ATARI.RSC

The Atari Developer’s Resource

Vol. V, Issue 2
December 1992

The Atari Falcon030 made its
official debut at the annual
Dusseldorf Atari Messe (fair)
August 21-23, ending months of
speculation and rumors. The Atari
Falcon030 is the first in a new line
of TOS-compatible machines. Here
are the basic specifications of the
machine:

* 16MHz 68030 CPU

* 32MHz Motorola DSP56K
Digital Signal Processor
(20 mips)

* 16-bit Stereo DMA Sound
Record /Playback, with up to
50kHz sampling rate

* 16-bit True Color video modes
: with 65536 colors

* Palette-based video modes with
2,4, 16, or 256 colors at once,
from a palette of 262,144

ossible colors (or 4096 colors
in ST-compatible video modes)

* Overscan video modes

* Up to 768 x 480 resolution
(w/overscan)

* GENLOCK Overlay cagabiliﬁes
in true color video modes

* Enhanced GEM Desktop with
Color Icons

* Enhanced GEM AES with 3D
object types, hierarchical drop-
down menus, popup-menus,
and 3D window gadgets.

* 1,4, or 14mb RAM

* Optional internal 2.5" IDE Hard
Disk Drive

* Uses VGA/MultiSync, Atari
ST-compatible monochrome or
color monitor, or television

* MIDI In/Out ports

Atari Falcon030 Debuts

Mike Fulton

* Parallelﬂ_}l)ort, with new signals
added that make it easier to
connect devices like scanners,
etc.

* Localtalk™LAN port

* Serial port, Modem 1 port now
uses SCC chip (for higher
transfer rates) instead of 68901
MFP chip.

* Internal CPU expansion bus

* STE-compatible hardware video
scrolling

* STE-compatible joystick ports

* SCSI2 port for hard disk drives,
scanners, tape drives, etc.

And of course, there are many other
new features, but it would take
too long to list everything.

Approximately 25 machines were on
display at the show, and virtually all
of them were purchased by excited
developers at the end of the show.
Additional developer units should
be available soon. Please contact
your developer administrator for
more information.

About twenty developers had
received machines in the months
before the show, and many of them
had demonstrations of new software

ackages at the show, including

2D Systems, who demonstrated a
direct to hard disk, 16-bit stereo
digital recording program, and
Hisoft, who was showing a true
color paint program, True Paint.

Atari Falcon030 U.S. debut at
Boston Computer Society

On Sept. 23, the Atari Falcon030
made its official debut in the U.S. at
the monthly meeting of the Boston -
Computer Society. Atari’s President
Sam Tramiel introduced the

machine and along with Richard
Miller, Bill Rehbock, and James'
Grunke, discussed the machines
capabilities and the targeted

position in the computer market.

There has been much interest in the
press as newspapers across the
country featured articles about the
new machine and interviews with
Sam Tramiel. The syndicated cable
television show PCTV also featured
an interview and demonstration
with Bill Rehbock showing off some
of the Falcon030’s sophisticated
audio capabilities.

/

Inside

This Issue

1 Atari Falcon030 Debuts
2 Editor’s Notes

2 Documentation
Correction

3 GEM VDI & True Color
Video

6 Portfolio @ & A

7 Atari MultiTOS User
Interface Guidelines

9 Zen and the Art of
Metdfile Maintenence

19Atari ST/TTQ & A

_

/

" ATARLRSC)
The Resource File

TECHNICAL DIRECTOR

Bill Rehbock (408) 745-2082
GEnie: B.REHBOCK

CIS: 75300,1606

Infernet:
75300.1606@compuserve.com

DEVELOPER TECHNICAL SUPPORT
J. Patton (408) 745-2135

GEnie: ATARIDEV

CIS: 70007,1072

Internet:
70007.1072@compuserve.com

Mike Fulton (408) 745-8821
GEnie: MIKE-FULTON

CIS: 75300.1141

Internet:
75300.1141@compuserve.com

Fax: (408) 745-2094

DEVELOPER ADMINISTRATOR
Gail Bacani (408) 745-2022

CONFIDENTIALITY

The information in ATARLRSC is
confidential and provided for your
use In developing products com-
patible with Atari computers only.
You are responsible for protecting
the confidentiality of this material,
in keeping with your Confidentiality
Agreement. If you need to reveal
some of the information in this
newsletter, contact Bill Rehbock
first to get permission.

Copyright © 1992 Atari Corp.
All rights reserved.

Atari Computer Corp.
1196 Borregas Ave.
Sunnyvale, CA 94089-1302

Atari, the Atari Fuji logo, TT030, Atari
Falcon030, and MEGA are
trademarks of Atari Corporation.

ATARI.RSC edited
by Mike Fulton

ATARIL.RSC was created using
Pagestream v2.2 on the Atari TT0O30
computer & Atari TTM194
monochrome monitor, and was
printed using CompoScript on the
Atari SLM605 Laser Printer.

Editor’s Notes
Mike Fulton

Until now, ATARLRSC has been primarily aimed at the developers in
North America, and past issues have featured many excellent articles
from developers in tﬁe U.S.A. and Canada. Now the focus of
ATARILRSC has been expanded to Atari developers throughout the
world, and we’d like to see articles from other countries as well.

Articles must be submitted in English (don’t worry if your English isn’t
very good, we can fix that), and in RAW ASCII text format. You can
submit articles to my attention either by mail (please include both a
printout and a floppy disk) or through EMAIL (addresses shown at left.)
Please include a return address, telephone number, and EMAIL address
so that I can get back in touch with you.

Article subjects can be nearly anything you like, but it should be some-
thing that most other developers will find interesting. Also, program-
ming methods and any program listings should conform to Atari’s
system programming and user interface guidelines.

- J

Page 2

Documentation Correction

The GEM VDI manual documentation for the vq_extnd() (Extended
Inquire) function contains the following text on page 8-2:

intout [5] -- Lookup table supported.

0 = table supported
1 = table not supported

This is incorrect. The values are reversed. The correction is:

intout[5] -- Lookup table supported.

0 = table not supported
1 = table supported

Table Supported indicates video hardware that uses hardware color
re?sters to hold the RGB value, and the pixel value itself indicates which
color register the RGB value comes from (like the ST/STe/TT machines).
Table Not Supported indicates either a monochrome video mode or a
true-color vicreo hardware where the pixel value itself indicates the RGB
value to be displayed.

SpeedoGDOS

The new SpeedoGDOS, along with new device drivers and the
CHARTER Speedo font family, is now available online in the GDOS
library of the ATARL.RSC Developer Roundtable on GEnie.
Spee(;;GDOS is a new version of GDOS that uses Bitstream Speedo
format outline fonts. The GDOS library is private; to request access,
please leave email to MIKE-FULTON or ATARIDEV.

One new feature of the new printer drivers that come with SpeedoGDOS
is that they now recognize the concept of an unprintable margin around
the edges of your page. For example, most printers can only print
8" across the page, but your paper is actually 8.5" wide, so tKere’s 0.5"
that cannot be printed. The new drivers allow for this by placing the (0,0)
coordinate of your page at the top left edge of the paper, outside the
Erintable area, rather than at the start of the printable area, which may
ave been, for example, 0.25" in from the left and 0.125" down from the
top.

The main idea behind the change is that if you set a 1.5" margin in your
word processor, tﬁou want to get a margin zased on the actual paper, like
you’d expect, rather than based on the printable area of the printer. Now
you'll be able to do that.

(continued on page 5)

December 1992

GEM VDI & True Color Video

Mike Fulton

In palette-based video modes, a pixel value represents
a hardware color register. Each Eardware color register
contains an RGB color value which determines the
actual color used to display the pixel. If you change the
RGB values contained in a color register, all pixels in
the display which contain the value corresponding to
that register will change color. The built-in video of the
ST/STe/TT series is palette-based.

With true color video, the value of a pixel directly rep-
resents the actual RGB value that will be displayed.
Each pixel’s color is set independently of all other
pixels and changing its color is done by changing the
pixel value itself. The Atari Falcon030 features both
palette-based and true color video capabilities.

Detecting True Color Video

If you request the extended inquire values from the
vq_extnd() function for a screen workstation, the value
returned in intout[5] specifies if a color lookup table is
supported. (See the documentation correction in this
newsletter.) If it’s zero, it means the device does not
support a color lookup table, and that the pixel values
themselves directly represent the displayed color. This
means you are either in a true color video mode, or that
you are in a monochrome mode. To determine which,
check the number of bitplanes (intout[4] from
vq_extnd()), if greater than one, then you're in a true
color video mode, and if it's equal to one, then you're
in a monochrome video mode.

What’s Different?

From a programmer’s viewpoint, for the most part,
GEM VDI works with true color video modes in the
same way that it does in palette-based video modes.
However, there are some inevitable differences which
cannot be avoided. Some GEM VDI functions take
different parameters or behave a bit differently in true
color video modes. The information below details
these differences, and should be used in conjunction
with your GEM VDI manual.

The intout[13] value from v_opnwk() or v_opnvwk()
returns the number of pre-defined colors, or pens, that
are available. For palette-based video, this indicates
how many colors can be shown at once (without resort-
in§ to doing things like using interrupts to change the
color registers). If you change the RGB value of a pen
using vs_color(), then any pixels on screen which were
drawn with that pen will change to the new color.

For true color video modes, intout[13] indicates how
many pre-defined pens there are, but not how many
colors can be displayed on screen at once. The pens
contain RGB values that will be used to draw whenever
you use VDI functions like v_pline() or v_bar(), but
they don’t necessarily have a direct relationship to
what's already on screen like they do in palette-based
video modes.

December 1992

In other words, changing a pen’s color with vs_color()
does not affect anything you’ve already drawn with
that pen. For example, if you draw a circle with pen 12,
then change pen 12’s RGB value with vs_color(), and
then draw a square with pen 12, you will end up with
the circle in pen 12's original RGB color and the square
in pen 12’s new RGB color. One result of this behavior
is that you cannot do color cycling by simply changing
the pen’s color values with vs_color().

vro_cpyfmQ

vro_cpyfm(handle, wr_mode, pxyarray, psrcMFDB, pdesMFDB);
WORD handle;

WORD wr_mode;

WORD pxyarray[8];

MFDB *psrcMFDB;

MFDB *pdesMFDB;

The wr_mode parameter indicates the write mode to use
in cct)l};ying a rectangular area from one raster form to
another. In both true color and palette-based modes,
this is a bit-level operation. Since the bits for a pixel
value mean sometgjng different in true color modes, the
onscreen results of the same logic operation can be dif-
ferent. They are easily predictable, however.

