These are release notes for ALN, the Atari Linker, detailing the
changes between the FIRST release, version 1.00, on 6/26/87, and
the latest release (dated 90/01/24).

SEARCH PATH FOR MODULES

If you have an environment variable "ALNPATH=path" then ALN
will prepend "path" to file names when it can't find that
file (or file.o) in the current directory. The command to
set this might be

setenv ALNPATH=e:

The new command-line switch "-y path" does the same thing,
and supercedes the ALNPATH environment variable if they are
both present.

NEW COMMAND-LINE OPTIONS
All command-line switches may now be upper- or lower-case.

The -a option now has more flexibility: you can specify that
any segment should come after any other. "xb" as a segment
specifier means "put this bss," "xd" means "put this after
data," and "xt" means "put this after text."

A new option, -h, allows you to set the hflags field of the
PRG header in the linker output. "aln -h 7 ..." would set
that field to 7 in the output. The value is entered the same
way as -a arguments are. The meanings of the bits in this
value are documented elsewhere.

A new option, -q, means "do a partial link (like -p), but
also resolve commons into the BSS, so they're not common any
more." Also, a new option, "~k name" means "add 'name' to a
list of symbols; after the 1link, make all symbols EXCEPT
those on the list local, not global." You may use -k for as
many symbols as necessary. In combination with -q, this can
add more modularity to a project: you might have two groups
of object modules which need to share global symbols within
the group, but not outside it. You can link each group into
a single module using -q, then 1link these super-modules
together to produce the program file.

Use -k for those symbols which really need to stay global:
the symbols which are visible to the other super-modules.

A single -u causes unresolved symbols to be listed, but the
link continues as if their values were zero. Another -u can
now be used to suppress the listing, also. .

BUG FIXES
The -d (desktop) flag didn't work as intended; now it does.

Link68 considers a symbol of type COMMON to be unresolved
when it decides whether to extract a module from a library;
now ALN does too.

ALN is now more compatible with the OLD Alcyon as68 (pre-
version 4.14), especially for symbols of type COMMON: the old
assembler generated a different type for these than the new
one.

When linking absolute (with the -a flag), the symbol table
was being written even if you didn't specify ~s or -1. Now
it is suppressed unless you specify one of those switches.

Various minor bug fixes for exceptional situations.

MISCELLANEOQOUS

Errors like 16-bit overflow used to cause the link to abort
immediately. Now they are all reported, and THEN the link
aborts.

ALN now clears the lower bit of the symbol type word as sym-
bols are read, because it uses that bit internally. If your
compiler produces "alcyon-compatible" object modules, but
uses the lower bit of the symbol type word, you will lose
that information. (The link should still work.)

ALN now supports extended argument processing on the MWC
model. If your shell can use ARGV to pass arguments, you can
pass an unlimited number of arguments to ALN. (The formal
extended argument specification from Atari requires that the
"length" byte of the command line be Ox7f to indicate that
ARGV is in wuse, but this release of ALN does not insist on
that because it is not yet widespread.)

Command files (included with the -c option) can now contain
comments: a number-sign ("#") introduces a comment, and
everything from there to the end of the line is ignored.

DOINDEX

Previously, doindex reported "incomplete file header in
archive" for some perfectly normal archives; now it doesn't.

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

NAME
aln, doindex - GEMDOS linker and archive index builder

SYNOPSIS
aln [option] ...

{ fite | [-x file 1 | [-i file label]}

doindex [-i] [-w] file

EXAMPLE
[in a batch file or from a command shell]
aln -o test -s -m gemstart test gemlib libf
This is a typical link for a program compiled with the C compiler: the
startup file gemstart.o is linked first, followed by the object module
produced by the compiler (test.o), plus the C run-time library gemlib
and the floating-point library libf. This example produces an execut-
able called test.prg (because of the -o flag), includes global symbols
in that executable (the -s flag), and produces a load map on the stan-
dard output (the -m flag).

