AHDI 3.00 Release Notes
May 4, 1989

Atari Corporation
1196 Borregas Avenue
Sunnyvale, CA 94086

COPYRIGHT

Copyright 1989 by Atari Corp. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086.

DISCLAIMER

ATARI CORP. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. Further, Atari Corp. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Atari Corp. to notify
any person of such revision or changes.

TRADEMARKS

Atari, ST, Mega, Megafile, and TOS are trademarks or registered trademarks of Atari
Corporation.

AHDI 3.00 Release Notes were printed in the United States of America.

First Edition: May 4, 1989

This document was produced with an Atari Mega 4 computer using Microsoft Write and an
Atari SLM804 laser printer.

Hard Disk Partitioning

AHDI 3.00 adds support for hard disks with more than four partitions and partitions of size greater than or
equal to 16 Mb. There are still only four 12-byte structures (called p?_info) to describe partition information in
the first sector (physical sector #0) on a hard disk. Physical sector #0 is called the root sector.

The root sector (physical sector #0) on a hard disk contains this information:

Offset
+ - + ($1c2)
I hd_siz |
¥ + ($1c6)
| p0_fig |
| p0_id I
| pO_st |
| p0_siz |
+ + ($1d2)
| pi_flg |
I pi_id I
[pl_st |
| pl_siz I
+ + ($1de)
I p2_ilg |
I p2_id [
| p2_st |
| p2_siz |
+ + ($1ea)
| p3_flg |
I p3_id |
| p3_st |
I p3_siz I
+ + ($116)
| bsl_st I
+ + ($1fa)
| bsl_cnt |
+ + ($1fe)
I (reserved) |
+ + ($200)
Figure 1
hd_siz A 68000 format long word that contains the total size of the disk, in number of physical (512-
byte) sectors.
bsl_st A 68000 format long word that specifies the offset to the beginning of the bad sector list

from the beginning of the entire hard disk, in number of physical (512-byte) sectors.
(Typically the bad sector list will be located at the beginning of the device right after the root
sector.)

bsl_cnt A 68000 format long word that specifies the size of the bad sector list, in number of physical
(512-byte) sectors.

There are two kinds of partitions, s/andard partitions and exfended partitions. A s/andard partition can be a
regu/ar partition (that is, a partition whose size is < 16Mb), or a b partition (that is, a partition whose size is
>= 16Mb). The first sector in a standard partition is a boot sector (which, on the ST, will contain a BIOS
Parameter Block). For more information about big partitions, refer to BIG GEMDOS PARTITIONS. An
extended partition is a special kind of partition which itself is subdivided into standard partitions. For more
information about extended partitions, refer to EXTENDED GEMDOS PARTITIONS.

Fage 2 Copyright 1989 Atarr Corporation AHD/ 3 00 Release Notes

A hard disk may contain up to four standard partitions, or up to three standard partitions and one extended
partition.

root sector

bad sector list

partition O

partition 1
(optional)

partition 2
(optional)

partition 3
(optional)

+ T T T T T T+ — 4+ — ¢
+ =T F E ok —+ +— 4+ — 4

Figure 2

AHD/I 3 00 Release Notes Copyright 19589 Alari Corporation Fage 3

Each partition (standard or extended) is described by a 12-byte partition information structure (p?_info where
?=10.1,2 3%

p?_info ------ > omeeemmcoeecmemeemeeee e + (+0)
| p?_flg |
+ -t (+1)
| p?_id I
e + (+4)
| p?_st |
Fomm e + (+8)
| p?_siz |
IS U EEE R e R + (+12)
Figure 3
p?_flg A 1-byte field that indicates the state of a partition.
Bit 0 When set, the partition exists.
When not set, the partition does not exist.
Bit 1-6 These bits are reserved for future use.
Bit 7 When set, the partition is bootable.

When not set, the partition is not bootable.
The BIOS will boot the first partition that has bit 7 set in this byte.
p?_id A 3-byte field that identifies the partition. The field may contain the three ASCII characters:
"GEM" - for regular (< 16Mb) GEMDOS partitions
"BGM" - for big (>= 16Mb) GEMDOS partitions
"XGM" - for extended GEMDOS partitions

p?_st A 68000 format long word that specifies the offset to the beginning of the partition from the
beginning of the entire hard disk, in number of physical (512-byte) sectors.

p?_siz A 68000 format long word that specifies the size of the partition, in number of physical (512-
byte) sectors.