Some programs use vro_cpyfm() with write mode 0 to
clear areas of the screen or to clear an off-screen buffer.
This sets all bits in the destination rectangle to zero,
regardless of the original value. In palette-based
modes, this has the effect of causing the pixels within
that rectangle to be displayed using Pen 0, which is the
background color, and which can be any RGB value.
However, in true color video modes, setting all the bits
to zero causes the pixels to be displayed as black, no
matter what RGB value pen 0 is set to, since the values
for red, green, and blue are all zero. In cases where the
background color isn’t supFosed to be black, say for
example in an animation playback, the results aren’t
going to be what was intended.

So how do you get around this? You can use
vrt_cpyfm() and a dummy raster form instead of

vro_cpyfm().

The vrt_cpyfm() function blits from a single-plane (1 bit
1\3]% pixel) raster to a multi-plane raster. You specify two
I pens to be used for drawing pixels in the destina-
tion raster: one for the pixels with 1’s in the source
raster, and one for the pixels with 0’s. If you speci
the same pen for both, then the whole rectangle will be
drawn with the same pen, and it doesn’t even really
matter what the source MFDB points to (the easiest
thing to do is point it at the same memory as the des-
tination raster, but set the MFDB to one plane). If you
wanted to set a rectangular area of the raster to the
background color, then you could just use vrt_cpyfm()
with zero for both pens. Unlike other VDI functions
that use pens, like v_bar() or vr_recfl(), the vrt_cpyfm()
function can work with offscreen buffers with no
significant extra effort.

Page 3

Another thing to watch out for is the way other logic
operations react. With palette based modes, if one did
an OR blit operation with a source raster containing
pixel values of 1 and a destination raster containing
pixel values of 4, you’d end up with the destination
rectangle containing pixel values of 5 (1 OR 4 = 5)
which could be the same RGB color as either the pixel
value 1 or pixel value 4, or even something compllztely
different and apparently unrelated as far as RGB colors
are concerned. In true color modes, if you did an OR
blit operation with a source raster containing red pixels
and a destination raster containing blue pixels, you’d
end up with the destination raster containing magenta
(red + blue = magenta) pixels. (And if you think about
it a bit, you'll see that this sort of thing could be very
useful.)

What vro_cpyfm() does to the raster memory hasn’t
really changed; the bits are affected in the same way as
before, but now the results may not always mean the
same thing they used to. While the replace write mode
hasn’t changed, other write modes with vro_cpyfm()
may also give different results from palette-based
modes. Some experimentation may be required to
obtain the desired results.

vswr_mode()
vrt_cpyfmQ

vswr_mode{ handle, mode)
WORD handle;
WORD mode;

vrt_cpyfm(handle, wr_mode, pXyarray, psrcMFDB, pdesMFDB,
color_index)

WORD handle;

WORD wr_mode;

WORD pxyarray[8];

MFDB *psrcMFDB;

MFDB *pdesMFDB;

WORD color_index([2];

The vswr_mode() function sets the write mode logic
that GEM VDI will use in drawing pixels to the screen
for all calls except vro_cpyfm() and vrt_cpyfm(), both of
which use their own write mode parameters. Since the
write modes for vrt_cpyfm() are the same as for
vswr_mode(), the information below refers to both
vswr_mode() and vrt_cpyfm().

mode = 0 Replace mode
1 Transparent mode
2 eXclusive OR (XOR) mode
3 Reverse Transparent

As with vro_cpyfm(), the differences with vswr_mode()
arise from the fact that the logic of the write mode
works at the bit level.

In palette-based modes, the write modes work as
folFows: Replace mode simply copies bits from the new
pixel value into the destination pixel, completely
replacing the old value with the new value. XOR mode
does an exclusive-OR logic operation between the new
pixel value and the destination pixel’s existing value,
and sets the pixel to the resulting value. Transparent
mode affects pixels only when they are not bein;

drawn with pen zero. Reverse-Transparent mo§e only

Page 4

affects pixels that are supposed to be drawn using pen
zero, except it uses the drawing color to draw those
the box was drawn on top,

pixels instead.
(] D}
~ Replace
using a different write

mode each time. T
If the fill color is set to pen ;
Transparent

four, then in replace mode,
the box outline and hatch
pattern will be drawn usin,
pen four, and the rest of the
inside of the box will be

Figure #1 shows an example
of each type of write mode.
The circle was drawn first
using replace mode, then

drawn with pen zero so that D
whatever was previously /' Reverse
underneath will be Transparent

completely replaced. In
transparent mode the rest of
the inside of the box won't
be drawn at all, and
whatever was previously
underneath will still be

there. In reverse XOR
transparent mode, the

outline and hatch pattern

won’t be drawn at all, but

the rest of the inside of the Figure #1

box will be drawn, using

pen four (the fill color) instead of pen zero. In XOR
mode, the box outline and hatch pattern will be drawn
in whatever is the result of pen 4 XOR the existing pixel
values, and the rest of the inside of the box will be
drawn in the result of pen 0 XOR the existing pixel
values.

Using XOR mode can be a little different in true color
video modes. A thing sometimes done in palette-based
modes is to write some object to the screen against the
background color, then write it again using XOR mode
to erase it. In true color modes there are two ways this
can fail unless the background is pure-black.

If XOR mode is used to draw the object both times, then
the it will be drawn in the wrvgﬂf co}ors if the back-
ground isn’t pure black, but will be erased as expected
when drawn the second time. If XOR mode isn’t used
to draw the object in the first place, but replace mode is
used instead, then the object will be drawn in the
correct colors, but it will not be erased properly when
drawn the second time. Instead of the ﬁac ground
color reappearing, you'll get black instead because any
number XOR’ed with itself is zero, and in true color, a
pixel value of zero means black.

Another difference of XOR mode is that when you XOR
a pixel in a palette-based mode, the result is a different
pixel value, which will have its own RGB value that
may not have any meaningful relationship to the
original pixel’s RGB value and the XOR operation. In
true color mode, if you XOR a pixel, the resulting color
is both easily predictable and meaningful. For
example, if you XOR any RGB value with a pure white

December 1992

RGB value (0xffff for 16-bit or Ox00ffffff for 24 /32 bit)
then you'll get the opposite color. For example, if you
XOR a red pixel with Oxffff and you get a cyan
(blue+green) pixel, which is the opposite color on a
color wheel. If you XOR a yellow (red+green) pixel
with Oxffff, you get blue.

v_get_pixel(

v_get_pixel (handle, x, y, pel, index)
WORD handle;

WORD x, vy

WORD *pel, *index;

In palette-based video modes, pel is the hardware-
based value of the pixel and index is the GEM VDI pen
value for the pixel. In true color video modes, the
original GEM pen used to draw a pixel cannot be
determined with any certainty, and the pixel value
represents an RGB value, so the meanings of the values
returned in pel and index change.

In 16-bit true color modes:

index = 0
pel = 16-bit RGB pixel value, where:

Bit 15 Bit 0
pel: (RRRR RGGG GGGB BBBB)

Red = 0-31

Green = 0-63

Blue = 0-31

In 32-bit true color modes:

index = high word of 32-bit RGB pixel value
pel = low word of 32-bit RGB pixel value

Bit 15 Bit 0
index: (AAAA AAAA RRRR RRRR)
pel: (GGGG GGGG BBBB BBBB)

= Alpha Channel (non-RGB information)
= Red (0-255)

= Green (0-255)

= Blue (0-255)

wam

vsf_udpat()

vsf_udpat (handle, pfill_pat, planes)
WORD handle;

long *pfill_pat;

WORD planes;

In palette-based modes, pfill_pat is a pointer to a 16x16
raster form in device-specific format. The raster may be
either monochrome or color. In true color modes, for
color fill patterns, the pfill_pat parameter should be a
pointer to 256 (16 rows of 16 pixels each) 32-bit values
which contain 24 bits of RGB information for each pixel
of the fill pattern (using the format shown below). The
planes value should be set to 32. This is true even for
true color video modes with less than 24 bits per pixel.
(GEM VDI will translate the RGB information to the
correct values automatically.)

RGB format for user defined fill pattern data:

Bit 32 Bit 0
(0000 0000 RRRR RRRR GGGG GGGG BBBB BBBB)

December 1992

Single-plane user-defined fill patterns work the same
way in true color modes as in palette-based modes.

v_contourfillQ)

v_contourfill(handle, x, y, index)
WORD handle;

WORD X, y;

WORD index;

In true color video modes, the results of v_contourfill()
may be different from Palette—based video modes,
although the function is still called in the same way.

In palette-based video modes, if the index parameter is a
valid pen value, then the fill expands outward from
(%,y) until it reaches pixels drawn with that pen. If index
is negative, then the fill expands outward from (xg)
until it reaches pixels drawn with a different pen from
the pixel at (x, f

For example, let’s say VDI pen 12 and VDI pen 13 have
both been set to RGB values of [1000,0,0] (pure red)
with vs_color(). If you have a big circle drawn with pen
12, and a smaller circle drawn with pen 13 inside that,
and you fill at the center point of both circles with index
equal to 12, then the fill will expand outside of the little
circle until it reaches the big circle. It doesn’t matter
that both circle are shown in the same RGB color on-
screen, because the VDI is able to determine that they
have been drawn with different pens, because the
values in the screen raster memory represent the pen
values, not the RGB values.

In true color video modes, VDI will look up the current
RGB values used for the pen indicated by index and the
fill will stop when it reacﬁes any pixel with the same
RGB values. It doesn’t matter what pen was used to
draw the pixel; if a pixel’s RGB values matches the
current RGB value for the index pen, the fill will stop at
that pixel. In the above examiﬂe, that means the fill will
stop when it reaches the smaller inside circle.

If index is negative in true color video modes, then the

fill will expand outward from (x,y) until it finds pixels

with a different RGB value from the pixel at (x,y). It

doesn’t matter if the pixels were drawn with different
ens, if they have the same RGB value as the pixel at
x,y) they will be filled.

SpeedoGDOS
(Continued from Page 2)

One result of this change is that there will now be a
portion along each edge of the raster area that
corresponds to the unprintable area of the printer, so
anything your program outputs to the printer driver
that falls within these areas will not be printed.

Since even "compatible" printers are slightly different
from one to the next, the unprintable area can be
adjusted in each driver, so you can fine-tune it for your
individual printer. Also, you can turn the feature off
altogether for compatibility with older programs which
may have trouble printing with it turned on.

Page 5

Menu Limitations

The internal menu routines (Int 60H
Fn 1) are used extensively by the in-
ternal applications as well as many
third party programs, but we have
recently discovered a problem that
the designers had probably never
anticipated.

