Vol. VI, Issue 1
April 1993

Ask yourself this question: "My
application does (fill-in-the-blank).
Have Ilooked at programs on other
systems that do tlEat, ike Program-
X for Microsoft Windows? Or
Program-Y for the Macintosh?"

The answer is quite often that the
developer hasn’t compared their
software against software for other
platforms. You may ask why look-
ing at other systems is important,
since that’s not the competition for
an Atari-based package. The
answer is that the competition does
include software for other platforms
like the Macintosh and Microsoft
Windows. And it’s always a good
idea to keep track of what the com-
petition is doing. It’s one of the
most basic rules of doing business.

Among existing Atari users, other
Atari-based programs are going to
be your main competition. But you
must also consider people who are
looking to buy their first computer.
If an Atari user decides not to buy
your software now, there’s always a
chance they may change their mind
later. But once somebody has
bought a different computer, you've
probably lost that sale forever.

Statistics show that most software,
except games, is sold to users
during the first year they own their
computer. When a person buys a
computer, their decision is ustally
based on the ability to use a par-
ticular type of program. That,
means that new users will be
comparintg your software against
software for other platforms before
they decide what computer to pur-
chase. So you have to%e aware of
what other programs can do, even if
they are for different computer sys-
tems. What can you learn from
looking at them? What features are
popular or not, and why?

It doesn’t matter if you don't like
MS Windows and MSDOS-based
computers. Your opinion of the
Macintosh or Amiga doesn’t matter.
Whatever your feelings are about
other platforms, you have potential

No Program Is An Island
Mike Fulton

customers who may not agree with
you.

NATARI

It would be great if you had a PC
running MS Windows, or maybe a
Macintosh or an Amifga. Then you

could buy programs for these
systems to check them out. But as
useful as this idea can be, it is not
always financially practical, or
possible, for a developer to do this.
But that doesn’t mean you can’t
keep track of what’s going on.

If you don’t already subscribe to a
few PC and Macintosh magazines,
you should. These magazines have
advertising, in-depth reviews, and
comparisons of all the latest
products for those platforms. If
you're creatingla new word
processor for the Atari, what do you
think you can learn by looking at a
comparison of 10 dif?e,rent word
processors for MS Windows?

Visit your local software stores and
look at the packafging for other
products. What teatures do the
make a big deal about? Depending
on the product and the store, you
may even be able to get demonstra-
tions of different software packages.

Imagine your program on a
diffgrent}éla&grmngould itbe
competitive with the other programs
in the same catego?? Maybe your
program got a good review in one of
the Atari magazines, but what kind
of review would it get in one of the
PC or Macintosh magazines?

Another question to ask yourself is:
Are you are getting the most out of
the GEM user interface? Are there
things you could be doing in your
program’s user interface to make it
more accessible and easier to use? Is
there something that Program-X is
doing with MS Windows that you

could be doing with GEM? If not,
then why not?

Some developers on the Atari
platform are doing these things
already. And because of it, their
software is higher quality, easier to
use, has better documentation, and
is more successful in the market-
place. Even if you forget about
other platforms for a minute,
remember that you still have to
compete with these Atari
developers. And as the Falcon030’s
market grows, the competition will
get more and more intense.

One of Atari’s mottos has been
"Power without the Price", so maybe
ou’re aiming your program at a
ower price point and think that it's
OK to have a limited feature set and
less sophisticated user interface. But
consider that there are programs at
lower price points on tl}:e PC and
Macintosh that are very competitive
with more expensive packages. Less
expensive doesn’t mean disabled.

‘(continuedon page 2)

No Program Is An Island
(confinued from page 1)

With the introduction of the new Atari Falcon030, there will soon be a lot
of new users in the Atari market. And a lot of new developers have been
signed up to work on products for the Falcon030. Many of these
developers are new to the Atari platform and they are bringing a lot of
experience from other platforms with them, including a pretty good idea
of what to expect from new users. These new users aren’t going to be
judging your products by the same standards as the existing Atari
userbase. They will probably be much harder on you than that. If they
see a product on another machine doing something your product can’t
?}?’ they will be wanting to know why not. What are you going to tell
em?

This article isn’t aimed at any one developer in particular, but if you
think it’s talking about you, then you're probably right. The question is,
what are you going to do about it?

Correction

The ATARI ST/TT Q&A column from the last issue had a typographical
error in one of the questions. Here’s the corrected version:

Q: How do I have my program look for an event on either mouse button
using evnt_multi() or evnt_button()?

A: Use an ev_mbclicks value of 0x101, a ev_mbstate value of 0, and an
ev_mbmask value of 3 with the evnt_multi() and evnt_button() functions
and you will get an event whenever either mouse button is pressed. This
method has worked in all versions of TOS and is now official. (This
method does not work for detecting mouse button releases.)

Documentation Correction

On page VIDEO.6 of the Falcon030 developer’s documentation, the
description of the VsetMask() call should be changed to read as follows:

OPCODE 150

VsetMask(ormask, andmask, overlay)
LONG ormask, andmask;

WORD overlay;

The VsetMask() function is used to set the mask values used by VDI to
modify the color values computed for vs_color(). The vs_color() function
converts its input to a 16-bit RGB value which is bitwise OR’ed with
ormask and then bitwise AND’ed with andmask. This allows the
application to set any color to be transparent (or not) in the 15-bit per
pixel true color modes with genlock and overlay.

The default mask values are: ormask = 0x00000000, andmask =
OxFFFFFFFF. This combination of mask values has no effect.

To set the overlay bit, use ormask = 0x00000020, andmask = OxFFFFFFFF.
Now any colors set with vs_color() will have the overlay bit set.

To clear the overlay bit, use ormask = 0x00000000, andmask =
OxFFFFFFDF. Now any colors set with vs_color() will have the overlay
bit cleared.

If the overlay value is non-zero, then the system will be E:t into overlay
mode. If the overlay value is zero, then the system will be taken out of
overlay mode.