Fage 4 Copyright 1989 Atari Corporation AHDI 300 Release Notes

Extended GEMDOS Partitions

The extended GEMDOS partition enables a hard disk to contain more than 4 partitions. Only one of the 4
partition information structures (p?_info as defined above) can contain an extended partition. The extended
partition is identified by the ASCII characters "XGM" in the 3-byte p?_id field of a p?_info structure in the root
sector. For more information about the structure of the extended GEMDOS partition, refer to INSIDE THE
EXTENDED GEMDOS PARTITION.

Since an extended partition is not bootable, it /7us7be preceeded by at least one standard partition, so the
hard disk can be made bootable. This requirement makes it impossible for partition 0 to be an extended
partition. A partitioning utility (e.g. HDX) should only create an extended partition if at least one preceeding
standard partition already exists. A utility that installs a bootable driver onto the hard disk (e.g. HINSTALL)
should never mark an extended partition as bootable.

AHD/I 300 Release Noltes Copyright 19589 Atari Corporation Fage 5

Inside the Extended GEMDOS Partition

The extended GEMDOS partition is a partition which is subdivided into smaller ones. Each subdivision
consists of an extended root sector (a 512-byte sector), and a standard partition. Conceptually, each
subdivision is like a stand-alone hard disk with only one partition on it. These subdivisions are "linked"
together by a pointer in the extended root sector.

The layout of an extended root sector resembles that of the root sector (refer to Figure 1), except that fields
like hd_siz, bsl_st and bsl_cnt are not applicable in an extended root sector. Only two of the four p?_info
structures would be used, but not necessarily the first two. One of the p?_info structures is used to describe
the standard partition in the current subdivision, the other one provides a link to the next subdivision. The
link should occupy a p?_info structure that follows the p?_info structure for the description of the standard
partition. The other two unused p?_info structures should be filled with zeroes. Refer to Figure 3 for the
layout of a p?_info structure.

For the standard partition description, the definitions of the fields in a p?_info structure are:

p?_flg A 1-byte field that is used as a bit-vector of flags. Currently only bit 0 is being used; when set
it indicates that this p?_info structure is being used. The remaining bits are reserved for
future use.

p?_id A 3-byte field that identifies the partition. The field /mws/contain the three ASCII characters:

"GEM" - for regular (< 16Mb) GEMDOS patrtitions
"BGM" - for big (>= 16Mb) GEMDOS partitions

p?_st A 68000 format long word that specifies the offset to the beginning of the standard partition
from the beginning of the extended root sector that this structure resides in, in number of
physical (512-byte) sectors.

p?_siz A 68000 format long word that specifies the size of the standard partition in number of
physical (512-byte) sectors.

For the link to the next subdivision, the definitions of the fields in the p?_info structure are:

p?_flg A 1-byte field that is used as a bit-vector of flags. Currently only bit 0 is being used; when set
it indicates that this p?_info structure is being used. The remaining bits are reserved for
future use.

p?_id A 3-byte field that identifies the partition. The field must contain "XGM" to specify that

information in this p?_info structure provides a link to the next subdivision.

p?_st A 68000 format long word that specifies the offset to the beginning of the next subdivision
from the beginning of the entire extended GEMDOS partition, in number of physical (512-
byte) sectors.

p?_siz A 68000 format long word that specifies the size of the next subdivision, in number of
physical (512-byte) sectors.

Fage 6 Copyright 1989 Alarr Corporation AHDI 3 00 Release Notes

Big GEMDOS Partitions

A bjg GEMDOS partition is one whose size is greater than or equal to 16Mb. A big GEMDOS partition is
identified by the ASCII characters "BGM" in the 3-byte p?_id field of a p?_info structure in the root sector or
an extended root sector. Since a big GEMDOS partition is just like a regular partition, only bigger, it can be
made bootable. For information about how to read from or write to big partitions, refer to BIOS FUNCTION -
RWABS().