When using a list of over 250 entries,
jumping backwards through a list
(as is done when selecting the first
letter of an entry does in the internal
appications) of over 250 items the
list will not be redrawn correctly
until the default number of menu
entries has been scrolled through.
This is a fairly unique situation and
disrupting to the user interface, not
fatal. This probably stems from a
combination of the OS being com-
piled in SMALL memory model and
the intended use to only hold a few
menu entries. In any event you can
create your own menus to circum-
vent any restriction.

PowerBASIC

Q: I'm writing a program in Power-
BASIC and after the program has
run fine once I get strange errors.
Sometimes there is garbage onscreen
and values in the data fields, but I
can't see anything wrong with my
program.

A: It turns out that initializing your
numeric variables is very important
in PowerBASIC and not doing so
caused the mysterious error you
saw.

Q: On the PC I set the caps lock by
doing the following:

DEF SEG = &H40
POKE &H17,&H40 or PEEK (&H17)

This doesn’t work under
PowerBASIC on the Portfolio.

Page 6

Portfolio Q&A

J. Patton

A: One of the concessions which
PowerBASIC made in order to fit on
the Portfolio was the ability to
understand hexadecimal notation. If
you use decimal notation the code
fragment above works as it did
previously.

Battery Low Address

Q: Ireally need to have my program
test for low battery state. How can I
do this?

A: At location 8051h you can test for
a value of less than 40 for a low
battery.

Big Cards Available
JEIDA card adaptors

There are now two sources of
RAM/OTP cards greater than 128K
bytes. These cards come in various
sizes up to 2MB. DOS an applica-
tions less than 128k in size can take
advantage of these cards transpar-
ently. Applications greater than
128k must keep track of which 128k
page they are on. See the technical
reference manual section 2.3.4.

Additionally Becker and Partner
have a PCMCIA /JEIDA card
adapter for the Portfolio which fits
into the RAM card slot of the
Portfolio. This adds about11/2" to
the length of the Portfolio.

Becker & Partner GmbH
Postfach 190
Wilhelmstraae 91

5100 Aachen

Germany

Tel: 49 241-5090 18
49 241-5090 19
Fax: 49 241-5095 77

Microcard Electronics
La Faye 42220 Burdignes
France

Tel: 3377 39 68 13

Fax: 3377 39 19 60

Flash Memory

Flash Memory cards are now
available from Optrol Inc. in sizes of
1MB, 2MB, and 4MB. Flash RAM
requires no battery power and can
rewrite up to 100,000 times.

Optrol Inc.

P.O. Box 37157
Raleigh, NC 27627
(919) 779 3377

Universal I/O Interface

BSE announces a Universal I/O
Interface which is a combination
serial /parallel peripheral with a
128k EPROM as brive B full of
utilities. They have also announced
a 512k RAM upgrade interface to
give your Portfolio a full 640k of
RAM.

The BSE Company
Tel: (602) 527 8843
Fax: (602) 527 1540

New Online

PDEMO.ZIP - Ultimate Portfolio
Demo. Minimum requirement
286PC, 640k, VGA. In store demo as
well as a source of information for
those curious about the Portfolio.

PSND1.ZIP - Plays digitized sounds
on the Portfolio.

MAKSND.ZIP - Creates sound
samples to be played with PSND1.

(continued on page 20)

December 1992

Atari MultitOS User Interface Guidelines

Bill Rehbock

Application Elements

User-friendly GEM applications should provide the
user with a consistent, predictable means of interacting
with the computer. The mosttgopular applications to-
date have always been those that the user feels at home
with, because of general familiarity with other
applications that they have previously used. User
interface design is a critical consideration durin,
Eroduct deveﬁ;;ament and should be well thoug t out

efore actually sitting down and laying out and coding
the interface.

The basic elements of a GEM application are the menu
bar, the application’s window g)r windows), dialog
boxes, alert boxes, and if the application warrants them,
toolbox windows. GEM applications ma%llogtionally
install their own desktop background, which is
swapped out by the AES to reflect the active
application.

The Menu Bar

Aﬂ)lications should normally consist of a MENU BAR,
which will generally have the titles from left to right,
"Prgname", "File", "Edit", and then the additional
application-specific main menu titles. "Prgname”
sﬁould be replaced with the apﬁlication name so that
users can quickly identify which application’s menu
bar they are looking at.

For user convenience, the standard entries under "File"
should start with "New", "Open...", followed by other
load-oriented operations, then in the next section of the
menu, "Close", "Save", "Save as...", and the other
application-specific save-oriented functions. The next
section down should be used for other file operations
such as "Import..." and "Export...". This should be
followed by the menu items for printing, usually "Page
Setup...", then "Print...". The lastitem under "File"
should always be "Quit".

Note: A menu item must be followed by an ellipsis to
indicate that additional action or input will be
required by the user to carry out the requested task.
For instance, "Save” indicates that the file will be
saved directly, using the current name, whereas
"Save as...” will require the additional input of a
filename.

The "Edit" menu should start with "Undo", then in the
next section, "Cut", "Copy", "Paste", and "Delete". The
rest of the "Edit" menu is usually application-specific,
but the next menu item, if used should be "Select all".

If applicable, the fourth main menu title should be
"Options", where menu items such as "Document
defaults...”, or "Preferences..." should appear.

Note: Menu titles and items should never be displayed
in all uppercase letters. Menu titles should have
one space before and after each title. There
should be two spaces to the left of menu items.

December 1992

Keyboard Equivalents
For Menu ltems

The standard sytem-wide keyboard equivalents that
should be used system-wide for no other purpose other
than those listed are:

Control-N] New
Control-O] en
Control-W] Close
Control-S] Save
Control-P] Print
Control-Q] Quit
Control-X] Cut
Control-C] Copy
Control-V] Paste
Control-A] Select all
Control-F] Find
Control-H] Replace
Control-G] Find next
Delete] Delete
Undo] Undo
Help] Invoke help

Note: The [Alternate] key is used as a character modifier on
non-U.S. keyboards to access the necessary extended
characters in applicable countries, and should not be
used for keyboard equivalents in most cases.

Windows

The primary stage for user interaction with the applica-

tion 1s the window. Most of the user input, whetier
ing, drawing, or editing, is performed in the confines

of windows. of an application’s output should be

constrained to the application’s own windows only.

See the VDI and AES manuals for further information

regarding window work areas and clipping rectangles.

Document windows should have, at a minimum, a
mover/title bar so that even if the window is not
resizable, the user can move the window off to the side
of the desktop to have access to other items. The other
window elements are the Info bar, Closer, Sizer, Full
box, Sliders, and Arrows. The general use of these is
apparent in the GEM Desktop. It should be noted that
GEM sliders are always proportional so that the user
has constant feedback as to the percentage of the
document that is being viewed.

Operating system calls allow every element of windows
to be set to any color and fill pattern. The user general-
ly selects these attributes using the Window Colors CPX
in the Control Panel and they should not be altered by
an application. In video modes with greater than 16
colors, other than True Color, the first 16 color entries
should be reserved for use by the system for drawing
elements for which the user Kas set preferences.

Page 7

Keyboard Equivalents
for Cursor Movement
Inside Windows

The system-wide standard for keyboard cursor
manipulation is as follows:

[Control-Left/Right Arrow] Move cursor to beginning
of word to the left/right

Delete from cursor
position to start of next

word to the left

[Control-Backspace]

Delete from cursor
position to start of next
word to the right

[Control-Delete]

[CIrHome] Move cursor to beginning

of document

Move cursor to end of
document

[Shift-ClrHome]

[Shift-Delete] Delete line

Dialog Boxes

Dialog boxes are used for modal input. That is, input
that the user must provide before any further
processing may be done. They are generally used for
parameter setting and other selections that require the
undivided attention of the user. They should never be
used for on-going informational or status output, as it
would interfere with the normal real-time user
interaction with the system.

Alerts

Alerts should be used to call the user’s attention to
conditions that develop that require immediate user
knowledge. The simplest and most common would be
an alert notifying the user that he is quitting an
application without having saved the open document.
Alerts should also be used to notify the user that a
time-consuming or unalterable function is about to be
performed.

Alerts usually have two or three buttons that allow the
user to make some sort of decision based on the
information provided. Alerts with only one button are
very frustrating to the user, as it implies a lack of
control over what is about to happen. The general rule
for alerts is to have the "OK" button to the left of the
"Cancel" button. "Cancel” should always be capitalized,
and "OK" is uppercase.

Note: Buttons in general should be capitalized words, not
all uppercase.

Page 8

Toolbox Windows

Toolbox Windows are a special class of window that are
used for providing the user with non-modal control or
information. The most common use would be for
drawing tool selection in a paint program, or color
selection. The tools are usually shown as logical groups
of icons that the user can easily associate with their
functions. Another use of this tylie of window is
continual status output, such as the progress of a file
download or recalculation time.

Other General Notes

Applications should make no assumptions on what
type of system the user will have. Be able to deal with
any screen size and color resolution. Use the operating
system calls to determine the screen dimensions and
system capabilities to provide the user with the richest
computing experience possible. Users have grown to
expect unsurpassed ease of use from applications
available for Atari computers. If you have any questions
regarding user interface design for Atari computers,
please feel free to call your developer support
representative.

Game/Entertainment
Software Guidelines

The following points should be followed:
* Installable on a hard disk.

* Should be able to be launched from any video
resolution.

* The user should be presented with a single
executable file; leave ancillary data files, high score
files, etc. inside a companion folder.

* Allow the user to exit and return to the desktop
exactly where and how they left off.

* Use the Falcon enhanced joystick for all joystick-
oriented games; CX-40 style controls should not be
supported.

* Ideally, where possible, allow the game to be run in
a window; this is well-suited for users that want to
play games in the MultiTOS multi-tasking
environment (such as while downloading a file).

* We expect most users to run in 640x480x256 color
mode; you may want to keep this in mind.

* If you store your screen data in VDI standard
format, you can use the GEM VDI function
vr_trnfm() (transform form) at runtime to convert
the data into the correct format for the current
video mode. This will allow you to use the same
data on interleaved bitplane screens (like the built-
in video modes) or a pixel-packed screen (like with
some add-on video cards).

December 1992

Zen and the Art of Mﬁfafile Maintenence
Mike Fulton

GEM Metafiles are a special type of vector graphics file
that consist of a series of GEM VDI functions that are
used to create a picture. Unlike other vector graphics
formats like CVG (Calamus Vector Graphic) or EPS
(Encapsulated Postscript), the information in a GEM
metafile is 95% ready to be passed straight to GEM
VDL The only processing that is normally required to
display a metafile is to scale and translate the
coordinates for each graphics call so that the image
appears at the correct size on the correct part of your
screen or other device.

