Vol. IV, Issue 1

November 1990 - January 1991

Wow... it’s been quite a busy year so
far! Let me quickly recap the
goings-on at Atari in the last two
months. MegaSTE and TT
computers are currently shipping to
key dealers and VARs across the
United States at incredibly lucrative
prices. The TT030/2-50 (2
megabytes of RAM, 48mb hard
drive) has a retail price of only
$2399.95, and the TT030/8-80 is
priced at only $3799.95. The two
and four megabyte versions of the
MegaSTE (both include a 48mb hard
drive) are $1699.95 and $1849.95,
respectively. Profit margins to the
dealers have been increased
significantly, so street prices will be
lower, of course; the two megabyte
TT will probably be sold street price
for about $2k, the eight megabyte
version about $3k, and the MegaSTE
will probably be seen for around
$1200. Ialmost forgot to mention
the 1040STE... it now retails for
$599.95.

We have implemented the Strategic
Partner dealership program,
whereby most stores will purchase
all product except TTs through
regional distributors such as Pacific
Software, Almo Distributing, and
Josha Corporation. This will
provide the smaller dealers that
can’t afford large quantities of
inventory with a steadier flow of
product, much faster shipping, and
in most cases "one stop shopping”
for hardware and software.

The key dealers will grow out of our
existing dealer base, primarily by
displaying high-end product
knowledge, customer service and a
professional sales attitude. We will
be working very closely and
personally with the key dealers,
providing market development
funds, low or no cost demo

The Bottom Line

hardware, and hopefully with your ,
assistance, software training. This-
will allow us to coordinate our
efforts better as we introduce new
products and sales programs.

JNATARY

We are instituting a new
warranty/service program shortly
that will suppo:

rt our customers and
dealers far better than any systems
we have used in the past. The new
system is streamlined and very
customer oriented. It should make
it much easier to sign up new
dealers and for dealers to sell
product. Ihope to have the details
for you in next month’s newsletter.

Speaking of the newsletter, The
ATARI.RSC has returned with a
new look and feel. We will be
including more information
pertinent to developing applications
for the new product line with your
needs in mind. In general, it will
have a more "techy" feel, with lots of
code fragments and programming
examples. We will be including
message threads from the
ATARILRSC roundtable, Atari’s
official developer support platform
on GEnie. It is going to be a busy
year, and we will do our best to
keep you informed of new product
developments.

Moving to the future, I am
determined to make the current
chicken and egg situation in the US
market end quickly. We can no

Bill Rehbock, Director of Technical Services

longer continue going through the
loop of: It's great hardware, but
there isn’t any software; there isn’t
any software because there aren’t
any sales; there aren’t any sales
because there aren’t any dealers;
there aren’t any dealers because
there isn’t any product; there isn’t
any product because it’s all going
over to Europe where there is
software and a high demand for the

product.

I am currently working with several
European and American developers
and publishers to bring software to
the United States and to make sure
that it is properly supported and
represented. If you have the ability
to provide product support and are

confinued on page 12

(ATARLRSC)

. hgig_espurce File

s rmson
i

- ATARI CORPORATION
Sam Tramiel (408) 745-2324

contact Bill
permission,

Page 2

Your Links to the LYNX

Gail Johnson

Many of you Iportant Developers need a sgecial lift after a hard day’s
programming. In recognition of this, I am offering the LYNX game
system, cartridges, and accessories at reduced prices especially for you.

ders should be sent with a check or money order and a product
description to the address given below. Please note that there is a limit
of one item each per developer. Have fun!

PARTNO. DESCRIPTION PRICE

PA2002 LYNX Game System (includes California

Games, Comlinx cable, & AC Adapter) $133.00
PA2020 Blue Lightning 23.50
PA2022 Ram?aée 23.50
PA2028 Chip’s Challenge 23.50
PA2036 Road Blasters 27.00
PA2021 Electro Cop 2350
PA2035* Robo-Squash 23.50
PA2024 Gauntlet 27.00
PA2043 Rzr%‘ar 27.00
PA2029 Slime World 23.50
PA2023 Gates of Zendocon 23.50
PA2026 Xenophobe 23.50
PA2031 Klax 27.00
PA2030 Zarlor Mercenary 23.50
PA2057 Ms. PacMan 23.50
PA2041 Paperboy 27.00
PAG1200 Power Supply 7.00
PAG3400 Sun Visor/Screen Guard 3.50
PAG3300 Auto Adaptor 14.00
PAG3350* Carry Case, Large 14.00
PAG3375 Carry Case, Small 10.50

*out of stock at print time

Please include sales tax for your area
(IL add 6.75%; NY add 8%; CA add 7.00%; TX add 8.25%)

Submit orders to:

Atari U.S.Corporation

Post Office Box 3427
Sunnyvale, CA 94088-3427
Attn: Gail Johnson

Atari Softsource

Dan McNamee

Atari Softsource is ready to go at this time, all we need now is your
entries. Please, if you haven’t done so yet, make your entries NOW!