With AHDI 3.00, a partition can be as big as the capacity of a hard disk or 1 Gigabyte, whichever is smaller.
A big partition is achieved by having bigger logical sectors within the partition. Each time the size of a logical
sector is doubled, the maximum size of a partition is doubled. The maximum size of 1 Gigabyte is obtained
as follows:

Maximum size of a cluster, in number of bytes = 2*¥16 = 65536

Size of a cluster, in number of logical sectors = 2

Maximum size of a logical sector, in number of bytes = 65536 / 2 = 32768
Maximum size of a partition, in number of logical sectors = 2**15 = 32768
Maximum size of a partition, in number of bytes = 32768 * 32768 = 1 Gigabyte

AHD/ 3.00 Release Notes Copyright 1989 Atari Corporatiorn Fage 7

BIOS Parameter Blocks

Each standard partition is represented as a logical drive. The BIOS Parameter Block, called the BPB,
provides information about a logical drive. The structure of the BPB has not changed, but the meanings of
some fields have.

The 9-word BIOS Parameter Block (BPB) contains this information:

BPB > + + (+0)
| recsiz |
+ + (+2)
| clsiz |
+ + (+4)
| clsizb |
+ + (+6)
| rdlen |
Hoamen + (+8)
| fsiz |
4= - + (+10)
| fatrec |
+ + (+12)
| datrec |
+ + (+14)
| numcl |
+ + (+16)
| bflags |
+ + (+18)
Figure 4

All words in the structure are in 68000 format.

recsiz
clsiz

clsizb

rdlen
fsiz
fatrec
datrec

numcl

bilags

Fage &

A word that indicates the number of bytes in a logical sector. A logical sector may contain
one or more physical (512-byte) sectors.

A word that indicates the number of logical sectors in a cluster. The only value supported by
GEMDOS is 2.

A word that indicates the number of bytes in a cluster. The value is clsiz * recsiz.

A word that specifies the size of the root directory, in number of logical sectors. A directory
entry uses 32 bytes, so the number of files a root directory can contain is rdien * recsiz / 32.

A word that specifies the size of each File Allocation Table (FAT), in number of logical
sectors.

A word that specifies the offset to the first sector of the second FAT from the beginning of the
logical drive, in number of logical sectors.

A word that specifies the starting logical sector number of the first data cluster on the logical
drive.

A word that specifies the number of data clusters on the logical drive.
A word that is used as a bit-vector of flags. Currently only bit 0 is being used; when set it

indicates that 16-bit FAT entries (instead of 12-bit ones) are to be used. The remaining bits
are reserved.

Copyright 1989 Alari Corporation AHDI 3.00 Release Notes

Boot Sectors

The boot sector is the first logical sector on the logical drive and it occupies one logical sector. When a
logical sector contains more than one physical (512-byte) sectors, a boot sector will be bigger than 512
bytes. However, only the first 512 bytes of a boot sector are used, no matter how big the boot sector might
be. The layout of the first 512 bytes of a big boot sector is identical to a regular (512-byte) boot sector, the
rest of the boot sector is zero-filled.

The first 512 bytes of a boot sector contains the following information:

Oftset
+ + ($0)
| boot code |
| (if any) |
+-- + ($8)
| SERIAL |
| 24-bit I
| volume |
| serial # |
+ + ($b)
I 1 bps |
| h |
+ + ($d)
I spc |
- + ($e)
| 1 res |
I h |
+ + ($10)
| nfats |
+ + ($11)
| | ndirs |
I h |
+ + ($13)
Il 1 nsects |
I h |
+ + ($15)
| media |
+ + ($16)
| | spf |
| h |
+ + ($18)
| | nsides |
I h |
- + ($1c)
| | nhid |
I h I
+- ————t ($1e)
| boot code |
| (if any) I
| |
+---- - ($200)
Figure 5

boot code Byte $0 through $8. and byte $1e through $200 are "don't cares” if the hard drive is not
bootable. If the hard drive is bootable, they may contain boot code.

serial # A 24-bit serial number that is used to help determine if the user has changed cartridges in a
removable drive. The serial number is generated randomly and written when a cartridge is
partitioned.

bps An 8086 format word that indicates the size of a logical sector, in number of bytes. One

logical sector may contain more than one physical (512-byte) sectors.

