/AR]"400/800"

ATARI HOME COMPUTER SYSTEM

TECHNICAL
REFERENCE NOTES

includes:

Operating System User’s Manual

Operating System Source Listing

- and
Hardware Manual

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

- A

®
ATARI A Warner Communications Company @ CO16555 Rev. A

AR"400/800"

ATARI" HOME COMPUTER SYSTEM

OPERATING SYSTEM
USER’S MANUAL

N\

[C) .
ATAR I A Warner Communications Company @

COPYRIGHT 1982, ATARI, INC.
" ALL RIGHTS RESERVED

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or wrilten permission from the Corporation.

Every effort has been made to ensure that this manual accurately
documents this product of the ATARI Home Computer Division.
However, due tc the ongoing improvement and update of the computer
software and hardware, ATARI, INC. cannot guarantee the accuracy
of printed material after the date of publication and disclaims
liability for changes, errors, or omissions.

&y

d

ATARI Home Computer
Operating System USER 'S MANUAL

PREFACE

1 INTRODUCTION

GENERAL. DESCRIPTION
OF THE ATARI COMPUTER SYSTEM

Conventions Used in This Manuval

HEXADECIMAL NUMBERS

MEMORY ADDRESSES

KILOBYTES OF MEMORY :

PASCAL AS AN ALQDRITHH"SPECIFICATIQN LANGUAGE
MEMORY LAYOUTS

BACKUS~-NAUR FORM (BNF)

0S-EQUATE FILENAMES

17

i8

18
20

20
20
20
20
20
21
21

OPERATING SYSTEM FUNCTIONAL ORGANIZATION

Input/Output Subsystem
Interrupt Processing
Initialization

Power-—Up
System Reset

Ficating Poinf Arithmetic Package

CONF IGURATIONS
Program Envirenments

Blackboard Moda
Cartridge
Diskette—Baot
Cassette—Boot

RAM Expansion
Peripheral Devices

Game Controliers
Pragram Recordev
Serial Bus DPevices

SYSTEM MEMORY UTILIZATIDN
RAM Region

Page ©

Page 1

05 Bata Base
User Workspace
Boot Region

Screen Display List and Data

Free Memory Region

22

22
22
22

o2
23

24

25
25

22
24
26
26

27
27

27
27
28

2%
29

30
30
30
a1
31
31
31

Cartridges & and B

Mappead

1/0

Resident 0OS and Floating Point Package ROM
Central Data Base Description

Memory

PDynamics

System Initialization Process

Changing Screen Modes

I/0 SUBSYSTEM

Central 1/} Ufility

CI0

CIg

Besign Phileosophy

DEVICE INDEPENDENCE

DATA ACCESS METHODS

MULTIPLE DEVICE/FILE CONCURRENCY
UNIFIED ERROR HANDLING

DEVICE EXPANSION

CALLING MECHANISM

HANDLER ID —-- ICHID [03401

DEVICE NUMBER —- ICDNO L[0341)
COMMAND BYTE —— ICCMD L[0342]

STATUS ~— ICSTA [03433
BUFFER ADDRESS

ICBALL0O344]1 AND ICBAH [03451
PUT ADDRESS —-

ICPTL {03461 AND ICPTH [03471
BUFFER LENGTH/BYTE COUNT ——

ICBLL [0348] and ICBLH £0349]
AUXILIARY INFORMATION ——

ICAX1 EG34A1 and ICAX2 EO034B]
REMAINING BYTES (ICAX3-ICAX&}

31
32
32
32
32

33
33

4%

36
37

37
37
38
38
38

38
39

39
40

40

a0

40

40

40
a1

CIO Functions

OPEN —— Assign Device/Filename to I0CB
and Ready for Access

CLOSE —— Terminate Access to Device/File
and Release I0CH

GET CHARACTERS —— Read n Characters
{(Byte-Aligned Access}

PUT CHARACTERS ~~ Write n Characters
(Byte—Aligned Access)

GET RECORD —~ Read Up Toe n Characters
(Record—-Aligned Access}

PUT RECORD ~~ Write Up To n Characters
(Record-Aligned Access)

GET STATUS —- Return Device-Dependent
Status Bytes

SPECIAL —— Special Funcftion

Device/Filename Specjificatian
I/0 Example

Device Specific Information
Kegboard Handler

CI0 Function Descriptions
Theory of (Operation
Display Handler (5:}
Screen Modes
TEXT MODE O
TEXT MGDES 1 AND 2
GRAPHICS MODES (Modes 3 Throwgh ii)
SPLIT-SCREEN CONFIGURATIONS
CID Function Descriptions
User—-Alterable Data Base Variables
Theory of Operation
Screen Editor (E:)
CIO Function Descriptions
User—Alferable Data Base Variables
Cassette Handler (C:)

CID Function Descriptions

Theory of Operation
File Structure

41

41
42
43
a3
44
44

45
45

46
47

50
S50

51
91
54
o4
54
55
56
54
87
&1
&2
&b
&7
70
72
72

74
75

&

Printer Handler (P:}
CI0 Function Descriptions
Theory af Operation

Disk File Manager {(D:)