Doing your entries is not difficult or all that time consuming if you look
through my past articles and prepare the information you need before
you start. Believe me, I know. I have done more entries, to date, than
anyone else. Even if your entry in Softsource only generates one
additional sale for you, then it has already paid for itself. Even if you do
not have a demo of your product available, do the text entry into the
database. Demos are not required, but they will help sell your product.

Until next time...

November 1990 - January 1991

“your experience

would be val

! obtain

Programming With a Hzgh Neat-O Factor
Bill Rehbo
Since its introduction in 1985, the ST i The Moniterm board for the Mega To determine the number of
has evolved quite a bit. The made it apparent that software columns and rows available in the

capabilities of the machine have
been enhanced by improvements
from Atari and third-party
developers. The graphics and
sound capabilities have improved
tremendously with the introduction
of the TT as well as add-on boards
from companies such as Image
Systems, Moniterm, Matrix, and
Maxon.

As these enhancements come into
use, not only does compatibility
become an important factor in
software design, but making sure
that software takes advantage of
new system capabilities is crucial.
As the Atari computer product line
evolves, it becomes essential that
one writes with future platforms in
mind.

November 1990 - January 1991

would have to expect changes in the
environment it was running in and
act accordingly.

The most common mistake for an
application is making assumptions
about the current video mode
because of the return value of the
the Getrez() call. Using Getrez()+2
is valid for opening a virtual
workstation with the correct screen
fonts, but you should not make any
assumptions regarding screen size
or color information based on the
value returned by the call

The VDI will always return all of
the correct information regarding
maximum screen height and width,
maximum colors available and
number of bitplanes.

current system font, you can divide
the screen size (returned by the
open virtual workstation call) by the
size of the system font, which is
returned in the first two values from
the graf_handle() function.

Ideally, an application should allow
the user to set and save his window
size, location, and other preferences,
but the application has to act
accordingly if the user runs the
application in a resolution other
than what the preferences were
saved in.

This will be a semi-regular column
in the ATARIRSC; in future
installments, we'll discuss the
importance of windows in
multi-tasking environments and
appl_read() and appl_write() calls.

Page 3

With the recent introduction of the
Atari TT030 and FSMGDOS, some
developers have discovered that
their programs do not function
correctly or do not take full
advantage of the machine’s abilities,
such as the TT’s new screen modes.
In many cases the problem is that
that the GEM VDI workstation is not
being opened or used correctly.
Instead of obtaining information
about the display screen through
GEM VDI, some programmers have
used shortcuts which worked in the
past, but which will not function
correctly with new machines and
software.

For example, with many older
programs, if Getrez() doesn’t return
0 for ST Low Resolution, or 1 for ST
Medium, they assume that the
screen must be in ST High
Resolution. In the old days, this
would work and programmers
wouldn’t realize they hadn’t done
things correctly. But with the TT's
new video modes, or with a large
screen monitor on the ST computers,
this method is going to run into
problems.

These shortcuts were used to get
information about the system
because the programmers believed
this method was significantly
shorter and easier than using the
correct method of obtaining the
information through GEM VDL
However, most programs using the
shortcuts actually gain very little,
because they end up doing most of
the required GEM VDI calls
anyway, but do not take full
advantage of the information
returned.

In order to make the correct method
easier to use, and to provide an
extra incentive to avoid using
shortcuts, I have created aC
language structure to contain all the
information for a virtual
workstation.

Using a structure for the VDI
workstation information has the

Page 4

much more useful names without
having to resort to keeping track of a
bunch of different global variables.
For example, isn’t something like
"screen.numcolors” much easier to
understand and remember than
"work_out{13]"? Also, this has the
advantage of hiding extraneous
information when you don’t need it.

The best part is, you gain these
advantages without giving anything
up. Virtually all C compilers are
smart enough to generate the same
code for a reference to a member of
a structure as for a global variable or
member of an array. (In fact, some
compilers will generate better code
for accessing structures than for
array members.)

The demonstration program in
listing #2 includes the functions
necessary to open VDI workstations
using our structure. It starts by
initializing the program with GEM
AES, and then outputs some sample
graphics to a screen workstation
followed by a printer workstation.

You should use completely separate
structures for different devices. Use
one to contain information for the
screen and another one for the
printer, another one for a metafile,
and so on. Note how listing #2 has
one structure named “screen” and
one named "printer”. If your output
functions need to talk to more than
one device, you should consider
using a pointer to the current
workstation structure, as shown in
the output() function in listing #2.

Using a pointer to your current VDI

workstation information makes it
easier to write the output portion of
your programs to work with
different GEM devices. The
workstation structure includes a
device ID field that can be used to
determine if the workstation is a
screen, printer, or any other device.
Your program can check this before
doing anything specific to a certain
device (like changing the filename

VDI WORK?AT kA;!I”ONS REDEUX
advantage of giving everything for a metafile, for example). For

example, at the end of the output()
function in listing #2, it checks for
device 21 (the printer) to see if it
should do a v_updwk() call.

In Listing #2, The top of the
program includes some of the
standard C header files, and also the
new header file VDIWORK.H,
which contains the definition of our
C structure for the GEM VDI
workstation information, as shown
in Listing #1.

Next comes a declaration of two
workstation structures, "screen" and
“printer”, which will hold
workstation information for these
devices.