AHD/ 3.00 Release Notes Copyright 1989 Atarr Corporation Fage 9

spc

res

nfats

ndirs

nsects

media

spf
spt

nsides

nhid

A 1-byte field that indicates the size of a cluster. in number of logical sectors. The only value
supported by GEMDOS is 2.

An 8086 format word that indicates the number of reserved logical sectors at the beginning of
the logical drive, including the boot sector. The value of res is usually 1.

A 1-byte field that indicates the number of File Allocation Tables (FAT) on the logical drive.
The value of nfats is usually 2.

An 8086 format word that indicates the number of root directory entries on the logical drive.

An 8086 format word that indicates the total number of logical sectors on the logical drive,
including the reserved sectors.

A 1-byte field that describes the kind of media the logical drive resides on. For hard disk. the
value of media is $f8. The ST BIOS does not use this byte.

An 8086 format word that indicates the size of each FAT, in number of logical sectors.

An 8086 format word that indicates the size of each track, in number of sectors. This field is
not applicable to a hard drive.

An 8086 format word that indicates the number of sides on the media. This field is not —
applicable to a hard drive.

An 8086 format word that indicates the number of hidden sectors. This field is not applicable
to a hard drive.

The first 512 bytes of an execwiable boot sector /mus?word-checksum to the magic number $1234. The last
2 bytes (at offset $1fe) is used for "evening out’ checksums. In particular, the Extended BIOS function
_Protobt() modifies these 2 bytes. During system initialization, the first 512 bytes of the boot sector from a
logical drive are loaded into a buffer. If the checksum is correct, the system JSRs the first byte of the buffer.
Since the location of the buffer is indeterminant, any code contained in the boot sector must be position-

independent.

When a "Get BPB" call is made, the driver reads the first 512 bytes of the boot sector and examines the
prototype BIOS parameter block (BPB). A BPB is constructed from the prototype. If the prototype looks
strange (e.g. if critical fields in it are zero) the driver returns zero (as an error indication).

Fage 70 Copyright 1989 Atarr Corporation AHDI 300 Release Notes

Patchable Variables

In AHDI 3.00, a few variables in the driver are made patchable for the user. These variables do not exist in
previous versions of AHDI.PRG or SHDRIVER.SYS. They are placed at the beginning of the driver file
(AHDI.PRG or SHDRIVER.SYS).

Magic number

Version number

Ospool size

Def_sect_siz

Offset
iy ae s o s + ($c)
| Magic number |
+ + ($e)
| Version number |
+ -+ ($12)
| Ospool size I
+ + ($14)
| Def_sect_siz |
+-- + ($16)
| # entries in def_ndrv |
+ + ($18)
| 1st entry of def_ndrv I
+ + ($19)
+ + ($18 + (n- 1))
| nth entry of def_ndrv |
+ - a5 ($18 + n)
Figure 6

A value of $f0ad in this word indicates that there are patchable variables in that
version of the driver. This magic number $f0ad does not exist in previous
versions of AHDI.PRG or SHDRIVER.SYS.

A 68000 format word that indicates which version of the driver this is. For AHDI
3.00, its value is $0300. This version number does not exist in previous versions
of AHDI.PRG or SHDRIVER.SYS.

A 68000 format word that specifies how many "chunks" of memory to add to the
OS pool. The default is 128. The size of each chunk is 66 bytes. This number
will only be used when the ROM version on your system requires that OS pool be
added.

A word that specifies the default logical sector size (in number of bytes) the
system will handle. 512 bytes is the smallest number you can specity, which is
also the default value of def_sect_siz. The driver will use this number, or the size
of the biggest logical sector it could find on all logical drives on the system,
whichever is bigger, to be the size of the butfers on the GEMDOS buffer lists.

This is useful when you need to switch cartridges on a removable drive (e.g.
MEGAFILE 44) often, and the cartridges are partitioned differently. At boot time,
the driver will use this number, or the size of the biggest logical sector on all
logical drives, whichever is bigger, to allocate buffers for the GEMDOS buffer
lists.

