about the globe. They can not and
will not be supported. If you are
currently shipping network

e or a network application,
please update your users to the

correct standard as soon as possible.

The Matrix C32 VME 800x600
8-plane video card will be available
to North American Atari dealers by
late June. It will have a retail price
of about $800 (U.S.). The card comes
with 1 meﬁlabyte of RAM and an
Intel graphics coprocessor and is

Vol. IV, Issue 2

The developers that demonstrated
roduct at the show included ISD
keting, Goldleaf Publishing, and
Soft-Logik Publishing.

I would like to extend r1y thanks to
Matthias Kurwig from &'
Computerbild and Ditm.ar
Meynfeldt from DMC for flying staff
and equipment to the show from
Germany. The total coop=ration
from all those involved made the
show a large success for us.

Apri-May 1991
P .
The Boftom Line
Bill Rehbock, Director of Technical Services
CEPS completely user-programmable to As many of you should know by
Netw k! support a wide variety of monitors, | now, Jerry Pournelle at B
e v orking, including the Atari 1426. There | Magazine has received a TT. His
Video is one thing to beware of from an initial impressions of the machine
application standpoint: The card’s were quite favorable. He is lacking
Weareona rol:l 'Il'here have been ‘ ‘ :o sf‘tlw ar)e(:Jg qua? l;’:laptgh(I:fah((:lrl\ are
many exciting developments in the ; 0 . Ity
last t);vo mon%hs. Net};rnc;'rking isa interested in the blzty of
reality, the MegaSTE has passed having your product reviewed in
FCC Class B, and we have been Byte magazine, I strongly urge you
a2 bl o o e SR,
mid to high-end digital typography. send a copy.
the FLE ard MET cootion 5= " I wasn't kidding in the last issue
encourage everyone to support file) . . when I said that time was going to
sharing and record locking as soon video memory is not arranged in move quickly! 1040STe’s,
as possible. We designed the interleaved planes like current ST eg ’s, and TT’s are now
protocol to be as industry-standard and TT built-in video modes. moving smoothly into the dealer
as possible to promote the use of the | Instead, it is PIXEL-PACKED. channel, with sales steadily
supplied calls. As you read this, Writing directly to the card like you ; increasing. The most common
three te Local Area Networks would with a built-in I;n“ldeo m eed c'evnlt‘plaint ttlx‘om deasl;xtsw now is,
;Pf ippi uces interestin; t unwant "Where is the new are?"
for the STe/TT are shipping. E@D“é'g T;}g&aédl)’%s VVBIIS Twanted
All three support th or screen
GEMDOS level loclgnsaz?ls, as will drivers; there is very little Line-A
oming versions of TOS and other | support. Programs written with
networks that will ship in the device independence in mind run
future. Ia iate the cooperation y on the cards. Please
that we received from Pascal Merle contact Gail Johnsomfzr:u would
at Pam’s Software, Chris Latham like to purchase a card for
and Travis Guy at Application and development purposes. ($575.00
esign Softwgre, Chalg'rh;e Stzlg at us.)
‘ersasoft, Allan tari
System Softaxvlvare Engmeg', in At CEPS, the Corporate Electronic
getting the specification cast in Publishing Show in Chicago, Atari’s
stone. . + - newly formed markehlx'\g and sales
- division, the Professional Systems
There are a few unofficial file Group, recently showed the Atari
sharing and record locking protocols ; Direct To Press™ publishing
for m§ that are in use solution to a gathering of thousands.

e ———— N

Devel r Report

Gail Johnson

Hello ST/TT Developers!

Results from the January postcard mailing were sadly lacking. Of the
ST/TT program developers who are on the newsletter mailing list, only
20% returned their cards. This does not include Canadians who have
just joined us and are receiving registration materials with this
newsletter. Since we are in the grocess of assigning developers to
different categories in our new developer support program, it is
important that I receive your cards even if you have nothing currently on
the market. (Developers with nothing filled into database support fields
;nay be a)utomaﬁ y filtered out from mailings and other support
eatures.

If you did not receive a postcard, please make a photocopy of the form
below, and please take a moment to fill it out and send it in (or just send
a current sales brochure). If you have nothing on the market, please let
me know of your development objectives.

Note: Noncommercial developers are now required to provide
justification for all hardware orders. See the notice in this newsletter
addressing that issue.

Greetings, Atari ST/TT Developers!

I am compiling a list of of the available products that you have
developed for commercial use on the ST/TT line. Please take a minute to
u us on your current titles and return the form to my attention.

you for your cooperation.

Company:
Primary Contact:
Developer ID #:
Address:
Phone:

Fax:

For each product your com produces, please list the following
informat:%n: Pro?iuct Tiﬂe?aCIa‘{egory (utih}t’iles, productivity,
entertainment, education, etc.), Distributor(s), Retail Price

1)
2)
3)

If you have additional products, please list on separate sheet, and mail in

with this form.
Sendto: Atari Computer Corporation
Post Office Box
Sunnyvale, Calif. USA 94088-3427

Attn: Gail Johnson

Page 2 ‘ AprirMay 1991

s —

- Running As Program Or Accessory

Recently, several applications have
been released which have the ability
to be used as either a desk accessory
or program. This has prompted other
developers to ask, "how do I do
that?".

There are two main things to
accomplish. The first is to figure out
which way the application was
loaded, as program or accessory.
Second is using that information and
taking the proper steps in handling
how the application works. For
example, an application shouldn’t
install a desk accessory menu item,
and an accessory shouldn’t install a
menu bar, so before doing these types
of things, your application would
have to check how it was loaded and
act accordingly.

But besides such obvious things,
there are many things which an
application might commonly do
which desk accessories should avoid.
For more detailed information about
this, see the article titled "Desk
Accessory Guidelines" elsewhere in
this newsletter.

Starting with the way a program is
loaded, as defined in the GEMDOS
manual, there are several differences
that apply to accessories, and these
differences are the key to determining
how an application has been loaded.

(This article assumes you are familiar- }
You should study the regular startup

with the contents of the GEMDOS
manual and the Pexec Cookbook. So
if you haven’t read these recently,
now would be a real good time to
refresh your memory.)

A program which canrun as a
program or desk accessory has to
have a startup module which can
determine which way the application
was loaded and act accordingly.
There are two things that need to be
checked by such a startup module.

Apri-May 1991

by Ken Badertscher & Mike Fufton

First of all, register AQ is always
cleared at startup for programs run
by the GEMDOS Pexec() function, but
for accessories, AQ will contain a
pointer to the basepage. Therefore,
the first thing a customized startup
module should do is test A0. Ifitis
NULL, then you are running as a
program. Otherwise, A0 will point to
your accessory’s basepage, and you
should check the long value at
36(A0), which should be NULL for a
desk accessory (for programs, this
contains a pointer to the basepage of
the parent process).

Immediately after the startup module
decides if it is a program or accessory,
it should set a flag of some sort that
the rest of the program can check,
and then continue to do the rest of the
regular initialization, such as setting
up the stack and so forth.

Desk accessories must setup their
own stack before using it, because
their stack pointer contains garbage
when they are first started up.
Programs need to move the stack
pointer down from where it starts
(usually the end of a large block of
memory) and then shrink their TPA
to the amount of memory they need
(see the Pexec Cookbook). Desk
Accessories don’t need to shrink their
TPA because they are loaded by GEM
AES into just exactly the amount of
memory they need.

modules your compiler uses for
programs and accessories to insure
that what you come up with will do
everything required by your compiler
as well as the system.

