 3F, 3¢, 00,01, 3F,3C, 00,01, 3F, 3C, 00, 02
3270 data 4E,B9,00,00,10, 3C,DF,FC,00,00,00,10, 3D, 7C, 00,01
3280 data F¥,FE, 60,18,60,16,58B,40,B0,7C, 00,15, 62, 0E,E5, 40
3290 data 30,40,D1,FC,00,00,15,8C,20,50,4E,D0, 0C, 6E, 00,01
3300 data FF,FE,66,00,F5,A2,61,04, 4E,5E, 4E,75,4E,56,FF,FC
3310 data 4E,B9,00,00,0E, 14, 4E,B9, 00,00, OF,DO, 4E, 5E, 4E, 75
3320 data 4E,56,FF,FC,33,FC,00,65,00,00,1F, 96,42,79,00, 00
3330 data 1r,98,42,79,00,00,1F, 9C,33,EE, 00, 08,00, 00, 1F,A2
3340 data 4E,B9,00,00,0E, BE, 4E, 5E, 4E, 75, 4E, 56, FF,FC, 23, EE
3350 data 0o0,08,00,00,1A,5C,23,EE,00,10,00,00,1A, 64,20, 2E
3360 data 00,10,D0,BC,00,00,00,5A,23,C0,00,00,1A,68,33,FC
3370 data 00,64,00,00,1F,96,42,79,00,00,1F, 98,33,FC, 00, 0B
3380 data 0o,00,1F, 9¢,20,6E,00,0C,33,D0,00,00, 1F,A2, 4E, B9
3390 data 00,00, 0E,BE, 20, 6E,00,0C,30,B9,00,00,1F,A2,23,FC
3400 data 00,00,1a,70,00,00,1A,5C,23,FC,00,00,1B,74,00,00
3410 data 1A,64,23,FC,00,00,1D,9E,00,00,1A,68,23,FC, 00,00
3420 data 1c,9C,00,00,1A,60,4E,5E,4E,75,23,FC,00,00,1F, 96
3430 data 00,00,1A,58,22,3¢,00,00,1A,58,70,73, 4E, 42, 4E, 75
3440 data 23,DF,00,00,1a,6C, 4E, 4E,2F,39,00,00, 1A, 6C, 4E, 75
3450 data 23,DF,00,00, 1A, 6C, 4E, 4D, 2F, 39,00, 00, 1A, 6C, 4E, 75
3460 data 23,DF,00,00,1A,6C, 4E, 41,2F,39,00,00, 1A, 6C, 4E, 75
3470 data 4E,56,FF,F6,33,EE,00,08,00,00,1F, 6C,30,2E, 00,08
3480 data bo,7c,Frr,r6,Cl1,FC,00,03,48,C0,D0,BC,00,00,14,30
3490 data 2D, 40,FF,FA,3D,7C,00,01,FF,FE, 60, 1E, 20, 6E,FF,FA
3500 data 10,10, 48,80,32, 6E,FF,FE,D3,C9,D3,FC, 00,00, 1F, 6C
3510 data 32,80,52,AE,FF,FA,52,6E,FF,FE, 0C, 6E,00, 04, FF, FE
3520 data 6D, DA, 2E,B9, 00,00, 1F, 8E, 4E,B9, 00,00, 00, 3E, 42, 40
3530 data 30,39,00,00,1E,FA, 4E, 5E, 4E, 75, 4E, 56, FF,FA, 23, FC
3540 data 00,00,1F, 6C,00,00,1C,78,23,FC,00,00,1E,A6,00,00
3550 data 1c,7¢,23,FC,00,00,1E,DA,00,00,1C,80,23,FC, 00,00
3560 data 1E,FA,00,00,1C,84,23,FC,00,00,1F,AE,00,00,1C,88

209

Abacus Software Atari ST Tricks and Tips

3570 data 23,FC,00,00,1F,BC,00,00,1C, 8C,23,FC,00,00,1C,78
3580 data 00,00, 1F, 8E, 3E,BC, 00,04, 61,00, FF, 46, 33,F9, 00, 00
3590 data 1E,FA,00,00,1F,94,70,01,4E,5E, 4E, 75, 4E, 56, FF, FC
3600 data 3E,BC,00,13,61,00,FF,2A,70,01, 4E, 5E, 4E, 75, 4E, 56
3610 data FF,FC,33,EE,00,08,00,00,1E,DA,33,EE, 00, 04, 00, 00
3620 data 1E,DC,33,EE,00,0C,00,00,1E,DE, 3E,BC, 00,15, 4E, B9
3630 data 00,00,0F,04,20,6E,00,0E,30,B9,00,00,1E,FC, 20, 6
3640 data 00,12,30,B9,00,00,1E,FE, 20, 6E,00,16,30,89,00,00
3650 data 1F,00,20,6E,00,1A,30,B9,00,00,1F,02,42,40,30,39
3660 data 00,00,1E,FA, 4E, 5E, 4E, 75, 4E, 56, FF, FC, 33, EE, 00, 08
3670 data 00,00, 1E,DA,33,EE,00,04,00,00,1E,DC, 33, EE, 00, 0C
3680 data 00,00, 1E,DE, 33,EE, 00, 0E, 00,00, 1E,E0, 33, EE, 00, 10
3690 data 00,00,1E,E2,33,EE,00,12,00,00,1E,E4, 33,EE, 00,14
3700 data 00,00, 1E,E6,33,EE,00,16,00,00,1E,E8,33,EE, 00,18
3710 data 00,00, 1E,EA, 3E,BC, 00,33, 4E,B9, 00, 00, OF, 04, 4E, 5E
3720 data 4E,75,4E,56,FF,FC,33,EE,00,08,00,00,1E,DA, 23, EE
3730 data 00,0A,00,00,1F,AE, 3E,BC, 00, 34, 4E, B9, 00, 00, OF, 04
3740 data 4E,5E,4E, 75, 4E,56,FF,FC,23,EE, 00,08, 00,00, 1F, AE
3750 data 3E,BC,00,36,4E,B9,00,00,0F, 04,20, 6E, 00, 0C, 30, B9
3760 data 00,00, 1E,FC,20,6E,00,10,30,B9,00,00, 1E,FE, 20, 6E
3770 data 00,14,30,B9,00,00,1F, 00,20, 6E,00,18,30,B9,00,00
3780 data 1F,02,42,40,30,39,00,00,1E,FA, 4E, 5E, 4E, 75, 4E, 56
3790 data FF,FC,33,EE,00,08,00,00,1E,DA,33,EE, 00, 0A,00,00
3800 data 1E,DC,33,EE,00,0C,00,00,1E,DE, 33,EE, 00, 0E, 00, 00
3810 data 1E,EO0,33,EE,00,10,00,00,1E,E2,33,EE,00,12,00,00
3820 data 1E,E4,33,EE,00,14,00,00,1E,E6,33,EE,00,16,00,00
3830 data 1E,ES8, 3E,BC,00,49,4E,B9,00,00,0F, 04, 4E, 5E, 4E, 75
3840 data 4E,56,FF,FC,33,EE,00,08,00,00,1E,DA, 33,EE, 00, 0A
3850 data 00,00, 1E,DC, 33,EE, 00, 0C, 00,00, 1E,DE, 33, EE, 00, OF
3860 data 00,00, 1E,E0,33,EE,00,10,00,00,1E,E2,33,EE, 00,12
3870 data 00,00,1E,E4,33,EE,00,14,00,00,1E,E6,33,EE, 00,16
3880 data 00,00, 1E,E8, 3E,BC, 00, 44, 4E,B9, 00,00, OF, 04, 4E, 5E
3890 data 4E,75,4E,56,FF,FC,3E,BC, 00, 4D, 4E,B9, 00,00, OF, 04
3900 data 20, 6E,00,08,30,B9,00,00,1E,FC,20, 6E,00,0C, 30, B9
3910 data 00,00, 1E,FE,20,6E,00,10,30,B9,00,00,1F, 00,20, 6E
3920 data 00,14,30,B9,00,00,1F,02,42,40,30,39,00,00,1E,FA
3930 data 4E,SE,4E, 75, 4E,56,FF,FC, 33,EE, 00,08,00,00, 1E, DA
3940 data 23,EE,00,04,00,00,1F,AE, 3E,BC, 00, 4E, 4E, B9, 00, 00
3950 data OF,04,4E,5E, 4E, 75, 4E, 56, FF,FC, 23, EE, 00,08, 00, 00
3960 data 1F,AE, 33,EE,00,0C,00,00,1E,DA, 33,EE, 00, OE, 00, 00
3970 data 1E,DC, 33,EE,00,10,00,00,1E,DE, 33,EE, 00,12, 00, 00
3980 data 1E,EO0,33,EE,00,14,00,00,1E,E2,33,EE,00,16,00, 00
3990 data 1E,E4,3E,BC,00,22,4E,B9,00,00,0F,04, 4E, 5E, 4E, 75

210

Abacus Software Atari ST Tricks and Tips

4000 data 4E,56,FF,FC,23,EE,00,08,00,00,1F,AE,33,EE,00,0C
4010 data 00,00,1E,DA,33,EE,00,0E,00,00,1E,DC,33,EE,00,10
4020 data 00,00,1E,DE,33,EE,00,12,00,00,1E,E0,3E,BC,00,2B
4030 data 4E,B9,00,00,0F,O4,4E,5E,4E,75,4E,56,FF,FC,23,EE
4040 data 00,08,00,00,1F,AE,33,EE,O0,0C,O0,00,lE,DA,33,EE
4050 data O0,0E,O0,00,1E,DC,33,EE,00,10,00,00,1E,DE,33,EE
4060 data 00,12,00,00,1E,E0,33,EE,00,14,00,00,1E,E2,33,EE
4070 data 00,16,00,00,lE,E4,33,EE,00,18,00,00,1E,E6,33,EE
4080 data 00,lA,00,00,1E,E8,3E,BC,OO,2F,4E,B9,00,00,0F,04
4090 data 4E,5E,4E,75,4E,56,FF,FC,23,EE,00,08,00,00,1F,AE
4100 data 3E,BC,00,6E,4E,B9,00,00,0F,04,4E,5E,4E,75,4E,56
4110 data ¥¥,rC,33,EE,00,08,00,00,1E,DA, 33,EE, 00,0A,00,00
4120 data lE,DC,3E,BC,00,70,4E,B9,00,00,0F,04,20,6E,00,0C
4130 data 20,B9,00,00,1F,BC,42,40,30,39,00,00,1E,FA,4E,5E
4140 data 4E,75,4E, 56,FF,FC,33,EE, 00,08, 00,00, 1E,DA, 33,EE
4150 data 00,0a,00,00,1E,DC, 33,EE, 00,0C, 00,00, 1E,DE, 33,EE
4160 data 00,0E,00,00,1E,E0,33,EE,00,10,00,00, 1E,E2, 3E, BC
4170 data 00,64, 4E,B9,00,00,0F, 04, 4E, 5E, 4E, 75, 4E, 56, FF, FC
4180 data 33,EE,00,08,00,00,1E,DA,33,EE,O0,0A,O0,00,lE,DC
4190 data 33,EE, 00,0C, 00,00, 1E,DE, 33,EE, 00, OE, 00, 00, 1E,E0
4200 data 33,EE, 00,10,00,00, 1E,E2, 3E,BC, 00, 65, 4E,B9, 00, 00
4210 data OF, 04, 4E, 5E, 4E, 75, 4E, 56,FF,FC, 33,EE, 00, 08, 00, 00
4220 data 1E,DA, 3E,BC, 00, 66, 4E,B9,00,00, OF, 04, 4E, 5E, 4E, 75
4230 data 4E, 56, FF,FC, 33,EE, 00,08,00,00, 1E,DA, 3E,BC, 00, 67
4240 data 4E,B9, 00,00, 0F, 04, 4E, 5E, 4E, 75, 4E, 56, FF, FC, 33, EE
4250 data 0o0,08,00,00,1E,DA, 33,EE, 00,04, 00,00, 1E,DC, 3E, BC
4260 data 00, 68, 4E,B9,00,00,0F, 04,20, 6E,00,0C, 30,89, 00,00
4270 data 1E,FC, 20, 6E,00,10,30,B9,00,00,1E,FE, 20, 6E, 00,14
4280 data 30,B9,00,00,1F, 00,20, 6E,00,18,30,B9,00,00,1F, 02
4290 data 42,40,30,39,00,00,1E,FA, 4E, S5E, 4E, 75, 00,01, 00, 02
4300 data 01,01,02,01,01,00,01,01,02,01,01,01,01,01,00,00
4310 data 090,00,00,00,00,00,00,00,01,00,00,01,00,03,05,00
4320 data 05,05,00,00,01,01,02,01,00,10,07,01,02,01,00,00
4330 data 00,00,00,00,00,00,00,00,01,01,01,02,01,01,02,01
4340 data 01,02,01,01,01,01,02,01,01,01,00,00,00,00,00,00
4350 data 0o0,00,00,00,00,00,02,01,01,01,01,01,06,01,01,04
4360 data ¢01,01,01,03,01,02,01,01,04,02,01,08,01,01,00,00
4370 data 0o0,00,00,00,01,01,01,09,01,01,01,01,01,01,01,00
4380 data 00,05,01,00,00,00,00,00,00,00,00,00,00,00,00,00
4390 data 00, 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4400 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4410 data 04,03,00,08,03,00,06,01,00,08,01,00,08,01,00,04
4420 data ¢1,01,03,01,01,00,05,00,01,01,01,00,05,00,00,01