CIO Function Descriptions
Device/Filename Specification

Filename Nildcarding

Special CID functions
Theory of Operation
FMS Diskette Utilization

FMS BOOT RECORD FORMAT
BOOT PROCESS MEMORY MAP
VOLUME TABLE €F CONTENTS
FILE DIRECTORY FORMAT
FME FILE SECTOR FORMAT

Nen—CIO /8
Resident Device Handler Vectors

Regident Diskette Handler
Diskette Handler Commands

Sevrial Bus 1/0

INTERRUPY PROCESSING

Chip—-Resat
Monmaskable Intervupts

Stage 1 VBLANK Process
Stage 2 VBLANK Procuss

Maskable Interrupts
Interrupt Initialization
System Timers

Usage Notes

POKEY Interrupt Mask

Setting Interrupt and Timer Vectors
Stack Content at Interrupt Vector Points
Miscellaneous Considerations

Flowcharts

76
74
78

78

7
81

82

84
87
8%

90
92
93
94
95

F6
P4

2?7
72

101

102

103
163

104
105

167
i08
167
109

110
110
111
112

113

-

SYSTEM INITIALIZATION

Power—Up Initialization (Coldstart) Procedure
System Resef Initialization (Warmstart) Procedure

B FLOATING POINT ARITHMETIC PACKAGE

Functions/Calling Sequences

ASBCII ¢o Fleating Peoint Conversian (AFP)
Floating Point to ASCII Conversion (FASC)
Integer to Floating Point Conversion (IFP}
Floating Point to Integer Conversion (FPI}
Floating Point Addition (FADD}
Floating Point Subtraction (FSUB!}
Floating Point Multiplication (FMUL}
Floating Point Division (FDIV}
Floating Point logarithms (LDG and LOG1IO}
Floating Point Exponentiation (EXP and EXP1i0}
Floating Point Polynemial Evaluation (PLYEVL)
Clear FRO (2FRO)
Clear Page-Zero Floating Point Number (ZF1)}
Load Floating Point Number to FRO
(FLDOR and FLDOP)
Load Floating Point Number to FR1
(FLD1R and FLDiP)
Btore Floating Point Number From FRC
(FETOR and FSTOP)
Move Floating Point Number From FRO to FR1
(FMOVE)

Resource Utilization
Implementation Details

ADDING NEW DEVICE HANDLERS/PERIPHERALS

Device Table
CIO0/Handler Interface

Cailing Mechanism
Handler Initialization
Functions Supported
Error Handling
Resource Allocation

ZERO-PAGE RAM
NONZERO-PAGE RAM
STACK SPACE

Handler/SI0 Interface

1146

1186
119

121
122

iz2
122
123
123
124
i24
124
125
125
126
126
127
127

127
iz28
128
128

128
129

131

i34
i34

135
136
136
14G
140

141
141
142

iq2

Calling Mechanism
Functions Supported
Error Handling

Serial I/0 Bus Characteristics and Preotocol

Hardware/Electrical Characteristics
Berial Port Electrical Specificatiens
Bus Commands

COMMAND FRAME

COMMAND FRAME ACKNOWLEDGE
DATA FRAME

OPERATION COMPLETE

Bus Timing
Handler Environment
Bootable Handler
Cartridge Resident Handler
Flowcharts
i0C PROGRAM ENVIRONMENT AND INITIALIZATION

Cartridge

Cartridge Withpout Booted Support Package
Cartridge With Booted Suppeort Package

Diskette~-Booted Softwars

Diskette—Boot File Format

Diskette—Boot Process

Sample Diskette—Bootable Program Listing
Program to Create Diskette-Boot Files

Cascsette—Booted Software

Cassette—-Boot File Format

Cassette—-Boot Process

Sample Cassette-Bootable Program Listing
Program to Create Cassette-Boot Files

142
144
144

145

145
147
147

148
148
149
14%

150
152
153
153
153
157

157

158
158

159

159
160
141
142

164

165
165
1&7
168

11

i0

ADVANCED TECHNIGUES AND APPLICATION NOTES
Sound Generatiaon

Capabilities
Conflicts With 0OS

Scraen Graphics

Hardware Capabilities

0S5 Capabilities

Cursor Control

Color Control

Alternafte Character Sets
Plagyer/Missile Graphics

Hardware Capabilities
Conflicts With 06

Reading Game Controcllers

Keyhoard Controller Sensing
#ront Panel Connectors as I/0 Perts

Hardware Information:
Software Information:

Other Miscellaneous Scftware Information:

170
170

170
17¢

171
171

171
171

171

172
174
174
174

174

174

174
176
177
179

APPENDICES

R e Sy S g S e

Appendix A —— CIO COMMAND BYTE VALUES iBo
Appendix B — CIO STATUS BYTE VALUES. 181
Appendix C — SI0 STATUS BYTE VALUES 182
Appendix D —— ATASCII CODES _ 183
Appendix E —— DISPLAY CODES (ATASCII) 184
Appendix F —— KEYBOARD CODES (ATASCII) 185
Appendix G — PRINTER CODES (ATASCII) 186
Appendix H — SCREEN MODE CHARACTERISTICS 168
Appendix I —— SERIAL BUS ID AND COMMAND SUMMARY 191
Appendix J —— ROM VECTORS 192
Appendix K —— DEVICE CHARACTERISTICS 124
Keyboard ig4q
Display 194
ATARI 4210LTM1 Program Recorder i94
ATARI 820LTM1 40-Column Impact Printer 195
ATARI B10OLTMI Disk Drive i97