The Lattice C v5, Lattice C/TT, and
Turbo C compilers come with
auto-detecting startup modules that
can be used as an option right out of
the box. If you use one of these
compilers, see your manual for more
information.

One big thing to keep in mind is that
there are a lot of programs that have
no business being accessories, and a
lot of accessories that would serve
little purpose as programs. Itis
therefore recommended that you
strongly consider all the various
factors when deciding if your
application should be able to work
both ways. Don’t make it work both
ways just because you can.

As we said earlier, there are certain
things which will have to be done
differently depending on the current
mode of operation. The earlier
reference to standard GEM menu
bars is probably the number one
example. Some applications avoid
this by simply not using menus
regardless of the operating mode, but
this may not be appropriate for
everything.

The way other applications have
handled this is to display the menu
title bar within their own window,
and then wait for a mouse clickon a
menu title. When one is received,
then the application starts tracking
the user’'s mouse movements through
the menus in a manner similar to the
regular AES menus. When a menu
item is selected, then the program
stops tracking the mouse through the
menus and handles the user’s choice
for whatever menu item was selected
(or not, if no item was selected).

Another thing to consider is that an
application that goes both ways
should be thoroughly tested both
ways to shake out any bugs in
general operation as well as being
able to operate in either mode. Don't
forget to test everything else because
you’ve been concentrating so hard on
getting it to work both ways.

Page 3

1) In general, all memory allocation
should be done at initialization time,
before the menu_register() call.

Use static blocks of memory in your
BSS space if your memory allocation
requirements are known in advance.
The only exceptions would be under
circumstances where the accessory
is certain it will be releasing the
memory before anything else would
have a chance to allocate memory or
Pterm() out from under the
accessory, including the operating
system or other accessories.

With this in mind, accessories
should open, read or write, and then
immediately close disk files. Do not
leave open files laying around.

Also, accessories should never
allocate memory on the fly to use as
a buffer for reading from disk files.

When a process terminates, all
memory allocated while the process
was running is released, including
memory allocated by accessories
(which are not processes), and OS
services that allocate memory on
behalf of a program.

Keep in mind that task switching
between desk accessories, the
current application, and AES can
occur during any AES call, so
remember that whenever your
accessory makes any AES call,
something else could get control and
do memory allocation of their own,
causing memory fragmentation.

2) Desk accessories must always do Iy

screen output of any kind through
the operating system.

As a general rule, GEM VDI should
be used for screen output, but under
certain circumstances GEMDOS or
BIOS character-based text output
may be acceptable, as long as the
accessory is careful about sending
redraw messages for the affected
areas of the screen. -

3) Desk accessories must not install
themselves into interrupt vectors,
because this will cause problems

Page 4

Desk Accessory Guidelines

by Mike Fulton & Ken Badertscher

when the user does any resolution
changes.

If a desk accessory needs to access
something at interrupt level, then it
should be accompanied by a TSR
which goes into the AUTO folder,
and which communicates with the
desk accessory to provide the
necessary information and/or
functions.

The way to so this is for the TSR to
install a cookie in the cookie jar that
provides a vector for the desk
accessory to jump through to get the
desired information. The accessory
would look for the cookie and then
jump through the vector whenever
it needed to update its information.
This is preferable to installing a
cookie that points at the TSR’s data
space, since in a memory protected
system, that data space may not be
directly accessible to the accessory.
Also, this method doesn’t rely on
anything anything that's going to
get zapped on a resolution change.

With older versions of TOS before
the "new desktop", the memory
used by accessories was not released
on a resolution change, so
accessories could get away with
stealing interrupts because the
memory continuing the interrupt
handler normally wouldn’t get

zapped (unless a program wrote
into memory it didn’t own).

However, with the current versions
of TOS with the "new desktop”,
memory belonging to accessories is
released whenever a resolution
change is made. Therefore, the
interrupt vector would be left
pointing at memory which is no
longer owned by anything, and
which would probably get
overwritten by something fairly
quickly. Most likely what will
happen here is a mysterious crash
because the interrupt handler will

get zapped.

4) Whenever possible, desk
accessories should operate in a

movable window instead of a
statically positioned dialog box.
There are a number of desk
accessories currently available
which lock themselves into the
middle of the screen and stay there
until dismissed, and there is usually
no good reason for it.

As resolution improves and screen
sizes get larger, there is the
increasing possibility of users
wanting to have a number of
non-overlapping windows spread
out across their desktop. If your
desk accessory is the only thing
accessible from the time you select it
from the menu until the time you
make it go away, people are going
to use something else instead of
your desk accessory.

When you put your accessory into a
movable window, there is no reason
why you would not still be able to
use GEM resources and objects for
user interaction, although it may
require the use of a customized
form_do() function. Sample source
code for a replacement form_do()
function is available in the Atari
Developer areas of GEnie and

Com e. This can copied or
modified as needed for your

purposes.

5) Accessories should NEVER speak
until spoken to. Wait until the user
selects the accessory’s menu choice
before doing anything on screen.
Accessories that put up sign-on
messages can cause the system to
hang or reboot, and are just
generally annoying to many users.

As with any rule there are
exceptions, but generally it is a bad
idea for an accessory to make
unnecessary noise at startup. Itis
much better to wait until the first
time the user calls the accessory; any
sign-on or error messages can be
displayed at that time.

Remember that we are talking about
accessories, not TSR’s or
applications.

ApriHMay 1991

|

Graphics on the Porifolio And The .PGC File Format

by Don Messerli, Software Vineyard

Programmers and hardware designers have been
striving to advance the art of computer graphics for
years. It is no surprise then, that serious graphics had
to come to the Atari Portfolio sooner of later.

Portfolio Graphics

Despite the small size of the Portfolio’s LCD screen,

_some rather imlpressive still pictures can be displayed.
As you probably know, the Portfolio’s screen has a text
mode of 40 columns by 8 rows; made up of mel
characters. There is a graphics es available: -
240x64 pixels, which I will discuss.

I will not l%o into the details of how to put the Portfolio
into graphics mode. Refer to the Atari Portfolio
Technical Reference Guide for this information.

Pixels can be manipulated by using the usual display
BIOS interrupts (int 10h services 0Ch and 0Dh). Using
BIOS to set and clear pixels is usually considered very
slow. However, the Portfolio’s BIOS service is fairly
quick compared to a desktop PC, because it doesn’t
have to worry about all the different Eossible dgrxadpsnlﬁcs
modes presented by the various display stan

(CGA, MCGA, EGA, and VGA). Note that graphics are
not preserved if one of the internal applications is

"popped-up" over the top of it.

For dealing with larger portions of the screen or the
entire screen, writing directly to display memory is the
way to go. The Portfolio’s display memory lies at

h. T have found that a mirror lies at address
B800Ch so writing to it has the same exact results.
Unlike CGA, the Portfolio’s display memory is laid out
in a very logical fashion. Since we are dealing with
monochrome graphics, we onlﬁl eed 1 pixel
represent a dot on the screen. Ei ghtIFixels per byte. 30
bytes per screen row of 240 pixels. It you multiply 30
bytsferrowby&rowso dots, you will see that it
takes 1920 bytes to t a complete graphics
screen. Below is a diagram showing this:

colum 0 column 1 column 239
row 0 | 01101011 10010010 10011101

byte 0 byte 1 byt(_e 29
row 1 | 00111001 00001110)
. byte 30 byte 31
row 63 | 00000000 11011001

byte 1890 byte 1919
If we want to transfer an imaéze from memory or disk
to the screen, we just move 1920 bytes into the display’s
screen buffer. That simple, right? Well, not exactly.
The LCD controller in the Portfolio ki its own copy

of the screen image which is not directly mapped into
the memory space of the 8088 CPU. The bytes must be
copied from our display buffer to the LCD controller’s.
This is accomplished by calling the Portfolio’s BIOS
routine to perform a “screen refresh" (int 61h service
12h). This is the same refresh whose behavior can be
modified through the Portfolio’s Setup application.