211

Abacus Software Atari ST Tricks and Tips

4430 data 01,00,01,01,00,00,00,00,00,00,00,00,00,00,00,00
4440 data 00,00,00,00,00,00,00,00,00,00,00,00,00,02,02,00
4450 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4460 data 00,00,00,00,00,00,00,00,00,00,05,01,00,05,01,00
4470 data 01,01,00,01,01,00,02,05,00,06,01,00,02,01,00,01
4480 data 01,00,06,05,00,00,00,00,00,01,01,00,01,00,02,01
4490 data 00,02,01,01,01,01,01,00,00,00,00,00,00,00,00,00
4500 data 00,00,00,00,00,00,00,01,02,03,01,02,01,01,01,01
4510 data 01,01,00,01,01,00,01,02,00,00,0D,2C,00,00,0D,F0
4520 data 00,00,04,04,00,00,04,A6,00,00,0D,F0,00,00,06,6C
4530 data 00,00,07,1E,00,00,0D,F0,00,00,07,CE,00,00,08,70
4540 data 00,00,0D,F0,00,00,05,48,00,00,05,DA,00,00,0D,F0
4550 data 00,00,09,12,00,00,09,C4,00,00,0D,F0,00,00,0A,76
4560 data 00,00,0B,28,00,00,0D,F0,00,00,0C,7A,00,00,0B,CA
4570 data 50,52,49,4E,49,54,2E,52,53,43,00,5B,33,5D, 5B, 42
4580 data 61,64,20,43,6F,70,79,3F,7C,50,52,49,4E,49,54, 2E
4590 data 52,53,43,7C,63,6F,75,6C, 64,20, 6E,6F,74,20,62,65
4600 data 20,66, 6F,75,6E,64,2E,5D,5B,41,62,6F,72,74,5D, 00
4610 data 5B,33,5D,20,5B,46,61,74,61,6C,20,65,72,72,6F,72
4620 data 21,7¢C,52,65,73,6F,75,72,63,65,20,46,69,6C, 65,20
4630 data 6E,6F,74,20,4F,4B,2E,5D,5B,41,62,6F,72,74,5D,00
4640 data 00,00,00,04,2E,1E,06,06,06,0A,08,06,06,06,06,06
4650 data 06,06,0E,08,0E,08,0C,06,06,06,06,06,08,06,06,06
4660 data 0A,06,14,06,06,06,06,06,06,06,06,0E,08,0E,08,0C
4670 data 06,1C,18,06,04,06,06,06,06,10,06,06,06,06,06,06
4680 data 0C,06,06,06,06,0C,10,06,0A,0A,08,0A,0R,0C, 04,08
4690 data 0A,0A,08,06,06,06,06,06,0C,06,06,06,08,08,06,06
4700 data 06,1A,0C,06,10,06,0C,0A,0C,06,06,06,12,0C,06,06
4710 data 0c,06,0cC,06,12,06,06,06,0C,06,12,06,06,06,0C,06
4720 data 14,10,10,14,06,06,06,0C,06,12,06,06,06,0C,06,14
4730 data 10,10,14,06,06,06,0C,06,12,06,06,06,0C,06,14,10
4740 data 14,06,06,06,0C,06,12,06,06,06,0C,06,14,10,14,06
4750 data 06,06,0C,06,12,06,06,06,0C,06,14,10,10,10,14,06
4760 data 06,06,0C,06,12,06,06,06,0C,06,14,10,0E,10,14,06
4770 data 06,06,0C,06,12,06,06,06,0C,06,14,10,10,14,06,06
4780 data 06,0C,06,12,06,06,06,0C,06,14,10,10,14,06,06,06
4790 data 0C,06,12,06,06,06,0C,06,14,10,10,10,14,06,06,06
4800 data 0C,06,12,06,06,06,0C,06,14,10,10,10,14,06,06,06
4810 data 0C,06,12,06,06,06,0C,06,14,10,10,10,14,06,06,06
4820 data 0C,06,12,06,06,06,0C,06,14,10,10,14,06,06,06,0C
4830 data 06,12,06,06,06,0C,06,14,10,0E,10,14,06,06,06,0C
4840 data 06,12,06,06,06,0C,06,14,10,10,10,14,06,06,06,0C
4850 data 06,14,08,06,06,06,0A,08,06,06,06,1A,22,1E,06,10

212

Abacus Software Atari ST Tricks and Tips

4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5010

data 06,06,08,06,10,08, 10,08,06,08,0A,06, 04, 06,04,06
data 04,06,04,06,04, 0a,04,06,0C,08,08,08, 08,08,0E, 14
data 20,18,06,08,0E, 04,06,04,06,04,06,04, 06,04,06,04
data 06,04,0E, 04,24, 08,08,0A,0A,0A,0A, 04, 08,10,08,08
data 08,08,08,08, 08,08,0a,10,08,0A,10, 0A,0A,0A,0A,0A
data 08,10,08,08,08, 08,08,08,08,0A,10,08, 08,08,08,08
data 08,08,0A4,12,04, 0A,0A,0A,08,10,08, 04, 10,08,08,08
data 08,08,08, 04,10, 08,08,08,08,0a,10,08, 08,08,08,08
data 08,08,08,0A4,10, 0A,10,08,0A,0A4,08,10, 08,08,08,08
data 0A,10,08,08,08,08, 0A,10,0A,10,02,10,08, 0A,0A,0A
data 0A,0A,08,01,66,04, 04,04,04,04,04,04,04, 04,04,04
data 04,04,04,04,04,04, 04,04,04,04,00,00,00, 00,00,00
data *

close 1:if s<> 371988 then print"ERROR IN DATA!" :end
print "Qk.”"

213

Abacus Software Atari ST Tricks and Tips

4.5 PRINIT as a desk accessory

To install the application as an accessory, a number of changes are
necessary. This desk accessory program sets several parameters for an
Epson FX-80 printer. An accessory should limit itself to one window, and
it should not be larger than the actual dialog box. It doesn't matter much if
the accessory can be moved around the screen since it is called for only a
short time. This saves some programming work, memory space and loading
time. The only function calls we need in the open window area are
wind create and wind get. For those who would really like to have a

window, the necessary source code is included in the listing as comment
lines.

To make an accessory accessable from the desk menu, the procedure
menu_register is used. As parameters it requires the ID code of the
application (from appl_ init) and a string under which the program is to
appear on the menu. As the result, menu_register returns a number
between zero and five, which corresponds to an accessory ID code.

But in order to get this far, the program must be started. This takes place
after loading the operating system. The user doesn't notice this because the
workstation has not yet been opened.

After this phase of the intitialization, the accessory issues an evnt_multi
for all events, so as not to interfere with the main program. There it waits
for a message event to return the actual accessory ID in the message buffer.

As we explained before, the code of the calling application is in
msgbuff (4), that is, if the condition,

if (msgbuff (4) == menu id)
returns TRUE, the user has called the accessory in question.

Now the workstation and the window are opened and a branch made to the
actual program (here output () ;). This corresponds to a normal
application. The only thing to note is to declare the termination as FALSE;
this can happen before the program is exited (not ended!), or at the

beginning of the main loop, or else it would be possible to call the accessory
again.

214

Abacus Software Atari ST Tricks and Tips

The most important thing to remember is that execution of an accessory is
never ended, and you will never find an app 1_exit. Accessories always
run under multi-tasking operation, that is, every accessory is placed on the
ready list and the evnt_multi takes care of each accessory.

The structure of such an event_multi call looks like this:

while (TRUE)
event_multi /* read event */
Message_event /* for this accessory? */
if yes: is it actual menu_id ?
if yes: start function
if no: keep waiting for Message event

. if no: keep waiting for Message event
/* end while */

There may never be a statement within all of the program code that could
interrupt this loop. This is why the condition is just TRUE, which is

naturally always the case! For an accessory the evnt multi call must
always be available.

Next you must change the resource file using the RSC. Rename the dialog
tree to FXMENU. Change the NLQIN and NLQOUT to MICROIN and
MICROOUT. Change the text NLQ to MICRO. We will substitute the super
script feature of the FX-80 instead of the near letter quality mode of the
SG-10. By comparing the printer initialization listings in the two C
programs you should be able to adapt these programs to any printer.

In the desk accessory the dialog box is handled with the orm_do
function. This function gives control to the AES and monitors all input to
the dialog box. The form_do function only returns a value on an exit so
change the ON, OFF, 0, 10 buttons in the resource file to SELECTED,
RADIO BUTN and TOUCHEXIT. Now we can replace our
event button call with the form_do function. This allows input only

in the dialog box making sure that our desk accessory does not allow
windows to be opened over it.

The printer's bell has also been removed for silent operation of the
accessory.

215

Abacus Software Atari ST Tricks and Tips

/** *******************/

/*’k**** PROGRAM: PR-INIT **********/
/***x%%x% Tnitialize ACCESSORY for printer in parallel port KRE XK KK KKK [
ViR {(c) J. Walkowiak, 4. November 1985 F ok kdkodkk ok f
/**/
#include "obdefs.h" /* Object definitions */
#include "gemdefs.h" /* Definitions for GEM */

#include "define.h"
#include "gembind.h"
#include "vdibind.h"

/**/

/* Definitions for RSC-File */
/**/
#define FILENAME "PRINIT.RSC" /* Name of RSC-file *x/
#define MAX DEPTH 34 /* Number of all objects, Char. depth */
#define FXMENU 0 /* TREE */
#define EXIT S /* OBJECT in TREE #0 */
#define ELITEIN 7 /* OBJECT in TREE #0 */
#define ELITEOUT 8 /* OBJECT in TREE #0 x/
#define PROPIN 10 /* OBJECT in TREE #0 */
#define PROPOUT 11 /* OBJECT in TREE #0 */
#define ITALIN 13 /* OBJECT in TREE #0 */
#define ITALOUT 14 /* OBJECT in TREE #0 */
#define CONDENIN 16 /* OBJECT in TREE #0 */
#define CONDENOT 17 /* OBJECT in TREE #0 */
#define MICROIN 19 /* OBJECT in TREE #0 */
#define MICROOUT 20 /* OBJECT in TREE #0 */
#define SKIPIN 22 /* OBJECT in TREE #0 *x/
#define SKIPOUT 23 /* OBJECT in TREE #0 */
#define MARGO 26 /* OBJECT in TREE #0 */
#define MARG10 25 /* OBJECT in TREE #0 */
long menu_tree; /* Address of desired RSC-Object */

/*********************'k******‘k***/

/* Definitions of BUTTON-types in Menu */
/*************‘k**/
#define SELECTED 0x0001

#define NORMAL 0x0000

/**/

/* Printer control codes * /
/* here: EPSON FX-80+ */

/*********‘k**/

216

Abacus Software Atari ST Tricks and Tips
#define RET 13 /* Return */
#define ESC 27 /* Escape */
#define SMALL 15 /* Condensed type *x/
#define SMALLOFF 18

#define ELITE 77 /* Elite */
#define ELITEOFF 80

#define PROPORTIONAL 112 /* Proportional type: *x/
#define PSET 1 /* on */
#define PRESET 0 /* off */
#define ITALIC 52 /* Italics */
#define ITALICOFF 53

#define MICRO1l 83 /* Super scriptl *x/
#define MICRO2 0

#define MICROOFF 84

#define SKIP 78 /* Skip over Perforation */
#define SKIP1 6 /* skip 6 lines */

#define SKIPOFF 79

#define LMARG 108 /* Set left margin */
#define LMAROFF 0 /* Count from the right */
#define P0OS10 10 /* Print at position 10 *x/
#define NO_WINDOW (-1)