Page 2 April 1993

Popup Menus & Hie{qurcmical Submenus, Part 1

The new GEM AES versions found in MultiTOS (v4.0)
and the Falcon030 (v.3.3) now support a new class of
features for adding popup menus and hierarchical
submenus to your user interface design.

You've probably seen popup menus in at least a couple
of programs. For example, the Resource Construction
Set included in the Atari Developer Kit uses popup
menus for changing object state and flag values, as well
as object colors amf fill patterns.. However, before now
if you wanted to have popup menus in your program,
you had to program all the necessary routines yourself
from scratch. Now you can do it much more easily,
using the new menu_popup() function which is now
available in the new GEM AES.

Much less common on the Atari platform than popup
menus are programs with hierarchical menus. This is
because without built-in support, they are much more
difficult to do than popup menus, especially for
submenus linked to menu entries in the main menu
bar. They should become much more common now
that the new AES hierarchical menu features allow you
to easily add submenus to either an item popup menu
or even to a menu item inside the main menu bar. You
can even put as many items in to a submenu as you
like, and the system will automatically scroll through
them as necessary.

Part 1 of this article will show you how to add a pre-
fabricated popup menu to a dialog box, and how to
link a hierarcchal submenu to one of the popup menu
items. Part 2 of this article, presented in the next issue
of ATARLRSC, will show you how to build a submenu
at runtime and link it to a menu item in your program’s
main menu bar.

The sample program, resource file, and complete
source code are available in the ATARLRSC
Roundtable on GEnie and Library 7 of the ATARIPRO
forum on Compuserve. The source code is presented in
listings #1-5 at the end of the article so that you may
follow along in the source code as you read.

Note: This program is written simply as an example o
how to use these new features, and does not necessarily
reflect an ideal design. You must have a Falcon030 or
have MultiTOS installed in order to see the popup
menus and hierarchical submenus in this program.

This article is not intended to serve as primary
documentation for all of the new functions. For full
documentation on the new menu library functions, see
one of the following:

Falcon030 Developer Documentation: AES section

GEM AES Programmer’s Guide, Revision 4
(avail: 2nd Qtr. 93)

GEM.DOC from MultiTOS Developer Distribution
(available online)

April 1993

Program Outline

The program is very simple. In Listing #1, the main()
function registers the K;ogram with GEM AES with the
appl_init() function. ter this function, the GEM AES
version number is available in one of the AES

arameter arrays, so the program stores this value for
ater use.

After initialization, the sample_dialog() routine is
called. This function contains the main part of the
exam{)le program and is responsible for showing the
sample dialog box shown in figure #1.

Many developers will
be concerned about
having their programs
work on machines with
older AES versions as
well as takin
advantage of the new
features of the newer x
AES versions. o | [Ttancel |
Therefore, the example
rogram is designed in
garfi:; to take thisgi?lto
account and use popup menus
and submenus if those features
are available, and to do things another way if they
aren't.

I Enter Expression I

Expression: |

[Set Options |

figure #1

The sample_dialog()
routine is set up so thatif | |
a proper version of GEM
AES 1s running; it will
use the popup menu and
hierarchical menu
functions to display a
submenu that will
appear when the Set
Options button is clicked
on, as shown in figure #2.

Enter Expression I

Expression! oo ___

Set Options
Do all files

Only New Files
Files created on...” 9
Don't print filenames

figure #2

If an older version of GEM AES is) :
running, then when the Set Options button is selected, a
second dialog will appear to show most of the same
options that would have appeared in the popup menu
(all except the hierarchical submenu options we’ll see
later). NOTE: This is just an example and by no means
should be considered the best method of handling this
situation. In your own programs you may want to do
something else, possibly even including requiring the
new AES in order to run at all.

New Functions & Data Structures = |

The menu library has four new features altogether, ,
along with a couple of new data structures. See the new
menu librarzliocumentation for complete information
on the new functions and data structures.

Page 3

In our example program, we will be usin% two of the
new menu library functions, menu_attach() and
menu_popup(), aﬁmg with the MENU structure. The
MENU structure can be used for both input and output,
depending on the function and parameter being used.

typedef struct

{
OBJECT *mn_tree;
WORD mn_menu;
WORD mn_item;
WORD mn_scroll;
WORD mn_keystate;

} MENU;

menu_attach()

WORD menu_attach(me_flag, me_tree, me_item, me_mdata);
WORD me_flag;

OBJECT *me_tree;

WORD me_item;

MENU *me_mdata;

In our example I Enter Expression]
program, we're
1gqoing to have a

ierarchical
submenu linked to
one of the items in
our popup menu,
as shown in figure
#3. By usin%ltﬁ:
menu_attach()
function, we can
have GEM AES
manage this for us automatically. In our example
program, we call menu_attach() about 25 lines into the
sample_dialog() function:

Expression: oo

Set Options
Do all files
Only New Files

files created on.,. 9
Don't print filenames

Honday
Tuesday

Wednesday
Thursda

Saturday
Sunda

figure #3

sub_attached = menu_attach(1, popl.mn_tree, SUB_OPT_H,
&days);

The me_flag parameter indicates what we're doing. We
can either ﬁnk a submenu to a menu item (me_flag = 1)
or unlink one (me_flag = 2), or we can ask the system
what submenu is already linked to a particular menu
item (me gag =0). At the start of sample_dialog(),
we're linking a submenu to a popup menu item so we
use a value of 1. At the end of the function, we unlink
the submenu using menu_attach() again with an
me_flag value of 2.

The me_tree parameter is the address of the object tree
of the menu item to which we’re attaching the
submenu. In our example program, we’re linking it to
the popup menu, so we use the address of the popup
menu’s object tree, contained in pop1.mn_tree.

Our example program
links a su‘t?me?m ’?or a
popup menu item.

Note that if we were
linking a submenu to an Medrnes
item in a main menu BT
bar, as shown in figure
#4, then we would Sunday
instead use the address

of the menu bar object

tree. We would then be told of user selections in the
submenu through the MN_SELECTED message, which

Options

Only New Files
Files created on.., ©
Don't print filenames

Honday
Tuesday
Wednesday

figure #4

Page 4

has been extended to support hierarchical submenus.
(See the main menu library documentation.)

