AHDI 3.00 Release Notes

April 18, 1990

Atari Corporation
1196 Borregas Avenue
Sunnyvaie, CA 94086

COPYRIGHT
Copyright 1990 by Atari Corporation; ali rights reserved. No part of this publication may be
reproduced, transmitted, tran~-ribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanicai,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of
Atart Corporation, 1196 Borregas Ave., Sunnyvale, CA 94086.

DISCLAIMER
ATARI CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. Further, Atari Corporation reserves the right to revise this publication and to
i make changes from time to time in the content hereof without obligation of Atari Corporation
to notify any person of such revision or changes.

TRADEMARKS _
Atari, ST, Mega, Megafile, and TOS are trademarks or registered trademarks ot Afari
Corporation.
AHDI! 3 .00 Release Notes were printed in the United States of America.
Second Edition: Aprl 18, 1980

This document was produced entirety with Microsoft Write, an Atari Mega 4 computer, and
an Atari SLM804 laser printer.

Hard Disk Partitioning

AHDI 3.00 adds support for hard disks with more than four partitions and parli_lions of. §ize_greater than or eq_uai
1o 16 Mb. There are still only four 12-byte struciures (called p?_into) 1o describe partition information in the first
sector (physical sector *0) on a hard disk. Physical sector *0 is called the root sector.

The root sector (physical sector #0) on a hard disk contains this information:

Ofiset
t + ($1c2)
| hd_siz |
4 + {$1c6)
| po_lig |
| pO_id |
| pO_st |
i pO_siz I
+ + ($1d2)
| pl_ilg |
| pi_id i
| pl_st |
} pl_siz |
+ + ($1de)
| p2_ftg |
| p2_id |
| p2_st |
| p2_siz |
+ + {$1ea)
| p3_lig]
I _id]
| p3_st |
| p3_siz |
+ + ($1i6)
I bsi_st |
+ + ($t1fa)
| bsl_cnt |
+ + ($1fe)
| (reserved) 1
+ + ($200)
Figure 1
hd_siz A 68000 format long word 1hat contains the total size of the disk, in number of physical {(512-
byte) sectors.
bsi_st A 68000 format long word that specifies the offset to the beginning of the bad sector list trom

the beginning of the entire hard disk. in number of physical (512-byte) sectors. (Typically the
bad sector list will be located at the beginning of the device right atter the root sector.)

bsi_cnt A 68000 format iong word that specifies the size of the bad sector list, in number of physical
{512-byte) sectors.

There are two kinds of partitions, s/anoard partitions and ex/enrded partitions. A s/andard partition can .be a
reguyar partition (that is, a partition whose size is < 16Mb), or a &igpartition {that is, a partition whose size IS >=
16Mb). The first sector in a siandard partition is a boot sector (which, on the ST, will contain a BIOS
Parameter Block). For more information about big pariitions, refer to BIG GEMDOS PI}BTITIONS. An
exfended partition is a special kind of pariition which itself is subdivided into standard partitions. For more
information about extended partitions, refer to EXTENDED GEMDOS PARTITIONS.

ATAR! AHD! 3.00 RELEASE NOTES - 18 April 1990 Fage 3

A hard disk may contain up to four standard partitions, or up to three standard partitions and one extended
partition.

root sector

bad sector list

partition 0

+ =4+ "+ ++

| partition 1
| (optional)

| partition 2
[{optionat)

| partition 3
| {optional)

et I Ralal IRl IR P IR R R

Figure 2

Fage 4 ATAR! AHDI 3.00 RELEASE NOTES - 18 April 1990

Ea‘t)o:h1 pgrlgi)on (standard or extended) is described by a 12-byte partition information structure (p?_info where ?

O p?_info > + + (+0)
| p?_fig [
+ + (+1)
| p?_id |
+ + (+4)
| p7_st |
+ + (+8)
| p?_siz |
+ + (+12)

Figure 3
p?_fig A 1-byte field that indicates the state of a partition.
Bito When set, the partition exists.

When not set, the partition does not exist.
Bit 1-6 Thes~ hits are reserved for future use.
Bit7 When set, the partition is bootable.