#define MIN WIDTH (2*gl_wbox)

tdefine MIN HEIGHT (3*gl_box)

/**/

/*

int

int intin[128]);

int ptsin([128];

int intout[128];

int ptsout([128]; /* sufficient memory for all circumstances*/
int pxyarray{12]; /* Array for x,y coordinates */
int work _in[11]; /* Input in GSX array */
int work out([57]; /* Output from GSX array */
int handle, i; /* virtual workstation handle */
int phys handle; /* physical workstation handle x/
int wi handle; /* Window handle *x/
extern gl_apid; /* Application identifier *x/
extern long gemdos(); /* for GEMDOS-Call *x/

global variables
/************‘k***/

contrl(12);

*/ control arrays

217

x/

*/

Abacus Software

Atari ST Tricks and Tips

int
int

int
int
int
int
int

int

menu_id; /* Accessory marker in Desk menu */
gl_hchar, gl_wchar; /* Character height & width */
gl_wbox, gl hbox;

xwork, ywork, wwork, hwork; /* Size of working window */
xdesk, ydesk, wdesk, hdesk; /* Size of desktop */
xold, yold, hold, wold; /* Help variables by window manipulation*/
Xobj, yobj, wobj,hobj; /* Size of an object */
mausx, mausy; /* Where is the mouse ? */
dummy ; /* ... for dummy parameter */
event; /* Which input device */
msgbuff(8];

title, item; /* Menu title and current object */

ende;

top window;
keycode;
mx,my;
butdown;
ret;

hidden;

fulled;

/*
/*
/*
/*
/*
/*

/*

handle of topped window */

keycode returned by event-keyboard */
mouse X and y pos. */

button state tested for, UP/DOWN */
dummy return variable */

current state of cursor */

current state of window */

/**/

/* open virtual workstation */

/**/

open_vwork ()

£

int

i;

for (i=0;1i<10;work in{i++]=1);
work_in[10]=2;
handle=phys handle;
v_opnvwk (work_in, &éhandle, work out);

218

Abacus Software Atari ST Tricks and Tips

/********‘k*****************************‘k*************************/
/* open window *x/
/**/
open_window ()
{
wi_handle=wind_create(OxOOOO,xobj,yobj,wobj,hobj);
/* Window only as big as dialog box (obj)*/

/* wind_set(wi_handle, WF_NAME, " name goes here ",0,0); only when
window w/ title line

graf_growbox(xdesk+wdesk/2,ydesk+hdesk/2,gl_wbox,gl_hbox,xdesk,ydesk,wde
sk, hdesk) ; x/

wind_open(wi_handle,xobj,yobj,wobj,hobj);
/* Open work window *x/
wind_get(wi_handle,WF_WORKXYWH,&xwork,&ywork,&wwork,&hwork);
}

/**/

/* Accessory Init. Until First Event_Multi *x/
/**/

main ()

{
appl_init();
phys_handle=graf_handle(&gl_wchar,&gl_hchar,&gl_wbox,&gl_hbox);
menu_id=menu_register(gl_apid," FX-80+ INIT™);
wind_get(O, WE_WORKXYWH, &xdesk, &ydesk, &wdesk, &hdesk);

if(!rsrc_load(FILENAME)) /* Load RSC-file */
{

form alert(1,"[3] [Bad copy? |PRINIT.RSC| couldn't be
found!] [Cancel]l");

}
if(rsrc_gaddr (0,0, &émenu_tree)== 0)
{

form_alert (1, "[3] [Fatal error!!|Resource File not
OK.]) [Cancel]l"™);
}

rsrc_gaddr(R_TREE,FXMENU,&menu_tree);
form_center(menu_tree,&xobj,&yobj,&wobj,&hobj);

multi();

219

Abacus Software Atari ST Tricks and Tips

while (TRUE) {
event = evnt_multi (MU_MESAG | MU_BUTTON | MU_KEYBD,
1,1,1,
0,0,0,0,0,
0,0,0,0,0,
msgbuff, 0, 0, &mausx, &émausy, &dummy, &§dummy,
&dummy, &édummy) ;

if (event & MU_MESAG)
switch (msgbuff(0]) {

case AC_OPEN:

if (msgbuff[4] == menu_id) {
open_vwork() ;
open_window () ;
output () ;
wind_close(wi_handle);
wind_delete(wi handle);
v_clsvwk (handle);

}

break;

} /* switch */
} /*while TRUE */

output ()

{
rsrc_gaddr (R_TREE, FXMENU, &émenu_tree) ;
form_center (menu_tree, &xobj, &yobj, &wobj, &hobj) ;
form_dial (0, xobj, yobj,wobj, hobi);
form dial(1l,1,1,1,1,xo0bj, yobj,wobj, hobj) ;

objc_draw(menu_tree,O,MAX_DEPTH,0,0,wdesk,hdesk);

ende = FALSE; /* Otherwise, just one run *x/
while (ende != TRUE) {

item = form_do(menu_tree, FXMENU) ;
/*returns obj. number on exit*/

/* removed to use form_do all selected objects must be TOUCHEXIT or EXIT
event=evnt_button(l,1,1, &émausx, émausy, &dummy, &dummy) ;
item:objc_find(menu_tree,FXMENU,13,mausx,mausy);

which object in menu tree is at mouse pos */

220

Abacus Software Atari ST Tricks and Tips

switch (item) {

case ELITEIN:
objc_change(menu_tree,ELITEIN,O,xobj,yobj,wobj,hobj,SELECTED,1);

objc_change(menu_tree,ELITEOUT,O,xobj,yobj,wobj,hobj,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5,ELITE) ;
break;

case ELITEOUT:
objc_change(menu_tree,ELITEOUT,O,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,ELITEIN,O,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5, ELITEOFF) ;
break;

case CONDENIN:
objc_change(menu_tree,CONDENIN,O,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,CONDENOT,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5, SMALL) ;
break;

case CONDENOT :
objc_change(menu_tree,CONDENOT,O,xwork,ywork,wwork,hwork,SELECTED,l);

objc_change(menu_tree,CONDENIN,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5, SMALLOFF) ;
break;

case PROPIN:
objc_change(menu_tree,PROPIN,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,PROPOUT,O,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5, PROPORTIONAL) ;
gemdos (0x5,PSET) ;
break;

case PROPOUT:
objc_change(menu_tree,PROPOUT,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,PROPIN,O,xwork,ywork,wwork,hwork,NORMAL,1);

gemdos (0x5,ESC) ;
gemdos (0x5, PROPORTIONAL) ;

221

Abacus Software Atari ST Tricks and Tips

gemdos (0x5, PRESET) ;
break;

case ITALIN:
objc_change (menu_tree, ITALIN, 0, xwork, ywork, wwork, hwork, SELECTED, 1) ;

objc_change(menu_tree,ITALOUT,0,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5,ESC) ;
gemdos (0x5, ITALIC) ;
break;

case ITALOUT:
objc_change(menu_tree,ITALOUT,O,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_ﬁree,ITALIN,0,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5,ESC) ;
gemdos (0x5, ITALICOFF) ;
break;

case MICROIN:
objc_change (menu_tree, MICROIN, 0O, xwork, ywork, wwork, hwork, SELECTED, 1) ;

objc_change(menu_tree,MICROOUT,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5,MICRO1) ;
gemdos (0x5,MICRO2) ;
break;

case MICROOUT:
objc_change (menu_tree, MICROOUT, 0, xwork, ywork, wwork, hwork, SELECTED, 1) ;

objc_change (menu_tree, MICROIN, 0, xwork, ywork, wwork, hwork, NORMAL, 1) ;
gemdos (0x5,ESC) ;
gemdos (0x5, MICROOFF) ;
break;

case SKIPIN:
objc_change(menu*tree,SKIPIN,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change (menu_tree, SKIPOUT, 0, xwork, ywork, wwork, hwork, NORMAL, 1) ;
gemdos (0x5,ESC) ;
gemdos (0x5, SKIP) ;
gemdos (0x5, SKIP1) ;
break;

222

Abacus Software Atari ST Tricks and Tips

case SKIPOUT:
objc_change(menu_tree,SKIPOUT,O,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,SKIPIN,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5, SKIPOFF) ;
break;

case MARGO :
objc_change(menu_tree,MARG0,0,xwork,ywork,wwork,hwork,SELECTED,l);

objc_change(menu_tree,MARGl0,0,xwork,ywork,wwork,hwork,NORMAL,1);
gemdos (0x5,ESC) ;
gemdos (0x5, LMARG) ;
gemdos (0x5, LMAROFF) ;
break;

case MARG10:
objc_change(menu_tree,MARGl0,0,xwork,ywork,wwork,hwork,SELECTED,1);

objc_change(menu_tree,MARG0,0,xwork,ywork,wwork,hwork,NORMAL,l);
gemdos (0x5, ESC) ;
gemdos (0x5, LMARG) ;
gemdos (0x5,P0S10) ;
break;

case EXIT:
objc_change(menu_tree,EXIT,O,xwork,ywork,wwork,hwork,SELECTED,1);
gemdos (0OX5,RET) ;
form_dial (2, xobj, yobj, wobj, hobi) ;
form_dial(3,1,1,1,1,xobj,yobj,wobj,hobj);
ende=TRUE;

objchchange(menu_tree,EXIT,O,xwork,ywork,wwork,hwork,NORMAL,l);
/* Return; otherwise, a break on the next accessory call */
break;

} /* End switch */

} /* End while */

223

Abacus Software Atari ST Tricks and Tips

For those of you who don't have a C compiler, the following BASIC
loaders will create the files PRINIT.RSC and FX80INIT.ACC on your
disk.

100 ' BASIC loader to create PRINIT.RSC for FX80INIT.ACC
1000 open"R",1,"a:prinit.rsc",16
1010 field#1,16 as bin$
1020 a$="":for i=1 TO 1l6:read d$:if d$="*"then 1050
1030 a=val ("&H"+dS$) :s=s+a:a$=aS$+chrs$(a) :next

1040 1lset bin$=a$:rec=rec+l:put 1l,rec:goto 1020
1050 data 00,00,01,E8,00,D0,00,D0,00,D0,00,00,00,24,00,D0
1060 data 00,00,05,18,00,22,00,01,00,0A,00,00,00,00,00,00
1070 data 00,00,05,1C,46,58,2D,38,30,2B,20,49,4E,49,54,00
1080 data 00,00,20,20,66,72,6F,6D,3A,20,41,42,41,43,55,53
1090 data BA,73,20,54,69,70,73,20,26,20,54,72,69,63,6B,73
1100 data 20,20,00,00,00,4A,57,20,31,30,2E,38,35,00,00,00
1110 data 4F,6B,61,79,20,21,00,4F,4E,00,4F,46,46,00, 4F, 4E
1120 data 00,4F,46,46,00,4F,4E, 00, 4F,46,46,00, 4F, 4E, 00, 4F
1130 data 46,46,00,4F,4E,00,4F,46,46,00,4F,4E,00,4F, 46, 46
1140 data 00,31,30,00,20,30,00,45,4¢C,49,54,45,00,00,00,50
1150 data 52,4F,50,00,00,00,49,54,41,4C,49,43,00,00,00,43
1160 data 4F,4E,44,45,4E,00,00,00,4D,49,43,52,4F,00,00,00
1170 data 53,4B,49,50,00,00,00,4D,41,52,47,49,4E,00,00,00
1180 data 00,00,00,24,00,00,00,30,00,00,00,31,00,03,00,06
1190 data 00,00,11,80,00,00,FF,FF,00,0C,00,01,00,00,00,32
1200 data 00,00,00,53,00,00,00,54,00,05,00,06,00,02,11,A0
1210 data 00,00,FF,FF,00,21,00,01,00,00,00,55,00,00,00,5E
1220 data 00,00,00,5F,00,05,00,06,00,02,11,80,00,00,FF,FF
1230 data 00,09,00,01,00,00,00,97,00,00,00,9D,00,00,00,9E
1240 data 00,03,00,06,00,00,11,60,00,00,FF,FF,00,06,00,01
1250 data 00,00,00,9Fr,00,00,00,A4,00,00,00,A5,00,03,00,06
1260 data 00,00,11,60,00,00,FF,FF,00,05,00,01,00,00,00,26
1270 data 00,00,00,AD,00,00,00,AE,00,03,00,06,00,00,11,60
1280 data 00,00,FF,FF,00,07,00,01,00,00,00,AF,00,00,00,B6
1290 data 00,00,00,B7,00,03,00,06,00,00,11,60,00,00,FF,FF
1300 data 00,07,00,01,00,00,00,B8,00,00,00,BE,00,00,00,BF
1310 data 00,03,00,06,00,00,11,60,00,00,FF,FF,00,06,00,01
1320 data 00,00,00,€0,00,00,00,C5,00,00,00,C6,00,03,00,06
1330 data 00,00,11,60,00,00,FF,FF,00,05,00,01,00,00,00,C7
1340 data 00,00,00,CE,00,00,00,CF,00,03,00,06,00,00,11,60
1350 data 00,00,FF,FF,00,07,00,01,FF,FF,00,01,00,21,00,14
1360 data 00,00,00,10,00,02,11,20,00,00,00,00,00,24,00,13
1370 data 00,05,00,02,00,04,00,14,00,00,00,20,00,FF,33,A2