The me_item parameter is the object index of the menu
item within the mn_tree object tree that we wish to
attach our submenu to. We want it linked to the 3rd
object in the popup menu, which is defined in our
resource includlé file as SUB_OPT_H.

The me_mdata parameter is a pointer to a MENU
structure containing information about the submenu.
In this example, that’s the days structure, used as
follows:

days.mn_tree = object tree address of submenu

days.mn_menu = parent object of submenu items. Note
that it’s possible for one of'aject tree to contain several
different submenus or popup menus by placing each
one in its own parent box object. In our example, each
menu is a stand-alone object tree, so we’ve set this value
to the ROOT object (defined in the C header files as 0).

days.mn_item = object index of 1st submenu item to be
shown. For menus that show several options, of which
you can only have one selected at a time, a font selector
for example, this should be set to the object matching
the current selection. In our example, you can select
any or all of the items, so we always start at the top
item.

days.mn_scroll = This a flag that indicates if we want to
scroll this menu or not. If you set this to zero, your
menu will not scroll and can contain any valid object
type, including user-defined objects. If you set the
menu to scroll if need be, however, it must contain only
G_STRING objects. We don't care if our menu scrolls,
so we set this to 1.

days.mn_keystate = unused here

menu_popup(

WORD menu_popup(menu, xpos, ypos, mdata)
MENU *menu;

WORD xpos, ypos;

MENU *mdata;

The menu_popup() function is used to display a popup

menu and get back the user’s selection. Our example

Erogram initializes the MENU data structure near the
eginning of the sample_dialog() function.

The menu parameter is a pointer to a MENU structure
that contains information about the popup menu you
wish to display. In our example program, that’s the
popl structure, used as follows:

popl.mn_tree = object tree address of popup menu
popl.mn_menu = parent object within tree for submenu
items. Since our popup menu is a stand-alone object
tree, the parent is the ROOT object.

popl.mn_item = Starting menu item, if scrolling menu.
We set this to the first item in the submenu.

April 1993

popl.mn_scroll = Flag, can we scroll this menu? We
use a value of 1, indicating it can be scrolled.

popl.mn_keystate = unused here

The xpos and ypos parameters are simply the screen
coordinates at which to display the popup menu. You
get the best performance if the xpos value is byte
aligned. However, in our example program, we
simgly get the screen location of the button that leads
to the popup menu, and position the popup right
underneath.

The mdata parameter is a pointer to a MENU structure
that will get the results of the user’s selection from the
popup menu. In our example program, that’s the
pop2 structure. After we call menu_popup(), the
values contained in this structure are:

pop2.mn_tree = object tree address of item selected.
Note that if you have hierarchical submenus attached
to popup menu items, this value will not necessaril
be the address of the popup menu itself, but could be
the address of the hierarchical submenu’s tree.

pop2.mn_menu = parent object index of selected item.
pop2.mn_item = Object index of item selected
pop2.mn_scroll = unused here

pop2.mn_keystate = the status of the Control, Shift, and
ternate keys when the mouse button was pressed.

Once we determine that the appropriate button has
been pressed, we highlight the button and then we do
the menu_popup() call as detailed above. After this,
the button is unhighlighted. If no error was returned
from menu_popup(), then the we get the object tree
and object index from the pop2 structure and toggle a
checkmark on the selectedpitem.

Once we've finished showing the popup, we loop
back into the form_do() function to await the next
user action in the dialog. When the user selects either
the OK or the CANCEL button, we release the screen
area belonging to the dialog and release
wind_update().

The Program Listings

The program is set up to be compiled with either
Lattice C v5 or Mark Williams C, but with a little
work should be portable to other compilers.

Since the GEM libraries for these compilers don’t
include bindings for the new AES functions, the files
AESBIND.C, AESBINDR.H, and AESCALL.H are
included. These files contain bindings for the new
menu_attach() and menu_popup() calls. The
AESBINDR.H and AESCALL.H files include define
statements and external declarations to allow the
same bindings to work with either compiler.

The AESCALL.H file includes a bit of inline code for
making the TRAP #2 call to GEM AES. Itis separated
into its own file because Mark Williams C would not
work with the #]ilragma statement. This way it is
included only when using Lattice C.

April 1993

Listing #1 - POPUP.C

#include "aesbindr.h"

#include "menu.h"

#1include "popup.h’

short gl_apid, aes_version, xdial, ydial, hdial, wdial;
OBJECT *ob;_addr;

char rsrcname;] = "POPJR.RSC";

char prgname(] = " Popup Menu Example ";

voig multi(), sample_dialog();

Jrxx (2321123 (212212231 HRREREKEKRRIRRRAREHR IR HXIIRKFIK R KK

void main{)
{
extern short _AESglobal[];

gl_apid = appl_init();
aes_version = _AESglobal[0}; /* Save GEM AES version number */

if{ rsrc_load(rsrcname))

{
graf_mouse(ARROW, OL };
mlei();
rsrc_free{);

}

appl_exit();

}

void multi()
{

}

sample_diaiog();

void set_options()
{

short exit_obj;

rsrc_gaddr(R_TREE, OPTIONS, &obj_addr };
graf_mouse{ ARROW, 0L);

/* Display the options dialog box */

wind_update(BEG_UPDATE);

form_center(obj_addr, &xdial, &ydial, &wdial, &hdial);
form_dial(0, 0, 0, 0, 0, xdial, ydial, wdial, hdial);
form_dial(1, 0, 0, 0, 0, xdial, ydial, wdial, hdial);
objc_draw(obj_addr, ROOT, MAX_DEPTH, xdial, ydial, wdial, hdial)
exit_obj = form_do(obj_addr, 0L);

form_dial({ 2, 0, 0, 0, 0, xdial, ydial, wdial, hdial };

form diai(3, 0, 0, 0, 0, xdial, ydial, wdial, hdial };
wind_update(END_UPDATE);

obj_addr[exit_obj].ob_state &= ~SELECTED;
j

void sample_dialog()