When not set, the partition is not bootable.

The BIOS will boot the first partition that has bit 7 set in this byte.

p?_Id A 3-byte fieid that identities the partition. The field may contain the three ASCll characters:
"GEM" - for regular { < 16Mb) GEMDOS partilions
"BGM"” - for big (>= 16Mb) GEMDOS partitions
"XGM" - for extended GEMDOS partitions

p?_st A 68000 format long word that specifies the ofiset to the beginhing of the partition ifrom the
0 beginning of the entire hard disk, in number of physical (512-byte) sectors.

p?_siz A 68000 format long word that specifies the size of the partition, in number of physical (512-
byte) sectors. .

ATARI AMHDI 3 00 RELEASE NOTES - 18 Aprit 1990 Page 5

Extended GEMDOS Partitions

The extended GEMDOS partition enables a hard disk to contain more than 4 partitions. Only one of the 4
partition information structures (p?_info as defined above) can contain an extended partition. The extended
partition is identified by the ASCI! characters "XGM" in the 3-byte p?_id fieid of a p?_info structure in the root
sector. For more intormation about the structure of the extended GEMDOS partition. refer to INSIDE THE
EXTENDED GEMDQS PARTITION.

Since an extended partition is not bootable, it /7us7be preceeded by at least one standard partition, so !he hard
disk can be made bootable. This requirement makes it impossible lor partition 0 to be an extended partition. A
partitioning utility (e.g. HDX) should only create an extended partition if at least one preceeding standard
partition aiready exists. A utility that installs a bootable driver onto the hard disk (e.g. HINSTALL) shouid never
mark an extended partition as bootabie.

Fage 6 ATARI AHD! 3.00 RELEASE NOTES - 18 Apri 1990

Inside the Extended GEMDOS Partition e el

The extended GEMDOS partition is a partition which is subdivided into smaller ones. Each subdivision
consists of an extended root sector (a 512-byte sector), and a standard pariition. Conceptually, each
subdivision is like a stand-alone hard disk with only one partition on it. These subdivisions are “linked” together
by a pointer in the extended root sector.

The layout of an extended root sector resembles that of the root sector (refer to Figure 1), except that fields
like hd_siz, bsi_st and bsl_cnt are not applicable in an extended root sector. Only two of the four p?_into
structures would be used, but not necessarily the first two. One ot the p?_info structures is used o describe
the standard partition in the current subdivision, the other one provides a link {o the next subdivision. The link
should occupy a p?_info structure that follows the p?_into structure for the description of the standard partition.
The other two unused p?_info structures should be filled with zeroes. Refer to Figure 3 for the layout of a
p?_info structure.

For the standard partition description, the definitions ot the fields in a p?_Info structure are:

p?_iig A 1-byte field that is used as a bit-vector of flags. Currently only bit 0 is being used; when set it
indicates that this p?_info structure is being used. The remaining bits are reserved for juture
use.

p?_id A 3-byte iieid that identifies the partition. The tield /mus/contain the ihree ASCII characters:

GEM" - for regular (< 16Mb) GEMDOS partitions
"BGM" - for big (>= 16Mb) GEMDOS partitions

p?_st A 68000 format long word that specifies the offset to the beginning of the standard partition
from the beginning of the extended root sector that this structure resides in, in number of
physical (512-byte) sectors.

pr_siz A 68000 format long word that specifies the size of the standard partition in number of physical

(512-byte) sectors

- For the link to the next subdivision, the definitions of the lieids in the p?_info struciure are:

p?_fig A 1-byte field that is used as a bit-vector of flags. Cusrently only bit 0 is being usea; when set it
indicates that this p?_info structure is being used. The remaining bits are reserved for tuture
use.

p7_id A 3-byte field that identifies the partition. The field must contain “XGM™ to specify that
information in this p?_info structure provides a iink to the next subdivision.

p7_st A 68000 format long word that specities the ofiset to the beginning of the next subdivision from
the beginning of the entire extended GEMDOS partition, in number of physical (512-byte)
sectors.

p?_siz A 68000 format long word that specifies the size of the next subdivision, in number of physical
(512-byte) sectors.