DESCRIPTION

File arguments are either object modules or archives of object modules
(created with ar68). If file has no extension (e.g. '.0'), aln looks
for both file and file.o. See the section FILE NAMES AND LIBRARY PATHS

for more information.
All options must be specified before the first -x, -i, or file argument.

If no arguments are present on the command line, (i.e. aln was double-
clicked from the GEM desktop) aln will display its version number and
prompt for switches and filenames. More than one switch or filename may
be entered per line, and a blank line ends the input and begins the
1ink. After the link aln will wait for the user to press the return key
before returning to the desktop (just like the -d flag).

The options are:

-a text data bss
Absolute link: text, data, and bss are indicators for each of

those segments: a (hexadecimal) address, the letter ‘r', or the
letter 'x'. See the section on absolute linking, below.

Desktop: wait for the "Return" key after the link before terminat-
ing. This gives the user time to read any error messages before

Printed 8/12/88 Copyright © 1987, 1988 Atari Corp. 1

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

returning to the desktop. Note that if you start aln with no
arguments, -d is implied.

File symbols: when specified, aln will generate symbols of type
"file" for each object module processed, and symbols of type
"archive file" (bits 6 and 7 in the type field set) for each
archive processed. These symbols cause sid to fail, but they can
be understood by Atari's [newly-released] debugger, db. This flag
sets the -s flag, unless -1 is used also. See FILE SYMBOLS,
below.

Local symbols: like -s, but includes local symbols as well as glo-
bals in the output file.

-m
Map: produces a load map on standard output. The load map con-
tains each symbol's name, value, and type. The load map lists
only global symbols unless -1 is used. The symbol types are
encoded as follows:

C: Common F: File

G: Global A: Archive (only with "File")
E: External Q: eQuated

L: Local R: Register

-o file
Output: produce output on file. If file has an extension (e.g.
'.prg'), that extension is used. Otherwise, a default extension
is appended to file: '.prg' for a normal link, '.o' for a partial
link (when -p is specified), and '.abs' for an absolute link (when
-a is specified).

If -o is not specified, the output file name is taken from the
first linked file on the command line (including archives speci-
fied with -x and data files specified with ~i), plus the appropri-
ate extension. Note that if this would make the output file name
the same as the first input file (e.g. "aln -p al.o a2.o" which
would use "al.o" as the output file name), aln will abort: in this
case, -o must be specified.

P
Partial link: collect the named object modules and libraries into
a single object module, suitable for later passes through aln.

Printed &,12/88 Copyright © 1987, 1988 Atari Corp. 2

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

-s
Symbols: generate a symbol table in the output file including all
global symbols. (Use -1 (only) to get both locals and globals.)

-u
Unresolved: do not abort the link upon encountering unresolved
externals. The unresolved symbols are listed on the standard out-
put, but the link proceeds as if their values were zero.

-v
Verbose: causes aln to print a banner line at the start of the
link and memory usage statistics at the end. If the -v flag is
present twice, the name of each file (module or archive) is
printed as it is linked. If this flag appears three times, aln
also prints the name of each module it links from within each
archive.

-W
Warnings: give warnings on standard output about multiply-defined
globals. See the section DUPLICATE SYMBOLS IN MODULES for more
information.

-y pathname
Library path: Aln will look in this directory as well as the
current directory for object modules and archives. See the sec-
tion FILE NAMES AND THE LIBRARY PATH for more information.

After the options on the command line, the following arguments are
recognized in addition to file arguments:

-i file label
Include file: file will be included in the data segment verbatim.
The global, data-segment symbol label is created and gets the
starting address of file as its value; the global symbol labelzx
gets its ending address. That is, the ending label is the same as
the starting label with the letter 'x' appended. If label is
eight or more characters long, it is truncated to seven characters
before appending the letter 'x' (so "longname" becomes "long-
namx") .