224

Abacus Software Atari ST Tricks and Tips

1380 data 00,06,00,01,00,18,00,03,00,03,FF,FF,FF,FF,00,15
1390 data 00,00,00,00,00,00,00,D0,00,07,00,00,00,0B,00,01
1400 data 00,04,FF,FF,FF,FF,00,15,00,00,00,00,00,00,00,EC
1410 data 00,00,00,01,00,18,06,00,00,01,FF,FF,FF,FF,00,15
1420 data 00,00,00,00,00,00,01,08,00,09,00,02,00,06,06,00
1430 data 00,06,FF,FF,FF,FF,OO,1A,00,07,00,00,00,00,00,60
1440 data 00,06,00,11,00,18,00,01,00,09,00,07,00,08,00,14
1450 data O0,00,00,20,31,FF,11,E1,00,0F,O0,06,00,0F,00,01
1460 data 00,08,FF,FF,FF,FF,00,lA,00,51,00,00,00,00,00,67
1470 data 00,00,00,00,00,06,00,01,00,06,FF,FF,FF,FF,OO,1A
1480 data 00,51,00,00,00,00,00,6A,00,0A,00,00,00,05,00,01
1490 data 0o0,0c,00,0a,00,08,00,14,00,00,00,20,31,FF, 11,61
1500 data O0,0F,O0,07,00,0F,O0,0l,O0,0B,FF,FF,FF,FF,OO,IA
1510 data 6o0,51,00,00,00,00,00,6E,00,00,00,00,00,06,00,01
1520 data 00,09,FF,FF,FF,FF,00,1A,00,51,00,00,00,00,00,71
1530 data 00,0a,00,00,00,05,00,01,00,0F,00,0D,00,O0E, 00,14
1540 data 00,00,00,20,31,FF,11,61,00,0F,00,09,00,0F, 00,01
1550 data 00,0E,FF,FF,FF,FF,00,14,00,51,00,00,00,00,00,75
1560 data 0o0,00,00,00,00,06,00,01,00,0C,FF,FF,FF,FF, 00, 1A
1570 data 0o,51,00,00,00,00,00,78,00,0A,00,00,00,05,00,01
1580 data 00,12,00,10,00,11,00,14,00,00,00,20,31,FF, 11, 61
1590 data 00,0r,00,04,00,0r,00,01,00,11,FF,FF,FF,FF, 00, 1A
1600 data 090,51,00,00,00,00,00,7c,00,00,00,00,00,06,00,01
1610 data 00,0F,FF,FF,FF,FF,00,14,00,51,00,00,00,00,00, 7F
1620 data 00,0a,00,00,00,05,00,01,00,15,00,13,00,14,00,14
1630 data 00,00,00,20,31,FF,11,61,00,0F, 00,0B, 00,0F, 00,01
1640 data 00,14,FF,FF,FF,Fr,00,14,00,51,00,00,00,00, 00, 83
1650 data 00,00,00,00,00,06,00,01,00,12,FF,FF,FF,FF, 00, 1A
1660 data 0o,51,00,00,00,00,00,86,00,0A,00,00,00,05,00,01
1670 data 00,18,00,16,00,17,00,14,00,00,00,20,31,FF, 11,61
1680 data 090,0F,00,0D,00,0F,00,01,00,17,FF,FF,FF,FF, 00, 1A
1690 data 00,51,00,00,00,00,00,8n,00,00,00,00,00,06,00,01
1700 data 00,15,FF,FF,FF,FF,00,14,00,51,00,00,00,00,00, 8D
1710 data 00,0a,00,00,00,05,00,01,00,1A,00,19,00,19,00, 14
1720 data 00,00,00,20,31,FF,11,61,00,0F,00,0E,00,0F, 00,01
1730 data 00,18,FF,FF,FF,FF,00,14,00,51,00,00,00,00,00, 91
1740 data 00,0a,00,00,00,05,00,01,00,1B,FF,FF,FF,FF, 00, 1A
1750 data 00,51,00,00,00,00,00,94,00,0F,00,0E,00,06,00,01
1760 data 00,1c¢,FF,FF,FF,FF,00,16,00,00,00,20,00,00,01, 24
1770 data 00,06,00,06,00,08,00,01,00,1D,FF,FF,FF,FF, 00,16
1780 data 0o,00,00,20,00,00,01,40,00,06,00,07,00,08,00,01
1790 data 00,1E,FF,FF,FF,FF,00,16,00,00,00,20,00,00,01, 5C
1800 data 00,06,00,09,00,08,00,01,00,1F,FF,FF,FF,FF, 00,16

225

Abacus Software Atari ST Tricks and Tips

1810
1820
1830
1840
1850
1860
1870
1880
1900

data
data
data
data
data
data
data

0o0,00,00,20,00,00,01,78,00,06,00,0A,00,08,00,01
00,20,FF,FF,FF,FF,00,16,00,00,00,20,00,00,01,94
oo,06,00,08B,00,08,00,01,00,21,FF,FF,FF,FF, 00,16
0o,00,00,20,00,00,01,B0,00,06,00,0D,00,08,00,01
00,00,FF,FF,FF,Fr,00,16,00,20,00,20,00,00,01,CC

60,06,00,0E,00,08,00,01,00,00,01,E8,00,00,00,00
*

close 1:if s<> 58576 then print™ERROR IN DATA!":end
print "Ok."

226

Abacus Software Atari ST Tricks and Tips

1000 open”R",1,"c:fx80acc.acc",16

1010 field#1,16 as bin$

1020 as$="":for i=1 TO 1l6:read d$:if d$="*"then 1050

1030 a=val("&H"+d$) :s=s+a:a$=a$+chr$(a) :next

1040 1lset bin$=a$:rec=rec+l:put 1,rec:goto 1020

1050 data 60,1a,00,00,12,DC,00,00,02,36,00,00,09,BA,00, 00
1060 data ¢o,00,00,00,00,00,00,00,00,00,00,00,2E,7C,00,00
1070 data 19,16, 4E,B9,00,00,00,FA, 2E,BC,00,00,00,00, 4E, 41
1080 data 22,2r,00,04,30,3C,00,C8,4E, 42, 4E, 75, 4E,56,FF,FA
1090 data 42, 6E,FF,FE,60,14,30, 6E,FF,FE,D1,C8,D1,FC, 00, 00
1100 data 1D,AE,30,BC,00,01,52,6E,FF,FE, 0C, 6E,00,0A,FF,FE
1110 data 6D,E4,33,FC,00,02,00,00,1D,C2,33,F9,00,00,1B,70
1120 data 00,00,1B, 6E,2E,BC,00,00,1E,06,2F, 3C, 00,00, 1B, 6E
1130 data 2Fr,3C,00,00,1D,AE, 4E,B9,00,00,0D,22,50, 8F, 4E, 5E
1140 data 4E,75,4E,56,FF,FC, 3E,B9, 00,00, 1B, 33, 3F, 39, 00, 00
1150 data 1D,80,3F,39,00,00,1D,A2,3F,39,00,00,1D,A0, 42,67
1160 data 4E,B9,00,00,11,B2,50,8F,33,C0,00,00, 1E,BE, 3E,B9
1170 data 00,00,1B,3a,3F,39,00,00,1D,80,3F,39,00,00,1D,A2
1180 data 3F,39,00,00,1D,A0,3F,39,00,00,1E,BE, 4E,B9, 00, 00.
1190 data 11,EC,50,8F,2E,BC,00,00,1B,72,2F,3C,00,00,1D,C4
1200 data 2Fr,3c,00,00,1D,C8,2F,3C,00,00,1D,C6,3F,3C, 00,04
1210 data 3F,39,00,00,1E,BE, 4E,B9,00,00,12,53,DF,FC, 00, 00
1220 data 00,10, 4E,5E, 4E, 75, 4E, 56,FF,FC, 4E, B9, 00,00, OE, 22
1230 data 2E,BC,00,00,1B,38,2F,3C,00,00,1D, 7E, 2F, 3C, 00, 00
1240 data 1E,78,2F,3C,00,00,1E,BC, 4E,B9,00,00,10,5C,DF,FC
1250 data ¢o0,00,00,0¢,33,c0,00,00,1B,70,2E,BC,00,00,14, 90
1260 data 3r,39,00,00,1E, 9A,4E,B9,00,00,10, 9E, 54, 8F, 33,C0
1270 data 00,00,1A,32,2E,BC,00,00,1E,98,2F,3C, 00,00, 1E,C2
1280 data 2F,3c,00,00,1E,CA,2F,3C,00,00,1E,C8,3F,3C, 00,04
1290 data 42,67,4E,B9,00,00,12,5A,DF,FC,00,00,00,10,2E,BC
1300 data 00,00,14,9E,4E,B9,00,00,11,64,4A,40,66,12,2E,BC
1310 data 00,00,14,29,3F,3c,00,01,4E,B9,00,00,0F,F0, 54, 8F
1320 data 2E,BC,00,00,1D,AR,42,67,42,67,4E,B9,00,00,11,7E
1330 data 58,8F,4A,40,66,12,2E,BC,00,00,14,E0,3F,3C,00,01
1340 data 4E,B9,00,00,0F,F0,54,8F,2E,BC,00,00,1D,AA, 42,67
1350 data 42,67,4E,B9,00,00,11,7E,58, 8F, 2E,BC, 00,00, 1B, 3A
1360 data 2F,3c,00,00,1D,80,2F,3C,00,00,1D,A2,2F,3C, 00,00
1370 data 1D,A0,2F,39,00,00,1D,AA,4E,B9,00,00,10,12,DF,FC
1380 data 00,00,00,10,61,04,4E,5E, 4E, 75, 4E, 56,FF,FC, 60, 00
1390 data 00,BE,2E,BC,00,00,1B,74,2F,3C,00,00,1B,74,2F, 3C
1400 data 00,00,1B,74,2F,3C,00,00,1B,74,2F,3C,00,00,1D,7A
1410 data 2F,3C,00,00,1C,78,42,67,42,67,2F,3C,00,00,1B,5E
1420 data 42,67,42,67,42,67,42,67,42,67,42,67,42,67,42,67