ATARI AMHD/ 3.00 RELEASE NOTES - 18 Aprit 1990 Fage 7

The Bad-Sector List

Several terms are used in describing the Bad-Sector List:

85t
Bad-Sector List.

Vendor bad seclors.
Bad sectors reported by the vendor of the hard disk device, and those not recoverable by reformatting
the device (more detail later). Contrast with usar bag sectors.

Liser bad seclors:
Those bad sectors found by a "Markbad" type utility (in HDX) run by the user. These are suspects: il is
possible that these will be recoverable by reformatting.

Modia 5SL.

The bad-sector list placed at the start of the media. This list contains information on both user and
vendor bad sectors, in such a way that they can be distinguished. During formatting, the user part of this list is
discarded, and the vendor part is kept in memory,

Aoot sector; . .

The first sector (sector 0) of a physical device. This contains information about the device: size of
device in number of physical (512-byte) sectors: locations, types and sizes of partitions; location and size ol
the bad-sector list.

A GEMDOS "logical” drive, such as C.. There may be from one to four partitions per physical device,
and possibly more with the scheme described in the section for Extended GEMDOS Partition.

Fardition freader: . .
The bool seclar FATs, and root direcfory of a GEMDOS partition. [t must be contiguous, with no
intervening bad sectors.

Boot sector: ' o
The first sector ot a partitiorr This gives GEMDOS information about the partition such as its size. the
size of its FAT, and how large the root directory is.

FAT:
File Allocation Table. This is where the clusters assigned to a given file in the GEMDOS lilesystem are
recorded, and also where bad sectors within a GEMDOS partition are marked.

oot directory:
The root (topmost) directory oi a GEMDOS partition.

The media BSL is recorded starting at sector "bsl_st” and occupies "bsl_cnt” sectors. "Bsl_st” and "bsi_cnt”
are recorded in the root sector. and are described in the section for Hard Disk Partitioning. Th'e size of !he
8SL is based on the device size, and is fixed al formatting time. This BSL consists of 3-byte entries. The first
two entries are special, and are described beiow. The rest of the entries consist of 3-pyle physical sector
numbers of the bad sectors. Entries in this list may straddie physical sectors, and a zero-filled entry marks the
end of the list, since sector zero can never be bad on a working device.

The first 3-byte entry in the media BSL contains the number of vendor bad sectors recorded. The lirst byte of
the second 3-byle entry is a checksum byte which causes the whole BSL, when added bytewise, o sum to A5
hex. (if this criterion is not met, the whole BSL Is assumed lo be bad.) The second and third byte of the
second 3-byte entry are reserved for future use. The next N entries in the BSL are vendor bad sectors, where
N is the number contained in the first entry. The remainder of the BSL is for user bad sectors. The user-bad
list is cieared out when the device is reformatted, but is retained during partitioning.

The size of the media BSL is set when the device is formatted: it does not grow. This list is used to remember
bad sectors on the media independent of the partitioning scheme. The bad sectors recorded here are also
marked in the FAT of each GEMDOS partition, where appropriate. If the partitions are changed, the new FATs
wiill reflect the same bad sectors, relocated appropriately.

Page & A TARI AHDI 3.00 RELEASE NOTES - 18 April 1990

Big GEMDOS Partitions

A b/g GEMDOS partition is one whose size is greater than or equal to 16Mb. A big GEMDOS partition is
identified by the ASCII characters "BGM" in the 3-byte p?_id field of a p?_info structure in the root sector or an
extended root sector. Since a hig GEMDOS partition is just like a regular partition, only bigger, it can be made

%cwtable(.) For information about how to read from or write to big partitions, refer to 8IOS FUNCTION -
ABS().