April-May 1991

The screen refresh looks like multiple wipes (as in
wipes and fades) taking place on ent parts of the
screen simultaneously.

The Need For A Standard File Format

After playing around and exploring the Portfolio’s
graphic capabilities, I decided to write a program that
would give Portfolio owners a glimpse of those
capabilities, and of things that lie ahead. I created some
sample gratghits screens. They were actually scanned
images of the Atari Fuji and Portfolio logos
various advertisements and the box it came in. I wrote
a program in assembler called PGSHOW. It displays a
aphics screen and waits for a keypress or a specified
time interval, then ﬂ)ucits. Istored thsgraphic images on
disk in files with a .PGF extension. Of course, th
were all 1920 bytes in size. It was just a matter of
ﬁadisvlinlgtg\emory to disk and then reading it back in from
T.

As everybod(i; who owns a Portfolio knows, RAM
memory cards are expensive. Every bit of storage space
savings is applauded by the user community. It wasn’t
long before I realized that some form of compression
scheme for storing images on "disk" was necessary.
There are many complex data compression schemes out
there. However, I wanted one that would be quick,

ire little additional code, and be simple for others
to implement. It ended up being the (Portfolio
Graphics Compressed) file format.

Compression can save quite a bit of space, typicall
fm:‘%o to 80%, dependlqlr]:g on the ﬁlel.)a Howslyepirer, Y
because of the compression al%g;ithm I have chosen, it
is possible for a file to become larger. This

with files that have a lot of random dots on the screen
with little reﬁiaion. Digitized photos are the culprits.
Fortunately, use of the s; size of the Portfolio
screen, we probably won’t be seeing too many of them.

The PGC file format has c}uiddy become a standard for
Atari Portfolio hics. Iurge all developers to use the
PGC format. The user community will a&plaud your
efforts and we will all benefit. Al(g;gwi the handful
of programs I have written (detailed below), other
developers have already begun to support the PGC
format. BJ. Gleason has incorpora support for PGC
files in his public domain BASIC inf , PBASIC.,
PBASIC is the most significant public domain program,

and bly the most significant third-
gppl?cragt‘ixgn gf any kind cé'r?'enﬂy avai aﬁaerftzr the
ortfolio.

The .PGC File Format

The following is an excerpt from the PGC file

specification which is documented in the file
PEC.ZIP. See the end of this article for

availability of any files I have discussed.

A PGC file consists of two parts; the header and the
picture data.

Page 5

Header - The first 3 bytes of the file are the PGC
header. This is the only way to tell if the file is a PGC
file or not. This should always be checked when
reading PGC files. Your decoder routines could take a
quick trip into never-never land if you try to decode a
spreadsheet file. :

The three l?'tes that make up the header are the ASCII
codes for ‘P’ and ‘G’ followed by the revision number
in hex. The current revision is 1. These three bytes
should be:

"PG\00I"

Data - The picture data is made up of repeating sets of
single index bytes followed by data bytes. The index
byte tells the decoder how to e the data that
follows. The key is whether the high bit is set or not.
The maximum number of data bytes following an
index byte is 127.

High Bit Set — If the high bit is set, it indicates that the

dadt';l isa lsltxing of identical bytes. 'I'lt;f, l;)ovir] 7 bits b

indicate how many times to repeat the followi e,

from 0 to 127. y "8 byb
Example: 86 FF

High bit of index byte is set, low 7 bits = 6, so repeat

datga byte (FF) 6 hmyets

High Bit Clear — If the high bit is NOT set, it indicates
that the data following iS a string of unique bytes and
should be copied as is. The low 7 bits indicate how
many bytes to copy, from 0 to 127

Example: OA FF 011009 1A BBCEDOFF1A

High bit of index bgte is NOT set, low 7 bits = $0A, so
copy next $0A (10 decimal) bytes as is.

Encoding and Decoding PGC Files

Writing a decoder is fairly strali,ggorward. Llsunﬂ§ 1
contains a C routine to read a image from a file
into a memory buf‘f/st. Of coug, this buffer could be
d:épla' memory. Writing an efficient compressor is a
little II)I'OI'C difﬁrc}:'ult. Listing 2 contains a C routine to
write a PGC file to disk from an image in memory.
PGLIB, discussed below, contains routines to read
and write PGC files.

Pushing the Standard

I have also written several other programs to propagate
support for the PGC format and %':phics on the
Portfolio in general. All of these files are available
online on the Atari BBS, GEnie, and CompuServe.

PGEDIT 1.1 - A program that runs on a desktop PC and
requires 512K, EGA or VGA card, and a Microsoft
compatible mouse. Allows you to create and edit PGC
images on a PC. Italso included support for importing
MacPaint and Print Shop images.

Page 6

PGCOMP 1.1 - A program that converts (compresses)
PGEF files to PGC files.

PGCHECK 1.0 - A program that checks a PGC file for
proper format and optimum compression. This was

designed as a tool for Fg?rammels trying to

implement their own routines.

PGLIB1.0- A lib of canned routines you can add to
your (Microsoft or Turbo) C programs to add graphics
and PGC support.

PGC Grabber 1.0 - Created by popular demand. A
program that runs on the Macintosh and allows you to
grab the upper left-hand corner of a MacPaint picture
and save it as a PGC image.

PGCSPEC.ZIP - The complete PGC file format
specification.

About the Author:

Don Messerli is a registered Atari Portfolio Developer
and President of Software Vineyard. He can be reached
through the following online services:

Compuserve: 72500,1671
GEnie: DMESS

Note: Publication of this standard is not necessarily an
endorsement by Atari Corporation. We encourage
contributions to the newsletter by developers who have ideas
they wish to share with the developer community.

See Listing #1 below and Listing #2 on Page 8.
Listing #1
a Routine to read a PGC image from disk into a

memory buffer. Infile must have already been

. opened and the PGC header read and verified.