227

Abacus Software Atari ST Tricks and Tips

1430 data 42,67,42,67,3F,3¢,00,01,3F,3C,00,01,3F,3C,00,01
1440 data 3F,3C,00,13,4E,B9,00,00,0E, 96,DF,FC,00,00,00, 38
1450 data 33,C0,00,00,1A,34,08,39,00,04,00,00,1A,35,67, 4E
1460 data 30,39,00,00,1B,5E,60,40,30,39,00,00,1B,66,B0,79
1470 data 00,00,1A,32,66,2E,61,00,FD,94,61,00,FD,E6,61,36
1480 data 3E,B9,00,00,1E,BE,4E,B9,00,00,12,26,3E,B9,00,00
1490 data 1E,BE,4E,B9,00,00,12,40,3E,B9,00,00, 1B, 6E, 4E,B9
1500 data 00,00,0C,F8,60,08,60,06,B0,7C,00,28,67,BA,60,00
1510 data FF, 42, 4E, 5E, 4E,75,4E,56,FF,FC, 2E,BC, 00, 00,1D, AA
1520 data 42,67,42,67,4E,B9,00,00,11,7E,58,8F,2E,BC, 00,00
1530 data 1B, 3a,2F,3cC,00,00,1D,80,2F,3C,00,00,1D,A2,2F, 3C
1540 data 00,00,1D,A0,2F,39,00,00,1D,AA, 4E,B9,00,00,10,12
1550 data DF,FcC,00,00,00,10,3E,B9,00,00,1B,3A7,3F,39,00,00
1560 data 1D,80,3F,39,00,00,1D,A2,3F,39,00,00,1D,A0,42,67
1570 data 4E,B9,00,00,0F,96,50,8F,3E,B9,00,00,1B, 33, 3F, 39
1580 data 00,00,1D,80,3F,39,00,00,1D,A2,3F,39,00,00,1D, A0
1590 data 3F,3c,00,01,3F,3¢,00,01,3F,3C,00,01,3F,3C,00,01
1600 data 3F,3C,00,01,4E,B9,00,00,0F,96,DF,FC,00,00,00,10
1610 data 3E,B9,00,00,1E,98,3F,39,00,00,1E,C2,42,67,42,67
1620 data 3F,3C,00,22,42,67,2F,39,00,00,1D,AA, 4E,B9,00,00
1630 data 10,cC0,DF,FC,00,00,00,0E,42,79,00,00,1E,C0,60,00
1640 data 09,54,42,57,2F,39,00,00,1D,AA, 4E,B9,00,00,0F, 74
1650 data 58,8F,33,c0,00,00,1D,7C,30,39,00,00,1D,7C, 60,00
1660 data 09,1E,3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1B, 3A
1670 data 3r,39,00,00,1D,80,3F,39,00,00,1D,A2,3F,39,00,00
1680 data 1D,A0,42,67,3F,3C,00,07,2F,39,00,00,1D,AA, 4E,B9
1690 data 00,00,11,0A,DF,FC,00,00,00,12,3E,BC,00,01,42,67
1700 data 3F,39,00,00,1B,3a,3F,39,00,00,1D,80,3F,39,00,00
1710 data 1D,A2,3F,39,00,00,1D,A0,42,67,3F,3C,00,08,2F, 39
1720 data 00,00,1D,AA, 4E,B9,00,00,11,0A,DF,FC,00,00,00,12
1730 data 3E,BC,00,1B,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F
1740 data 3E,BC,00,4D,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F
1750 data 60,00,08,A2,3E,BC,00,01,3F,3C,00,01,3F,39,00,00
1760 data 1B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8, 3F, 39
1770 data 00,00,1D,C6,42,67,3F,3C,00,08,2F,39,00,00,1D,AA
1780 data 4E,B9,00,00,11,0A,DF,FC,00,00,00,12,3E,BC,00,01
1790 data 42,67,3F,39,00,00,1B,72,3F,39,00,00,1D,C4, 3F, 39
1800 data 00,00,1D,C8,3F,39,00,00,1D,C6,42,67,3F,3C,00,07
1810 data 2F,39,00,00,1D,AA,4E,B9,00,00,11,0A,DF,FC, 00,00
1820 data 00,12,3E,BC,00,1B,3F,3C,00,05,4E,B9,00,00,12,CC
1830 data 54,8F,3E,BC,00,50,3F,3C,00,05,4E,B9,00,00,12,CC
1840 data 54,8F,60,00,08,10,3E,BC,00,01,3F,3C,00,01, 3F, 39
1850 data 00,00,1B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8

228

Abacus Software Atari ST Tricks and Tips

1860 data 3F,39,00,00,1D,C6,42,67,3F,3C, 00,10, 2F,39,00, 00
1870 data 1D, AA,4E,B9,00,00,11,0A,DF,FC,00,00,00,12, 3E,BC
1880 data 00,01,42,67,3F,39,00,00,1B,72,3F,39,00,00,1D,C4
1890 data 3F,39,00,00,1D,C8,3F,39,00,00,1D,C6,42, 67, 3F, 3C
1900 data 00,11,2F,39,00,00,1D,AA, 4E,B9,00,00,11, 0A,DF, FC
1910 data 00,00,00,12,3E,BC,00,0F, 3F, 3¢, 00,05, 4E, B9, 00, 00
1920 data 12,cCC,54,8F,60,00,07,8E, 3E,BC, 00,01, 3F, 3C, 00, 01
1930 data 3F,39,00,00,1B,72,3F,39,00,00,1D,C4,3F, 39,00, 00
1940 data 1D,CS8,3F,39,00,00,1D,C6,42,67,3F, 3C, 00,11, 2F, 39
1950 data 00,00,1D, A, 4E,B9,00,00,11, 0A,DF,FC, 00,00, 00,12
1960 data 3E,BC,00,01,42,67,3F,39,00,00,1B,72,3F, 39, 00,00
1970 data 1D,cC4,3F,39,00,00,1D,C8,3F,39,00,00,1D,C6,42, 67
1980 data 3F,3cC,00,10,2F,39,00,00,1D,AA, 4E,B9,00,00,11, 0A
1990 data DF,FC,00,00,00,12,3E,BC, 00,12, 3F,3C, 00, 05, 4E, B9
2000 data 00,00,12,cc,54,8F,60,00,07,0C, 3E,BC, 00,01, 3F, 3C
2010 data 00,01,3F,39,00,00,18,72,3F,39,00,00,1D,C4, 3F, 39
2020 data 00,00,1D,C8,3F,39,00,00,1D,C6,42,67, 3F,3C, 00, OA
2030 data 2F,39,00,00,1D,AA, 4E,B9,00,00,11,04,DF,FC, 00, 00
2040 data 00,12, 3E,BC,00,01,42,67,3F,39,00,00,18,72, 3F, 39
2050 data 00,00,1D,cC4, 3F,39,00,00,1D,C8, 3F, 39,00,00,1D,C6
2060 data 42,67,3F,3C,00,08,2F,39,00,00,1D,AA, 4E,B9, 00, 00
2070 data 11,0A,DF,FC,00,00,00,12,3E,BC, 00, 1B, 3F, 3C, 00, 05
2080 data 4E,B9,00,00,12,CC,54,8F, 3E,BC, 00,70, 3F, 3C, 00,05
2090 data 4E,B9,00,00,12,CC, 54, 8F, 3E,BC, 00,01, 3F, 3C, 00,05
2100 data 4E,B9,00,00,12,CC,54,8F,60,00,06, 63, 3E,BC, 00,01
2110 data 3F,3C,00,01,3F,39,00,00,1B,72,3F,39,00,00,1D,C4
2120 data 3F,39,00,00,1D,C8,3F,39,00,00,1D,C6, 42, 67, 3F, 3C
2130 data 00,0B,2F,39,00,00,1D,AA, 4E,B9,00,00,11, 0A,DF, FC
2140 data 00,00,00,12,3E,BC,00,01,42,67,3F,39,00,00,1B, 72
2150 data 3F,39,00,00,1D,C4,3F,39,00,00,1D,C8,3F, 39,00, 00
2160 data 1D,C6,42,67,3F,3C,00,0A,2F,39,00,00,1D,AA, 4E, B9
2170 data 00,00,11,0A,DF,FC,00,00,00,12,3E,BC, 00, 1B, 3F, 3C
2180 data 00,05,4E,B9,00,00,12,CC, 54, 8F, 3E,BC, 00, 70, 3F, 3C
2190 data 00,05, 4E,B9,00,00,12,cc,54,8F, 42,57, 3F, 3C, 00,05
2200 data 4E,B9,00,00,12,CC,54,8F,60,00,05,CA, 3E,BC, 00,01
2210 data 3F,3cC,00,01,3F,39,00,00,1B,72,3F,39,00,00,1D,C4
2220 data 3F,39,00,00,1D,C8,3F, 39,00,00,1D,C6,42, 67, 3F, 3C
2230 data 00,0D,2F,39,00,00,1D,AA, 4E,B9,00,00,11, 0A,DF,FC
2240 data 00,00,00,12,3E,BC,00,01,42,67,3F,39,00,00,1B, 72
2250 data 3F,39,00,00,1D,C4,3F,39,00,00,1D,C8, 3F, 39, 00,00
2260 data 1D,C6,42,67,3F,3C, 00, 0E,2F,39,00,00, 1D, AA, 4E, B9
2270 data 00,00,11,0A,DF,FC,00,00,00,12,3E,BC, 00, 1B, 3F, 3C
2280 data 00,05,4E,B9,00,00,12,CC, 54, 8F, 3E,BC, 00, 34, 3F, 3C

229

Abacus Software Atari ST Tricks and Tips

2290 data 00,05, 4E,B9,00,00,12,CC,54,8F,60,00,05,38,3E,BC
2300 data 00,01,3F,3c,00,01,3F,39,00,00,1B,72,3F,39,00,00
2310 data 1D,C4,3F,39,00,00,1D,C8,3F,39,00,00,1D,C6,42,67
2320 data 3F,3C,00,0E,2F,39,00,00,1D,AA, 4E,B9,00,00,11,0A
2330 data DF,Fc,00,00,00,12,3E,BC,00,01,42,67,3F,39,00,00
2340 data 1B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8, 3F, 39
2350 data 00,00,1D,C6,42,67,3F,3C,00,0D,2F,39,00,00,1D,AA
2360 data 4E,B9,00,00,11,0A,DF,FC,00,00,00,12,3E,BC,00,1B
2370 data 3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F, 3E,BC, 00, 35
2380 data 3F,3C,00,05,4E,B9,00,00,12,CC,54,8F,60,00,04,A6
2390 data 3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1B,72,3F, 39
2400 data 00,00,1D,C4,3F,39,00,00,1D,C8,3F,39,00,00,1D,Cé6
2410 data 42,67,3F,3C,00,13,2F,39,00,00,1D,AA, 4E,B9,00,00
2420 data 11,0A,DF,FcC,00,00,00,12,3E,BC,00,01,42,67,3F, 39
2430 data 00,00,1B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8
2440 data 3F,39,00,00,1D,C6,42,67,3F,3C,00,14,2F,39,00,00
2450 data 1D,AA,4E,B9,00,00,11,0A,DF,FC,00,00,00,12,3E,BC
2460 data 00,1B,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F, 3E,BC
2470 data 00,53,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F, 42,57
2480 data 3F,3C,00,05,4E,B9,00,00,12,CC,54,8F,60,00,04,06
2490 data 3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1B,72, 3F, 39
2500 data 00,00,1D,C4,3F,39,00,00,1D,C8,3F,39,00,00,1D,C6
2510 data 42,67,3F,3C,00,14,2F,39,00,00,1D,AA, 4E,B9, 00,00
2520 data 11,0A,DF,FcC,00,00,00,12,3E,BC,00,01,42,67,3F, 39
2530 data 00,00,18B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8
2540 data 3F,39,00,00,1D,C6,42,67,3F,3C,00,13,2F,39,00,00
2550 data 1D,An,4E,B9,00,00,11,0A,DF,FC,00,00,00,12,3E,BC
2560 data 00,1B,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F, 3E,BC
2570 data 00,54,3F,3C,00,05,4E,B9,00,00,12,CC,54,8F, 60,00
2580 data 03,74, 3E,BC,00,01,3F,3C,00,01,3F,39,00,00,1B,72
2590 data 3F,39,00,00,1D,C4,3F,39,00,00,1D,C8,3F,39,00,00
2600 data 1D,C6,42,67,3F,3C,00,16,2F,39,00,00,1D,AA, 4E,B9
2610 data 00,00,11,0A,DF,FC,00,00,00,12,3E,BC,00,01,42,67
2620 data 3F,39,00,00,1B,72,3F,39,00,00,1D,C4,3F,39,00,00
2630 data 1D,C8,3F,39,00,00,1D,C6,42,67,3F,3C,00,17,2F, 39
2640 data 00,00,1D, AR, 4E,B9,00,00,11,0A,DF,FC,00,00,00,12
2650 data 3E,BC,00,1B,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F
2660 data 3E,BC,00,4E,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F
2670 data 3E,BC,00,06,3F,3C,00,05,4E,B9,00,00,12,CC, 54, 8F
2680 data 60,00,02,D2,3E,BC,00,01,3F,3C,00,01,3F,39,00,00
2690 data 1B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8,3F, 39
2700 data 00,00,1D,C6,42,67,3F,3C,00,17,2F,39,00,00,1D,AA
2710 data 4E,B9,00,00,11,0A,DF,FC,00,00,00,12,3E,BC,00,01