Appendix L -—- OS5 DATA BASE VARIABLE
FUNCTIONAL DESCRIPTIONS 200
Central Data Base Description 200

FUNCTIONAL INDEX TO DATA BASE VARIABLE DESCRIPTIONS 201

A. MEMORY CONFIGURATION 211

12

TEXT/GRAPHICS SCREEN

Cursor Control

Screen Margins

Tert Scrolling

Attract PMode

Tabbing

ilLagical Text Lines

Split Screen

Displaying Contrel Charvacters
Escape (Display Following Centrol Character)
Display Control Characters Mode
Bit-Mapped Graphics

Internal Working Variables
Intarnal Character Code Cenversion

DISKETTE HANDLER

CASSETTE

Baud Rate Determination
Cassette Mode

Cassatte Buffer

Internal Working Variables

KEYBGARD

Key Reading and Debouncing

Special Functions

Start/Stap

Autorepeat

Inverse Videao Control

Conscle Keys: E[SELECYI1, [START]1. and [OPTION]

PRINTER

Printer—-Buffer
Internal Working Variables

212

212
213
2195
219
216
217
218
220
221
221
221
222
224

225

2295

226
227
227
228

229

229
230
230
231
232
<32

232

233
233

>

z2 X r

CENTRAL @/0 ROUTINE {(CIf})

User Call Parameters

I/0 Control Block

Device Status

Device Table

ClO/Handler Interface Parameters
Zero-Page IOCB

Internal Working Variables

SERIAL I/0 ROUTINE (SIO)

lJser Call Parameters

Device Control Block

Bus Sound Cantrel

Sevial Bus Control

Retry fogic

Checksum

PData Buffering

General Buffer Coantrol
Command Frame Dutput Buffer
Recaive/Transmit{ Data Buffering
SI0 Timeout

Internal Working Variables

ATARI CONTROLLERS
Joysticks

Paddles

Light Pen

Driving Controllers

DISK FILE MANAGER

DIGK UTILITY POINTER
FLOATING POINT PACKAGE
Power—Up and System Reset
RAM Sizing

Diskette/Cassette—~Boot
Environment Control

233

233
233
234
235
235
235
234

237

237
237
238
238
238
239
240
240
240
241
241
242

243
243
244
245
246
247
248
248
249
249

250
251

i3

INDEX

ig4

INTERRUPTS

System Timers

Real Time Clock

System Timer 1

System Timer 2

Systam Timers 3, 4 and 5
RAM Interrupt Vectors

NMI Intervupt Vectors

IRG Inferrupt Vectors
Hardware Register Updates
Internal Working Variables

USER AREAS

Alphabetical List of Data Base Variables

Memory Address Ordered List of Data Base
Variables

Floating Point Package Variables

252

253
293
253
254
254
255
295
299
256
258

258
259

266
270

271

TABLE OF ILLUSTRATIONS

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figurae
Figure
Figure
Figure
Figure

Utilization
Figure 35-12.
Figure 5-13,

Memory Map

Figure S5-14.

of Contents
S5-15,
S5—15,
§5-17.
5—-18.
5-19.

Figure
Figure
Figure
Figure
Figure

ATARI Home Computer Block Diagram
Memory Layout Chart

&502 Bystem Memory Map
Mapped I/0

I/0 Subsystem Structure Flow Diagram

CI{ Calling Mechanism

An I/0 Example

Keycode to ATASCII Conversion Table

Text Modes 1 and 2 Data Form

Craphics Modes 3-11 GET Data Form
Graphics Modes 3-11 PUT Data Form

Screen Display Block Diagram

Cassette Handler Record Format
Device/Filename Syntax

File Management Subsystem Diskette Sector
Map

File Management Subsystem Boot Record Format
Fila Management Subsysfem Boot Process

File Management Subsystem Volume Table

File Management Subsystem Volume Bit Map
File Directory Fermat

File Management Subsystem File Sector Format
Resident Device Handler Vectors

DVSTAT 4-Byte Operation Status Format

i9
20

29
32

35
ag
49
53
54
58
59
44
74
81

82
20

92

93
93
4
Q5
&
100

15

Figure
Figure
Figure
Figure

6=-1.
&2,
4-3.
b4,

iist of System Interrupt Events
Interrupt RAM Vector Initialization
POKEY Interruypt Mask Example
Interrupt and Timer Vector RAM Stack

Content Table

Figure
Figure
Figure
Figure
Figure
Figure

Figqure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

i&6

10~1.
10-2.
10-3.
10-4.

11-1.
1i--2.
11--3,
11-4,
11-5.

11-4.

1/0 Subsystem Flow Diagram

DBevice Table Format

Handler Yector Table

Serial Bus Comnnector Pin Descriptions
Serial Bus Command Frame Format
Serial Bus Timing Diagram

Cartridge Header Format

PBiskette Boot File Format
Diskette—-Bontable Program Listing Example
Sample Cassette-Booftable Program

User~Defined Character Set Bit Memory Address
Usar—-Defined B x 8 Character Matrix Bit Table
Character Base Diagram

Reading Data From an ATAR]I Keybeard Controller
ATARI Keyboard Controller VYariable/Register
Valuye Table

Using Front Panel Connecfors As I/0 Ports: Pin
Function Tables

102
108
110

112

133
i34
135
14&
148
151

157
159
162
168

172
173
173
i7&6

176

179

PREFACE

This manuval describes the resident Operating System (0S) for the
ATARI® Home Computer, for readers who are familiar with the
internal behavior of the system. It discusses:

a System functions and vutilization technigues
[+ Subsgstem relationships and organization

0 Characteristics of the ATARI peripheral devices that can
be attached to the ATARI4A0QL{TMI and ATARI SO0OLTM]1 Home
Computer

a Advanced techniques for going beyond the basic 08
tapabilities

o The general features of the computer system hardware used
by the 0OS.