{

OBJECT *tmptree;

short exit_obj, pop_x, pop_y, no_err, sub_attached, checkmark;
char *x;

MENU popl, pop2, days;

rsrc_gaddr (R_TREE, EXPRESSION, &obj_addr };
/* 1f we're running on new AES, set up the popup menu. */
if(aes_version »= 0x0330)

rsrc_gaddr(R_TREE, OPTIONS_POPUP, &popl.mn_tree);

Thkk]

popl.mn_menu = ROOT; /* Parent object of menu items */
popl.mn_item = SUB_OPT C; /* initial top menu item */
popl.mn_scroll = 1; /* Scroll if necessary */

/* Make sure button leading to popup menu is the way we want it. */
obj_addr [EXEC_OPTS] .ob_state |= SHADOWED;
obj_addr [EXEC_OPTS) .ob_flags |= TOUCHEXIT;
obj_addr [EXEC_OPTS] .ob_flags &= ~EXIT;
obj_addr [EXEC_OPTS] .ob_flags &= ~SELECTABLE;
/* One of the popup menu choices leads to a submenu, so attach it */

rsrc_gaddr{ R_TREE, DAYS_POPUP, &days.mn_tree);

Page 5

days.mr_meru =
days.mn_item =
days.m_scroil
sub_attached = menu_attach{ 1, popl.mr_tree, SUB_OPT_E, &days);

/* If old AZS version, then fix button leading to 2rd dialog */

eise

" obj_addr {EXEC_0PTS] .0b_szate &= ~SHADOWED;
obj_addr [EXEC_OPTS] .ob_fiags &= ~TOUCHEXIT;
obj_addr [EXEC_OPTS] .ob_flags |= EXIT;
obj_addr [EXEC_OPTS] .ob_flags |= SELECTABLE;

/* Clear out editable field */

X = {{TEDINFO *){obj_addr EXEC_EXP1..0b_spec))->te_ptext;
x[0] = 0;
/* Lock down screen, reserve screen area, draw dialog’s object tree */
wind_update{ BEG_UPDATE);
form center(obj_addr, &xdial, &ydial, &wdial, &hdial);
form dial(¢, 0, 0, 0, 0, xdial, ydial, wdial, ndial);
form dial{ 1, 0, 0, 0, ¢, xdial, ydial, wdial, ndial);
objc_draw(obj_addr, ROOT, MAX_DEPTH, xdial, ydial, wdial, hdial);
/* Loop until we're ready to exit! */
do

graf_mouse(ARROW, 0L);
exit_obj = form do(obj_addr, EXEC EXP1);

1f{ exit_obj == EXEC_OPTS)
/* Do the new AES popup calis only if running on new AES ¥/
}f(aes_version »>= 0x0330)
/* Position thé popup just below button that leads to it. ¥/

objc_offset{ obj_addr, EXEC_OPTS, &pop_x, &pop_y);
pop_y += obj_addr [EXEC_OPTS].ob_height + 2;

/* Select the button that leads to the popup menu */
objc_change(obj_addr, EXEC_OPTS, 0,

xdial, ydial, wdial, hdial,
(obj_addr [EXEC_OPTS] .ob_state | SELECTED), 1);

—

* Display the popup and get back the user's selection */

no_err = menu_popup(&popl, pop_x, pop_y, &pop2);

~

* Deselect the button that leads to the popup menu */

objc_change(obj_addr, EXEC_OPTS, 0,
xdial, ydial, wdial, hdial,
{obj_addr [EXEC_OPTS] .ob_state & ~SELECTED), 1);

/* We just want to toggle the checkmark on the item the user selected... */

if{ no_err)
{
checkmark = {pop2.mn_tree[pop2.mn_item].ob_state
& CHECKED) 2 1 : 0;

menu_icheck(pop2.mn_tree, pop2.m:_item, (! checkmark]);
}
}

/* If not new AES, then get the user's selection with a second dialog */

else

{
tmptree = obj_addr;
set_options(};
cbj_addr = tmptree;

/* Call the other dialog routine */

/* redo the stuff that set_options{) changed */

wind_update(BEG_UPDATE);

Page 6

form center(obj_addr, &xdial, &ydial, &wdial, &ndial };
obj_addr [EXEC_OPTS].ob_state &= ~SELECTED;
objc_draw(obj_addr, ROOT, MAX_DEPTH,

xdial, ydial, wdial, hadial);

}
/* Stay in dialog untii one of the real exit button selected */

}
while(exit_obj != EXEC_OK & exit_obj != EXEC_CANCEL);

/* release screen area and wind update */

form_dial(2, 0, 0, 0, 0, xdial, ydial, wdial, hdial };
form_dial(3, 0, 0, 0, 0, xdial, ydial, wdial, hdial);
wind_update(END_UPDATE);

/* Deselect exit button */

obj_addr[exit_obj].ob_state &= ~SELECTED; .

Listing #2 - MENU.H

typedef struct {
OBJECT *mn_tree;
short mn_menu;
short mn_icem;
short mn_scroll;
short mn_keystate;
} MENU;

typedef struct {
long display;
long drag;
long delay;
long speed;
short height;
} MN_SET;

Listing #3 - AESBINDR.H

#ifdef LATTICE
#include <aes.h>
#include "aescall.h’
#define VOID void
#endif

JEXRERREREEREXK KRR ER KRR ORI RRRREAREREAR KRR RERER R KRS KRR XER AR |
#ifdef MWC

#include <obdefs.h>
#include <gemdefs.h>

extern short
global[], control[}, int_in[], int_out[], addr_in[], addr_out[];

#define _AESglobal global
#define _AEScontrol control
#define _AESintin int_in
#define _AESintout int_out
#define _AESaddrin addr_in
#define _AESaddrout addr_out

#define aes(a) crystal(a)
#define VOID char

#endif

Listing #4 - AESCALL.H

/* Do this separately because other compilers choke on #pragma statement */

/* move.l (sp),dl Do this in separate file because MWC & Alcyon C
move.l #$c8,d0 will choke on the #pragma statemene below.
trap #2 They don't need it anyway...