230

Abacus Software Atari ST Tricks and Tips

2720 data 42,67,3F,39,00,00,1B,72,3F,39,00,00,1D,C4, 3F, 39
2730 data 00,00,1D,C8,3F,39,00,00,1D,C6,42, 67, 3F,3C, 00,16
2740 data 2F,39,00,00,1D,AA,4E,B9,00,00,11,0A,DF,FC,00,00
2750 data 00,12,3E,BC,00,lB,3F,3C,O0,05,4E,B9,00,00,12,CC
2760 data >4, 8F, 3E,BC, 00, 4F, 3F, 3C, 00,05, 4E,B9, 00, 00,12,CC
2770 data >4, 8F,60,00,02,40,3E,BC, 00,01, 3F,3C,00,01, 3F, 39
2780 data 0o,00,18,72,3F,39,00,00,1D,C4, 3F,39,00,00,1D,C8
2790 data 3F,39,00,00,1D,C6, 42,67, 3F,3C,00,1A,2F,39,00,00
2800 data lD,AA,4E,B9,00,00,11,0A,DF,FC,00,00,00,12,3E,BC
2810 data 00,01,42,67,3F,39,00,00,1B,72, 3F,39,00,00,1D,C4
2820 data 3¢, 39,00,00,1D,C8,3F,39,00,00,1D,C6, 42, 67, 3F, 3C
2830 data 00,19,2F,39,00,00,1D,AA, 4E,B9,00,00,11, 0A,DF,FC
2840 data 00,00,00,12,3E,BC, 00, 1B, 3F,3C, 00,05, 4E,B9, 00, 00
2850 data 12,cc,54,8F,3E,BC, 00, 6C, 3F,3C,00,05,4E,B9,00, 00
2860 data 12,cc,54,8F,42,57,3F,3C,00,05,4E,B9,00,00,12,CC
2870 data 54,8Fr,60,00,01,A0, 3E,BC, 00,01, 3F,3C, 00,01, 3F, 39
2880 data 00,00,1B,72,3F,39,00,00,1D,C4,3F,39,00,00,1D,C8
2890 data 3F,39,00,00,1D,C6,42,67,3F,3C,00,19,2F,39,00,00
2900 data 1D, AA, 4E,B9,00,00,11, 0A,DF,FC, 00,00, 00,12, 3E, BC
2910 data 00,01, 42,67,3F,39,00,00,1B,72,3F,39,00,00,1D,C4
2920 data 3¢, 39,00,00,1D,C8,3F,39,00,00,1D,C6, 42,67, 3F, 3C
2930 data 00,1a,2r,39,00,00,1D,AA, 4E,B9,00,00,11, 0A,DF, FC
2940 data 6o,00,00,12,3E,BC, 00, 1B, 3F,3C, 00,05, 4E,B9, 00, 00
2950 data 12,cc, 54, 8F, 3E,BC, 00, 6C, 3F, 3C, 00,05, 4E,B9, 00, 00
2960 data 12,cc,54,8F, 3E,BC, 00,04, 3F,3C,00,05, 4E,B9, 00,00
2970 data 12,cc,54,8¥,60,00,00,FE, 3E,BC,00,01,3F,3C,00,01
2980 data 3F,39,00,00,18B,72,3F,39,00,00,1D,C4,3F, 39,00, 00
2990 data 1p,cs,3r,39,00,00,1D,C6,42,67,3F,3C,00,05,2F, 39
3000 data 00,00,1D, AA, 4E,B9, 00,00,11, 0A,DF,FC,00,00,00,12
3010 data 3E,BC, 00, 0D, 3F, 3C, 00,05, 4E,B9,00,00,12,CC, 54, 8F
3020 data 3E,B9,00,00,1B, 34, 3F,39,00,00,1D, 80, 3F, 39,00, 00
3030 data 1p,A2,3F,39,00,00,1D,A0,3F,3C, 00,02, 4E,B9, 00, 00
3040 data or, 96,50, 8F, 3€,B9, 00,00, 1B, 33, 3F, 39,00, 00, 1D, 80
3050 data 3r,39,00,00,1D,A2, 3F,39,00,00,1D,A0, 3F, 3C, 00,01
3060 data 3¥,3c,00,01,3F,3c,00,01,3%,3C,00,01,3F,3C, 00,03
3070 data 4E,B9,00,00,0F,96,DF,FC,00,00,00,10,33,FC, 00,01
3080 data 00,00,1E,C0,3E,BC,00,01,42,67,3F,39,00,00,1B,72
3090 data 3F,39,00,00,1D,C4,3F,39,00,00,1D,C8,3F,39,00,00
3100 data ip,ce, 42,67, 3F,3C,00,05,2F,39,00,00,1D, AR, 4E, B9
3110 data 00,00,11,0A,DF,FC,00,00,00,12,60,18,60,16,5B, 40
3120 data BO,7C,00,15,62,0E,E5,40,30,40,D1,FC,00,00,14, 38
3130 data 20,50,4E,DO,0C,79,00,01,00,00,1E,C0,66,00,F6,A4
3140 data 4E,5SE,4E,75,4E,56,FF,FC,33,FC,00,65,00,00,1E, 9C

231

Abacus Software Atari ST Tricks and Tips

3150 data 42,79,00,00,1E,9E,42,79,00,00,1E,A2,33,EE, 00,08
3160 data 00,00, 1E,A8,4E,B9,00,00,0D,A2, 4E, 5E, 4E, 75, 4E, 56
3170 data FF,FC,23,EE,00,08,00,00,19,1E,23,EE,00,10,00,00
3180 data 19,26,20,2E,00,10,D0,BC,00,00,00,54,23,C0,00,00
3190 data 19,2a,33,FC,00,64,00,00,1E,9C,42,79,00,00,1E, 9E
3200 data 33,FC,00,0B,00,00,1E,A2,20,6E,00,0C,33,D0,00,00
3210 data 1E,A8,4E,B9,00,00,0D,A2,20,6E,00,0C,30,B9,00,00
3220 data 1E,A8,23,FC,00,00,19,32,00,00,19,1E,23,FC,00,00
3230 data 1A,38,00,00,19,26,23,FC,00,00,1C,74,00,00,19,2A
3240 data 23,FC,00,00,1B,78,00,00,19,22,4E,5E, 4E,75,23,FC
3250 data 00,00,1E,9C,00,00,19,1A,22,3C,00,00,19,1A,70,73
3260 data 4E,42,4E,75,4E,56,FF,F6,33,EE,00,08,00,00,1D,CE
3270 data 30,2E,00,08,D0,7C,FF,F6,C1,FC,00,03,48,C0,D0,BC
3280 data 00,00,12,DC,2D, 40,FF,FA, 3D, 7C,00,01,FF,FE, 60, 1E
3290 data 20, 6E,FF,FA,10,10,48,80,32,6E,FF,FE,D3,C9,D3,FC
3300 data 00,00,1D,CE, 32,80, 52, AE,FF,FA, 52, 6E,FF,FE, 0C, 6E
3310 data 00,04,FF,FE, 6D,DA,2E,B9, 00,00, 1E, 92, 4E,B9, 00,00
3320 data 00,14,42,40,30,39,00,00,1D,F6,4E, 5E, 4E, 75, 4E, 56
3330 data FF,FA,23,FC,00,00,1D,CE,00,00,1B,3E,23,FC, 00,00
3340 data 1D, 82,00,00,1B,42,23,FC,00,00,1D,D6,00,00,1B, 46
3350 data 23,FC,00,00,1D,F6,00,00,1B,4A,23,FC,00,00,1E,B4
3360 data 00,00,1B,4E,23,FC,00,00,1E,C4,00,00,1B,52,23,FC
3370 data 00,00,1B,3E,00,00,1E,92, 3E,BC,00,04,61,00,FF, 46
3380 data 33,F9,00,00,1D,F6,00,00,1E,94,70,01, 4E, 5E, 4E, 75
3390 data 4E,56,FF,FC,3E,BC,00,13,61,00,FF,2A,70,01,4E,5E
3400 data 4E,75,4E,56,FF,FC,33,EE,00,08,00,00,1D,D6,33,EE
3410 data 00,0a,00,00,1D,D8,33,EE, 00,0C,00,00,1D,DA, 33,EE
3420 data 00,0E,00,00,1D,DC,33,EE,00,10,00,00,1D,DE,33,EE
3430 data 00,12,00,00,1D,E0,33,EE,00,14,00,00,1D,E2,33,EE
3440 data 00,16,00,00,1D,E4,33,EE,00,18,00,00,1D,E6,33,EE
3450 data 00,1a,00,00,1D,E8,33,EE,00,1C,00,00,1D,EA, 33,EE
3460 data 00,1E,00,00,1D,EC, 33,EE, 00,20,00,00,1D,EE, 33,EE
3470 data 00,22,00,00,1D,F0,23,EE,00,24,00,00,1E,B4,33,EE
3480 data 00,28,00,00,1D,F2,33,EE,00,24,00,00,1D,F4, 3E,BC
3490 data 00,19, 4E,B9,00,00,0D,B8,20,6E,00,2C,30,B9,00,00
3500 data 1D,F8,20,6E,00,30,30,B89,00,00,1D,FA,20,6E,00,34
3510 data 30,B9,00,00,1D,FC,20,6E,00,38,30,B9,00,00,1D,FE
3520 data 20,6E,00,3C,30,B9,00,00,1E,00,20,6E,00,40,30,B9
3530 data 00,00,1E,02,42,40,30,39,00,00,1D,F6,4E,5E, 4E,75
3540 data 4E,56,FF,FC,23,EE,00,08,00,00,1E,B4,33,EE,00,0C
3550 data 00,00,1D,D6,3E,BC,00,32,4E,B9,00,00,0D,B8, 4E, 5E
3560 data 4E,75,4E,56,FF,FC,33,EE,00,08,00,00,1D,D6,33,EE
3570 data 00,0a,00,00,1D,D8,33,EE, 00,0C,00,00,1D,DA, 33,EE

232

Abacus Software Atari ST Tricks and Tips

3580 data O0,0E,00,00,1D,DC,33,EE,00,10,00,00,1D,DE,33,EE
3590 data 00,12,00,00,1D,EO,33,EE,00,14,00,00,1D,E2,33,EE
3600 data 00,16,00,00,1D,E4,33,EE,00,18,00,00,1D,E6,3E,BC
3610 data OO,33,4E,B9,00,00,0D,B8,4E,5E,4E,75,4E,56,FF,FC
3620 data 33,EE,00,08,00,00,1D,D6,23,EE,00,0A,O0,00,1E,B4
3630 data 3E,BC,00,34,4E,B9,00,00,0D,BB,4E,5E,4E,75,4E,56
3640 data Fr,rC,23,EE,00,08,00,00,1E, B4, 3E,BC, 00,36, 4E, B9
3650 data 0o0,00,0D,B8,20,6E,00,0C,30,B9,00,00,1D,F8,20, 6E
3660 data OO,10,30,B9,00,00,1D,FA,20,6E,00,14,30,B9,00,00
3670 data 1D,FC,20,6E,OO,18,30,B9,00,00,1D,FE,42,40,30,39
3680 data 00,00,1D,F6, 4E, 5E, 4E, 75, 4E, 56, FF, FC, 3E, BC, 00, 4D
3690 data 4E,B9,00,00,0D,B8,20,6E,00,08,30,B9,00,00,1D,F8
3700 data 20, 6E,00,0C,30,B9,00,00,1D,FA,20,6E,00,10,30,B9
3710 data 00,00,1D,FC,20,6E,00,14,30,B9,00,00,1D,FE, 42, 40
3720 data 30,39,00,00,1D,F6, 4E, SE, 4E, 75, 4E, 56 ,FF,FC, 33, EE
3730 data 00,08,00,00,1D,D6,23,EE,00,0A,00,00, 1E,B4, 3E,BC
3740 data 00,23,4€,B9,00,00,0D,B8, 4E, 5E, 4E, 75, 4E, 56, FF, FC
3750 data 23,EE,00,08,00,00,1E,B4,33,EE, 00,0C,00,00,1D,D6
3760 data 33,EE,00,0E,00,00,1D,D8,33,EE, 00,10,00,00,1D,DA
3770 data 33,EE,00,12,00,00,1D,DC,33,EE,00,14,00,00,1D,DE
3780 data 33,EE,00,16,00,00,1D,E0,3E,BC, 00,23, 4E,B9, 00,00
3790 data oD, B8, 4E, 5E, 4E, 75, 4E, 56,FF,FC, 23,EE, 00,08, 00, 00
3800 data 1E,B4, 33,EE, 00, 0C,00,00,1D,D6,33,EE, 00, OE, 00, 00
3810 data ip,Dp8,33,EE, 00,10,00,00,1D,DA, 33,EE, 00,12,00,00
3820 data 1p,pC, 33,EE, 00,14,00,00,1D,DE, 33,EE, 00,16,00,00
3830 data 1p,E0,33,EE, 00,18,00,00,1D,E2,33,EE, 00,14, 00, 00
3840 data 1p,E4, 3E,BC, 00, 2F, 4E, B9, 00, 00, 0D, B8, 4E, 5E, 4E, 75
3850 data 4E, 56,FF,FC,23,EE, 00,08,00,00, 1E,B4, 3E,BC, 00, 6E
3860 data 4E,B9,00,00,0D,B8, 4E, 5E, 4E, 75, 4E, 56, FF,FC, 33, EE
3870 data 00,08,00,00,1D,D6,33,EE, 00, 0A,00,00,1D,D8, 3E,BC
3880 data 0o0,70,4g,B9,00,00,0D,B8,20, 6E,00,0C,20,B9,00,00
3890 data 1E,C4,42,40,30,39,00,00,1D,F6, 4E, 5E, 4E, 75, 4E, 56
3900 data F¥,¥c,33,EE,00,08,00,00,1D,D6,33,EE,00,0A,00,00
3910 data 1p,Dp8, 33,EE,00,0C,00,00,1D,DA, 33,EE, 00, 0E, 00,00
3920 data ip,pc, 33,EE,00,10,00,00,1D,DE, 3E,BC, 00, 64, 4E, B9
3930 data 00,00,0D,B8, 4E, 5E, 4E, 75, 4E, 56, FF,FC, 33,EE, 00, 08
3940 data ¢o,00,1D,D6,33,EE,00,0A,00,00,1D,D8, 33,EE, 00, 0C
3950 data 00,00,1D,DA,33,EE, 00,0E,00,00,1D,DC, 33,EE, 00, 10
3960 data 00,00,1D,DE, 3E,BC, 00,65, 4E,B9, 00,00, 0D, B8, 4E, 5E
3970 data 4E,75,4E,56,FF,FC,33,EE,00,08,00,00,1D,D6, 3E,BC
3980 data 00,66,4E,B9,00,00,0D,B8, 4E, 5E, 4E, 75, 4E, 56, FF, FC
3990 data 33,EE,00,08,00,00,1D,D6,3E,BC,00,67, 4E,B9, 00,00
4000 data 0p,B8,4E, 5E, 4E, 75, 4E,56,FF,FC, 33,EE, 00,08, 00, 00