If you already know how to output to other GEM
devices such as the display screen and the printer, then
you already know most of what you need to start
creating GEM Metafiles. But there are a few additional
features that go along with metafiles which don’t apply
to other devices.

First of all, with other GEM devices, when you open
the workstation you get back information which
indicates the size of the display area in pixels, along
with some other information t{at tells you the size of a

ixel. You can then use these different pieces of
information to calculate the size of the display area in
real-world measurements like inches or millimeters.
Once you've done this, it's not too difficult to scale and
position your output so that things come out in the
right place regardless of the resolution of the device
involved.

This is also true for metafiles, but there are additional
GEM VDI functions which allow your program to
customize the metafile ‘world’ to suit your needs.

Page Size

First of all, with GEM metafiles your program can
specify a particular page size, rather just takin
what you get. The vm_pagesize() function is used for
this purpose:

void vm_pagesize(handle, width, height)
WORD handle, width, height;

The width and height parameters specify the size of the
page in tenths of a millimeter. So for an 8" x 10" page,
you would use values of 2032 for the width and 2540
for the height. What you actually specify as your page
size is less important than the requirement that you
must set it to something. At the very least, specify
some default page size%jke 8" x 10" or 10" x 8" (the page
size should be proportional to the format of the
drawing). (Note that since 16-bit values are used for
the page size, there is a limit of approximately 129
inches on both the width and height. This will
probably not be a problem for most programs.)

If you create a metafile without specifying the page
size, then other programs may not be able to correctly
scale the objects in your metafile for display, and some
may not accept the metafile at all.

December 1992

This function changes the width and height fields
contained in the header of the GEM metafile being
created so that when another program reads the
metafile, it will be able to determine the page size so
that it can draw objects from the metafile in the proper
size and proportions.

World Coordinates

. With all GEM devices other than metafiles, the

coordinate system is similar to the to top-right quadrant
of the basic Cartesian system, except that the y-axis is
reversed (as shown in figure #1).

Cartesian Coordinate System (0,0)

+Y

Usual
GEM Device
Coordinate
Style
+X

(0,0) inverted
Y-Axis

-Y (8000, 10000)

Figure #1

While the default coordinate system is the same as other
GEM devices, metafiles also allow the use of different
coordinate systems. The vm_coords() function allows
your program to sgecify the coordinate range used in
the metafile ‘world’.

void vm_coords(handle, min_x, min_y, max_x, max_y)
WORD handle, min_x, min_y, max_xX, max_y;

This function changes the coordinate system used by
the GEM metafile currently being created. The min_x
and min_y parameters should contain the coordinates
for the top left corner of the page and the max_x and
max_y parameters should contain the coordinates for
the bottom right corner of the page. The parameters
you give vm_coords() are placed into the header of the
metafile being created.

You can set up nearly any style of coordinates you
desire with this function. If the usual GEM coordinate
style doesn’t suit your needs, you can use a different
style. For example, if you prefer a true Cartesian
coordinate system, then you can set up one, with the
(0,0) coordinate in the center of the display area, as
shown in figure #2.

Note: The vm_coords() and vm_pagesize() functions onl
affect the header of the metafile being created. They do
not affect information returned from GEM VDI's
various inquire functions.

For example, the current version of the metafile driver
sets up a default pixel size of 85 microns width and
height, or 300 dots per inch. If your program were to

Page 9

-8000, 10000)

True
Cartesian

[]
(0.0)

(8000, -10000)

Figure #2

set a page size of 8” x 10" with the vm_pagesize()

nction and a coordinate range of (0,0) to
(8000,10000) with the vm_coords() function, then
that works out to 1000 dots per inch in the metafile
"world’ you have set up. However, the values
returned bflll the vq_extend() function which specify
pixel width and height or device resolution will not
change from their original values.

Furthermore, éf your program uses font metrics
information obtained from the metafile driver, it will
still be based around the originally specified pixel size.
For example, if you set the text size to 72 points, then
do a vqt_fontinfo(), vqt_width(), vqt_extent(), or
any otZer function which returns information about
text size, you will get back a value that represents the
original resolution, not 1000 dots per inch.

In most cases, this will probably not be a problem, as
your program will not be positioning objects
(including text) using injgrmation obtained from the
metafile driver, but rather using information obtained
from the screen or printer driver.

Metafile Filename

By default, the metafile driver creates a file named
GEMFILE.GEM in the current default directory.
However, the metafile driver allows you to specify the
filename of the metafile to be created.

void vm_pagesize(handle, fname)
WORD handle;
char *fname;

The fname parameter should be a pointer to a string
containing a valid GEMDOS filename specification.

In order for it to be successful, the vm_filename()
function must be called immediately atter opening a
metafile workstation. The metafile driver then creates
the specified file and writes out a metafile header.

Note: The GEMFILE.GEM file created at open-workstation
time is not deleted by the vm_filename() function. It
is the application’s responsibility to delete this file.

Metafile Bounding Box

The page size and coordinate system work together to
define the size and shape of the metafile ‘world’, but
they say nothing about what inhabits that world. If the

Page 10 \

metafile header indicates a page size of 8" x 10" and a
coordinate system of (0,0)-(8000,10000), how do you
determine what portion of the page actually contains
objects?

void v_meta_extents(handle, min_x, min_y, max_X, max_y)
WORD handle, min_x, min_y, max_x, max_y;

This function is used to specify the area of the page that
actually contains objects. The min_x, min_y, max_x, &
max_y parameters specify a bounding box that can
contain all objects in the metafile. This allows an
application reading a metafile to easily determine, for
example, that although the page size is 8" x 10", the
objects on the p:ﬁisonlly occupy a 2" x 2" square at the
top left corner. This allows the application to ignore the
rest of the page and display just the area that has stuff
init.

Note: There is nothing to prevent the bounding box from
extending outside of the metafile’s specz']§ed coordinate
range. Objects may extend outside the boundaries of
the page, provided that they can exist within the
limitations of the coordinate system used for the
metafile. (As seen in figure #3)

(0,0
q

(9277,4883)

(8000,10000)
Figure #3

However, if you had instead a coordinate range of
(0,0) at the top left corner to (32767,32767) at the
bottom right corner, then you couldn’t extend an
object past the rffht side or bottom of the page because
some of the coordinate values would become negative
(GEM VDI uses signed 16-bit values). This would
distort the appearance and/or location of the object.
(See figure #4.) This is another reason to be careful in
deciding what sort of coordinate range to use.

(0,0) Object A is what
q you want, but
38000 doesn't fit in
a 16-bit signed
value so it gets
viewed as -27536,
and you end up
with Object B.

(38000,16000)

(-27536,16000)
(32767,32767)
Figure #4

For display purposes, if a metafile’s bounding box does
extend outside the page, an application should display
only that portion which falls within the page.

December 1992

To keep track of your metafile bounding box, simply
keep a set of variables for minimum and maximum
coordinates used, and prior to each output function,
check the coordinates and uEdate your variables if
necessary. Prior to closing the metafile, do the
v_meta_extents() call. This involves a little extra work
that isn’t necessary for other GEM devices, but it’s the
most straightforward method.

At the minimum, you should call v_meta_extents()
with the same parameters you passed to vm_coords()
so that the metafile header will contain something
besides zero for the bounding box values.

Metdafile Escape Functions

Normally when you do a GEM VDI call such as v_bar()
using a metafile workstation handle, the metafile
device driver writes out the contents of the GEM VDI
CONTRL[] array, which includes the opcode that
indicates a v_bar() function, as well as how man

values are contained in the INTIN[] and PTSIN[] arrays.
Next it writes out the specified number of words from
the INTIN[] array, and then the specified number of
words from the PTSIN[] array. This results in all the
information for the v_bar() function being placed into
the GEM metafile.

However, when saving a document, many applications
want to include additional information for their own
use. The metafile escape functions provide a method to
do just that. They allow a program to save information
into a metafile which isn’t directly displayable by GEM
VDL

void

v_write_meta(handle, intin_len, intin, ptsin_len, ptsin)
WORD handle;

WORD intin_len, *intin;

WORD ptsin_len, *ptsin;

As with other GEM commands, the contents of the
CONTRLI[] array will be written to the metafile,
indicating a metafile escape function. The intin
parameter is a pointer to an array of WORD values that
will be written to the metafile. The intin_len parameter
indicates the length of this array. The ptsin parameter
is a pointer to an array of WORD values that will be
written to the metafile. The ptsin_len parameter
indicates the length of this array.

The intin[0] value is used as a sub-opcode to indicate
the purpose of the information. This can be something
specific to your application, or it can be one of several
pre-defined sub-opcode values from the list below:

10 Start Group

11 End Group

49 Set No Line Style

50 Set Attribute Shadow On

51 Set Attribute Shadow Off

80 Start Draw Area Type Primitive
81 End Draw Area Type Primitive

Other sub-opcodes in the range of 0-100 are reserved.
Application-specific sub-opcodes can be anything from
101-65535. The main sub-opcodes we’re concerned
with are Start Group and End Group. For more detailed

December 1992

descriptions of all the pre-defined sub-opcodes, please
see Appendix H of your GEM VDI manual.

Let’s say your application is a drawing program, and
the uselry h};s cregtlfed a drawing with 2% (I))b'egcl’;s init. Ten
of these objects are grouped together, so that from
within the program, when you move or size or rotate
one of them, you do it to all the other objects within the
group as wel?.’ When you save the file, you want to
include some information that will specify that these
objects are grouped together, so that the next time the
drawing program loads the picture, these objects will
still be treated as a group.

By putting the Start Group sub-opcode into intin[0] and
using the v_write_meta() function, a special metafile
escape function will be placed into the metafile. After
the last object of the group has been written, then the
application would plgarce e End Group sub-opcode into
intin[0] and do another v_write_meta() call.

Later when your application reads the metafile back, it
will get to the metafile escape function and find the
Start Group sub-opcode, and know that the objects
coming afterwards are part of a group. When it gets
another escape function with an End Group sub-opcode,
then the group ends. (Note that a group may contain
other smaller groups.)

Application-Specific
Metafile Escape Functions

What other useful information might an application
want to put into a file? Wouldn’t be nice if the
application could determine the bounding box of a
group without looking at each object in the group? You
could use an application-specific sub-opcode that your
application understands to mean "Group Bounding
Box", and immediately after the application writes out
the Start Group code it would then do a v_write_meta()
function that writes out the "Group Bounding Box" sub-
opcode along with the coordinates for a bounding box
for the entire group.