The open_vwork() function opens a
virtual workstation for the current
screen resolution, and places the
workstation information into the
structure which was passed, via a
pointer, to the open_vwork()
function.

The open_work() function is similar
to open_vwork(), except that it
opens a physical workstation
instead of a virtual one. Italso
accepts an additional parameter
which is used to specify the desired
device. This can open printer
devices, metafile devices, and so on.

The ext_inquire() function does an
GEM VDI vq_extnd() call (extended
inquire) to get additional
information about the workstation.
It is used by open_vwork() and
open_work(), and should also be
used by your application after doing
something which may affect the
workstation information (such as
loading or unloading fonts).

The remainder of the program is
mainly there just to demonstrate the
use of the structure and the
functions just mentioned. The
main() function initializes the
program

continued on page 5

November 1990 - January 1991

VDI Workstations Redeux by the AES graf_handle() call. These An ARC file containing these

(continued from page 4) values can be used, along with the listings is available on GENIE in the
screen resolution, to determine the ATARI.RSC roundtable. The

with GEM AES, and then tries to number of columns and rows of text filename is OPENVWRK.ARC. If

open a virtual workstation to the available.
screen using open_vwork(). If this is

successful, then it calls the output()

you have any questions regarding
these listings, please leave EMAIL to

The sample listings have been tested = MIKE-FULTON, or call me at Atari

function, which just does some with Mark Williams C v3.0.9, and at (408) 745-6833.
simple graphics. Next, it tries to with Lattice C v5.0.4. The top of
open a printer workstation using listing #2 includes some #define
open_work(), and if successful, calls statements that customize certain
out~ut() again to do some graphics, parts of the program for different
this time to the printer. compilers. However, the program
should work with little or no
Besides the VDI workstation modification with just about any C
information, the structure also stores compiler for the ST/TT. See Listing #1 below and
the system font size values returned Listing #2 on page 6.

= WORD zero7;
VDI Workstations Redeux WORD mirwmark , minbmark;
Llshng #‘l WORD maxwmark, max rk;
WORD screentype; /* Stuff returned */
/* by vq_extnd() ¥/
/*VDIWORK.H */ WORD bgcolors, textfx;
/*by Mike Fulton, ATARI CORP. */ WORD canscale;
. . WORD planes, 1ut;
#ifndef WORD /* if WORD not already */ WORD rops;
#define WORD short /* defined, then define */ WORD cancontourfill, textrot;
#endif * it as a short int, */ WORD writemodes;
/* which is a 16-bit size */ WORD inputmodes;
/* variable in all current */ WORD textalign, inking, rubberbanding;
/* ST/IT C compilers */ WORD maxvertices, maxintin;
/* including MWC, Alcyon, */ WORD mousebuttons;
/* Lattice, & Aztec */ WORD widestyles, widemodes;

/* 1If your compiler is */

! ! 1 reserved[40];
/* different, fix this! */

WORD v
} VDI_Workstation;

typedef struct vdiwk{ .
WORD handle, dev_id; /* Handle, & device */ /* Array indices for cangdp[] and gdpattr[]
/* ID opened */ members of structure ¥/
WORD wchar, hchar, wbox, hbox; /* Returned */ enum WsGDPs { gdpBAR, gdpARC, gdpPIE, gdpCIRCLE,
* by graf */ gdpELLIPSE, gdpELLARC, gdpELLPIE,
/* handle() */ gdpRRECT, gdpFRRECT, gdpTEXT };
WORD xres, yres; /* Stuff returned by */ /* values for gdpattr[] member */
/* v_opwk() */
WORD noscale; enum WsAttributes {attrPLINE, attrPMARKER,
WORD ixel, hpixel; attrTEXT, attrFILL, attrNONE };
WORD cheights; . .
WORD linetypes, Tinewidths; /* Type flags for wstype member */
WORD markcrtypes, markersizes;
WORD faces, patterns, hatches, colors; enum WsTypes { wsOUTPUT, wsINPUT, wsINOUT,
WORD ngdps; rsRESVD, wWSMETAFILE };
WORD cangdps [10] ;
WORD gdpattr[10]; 7 /* Flag values for textrot member */
WORD cancolor, cantextrot;
WORD canfillarea, cancellarray; enum WsTextRot { TrNONE, Tr90, TrANY };
WORD ?al ette;
WORD locators, valuators;
WORD choicedevs, stringdevs;
WORD wstype;
WORD minwchar, minhchar;
WORD maxwchar, maxhchar;
WORD zero35;
WORD maxwline;

November 1990 - January 1991 Page 5

VDI Workstations Redeux
Listing #2

/* VWRKDEMO.C by Mike Fulton, ATARI CORP. */
/* Copyright (c) 1990, ATARI CORP. */

#include <osbind.h>
#include <vdiwork.h>

#define MWC 1 /* Choose your complier */
#define ALCYON_C O /* here! These can be */
#define LATTICE_C O /* defined in_the */
/* makefile, if you are */
/* using make, but isn’t */
/* necessary unless you */
/* are trying to write */
/* portable code */

#if (MWC | ALCYON_C)
#include <gemdefs.h>
#endif

#if LATTICE_C

#include <aes.h>

#define BUSY_BEE BUSYBEE
#endif

/Q*"tt"*"*tttt*ttt*tt'i*t**t'***i'**ti**/

/* Mark Williams, Alcyon */

/* Lattice C */

VDI_Workstation screen, printer;

short gl_apid, handle
contr1[12], 1nt1n5256], ptsin[256],
intout{256], ptsout[256

void ext_inquire(), output();

tttfttttt.tttttt*tt*ttt't*tt*tttttt*tit**t*i/

/* Open a virtual workstation for the '/
/* current screen resolution.