*/

#pragma inline d0=aes() { register d0,dl,d2,a0,al,a2; "2217203c000000c84ed2"; }

April 1993

Lisﬁng #5 - AESBIND'C _AESaddrin{i] = {VOID *)me_ndata;

aes(_AESpb);

))) return{ _AESintouz{0]);
#include "aesbindr.h")
#include "menu.h"

/*****9!**i***i********’rii******i**i{kitiii****i{*ii*iit*ii*i*i*ik*i*ikiii*ﬁ*/ short

e meru_attach{ me_flag, me_tree, me_item, me_mdata)
#‘hdef MAC) o) short me_flag;

short *_AESpb([] = { global, contro:, int_in, int_out, addr_in, addr_out }; 0BJECT *me_tree;

#endif short me_item;

MENU *me_rdata;
/****ik***i*i********‘(*i*i********kkt’(*******i*****itiii***i***ikiti’tiiik*/ {

A _AEScontrol[0} = 37;

short _AEScontrol[l} = 2;

menu_popup|(me_menu, me_xpos, me_ypos, me_mdata) _AEScontrol[2; = 1;

MENU *me_menu, *me_mdata; _AEScontrol (3} = 2;

short me_xpos, me_ypos; _AEScontro:{d] = 0;

{ _AESintin{(] = me_flag;
_AEScontrol[0] = 36; i = me_iten;
_AEScontrol(l] = 2; -
_AESconcrol[2] = 1; _AESaddrin[0} = (VOID *)me_tree;
_AEScontrol(3] = 2; _AESaddrin[1} = (VOID *)me_mdata;
_AEScontrol (4] = 0;

_AESintin[0} = me_xpos; aes{ _AESpb };
_AESIHFIFI[IE = Me_ypos; return{ _AESintout[0]);
_AESaddrin[0] = (VOID *)me_menu;

New Cookies for the Cookie Jar

Mike Fulton
There are two new cookies for the Cookie Jar in i
MultiTOS and Falcon030. They are the _IDT cookie The “AKP Cookie
and the _AKP cookie and they are installed with any The _AKP Cookie (Atari Keyboard Preferences)
system that has GEM AES v3.3 and up. contains the user’s settings B(I)r keyboard layout and

. language preferences.
_IDT Cookie BHUBEP
The high word of the _AKP cookie value is currently
unuse§ and reserved for future expansion. The low
word contains the user’s language preferences in the
high byte, and the user’s keyboard layout in the low
byte. These values are the same as the TOS country
code, as specified below. NOTE: the entries for
Czechoslovakia and Hungary are new.

The _IDT Cookie contains user preference settings for
International Date & Time formatting and can be used
by a program to aid in customizing itself for different
languages and countries.

For instance, in the USA we normally shorten dates
into Month, Day, Year. So for March 27, 1993. we

" " . . #define USA 0 /* USA */
would use "3/27/93". However in Germany, this #define FRG 1 /* Germany */
same date would be written as "27/3/93". Other #define FRA 2 /* France */
countries use other variations. #define UK 3 /* United Kingdom */
#define SPA 4 /* Spain */
. #define ITA 5 /* Italy *

Some countries use a 12 hour clock, some use a 24- 4define SWE 6 " Swoden ! /
hour clock, and in some countries you might find define SWF 7 /* Switzerland (French) */
either type, depending on a particular person’s #define SWG 8 /* Switzerland (German) */

references #define TUR 9 /* Turkey */
P : #define FIN 10 /* Finland */

. - #define NOR 11 /* Norway */

The value of the _IDT cookie specifies the user’s #define DEN 12 /* Denmark */

references for how dates and times should be #define SAU 13 /% Saudi Arabia */

ormatted. The high word is currently unused and is #define HOL 14 /* Holland */

d. The 1 d is brok into thr #define CZE 15 /* Czechoslovakia */
reserved. The low word is broken up into three tdefine HUN 16 /* Hungary */
sections.

Bits 15-12 = Time
0 means a 12-hour clock
1 means a 24-hour clock
Bits 11-8 = Date
0 means MM-DD-YY
1 means DD-MM-YY
2 means YY-MM-DD
3 means YY-DD-MM
Bits 7-0 = Date Separator Character

ASCII Value (a value of zero is
equivalent to a '/’ character)

April 1993 Page 7

Three-D Objects with GEM AES

by Mike Fulton

It’s likely that the first new feature you will notice
when you use MultiTOS or a Falcon030 is that wind-
ows and dialogs for the GEM Desktop now have a
sculpted 3D appearance.

Among other new features, GEM AES versions later
than v3.3 (TOS 4.xx in Falcon030 or MultiTOS on any
machine) recognize three new kinds of 3D effects that
can be applied to existing object types. When these
effects are enabled, objects will be drawn with a
sculpted 3D appearance.

Figure #1 shows how the same exact dialog appears
differently under TOS 3.06 and under MultiTOS using
3D objects. You may notice that there is no difference
betwen the objects labeled "3D Indicator" and "3D
Activator”. That's because they aren’t selected. When
the SELECTED bit of the ob_state field is set, they are
drawn differently, as shown in figure #2. The objects in
the left column are unselected, while the ones on the
right all have the SELECTED bit set. The other figures
demonstrate how different objects appear with the 3D
flags set. There are more possibilities than we have
room to show here, but you should get the idea.

If a 3D object uses color 0 with a hollow fill pattern,
then it wih be drawn using the system 3D object color
settings, except when running in video modes with
fewer than 16 colors. Under older versions of TOS.
these objects will be drawn without the special 3D
effects or colors, meaning you can use the same
resource in both cases.

The 3D effects are controlled by bits 9 & 10 of the
ob_flags field of the OBJECT structure for the ob{'ect. If
both bit 9 and bit 10 are zero, then the object will not be
drawn using any 3D attributes.

If bit 9 only of the ob_flags field is set, then the object is
a 3D INDICATOR. This is typically used in a dialog
box to indicate some sort of state, such as whether an

Normal

335 InﬂiéttérE.fh 3D Indicator

i 30 Q;tivatufﬁ 3D Activator

3D Background

|3 ﬁatkground

BOXTEXT Objects
O OUTLINED

BOXTEXT Objects
OUTLINED

figure #1
Page 8

option is "on" or "off". For example, radio buttons in a
dialog box should always be indicators.