It would be helpful to have a familiarity with programming concepts
and terminology, assembly language programming in general, the
Synertek 6502 in particular, and digital hardware concepts and
terminalogy. you will be provided with the information you need to
use the 05 resources, without resorting to trial-and-error techniques
or the 05 listing, Supporting information for tasks that involve 0S5
listing references is also provided.

This manval does not present a comprehensive description of the
hardware used fo provide 05 capabilites. The programmer who needs to
go beyond the capabilities described should consult the ATARI Home
Computer Hardware Manuval.

OPERATING SYSTEM 016555 —— Section 1

17

1 INTRODUCTION
GENERAL. DESCRIPTION OF THE ATARI HOME COMPUTER SYSTEM

Operating systems in the ATARI@ 400LTMI and ATARI BCOLTM1 Home
Computer are identical. The primary differences between the two are:

o Physical packaging

1] The ATARI 400 Computer console has one cartridge slot, the
ATARI BOO Computer console has two cartridge slots

c The ATARI 400 Home Computer tontains 146K RAM and cannot be
expanded. The ATARI 800 Home Computer can be expanded to a
maximum af 48K RAM.

4] The ATARI 800 Computer has a monitor jack; the ATARI 400
Computer does not.

The Hardware Circuitry

o Produces both character and point graphics for black and
white (B/W) or coleor television.

o Produces four indapendent audio channels (frequancy
controlled) which use the television scund system.

o Provides one bi-level audio output in the base unit.

o Interfaces with up to four Joysticks and eight Paddle
Controllers

o Interfaces with a serial I/0 bus for sxpansion.
o Contains a built—in keyboard

Figure 1-1 presents a simplified block diagram of the hardware.
See the hardware manuval for supporting documentation.

OPERATING SYSTEM CO146555 —— Section i
ig8

T

6502
ipraocessor

e e e e

as
ROM

i DBOO-FFFF |
e

4+ - 4

U S S &

4 - LT -

e

RAM

+
]
— %
||||Lt
»
»
3
»
|
o]
S
Q
+ - +
-.T.lt.!!ll.*.
wmis |
mod b |
p- I Al FE
i m |
- w]|
f 42D
- o |
w0 |
(ST i
+ !.4 == a7
1
|
|
|
|
1
|
I {
el e T N
~
o
"
n
W
W
G
| 9
a

o e e e — e

external

- e +
w ; I
i » I I %
- 1 b -
oo { im
- o i i o
+ i i =
E - i { ==
cm { i o
(TR i 1 =
SED o o g 4 ==
+ e e b
|
_ .T s
I |
1}
[
4
w i
- v ww M me W s
(V] [|
g 1]
|1
wl | | n
=] 1 1 4
< I I o
=1 1 | o
11}
+ 4+ + + + +
1 u]
i - | i
1 [i
t [|
P =] |
{ o Qi I
1 o | |
i 01 I
{ Qo I
+ == 4 =+ +
Lo
o
=i
- e we W
1]
o
O

£
H
1
S
1
H

4
8
F e e

data ke
—-{——+ 4+ BREA
anfoff

i
L]

Y

POKEY

-

i
i
i
i

4
i
]
1

s i i e b st e e aud i o

. 1 D200-D2IF+—m—mm e e

" IRG

A
r
1
i
[
i
H
i

linterface

+-=+cassette

e s

A M e

—_—f
£
i
-+
H
L

o e s e o

{ DOOO-DOLF 4= mme { e

S ——
e T

Fu——wt——-——+ trigs
CTIA

1
1
ahe
-

E R R

: o
i
i

+-———+ gserial

-

g e

-

3
1

I1/0
bus
o e

——

video
+——w=—pe———t litpen

R e

]
£
1
L
k
£

DMA

1
-t

e e e e e e

ANTIC

Py

-

+I
I
| o
{ v
| &
| w M
| B @
[= - 8
"ts
+ -~ +
1
g &
o=t
£ -
4 L
l!..T
L
—
<f
T
Q
Q
<
[
LT
—r
x
- Z

s

compoasite

e e

audio/video

-

T

Fom e ———p

dm———e et

START,
Y= SELECT,

™

i
L1

UOPTION
et LS

S T —

ATARI Home Computer Block Diagram

Figure 1-1.

OPERATING SYSTEM C01i&555 — Section 1

i

CONVENTIONS USED IN THIS MANUAL
This manual uses the following special notations:
Hexadecimal Mumbers

All two-digit numbers preceded by a dollar sign (%) designate
heradecimal numbers., All other numbers (except memory addresses)
are in decimal form unless otherwise specified in the supporting
text,

Memory Addresses

All references to computer memory and mapped I[/0 locations are in
hexadecimal notation. Memory addresses may or may not be contained

in square brackets. (Example: (D20F] and D20F are the same
address.)