/* 'dev’ - pointer to workstation structure '/
/"".*t*"'.'**t'ti**"***'i"*'*t'ttt.t'ti*/

short
Ben_vwork(dev)
V I_Workstation *dev;

short i, in[11];

in[0] - Getrez() + 2;

dev->dev_id = in[0];

for(i = 1; i < 10; in[i++] = 1);

in[10] - 2;

i= graf_hand]e(&dev->wchar, &dev->hchar,
&dev->wbox, &dev->hbox);

V_ opnvwks 1n &1, &dev->xres);

dev->handle - i;

if(i)
ext_inquire(dev);

/* Device to be opened */

return(i);

tt**'t*ttttfﬁt'ttttk****t***ittttt*t**tt't*t/
/* Open a physical workstation for the */
/* spec1f1ed device. *
/* 'devno’ - device (e.g 21 for pr1nter) */

/* 'dev’ = pointer to workstation structure */
/tt*t*tttttttt'ﬁ*tt*t*tt*f*tttttt*t*ﬁi*tt'tti/

short
ogen _work(devno, dev)
ort devno;

¥DI_Workstat1on *dev;
short i, in[11];

in[0] = devno;

dev->dev_id = devno;

Page 6

for(1 =1; i < 10; in[i++] =1);
in[10] - 2;
i = devno;
v_opnwk(1n, &i, &dev->xres);
dev->handle = 1i;
if(i) .

ext_inquire(dev);

return(i);

}

void
ext_inquire(dev)
VDI_Workstation *dev;

short out[57];
vq_extnd(dev->handle, 1, out);
/* Get stuff returned by vq_extnd() */

dev->screentype = out[0];
dev->bgcolors = out[1];
dev->textfx = out[2];
dev->canscale = out[3];
dev- >?lanes B out[4 H
dev->lut = out[5];

dev->rops = out{6

dev- >cancontourf111 = out[7];
dev->textrot = out(
dev->writemodes - outtQ]
dev->inputmodes = out[loj
dev->textalign = outill],
dev->inking - out{12
dev->rubberbanding - out[13];
dev->maxvertices = out[14
dev->maxintin - out[1S
dev->mousebuttons = outtls],
dev->widestyles = out[17];
dev->widemodes -~ out[18];

}

/i*t*t*’f’.t*t*t*t*t**.tt*ttt*’tt'ttt'frt*t

/: Do sample graphics to specified device :/

/* The input parameter 'dev’ should be a */
/* pointer to the workstation structure */

/* for the desired VDI device.
/tt'tttt*Qttt*t*t**i**'t**t'tttf*'*t*ttttf&/

void
output(dev)
VDI_Workstation *dev;

{
short xsteps, ysteps, clr, pxy[8];

xsteps = (dev->xres/2) / dev->colors;
if(! xsteps)
xsteps - 1;

ysteps - (dev->yres/2) / dev->colors;
1f(! ysteps)
ysteps = 1;

vsf_interior(dev->handle
vsf_style(dev->handle, 19),

for(clr = 0; cir < dev->colors; clr++)

pxy {0 0 + (xsteps * clr);

pxy[1 0 + (ysteps * clr);

pxy dev->xres - éxsteps * clr;;
dev->yres - (ysteps * cir);
vsf co1or(dev->handle, clr);
}v_bar(dev->handle, pxy);

if(dev->dev_id == /* If outputing to */
v_updwk(dev- >hand1e); /* printer device */
/* then update the */

/* workstation */

continued on page 7

November 1990 - January 1991

VDI Workstations Redeux — Listing #2

(Continued from page 6)

/tttt**tt***t*t*********ttt****t**ﬁ*t**t*i***ttt*l
/* main() initializes the program with GEM AES, */
/* then attempts to open workstations and do */
/* graphics with the screen, and then with the */
*

/* printer device.

/tt*ttti***&*ttﬁ’**'**t**tf**********t*flt******f*/

void
main()

gl_apid = appl_init();
graffmouse(ARROW, OL);

if(open_vwork(&screen))
graf_mouse(M_OFF, OL);

/* Do some misc. graphics to this device. */

output(&screen);
v_clsvwk(screen.handle);
} graf_mouse(M_ON, OL);

/* Open a screen */
/* workstation */

/* Now do some more
/* The results will Too
/* because of the fewer number of colors */
/* available on the printer. %/

raphics with the printer */
a bit different */

1ff open_work(21, &printer))

graf_mouse(BUSY_BEE, OL);
output(&printer g;
v_clswk(printer.