3D Indicater

3D Activator

‘I 3ﬂ‘a:tivator :

3D Béckgrnund

figure #2

If bit 10 only of the ob_flags field is set, then the object is
a 3D ACTIVATOR. Activator objects don’t have a
persistent state, but are usually controls of some sort.
The OK and Cancel buttons in a dialog would normally
be activator objects. The new 3D window parts are
activator objects.

If both bits 9 and 10 of the ob_flags field are set, then the
object is a 3D BACKGROUND. These objects are
usually not selectable and do not normally display 3D
effects, but they are drawn using the system settings for

Listing #1

/* Bit masks to use in accessing the 3D effects bits of */
/* the ob_flags field of an OBJECT */

#define FL3DMASK 0x0600
#define FL3DNONE 0x0000
#define FL3DIND 0x0200
#define FL3DACT 0x0600
#define FL3DBAK 0x0400

/* These macros can be used to inquire the 3D status */
/* of an object They are used like this: */
/* obj_is_3d = Is3d0bj(objtree,OBJINDEX); */

#define Is3dObj(a,b) (a[b].ob_state & FL3DMASK)
#define Is3diInd(a,b) (a[b].ob_state & FL3DIND)
#define Is3dAct(a,b) ((a[b).ob_state & FL3DACT) == FL3DACT)
#define Is3DBack(a,b) (a[b].ob_state & FL3DBAK)

/* These macros can be used to set the 3D flags for an */
/* object They are used like this: */
/* Make3dInd{ objtree, OBJINDEX }; */

#define Make3dIndr (a,b) (a[b].ob_state |= FL3DIND)
#define Make3dAct(a,b) (a[b].ob_state |= FL3DACT)
#define Make3dBack(a,b) (a[b].ob_state |= FL3DBACK)

/* ob_swhich values for use with objc_sysvar() function */

#define LK3DIND 1
#define LK3DACT 2
#define INDBUTCOL 3
#define ACTBUTCOL 4
#define BACKGRCOL 5
#define AD3DVALUE 6

April 1993

3D object colors. The only 3D effects applied to
background objects is that objects with the OUTLINED
state set will appear to be raised above the objects
underneath them, and that disabled background objects
are shaded out using the background 3D color instead
of a white dither pattern.

Listing #1 shows some definitions for bit masks and
macros that access the ob_flags field to inquire if an
object has the 3D flags set or to set them.

These BOXCHAR
Bbjects are —>

. Kﬁblndi‘;atpr’
30 fction
] 30 Fomn Color

CHECKED |
OUTLINED |

figure #3,
Sample Dialog with 3D Objects With MultiTOS

These BOXCHAR

Objects are -> SHADOMED
CHECKED
3D Indicator | OUTLINED

3D Action
3D Form Color H

Normal

figure #4,
Same dialog as figure #3 with TOS v3.06

FAREICON

You may notice that 3D objects are a little larger than
normal objects. One reason for this is that they
wouldn’t be able to fully contain a text string if the
were made to occupy the same exact size as norma
objects. The new ogjc_sysvar() function can be used to
inquire how much extra space is used for 3D objects, as
well as other information such as what colors are used
to draw 3D objects. You can use this information to
adjust object g\ositions as necessary at runtime if you
have objects that have to be positioned immediately
next to each other, as with a scroll bar and arrow
buttons like in the file selector.

The objc_sysvar() Function

ob_ret = objc_sysvar(short ob_smode, short ob_swhich,
short ob_sivall, short ob_sival2,
short *ob_sovall, short *ob_soval2);

April 1993

This new AES function allows an application to set or
inquire the colors and effects used E)r drawing 3D
objects. Applications should not change 3D colors or
eflJects except at the request of the user, because all such
changes are global and affect all processes.

When the 3D flags are set, some objects become a little
wider and a little taller. If your program uses objects
which are immediately next to one another, like some
arrows and a scroll bar, it can use the objc_sysvar()
function to inquire the amount of extra room used by
3D objects and then use that information to adjust the
object positions at runtime.

Listings #2 contains a binding for the objc_sysvar()
function for Lattice C v5.5, Alcyon C, and Mark
Williams C. You also need Listing #3 (AESBINDR.H)
and Listing #4 (AESCALL.H) from the article Popup
Menus & Hierarchical Submenus, Part 1, which appears
earlier in this issue. Mark Williams C and Alcyon C
use the same style for bindings, so if 1you are using
Alcyon C, either define the MWC value or change the
listing to indicate Alcyon.

If the ob_smode parameter is 0, then the call inquires the
current attributes. If it’s 1, then the call sets new
attributes.

The ob_swhich parameter indicates which attributes are
being accessed. Listing #1 includes some definitions for
the meanings of the ob_swhich parameter. The ob_swhich
parameter also affects the meaning of the other values,
as follows:

LK3DIND -- Get/set attributes for indicator objects.

If ob_smode is 0, then returns current attributes in
ob_sovall & ob_soval2:

ob_sovall = indicator object text moves when object
is selected (1 = true, 0 = false)

ob_soval2 = Indicator object changes color when
selected (1 = true, 0 = false)

If ob_smode is 1, then sets new attributes from values in
ob_sivall & ob_sival2:

ob_sivall = indicator object text moves when object
is selected (1 = true, 0 = false)

ob_sival2 = Indicator object changes color when
selected (1 = true, 0 = false)

LK3DACT -- Get/Set attributes for activator objects.
The meanings of ob_sovall, ob_soval2, ob_sivall, and
ob_sival2 are the same as for LK3DIND, except that they
apply to activator objects rather than indicator objects.

e defaults for activator objects is ob_sivall = 0 and
ob_sivall = 1.

INDBUTCOL -- Get/Set the color for indicator objects.
This is the color which hollow, white indicator objects
(e.g. buttons) will be drawn in instead of white. If
ob_smode is 0, then ob_sovall is the current color index of
the default indicator object color. If ob_smode is 1, then
ob_stvall is the new color index for indicator objects.