ReadPGC(*infile, *p)
FILE*infile;
char*p;

. /* file handle */
/* pointer to destination buffer */

unsigned int c, idx;
int n = 0;

do
c - fgetc(infile) & Oxff;
/* If high bit set, write data bytes index times */
if (c & 0x80) /* Is high bit set? */

/* Index byte */

idx = ¢ - 128; /* Figure out count */
c - fgetc(infile); /* Get data byte */
while%idx--)

pln++] = c; /* Copy byte ’idx’ times */

/* Must be a string of bytes */
t{e] se
index = C; /* Get # bytes */

while(index--) /* Read & Copy # bytes
pln++] - fgetc(infile);

»
~N

}
while(n < 1920);

Apri-May 1991

m

PGC File Fomat
Listing #2

/* Routine to write a PGC file. |

outfile must be opened for writing */
#define LONG 127 /* Size of longest run of bytes */
char header[] = "PG\x01";
/* 'p’ - Pointer to 1920 byte picture data buffer

'outfile’ = file handle of picture file

WritePGC(*outfile, *p)
FILE*outfile;
char*p;

int offset, run, unique;
char buf[128];

/* Write the file header */

fwrite(header, strlen(header), 1, outfile);
g;fset = unique = 0;

{
do

run - 0; /* Check for a run (127 max) */
while((p[offset+run] ~= p[offset+run+1])
& (run < LONG-1
&% (offset + run < 1919))
++run;
}f(run > 0)

if(unique)
{

v if there's a_run */
/* check for a previous */
/* unwritten string */

/* If there’s a string, write index byte */
/* and the string of bytes... */

fputc(unigue & Ox7f,outfile);
]
0

fwrite(buf,1,unique,outfile);
unique = 0;

/* ...and then write the run. */

/* Run is 1 less than actual run length */
fputcErun+129,outfi'le) ;
fputc(p [offset+run; soutfile);
offset += (run + 1);

I1se
buf[unique++] - p[offset++];
while(unique < LONG &% offset < 1920);

}f(um‘que) /* check for a string */

/* If there's a string, write index byte */
/* and then the string of bytes */

fwrite(buf,1,unique,outfile);

fputc(unigue & Ox7f, outfile);
unique - 05

}

while(offset < 1920);
/* Is there still a string to be written 7 */
/* If there’s a string, write index byte */
/* and the string of bytes */

}f(unique)

fputc(unique & Ox7f, outfile);
fwrite(buf,1,unique,outfile);

Apri-May 1991

Cdlelf'lddl’
o
Upcoming Events

June 15-16

Pacific Northwest AtariFest

Steveston School

Richmond, B.C.

For details, contact Terry Schrieber at (604) 275-7944

June 29-30
]Cz;nreatp I.Aakcs Atari Computer Users Conference
e,
For details, contact Patty Marshall at (412) 225-8637

July 20

Blue Ridge AtariFest

Asheville, NC

For details, contact Sheldon Winick at (704) 251-0201

July 27
AtariFest ITI
Indianapolis, IN
For details, contact Bill Loring at (812) 336-8103

August 23-25
Duesseldorf Atari Messe
Duesseldorf, Germand{

For details contact Bill Rehbock

September 14-15

Southern Califnornia Atari Faire, Version 5.0
Glendale Civic Auditorium

Glendale, CA

For details, contact John King Tarpinian at
(818) 246-7286

October 12-13
WAACE Show
For details, leave GEnie Email to J.D.BARNES, or mail

reixest to:

WACCE Vendor Coordinator
C/0 John D. Barnes

7710 Chatham Rd.

Chevy Chase, MD 20815

October 21-25

Fall Comdex ‘91

Las Vegas Convention Center

& Convention Center

Las Vegas, Nevada

For details, contact Bill Rehbock

November 23-24
Chicaco Atari Computer Show
Chicago, IL
For details, contact
Grauzas
P.O. Box 8788
Waukegan, IL. 60079-8788
(708) 71

Page 7

Screen Grid Drawing Algorithm

Mike Fulton

Remember not too long ago when Atari announced
that the Line-A interface would not be supported for
new graphics modes in future machines?” (See last
issue for details.) One thing that’s come to light since
then is that some developers had been using Line-A for
drawing the dots for their screen grids, and were
reluctant to use GEM VDI instead because of speed
considerations.

There’s a solution which takes a new approach to this
groblem, and operates instantaneously even on a basic
MHz 68000 machine. Itis much faster than using -

either VDI or Line-A to draw dot by dot.

The basic idea is to stop drawing each and every dot of
the grid tely. This is an awful lot of calls, and it
ﬁets even worse with high resolution monitors. Witha
ttle preparation, it’s possible to draw an entire line of
dots at the same time, which is much, much faster.

Let’s say you have an 8" x 6" area represented on
screen, with a grid spacing of 1/8". t's 64 columns
by 48 rows, or a total of dots. Or to put it another
way, 3072 Line-A or GEM VDI calls if you draw each
dot individually.

But if you draw a line at a time, you can do it with just
48 VDI calls, one for each scanline that the tgn‘d appears
on. With all but the tightest érid :Eacing, grid
appears on screen instantly from the user’s viewpoint,
even on a basic SMHz machine. Plus, with this
method, if the system has a blitter, it is automatically
taken advantage of.

With a grid, you are drawing dots with a certai _
horizong spyacing. It is quite therefore cg;ite easy to
create a monochrome raster form that is basically a
1-scanline high grid template. This template would
have blank pixels except where the grid dots are
supposed to be. Once your template is set up, then to
draw your grid, you simply blit this form onto the
screen once for eve; e where your grid is
required. If your grid is not exactly the same on each
row it , then you could simply have multiple
templates so that you could use whichever is
appropriate at the moment.

This is a method that should run on any TOS machine,
any monitor, and any resolution in any video mode. It
uses 100% standard GEM VDI and calls and C
bindings, and absolutely no Line-A calls at all.

The sample c}amgram shows one way to use this
method, and for comparison purposes, it also shows off
different dot-by-dot awinkg methods using GEM VDI
and Line-A, so you can see for yourself the s
differences all in one place. However, please note that
although the VDI calls could be made faster by using
custornized bindings instead of the standard ones
supplied with the C compiler, this was not done here in
order to keep the example short.

This method is so fast, just to make sure you know
when it starts and stops, the sample program has a pair

Page 8

of alert boxes surrounding all of the grid drawing calls.
The sample program is shown in listing #1, and 15 also
available in the ATARLRSC Roundtable on GENIE.
The filename is GRIDDEMO.ARC.

Some developers may look at the sample code and be
concerned because their grid doesn’t work out to
exactly every 8th pixel. Sometimes the spacing might
be 4 dots, sometimes 5, or something completely
different, depending on how mapping inches or
millimeters to pixels on screen rounds off.

Never fear, because that doesn’t really matter. If your

grid spacing is such that you sometimes have to have

an extra blank column or row between dots, it’s really

not a problem. First of all, you can easily handle any

horizontal spacing requirements when you are creating
our grid template. If you only want the 5th, 9th, and

d pixels in your horizontal lgrid Iipacing, then set
ate.

only oseﬂ?ixels in your temp ou need every
4th pixel, then set only those pixels. tever your
spacing is, it shouldn't present any particular problem.

And for uneven vertical spacing, you could use a
lookup table containing the scanlines where you need
to draw each row of the grid. For example, you would
set up a lookup table containing the y-axis values of the

es by whatever vertical spacing your grid
requires, such as the example below:

WORD *grid_scans, num_gridscans;

grid_scans =
(WORD *)Malloc(screen.yres*sizeof(WORD));

grid_scans[0] - 4;
grid_scans[1l] - 8;
grid_scans[2] = 15;
grid_scans|3] - 17;

num_gridscans = 4;

Then when you draw your grid, simply loop through
and do eachyspeciﬁed anmgé, in logpylike 5115

for(line = 0; line < num_gridscans; line++)

- grid_scans[line];
B1icogridlineCy 3;

Please note that the above is pseudo-code for example
purposes only, and is not of the demonstration
program nor directly workable as is. Also, the example

rogram has the grid initialization immediately before
the grid drawing, whereas in a real application you'd
want to do this only when you changed or set your grid
‘S'Eacing, or when you ¢ ed screen magnification or

d something else that affected the way the grid
appears on screen.