} graf_mouse(ARROW, OL);

andle);

evnt_keybd();
appl_exit();

et e e e}
Portfolio Application Notes
J. Patton

Here are some useful tips and hints A. The alarm uses vector 4Ah,
discovered by Portfoliopfievelopets. Q&A which can be revectored to your

; 0 lication. H this
» Using CPU intensive routines will Q- How can prevent;he Portfolio w‘:)rlr;l?ipgrean(tn:he a(l)awn“evse;mm
shorten battery life. Avoid using from powering down? operatin

A. You need to write a TSR to trap perating.
processor loops, rather use Int 16 Fn O calls and return turn
har i h ible.
dware timers wherever possible these into Int 16 Fn 1 calls until a

* If you need keypresses, use the
BIOS. Since the Portfolio will sleep
after detecting no keypress through
the BIOS after a period of time,
addressing the keyboard directly
will ignore this mechanism.

* Applications should check that
there is sufficient RAM and suggest
the ratio to reconfigure for the RAM
disk. But it is important to take into
account that yours is not the only
application and forcing a user to
FDISK only for your product may be
unacceptable.

¢ Although we suggest that users
back up their RAM disk contents
with RAM cards or a parallel or
serial interface to a desktop
machine, it should not be assumed
that they own any of these.

November 1990 - January 1991

key comes in.

Q. Is there a way a program can
increase the volume of the
Portfolio’s speaker?

A. No, the only way to increase the
volume of Portfolio’s speaker is
through hardware.

Q. I'm trying to implement multiple
header drivers on the Portfolio, but
with little success. It works on my
PC but not on the Portfolio.

A. The Portfolio’s operating system
will not handle multiple header
drivers, although it will correctly
handle single driver headers.

Q. Is there access to the power
down/wake up routines (such as
the vector the alarm uses)?

Q. How can my application read the
Control-S key as it is used in the
internal application for searching? I
am using getch() now.

A. The getch() call uses DOS
function 08h (character input
without echo) and doesn’t return the
keypress. Instead, it pauses and
resumes when you hit another key.
Function 07h will return unfiltered
character input without echo.

New Online
for the Portfolio

PBASIC 3.1 - Basic written by BJ.
Gleason for the Portfolio.

PGSHOW & utilities - Graphics
displayer and tools for the Portfolio
written by Don Messerli.

Page 7

OPTIMIZING 68000 ASSEMBLY LANGUAGE

When programmers need to get the most out of their
code, they often turn to assembly language in order to
customize the code and maintain control over the
processor. The decision on whether or not assembler
can help increase the speed of your program usually
lies in the basic algorithm you are employing.
Assembler will not add a significant amount of speed
to a brain-dead algorithm. That’s a fact. However, if
you are certain the method you are using to attack the
problem is the most efficient available, then it may be
helpful to move to assembler for more speed.

One of the first problems with this line of thought is
that people assume that just because a program is
written in assembler it’s as fast as it can get. Not true.
Just as programmers write bad C or Pascal code,
programmers can write bad or inefficient assembler
code. Often the inefficiency stems from not
understanding the processors instruction set, and how
the processor executes each instruction.

In this article I will attempt to outline some methods
which you can use to write faster, smaller assembler
code. Some of the things I will discuss are widely
known and basic common sense, but hopefully each
reader will come away with at least one bit of
knowledge they didn’t already have. Lets get started,
okay?

THE BASICS

Although some of the following tips are very basic, we
(me included) often overlook them because they are so
simple.

Don't use the 68000 ‘multiply’ group of instructions for
multiplying by a constant. If you are multiplying a
register by two or four, add the register to itself once or
twice, for example:

add.1 do,do
add.1l do,do

; Multiplied by 2
; Multiplied by 4

If you need to multiply by a multiple of two other than
two or four, shift the register left the appropriate
number of times, for example:

asl.1 #3,d0 ; Multiply do.1%by 8

You must use the arithmetic shifts rather than the
logical shifts because the latter destroy the sign bit.

Most operations done on a data register set the
condition codes, so it is unnecessary to explicitly test
the register before doing a conditional branch, for
example:

Page 8

Ron Cox

move.l #10000,d0

again:

subg.1 #1,d0 ; Subtract 1 from doO
; tst.1 do ; Unnecessary

bne again

The tst.l operation on a data register uses 4 cycles, so if
it were embedded in a loop which executes 10,000
times, you can save 40,000 cycles by removing it. Quite
asavings. You may decide that having the tst.l there is
good documentation and in that case, leave it, but
comment it out as I have done in the example.