With AHDI 3.00. a partition can be as big as the capacity of a hard disk or a quarter of Gigabyte, whichever is
smaller. A big partition is achieved by having bigger logical sectors within the partition. Each time the size of

a logical sector is doubled, the maximum size of a partition is doubled. The maximum size ol 1/4 Gigabyte is
obtained as follows:

Maximum size of a cluster, in number of bytes = 2**14 = 16384

Size of a cluster, in number of logicai sectors = 2

Maximum size of a logical sector, in number of bytes = 16384 / 2 = 8192
Maximum size of a partition, in number of logical sectors = 2**15 = 32768
Maximum size of a partition, in number of bytes = 8192 * 32768 = 1/4 Gigabyte

ATARI AHDI 3.00 RELEASE NOTES - 18 April 1990 Fage 9

BIOS Parameter Blocks S

Each standard partition is represented as a logical drive. The BIOS Parameter Block, called ihe BPB, provides
information about a logical drive. The structure of the BPB has not changed, but the meanings of some fields

have.

The 9-word BIOS Parameter Block (BPB) contains this information:

8rB > + + {+0)
| recsiz |
$ + {(+2)
| clsiz |
+ + (+4)
I clsizb |
+ + (+6)
i rdien |
+ + (+8)
| tsiz |
* + (+10)
| f.Jec |
+ + (+12)
I datrec |
+ + (+14)
| numcl i
+ + {+16)
| bflags |
+ + {(+18)
Figure 4

All words in the structure are in 68000 format.

recsiz
clsiz

clsizb

rdlen

fsiz

fatrec
datrec

numcl

bfiags

A word that indicates the number of byies in a logical sector. A logical sector may contain one
of more physical (512-byte) sectors.

A word that indicates the number of logical sectors in a cluster. The only value supported by
GEMDOS is 2.

A word that indicates the number of byles in a cluster. The value is clsiz * recsiz.

A word that specifies the size of the root directory, in number of lopic;al sectors. A directory
entry uses 32 bytes, 50 the number of files a root directory can contain is rdien * recsiz / 32.

A word that specifies the size of each File Allocation Table (FAT), in number of logical sectors.

A word that specifies the offset to the first sector of the second FAT from the beginning ot the
logical drive, in number of logicai sectors.

A word that specifies the starting logical sector number of the first data cluster on the logical
drive.

A word that specifies the number ot data clusters on the logical drive.
A word that is used as a bit-vector of flags. Currently only bit 0 Is being used. when set it

indicates that 16-bit FAT entries (instead of 12-bit ones) are to be used. The remaining bits are
reserved.

Fage 10 ATARI AHDI 3.00 RELEASE NOTES - 18 April 1990

Y e

[N S
L

O

Boot Sectors

The boot sector is the first logical sector on the logical drive and it occupies one logical sector. When a logical
sector contains more than one physical (512-byle) sectors, a boot sector will be bigger than 512 bytes.
However, only the first 512 bytes of a boot sector are used, no matter how big the boot sector might be. The

layout of the first 512 bytes of a big boot sector is identical to a regular (512-byte) boot sector, the rest of the
boot sector is zero-filled.

The first 512 bytes of a boot sector contains the follewing information:

Otiset
t + ($0)
| boot code |
| (it any) |
+ + ($8)
H SERIAL |
| 24-bit {
| volume {
| serial * |
+ ’ + ($b)
Il 1 'bps !
Il h |
+ + ($d)
] spe]
+ + ($e)
| 1 res |
| h |
+ + ($10)
| nfats |
+ et {$11)
| 1 ndrs |
I h |
+ + ($13)
: I nsects {
+ + {$15) ‘
| media i
+ + ($16)
I 1 spt |
I h [
+ £+ ($18)
| 1 nsides |
| h |
+ + ($1c)
| 1| nhid |
I n |
+ + {$1e)
| boot code |
I (it any) |
! |
+ + {$200)
Figuwre 5

boot code Byte $0 thvough $8, and byte $1e through $200 are "don't cares” if the hard drive is not
bootable. If the hard drive is bootable, they may contain boot code.

serial * A 24-bit serial number that is used 1o help determine if the user has changed cartridges in a
removable drive. The serial number is generated randomly and written when a cartridge is
partitioned.

bps An 8086 format word thal indicates the size of a logical sector, in number of bytes. One logical

secior may contain more than one physical (512-byte) sectors.