-x file
All modules: include all modules from archive file. Note that
with the -x option, the modules are linked in the order they
appear in the archive, so for multiply-defined global symbols, the
first occurrence is the one which prevails. This is the opposite

Printed 8/12/88 Copyright @ 1987, 1988 Atari Corp. 3

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

behavior from the regular linking process.
The 'command-file' switch can appear anywhere:

-c file
Command file: file is read in as though its contents had appeared
on the command line in place of the -c¢ switch. All command-line
switches may be used (but, again, no options may occur after the
first -1, -x, or file argument in either the command line or the
-c file). Arguments in file may be delimited by white space
(tabs, spaces, and newlines) or commas.

DOINDEX ~-- ARCHIVES AND THEIR INDEXES
Aln requires that an index file exist for each archive included in a
link. This index file has the same name as the archive, with the exten-
sion '.NDX', and should be in the same disk directory as the archive
itself. If aln can not find an index file for an archive you name, it
will produce an error message to that effect and abort.

Doindex builds an index file for the named archive (regardless of
whether one already exists). If desired, doindex will also print a
human-readable index of the archive on the terminal (that is, on stan-
dard output), and inform you of symbols which are declared global in
more than one module in the archive. The last such declaration is the
one which will prevail when that archive is used in the linking process.

The arguments to doindex are as follows:

-i
Index: print an index of the archive to the standard output,
including the name of each module, the global symbols it exports,
and the external symbols it imports. Finally, list the symbols
which are external to the archive (imported by modules in the
archive but not exported by any of them).

-W

Warnings: produce warnings about duplicate symbols in the archive.

The last argument to doindex is the name of an archive. Doindex opens
that archive, builds its index file, and writes that file to file.ndx in
the same disk directory as file itself.

The index file contains dependency information so the linker does not
have to go through the whole archive to resolve all the symbols. It
consists of information about each module in the archive, the name of
each symbol exported by any module in the archive and the module which

Printed 8/12/88 Copyright © 1987, 1988 Atari Corp. 4

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

exports it, and a dependency list for each module, stating, "if you need
module A, you will also need modules B, C, and D." During linking, this
information is collected together for each symbol which is unresolved at
the time the archive appears in the command line, and only the needed
modules are read in from the archive.

FILE NAMES AND THE LIBRARY PATH
Aln looks for files (modules and archives) both the current directory
and in the directory named as the library path. The library path can be
placed in the environment variable "ALNPATH" or named on the command
line with the "-y" option. If both are present, the "-y" option super-
cedes the environment variable.

The library path should be a full pathname which names one directory,
like "E:\LIB" -- including the drive letter, the colon, and the direc-
tory name (with leading backslash: anchored at the root). For the UNIX
version, of course, the directory separator is the forward slash ("/").
It is necessary that the library path string contain at least one direc-
tory separator (backslash on the ATARI ST, slash on UNIX), so aln knows
which one to place between the library path string and the file name.

When aln tries to open a file, it looks in a number of places for that
file. First, it tries to open the file as the name appears, in the
current directory. If that fails, aln appends ".o" to the file name and
tries again in the current directory. Next, aln prepends the library
path string to the name, and tries to open that file. Finally, aln
prepends the library path and appends ".o" to the name. If none of
these strategies works, aln gives up.

A file name can contain a partial path name: if you want to use the
archive "E:\LIB\LOCAL\MYLIB," and your library path is "E:\LIB," then
listing "LOCAL\MYLIB" on the command line is sufficient. (Aln will look
first for "MYLIB" in the subdirectory "LOCAL" of the current directory,
fail, and then prepend the library directory string, resulting in
"E:\LIB\LOCAL\MYLIB," which is what you wanted.)

"

The above rules are not quite complete: aln never tries to append ".o

to a file name which already has a dot (".") in it. Also, aln does not
prepend the library path string to names which already start with "/,
or "\", or which contain a colon (":"). The assumption is that names

starting with "/" or "\" are "anchored" at the root directory of the
current drive, and that file names with colons in them refer to a dif-
ferent drive. These rules are more strict than they should be, perhaps,
but they cover most situations. The "/" directory character is a con-
cession to the UNIX(tm) version of aln; the other rules are inappropri-
ate in that version, but do no harm.