Also, as was mentioned earlier, if you need to have
different grid temt&lates for different parts of the grid,
then you can do that fairly easily.

In order to access Line-A in a way that is as portable as
possible with different compilers, the use of inline
assembly directives or other compiler specific functions
was avoided. Therefore, a small amount of assembly

Apri-May 1991

language is required to make the actual calls to Line-A.
However, in order to keep the amount of assembl

language to a minimum, a structure was used in the C
hstm to access the Line A variable table, and only the

calls to Line-A are coded in assembly. Listing #2

conmms the short assembly lan e routmcs used to
actually call Line-A. The hstm ed for either
DEVPAC or the assembler in uded w1th the Lattice C
compiler, but should be easily transferable to whatever
assembler your C compiler will work with.

If you have any questions re; the use of this
method, glease feel free to call me at (408) 745-8821 or
leave me on GENIE to MIKE-FULTON.

Screen Grid Drawing Algorithm
Listing #1
/t'ttt*'tt*t.tttt*'tt*t**t*ttt

/* GRIDTEST.C by Mike Fulton */

/l*i*'**t*.t***’*’tt**f*f*t*’*/

#include <osbind.h>
#include <vdiwork.h>

#define LATTICE 1

#if LATTICE

#include <vdi.h>
#include <aes.h>

#define BUSY_BEE BUSYBEE
#else

#include <obdefs.h>
#include <gemdefs.h>
#define MFDB FDB

#endif

#define WORD short

/* Lattice C */

/*t*.**'***t*****lﬁ*t**ﬁ***t***t*ﬁ*ﬁ**t*t**/

typedef struct la_table {
WORD planes, width;
i *1nt1n, *ptsin, *intout, *ptsout;
YORD stuff[50];
} LINEA_TABLE;
VDI _Workstation screen;

WORD g1_apid,handle,clip[4],contrl[12],intin{256]
pts1n[2§6] 1ntout[256 ptsout[zsé !

char gridbuf[300];
MFDB grid, scrn - { OL, 0, 0, O, 0,‘0, 0, 0, 0 };

/ti't't’*t*ttt'*ttttttt**‘ttttﬁt**tﬁttktttttt/

void
ext_inquire(dev)
VDI Workstation *dev;

{
WORD out[57];
vq_extnd(dev->hand1e]to% out);

dev->screentype = out
dev->bgcolors = out[1
dev->textfx_= out[2

dev >cansca]e = out 5],

dev- >? anes = out[4],
dev->lut = out[5];

dev->rops = out 1

dev- >cancontour i- out[7];
dev->textrot = out{8];
dev->writemodes = outE9]
dev->inputmodes ~ out[10
dev->textalign - out[11];

Apri-May 1991

dev->inking - out[12];
dev->rubberbanding -~ out[13];
dev->maxvertices = outj;14]
dev->maxintin = out[1S
dev->mousebuttons = outth].
dev->widestyles - out[17];
dev->widemodes = out[18];

1

/* Open a virtual workstation for the screen */

WORD
open_wwork(dev)
VDI _Workstation *dev;

\sORD i, in[11];

in[0] - Getrez() + 2; /* Device to be opened v/
dev->dev_id - in[0];

for(i = 1' i < 10; infi++] - 1);

in[10] =

i- graf_handle(&dev- >wchar, &dev->hchar,
&dev->wbox, &dev->hbox);
V_t opnvwks in, &i, &dev- >xres);
dev->handle - i;
if(i
emeqm re(dev);
return(i);
}
void
clearscreen()

graf_mouse(M_OFF, OL);
v_clrwk(screen. handle)
graf_mouse(M_ON, OL);

void
w_linea(Q
extern void lineadot();

extern LINEA_TABLE *1 'inea_ptr() H
ister LINEA_TABLE *line_a_table;

X, Y3
form_alert "[0][Using Tine-a calls J[0k]");
raf_mouseg M_.([)F [? 100K1");
ine_a_tab

e - 11ue tr()
’lme_a._table-nntma_s :

for(x = 0; X < screen.xres; X +- 8)
for(y - 0; y < screen.yres; y += 8)
line_a_table- >pts1n[g] - X;

line_a_table->ptsin -y
lineadot();

raf_museg M_ON, OL);
} ¥ rm_alert(1, '[0][Gr1d drawn][ok 1");

void
w_plineQ

short x, y, pxy[8];
fomLa'lertgl, [o] [Usmt); v_pline() call J[0k]");

raf_mouse(M_OFF
or(X = 0; X < screen.xres; X += 8)

pxy[0] = pxy[2] = x;
forE y = 0; y < screen.yres; y += 8)

pxy[1] - pxy[3] -

v_pline(screen. hand'le, . PXY);

raf__mouseE M_ON

orm_alert to] [C?“ld drawn][ok 1");

continued on page 10

Page 9

Screen Grid Drawing Algorithm Listing #1
Continued from Page 9

void
fast_grid()

short x, y, pxy[8];

form_alert(1, “[0]5Using FAST method 1[ok 1");
grid.fd_addr - (void *)gridbuf;

grid.fd_w - screen.xres + 1;

grid.fd_h = 1;

grid.fd_wdwidth - (grid.fd_w + 15) / 16;
grid.fd_nplanes = screen.planes;

grid.fd_stand - 0;

grid.fd_rl = grid.fd.r2 = grid.fd_r3 =~ 0;

for(x = 0; x < 300; gridbuf[x++] = 0x08);

if(open_vwork(&screen))

c'ljp[o] = clip[1] = O;

clip{2] = screen.xres;

clip[3] = screen.yres; .
vs_clip(screen.handle, 1, clip);
clearscreen();

w_pline();

clearscreen();

w_linea();

clearscreen();

fast_gridQ;

v_clsvwk(screen.handle);

apgl _exit();
Pterm0();

Screen Grid Drawing Algorithm

pxy[0] = pxyél] = 0;
pxy[2 grid. fd_

pxy{3

graf_mouse(M_OFF, OL);

OE(y = 0; y < screen.xres; y += 8)

pxy[5]) =~ pxy[7] =y

vro_cpyfm(screen .handle +3,pxy,&grid,&scrn);

pxy[4] -w;;)xy[S] - pxy[6] - pxy[7] = O;

IEFEESEREREREX)

CSECT TEXT

.................