For example, suppose that you boot up the system and the size of the biggest
logical sector on all logical drives is 512 bytes. Later, you need something from a
cartridge that has a partition whose logical sectors are 1024 bytes big (call it
Cartridge A). If the default logical sector size has not been set to be greater than
512, you cannot access this partition on Cartridge A whose logical sectors are
1024 bytes big. because the GEMDOS butfers are not big enough for its logical
sectors.

You can reboot with Cartridge A in the drive (so the driver allocates bigger
buffers), or you can change this patchable variable so the driver always allocates

AHDI 300 Release Noles Copyright 71989 Arari Corporaltiorn Fage 77

entries in def_ndrv

1st-nth entry in def_ndrv

1024-byte butfers. You will have to reboot in any case, so the driver can allocate
the big enough GEMDOS buftfers.

A word that specifies the size of the def _ndrv array in humber of bytes. The
current value of this word is 8, which is the maximum number of ACSI units being
supported. .

Def_ndrv is an array of bytes that specifies default number of drive letters to be
reserved for each ACSI unit. The indices into the array are the physical unit
numbers of the ACSI units. This number will only be used if an ACSI unit is a
removable hard drive.

This is useful when you need to switch cartridges on a removable drive (e.g.
MEGAFILE 44) often, and the cartridges are partitioned differently. At boot time,
the driver will use this number, or the number of logical drives on a removable
ACSI hard drive, whichever is bigger, and assign that number of drive letters to
that particular unit.

For example, suppose that you boot with a cartridge that has two partitions on it
(call it Cartridge A) in the removable drive. Later, you need something from
another cartridge that has four partitions on it (Cartridge B). If the def_ndrv entry
for this removable drive has not been set to be greater than two, you cannot
access the last two partitions on Cartridge B, because only two drive letters were
reserved for this removable drive.

You can reboot with Cartridge B in the drive (so the driver reserves four drive
letters), or you can change this patchable variable so the driver always reserves
four drive letters for this physical unit. You will have to reboot in any case. so the
new distribution of drive letters is recognized.

A byte that specifies the default number of drive letters to be reserved for unit i,
wherei=0, 1, 2, ..., n. The default value for every entry is 1.

Page 72 Copyright 1989 Atari Corporation AHD/I 3 00 Release Notes

PUN_PTR

The TOS system variable pun_ptr at $516 points to the following structure:

#define MAXUNITS 16
struct pun_info {
WORD puns;
BYTE pun[MAXUNITSI;
LONG partition_startftMAXUNITSI;
LONG cookie;
LONG cookie_ptr;
WORD version_num;
WORD max_sect_siz;
LONG reserved[16];

}

Cookie, cookie_ptr,

MAXUNITS

puns

pun

partition_start

cookie

cookie_ptr

version_num

max_sect_siz

version_num, max_sect_siz and the reserved fields are the new fields in this structure.

A constant that specifies the maximum number of logical drives (including floppy drives A:
and B:) supported by the system.

A word that indicates the number of accessible physical units (hard drives) that are
connected to the system.

An array of bytes that indicates which physical unit each logical drive resides on. The
indices into the array are the logical drive numbers, where 0 is for A:, 1 is for B, 2 is for
C:. and so on. Each byte is broken down into:

Bit 0-2 The 3-bit value is the physical ACSI unit number of the unit that the logical
drive resides on.

Bit 3-6 These bits are reserved for future use.

Bit 7 When set, this bit indicates that the logical drive does not exist.
When not set, it indicates that the logical drive exists.

An array of longs that indicates the offset to the beginning of each logical drive from the
beginning of the entire physical unit, in number of physical (512-byte) sectors. The
indices into the array are the logical drive numbers, where 0 is for A:, 1 is for B:, 2 is for
C. and so on.

A long that indicates more information is following. This cookie does not exist in previous
versions of the loaded driver, and so allows programs to determine whether the
information they are looking for exists in the verion which is running. The value of the
cookie is $41484449, which is 'AHDI’ in ASCIL.