ABSOLUTE LINKING
An absolute link is one for which the -a flag is specified. Note that
the -a flag takes three arguments: the base indicator for the text,

Printed 8/12/88 Copyright © 1987, 1988 Atari Corp. 5

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

data, and BSS segments, respectively. A base indicator can be one of
the following:

A) a hexadecimal value, which is taken as the starting address of the
segment.

B) the letter 'r', which stands for "relocatable."

C) the letter 'x', which stands for "contiguous with the previous

segment" (whether that segment is absolute or relocatable).

During an absolute link, an absolute object module is produced, which
includes the base address of each segment in its header. See the sec-
tion on FILE FORMATS for more details.

In an absolute object module, all references to an absolute segment have
already been resolved; that is, there is no relocation information for
them, because they are not relocatable. References to relocatable seg-
ments still have relocation information associated with them. If there
are no references to relocatable segments (either because there are no
such segments, or no references to them), the relocation information is
missing entirely, and a flag in the header indicates this.

For example, when linking a program to be placed in ROM, aln might be
used to link with the text and data segments contiguous, starting at the
address of the ROM (say, hex FF0000), and with the BSS segment at some
address in RAM (say, hex 4000). This can be done with aln as follows:

aln -o rom.abs -a ff0000 x 4000 romfile.o

Alternatively, a program with its data segment in ROM, but with relocat-
able text and BSS segments, could be linked as follows:

aln -o romdata.abs -a r ffO000 r romfile.o

Of course, it would be up to the program loader to perform the text and
BSS relocation at execute time.

FILE SYMBOLS
Aln will generate file symbols when the -f flag is used. A file symbol
appears at the start of each object module in the symbol table. Its
name is the name of the module, its value is the start of the text seg-
ment of that module, and its type is TEXT FILE (that is, hex 0280).
With these symbols, you can determine which object module a given symbol
came from, because the symbols from a module immediately follow its file
symbol.

Printed & 12/88 Copyright © 1987, 1988 Atari Corp. 6

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

Aln also generates a file symbol at the start of each archive: this is a
special symbol in that its name is the name of the archive, but its type
is TEXT FILE ARCHIVE (hex 02C0). Furthermore, a second symbol is gen-
erated at the end of the archive: it has the same type, but its name is
blank. This signals the end of the previous archive.

The use of bit 6 of the type field to mean "archive" is an extension to
the Alcyon symbol-table standard. As such, existing tools like sid and
nm68 can not be expected to understand it, but Atari's [newly-released]
debugger db does. (It happens that sid does not understand file symbols
at all, let alone archive-file symbols, so the -f option should not be
used if sid will be used to debug the output.)

FILE FORMATS
The files aln deals with all have the same basic format (except
archives; see below):

Header

Text

Data

Symbol Table
Relocation Information

The header includes information such as the sizes of the other segments
and the type of the file (encoded in a "magic number"). Any segment may
be empty or missing except the header.

OBJECT MODULES

A standard (relocatable) object module header has the following format:

struct oheader ({

int magic; /* the magic number 0Ox60la */

long tsize; /* text segment size */

long dsize; /* data segment size */

long bsize; /* bss segment size */

long ssize; /* size of the symbol table */

char reserved[10]; /* ten unused bytes (must be zero) */

}s

Following the header is the text segment of the module (tsize bytes
long), then the data segment (dsize bytes long). Following that is the
symbol table (ssize bytes long) and then the fixup information for the
module. The fixup information matches word-for-word with the text, then
data segments.

The fixup words have a type encoded in the lowest three bits:
VALUE MEANING

0 absolute (needs no fixup)
1 data-segment relocatable

Printed 8/12/88 Copyright © 1987, 1988 Atari Corp. 7

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

text-segment relocatable

bss-segment relocatable

symbol: see below.

marks the first word of a long fixup
pc-relative relocatable

marks the first word of an instruction

~N ot EWN

Fixup type U4 is a symbol-type fixup. The upper 13 bits of the fixup
word are the index into the symbol table of the symbol being referenced.
(Note that this means there may only be (2°13)-1 or 8191 symbols per
module.)