When using one of the many branch instructions, there
are two modes which may be used, byte and word
addressing. In the byte addressing mode, a twos
complement 8 bit displacement is added to the PC
giving you an effective range of 127 bytes forward or
backward. In the word mode, a twos complement 16
bit displacement is added to the PC giving an effective
range of 32,767 bytes forward or backward. The
savings comes in the form of the size of the instruction,
and the time it takes to take or not take the branch. In
the previous example, the bne instruction did not
specify an addressing mode and most one pass
assemblers (like Madmac) will default to word
addressing. The instruction works out to be four bytes
long, and if the branch is taken consumes 10 cycles, if it
is not taken, 12 cycles. Let’s rewrite the example so that
the branch uses short (byte) addressing;:

again:
subq.1 #1,d0 ; Subtract 1 from dO
H tst.l doO ; Documentation
bne.b again ;.b for byte or
; short addressing

In this example two bytes are generated for the branch
instruction, it uses 10 cycles if taken, 8 if not taken. So
in instances where the branch is not taken, the short
mode saves 4 cycles over the long, and it always saves 2
bytes of object code. Of course, the deciding factor on
which mode to use is how far the branch is. If it is more
than 127 bytes forward or back you must use the long
mode. Many multi-pass assemblers will optimize
branches for you. If you are using Madmac you can ask
it to notify you about long branches that may be made
into short ones. (Madmac's -s switch reports branches
which could be optimized by changing them to short
addressing.)

When using address registers remember that word
values moved into an address register are sign
extended to a long before they are moved.

confinued on page 9

November 1990 - January 1991

Opftimizing Assembly Language
(continued from page 8)

Therefore there is no need to explicitly extend the
register after the move, for example:

move.w #$d023,a0
H ext.] a0

; Unnecessary

Before moving the value $d023 into a0, the processor
sign extends it to a full long word, making the ext.l
instruction unnecessary. Leaving it out saves 4 cycles
and 2 bytes of object code. Again, you may wish to
leave it in there as documentation, but comment it out
as | have done above.

It is often necessary to clear a data register and most
programmers use the logical choice, clr dn. This is the
fastest method of clearing the byte or word of a data
register, but if you need to clear the entire 32 bits, use
the following:

H clr.1 do
moveq.l #0,dO

; Uses 6 cycles, 2 bytes
; Uses 4 cycles, 2 bytes

THE STACK

The stack is the center piece around which the 68000
operates. Although there are a variety of effective,
efficient methods of manipulating the stack, some
improvements may still be made.

When calling a subroutine that expects parameters on
the stack, it is usually left to the caller to clean the up
the stack after the call, and most programmers use the
following;:

move.l #buffer,-(sp) ; Push address of buffer
move.l #256,-(sp) ; read 256 bytes

move.w handle,-(sp) ; from file handle
move.w #$3f,-(sp) ; GEMDOS Fread

add.1 #12,sp ; Clean stack

A couple of improvements can be made here, but lets
start with cleaning the stack. If the value to be added
to the stack pointer is 8 or less, use the addq.l
instruction. But, as above, if the value is greater than 8,
use the following;

%
; GEMDOS Fread
; faster stack clean

) move.w #$3f,-(sp)
Tea 12(sp),sp

Not only does using load effective address save a
couple of cycles, it saves 2 bytes of object code as well.

Another improvement can be made in the way
parameters are pushed onto the stack. When most
programmers move an address onto the stack they use
a move instruction. But, the 68000 includes an
instruction that automatically calculates the effective
address of an operand and pushes it on the stack.

November 1990 - January 1991

This instruction is pea, or "push effective address", for
example:

H move.l #buffer,-(sp)
pea buffer

; Change to
; Faster

Although the push effective address instruction will not
save you any object code, it will save you 8 cycles, and
when placed in a loop that can be a significant savings.
This brings us to our next and last optimization.

When making a subroutine call (with parameters on the
stack), there are two situations where time and object
code can be saved. In the first example, when several
calls are made in sequence, stack cleaning can be put off
until after all the calls are made, for example:

Word to convert

To ascii (Don't clean
stack yet!)

; Returned ascii value
GEMDOS Conout

Call GEMDOS

Clean stack from all
previous calls (3 words)

move.w #66,-(sp)
jsr _toascii

move.w dO,-(sp)
move.w #2,-(sp)
trap #1
addg.1 #6,sp

D P T R T T

The other situation is when your code is in a loop. If
the loop is known to execute n times, and n is small
enough (or if your stack is big enough),

stack cleaning can be put off until the loop is done
executing, for example:

move.w #25,d1 Execute 25 times

lea buffer,a0 place to put results
loop:
move.w dl,-(sp) ; Word to convert to ascii
jsr _toascii ; Would normally clean
; stack here
move.b d0,(a0)+ ; Copy to character to
; buffer
subq.w #1,d1 ; Decrement counter
bne.s loop ; Zero yet??

Clean stack here

25 iterations times 2
bytes pushed for each
iteration

lea 50(sp),sp

- wews e

This is a somewhat obscure optimization, but it saves a
great deal of time and could be used where absolute
speed is desired. One more note before concluding,
notice I used the load effective address instruction to
get the address of buffer into a0. This saves 8 cycles
over its move.l counterpart.

THAT'S ALL, FOLKS

This article is not meant to be the final word on
optimizing assembler, but rather a testimony to the fact
that indeed assembler can be written faster and smaller
if care is taken to use the proper instructions.

(continued on page 10)

Page 9

Optimizing Assembly Language
(continued from page 9)

This is an incomplete list of optimizing techniques, but
one which I feel will cover most of the situations which

programmers COme across.

I have taken great care to insure that the information
contained herein is as accurate as possible, but I am
sure that some bug crawled in during the middle of the
night and munched on part(s) of the text, and I cannot
accept any responsibility for the damage done =-). If
you have any questions or just want to point out
corrections that need to be made, I can be reached on
GEnie at "RJ.COX". Happy programming!