ACTBUTCOL -- Get/set default color for activator
objects. Same as INDBUTCOL, but applies to
activators rather than indicators.

Page ¢

BACKGRCOL -- Get/set default color for 3D
background objects. Same as INDBUTCOL, but
applies only to 3D background objects.

AD3DVALUE -- Get pixel adjustments for 3D
indicators and activators. This is inquire-only, so
ob_smode must be 0. The ob_sovall will indicate the
number of pixels by which 3D indicators and activators
are expanded on each side horizontally (to accomodate
3D effects), and the ob_soval2 value is the number of
pixels by which they are expanded vertically.
Remember that this adjustment is applied to each side
of the object, so the objects width or }E)eight is increased
by twice this amount. Background 3D objects never
change in size.

The ob_sret return value is zero if an error has occured,
usually because an illegal value was given for ob_swhich
or for ob_smode. If the value is non-zero, then the
function succeeded.

3D Windows

The first place you are likely to notice the new 3D
capabilities is in a window from the GEM Desktop.
Window gadgets like the close button, scroll arrows,
etc., are actually part of an OBJECT tree. Because of
this, they can easily take advantage of the new 3D
capabilities. This all happens automatically without
any intervention by the user or by a program. However
there are a few things worth noting.

First of all, as previously noted, a 3D object takes up
more room on screen. This means that the work area of
a window with 3D objects will be a few pixels smaller
than a window without 3D objects. If your programs
are written correctly so that they adjust themselves to

whatever screen or window size is available, this will
not matter to you.

Secondly, if you have dialog boxes with scroll bars and
arrows, or if you have objects like this in the work area
of your window, you will probably want to make them
use the new 3D ACTIVATOR objects so that their
appearance will be consistent with the system’s
window gadgets. As mentioned earlier, you will
probably have to adjust the position and/or size of
these objects slightly at runtime in order to account for
the slightly larger size of 3D objects.

Listing #2- AESBIND.C

#include "aesbindr.h’

#ifdef MWC
short *_AESpb[] = { global, control, int_in, int_out, addr_in, addr_out };
#endif

short
objc_sysvar(ob_smode, ob_swhich, ob_sivall, ob_sival2, ob_sovali, ob_soval2 }
short ob_smode, ob_swhich, ob_sivall, ob_sival2, *ob_sovail, *ob_soval2;
{
_AEScontrol [0] = 48;
_AEScontrol{l] = 4;
_AEScontrol{2] = 3
_AEScontroif3] =
_AEScontrol[4] =

0;
- 0.

i

]
]
]

_AESintin{(] = ob_smode;
_AESincin{l] = ob_swhich;
_AESintin[0} = ob_sivall;
_AESintin[1} = ob_sival?;
aes{ _AESpDb };

*ob_sovall = _AESintout(1];
*ob_soval2 = _AESintout[2];

return(_AESintout[0]);

Q: When my program uses Pexec()
to run a GEM-based program, that
program gets the wrong information
from the shel_read() function. What
it gets is the information for my pro-
gram instead and the other program
can’t find its preference files and so
forth. I can’t use shel_write()
because it doesn’t want to run the
program until the shell quits. What
do I'have to do to make this work?

A: The problem here is that the
shel_read() function always returns
the last piece of information used
with the shel_write() function. Since
the your shell program is doing just
a Pexec(), the last shel_write() call is
probably the one that was used by
the desktop to run your program, so
that’s what the shel_read() function
returns. :

Page 10

AtariTOSQ & A

Mike Fulton

When running under MultiTOS, you
should normally use shel_write()
instead of Pexec() . It will now start
another program immediately
instead of waiting for the first one to
quit. For older TOS versions, Atari
Developer Ian Lapore has figured
out a good solution to this problem,
shown in the code example below.*

shel_write({ 1, 1, 1, "NEWPROG.PRG", commandline);
Pexec(0, "NEWPROG.PRG", commandline, enviromment);
shel write{ 0, 1, 1, "NEWPROG.PRG", commandline);

The value of 1 in the first parameter
for the first shel_write() means "run
another application when this
application exits". This call gives
AES the proper information so that
when "NEWPROG.PRG" does its
shel_read() call, it gets the right
results.

Next comes a Pexec() call that
actually executes "NEWPROG.PRG"
and waits for it to quit. When
"NEWPROG.PRG" quits and your
program gets control back, we have
a problem. When the user quits
your program, the AES is going to
want to run "NEWPROG.PRG"
again, because we did a shel_write()
call asking it to do so.

To get around this, after the Pexec()
call, you do another shel_write()
call. This time we use a value of 0
for the first parameter, which means
"exit and return to the desktop when
the current application quits". This
cancels out the previous shel_write()
call.

* This method should only be used
when not running under MultiTOS.

April 1993

Lattice C vb.5
Now Available

Lattice C v5.5, an ANSI C compiler
with a GEM-based integrated
development environment, is now
available directly from Atari Corp.
to commercial developers in North
America. The price is $199.95 (U.S.)
plus sales tax and shipping. Contact
Atari Developer Support to order.

SpeedoGDOS
Now Available

SpeedoGDOS and 14 bundledfonts
are now available for licensing to
commercial developers. It must be
sold strictly in conjunction with
your GDOS-related software, either
bundled or as a customer-service
provided "enhancement". If you are
interested, please send EMAIL to
Bill Rehbock (GEnie: B.REHBOCK,
Compuserve: 75300,1606) or fax
(408) 745-2088.

MultiTOS v1.01 Now
Available

MultiTOS release v1.01 is now
available. Commercial-Level
developers may download
MultiTOS from Library 6 of the
ATARLRSC Developer Roundtable
on GEnie. (Library 6 is restricted to
commercial developers only, send
EMAIL online to MIKE-FULTON or
ATARIDEYV to request admission.)
Associate-Level developers may
purchase MultiTOS for $59.95
through Atari Developer Support.