EXECUTABLE PROGRAM FILES

Executable programs (.PRG files) have almost the same format as relocat-
able object modules. The header is the same, and the text and data seg-
ments, plus the symbol table, follow. The relocation information is
different, though; it starts with a longword which is the byte offset to
the first longword needing a fixup, then a series of bytes with the
offset to the next longword needing a fixup. A zero terminates this
list. "Fixing up" a longword means adding the base address of the text
segment to it. There is no way to fix up a word.

If there are no fixups to be done, the initial-offset longword is zero.
Note that this means the first longword of a .PRG file may not need fix-
ing up; this is acceptable because that must be the first word of an
instruction, and instructions never need fixing up. The byte-offsets
take these special values:

Value Meaning

0 End of fixup list.

1 Skip 254 bytes and keep going.
2..254 (even) skip that many bytes and fix up.
3..255 {(odd) undefined.

ABSOLUTE OBJECT MODULES
An absolute object module header has the following format:

struct abshdr ({

int magic; /* the magic number Ox601B */

long tsize; /* text segment size */

long dsize; /* data segment size */

long bsize; /* bss segment size */

long ssize; /* size of the symbol table */
long reserved; /* an unused longword */

long textbase; /* the base of the text segment */
int relocflag; /* zero if reloc info exists */
long database; /* the base of the data segment */
long bssbase; /* the base of the bss segment */

Printed &/12/88 Copyright © 1987, 1988 Atari Corp. 8

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

NOTES

If there is any relocation information, the relocflag field in the
header will be zero, and that information will follow the symbol table
(if any). If the relocflag field is not zero (and in particular if it
is minus one), there is no relocation information. This is always the
case when none of the three segments is relocatable, but it can also
happen if there are no references to a relocatable segment (e.g. the
text segment is relocatable, but contains position-independent code, and
the data and BSS segments are absolute).

ARCHIVES

Archives are files containing other files, usually relocatable object
modules. The "header" of an archive file is simply the magic number
FF65 (hex). The archived files consist of a header, then the file
itself. The next file follows immediately. A zero word follows the
last file in the archive. The archived-file header is as follows:

struct arheader {

char a_fname[14]; /* the file name */

long a_modtim; /* the last-modified time */
char a_userid; /* not used in TOS */

char a gid; /* not used in TOS */

int a_fimode; /* the file's mode word */
long a fsize; /* the file's size in bytes */
int reserved; /* zero */

}s

The file, a fsize bytes' worth, immediately follows the header.

DUPLICATE SYMBOLS IN MODULES

When the same symbol is exported (declared as global) from multiple
object modules, the symbol value exported from the first such module
will take precedence. When the same symbol is exported by multiple
modules in one archive, the last such module will take precedence (this
is taken care of by doindex when it builds the index). Therefore, in
the case of two archives exporting the same symbol (from modules export-
ing needed symbols), the last definition in the first archive is the one
which will be used.

However, if an archive is included with -x, the modules are read in
archive order, and the first instance of a symbol is the one which pre-

vails.

Unless the -w flag is used, you will get no notification that multiple
files exported the same symbol.

UNUSED MODULES IN LIBRARIES

Since the dependency information is built from the archive, certain

Printed 8/12/88 Copyright © 1987, 1988 Atari Corp. 9

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

conditions can cause it to be out-of-date with respect to a given link.

For example, if archive Z contains modules M and N, and M imports a sym-
bol S and N exports it, then the index file for Z will reflect that M
depends on N (that is, "if you need M you will also need N"). But if
the symbol S is exported by a file Y earlier in a particular link, then
module N is not actually needed at all.