ATARI AHDI 3.00 RELEASE NOTES - 18 April 1990 Fage 17

spc A t1-byte field that indicates the size ot a cluster, in number of logicai sectors. The only value
supported by GEMDOS is 2.

res An 8086 format word that indicaies the number of reserved logical sectors at the beginning of
the logical drive, including the boot sector. The vaiue of res is usually 1.

nfats A 1-byte field that indicates the number of File Allocation Tables (FAT} on the iogical drive. The
value of nfats is usually 2.

ndirs An 8086 format word that indicates the number of root directory entries on the logical drive.

nsects An 8086 format word that indicates the total number of logicat sectors on the logical drive,
including the reserved sectors.

media A 1-byte field that describes the kind of media the iogical drive resides on. For hard disk, the
value of media is $18. The ST BIOS does not use this byte.

spt An 8086 format word that indicates the size of each FAT, in number of logicai sectors.

spt An 8086 format word that indicates the size of each {rack, in number of sectors. This fieid is
not applicable to a hard drive.

nsides An 8086 tormat word that indicates the number of sides on the media. This field is not
applicable to a hard drive.

nhid A?‘aBrOBS format word that indicates the number of hidden sectors. This field is not applicable to .
a d drive.

The lirst 512 bytes ol an execufad/e boot seclor /mussword-checksum 1o the magic number $1234. The last 2
bytes (at offset $1le) is used for "evening out” checksums. In particular, the Extended BIOS function _Protobt()
modifies these 2 bytes. During system initialization, the tirst 512 bytes of the boot sector from a logical drive
are loaded into a buffer. If the checksum is correct, the system JSRs the first byte of the bufler. Since the
location ot the buffer is indeterminant, any code contained in the boot sector must be position-independent.

When a "Get BPB" call is made, the driver reads the first 512 bytes of the boot sector and examines the
prototype BIOS parameter block (BPB). A BPB is constructed from the prototype. |f the prototype looks
stranfe (e.g. if critical fields in it are zero) the driver returns zero (as an error indication).

Fage 12 ATARI AHD! 3.00 RELEASE NOTES - 18 April 1990

FPatchable Variables

In AHDI 3.00,'a tew variables in the driver are made patchable for the user. These variables do not exist in
previous versions of AHDI.PRG or SHDRIVER.SYS. They are placed at the beginning of the driver file
{AHDIL.PRG or SHDRIVER.SYS).

Magic number

Version number

Ospool size

Det_sect_siz

Oliget
+ -+ ($c)
| Magic number |
+ + ($e)
| Version number I
+ + ($12)
| Ospool size I
+ + ($14)
| Del_sect_siz |
+ + ($16)
| % enfries in del_ndrv I
+ + ($18)
| 1stentry of def_narv |
+ + ($19)
+ + (318+(n-1)
| nthentry of def_ndrv |
4 + ($18 + n)

Figure 6

A vaiue of $l0ad in this word indicates that there are paichable variables in that
version of the driver. This magic number $i0ad does not exist in previous versions
of AHDI.PRG or SHDRIVER.SYS.

A 68000 formal word that indicates which version of the driver this is. For AHD!
3.00, its value is $0300. This version number does not exist in previous versions of
AHDI.PRG or SHDRIVER.SYS.

A 68000 format word that specifies how many "chunks” of memory to add to the OS
pool. The defauitis 128. The size of each chunk is 66 bytes. This number will only
be used when the ROM version on your system requires that OS pooi be added.

A word that specifies the defauit logical sector size (in number of bytes) the system
will handle. 512 bytes is the smallest number you can specify, which is also the
default value of del_sect_siz. The driver will use this number, or the size ot the
biggest logical sector it couid tind on all logical drives on the system, whichever is
bigger, to be the size of the buffers on the GEMDOS bulffer lists.

This is useful when you need to switch cartridges on a removable drive {e.g.
MEGAFILE 44) olten, and the cartridges are parlitioned difterently. At boot time,
the driver will use this number, or the size of the biggest logical sector on all logical
drives, whichever is bigger, to allocale buifers for the GEMDOS butter lists.