Suppose your program had taken some text and
grabbed the character outlines from FSMGDOS, and
was going to place the outlines into the metafile as
bezier curve objects. Let’s say the original text strin,
reads "Atari". The problem is, if you don’t put anything
but the bezier curve objects into the metafile, then you
don’t have any way to get back to the "Atari" string and
change it, except by having the user delete the "Atari"
bezier objects and then repeat the whole process for a
new string.

Your application could start a group, and then do a
v_write_meta() funtion with a sPecml application-
specific sub-opcode that means "Group Contains Text
Outlines. Original Text and Font ID:" along with the
original "Atari” string and font ID (or fontname string)
for the original text. This would be followed by bezier
objects for the text.

With a program that understood what the special sub-
opcode meant, it would be easy to go back to the
original "Atari" string, edit it, and then get a new set of

Page 11

outlines, with minimal effort on the user’s part.

If the metafile was being displayed by something that
didn’t understand the special sub-opcode, it would just
see the bezier curve objects and draw them, ignoring
the escape function. T%\e picture would end up looking
correct, even though this program didn’t understand
the entire file and wouldn’t be able to edit it in as

flexible a manner.

Suppose you wanted to bind some text to a bezier
curve path. The metafile could include the path curve
in an escape function (so that it doesn’t get displayed
by other programs, since it’s just a guide for the text).
Then it would write out bezier curve objects taken from
the text outlines after they’ve been warped around the
text path bezier curve.

A program that understood the special sub-opcode
would know that it should allow the user to edit the
bezier curve contained in the escape function, and that
if the user changed that first bezier curve, it should
reposition the text outlines along the new path. And
this could be combined with the previous example so
that you could even change the text string to get a
completely new set of character outlines. A program
that didn’t understand would just draw the bezier
objects for the text outlines, and the picture would look
correct.

The possibilities are endless.

Since the sub-opcodes for application-specific metafile
esca&e functions for one program could conflict with
another program, I would urge two things:

First, put a special magic number into intin[1]. If your
program reads a metafile escape function and the
magic number in intin[1] doesn’t match the sub-opcode
in intin[0], then ignore the escape function.

For example, let’s say our Group Bounding Box sub-
opcode is 3000. The magic number for this sub-opcode
will be 1701. If we read a sub-opcode of 3000, then
we’ll check intin[1] for a value of 1701 and ignore the
escape function if we find any other number there.

Secondly, when you create an application sub-opcode,
prior to the program’s release, please inform Atari
Developer Support at Atari Corporate HQ of what the
sub-opcode is, and what it’s sup osed to mean. This
way iF there are any conflicts w151 anything else, they
can be fixed before your program is released.

Reading & Displaying
GEM Metdfiles

Displaying metafiles is for the most part even easier
than creating them. But when reading a metafile there
is one question that needs to be answered before you
do anything else: Is the metafile being read going to be
displayed only, or will the user have the capability of
editing it?

If the metafile is being read for display only, then your

task is made much simpler. GEM metafiles require
only a minimal amount of processing in order to be

Page 12

displayed at virtually any size on any GEM device.
There is a sample program which accompanies this
article that reads and displays GEM metafiles inside a
window. Unfortunately, it’s a little too long for the
entire program listing to be included here, so only the
listings for the metafile display routines are shown.
You can find the METAFILE.ARC file, containing the
sample program and all of the source code, in the Atari
developer areas of the GEnie (Library of ATARLRSC
Roundtable) and Compuserve (Data Library 7 of
ATARIPRO forum) on-line services. If you don’t use
these online-services, you may contact Atari Developer
Support and request tKe program.

The source code is setup to work with either Mark
Williams C, Lattice C v5, or Alcyon C. It should be easy
to get it to work with other compilers by changing the
zlinclude statements at the top of the METASHOW.C

e.

The sample program looks for a GEM metafile named
TEST.GEM at startup-time, and opens a window and
displays the picture inside it. You may resize the
window and the image will be resizecly (it will keep the
proper proportions, however). You may also view
information from the metafile header and view other
GEM metafiles by using the choices in the drop-down
menus.

The display_metafile() function in the METASHOW.C
(listing not included here) file is the window-redraw
function. It determines the proper width and height
required to show the metafile at the lartﬁest possible size
within the window without changing the original
aspect ratio. Then it calls the metafile display routine.

The meta_show() function in the SHOWMETA..C source
code file (listing #2) is the actual metafile display
routine. It is not small, but it is fairly straightforward.
It reads the metafile header to determine ﬂ%e age size,
aspect ratio, and coordinate system used, and then it
calculates some scaling factors using this information.
After this, it enters the main display loop. Here it reads
information from the metafile that represents the GEM
VDI contrl[], intin[], and ptsin[] arrays. This represents
all of the information we need to pass along to GEM in
order to call a GEM VDI function.

However, there is one last step required before we can
pass the information along to GEM VDI. The
coordinates for all of the objects in the metafile have
been positioned and sized according to the page size
and coordinate system used by the metafile. Before we
can draw them on our output device, object coordinates
need to be need to be scaled and translated to the
proper size and position. In the case of the sample
program, that is the size we determined earlier: the
work area of the program window.

The display routine uses a few external support
routines for scaling coordinate values. There is also a
routine that gets 16-bit values out of the metafile buffer
(making it easy to modiff/ things so that the metafile
doesn’t have to be completely in memory to be
displayed).

The display routine is built around the idea that most
metafile items are either ready to be passed directly to

December 1992

TEST.

Screen position of
work area of window is |
(402,238) to (1038,590)

Metafile Page size is
8" wide by 10" tall

Metafile Coordinate
range is (0,0) to
(8000,10000)

Metafile display area
within window is

281 pixels wide by
352 pixels tall

GEM

.

i

v_circie() object

Original Metafile:
Centerpoint Position =(5586,3875)
Radius = 2200

Inside Window:
Centerpoint Position = (598,374)
Radius = 77

.

Figure #5

GEM VD], such as attribute setting functions like
vsf_style() or vsl_color(), or else e{;just need to have
a set of coordinates scaled and translated, like v_pline()
or v_bar(). These functions can all be handled together
in a standard way, so you are left with the task o
catching all of the known special cases. These include
GEM VDI functions which have size values of some
kind in ptsin[], rather than coordinates, or which have
size values in the intin[] array. Examples would
include vsl_width() where line width is specified in
ptsin[0]; vst_height() where text height is specified in
ptsin[1]; and v_ellipse() where the pisin[] array includes
coordinates as well as a set of radius values for the x-
axis and y-axis.

These special cases are handled by figuring out which
ptsin[] or intin[] values are specia.l},l and then using a
different scaling function for these values which scales
the all()ipropriate value and doesn’t translate it like it
would with a coordinate value.

In figure 5, we see a metafile with a v_circle() object
displayed in a GEM window. This object provides an
example of a special case object that requires both
coordinate amf size-value scaling. The display routine
sees that the object is a GDP-circ%e object, so it starts out
by scaling and translating the centerpoint coordinates
in ptsin[0] & ptsin{1]. This is done by calling the
xoffset_scale() and yoffset_scale() functions.

Translating the coordinates is fairly simple. We take
the ratio of the display area coordinate range (281x352)
to the metafile’s coordinate range (8000x10000) and
multiply the coordinates by this value (each axis is
done separately). Now the circle’s coordinates have
gone from (5586,3875) to (196,136). Now we add the
window position so that the screen coordinates of the
circle end up being (598,374). The scaling routine used
by the metafile display function handles both the
scaling and translation in one step. The meta_show()
function sets up offset values that the scaling routines
use to account for whatever the metafile’s coordinate
system might be, say like that shown in figure 2.

For the radius value, the step of translating the coor-
dinates into the window is not required, so that value is
scaled by a different routine which skips that step.

For GEM VDI functions where the ptsin[] array is
empty, or where it contains coordinates only, such as

December 1992

v_pline(), v_bar(), or vs_color(), the display routine
sees that they are not a special case function. If the
ptsin[] array contains coordinates, then it calls functions
that scale them to the correct size and translates them to
the desired position on the output device. Then it lets
the call fall through to GEM VDL

Note: For any function not recognized as a special case, the
display routine will pass 1t along to VDI on the
assumption that VDI will know what to do with it.
Any values in the ptsin[] array are scaled and
translated as coordinates. Values in the intin[] array
are left unchanged.

If a metafile contains a completely brand new

nction, the display routine should still work on any
machine that supports the new function. This is
because it passes everything through to GEM VDL If
GEM VDI doesn’t recognize the function, it will be
ignored. At the very worst, the metafile mi%ht contain
some olz'ects that are displayed incorrectly, but this is
better than not displaying anything.

Another example of a special case might be where a

articular function is not supported on a certain device
Flike v_bit_image() for the screen), and you want to
handle it by drawing it with your own function instead
of passing the call to GEM VDI The meta_show()
function doesn’t do anything for v_bit_image() on the
screen, but there are some comments and a disabled
section of code that makes plugging in such support a
simple matter.

The meta_show() function does not look at the
bounding box information of the metafile. If an
application wants to show just what’s in the bounding
box area, it should obtain the bounding box information
using the meta_info() function, and then adjust the
world coordinates and size to zoom in on that particular
section, and then adjust the clipping rectangle
accordingly. There are severalp reasons why it’s done
this way. First, some programs which wrife out
metafiles either don’t write out the bounding box
information correctly or don’t write it at all. Also, it
takes a level of control away from the program calling
meta_show() since it could then not zoom out away
from the bounding box. You may want to see the entire
metafile ‘page’, not just the part that has something on
it.

Page 13

Reading and Editing
GEM Metdfiles

If your application wants to edit the contents of GEM
metafiles once they’ve been read in, then you have a
choice of either maintaining the original data structure
or translating it into your own data structure.

In the former case, if the metafile contains escape
functions your application doesn’t understand, it
should not remove them until the user does something
that requires changes to the metafile. That is, if the user
loads a metafile, just looks at it without changin,
anything, then saves it back out again as a metafile but
maybe with a new filename, then the new file your
application creates should be identical to the file that
was read in the first place. You'd expect a text editor to
work this way, so why shouldn’t a graphics editor?

Once the user does anything that requires changes to
the metafile, then any escape functions your program
doesn’t understand should be removed, because the
changes your application makes to the metafile may
make the escape functions invalid. From that point, the
application may make whatever changes and add any
escape functions of its own that are appropriate.

Some applications will want to work with other file

formats other then GEM metafiles. For examPle, they

may want to read in a GEM metafile and write out an

EPg {(Encapulated Postscript) file. In these cases, the

application will most likely want to translate the

;:ontents of an imported metafile into its own internal
ormat.