A pointer (which is a long) that points to the cookie. This value is filled in when the driver
gets loaded. This allows programs to be sure that they have found the right cookie, not
just any random 'AHDI’ in RAM.

A word that indicates which version of the driver is running. For AHDI 3.00, the value of
version_num is $0300.

A word that indicates the size of the biggest lagical sector the system will support. The
value is either the size of the biggest logical sector found or the def _sect_siz (as defined
in PATCHABLE VARIABLES above), whichever is bigger. This is also the size of the
butters on the GEMDOS bulfter lists. It you are writing a program to add buffers to the
GEMDOS bulfter lists, make sure those butfers are as big as max_sect_siz. This variable
is also useful when a program needs to know how big a buffer should be allocated for a
logical sector. Allocating max_sect_siz bytes would guarantee the bufter is big enough
for any logical sector on all the logical drives.

AHD/I 300 Release NMoles Copyright 1989 Atari Corporation Page 13

BIOS Function - RWABS()

Rwabs() is the BIOS call that lets you read or write sectors (logical or physical) on a device. It now takes an
extra parameter to address larger hard disks.

LONG
WORD
LONG
WORD
LONG

rwilag

buf

count

recno

dev

Irecno

rwabs(rwflag, buf. count, recno, dev, Irecno)
rwilag;

count, recno, dev;
Irecno; /¥ this is the new parameter */

A bit-vector that indicates the mode of the operation.
Bit0 when set, it's a write operation.

when not set, it's a read operation
Bit 1 when set, ignores media change

when not set, does not ignore media change
Bit 2 when set, turns off retry

when not set, retries when necessary
Bit 3 when set, operates in physical mode

when not set. operates in logical mode

A pointer to a buffer to read or write to. In logical mode. the size of the buffer must be at
least count * (size of the logical sector). In physical mode, the size of the butfer must be at
least count * 512 bytes.

In logical mode, this word specifies the number logical sectors to read or write. In physical
mode, it specifies the number of physical (512-byte) sectors to read or write.

In logical mode, this word specifies the first logical sector to read from or write to. In physical
mode, it specifies the first physical sector to read from or write to.

If recno is -1, Irecno will be used instead.

In logical mode, dev specifies the logical drive to read from or write to, and is 0 or 1 for floppy
drives A: or B: respectively, and 2+ for hard disks (where 2 is for C:, 3 is for D:, and so on).
In physical mode, it specifies the physical unit number of a hard disk, where 2 is for unit 0, 3
is for unit 1, and so on.

A long word that specifies the first logical or physical sector to read from or write to. This
new parameter is optional and is used only when recno equals -1.

It a logical sector contains more than one physical (512-byte) sectors, Rwabs() will translate the logical
sector number to the corresponding physical sector number. Rwabs() will also translate the count of logical
sectors to a count of physical sectors. The caller just needs to provide a butfer of appropiate size as
specified above.

FPage 74 Copyright 1989 Atarr Corporation AHDI 3. 00 Release Notes

BIOS Function - GETBPB()

If you plan to use the Getbpb() call, make sure you call the force media change routine before you call
Getbpb(). In the driver, there is a flag for each logical drive which tells the system whether medium has
changed or not. The flag can have 3 values. A value of 0 means medium has not changed; A value of 1

means medium may have changed; A value of 2 means medium has definitely changed. Each time

Getbpb() is called, the flag corresponding to the logical drive in question will be cleared, because the
information about that logical drive has been updated. |f a medium has changed, and a program calls
Getbpb() before GEMDOS has a chance to recognize the medium change, GEMDOS will not see the
medium change at all. This is disastrous because GEMDOS will not update its cached information of the
logical drive. To make sure GEMDOS will see all possible media changes, you must call the force media
change routine to force GEMDOS to recognize a medium change before your program calls Getbpb(). For
information about the force media change routine, please refer to FORCING MEDIA CHANGE.

AHD/ 300 Release Notes Copyright 1988 Atari Corporation Fage 75

Forcing Media Change

The following is also documented in the Rainbow TOS (TOS 1.4) release notes.

%

¥

kS
£
¥
kS
3

%

%

mediach: cause media-change on a logical device.