For example, suppose that you boot up the system and the size of the biggest
logical sector on all logical drives is 512 bytes. Later, you need something from a
cartridge that has a partition whose logical sectors are 1024 bytes big {call it
Cariridge A). !f the default logical sector size has not been set to be greater than
512, you cannot access this partition on Cartridge A whose logical sectors are 1024
bytes big, because the GEMDOS buiiers are not big enough for its logical sectors.

You can reboot with Cartridge A in the drive (so the driver ailocates bigger butters),
or you can change this patchable variable so the driver always allocates 1024-byte
buflers. You will have 1o reboot in any case. so the driver can allocate the big
enough GEMDOS buffers.

ATARI ARID/ 3.00 RELEASE NOTES - 18 Aprid 1990 Fage 13

* enfries in dei_ndrv

1st-nth entry in de!_ndrv

Page 14

A word that specifies the size of the dei_ndrv array in number of bytes. The current
value of this word is 8, which is the maximum number of ACSI units being
supported.

Del_ndrv is an array of bytes that specifies default number of drive letters to be
reserved for each ACSI unit. The indices into the array are the physical unit
numbers of the ACSI units. This number will only be used if an ACSI unit is a
removable hard drive.

This is useful when you need to switch cariridges on a removable drive (e.g.
MEGAFILE 44) often, and the carfridges are partitioned ditterently. At boot time,
the driver will use this number, or the number of logical drives on a removable ACSI|
hard drive, whichever is bigger, and assign that number of drive letiers to that
particular unit.

For exampie, suppose that you boot with a cariridge that has two partitions on it
{call it Cartridge A) in the removable drive. Later, you need something from another
cartridge that has four partitions on it (Cartridge B}. If the def_ndrv entry for this
removable drive has not been set to be greater than two, you cannot access the
lagt twe ~artitions on Cariridge B, because only two drive letters were reserved for
this removable drive.

You can reboot with Cartridge B in the drive (so the driver reserves four drive
letters), or you can change this patchable variable so the driver always reserves
tour drive letters for this physical unit. You will have to reboot in any case, s¢ the
new distribution of drive letters is recognized.

A byte that specifies the default number of drive lelters to be reserved for unit i,
wherei=0, 1, 2, .., n. The default value for every entry is 1

ATARI AHD/ 3.00 RELEASE NOTES - 18 April 1990

PUN_PTR

The TOS system variable pun_pir at $516 points o the following structure:

*define MAXUNITS 16
struct pun_info {
WORD puns;
BYTE punfMAXUNITS];
LONG partition_startfMAXUNITS];
LONG cookie;
LONG cookie_ptr;
WORD version_num;
WORD max_sect_siz;
LONG reserved[16];

]

Cookie, cookie_ptr, version_num, max_sect_siz and the reserved fields are the new fields in this structure.

MAXUNITS A constant that specifies the maximum number of logical drives (including tloppy drives A:
and B:) supported by the system.
puns A word that indicates the number of accessible physical units (hard drives) that are

connected to the system.

pun An array of bytes that indicates which physical unit each logical drive resides on. The
indices into the array are the logicai drive numbers, where 0 is for A:, 1 is for B:, 2 is for C:
and so on. Each byte is broken down into:

B8it0-2 The 3-bit value is the physical ACSI unit number of the unit that the logical drive

resides on.
Bit 3-6 These bils are reserved for future use. _
Bit7 When set, this bit indicates that the iogical drive does not exist.

When not set, it indicates that the logical drive exists.

partition_start An array of longs that indicates the ofiset to the beginning of each logical drive from the
beginning of the entire physical unit, in number of physical (512-_byle) sectors. The indices
into the array are the logical drive numbers, where 0 is for A:, 1 is for B, 2 is for C: and so
on.

cookie A long that indicates more information is following. This cookie does not exist in previous
versions of the loaded driver, and so allows programs to determine whether the information
they are looking for exists in the verion which is running. The value of the cookie is
$41484449, which is "AHDI' in ASCII.

cookie_ptr A pointer (which is a long) that points to the cookie. This value is filled in when the driver
gets loaded. This allows programs to be sure that they have found the right cookie, not just
any random 'AHDI' in RAM.