The METAFILE.H file (listing #1) contains definitions
of the GEM VDI opcodes for most of the functions
you'll find in a metafile (if anything is left out, see your
GEM VDI manual).

With a few changes, the meta_show() function in listing
#2 could serve as the skeleton for a metafile-to-internal
format translation function. Basically you’d want to
add code to handle the non-special case functions
instead of just letting them fall through. When you fall
through to the vdi() call at the bottom of the main loop,
you’d save a new object with all of the current
attributes.

Listing #1

JRERAK R KR AR K |

/* METAFILE.H */

JREkRRRE IRk AK [

/**)\'*i**iv*'k'k**i******i*i*’k***k****/
/* These should be 16-bit values */

JHAETKEEFECIHEIRHAAF XX HEHTXHAA AR [

#ifndef UWORD
#define UWORD unsigned short
#endif

#1fndef WORD
#define WORD short
#endif

Page 14

JEREEXEREXERXKHEXEEFE ORI RHETF I TEERFEIFERLRFLIFEFRI IR IR HK IR AKX [

[¥¥¥xkkkexxakxxxexexs GEM VDI Drawing Command Opcodes *¥ k¥ kksdiddsasksassss
JERERHHEERRE KRR KRR XA RRIXREEIRREERR R XD R E XTI HLRRERH ORI IAR AR KKK

#define V_CLOSEWORK 2
#define V_CLOSEVWORK 1
#define V_CLEAR 3
#define V_UPDATE 4
#define ESCAPE 5
6
7
8

=
=

#define PLINE

#define PMARKER

#define V_GTEXT

#define FILLAREA 9
#define GDP 11
#define VST_HEIGHT 12
#define TEXT ROTATION 13
#define SETCOLOR 14
#define LINE_TYPE 15
#define LINE WIDTH 16
#define LINE_COLOR 17
#define MARKER_TYPE 18
#define MARKER_HEIGHT 19
#define MARKER_COLOR 20
#define VST_FONT 21
#define VST_COLOR 22
#define FILL_INTERIOR 23
#define FILL_STYLE 24
#define FILL_COLOR 25
#define WRITE_MODE 32
#define VST ALIGNMENT 39
#define CONTOURFILL 103
#define FILL_PERIMETER 104
#define VST EFFECTS 106
#define VST _POINT 107
#define LINE_ENDSTYLE 108
#define SET_USERFILL 112
#define SET USERLINE 113

#define RECTFILL 114
#define SET CLIP 123
#define V_FTEXT 241 /* New opcodes added for FSMGDOS support */

#define VST ARBPCINT 246
#define VST_SETSIZE 252

/* Beziers not included since they */
/* share opcodes with v_pline & v_fillarea */
/* No checking for FSMGDOS is done! */

JERRETRFEEREEIEIERIATIAIRHERHERIERREREE R I AT RREEEF R RATEFRE IR I IRAKAIKAE RS |

[k ekkkxkkrkxexx GEM GDP Graphics Primitives subopcodes **E¥*xkkxxxxxxtxxs/
[RERRERXR RS AR KRR 12222 122321212131 KERERRERXREIRRA KR AHAS |

#define BAR 1
#define ARC 2
#define PIE 3
#define CIRCLE 4
#define ELLIPSE 5
#define ELLARC 6
#define ELLPIE 7
#define RBOX 8
#define RFBOX 9
#define JUSTEXT 10

JREFFRHEAREEFERREEC R IR IEFEAR IR RFA KX EH IR KRR ER TR A KR XK kA KR]

[RIRERERRRX SRR XXXXAR*RR® GEM VDI Escape SUDOPCOdES *HH¥XXXXXXXXKKXXXXEAKXE % [
A e it e Y]

#define BITIMAGE 23

JRERFREEEEEEEREFLRRO I E IR ORI IR R IR KR E R I IR IR R IRAAAF K/

JERERREXK XK RKXERRRRSE CEM Metafile Header Structure *H¥¥sksxikkkkkixkxvkxs/
PRI L LR LR *k KkkkkKk FHEERTIAKTIIEFRAK R KR]

typedef struct metainf

WORD magic;
WORD hdrlen;
WORD version;
WORD ndcflag;

/* This stuff comes from metafile header */

WORD minx, miny;
WORD maxx, maxy;

WORD pg_wid, pg_ht;

WORD 11x, 1lly;
WORD urx, ury;

December 1992

WORD wc, hc;
long length;
} Metafile_Info;

/* this stuff gets calculated */

Listing #2

/i

* SHOWMETA.C

* GEM Metafile Display Routines

* Written by Mike Fulton, Last Modified 1:35pm, 6/10/92

*

¥/

#define min{a,b) {a<b)?a:b

#define max{a,b) (a>b)?a:b

#define CLEAR_BACKGROUND 1

#include 'metafile.h’
/***ttttkiiti‘ktiti*ti’tttiﬂi*ii*iikii{tti’tii*ii****kki’************kk**ii*i****i*/
long world_x, world_y, world_w, world h, area_wd, area_ht, x_offset, y_offset;
UWORD *bufpos;
/ttitttﬂinnn:*:wttnnnxt!tttunnt**xh\’kt*ttt**~kH*Hittttunnttiink/

[*¥xxxxxkxxxexens Basic pre-ANSI style function prototypes. ¥¥¥kkkkkikikkkkikk/
JEREEFERRXREXERFEI RS IR RFER A RIEIE AR EE R RIE IR EERERIR IR AARIRAREIARR

void meta_show(), xoffset_scale(), yoffset_scale(), xscale_only(}, yscale_only{);
WORD get_wd{), intersect();
/iii**ikiiiﬁ***i*ii*i*i*iiii*i)\'tt*kik*it!*ti*titittti'ﬁiiittiiitt*t*i*itittittt/
#ifdef LATTICE

#include *vdicall.h"

WORD contr1[20], intin[128}, ptsin{256], intout[128], ptsout{256];
WORD *vdipb(] = { contrl, intin, ptsin, intout, ptsout };

#else
extern WORD intin(], ptsin{], contrl{];

#endif

JRERFEXER R IR R R R R RAAEERRIRERI AR I EE R RIRR IR F AR I IR AKX AA R AR |

/* meta_show() will display all GEM commands stored in a metafile buffer */
/* Last item in buffer should have opcode of 0xffff, as per GEM standard */

/* After this call, workstation attributes will most likely be */
/* drastically altered!!! Do not depend on anything! */
IAd */
/* This function does NOT do the following: */
/* */
/* 1] Load fonts ¥
A ¥/
/* 2) Check for GDOS, FSMGDOS, FONTGDOS, anything else */
/* ¥/
/* 3) Verify that buffer contains a metafile, not garbage */
A */
/* 4) Display IMG files on screen devices when processing a */
/* v_bit_image() VDI call. (Unless using a VDI screen driver that */
/* supports the call (the built-in screen drivers do not). */
/* See comments below if you want to add your own */
/* screen device support for this function. */
/* */
/¥ 5) Hide/Show mouse pointer */
/tti’tiiiiti?!*t!’(!*l?t1!*!**1!***!’****‘ki*i***ti*it’(i*ﬂiiii*itiltiiit*f**i*/
/* Input parameters: */
/* */
/* scrnhndl - screen VDI workstation handle */
/* dev_handle - Qutput Device VDI workstation handle */
/* dev_hsize - Output Device pixel horizontal size */
Al dev_vsize - Qutput Device pixel vertical size */
/* */
/* netafile - Pointer to start of metafile information */
/* (buffer need not be word aligned) */
/* */
/* wx, wy - Position of top left corner of area to draw the */
Ad image. Specified in device coordinates. */
/* ¥/

December 1992

/i
/t
/*
/*
/*
1%
/*

ww, wh - Image box width and height. These values are

specified in device pixels.
endbuf - pointer to end of metafile information

winrect - pointer to function used to calculate clipping

JRERFEE R IR IR RFHREERERERRFRIEE KR I IR E T HEIE IR R F R IR AR AR

/t
/%
/*
/i
/i
/i
/*

/%

You can show the metafile at varlous magnifications by changing the
(wx,wy,ww,wh) position and size. These coordinates can start outside
the device raster by using negative coordinates, and be larger than
the device raster if required. However, the clipping parameters must
be set to the portion of the output area that corresponds to the
actual device raster area (or output rectangle within the raster
area). Also see the notes on the winrect parameter below.

*/
*/
*/

*/

JEERERRRIER IR RFRRFERXFRRHIERE XA II R TR R R IREA R AR RAAARR]

/* There is an external subroutine which is supposed to insure that your */

/k
/%
/%
/*
Al
/t
/*
/*
/1\'

A

output is confined to the proper portion of the screen or other
device. The show_meta() function expects your program to pass a
pointer to this subroutine function in the ‘winrect' parameter.

The winrect() function is passed an array of 16-bit signed values
containing the device coordinates of a clip rectangle calculated from
the {wx,wy,ww,wh) world coordinates which was passed to show_meta().
The rectangle is a VDI-style rectangle, with coordinates of two
diagonally opposite points, not an AES-style rectangle with a
position and size.

The returned intersection rectangle should also be returned in the
input array. Then meta_show() will set the clip rectangle to the
returned rectangle.

If there is no intersection rectangle, the function returns ‘0’,
telling meta_show() that it can quit before processing the metafile
information, because the output rectangle isn’t visible.

If you do not want to use such a function, then pass a NULL pointer
instead. Then the function will not be called, and the clipping
rectangle will be based on the output coordinates passed to the
meta_show() function through the (wx,wy,ww,wh) parameters.

As implemented in the example below, winrect() calculates the
intersection of the passed rectangle and the work area of the window,
then the intersection of that rectangle and the actual screen.

Por non-screen devices, you would want to output the rectangle of the
desired metafile output area, intersected with the device raster
area. You might want to use a different function for different
devices or create a global flag that the winrect() function can check
which you can set before calling the meta_show() function.