September 1986.

Bibliography:

Morten, Mike "68000 Tricks and Traps”. BYTE.

Veronis, Andrew M. The 68000 Microprocessor
New York, NY: Van Nostrand Reinhold, 1988

ABOUT THE AUTHOR:

Ron Cox has been an Atari Developer for over 3 years.
He is currently pursuing a Bachelor degree in
Computer Information Systems whu.c “vorking ona
project with Darin Wayrynen (for the Atari).

Line-A Support In Future Video Modes

At this time, it has been decided that
the Line-A low level graphics
interface will not be officially
supported by Atari in new video

es available on the TT030 and
any future machines.
Line-A will still be supported in all
ST-compatible resolutions, so
existing programs should still work
in those modes. However, in order
to be compatible with new video
modes, and to take full advantage of
new features, ms currently
under development should use
GEM VDI exdlusively and avoid
using Line-A.

Almost all of the information and
g?ghics commands available

ugh Line-A can be easily
accessed or done using GEM VDL
Most programs using Line-A can
switch to using GEM VDI without
any problems.” If you've always

Line-A for your graphics, and

never even tried using GEM VDI,
then see the article "VDI
Workstations Redeux" in this
newsletter for more on using GEM
VDI to obtain information about the
current screen mode.

There are several reasons why
Line-A support will not be extended
to new video modes. However, it
should be restated that Line-A is an
interface to low-level portions of
GEM VD], and not some separate
entity that VDI happens to use. Itis
a way to access some of VDI's lglobal
system variables and low-leve
graphics primatives.

Page 10

Mike Fulton

The VDI has already been updated
to support the new video modes of
the T030. It will have to be p
u again to support new video
m%?iaes tha% will be al\)rg.iiable on
future machines to come out down
the line. At least some of these
video modes will use screen
memory la‘)lvlouts andimproved
features which are drastically
different from what is currently use,
and Line-A is quite simply not setup
to support them.

Existing pro; using Line-A are
much lgsg lﬂg ely,asa gegneral rule, to
work correctly on the new video
modes of the than are
Wo -ams which use GEM VDL
e programs which use GEM

VDI aren’t always written correctly
to take full advantage of all the
features of new video modes, they
5$nerally do function. Furthermore,

e basic method of using GEM VDI
doesn’t have to change to support
new video modes. However, if
Line-A were to be updated to
support these new video modes, the
method of making calls would have

‘to change significantly, so existing

programs would not work in the
new modes anyways.

For those who are concerned about a
9] difference between Line-A
and GEM VD], consider that the
machines that will have these new
video modes will be much, much
faster than the original Atari ST.
There are no signi icant

rformance differences between

ine-A and GEM VDL

Atari recognizes that there are
certain bits of information available
through Line-A which are not easily
accessed using GEM VDI by certain
categories of pr like TSR
utilities, most notably the current
mouse position. Because of this, I'm
asking developers for the following:

examine your mgrams and the
Line-A vaﬁablg table, and construct

a list of which Line-A variables you
consider to be absolutely essential.
Please include detailed justification
of why ¥ou thinkthese variables are
essential and why you cannot use
GEM VDI for this purpose. We will
take this list and see what can be
done in accomodating it.

We don’t make any promises, and
this does not apply to Line-A calls
that perform actual output. We are
only talking about variables in the

Line-A data table.

Please mail your suggestions to my
attention at Atari Corp., or you can
send private EMAIL on GEnie to

-FULTON, or on Compuserve
to 75300,1141.

In the meantime, if you are writing a
program, and you feel you
absolutely must use Line-A for
something, please contact Atari
Developer nl;pport for advice and
additional information.

November 1990 - January 1991

Welcome,
James Grunke

Atari would like to introduce James
Grunke to all of our MIDI
developers. As of January 1, James
has joined Atari U.S. as the new

I Marketing Director. James
comes to us after *hree years with
Brother Records, for whom he
served as a Programmer,
Technician, and Performer.

If you have any questions or ideas

about marketing your MIDI
products for the Atari, you can
contact James at the address and
phone number below.

James Grunke

Atari U.S. Corp.

MIDI Marketing Director
1196 Borregas Ave,
Sunnyvale, CA 94086

(408) 745-4966
(408) 745-2088 - fax

Atari Increases
Developer Support Staff

Atari would also like to introduce
Mike Fulton to all of our software
developers. Mike has joined Atari’s
Developer Support staff after three
years at Neocept, where he served
asap er and technical
support representative.

If developers have questions
regarding technical matters,

pro; ing, and so forth, or even
if {ou’re just not sure who else to

ask about something, then you
should contact either Mike Fulton or
J. Patton for Developer Support. For
information regarding equipment
loans or marketing, please contact

- Bill Rehbock.

Developer Support is also available
on the EEnie telecommunications
system through the ATARL.RSC
roundtable. This is a specialized
roundtable just for Atari devlopers.
In addition to J. Patton and Mike
Fulton, the roundtable staff includes
Atari rogrammexs John Townsend
and Ken Badertscher.