USAGE:
errcode =

mediach(devno) ; /* returns 1 for error */

int errcode, devno;

This procedure causes a media change by installing a new

" handler for the mediach, rwabs, and getbpb vectors; for device
devno, the mediach handler returns "definitely changed," and
the rwabs handier returns E_CHNG, until the new getbpb handler

S

is called. The new getbpb handler un-installs the new

handlers.

After installing the new handlers, this procedure performs a *
disk operation (e.g. open a file) which makes GEMDOS check %
the media-change status of the drive: this will trigger the %
new rwabs, mediach and getbpb handlers to do their things. %*

RETURNS: 0 for no error, 1 for error (GEMDOS didn't ever do a

getbpb call; should never happen).

.globl

_mediach:

i

move.w
move.w
add.b
move.b

oop:
clr.]
move.w
trap
addq
move. 1
move.w

move.]
move. 1
move. 1

move.]
move.]
move. 1

_mediach

4(sp),do
d0,mydev
#'A',dO

do, fspec ; set drive spec for search first

-(sp) ; get super mode, leave old ssp
#$20,-(sp) ; and "super" function code on stack

#1

#6,sp
do,-(sp)
#$20,-(sp)

$472,01dgetbpb
$47e,0ldmediach
$476,01drwabs

#newgetbpb, $472
#newmediach, $47e
#newrwabs, $476

Page 76 Copyright 1989 Atarr Corporation

AHD/I 300 Release Noles

; Fopen a file on that drive

move.w
move. 1
move.w
trap
addq

; Fclose the handle we just got

tst.]
bmi.s

move.w
move.w
trap
addq

noclose:

moveq
cmp.1
bne.s

moveq
move. 1
move. 1
move.1

done: trap

addq

move.]
rts

#0,-(sp)
#fspec,-(sp)
#%$3d,-(sp)
#1

#8,sp

do
noclose

do,-(sp)
#3$3e,-(sp)
#1

#4,sp

#0,d7
#newgetbpb, $472
done

#1,d7
oldgetbpb, $472
oldmediach, $47e
oldrwabs, $476

#1
#%$6,sp
d7,do

; still installed?
; nope

new getbpb: if it's our device, uninstall vectors;

in any case, call the old getbpb vector (to really

; yup! remove & return TRUE

; go back to user mode (use stuff
; Teft on stack above)

R e e e R e e e e e e e e e e e e e e e, s e s, e, s e A ¥ D S0

T e e e o e S e A S S S s S e e e e e S e s i i s i e o W S LSRN S

* get it)

newgetbpb:
move.w mydev,d0
cmp.w 4(sp),do
bne.s dooldg
move. | oldgetbpb, $472
move. 1 oldmediach, $47e
move. 1 oldrwabs, $476

dooldg: move. 1 oldgetbpb, a0
jmp (a0)

AHD/I 3.00 Release Notes

; it's mine: un-install new vectors

; call old.

Copyright 1989 Atari Corporation

; continue here whether mine or not:

Page 17

B0 e e e e o e s s e - S e S i s sy e B e e e s e i e Ak o B T R L S o i e e e e e e

newmediach:

dooldm:

move.w
cmp.w
bne.s
moveq. 1

rts

move.
jmp

mydev, d0
4(sp),do
dooldm
#2,d0

oldmediach, a0
(a0)

; it's mine: return 2
; (definitely changed)

; not mine: call old vector.

e e e e e e i e R e e e R e AR A A WY ¥

newrwabs:

dooldr:
.data
fspec:

.bss
mydev:

oldgethpb:
oldmediach:

oldrwabs:

newrwabs:

move.w
cmp.w
bne.s
moveq. 1
rts

move.]
imp

dc.b

ds.w
ds.1
ds.1
ds.1

return E_CHG (-14)

mydev,d0
$e(sp),do
dooldr
#-14,d0

oldmediach, a0
(a0)

"X:\\X",0

if it's my device

; file to look for (doesn't matter)

b S e 0 S PO S R SR e S S R 4 s e R | LN L x| O %

Fage 78

end of mediach

Copyright 1989 Atari Corporation

kS

AHD/ 300 Release Notes