Kilobytes of Memory

Memory sizes are #requentiq expressed in units of kilobytes., such
as 32K, where a kilobyte is 1024 buytes of memory.

FASCAL As an Algorithm—Specification Language

The PAECAL language {procedure block only) is used as the
specification language in the few places where an algorithm is
specified in detail. PASCAL syntax is similar to any number of
other block-structured languvages. and you should have no
difficulty following the code presented.

Memory bLayouts

Liagrams similar to Figure 1-2 are used whenaver pictures of bytes
or tables are presented:

765 43210
B Tl T T S S

-+~— This is a single byte.

i]

i 1

o e e e e e e —

i H

+ + -——= This is a word (2 bytes).
i H

T e e e e S N s &

H :

= = ——— This is a block of memory
H i of unspecified length.

e S e

Figure 1-2. Memary Layout Chart

OPERATING SYSTEM CO16555 ~- Section 1
20

Bit 7 is the most significant bit (MSB) of the byte, and Bit O
is the least significant bit (LSH:.

In tables and figures, memory addresses always increase toward the
bottom of the figure.
Backus—-Naur Form

A modified version of Backus-Naur Form (BNF) is used to sxpress some
syntactic forms, where the following metalinguistic symbols are used:

= is the substitution (assignment) operator.
< X a metasyntactic wvariable.

i separates alfernative substitutions.

£ 3 an optional construct.

Anything else is a syntactic literal constant, which stands for
itself.

For Examplae:
{device specificationd ::= <device namedE<{device number>]:
<device name> ::= CIDIEIKIPIR!S

Ldevice number> ::= 112!13i14i5i6i7!8B

A “"device specification" consists of a mandatory “device name,®
followed by an optional "device number." followed by the mandatory
tolon character. The device name in furn must be one of the
characters shown as alternatives. The device nuymber (if it is present)
must be a digit 1 threough B,

08 Equate Filenames

Operating System ROM (Read Only Memory}? and RaM (Random Access
Memory} vector names, RAM database variable names and harduware
register names are all referred to by the names assigned in the 0S5
program equate list. When one of these names is used: the memory
address is wsvally provided, such as BOOTAD £02421.

OPERATING SYSTEM CO16553 —— Bection 1
21

2 OPERATING SYSTEM FUNCTIONMAL ORGANIZATION

This section describes the various subsystems of the resident 08 in
general terms.

Input/Output Subsystem

The Input/Output (I/0) subsystem provides a high—level interface
between the programs and the hardware. Most functions are
device—independent, such as the reading and writing of character data;
yet provisions have been made for device—dependent functiogns as well.
All peripheral devices capable of dealing with character data have
individual symbolic names {(such as K,D:,P, etc). and can he accessed
using a Central I/0 (CIO) routine.

A RAM data base provides access to controellers (joysticks and paddle
controlliers), which do not deal with character data. This RAM data
base is periodically updated to show the states of these devices.

INTERRUPT PROCESSING

The interrupt system handles all hardware intervupts in a common
and consistent manner. By default, all interrupts are fielded by
the 0S. At your discretion: individual intervrupts {(or

groups of infterrupts) can bhe fielded hy the application program.

INITIALIZATION

The system provides two levels of initialization: power up and
system reset. The OS5 performs power-up initialization each time
the system power is switched to ON: and system reset
initialization is performed each time the (SYSTEM. RESET] key is
pressed.

Power~Up

The 05 examines and notes the configuration of the unit whenever
the system power is switched to ON. The system performs the fallowing
tasks at power up:

OPERATING SYSTEM COI6555 —- Gection 2
22

0 Determines the highest RAM address,

o Clears all o# RAM to zeres.

(v} Establishes all RAM interrupt vectors.
0 Formats the device table.

o Initializes the cartridge(s}.

o Sets up the screen for 24 x 40 text mode,.
o Boots the cassette if directed.
0 Checks cartridge sloti(s) for diskette-hoat instructions.

(2] Boots the diskette if directed €oc do seo and a disk drive unit
is attached.

o Transfers control to the cartridge. diskette—booted program
cassette—booted program, or blackbeoard program.

CSYSTEM. RESET])
Pressing the [SYSTEM. RESET) key causes the 05 to perform thess
following tasks:

2 Clears the 05 portion of RAM.

0 Rechecks top of RAM.

0 Reestablishes all RAM interrupt vectors.

o Formats the device table.

o Initializes the cartridge(s}.

o Bets up the screen for 24 x 40 text mode.

o Transfers control to the cartridge, & diskette-booted program,
4 cassette-booted program, or the blackboard program,

Note that L[SYSTEM. RESET] does not perform all the power-up
tasks listed in the power—-up section.

DPERATING SYSTEM C0146555 —— Section 2
23

FLOATING POINT ARITHMETIC PACKAGE

The 08 ROM contains a Floating Paint (FP) package that is available
to nonresident programs such as ATARI BASIC.

The package is not used by the other parts of the DS itself.

The

floating point numbers are stored as 10 BCD digits of mantissa,
1-byte exponent. The package contains these routines:

24

v

(2]

ASCII-to—FP and FP-to—-ASCII conversion,
Iﬁtegev—tu—FP and FP—to-integer conversion.
FP add, subtract, multiply and divide.
FP log. exp, and polynemial evaluatioan.