MultiTOS documentation is avail-
able to all developers in Library 10
of the ATARL.RSC Developer
Roundtable on GEnie or in Library 7
of the ATARIPRO forum on
Compuserve.

Drag & Drop Protocol
One of the new features of Multi-

TOS is a protocol for drag and drop
operations. This is where you pick

Aprit 1993

Atari Developer News
ATARLRSC STAFF

up an object of some kind from
within one application, drag it
across the desktop, and drop it onto
a window or icon belonging to
another application. The object can
be something like a file icon, a
graphic object, and so on.

When the user drags and releases an
object, the program that owns the
object determines the window ID
and window owner for the spot
where the object was dropped. If
the owner is another application,
then the application sends an
AP_DRAGDROP message to that
application.

If the receiving application is aware
of the drag and drop protocol, then
it and the originating application
send messages back and forth to
figure out what sort of data types
are acceptable and so on.

The full specification for the drag
and drop protocol is given in the
DRAGDROP.DOC file which is part
of the MultiTOS documentation.
Drag and Drop will also be
discussed more fully in an
upcoming issue of ATARLRSC.

Minimizing Windows
and Applications

Another new protocol outlines how
to minimize and maximize windows
and/or applications. That means
the current window or application is
replaced by a small window the

size of a desktop icon which is then
placed on the desktop.

The idea is to give the user the
capability to hide an application or
window temporarily so that other
applications or desk accessories may
be more easily accessed. A mini-
mized window can later be maxi-
mized back to the previous when
the user needs to access it again.

An outline of the steps for
minimizing and maximizing your
windows and/or applications is
available in the MINIMAXIL.DOC

file. This file is part of the MultiTOS
documentation available online.
Please note, however, that this
technique is not MultiTOS-specific
and can also be used on older
versions of TOS.

A future issue of ATARI.RSC will
contain more information on this
subject.

New GEM AES Features

There are a number of new GEM
AES features in MultiTOS that we
haven’t mentioned yet. Below is a
short list of some of the new
features. These features and others
are documented more fully in the
GEM.DOC file that is included in
the MultiTOS developer
distribution.

appl_search() - You now have the
capability to search for other
programs which are running at the
moment.

appl_getinfo() - Gives you
information about the AES such as
what fonts it is using, the number of
colors supported by OBJECTs, the
current language preference, etc..

graf_mouse() - Now allows you to
save and restore the mouse shape.

shel_write() - Now allows you to
execute a program immediately,
without waiting for the current
program to quit. Now allows you to
execute your choice of application,
accessory, or TOS/TTP program, or
it can figure it out for you from the
program’s extension. You can even
now specify the program’s
GEMDOS Environment.

Unless you need one of the more
exotic modes of Pexec(), you should
now use shel_write() instead.

wind_get() - There are now several
new types of information available
via the wind_get() function,

(continued on page 12)

Page 11

Atari Developer News
(continued from page 11)

including the Application ID of a
window’s owner.

wind_set() - There are some new
window features which can be
accessed via the wind_set() function.
For example, you can tell the AES
that clicking the mouse in a window
will generate a button event when
the window is not on top, instead of
a generating a WM_TOPPED
message. This is useful for creating
special toolbox windows that go
along with your document
windows.

A couple of tips regarding toolbox
windows: If you get a topped
message for a document window,
then first top the toolbox window,
then the document window
specified in the message. (You can
still manually top a toolbox window
even if it won’t generate
WM_TOPPED messages from
mouse clicks.) It’s also a good idea
to either make the toolbox window
go away if you have no document
windows open or at least reset it so
that mouse clicks generate
WM_TOPPED messages again.

It’s also now possible to send a
window to the bottom of all open
windows.

wind_update() - You can now test if
another program already has control
of the system. If you are using
wind_update() in order to update a
status display for something like
downloading a file, sending a fax,
compiling source code, and so forth,
you can now determine if somebody
already has control of the system. If
some other program does have

control already, you can skip the
update to the status display. This
allows your program to continue
with its main task instead of having
it wait until the other program
releases control. The next issue of
ATARILRSC will contain a tutorial
on using the wind_update() call

correctly, including this new feature.

New AES messages include:

WM_UNTOPPED - Window is
being untopped

WM_ONTOP - Window has come
to the top through no action of its
own, such as when the previous top
window is closed.

AP_TERM - Please shut down your
program and quit. This would be
sent in circumstances such as (but
not limited to) when the user selects

a new video mode from the desktop.

SH_WDRAW - This message is sent
from applications to the desktop to
inform it that it should update
windows for a particular drive.
(Because the application has created
or deleted files.)

Window Gadgets - All window
gadgets such as the move bar, scroll
arrows & slider area, sizer, etc., are
now fully active even when a
window is not topped. That means
it’s now possible to get messages
such as WM_ARROWED,
WM_MOVED, WM_SIZED, etc.,
even when the window is not on

top.

Some applications always assume
the window must be on top when
such a message is received. Also,
some programs that allow multiple

windows always apply such
messages to its topmost window,
even if that’s not the window
specified in the message. If your
application does either of these
things, then it will need to be
updated. (Please note that the AES

+ manual has never specified that
" these messages will only happen to

the top window. That’s why the
window handle is part of the
message.)

Dealer Sign—Up

If you don’t have a dealer in your
area that carries Atari computers,
but you know of a dealer that you

“would like to see selling the

Falcon030, we’d like to know about
it so we can arrange a visit by one of
our dealer sales representatives.
Please mail or fax the dealer’s name
and address to us at the address or
fax number found on page 2.

Please address it to the attention of
Bob Brodie and James Grunke.

Atari Falcon030 Now
Shipping to Dealers

As this issue of ATARI.RSC goes to
press, the new Atari Falcon030
computer has started shipping to
dealers in Europe and North
America.

Owners of new Falcon030s will be
anxious to try out some software
that takes advantage of the machine,
so if you’ve been holding back the
release of your product waiting for
the machine to be available, now’s
the time to release the program and
get the word out.

Atari Computer Corporation
1196 Borregas Ave.
Sunnyvale, CA 94083-1302

ATARI.RSC
The Developer’'s Resource