; ladot.s, written

Listing #2

XDEF 1ineadot,linea_ptr

Tinea_ptr:
f ON, OL);

) formoaterce 1o toltcaid drawn 10 ok 1); Peav $2000

. Tineadot:
void dc.w $a001
mainQ) rts

1_apid - appl_initQ);
gragﬂnuse%pgkksm t(g)L); END
ATARI Develoger News
ATARI.RSC Staff
Notice to ST/TT 2. Description of product under Hisoft Signs
1 t will be used .
Developers: e ot w With Goldleat
In the best interests of Atari 3. Description of programmin, Goldleaf Publishing, of Lar ’
Computer Corporation and our 1angu£gt2 or cog;uter syste%ns CA, have signed a distribution deal
dealer base, the developer section is that support your product. with UK. software house HISOFT.
limiting the hardware orders sold U.S. programmers will now have
from our program. It is unfortunate | 4 Projected ship date and much easier access to Hisoft's range
that there are non-commercial distributor for your product. of dgvelopment tools, including
developers ordering through the Lattice C v5, Lattice C/TT, Devpac,
developer program and Please mail or fax your justification ; and Devpac/TT.
necessary business away from our in to Bill Rehbock or Gail Johnson, . .
dealerships. We are asking for your | along with your company name, For more information, contact
Cooperatlon in supporting the Atari contact person, adm’ and phone Goldleaf at (415) 381-7717
team by taking non-commercial number. You will be notified upon
orders to your local dealers. :l?proval of youi;l order to send in Afari A
e hase total.
We understand that there are PEEE arn ANhoUNces
developers in our program to whom ; The exchange/replacement program Two New Porfables
hardware is nec toaproduct i for developers s still in effect. at CeBIT
ghat is currently under development. | you have malfunctionin, ;
pecial permission to purchase merchandise in or out of warranty, .

cquipment may be obiained by please contact Gail Johnson for %" | Atari announced two new portable
submitting justification information } return information. computers at the recent Ce

for each hardware item as follows:

1. Reason for requiring new
hardware.

Page 10

electronics show in Hanover,
Germany.

continued on page 16

Apri-May 1991

Porifolio Appllcc:hon Notes

J. Patton

Included with the Portfolio developer’s newsletter is a
copy of the APB. This booklet is a method of getting
word out to Portfolio users about your Portfolio
products as well as tips on using the Portfolio more
effectively. We would like to invite any developers who
have commercial applications for the Portfolio to
immediately mail or fax sales literature to Don Thomas
here at Atari so that we can tell our Portfolio customers
about it and so it can be included in the next APB. If you
send product for demonstration purposes, our sales -
people really and truly do use them when presenting the
Portfolio.

Please take time to read the followmg notes, which have
been released since the first version of the techmcal
reference manual.

¢ 3.6.3 Executing a RUN file...

A RUN file can be executed from the Command
processor by typing RUN <filename>, or by invoking Int
21h Fn 4Bh at the DOS level as for a normal program, but
with AL set to 80h and CL set to CCh.

¢ APPENDIX C ROM Extensions...

Note: ROM extensions must never leave AL with a value
of 0. This is reserved for use by Atari and DIP.

Q& A
Q: How can I disable the internal applications?

A: The internal applications can be disabled by setting
the flag (app_inapp) that indicates that an application
has been entered. This will prevent the hotkey from
allowing another application to be started. This is useful
when an application needs to lock out text screens from

popping up over graphics screens.
app_psp db 100h-2 dup(?) ;application’s PSP
dw ? ..
app_intl6 dw ? ;original Intl6
dw ?
dd ?
app_oldpsp dw ? soriginal PSP on entry
app_newds dw ? ;application’s data seg
app_inapp db ? ;counts invocations,0 or 1

To determine the application’s PSP use:
Int 61h, Fn 22h -- Get Application PSP

Parameters:

AH 22h

AL Subservice (0 = Get Mode, 1 = Set Mode)
If AL -1

DS:00 pointer of structure in DS:00

April-May 1991

Returns:
If AL=-0

DS:00 pointer to structure in DS:00

Q: I have a problem after initially writing a new file.
When I make a second attempt to write to the file it
produces an error, but it works as expected on a DOS
machine.

A: This problem has been identified as the DOS
function call Int 21h Fn 42h, or LGEEK. This is used to
move the file pointer when a file is extended. The
problem occurs when the new file size becomes a
multiple of the card’s sector size. For the 32K RAM
card this is 128 byte sector size, 256 bytes for the 64K
card, and 512bytes for the 128K card. One workaround
is to produce a maximally sized file to start with and
modify the records within it. A second method would
be to have your application calculate the new file size
so that it is not a multiple of the card’s sector size.

Q: The numeric data stored in the PERMDATA.DAT
file is very different from standard IEEE. Can you tell
me more about it?

A: The structure of the calculator’s sign, exponent, and
mantissa stored in the PERMDATA.DAT file is as
follows:

DIP = One byte Only the 7th bit is used

to represent sign of the number.

Two bytes Exponent to base 10 stored in
two’s complement.

7 bytes Mantissa.

IEEE= One bit Represents the sign of the

number.

11 bits Exponent given with offset of
1023 base 10.

52 bits Mantissa.
New Products

Megabyte Computers has an internal RAM upgrade for

the Portfolio which boosts it to 512K. The upgrade
with a 6 month warranty is $350.00. also offer
new 512K models for $599.95 Contact Megabyte
Computers at (817) 589-2950

BSE in California has released a Portfolio version of
their portable hard disk drive, called the Flashdrive.
The drive uses the Portfolio’s parallel port, a device
driver, and BSE's IDE port to connect drives from 20mb
to 430mb. The 20mb Flashdrive sells for $499. Contact
BSE at (714) 832-4316

New Online for the Portfolio

PFEDIT.ARC - C version of the 160 line editor.

Page 11

Using the AES Scrap Library

The GEM AES Scrap Library
provides a standard method of
communication between
applications for implementing a
clipboard to allow data interchange.

There are two GEM AES scrap
library functions, scrp_read() and
_write().

WORD sc_wreturn -
scrp_write(sc_wpscrap);

The scrp_write() call establishes the
directory and filename of the last
item to be written to the clipboard
folder. A normal sequence of events
for an application to put something
in the clipboard would be:

1) Do a scrp_read() call to
determine the location of the
system’s clipboard folder. If no
existing clipboard folder exists, then
your application should use the root
directory of the system’s boot drive
instead.**

2) Create and write your clipboard
file, using one of the standard file
formats given below, if at all
possible,.

3) Do a scrp_write() call with the full
pathname of the clipboard file so
that other applications will be able
to locate it. Clipboard files should
be of the form "SCRAP.*" where the
filename extension specifies the type
of data contained within the file.

For example, if your application
wrote a raw text file to the
clipboard, it would do something
like:
scrp_write("C:\clip\scrap.txt");

If your application wanted to write
out a bit image graphic instead of
text, then it would do:
scrp_write("C:\clip\scrap.img");
The following filename extensions

are reserved for the following file
formats.

Page 12

Mike Fulton

*.TXT — ASCII only text, with a
CR/LF at the end of each line

*ASC — ASCII only text, with a
CR/LF at the end of each paragraph

* RTF — ASCII only text with
formatting specified through the
RICH TEXT FORMAT defined by

Microsoft

*.GEM — Standard GEM Metafile
Graphics Image

*IMG - Standard GEM Bitmapped
Graphics Image

*.DIF - Data Interchange Format -
Spreadsheet/Database data

*.EPS — Encapsulated Postscript File
*,CVG - Calamus Vector Graphic

WORD sc_rreturn =
scrp_read(sc_rpscrap);

The scrp_read() function returns the
directory and filename of the last
item written to the clipboard. A
normal sequence of events for an
application to read an item from the
clipboard would be:

1) Do ascrp_read() call to get the
pathname of the last clipboard file.
If scrp_read() returns zero, then the
clipboard folder has not been set
since the computer was last reset. If
the return value is non-zero, then
the clipboard directory and filename
of the last item placed in the
clipboard is returned to you.

2) If scrp_read() returns an error
code of zero, then the application
should indicate to the user that
nothing is available on the
clipboard.

3) If the filename returned by
scrp_read() ends with ".*" then the
clipboard directory has been set, but
nothing has been placed in it since
the computer was last reset. See
item #5 below for more info.

4) If the filename returned by
scrp_read() indicates that the
current clipboard file uses a file
format that your application doesn’t
understand, then see item #5 below
for more info.