FP number clear, load. store. and move.

OPERATING SYSTEM CO16555 —— Section 2

plus &

3 CONFIGURATIONS

The ATARI 400 and ATARI 800 Hame Computers support a

wide variety of configurations. esach with a unique operating
environment:

o Cartridgei(s} may or may not be inserted

o0 Memory can be optionally added to the ATARI BOG Computer
console in 16K incraments

B Many different peripheral devices can be attacthed to the
serial I/0 bus.

The 05 accounts for all of these variables without requiring a
change in the resident 0OS itself (see Section 2). The machine
configuration is checked when power is first turned on and then
is not checked again, unless system reset is used. A general
discussion of some of the wvalid configurations follows.

PROGRAM ENVIRONMENTS

The 0S5 allows one of four program types to be in coantrol at any
point in time:

i The OS5 blackbgard (ATARI Memo Pad}! praogram

9 A cartridge-resident program

o A diskette—booted program

¢ A cassette-boofted program
Control choice is based upon information in the cartridged(s), upon
whether or not a disk drive is attached, and upon aperator keyboard
inputs. The exact algorithms are discussed in detail in Section 7.
Blackboard Mode
In blackboard mode, the screen is established as a 24 x 40 text
screen., Anything entered from the keyboard gees to the screen
without being examined, although all of the screen editing
functions are supported. Blackboard mode is the lowest priorvity

environment. You go there only by command from a higher

OPERATING SYSTEM CO1655% —— Section 3

priority environment, or by defauwlt, if there is no other
reasonable environment for the OS5 to enter. For example., typing BYE
in BASIC causes the 0S5 to enter the blackboard mode. The blackboard
mode can be exited by pressing the [SYSTEM RESETI key if it was
entered from a higher environment.

Cartridge

An inserted cartridge normally provides the main control after
initialization is complete (for example: ATARI BASIC., SUPER
BREAKODUTLTM1, BASKETBALL. COMPUTER CHESS: and othars. All these
cartridge programs interface directly with you in some way). Although
a cartridge can provide a supporting function for some other pregram
environment, this has not yet been done. Some cartridges (particularly
keyboard-oriented ones) can change environments by entering special
commands {(such as "BYE"™) to go to blackboard mode or "DOS" to enter
the disk uvtility. Other cartridges cannot change environments. Note
that a hardware interlock prevents the removal ar insertion of a
cartridge with the power oni this feature tavses the entire system to
reinitialize with every cartridge change.

Diskette Boot

The diskette may or may not bhe booted when the system powers up
with diskette-bootable software. This paragraph assumes that a
diskette boot did occur. See Section 7 for boot condition
explanations.

The diskette—~booted software can take control as the Disk Utility
Program (DUP) does under certain conditions:. or can provide a
supporting function as the File Managament System (FMS} does. This
environment is so flexible that it is difficult to generalize on its
capabilities and restrictions. The only machine requirement (other
than the disk drive! is that sufficient RAM be installed to support
the program being booted.

Cassette-Boot

The cassette—boot environment is similar to the diskette-boot
environment, although the cassette is limited as an I/0 device. 1%
is slow and can access only one file at a time in sequence. Note
that the cassette-boot facility has no relation to fhe use of
cassettes to store high—level language programs (e.g., programs
written in ATARI BASIC). ner to the use of rassettes to store data.

OPERATING SYSTEM COU165535 —— Section 3
26

RAM EXPANSION

Although youw can expand RAM noncontiguously in the

ATARI 800 Home Computer, the OS5 will only recognize RAM

that is configuous starting from lecation O. Installation
directions are provided with the purchased RAM modules. RAM can be
added until it totals 48K. After 32K, additional RAM overlays first
the right—-cartridge addresses (32K to 40K} and then the
left—cartridge addresses (40K to 4BK}. Mote that in cases of
conflict, the inserted cartridge has higher priovrity and disables
the conflicting RAM in BK increments. See Section 4 for a detailed
discussion of system memory.

As @ tesult of power—up, the 0S5 will generate two pointers that
define the lowest available RAM location and the highest available
RAM location. The 0S and diskette or cassette—-booted software will
determine the location of the lowest available RAM: while the
number of RAM modules and the current screen mode will determine
the highest available RAM.

PERIPHERAL DEVICES

Peripheral devices of several types can he added to the system
using standard cables to either the serial bus or the connectors at
the front of the computer conscle. The most common types deal with
either transmission of bytes of data {(usually serial bus} or
transmission of sense information (usvally game controllers).

fame Controllers

The 0S5 periodically senses (50 or &0 times per second} the standarvrd
game conftrollers (Paddleg and Joysticks! and the values read are
stored in RAM. You can plug in, remove, and rearrange these
controllers at will without affecting system operation., because the
system will always try to read all of these controllers.

The Driving Controllers are read, but not decoded, by the 0S. Special

instructions are required to Tead the keyboard controller (see
Section 11). '

Program Recorder

The ATARI 410LTM1 Program Recorder is a special peripheral. It uses
the serial bus o send and receive data, but does not conform to
the protocol of the other peripherals that use the serial bus. The
Program Recoarder must alsoc be the last device on the serial bus,
because it does not have a serial bus extender connector as the
other peripherals do. There can never be more than one Program
Recorder connected to any system for the same reason. The system

cannot sense the presence or absence of the Program Recorder, so it
can be connected and disconnected at will.