November 1990 - January 1991

ATARI Develog?r News

ATARI.RSC

Atari Developer Support can be
reached at address and phone
numbers given on page 2 of the
ATARI. newsletter.

ATARL.RSC staff
GEnie Mail Addresses

Ken Badertscher = K.BAD
John Townsend = TOWNS

J. Patton = ATARIDEV

Bill Rehbock = B.REHBOCK
Mike Fulton = MIKE-FULTON

To send mail to all of the above, you
can use the ATARLRSC staff mail
address: RSC$

Confidentiality:
What Exactly Can
You Talk About?

Some developers have expressed
some concern and confusion about
exactly which materials from the
devlopement package are covered
by the non-disclosure agreement,
and which materials they are free to
discuss with regular users.

Anything specifically marked or
descril ag?'glonﬁ ential
Information"” is strictly off-limits for
outside discussion with
non-developers (and even with
other developers if so noted).

Anything in the various "Release
Notes" documents that Atari has
sent out is OK to talk about.
Documents in this category include:

Rainbow TOS Release Notes
STE TOS Release Notes
TT030 TOS Release Notes
AHDI 3.00 Release Notes

Anything included in a document
that is not marked "Release Notes"
should be treated as confidential
even if not marked as such. This
includes documents like the "TT030
Companion" which some TT
developers received. (This was an
early version of the TT030 TOS
Release Notes document.)

Of course, anything that’s been
published in one of the various ST
programming reference guides, like

from Abacus or Compute! Books, is
also OK to talk about. When in
doubt, please feel free to call
developer support and ask.

New Online
In ATARL.RSC

CPXDOC.ARC - Documentation
and samgle files and source code for
wn'ting PX modules for the new
eXtended CONTROLpanel.

NEW_LANG.ARC - Utilities from
the TT030 Lan, e Disk, including
Atari Hard Dis%ﬁ]ities v4.02,
XCONTROL.ACC with CPX files,
Mouse Accelerator, Atari Laser
Printer Utilities, and more.

Atari’s Latest Laser:
The Atari SLM605

Atari’s latest entry in the

laser printer market, the Atari

SLM605, began shipping worldwide

durinithe ourth quarter of last

gear. ike its older sibling the Atari
LMB804, the new SLM

using the same write-to-white

electrophotographic laser

technol g&y at a print resolution of

300 by 300 dots per inch.

The Atari SLM605 prints at 6 pages
per minute and includes such
refinements as a sleeker phys

rsonal

rates

ical
profile, straighter paper path, darker
single-gixel printing, decreased
stand-by power, quieter operaﬁzx%
noise, and a lower list price: $1295.

The SLM605 uses the TEC Model
LB-1305 laser print engine, the same
engine used by over a half-dozen
laser printer manufacturers
including Epson (which means that
toner and drum supplies are easier
to find).

The pa vrinter interface to the
Atar1 SLM605 is identical to the
interface on the older SLM804 laser
printer controller (in fact, Atari is
shipping initial units with the
SLMC804 controller). Printer
drivers written for the SEM804 will
work with the SLM605 without any
modifications.

continued on page 12

Page 11

B e ———————————————_——————

Atari Developer News
(Continued from page 11)

For Atari TT030 owners, new
versions of the GDOS printer driver
(SLM.SYS) and Diablo emulator can
be found on the TT030 Language
Disk included with the workstation.
The modifications made to the
drivers are of benefit only to Atari
TTO030 users.

Atari will continue to develop and
introduce laser printers following
the current market trend or lower
cost and higher resolution. Given
Atari’s commitment to virtual
device interfaces (such as the page
inter interface), developers of

evice-driver software are assured
of compatibility with each new laser
printer introduction.

! The Bottom Line

(continued from page 1)

interested in representing a specific
European product line, or have
written (or partially written) a "slam
dunk" application for the ST/TT,
please contact me before the
Hanover show in March. GEnie
Mail address: BREHBOCK

Fax: (408)745-2088

Some of the new operating system
utilities are now available to
developers. The eXtensible
CONTROL panel documentation is
being shipped with this newsletter.
Please examine the final
specification and bindings closely, it
is a good example of operating
system extensions and new
programming tools that we will be
supplying in the very near future.
FSMGDOS has already been sent to
key GDOS-oriented developers.
Due to "paperwork” obligations
regarding FSM and its fonts, the
FSMGDOS development materials
must be distributed on a by-request

basis. The most expedient method,
of course is by GEnie E-Miail or by
fax.

I encourage everyone to write their
applications with GDOS in mind. It
is a remarkably programmer-
friendly system, and unlike the old
bit-mapped GDOS, you will not
have to pay any license fees for
distribution rights, as it will be
shipping with all new computers
and shall be made available as a
system software upgrade to existing
systems. Everyone that has seen
FSM in action has been amazed at
how much faster it is than Adobe
Type Manager on the Mac.

The upcoming several months are
going to move quickly, and I truly
believe that the future looks much
brighter than it has in years. Ilook
forward to a long and profitable
relationship with all of you.

r

Atari Corporation
1196 Borregas Ave.
Sunnyvale, CA 94086

ATARI.RSC
The Developer’s Resource