5) If the current clipboard file has
not been defined, or if it is a file
format your application does not
support, it is up to the application to
optionally search the cli

directory for a "SCRAPxxx" file it
understands. (If the clipboard
directory is not defined, an
application may optionally check
the root directory of the boot drive,
as noted earlier.)

(If the application cannot find or
rejects the current clipboard file, and
then searches for and finds a
different clipboard file, it is
recommended that it give the usera
choice or at least a notification of
what's going on.)

**The best way to determine the
system’s boot drive is to do a GEM
AES shel_envr() call searching for
the PATH environment variable,
like this:

found = shel_envrn("PATH=");

When you start up your system,
GEM AES creates a PATH
environment variable pointing to
the boot drive. The AES's PATH
environment variable should not be
affected by commandline shells such
as Micro C-Shell, the Mark Williams
C Shell, or GULAM.

Please note however, that the PATH
environment variable created by the
AES is done incorrectly. Instead of
"PATH=C:\" followed by a zero
byte, it is set up as "PATH=", zero
byte, "C:\", zero byte. So if
shel_envm() returns a pointer to a
NULL, you should increment the
pointer one byte ahead and look
again for the actual path
information.

Apri-May 1991

Specification for GEMDOS File Sharing & Record Locking

The following information describes
the methods that will be used when
GEMDOS is extended to allow file
sharing and record locking. Please
note that at this time, despite the
fact that this document discusses
how certain aspects of these
extensions relate to networking, this
is not a full-fledged network
specification. Developers are
encouraged to write software with
multiuser capabilities in mind when
at all possible.

Detecting The
Extensions

An application can determine if the
extensions are available by checking
the Cookie Jar for the presence of an
" FLK" cookie. See the STE TOS
RELEASE NOTES for more
information on the Cookie Jar.

_FLK cookie

The cookie *_FLK" indicates the
presence of file and record locking
extensions to GEMDOS. If this
cookie is not found, then the
application should assume that file
and record locking extensions are
not installed and make no GEMDOS
calls that rely on them, or pass
parameters to GEMDOS functions
other than those given in the
standard GEMDOS documentation.
The value field of the "_FLK" cookie
should contain a version number.

If the _FLK cookie is found, then the
following extensions and changes to
GEMDOS shouid be observed:

New GEMDOS call:

LONG
Flock(handle, mode,
start, length);

WORD handle;
WORD mode;

LONG start;
LONG length;

GEMDOS Function code - $5C,
(92 decimal)

Apti-May 1991

Mike Fuiton

The Flock() function is designed to
lock a specified portion of an open
file to prevent other processes from
accessing and/or modifying that
part of the file. ’

The handle parameter is the
GEMDOS file handle of the open
file.

The mode parameter specifies if the
portion of the file is being locked or
unlocked. Valid values are:

0 = Create a lock, starting at start
and extending for length bytes.

1 = Remove a previously set lock.
Parameters start and length must
match a previous lock.

The start parameter is the offset
from the start of the file, in bytes,
where the lock will begin.

The length parameter is the length of
the locked area, in bytes. Once a
lock has been set using a certain
handle, other file handles will not be
able to read or write the locked area
of the file. If there are outstanding
locks when a file handle is closed,
the behavior is undefined.

If you duplicate a file handle, any
existing locks are inherited by the
duplicate file handle. If you use
Fforce() to redirect a standard
handle to a file with locks, the locks

i?locko returns an error code ind0.L,
see the section below on GEMDOS
Extensions Error Codes for details.

NOTE: File locks should be used as
though they are strictly advisory. Do
not rely on getting back error codes
from Fread() andfor Frorite(). A
program which is aware of record
locking should set a lock on the file
immediately before accessing it and
clear the lock immediately afterwards.

Changed GEMDOS call:

WORD
Fopen(filename, mode);

CHAR *filename;
WORD mode;

GEMDOS Function $3D,
(61 decimal)

The Fopen() call is designed to open
an existing file and return a file
handle that can be used for
accessing that file. Additional
information relating to file sharing
can now be included in the mode
parameter.

The filename parameter is a pointer
to a character array containing the
filename of the file to be opened. If
only the filename is given, without a
drive and/or path specification, the
file is assumed to reside on the
current default drive in the current
default path.

The mode parameter indicates how
the file is to be used. Previously
only bits 0-2 were used with this
parameter. Bits 0-2 are still used to
indicate the file access, which
indicates what you want to do with
the file. Bits 4-6 are now used to
specify the file sharing modes. The
sharing mode you use indicates
what sort of access you want to
allow other which may
want to use the file.

Inheritance Flag
Sharing Mode

. . . R. . . Reserved
..... A A A Access code

Bits 0-2 of mode are used for the file
access mode, This is the same as the
original version of GEMDOS
without the extensions. The bits
have the following meanings:

File Access Modes

Read only access
Write only access
Read/Write access

[« R =N
=00
OO
LI I |

Page 13

Bit 3 of mode is reserved and should
always be set to zero.

Bits 4-6 of mode are the sharing
mode bits and define what will
happen when more than one
program attempts to open the same
file. The sharing mode is set by the
first process to open a file, and
subsequent Fopen() calls to the same
file will fail if they attempt to seta
conflicting mode. You can open the
file again in a more restrictive mode.
There are five sharing modes, as
shown in the table below.

When a second attempt is made to
open a file which is already open,
GEMDOS tests the sharing mode the
file was originally opened with
against the access requested in the
second operation, and allows the
second open to succeed only if the
two modes are compatible. For
example, if the file is originally
opened with the Deny Writes flag
set, then you can open the file again
only for reading, not for write or
read/write.

An open will fail if its share mode
denies something which another
handle already has. For example, an
open for read access with Deny
Writes will fail if the file is already
open for Write access.

Compatibility mode is designed to
allow existing programs to function,
and it is assumed that programs
using compatibility mode are not
aware of file sharing and the related
specialized error messages.

A compatibility mode open call for -

read access can be mutated into
another mode if the file’s read-only
flag is set. In this case, the mode is

S SR S—

mutated into the Deny Writes
sharing mode. From that moment
on, it isn’t a compatibility mode

attempt any more, and you
should refer to the rules for opens
with Read Access and Deny Writes
sharing mode instead.

Otherwise, the access and sharing
modes work pretty much as

ed. Anattempt to openina
"deny" mode will fail if someone
already has the file open with the
access you want to deny. Ifit
succeeds, then the file cannot be
reopened with the access you deny.

If you attempt to open a file in
compatibility mode and the
mutation described above does not
occur, it will succeed only if the file
isn’t open at all already, or if it is
opened by the same process in
compatibility mode. Once open in
compatibility mode, the file can’t be
opened by any other process in any
mode, and cannot be opened by the
same process in anything but
compatibility mode.

Bit 7 of mode indicates if a child
process can inherit the use of this
file. When a child process inherits a
file handle, it inherits the file’s
access and sharing codes. If bit7 =
0, a child process can use the same
handle as the parent to access the
file. If bit 7 =1, the child process
must open the file itself to obtain a
new handle, and existing file
sharing restrictions must be
observed. However, regions of the
file locked by the parent are not
accessible to the child.

Standard GEMDOS error messages
apply as before, as well as the new
error codes described below.