OPERATING SYSTEM CR165%5% —— Section 3

27

Serial Bus Dewvices

A serial bus device conforms to the serial I/0 bus protocol as
defined in Section 9, but this does not include the Program
Recorder. Each serial bus davice has two identical connectors: a
serial bus input, and a serial bus extender. Either connector can
be used for either purpose. Peripherals can be “daisychained" by
cabling them together in a sequential fashion. There are vsuvally no
restrictions on the cabling order because sach device has a unique

identifier. Where restrictions exist, they will be mentioned in
Section 3. '

OPERATING SYSTEM C016555 —- Section 4
28

4 SYSTEM MEMORY UTILIZATION

Memary in the system is decoded in the full 44K range of the 6502
microcomputer and there are no provisions for additional mapping to
extend memory. Memory is divided into four basic regions (with some
overlap pessible): RAM, cartridge area. I/0 region and the resident
05 ROM. The regions and their address boundaries are listed below
(all addresses are in hexadecimal);

OGCO—-1FFF = RAM (minimum required for operation)}

2000~-7FFF = RAM expansion area

BO00-9FFF = Cartridge B, Cartridge A (half of 1&K size) or RAM
AQQQ-BFFF = Cartridge A or RAM

COO0~CFFF = Unused

DOOO~-D7FF = Hardware I/0 decodes

DE8CO-DFFF = Floating Point Package (DS)

EQQC=FFFF = Resident Operating System ROM

Figure 4-1 43502 System Memary Map

This section will break these regions into even smaller functional
divisions and provide detailed explanations of their usage.

RAM REGION

The 0S and the control program share the RAM region. The RAM region
can be further subdivided into the following sub regions for
discussion purposeas:

Page O = 6502 page zero address mode rTegion.
Page 1 = &502 stack region.

Pages 2-4 0S database and user workspace.

Pages S5-é& Usar program workspace.

Pages 7-XX = Bootahle software araa/free RAM #

Pages XX~ftop of RAM = Screen display list and data. #

H i

Note that XX is a function of the screen graphics mode and the
amount of RAM installed.

The paragraphs that follow describe how the DS uses RAM subregions,
and presents user praogram recomendations.

OPERATING SYSTEM CQ14533 —-— Section 4

29

Page O

The architecture of the 4502 microcomputer instruction set and
addressing modes gives page O special significance., References to
addresses in that page (0000 to OCFF) are faster: require fewer
instruction bytes, and provide the only mechanism for hardware
indirect addressing. Page O should be used sparingly so that all
pussible users can have a portion of it. The S permanently takes the
lower half of page O (0000 to QO7F). This portion can never be used by
any outer environment unless the 05 is completely disabled and all
interrupts to the OS are eliminated.

The upper half of page C (00BO to OOFF) is available to outer
environments with the following restriction: the floating point
package, i+ used, requires 00D4 through OOFF.

Fage 1

Page 1 is the 6502 hardware stack region; JSR instructions, PHaA
instructions, and interrupts all cause data bytes to be written to
page 1. Conversely RTS: PLA, and RTI instructions all cause data bytes
fo he read from page 1. The 2546 byte stack is adequate for normal
subroutine calls plus interrupt process nesting: so no restrictions
have been made on page 1 usage. It is obvious that a stack of ¢his
size is totally inadequate for deeply recursive processes or for
nested processes with large local environments to be saved. So., for

sophisticated applications, software maintained stacks must be
implemented.

The 63502 stack pointer is jinitialized at power—up or system reset to
point to location OLiFF. The stack then pushes downward toward 0100.
The stack will wrap around from 0100 ¢o O1FF if a stack overflouw
condition occurs, because of the nature of the &502's B-bit stack
pointer register.

0S Data Base

Locations Q200 through 047F are allocated by the 0S5 for working
variables, tables and data buffers. Portions of this region can bhe
used only after you determine that nonconflict with the 08

is guarantesd. For example. the printer and cassstte buffers could be
vsed if I/0 operations to these devices are impossible within the
controlling environment. The amount of work involved in determining
noncontflict seems to be completely out of line with the benefits to be
gained (except for a few trivial cases) and it is recommended that
pages 2 through 4 not be ysed esxcept hy the 05,

OPERATING SYGTEM CO1463535 — Section 4
3G

User Workspace

Locations Q480 through O&FF are dedicated for guter environment use
except when the floating point package is used. The floating point
package uses locationsg OS7E through OSFF.

Boot Region

Page 7 is the start of the "boot region.® When software is booted from
either the diskette or the cassette, it can start at the lowest free
memary address (that is 0700) and proceed uypward (although it can also
start at any address above 0700 and below the screen display list).
The top of this region defines the start of the "“free memory" region.
When the boot process is complete, a pointer in the data base contains
the address of the next available location above the software just

booted, When no software has been booted, this pointer contains the
value 0700.

Screen Display List and Data

When the O8 is handling the screen display., the display list that
defines the screen characteristics and the current data that is
contained on the screen are placed at the high address end of RAM. The
bottom of this region defines the end of the free memory region and
its location is a function of the screen mode currently in effect. A

pointer in the data base contains the address of the last available
location below the screen region.