Aln will read module N from the archive because of the dependency in the
index file, but will then notice that both N and Y are exporting symbol
S. This will produce a warning message if -w is specified. Since Y
occurs earlier in the link than N, the value of symbol S is taken from
Y. Finally, aln will notice that module N is not in fact used in the
linking process, and will discard N completely, with another warning
message.

EXAMPLES
(1) aln -o apskel apstart.o apskel.o gemlib aesbind vdibind

aln -s -o myfile.prg -u tl t2 gemlib
aln -s -c foo.aln tl t2 gemlib
aln -s -o myfile.prg -c bar.aln

o~~~
E=J WS \V]
A

Example (1) links the GEM application apskel.o for execution.

Example (2) links tl.o and t2.o0 together, along with the library gemlib,
to produce myfile.prg, with symbols.

Example (3) sets the -s flag, then reads foo.aln for more command-line
options, and then specifies that t1 and t2 are files to be linked. If
"fo0.aln" contains "-o myfile.prg -u" then this is identical to example

(2).

Example (4) sets -s and sets the output file to "myfile.prg," then reads
bar.aln for more options. This time, if "bar.aln" contains "-u tl t2
gemlib" then this is identical to examples (2) and (3).

ALN FOR LINK68 USERS
Aln performs the same function as 1ink68 plus relmod. If you have batch
files which invoke 1ink68, you can change them to use aln by doing the
following:

1. Change bracketed options (like [u,s]) into the corresponding aln
options (-u -s).

2. Change the assignment statement "output.68k=inputl,input2,..."
into something like "-o output.prg inputl input2 ..."

Print<.! 1/12/88 Copyright © 1987, 1988 Atari Corp. 10

ALN (Atari Linker) Atari Corporation ALN (Atari Linker)

3. Change the command-file option (like [co[myfile.inp]]) into the
corresponding aln option "-c myfile.inp"

y, Do the same things in any command files (like myfile.inp). Note
that you don't have to remove the commas from your command files;
aln will accept commas as separators in command files (but not on
the command line).

For example, if you usually use the command lines:

1ink68 [s,u] myfile.68k=C:gemstart,myfile,C:gemlib
relmod myfile.68k myfile.prg
rm myfile.68k
you should change that to:
aln -s -u -o myfile.prg C:gemstart myfile C:gemlib

{(From now on it will be assumed that you get rid of the relmod and rm
commands, since aln generates ".prg" files directly.)

If you currently use a 1ink68 input file, and your command line is like
this:

1ink68 [s,u,co[myfile.inp]]
and the file "myfile.inp" contains a line like this:
myfile.68k=C:gemstart,myfile,C:gemlib
you should change that to:
aln -u -s -c myfile.inp
and "myfile.inp" should contain:
-o myfile.prg C:gemstart myfile C:gemlib
ERROR MESSAGES
Most of the common error messages from aln are self-explanatory; for
instance, "File <x> is not an archive." In some cases, however, a lit-
tle more explanation is in order.
Some errors refer to a 16-bit fixup overflow. This means that in
resolving an external reference in the file, a value greater than 32K-1
or less than -32K had to be put in a single word. This can happen if
you have a PC-relative reference to a symbol more than 32K away. This

is only a warning, since you might be using the value as' an unsigned
integer (in which case it might not be an overflow).

Printed 8/12/88 Copyright © 1987, 1988 Atari Corp. 11

ALN (Atari Linker) Atari Corporation " ALN (Atari Linker)

Other errors report that they occurred at a given offset (always hex) in
a given module. The offset is always in bytes, counting from the begin-
ning of the text segment of that module.

At the end of the link, if the -v switch is present or aln was started
with no arguments, you will see "Link complete." If there were any
errors, you will see "Link aborted." In either case, some memory usage
statistics are displayed as well.

AUTHOR
Allan K. Pratt, Atari Corp.

Atari can be reached electronically at atari!postmaster (on USENET), and
Atari is available on the online services GEnie, BIX, and Compuserve.

Printed 7 12/88 Copyright © 1987, 1988 Atari Corp. 12