File Sharing Modes
Bit 6 5 4 of mode parameter

0 0 0 = Compatibility mode

00
01
01l
10

1 = Deny Read/Writes, file may not be re-opened

0 = Deny Writes, file may be re-opened for read only
1 = Deny Reads, file may be re-opened for write only
0 = Deny None, file may be re-opened for read/write

Table 1, File Sharing Mode Bits

Page 14

Changed GEMDOS call:

WORD
Fcreate(filename, attribs);

CHAR *filename;
WORD attribs;

GEMDOS Function $3C,
(60 decimal)

When a file is created using the
Fcreate() call, the sharing mode is
set as though the file already existed
and you opened it for read /write
access with Compatibility Mode
specified.

If a file already exists and is already
open when you try to create it, then
you should get an access denied
error (without the extensions the
behavior is undefined).

Otherwise, Fcreate() functions as
before.

GEMDOS Extensions Error Codes:

EOK (0) Operation was successful,
NO error.

ELOCKED (-58) Record is locked.
Returned if requested portion of file
is already locked, or if it overlaps a
locked portion. This error will also
be returned from Fread() and
Fwrite() calls when accessing
portions of the file which have been
locked to different file handles.

ENSLOCK (-59) Matching Lock not
found. Returned if the values
specified for a lock removal
operation do not match a lock set
operation for the same handle.

All other standard GEMDOS error
messages also apply.

Networking

Since one of the primary reasons for
needing file sharing and record
locking is to allow multiple nodes
on a network to share files, we will
discuss a few things about
networks.

ApritMay 1991

_NET cookie -

The cookie "_NET" indicates the
presence of networking software. It
does not imply anything about file
and record locking. Itis the
responsibility of the networking
software to install the _NET" cookie
and initialize the pointer to the
structure. If the *_FLK" cookie is not
available, it is the responsibility of
the networking software to install
the GEMDOS extensions and the

" _FLK" cookie as well.

The value field of the cookie is a
pointer to a structure of the format
shown in table #2. Additional
network-specific information should
be stored immediately following
this structure.

Installing & Checking
For The Cookies

An application should only check
the cookie that covers the resources
it needs. In other words, an
application should not be checking
the "_NET" cookie if all it is worried
about is file locking. Accordingly, a
program that sends EMAIL across a
network probably only wants to
know about the network and won't
care about file and record locking.

It is also the responsibility of the
networking software to create a

cookie jar if no existing one is found.
See the STE TOS RELEASE NOTES
formore information on the cookie

jar.

Comments and
Suggestions, Anyone?

I'am at this time soliciting comments
and suggestions regarding certain
aspects of this specification.

First, we're interested in
standardizing at least part of the
information following the structure
pointed to by the "_NET" cookie.
What sort of information should go
here that an application should
know before making calls to the
network software? What calls, if
any, can an application assume are

April-May 1991

available if it finds a generic _NET
cookie? What calls should be
common to all networks? We
would like to specify as much of this
as possible, as quickly as possible, so
that products from different
publishers of networking software
can store this information in the
same place and conform to the
standard.

Secondly, as stated before, this
specification currently covers only
file sharing and record locking.

of what the "_NET" cookie
should indicate are still mostly
undefined. However, we would
also like to solicit opinions and ideas
about other aspects of a network
implementation. However, please
keep in mind that the specification
so far conforms very closely to
MSDOS, and we would like to stick
with that as much as possible.

Finally, there have been a couple of
other networking extension outlines
distributed by various developers
throughout the world. However,
compatibility with these protocols is
not a primary concern, as these
developers are willing to modify
their software as needed to conform
with an official Atari specification.

—

This is mentioned because at least
one of these outlines contains a
much wider range of functions than
this specification, and some people
may feel that this specification gives
up a lot of functionality. However,
careful examination will reveal that
there is a lot of redundancy to the
functions detailed in that outline,
For example, a separate file locking
function is not required, because
you can simply do an Fopen() call
with the sharing mode set to Deny
Read/Write, and the file will be
untouchable by any other process.
Also, separate functions for locking
and unlocking are unnecessary, as
the flag in the Flock() function
detailed above allow it to both lock
and unlock records.

Please address any questions or
comments to:

Mike Fulton

Atari Developer Support
1196 Borregas Ave.
Sunnyvale, CA 94088
US.A.

(408) 745-8821 - voice
(408) 745-2094 - fax

GEnie = Mike-Fulton
CIS =75300,1141

struct netinfo {
Tong publisher_id;

/* Special code for publisher, */

/* to be assigned by ATART (USA) */
/* Usually a four-byte ASCII string */

/* such as "ATRI" */

/* Version number of the network, */

long version;
/* to be assigned by the publisher */

Table #2, Network information Structure

Publisher ID’s assigned as of May 29, 1991

The following Publisher ID codes have been assigned as of the above date.
These are the values contained in the publisher_id field of the structure
pointed to by the _NET cookie.

Application Design Software = "A&D\0"
Pams Software = "PAMS"
Itos Software = "ITOS"

Table #3, Publisher ID Assignments

Page 15

Atari Developer News
Continued From Page 10

The first machine is known as the
STylus, and is about the size of a
magazine. It has a built-in LCD
screen, but no keyboard. Instead of
a keyboard, the machine comes with
aspecial stylus which the user uses
to write text directly onto the screen.
Special software built into the
machine’s ROMs will transparently
convert the user’s writing into
characters and pass them along to
the application, just like they had
been on a regular keyboard,
and includes the ability to adapt to
the users writing. The pen also acts
to move the mouse pointer on
screen, and will work with current
applications like Degas and

y-Draw.

If a keyboard is required, the
machine will accept any M%aé
MegaSTE, or TT keyboard ugh
its built-in keyboard connector.

The Slelus will be available with
either T or 4 megabytes of memory,
but the 1 mega version will not
be upgradable due to the way the
machines are designed for power

considerations. Battery life is
expected to be 10-20 hours.

A special expansion connector will
allow the user to hook up floppy
and hard disk drives. The machine
will use small }f)(l)u -in JAIDA RAM
or ROM cards for STylus-specific
applications. These are similar in
appearance to the cards used by the

ortfolio, but they are not
compatible.

The STylus is aimed more at a VARs
and vertical applications than the
existing ST/TT market.

The second machine is the ST Book.
This is a small notebook-sized
computer which weighs about 4-1/2
unds. It uses a built-in, non-
acklit LCD screen. It will include a
built-in IDE hard disk interface and
drive with a transfer rate similar to
that of ACSI devices. A built-in
touch pad serves to operate the
mouse pointer, and there is a
connector for an external numeric
keypad with external mouse and

joystick ports.

The ST Book uses the same Nicad
battery pack as the STylus, and

battery life is expected to be 5-10
hours. However, if the batteries go
dead, your data will be safe in the
system’s RAM for 50-60 hours.

A special SAVE AND RESUME
function will save the system’s
entire state and shut the power off.
Later when you turn it back on,
you'll be rigi'lt where you left off,
even in the middle of a program.
Closing the machine’s lid will do
this automatically.

There is no built-in floppy disk
drive, but an external expansion
connector will allow the user to
hook up external floppy disk drives
and/or ACSI hard drives.

Additional information on these
machines will be forth coming in the

. niext issue of ATARLRSC. No

information about availability of
machines or documentation tor
developers is available yet, but such
information will be announced in
ATARIRSC when it is available.

Atari Corporation
1196 Borregas Ave.
Sunnyvale, CA 94088

ATARI.RSC
The Developer’s Resource