version_num A word that indicates which version of the driver is running. For AHDI 3.00, the value of
version_num is $0300.

max_sect_siz A word that indicates the size of the biggest logical sector the system will support. The
value is either the size of the biggest logicat sector found or the det_sect_siz (as defined in
PATCHABLE VARIABLES above), whichever is bigger. This is also the size of the buffers
on the GEMDOS butfer lists. If you are writing a program to add buiters to the GEMDOS
buffer fists, make sure those buffers are as big as max_sect_siz. This variable is also
uselul when a program needs to know how big a builer should be allocated for a logical
sector. Allocating max_sect_siz bytes would guarantee the bulfer is big enough for any
logical sector on ail the logical drives.

ATARI AHD! 3.00 RELEASE NOTES - 18 Aprif 1990 FPage 15

BIOS Function - RWABS() s e

Rwabs() is the BIOS calil that lets you read or write sectors (logical or physical) on a device. It now takes an
extra parameter to address larger hard disks.

LONG rwabs(rwiflag, buf, count, recno, dev, lrecno)}

WORD rwfiag;

LONG buf;

WORD count, recno, dev;

LONG Irecno; * this is the new parameter */

rwilag A bit-vecior that indicates the mode of the operation.

Bit0 when set, it's a write operation.
when not set, it's a read operation
Bit1 when set, ignores media change
when not set. does not ignore media change
Bit2 when sel, turns off retry
when not set, relries when necessary
Bit3 when set, operates in physical mode
when not s.., operates in logical mode

but A pointer to a buffer to read or write to. in logical mode, the size of the buiter must be at least
count * (size of the logical sector). In physical mode, the size of the buifer must be at least
count * 512 bytes.

count in logical mode, this word specifies the number logical sectors to read' or write. (n physical
mode, it specifies the number of physical (512-byte) sectors 1o read or write.

recno In logical mode, this word specifies the first logical sector to read from or write to. In physical
mode, it specifies the first physical sector 10 read from or write to.

If recno is -1, lrecno will be used instead.

dev In logical mode, dev specifies the logical drive to read from or write to, and is 0 or 1 for fioppy
drives A: or B: respeciively, and 2+ for hard disks (where 2 is for C., 3 is for [;, and so on}. in
physical mode, it specifies the physical unit number of a hard disk, where 2 is lor unit 0, 3 Is for
unit 1, and so on.

irecno A long word that specifies the first logical or physical sector to read from or write to. This new
parameter is oplional and is used only when recno equais -1.

if a logical sector contains more than one physical (512-byte) sectors, Rwabs() wiil transiate the logical sector

number to the cotresponding physical sector number. Rwabs() will also transiate the count of logical sectors 1o
a count of physical sectors. The caller just needs to provide a butier of appropiate size as specified above.

FPage 16 ATARI AHD/I 3.00 RELEASE NOTES - 18 April 7990

e

BIOS Function - GETBPB()

If you plan to use the Getbpb{} call, make sure you call the force media change routine before you call
Gelbpbt{). In the driver, there is a flag for each logical drive which tells the system whether medium has
changed or not. The flag can have 3 values. A value of 0 means medium has not changed; A value of 1
means medium may have changed; A value of 2 means medium has definitely changed. Each time Geibpb()
is calied, the flag corresponding to the logical drive in question will be cleared, because the information about
that logical drive has been updated. 1f a medium has changed, and a program calis Getbpb() before GEMDO_S
has a chance 10 recognize the medium change, GEMDOS will not see the medium change at all. This is
disastrous because GEMDOS will not update its cached information of the logicai drive. To make sure
GEMDOS will see all possible media changes, you must call the force media change routine to force GEMDOS
to recognize a medium change belore your program calls Gelbpb(). For information about the force media
change routine, please refer to FORCING MEDIA CHANGE.

ATARI AHDI 3.00 RELEASE NOTES - 18 April 1990 Fage 17

Forcing Media Change

The following is also documented in the Rainbow TOS (TOS 1.4) release notes.