The winrect() function is somewhat application-specific, which is why
it is implemented outside this file and called through a function
pointer. An example of how to implement this function is shown
below. To adapt it to your application, simply substitute the proper
variables for the window work area and screen resolution. Note that
the function intersect() is included in this file.
int
winrect(r)
short *r;
{
short x, r2[4];
r2[0] = theWindow.wx;
r2(1] = theWindow.wy;
r2(2] = r[0] + theWindow.ww - 1;
r2(3) = r[1) + theWindow.wh - 1;
x = intersect{ r2, r };
if(U x)
return{ x);
r2(0] = 0;
r2(1] = 0;
r2[2] = screen.xres;
r2(3] = screen.yres;
intersect(r2, r);
return{ x);

*/
*/
*/
*/

JEFERFRIEHERFERLRHEHETIEONEFEAE I I IR FELREREEIREII LRI SR AEA |

Page 15

void

meta_show(scrnhndl, dev_handle, dev_hsize, dev_vsize,

netafile, wx,

wy, ww, wh, endbuf, winrect)

WORD scrnhndl, dev_handle, dev_hsize, dev_vsize,

*metafile, wx, wy, ww, wh,

{

*endouf, (*winrect)();

WORD points, header_length;

WORD pagex, pagey, 1lx,

1ly, urx, ury, *tmppos;

WORD clipf4], glclipf4];
register WORD opcode, dummy;
long wmicrons, h_ptsize_factor, v_ptsize_factor;

JREEREXHRREIREEFEEIRIHALRI I IRRERIRAK AN Kk |

/* Start by reading image header informatiom */
/'i**i**k*l’ii’*ﬁ!!**i**i{*i‘*‘ki*k*i*i*i*iii*iil’ii/

bufpos = metafile;
tmppos = bufpos;

/* Leave original pointer alone */
/* Save for later ¥/

/h\'*ih\'*itttii*tiﬁﬁri*ti*iﬂr*tii/

/* Set up our global variables */
/ii*i*iiilkt*!tiii*tiitit*k***'ﬁi/

world x = wx;
world y = wy;
world w = ww;
world h = wh;

JREERRRERRERF AR F R AR RFF RS AA TR AARAK |

/* Read metafile header

information */

JRERRR R R R AR F R R IRA IR T I RA AR]

dummy = get_wd(};

header_length = get_wd(};

bufpos += 6;
pagex = get_wd();
pagey = get_wd();

11x = get_wd();

1ly = get_wd{);
urx = get_wd(};
ury = get_wd();

bufpos = tmppos + header_length;

/* $tfff for _normal_ metafiles */
/* Length of header, in words */

/* Skip next 5 elements of header */

/* Page width in mm/10 */
/* Page height in mm/10 */

/* Lower left coordinate of page */
/* Lower left coordinate of page */
/* Upper right coordinate of page */
/* Upper right coordinate of page */

/* Skip past header */

JERERRRER XTI R R RERR AR A IR A XA K *k * /

/* 1f no metafile page size and coordinate range, then use some defaults! */
/*i*****i*iitiiii****i*i*i*iiiii’*ii**iiiitiiiii{****i***ititiii*************i/

if{ ! (pagex|pagey)
{

pagex = 2032;
pagey = 2032;
}
if (0 (11x|1ly lurxlury))
{
1x = 0;
1ly = 32767;
urx = 32767;
ury = 0;
}

)

/* 254 microns per inch */
/* 8" square image */

/* If no coordinate range specified */

/* Then use default GEM-style coordinates */

/**********i*hl*******iH(tiiit**iititi’kh\'*i*i****iitﬂh\'tt*tﬂi*)\'i**/

/* Set vars, Calculate size & offsets for metafile world & items */
/ttitiktii)\'ii*i***i*i{i’kti*i*i***t*ﬁi*tt****ti**********ﬁ**********/

area_wd = urx - ilx;
area_ht = lly - ury;

x_offset = 0;
y_offset = {;
if(1lx 1= 0)

x_offset = -{llx);

if(ury 1= 0)
y_offset = -{ury);

/* Used in scale & offset */
/* functions */
/* Default offsets = 0 */

/* Change offsets if necessary */

JHFEXEXEEEIERREXEEIEHEE IR EE X THIAFIHEEEHEEIHEK IR IEEEIH ST IIAA TR IR A AT AR]

/* Divide metafile page

size by size of worid to get pointsize scale factors */

/*******t*i'h\i'ﬁ‘k**‘k***ki't*iiit*‘k*k**ktkti!i*k*ik*i{*‘kiik*ttii*i*i**i*kkik*i**ﬂr/

Page 16

wmicrons = world w * (long)dev_hsize;
wnicrons = wmicrons * 10;
h_ptsize_factor = wmicrons / (long}pagex;

wnicrons = world_h * (long)dev_vsize;
wmicrons = wmicrons * 10;
v_ptsize_factor = wmicrons / (long)pagey;

JHEEEFRXREIRRE KR F AKX ARG R AR RS |

/* Set starting clip rectangle */
/Qir-k*ir*irttiii*******ik*i*ii*i**i/

/* width in microns */
/* Adjust for percentage */
/* percent*1000 */

/* height in microns */
/* Adjust for percentage */
/* percent*1000 */

ptsinf0] = wx; /* Clip rectangle */
ptsin(l] = wy;
ptsinf2] = wx + ww - 1;
ptsinf3] = wy + wh - 1;
1f(winrect)
{
dummy = (*winrect)(ptsin }; /* Get external clipping */
if(! dumny } /* rectangle from the */
return; /* specified function */
}
glelip(0) = clip{0] = ptsin{0]; /* Set clipping to */
glclip[1] = clip{l] = ptsin[1}; /* where we're at now. */
glelip(2] = clip[2] = ptsin[2];
glelip(3] = clip(3] = ptsin(3];
vs_clip(dev_handle, 1, ptsin);
/**i*tittii *kk % kkkkk *kk k¥ i*i****ﬁ*i***ii/
/* Clear out the background of the slice. This step */
/* may be considered optional for some purposes. ¥/

JHIEEEERKEEREXREKFEEEEXRAEIRFERIIHRFEAEIR IR T AR |

#1f CLEAR_BACKGROUND
vsf_interior(dev_handle, 2);
vsf_style(dev_handle, 8);
vsf_perimeter(dev_handle, 0);
vsf_color(dev_handle, 0 };

ptsin[8] = world x;
ptsin[l] = world y;
ptsin(2] = world x + world w - 1;
ptsin(3] = world y + world h - 1;

v_bar(dev_handle, ptsin);
#endif

/ik*itif*h**iiititttt*iﬁ*iitttkttt/

/* Bump up Bezier drawing quality */
/i*titiiiii**i*‘kt’ktt*t*iitk*iitittt/

contrl[0} ; /* Don't use a library binding */
contrl{1]

contrl{2]

contrl(3]

contrl{4]
contrl(5)]
contrl[6]
intin{0
intin{l
intin{2

5
6 handle,
]
]
]

#ifdef LATTICE
vdi{ vdipb);
#else
vdi();
#endif

JRERERREEERF KR REAEERRAATRREKIFAI RS HA XA RR AR/

/* Loop through metafile & playback commands */
/'ktirti**t****i*t*tii****‘k******tk**t*ii*kt‘kikt/

do
contrl{0] = get_wd(); /* Read VDI opcode */
contrl{l] = get_wd(); /* Read PTSIN count */
contrl{3] = get_wd(); /* Read INTIN count */
contrl(5] = get_wd{}); /* Read sub-opcode */
contrl(6] = dev_handle; /* Set device handle */

opcode = contrl[0];

H /* because some compilers may not */
; /* have a v_bez_qual() binding yet.

*/

December 1992

if (opcode == (short)(xFFFF) /* Reached end of metafile? */

break;
/* Read PTSIN & INTIN array values */

for{ dummy = 0; dummy < contrl[1]*2; dummy++)
ptsin[dummy] = get_wd();

for(dummy = 0; dummy < contrl(3]; dummy++)
intin[dummy] = get_wd();

JRIERHEHEEEKERAEEER IR I IR FRH AR IIIIRIERRE ORI IR AR AR R K

/* Now do whatever rescaling of PISIN values is required. */

kkk * xxtx:txxxt*iiﬁi*iiiiiii*i**i/
if(opcode == V_UPDATE || opcode == V_CLEAR ||
opcode == V_CLOSEWORK || opcode == V_CLOSEVWORK)
{
break; /* exit display loop on any of these */

}

else if{ opcode == SET_CLIP)
{

if(intin[0} == 0) /* Are we turning clipping off? ¥/

{
clip[0] = glclip{0]; /* Reset clip rectangle */
clip(l] = glelip{l]; /* to original */
clipf?] = glclip(2];
clip(3] = glclip(3]; /* And reset the clip flag so that */
intin{0] = 1; /* we still clip to our output window. */
ptsin[0] = clip(0]; /* Put the adjusted clip */
ptsin{l] = ¢lip(1]; /* rectangle back inte ptsin */
ptsin(2] = clip[2]; /* And fall through to vdi() below */
ptsin[3] = clip(3];
}
else
{
for(dummy = 0; dummy < 4; dumny += 2) /* Determine */
{
xoffset_scale{ &ptsin[dummy]); /* the desired clip */
yoffset_scale(&ptsin[dummy+1l]); /* rect and */
/* intersect with */
intersect(glclip, ptsin); /* global clip rect */
}

}
else if{ opcode == GDP)
{

xoffset_scale{ &ptsin[0] };
yoffset_scale(&ptsin[l])

if(contrl(5) ==
{

ARC || contrl(5] == PIE)

xscale_only(&ptsin[6});

else if{ contrl[5] == CIRCLE)

xscale_only(&ptsin[4])
)

else if(contrl[5] == ELLIPSE || contrl[5] ==
contrl(5) == ELLPIE }

ELLARC ||
{

xscale_only(&ptsin(2])
yscale_only(&ptsin[3));

else if{ contrl(5] == JUSTEXT }
{

}

xscale_only{ &ptsin{2]);

else

{
for(dumny = 2; dummy < contrl[1]*2; dummy += 2)
{

xoffset_scale(&ptsinfdumy]);
yoffset_scale(&ptsin(dummy+1]);

December 1992

else if(opcode == LINE_WIDTH || opcode == MARKER HEIGHT |:
opcode == VST HEIGHT }
{
xscale_only(&ptsin(0]);
yscale_only({ &ptsin[l] };
)

else if{ opcode ==
{

VST_POINT)

points = (WORD) (({long)intin[0] * v_ptsize_factor)/1000);
intin[0] = points;

}
else if(opcode == VST_ARBPOINT)
{

points = (WORD) {((long}intin{0] * v_ptsize_factor)/1000);
intin{0] = points;

else if(opcode == VST SETSIZE }

{
points = (WORD) ({(long)intin[0] * h_ptsize_factor}/1000);
intin[0} = points;

}

else if(opcode == ESCAPE)
{

if(contrl{5] == BITIMAGE)
xoffset_scale{ &ptsin[0]
yoffset_scale(&ptsin[l]
xoffset_scale(&ptsin[2]
yoffset_scale(&ptsin(3]