233

Abacus Software Atari ST Tricks and Tips

4010 data 1D,D6,33,EE,00,0A,00,00,1D,D8,3E,BC,00, 68, 4E,B9
4020 data 00,00,0D,B8,20,6E,00,0C,30,B9,00,00,1D,F8,20, 6E
4030 data 00,10,30,B9,00,00,1D,FA,20,6E,00,14,30,B9,00,00
4040 data 1D,FC,20,6E,00,18,30,B9,00,00,1D,FE, 42,40,30,39
4050 data 00,00,1D,F6, 4E,5E,4E,75,23,DF,00,00,19,2E, 4E, 4E
4060 data 2F,39,00,00,19,2E,4E,75,23,DF,00,00,19,2E, 4E, 4D
4070 data 2F,39,00,00,19,2E,4E,75,23,DF,00,00,19,2E, 4E, 41
4080 data 2F,39,00,00,19,2E,4E,75,00,01,00,02,01,01,02,01
4090 data 01,00,01,01,02,01,01,01,01,01,00,00,00,00,00,00
4100 data 00,00,00,00,01,00,00,01,00,03,05,00,05,05,00,00
4110 data 01,01,02,01,00,10,07,01,02,01,00,00,00,00,00,00
4120 data 00,00,00,00,01,01,01,02,01,01,02,01,01,02,01,01
4130 data 01,01,02,01,02,01,00,00,00,00,00,00,00,00,00,00
4140 data 00,00,02,01,01,01,01,01,06,01,01,04,01,01,01,03
4150 data 01,02,01,01,04,02,01,08,01,01,00,00,00,00,00,00
4160 data 01,01,01,09,01,01,01,01,01,01,01,00,00,05,01,00
4170 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4180 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4190 data 00,00,00,00,00,00,00,00,00,00,00,00,04,03,00,08
4200 data 03,00,06,01,00,08,01,00,08,01,00,04,01,01,03,01
4210 data 01,00,05,00,01,01,01,00,05,00,00,01,01,00,01,01
4220 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4230 data 00,00,00,00,00,00,00,00,00,02,02,00,00,00,00,00
4240 data 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
4250 data 00,00,00,00,00,00,05,01,00,05,01,00,01,01,00,01
4260 data 01,00,02,05,00,06,01,00,02,01,00,01,01,00,06,05
4270 data 00,00,00,00,00,01,01,00,01,00,02,01,00,02,01,01
4280 data 01,01,01,00,00,00,00,00,00,00,00,00,00,00,00,00
4290 data 00,00,00,01,02,03,01,02,01,01,01,01,01,01,00,01
4300 data 01,00,01,02,00,00,08B,EC,00,00,0C,E8,00,00,03,B6
4310 data 00,00,04,48,00,00,0C,E8,00,00,05,DE,00,00,06,80
4320 data 00,00,0cC,E8,00,00,07,20,00,00,07,B2,00,00,0C,E8
4330 data 00,00,04,DA,00,00,05,5C,00,00,0C,E8,00,00,08, 44
4340 data 00,00,08,E4,00,00,0C,E8,00,00,09,76,00,00,0A,18
4350 data 00,00,0C,E8,00,00,0B,4A,00,00,0A,AA,20,20,46,58
4360 data 2D,38,30,2B,20,49,4E,49,54,00,50,52,49,4E, 49,54
4370 data 2E,52,53,43,00,5B,33,5D,5B,42,61,64,20,63,6F,70
4380 data 79,3F,20,7C,50,52,49,4E,49,54,2E,52,53,43,7C, 20
4390 data 63,6F,75,6C,64,6E,27,74,20,62,65,20,66,6F,75, 6E
4400 data 64,21,5D,5B,43,61,6E,63,65,6C,5D,00,5B,33,5D,20
4410 data 5B,46,61,74,61,6C,20,65,72,72,6F,72,21,21,7C,52
4420 data 65,73,6F,75,72,63,65,20,46,69,6C,65,20,6E,6F, 74
4430 data 20,4F, 4B, 2E,5D,5B,43,61,6E,63,65,6C,5D,00,00,00

234

Abacus Software Atari ST Tricks and Tips

4440 data 00,02,06,2A,18,06,04,06,06,06,06,10,06,06,06,08
4450 data 08,06,06,06,06,06,06,08,06,06,06,0A,06,14,06,06
4460 data 06,06,06,0C,O6,06,06,08,06,06,06,06,0C,0C,06,0A
4470 data 0A,08,0A,OC,OA,OB,OA,08,06,06,06,06,06,1A,06,06
4480 data 06,06,06,0A,2A,0C,08,08,08,06,12,06,06,06,06,06
4490 data 1C,OA,O8,06,06,06,06,06,0C,06,06,06,08,08,06,06
4500 data 06,1A,0C,06,10,06,0C,0C,06,08,06,12,06,06,06,0C
4510 data 06,12,06,06,06,00,06,14,10,14,06,06,06,0C,06,12
4520 data 06,06,06,0C,06,14,10,14,06,06,06,0C,06,12,06,06
4530 data 06,0C,06,14,14,06,06,06,0C,06,12,06,06,06,0C,06
4540 data 14,14,06,06,06,0C,06,12,06,06,06,0C,06,14,10,10
4550 data 14,06,06,06,0C,06,12,06,06,06,0C,06,14,10,0E,14
4560 data 06,06,06,0C,06,12,06,06,06,0C,06,14,10,14,06,06
4570 data 06,0C,06,12,06,06,06,0C,06,14,10,14,06,06,06,0C
4580 data 06,12,06,06,06,0C,06,14,10,0E,14,06,06,06,0C,06
4590 data 12,06,06,06,0C,06,14,10,14,06,06,06,0C,06,12,06
4600 data 06,06,0C,06,14,10,10,14,06,06,06,0C,06,12,06,06
4610 data 06,0c,06,14,10,14,06,06,06,0C,06,12,06,06,06,0C
4620 data 06,14,10,0E,14,06,06,06,0C,06,12,06,06,06,0C,06
4630 data 14,10,10,14,06,06,06,0C,06,14,08,06,06,06,0A,08
4640 data 06,06,06,1A,0E,0C,06,06,06,0C,06,1C,0C,14,06,06
4650 data 08,06,10,08,10,08,06,08,0A,06,0A,06,04,06,04,06
4660 data 04,06,04,0A,04,06,12,14,20,18,06,08,0E,04,06,04
4670 data 06,04,06,04,06,04,06,04,06,04,0E,04,24,08,08,08
4680 data 08,08,08,08,08,08,08,08,08,08,08,08,08,0A,0A,0A
4690 data 0a, 0A,0A,0A,08,10,08,0A,10,08,08,08,08,08,08,08
4700 data 08,0A,10,08,0A,10,0A,0A,0A,0A,0A,08,12,0A,0A,0A
4710 data 0a,08,10,08,0A,10,08,08,08,08,08,08,0A,10,08,08
4720 data 08,08,08,08,08,08,0A,10,0A,10,08,0A,0A,08,10,08
4730 data 08,08,08,0A,10,08,08,08,08,0A,10,0A,10,0A,10,08
4740 data 0a,0a,0A,0A,0A,08,0A,08,08,08,08,08,01,64,04,04
4750 data 04,04,04,04,04,04,04,04,04,04,04,04,04,04,04,04
4760 data 04,04,04,00,00,00,00,00,00,00,00,00,00,00,00,00
4770 data *

4780 close 1l:if s<> 340260 then print"ERROR IN DATA!":end
4800 print "Ok."

235

(Color Platesj

Plate 1 Actual screen photograph

Plate 2 Epson JX-80 color hardcopy of Plate 1
Plate 3 Actual screen photograph

Plate 4 Epson JX-80 color hardcopy of Plate 3
Plate 5 Actual screen photograph

Plate 6 Epson HI-80 plotter hardcopy of Plate 5
Plate 7 Epson JX-80 color hardcopy of Plate 5
Plate 8 Epson HI-80 plotter hardcopy

Plate 9 Actual screen photograph

Plate 10 Epson JX-80 color hardcopy of Plate 9

Abacus Software Atari ST Tricks and Tips

Plate1l Actual screen photograph

239

Abacus Software Atari ST Tricks and Tips

Plate 2 Epson JX-80 color hardcopy of Plate 1

240

Abacus Software Atari ST Tricks and Tips

Plate3 Actual screen photograph

iy @

' X X

oee o000 o

D4
b

il
|
T Xy

oveeee .

|

hieoeoee |
10 000000 :

0000 o o

e

T"“WWW’ f”"“ﬂfﬂﬂw w

2

41

—

Abacus Software Atari ST Tricks and Tips

Plate 4 Epson JX-80 color hardcopy of Plate 3

QuTPUT

Desk File Run Edit Debug

242

Atari ST Tricks and Tips

Abacus Software

Actual screen photograph

Plate 5

243

Abacus Software Atari ST Tricks and Tips

Plate 6 Epson HI-80 plotter hardcopy of Plate 5

s {

oo MRS f

,| frisf)

{1 Ui
(L
H‘.‘ ff

f x" ?41

)

244

Abacus Software Atari ST Tricks and Tips

Plate 7 Epson JX-80 color hardcopy of Plate 5

TELEE

: t

TETELE

;}: 3
B

i

245

Atari ST Tricks and Tips

Abacus Software

Epson HI-80 plotter hardcopy

Plate 8

iy .
§ se/z /81 !H. :

i G131 10MINON |

oweus3q pYLSNSIO

3

tazeq ojui-%saa

246

Abacus Software Atari ST Tricks and Tips

Plate9 Actual screen photograph

247

Atari ST Tricks and Tips

Abacus Software

Epson JX-80 color hardcopy of Plate 9
248

Plate 10

(APPENDICES j

Appendix A: ST Character Set
Appendix B: ST BASIC Commands

Abacus Software Atari ST Tricks and Tips

Appendix A

The following program creates a table of the Atari ST character set. To use
the table, choose the character you want to display. For example, let's use
the copyright symbol (©). In the table, find the row (B) and column (D) in
which it appears. This yeilds a hexadecimal nymber ($BD). To display it,
we use the CHRS function, so to print the copyright symbol to the screen
type:

print chr$ (&hBD)
The &h tells the computer this is a hexadecimal number.
Perhaps you might want to printout a formula such as: x%y + xyS = 0.
We would need to look up the values for the superscripted 2 and 3. These
are FD and FE. To display these, type the following:

print "x"chr$ (&hFD) "y + xy"chr$(&hFE)" = Q"

By using the table, you can display characters not easily accessible from the
keyboard.