% —_— *
L] &
* mediach: cause media-change on a logical device. *
* *
* USAGE : *
* errcode = mediach(devno); /* returns 1 for error */ *
® int errcode, devno; *
] -
1 "
* This procedure causes a media change by installing a new ®
* handler for the mediach, rwabs, and getbpb vectors; for device *
* devno, the mediach handler returns "definitely changed,” and *
* the rwabs handler returns E_CHNG, until the new getbpb handler *
* is called. The new getbpb handler un-installs the new *
" handlers. *
E R L
* After installing the new handiers, this procedure performs a *
* disk operation (e.g. open a file) which makes GEMDOS .check *
* the media-change status of the drive: this will trigger the ®
* new rwabs, mediach and getbpb handlers to do their things. *
* %
* RETURNS: O for no error, 1 for error (GEMDOS didn't ever do a *
* getbpb call; should never happen). *
L *
L] *
. .globl _mediach
_mediach:

move .w 4(sp).d0

move .w d0,mydev

add.b #'A',d0

move.b do, fspec : set drive spec for search first
loop:

clr.1 -{sp) ; get super mode, leave old ssp

move.w #320,-(sp) ; and “"super" function code on stack

trap #1

addq #6,sp

move. 1 d0,-(sp)

move .w #320,-(sp)

move. 1 $472 ,01dgetbpb

move. 1 $47e,0ldmediach

move.] $476,01drwabs

move. 1 #newgetbpb, 3472

move. 1 #newmediach, $47e

move. 1 #newrwabs, 3476

Fage 18 ATARI AHD/ 3.00 RELEASE NOTES - 18 Aprif 1990

: Fopen a file on that drive

move.

move.w

1

move.w

trap
addq

#0,-(sp)
#fspec,-(sp)
#$3d,-(sp)
#1

#8,sp

; Fclose the handle we just got

ATARI AHDI 3.00 RELEASE NOTES - 18 Aprd 1990

tst.] d0

bmi.s noclose

move.w do,-(sp)

move.w #3%3e,-(sp)

trap #1

addq #4,sp
noclose:

moveq #0,d7

cmp.1 #newgetbpb, $472 ; 5till instalied?

bne.s done ; nope

moveq #1,d7 ; yup! remove & return TRUE

move. 1 oldgetbpb,$472

move.1 oldmediach, $47e

move. 1 oldrwabs, $476

.done: trap #1 : go back to user mode (use stuff

addg #36,sp : left on stack above)

move. 1 d7.do

rts
.4 -5
3 *
* new getbpb: if it's our device, uninstall vectors; *
& in any case, call the old getbpb vector (to really *
* get it) *
& x
* :]
newgetbpb:

move.w mydev,d0

omp .w 4(sp),do

bne.s dooldg

move.1 oldgetbpb,$472 : it's mine: un-install new vectors

move. 1 oldmediach, $47e

move.1 oldrwabs, 3476
dooldg: move.l oldgetbpb,a0 ; continue here whether mine or not:

; call old.
jmp (a0)

FPage 19

*

*

* new mediach: if it's our device, return 2; else call old.

#®
.

= 2 » * 2

newmediach:
move.w mydev,d0
cmp.w 4(sp),do
bne.s dooldm
moveq. 1 #2,d0 ; it's mine: return 2
; (definitely changed)
rts
dooldm: move. 1 oldmediach, a0 ; not mne: call oid vector.
Jmp (a® '
*
*
* newrwabs: return E_CHG (-14) if it's my device
* v
*

* ®* 2 » 2

newrwabs: :

move.w mydev,d0

cmp.w $e(sp),do

bne.s dooldr

moveq.1 #-14,d0

res
dooldr: move.1 oldrwabs. a0

jmp (a0)
.data ’
fspec: dc.b "X:\\X",0 ; file to look for (doesn‘t matter)
.bss
mydev: ds.w 1
oldgetbpb: ds.1 1
oldmediach: ds.] 1
oldrwabs: ds.] 1
* *
* end of mediach *
& *
* x

Fage 20

ATARI ARDY 3.00 RELEASE NOTES - 18 April 1990