/* If we wanted to support this call for the screen, we could */
/* plug in a call to our own display IMG file routine here */

if(dev_handle == scrnhndl)
{

}

/* dispiay IMG on screen */
}

/* If not v_bit_image(), then don't know what it is. */
/* So scale and offset anything in ptsin[] and pass call through to vdi() */

else
{
for(dummy = 0; dummy < contrl([1}*2; dummy += 2)
{
xoffset_scale(&ptsin[dummy]);
yoffset_scale(&ptsin[dummy+1]);
}

}

/* It's either not a special case, or we don’t know what kind */

/* of special case it is. Scale & offset the coordinates in ptsin. */

/* That may not be right for an unknown special case function, */

/* but doing nothing to the ptsin[] values is almost certainly wrong. */

else
{
for{ dummy = 0; dummy < contrl(1]*2; dummy += 2 }
{
xoffset_scale(&ptsin[dummy] };
yoffset_scale(&ptsin[dummy+1] };

}

/* stuff d0 & dl with magic number and parameter */
/* block address, then execute VDI command */

$ifdef LATTICE

vdi(vdipb);
#else

vdi();
#endif

}

while(bufpos < endbuf); /* gimme a 'break’ ok? */

Page 17

JRFHEERERRRERIARII RS K RAARRRE RIS A IR AR R AR

/* meta_info() returns page size in microms, */

/* page size in metafile coordinates */
/’('r'(?*’('ﬁ’Ii'k*i’****k**f*iii*ii*****t*tiii*ti**i*/

void

meta_info(metafile, header)

WORD *metafile;

Metafile_Info *header;

{

bufpos = metafile; /* Set

header->magic = get_wd();
header->hdrlen = get_wd(};
header->version = get_wd{);
header->ndcflag = get_wd();

header->minx
header->niny
header->maxx
header->maxy

get_wd();
get_wd();
get_wd();
get_wd();

header->pg_wid = get_wd(}; /*
header->pg_ht = get_wd{); /*

header->11x =
header->1ly =
header->urx =
header-sury =

get_wd(); I*
get_wd(); *
get_wd(); /*

get_wd(); /*

up buffer ptr used by get_wd() */

Page width in microns */
Page height in microns */

Lower left coordinate of page */
Lower left coordinate of page */
Upper right coordinate of page */
Upper right coordinate of page */

header->wc = header->urx - header->1lx;
header->hc = header->1ly - header->ury;

}

A ety

/* Calculate intersection of two rectangles, and return rectangle of the */
/* intersecting area. Returns ‘1' if rectangles intersect, ‘0' if not. */
/* If no intersection, returned rectangle is undefined. */

JERIREIEERIEAIERHEXEIRTRIRREEIA IR RIEII R REI IS IR IEFRRT I OFFIRTRIIAI IR INK |

WORD

intersect(a, b)
WORD *a, *b;

{

WORD x, y, W, h;

[TV

5ERS O

return((WORD)((w > x) && (h>y)));

}

JREERIHERRR IR R ER I RFA I I IRF DR R ERRIEE KT EE RIS IR R R IR IR ARk |

/* Get word or long out of buffer that is not necessarily word-aligned. */
/ii****'I(*******ikiii*******k**t*ii******ii*i***i*i*i*****ii*iiii**‘k***iittiiit/

WORD
get_wd()

register char *bufptr;

union {

char byt[2];

WORD wd;
} theWord;

bufptr = (cha

'

theflord. byt [1)

theiord. byt [0

]

*)bufpos;
= *(bufptr++);
= *(bufptr++);

bufpos = (WORD *)bufptr;

return{ theWord.wd);

Page 18

JRAEEIRAEAFERK IR I IR IR R RF IR ERREHRIE R RE KNk |

/* Here are the coordinate scale and offset functions. */
/*i*********tﬁ*i*i******t**t&iiii*****t**kii**i*i****i**/

void

xoffset_scale(xval }
short *xval;

{

register long xv;

xv = (long)*xval + x_offset;
XV = Xv * world w;

Xv /= area_wd;

xv &= Oxffff;

xv += world x;

*xval = (short)xv;

void

yoffset_scale(yval)
short *yval;

{

register long yv;

yv = (long)*yval + y_offset;
yv = yv * vorld_h;
yv /= area_ht;

yv &= 0xEfff;
yv += world_y;
*yval = (short)yv;
}
void

xscale_only(xval)
short *xval;
{

register long xv;

xv = (long)*xval;
xv = xv * world w;
xv /= area_wd;

*xval = (short)xv;

}

void

yscale_only{ yval)
short *yval;

{

register long yv;

yv = (long)*yval;
yv = yv * world_h;
yv /= area_ht;

*yval = (short)y

Listing #3
/* Code for this is:

move.l (sp),dl
moveq.l #$73,d0
trap #2

*/

#pragma inline d0=vdi() { register d0, d1, d2, a0, al, a2; "221770734ed2"; }

December 1992

Q: I want my application to save out
color GEM IMG picture files. I
already know how to save out
monochrome IMG files, how are
color IMG files different?

A: The main differences are that the
IMG file header indicates more than
one bitplane, and that the compress-
ed image data for each scanline now
contains data for more than one
bitplane.

Basically, you go through the same
steps as for monochrome IMG files,
except that immediately prior to
compressing a scanline, you must
convert it from device-specific
format into VDI-standard format
using the GEM VDI vr_trnfm()
function. This gives you a VDI-
standard format raster form for the
scanline, which you then compress
and save in the same way you
would for a monochrome IMG file,
except now there is more data.

Converting the image data to VDI
standard format is done individual-
ly for each scanline, resulting in a
file structured as shown in figure #1.
Some programs are known to
incorrectly convert the entire picture
at once, resulting in a file structured
as shown in figure #2. (In both
figures, each square represents part
of the compressed picture data.)
Carefully read Appendix I of the

AtariST/TTQ & A

Mike Fulton

GEM VDI manual, and you will note
that the mention of how the bitplane
data is encoded is given within the
context of how a single scanline item
is encoded, not the overall picture.

Doing the conversion scanline by
scanline makes it easier for GEM
printer drivers to print IMG files,
since they can get all the information
for a single scanline all at once with-
out having to jump back and forth
through the file. They can start at
the beginning of the IMG file grab a
few scanlines, scale them and print
them as required, then go on to the
next few scanlines, again and again
until the entire picture is done.
(Imagine the printer driver reading
the data from figure #1 from left to
right, top to bottom, straight
through from start to finish.)

If the whole picture was converted
in one step, the printer driver would
have to decompress almost the
entire picture to get all the data
needed for a scanline. This is
because the data compression makes
it impossible to predict where the
data for each bitplane is, and the
only way to find it would be to
decompress everything until you
found what y ou wanted, even if
you were doing scanline 0.

Doing the conversion scanline by
scanline also requires a much

Scanline #0 Piane 0 | Plane 1 Plane2 | Plane 3
Scanline #1 Plane 0 | Plane 1 Plane 2 Plane 3
Scanline #2 Plane 0 | Plane 1 Plaone2 | Plane 3
Scanline #3 Plane O Piane 1 Plane 2 Plane 3
Figure #1
Plane #0 | Scanline 0 | Scanline 1| Scanline 2 | Scanline 3
Plane #1 Scanline 0 | Scanline 1 | Scanline 2 | Scanline 3
Plane #2 Scanline 0 | Scanline 1 | Scanline 2 | Scanline 3
Plane #3 | Scanline 0 | Scanline 1 | Scanline 2 | Scanline 3
Figure #2

December 1992

smaller memory buffer to convert
the picture.

Note: Appendix I of the GEM VDI
manual also refers to the planes as
the "red" plane, the "green" plane,
the "blue" plane, and the "grey"
plane. This refers to the way color
data is stored on an EGA graphics
card for a PC, and is an example
only, with no meaning beyond that.
(If you've read the book Graphics
File Formats, please note that its
description of how color
information is stored in an IMG file
seems to be based on an misinter-
pretion of that example, and is
completely incorrect.)

As far as color palette information
goes, there is no officially sanctioned
way of saving color palette informa-
tion in an IMG file. However, there
is an unofficial extension to the IMG
format known as XIMG which adds
the color palette information to the
end of the file header in the
following way:

WORD 1
WORD 8 $5849
WORD 9 $4d7d
WORD 10 = 0

WORDs 11-? VDI-style RGB information
(3 WORDs per color pen, values 0-1000)

new header length in WORDs

non

1"

(Word 8 & 9 = "XIMG")

Note: Some programs using the
XIMG format are known to
incorrectly convert the image data as
mentioned earlier.

Q: How do I have my program look
for an event on either mouse button
using evnt_multi() or evnt_button()?

A: Use an ev_mbclicks value of 0x101,
a ev_mbstate value of 0, and an
ev_mbmask value of with the
evont_multi() and evnt_button()
functions and you will get an event
whenever either mouse button is
pressed. This method has worked in
all versions of TOS and is now
official. (This method does not work
for detecting mouse button releases.)

Page 19

(Portfolio Q & A, Continued from Page 4) mov dtmf_dur, dx ; save old duration value
; from register
DTMF mov ah, 18h ; Mute States call
mov al, 0%h ; Set DTMF duration
Q: How do I vary the amount of time the Portfolio can mov. dx, 2710h i stuff new duration value
int 61h ; into register
generate tones and the amount of space between the
tones? mov ah, 17h ; dial number to check tone
mov temp, @data ; duration
A: The technical reference guide was incomplete in its mov ds, tempET .
g . . . mo s1, OFFS
description of this call, so here is a short programming v ! nunsty .
" . ¢ mov cx, 8h ; length of string = 8 characters
example in assembly which changes the DTMF duration. int 61h
; DTMF duration testing under mov dx, dtmf_dur ; stuff old duration value
; assembled under TASM ; into register
mov ah, 18h ; Set DTMF duration
; 2710h(10000) short duration, mov al,0%
; 72e3h(29411) = default duration int 61h
.model small mov ah, 17h ; dial number to recheck
.stack 100h ; old tone duration
.data mov temp, @data
mov ds, temp
dtmf_dur dw 0 mov si, OFFSET numstr
temp dw 0 mov cx, 8h
numstr db ’00001111-,0 int 61h
.code FiRiiiiiiiiiviiiiiiiiiiiiiing
mov ax, @data ;terminate
mov ds, ax
mov ah,4ch
mov ah, 18h ; Mute States call int 21h
mov al, 08h ; Get DTMF duration
int 61h end

Atari Computer Corporation
1196 Borregas Ave.
Sunnyvale, CA S4089-1302

ATARI.RSC
The Developer’'s Resource