BASIC program to create a character set table for the ST

1000 fullw 2:clearw 2

1010 print" "i;:for j%=0 to 15 'create column #s
1020 print hex$(j%)" ;

1030 next 3%

1040 print:print"® ";:for j%=1 to 32

1050 print chr$(sh2d); '2d is chr code for dash
1060 next 3%

1070 print
1080 for i%=0 to 15

1090 print " "hex$ (i%)chr$ (&h7c)™ »; 17¢ code for vert bar
1100 for 3j%=0 to 15

1110 c% = i% * 16 + j% 'calculate char number
1120 if c%=7 or c¢%=10 or c¢%=13 then print"™ ";:goto 1140

251

Atari ST Tricks and Tips

Abacus Software

1130 print chr$(c%)" ";

1140 next j%:print

1150 next i%
1160 print

'remove on color monitor

CR"
'hardcopy to printer

Bell OA=LF OD=

"07=

1170 poke 1262,0

1180 end

ST character set table

B123I456783RABCDEF

=% e O D | D JEE N AE 8 LD
T ¥y - R B D M Ol RN RR e

Fr 1 U T e 8 et e D o (T W £3 N
TR ¥ A Rl T TR NS O ol - =+
Ly W e e g el g bt D) O ¢ BT WD Lo

T Bl B a” Rl B 12T B T o B — e B
O W e O b D e DRI LD DT e
T, e D03 RS DS LS D (O DS w3 $ED P e iH O

ot o =T A~ T QR PR~ R —1E 1.~ ~~J T}
R LT - R - - - (P i = e
R A A V= BV~ I - I - T I =)
K T A e S e D e DAY OIED GED B TR AR e e
S FECIE PO G LA W AT A T W e B = W
Y g Ced B g LT e SO Rt NED D M CT R A
W0 e e D O MO DI R e 2RSS QO

oo S) e B LI W RADIERED 33 N

o
Kl

i
[}

252

Abacus Software

Atari ST Tricks and Tips

Appendix B

The following is a list of the commands available in ST BASIC.

ABS

AS
AUTO
BREAK
CBRDL
CINT
CLEARW
COLOR
CONTROL
CVD
DATA
DEFFBL
DEFSTR
DIR
ELLIPSE
EOF
ERASE
ERROR
FIELD#
FLOAT
FRE

GB

GO
GOTOXY
IMP
INPUT
INSTR
KILL
LET
LINEF
LOAD
LOG10
LSET
MKDS$
NAME
NOT

ON
OPTION

ALL
ASC
BASE
BSAVE
CHAIN
CIRCLE
CLOSE
COMMON
COoSs
CVI
DEF FN
DEFINT
DELETE
ED
ELSE
EQF
ERL
EXP
FILL
FOLLOW
FULLW
GET
GOSUB
HEXS
INKEYS
INPUT#
INTIN
LEFTS
LINE INPUT
LIST
LOC
LPOS
MERGE
MKS$
MEW
OCTS
OPEN
OR

253

AND
ATN
BLOAD
CALL
CHRS
CLEAR
CLOSEW
CONT
CSNG
CVs
DEF SEG
DEFSNG
DIM
EDIT
END
ERA
ERR
FIELD
FIX
FOR
GEMSYS
GET#
GOTO
IF

INP
INPUTS
INTOUT
LEN

LINE INPUT#

LLIST
LOF
LPRINT
MIDS
MOD
MEXT
OLD
OPENW
ouT

Abacus Software

Atari ST Tricks and Tips

PCIRCLE
POKE
PRINT#
PTSOUT

RANDOMIZE

RENUM
RESTORE
RIGHTS
RUN

SIN

SPC
STOP
SWAP
SYSTEM
THEN
TROFF
UNFOLLOW
VAL
WAIT
WHILE
WRITE#

PEEK
POS

PRINT USING

PUT
READ
REPLACE
RESUME
RND
SAVE
SOUND
SOR
STRS
SYSDBG
TAB

TO

TRON
UNTRACE
VARPTR
WAVE
WIDTH
XOR

254

PELLIPSE
PRINT
PTSIN
QUIT
REM
RESET
RETURN
RSET
SGN
SPACES
STEP
STRINGS
SYSTAB
TAN
TRACE
UNBREAK
USING
VDISYS
WEND
WRITE

Abacus Software Atari ST Tricks and Tips

Index

A

accessory (GEM), 153, 214-215
ID, 214

ADDR. IN, 41

ADDR.OQUT, 41

AES, 23, 148, 150-152
GEMSYS, 41

application (GEM), 153, 214

ASCII, 10

Atari Corp., 114
logo, 20

AUTO folder, 69

autostarting TOS appl., 86

B

base page, 69
BASIC, 3
loaders, 57
loading, 3
ST commands, 3
BIOS, 11, 59, 77
boot ROM, 86
boot sector, 86
buffer (printer), 68

C

C language, 23, 41, 91
C compiler, 91
statements, 155-156
TOS application, 154-162
Centronics interface, 11, 68
character size, 28
CMDLOAD, 86
color (screen), 106-113
plotter, 114, 127-130
printer, 114-115

255

Abacus Software

Atari ST Tricks and Tips

command line, 69
COMMAND . PRG, 86
contrl, 24, 163
CONTROL, 41

D

device handle, 25
dialog box creation, 182
digital clock prg, 49, 58
dir.s, 99

direc.c, 99
dispatcher (AES), 150

E

Epson, 114
FX-80, 115, 182, 214
HI-80, 130
JX-80, 115

F

GB, 41

GDOS, 23, 149
GEM, 23, 147-236
GEMDOS, 59
GEMDRAW, 105
GEMSYS, 41
GLOBAL, 41

H

handshake lines (printer), 68
hardcopy, 54, 105

color, 113, 114, 127-130
Hartmann, Sig, 114

I
IBM PC, 3, 23

integer arrays, 47
intin (VDI), 24, 163

256

Abacus Software

Atari ST Tricks and Tips

INT.IN, 41
intout (VDI), 24, 163
INT.OUT, 41

J

JSR, 91

K

keyboard, 12
L

labels, 30

lines, 32
endpoints, 35
thickness, 34

M

machine language programs, 45
(with) C programs, 91
calling from BASIC, 6

menu/alarm buffer, 150

Microsoft BASIC, 3

MIDI interface, 11-12

Modula 2, 41

Motorola 68000, 23, 44

mouse, 25
cursor, 25
position, 37

MSX computers, 13

multi-tasking, 148

N

norm. device coordinates (NDC), 149

257

Abacus Software

Atari ST Tricks and Tips

P

Pascal, 41
patching, 77
pixels, 28, 106
plotters, 114, 127-130
.PRG file, 77
PRINT, 28-29
print spooler, 68
printers, 68

color, 114-115
PROTORT, 86
ptsin, 24, 163
ptsout, 24, 163

R

RAM-disk, 77

raster coordinates (RC), 149

replace mode, 40

resolution (screen), 19, 106-113
Resource Construction Set, 182, 184
resource file (GEM), 153, 182
RS-232 interface, 11

S

screen RAM, 45, 58
coordinates, 149
screen manager (AES), 151
shell (AES), 151
sound generator waveforms (illus), 17
ST BASIC, 3
ST BASIC special commands:
BLOAD, 5
BREAK, UNBREAK, 4
BSAVE, 5
CALL, 6
CIRCLE, 18
CLEARW, 21
CLOSEW, 21
COLOR, 19
DEF SEG, 8

258

Abacus Software

Atari ST Tricks and Tips

speed, 43

FILL, 20

FOLLOW, UNFOLLOW, 3
FULLW, 20
GOTOXY, 8
INKEYS, 9
INPUTS, 10

INP, OUT, 11
LINEF, 18
OPENW, 21
PCIRCLE, 19
PEEK, 7
PELLIPSE, 19
POKE, 7

SOUND, 13

TRACE, UNTRACE, 5
TRON, TROFF, 4
VARPTR, 12

WAVE, 15

Star SG-10, 182, 200, 201

string variables, 47

subroutine library (AES), 151
symbolic constants (GEM), 171-235

T

text effects, 27-31
TOS applications, 154
transparent mode, 40

. TTP file, 68, 78

Vv

VDI, 23,

148

functions, 24-40

calls from BASIC, 26

VDISYS, 24, 24-40
vectors (patched), 77
vertical blank interrupt, 58
video RAM, 106, 114

259

Abacus Software Atari ST Tricks and Tips

w

window creation, 169-171
write modes, 40

workstation (GEM), 163-165
XOR mode, 40

Y

YM-2149, 13

260

Abacus Software Atari ST Tricks and Tips

Calling All Authors

We hope you've enjoyed reading Atari ST Tricks and Tips, one of the many
books in the Abacus ST Reference library. If you have any comments,
suggestions or technical questions about the material, please let us know.

If you are a writer of books or articles for the ST and want to work with
Abacus, a trusted and well-known publisher, please send an outline to us.
We'll pay you for published submissions based on length and content or
based on royalties.
Here are the guidelines for submissions:

* Programs should be on 3 1/2" ST formatted micro-floppy.

* Text should be on 3 1/2" diskette in ASCII format, or
double-spaced typewritten.

A cover letter with your name, address, phone number
and short description of your submission

>

Self-addressed stamped envelope

Send to:

Abacus Software, Inc.
Product Development
Attn: Jim D'Haem

P.O. Box 7219

Grand Rapids, MI 49510

261

Optional Diskette

Atari ST
TRICKS & TIPS

Optional Diskette

For your convenience, the program listings contained in this book are
available on an SF354 formatted floppy disk. You should order the diskette

if you want to use the programs, but don't want to type them in from the
listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 plus
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus Software
P.O. Box 7219
Grand Rapids, MI 49510

Or for fast service, call (616) 241-5510.

AR

REQUIRED READING

A fantastic collection of useful

programs and information for
the ST. Complete programs
include: super-fast RAM disk:
time-saving printer spooler;

color print hardcopy; plotter
output hardcopy. Explains
BASIC commands to access
GEM using VDISYS and
GEMSYS and describes
resource files with examples.
Manipulate text output (size,

rotation, bold, etc.) Change
line types (thickness, end-
points, etc.) Mixing machine

language with BASIC or C

MACHINE LANGUAGE
Program in the fastest
languaga for your Atari
ST. Learn the 68000
assembly language, its
numbering system, use
of registers, the structure
& important details of the
instruction set, and use of
the internal system
routings. 280pp $19.95

programs. Save software
dollars with these tricks and
tips. 250 pages $19.95

For the serious programmer

ATARIZN
GEM Programmers’ Reference

in need of detailed inform-
ation on the GEM operating
system. Written especially for
the Atari ST with an easy-to-
understand format that even

A complete gulde to
programming the ST
using the Graphlcs
Environment

beginners will be able to
follow. Al GEM routines and
examples are written in C
and 68000 assembly
language. Covers working
with the mouse, icons, Virtual

Device Interface (VDI),
Application Environment
Services (AES) and the
Graphics Device Operating

System. Required reading for

the serious programmer
intrested in understanding
the ST. 450 pages. $19.95

ST INTERNALS
Essential guide to learn-
ing the inside information
on the ST. Detailed de-
scriptions of the sound &
graphic chips, internal
hardware, the I/O ports,
System addresses, more.
Fully documented BIOS
assembly listing. An indis-

GRAPHICS & SOUND
A comprehensive hand-
book showing you how to
create fascinating graph-
ics and suprising music
and sound from the
ATARI ST. See and hear
what sights and sounds
that you're capable of
producing from your

pensable guide. $19.95 ATARIST. $19.95

LOGO
Take control of your
ATARI ST by learning
LOGO-the easy-to-use,
yet powerful language.
Topics covered include
structured programming,
graphic movement, file
handling and more. An
excellent book for kids as
well as adults, $19.95

PEEKS & POKES
Enhance your programs
with the examples found
within this book. Explores
using the different lang-
uages BASIC, C, LOGO
and machine language,
using various interfaces,

PRESENTING THE ST
Gives you an in-depth
look at this sensational
new computer. Discusses
the architecture of the
ST, working with GEM,
the mouse, operating
system, ail the various

memory usage, reading interfaces, the 68000
and saving from and to chip and its instructions,
disk, more. $1695 LOGO. $16.95

The ATARI logo and ATARI ST are rademarks of Atasi Corp.

Abacus i Software

P.0. Box 7219 Grand Rapids, MI 49510 - Telex 709-101 - Phone (616) 241-5510

Optional diskettes are available for all book titles at $14.95
Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or
Amex card. Add $4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and
books coming soon. Call or write for free catalog. Dealer inquiries welcome—~over 1400 dealers nationwide.

ISBN 0-91b439-47-X

T