Free Memary Region

The free memory region is all the RAM between the end of the boot
region and the start of the screen region. The ocuter level application
is responsible for managing the free memory region.

CARTRIDGES A AND B

There are two BK regions reserved for plug—in cartridges. Cartridge B
that is the right-hand cartridge slot found only in the ATARI 800
Home Computer, has been allocated memory addresses BOOO

through 9FFF. Cartridge A (the left—-hand cartridge slot in the ATARI
800 Computer console, and the only slot in the ATARI 400 Computer
console) has been allocated memory addresses AOOQ through BFFF and
optionally 8000 through BFFF, for 14K cartridges. If a RAM module is
Plugged into the last slot such as tao overlay any of these addresses,
the RAM takes precedence as long as a cartridge is not inserted.
However., if a cartridge is inserted, it will disable the entire
conflicting RAM module in the last slot in BK increments.

OPERATING SYSTEM CC14555% —- Section 4
31

MAPPED I/0

The 4302 performs input/output operations by addressing the external
support chips as memory; some chip registers are rsad/write while
others are resad-only or write-only (the ATARI Home Computer

Hardware Manual gives descriptions of all of the external registers},
While the entire address space #from DOOC to D7FF has been allocated
for 1/0 decoding. only the following subregions are used:

DOOO-DO1IF = CTIA
D200-D21F = POKEY
D300-D21F = PIA

D400-D41F = ANTIC

Figure 4-2, Mapped I/0

RESIDENT OS5 AND FLOATING POINT PACKAGE ROM

The region from DBOC through FFFF always contains the O0S and the
floating point package. Care should be taken to avoid using any entry
points that are not guaranteed not to move, to allow for the
possibility that ancther, but functiomally compatible, 0SS can be
generated in the future. The OS5 contains many vectored entry points at
the end of the ROM and in RAM that will not move. The floating point
package is not vectored, but all documented entry points will be
fixed: Do not use undocumented routines found by scanning the listing.
A 1ist of the firxed ROM vectors can be found in Appendix J.

CENTRAL DATA BASE DESCRIPTIDN

See Appendix L.,

MEMORY DYNaMICS

The free memovy vegion is the area between ths end of the boot region
and the start of the screen region. As such, its limits are variable.
MEMLO L[O2E71 defines the bottom of the free region. and MEMTOP [O2ES]
defines the top of the region. This section presents the conditions
that cause the setup or alteration of these variables.

UPERATING SYSTEM C016555 —~-~ Section 4
32

System Initialization Process

The 0OS determines the extent of the lowest block of contiguous RAM,
and saves the limits. The Screen FEditor is then cpened. thus setting a
new (and lower} value in MEMTOP. Diskette or cassette-booted software
might be brought into memory. that would probably set a new (and
higher} value in MEMLO (see Section 7). MEMLD and MEMTOP will define
the maximum amount of free memory available when the application
program finally gets control. That amount of #ree memory can later
decrease, as described in the next paragraph.

Changing Screen Modes

The Display Handler intevprets the variable APPMHI ‘f000El}’ to contain
the address below which MEMTOP cannot extend. This allows you to
protect the portion of free memory space that you are using from being
overwritten as a result of screen mode change. The display handler
will set the screen for mode O, uypdate MEMTOP, and return an error
status to you, if it determines that the screen memory will

extend below APPMHI as a result of a screan mode change. In other

cases the Display Handler effects the desired mode change and updates
MEMTOP.

OPERATING SYSTEM C0O165959% -~ Section 4
33

S I/0 SUBSYSTEM

This section discusses the I/0 subsystem of the Operating System. The
I/0 subsystem comprises & collection of routines that allow you

to access peripheral and local devices at three different levels. The
CI0 (Central I/0 Utility), provides the highest level, device
independent access to devices. The second level allows communication
with the device handlers. The lowest level is the SIO (Berial I/0 bus
Utility? routine. Any lower level access to a device involves the
direct reading and writing of the hardware registers associated with
the device.

The data byte is the basic unit of input/output. A data byte can
contain either "binarg§" (non text) information, or encoded text
information. The text encoding scheme supported by the 05 is called
ATASCII, derived from the words "ATARI ASCII. " Most ATASCII codes are
the same as ASCII, with the primary deviations being the control
codes. Appendix D shows the ATASCII character set. and Appendices E,
F, and & show device-specific implementations for the display.
keyboard, and printer.

The wstructure of the I/0 subsystem is shown on the fonllowing page.

OPERATING SYSTEM CD16555 -- Section S
34

i wuser H

+ { program i-- s E=F
} + + |
i F—— e e e e + i i
I 1 TJTOCB's {s##tsssss| |
S+ + H i

++ + o e e + i

| HRaesident | H CIO } e e + i
| Hamdler ! P Utility | ' BCB {3 A |
| Vector Table| T —— + + + %

o e s e e + H * !
] H * i
| d———— e + e + B e et + H
It ZIOCB ! | Device | iBisk Filel = i
e e i Table | +-—~—~—1 Managey |--——- + 1
| * s e s s e st e e + A G ———— + i
] L i i | 4§
+——+ ——t —— + i m——— -

! i { ; -
e + e + e e + Fe——————— +
i Printer { | Cassette! H i "l i | Keyboard! | Disk i
i Handler { | Handler ! { Handler | | Handler { | Handler !
e + + + oo me e e I + A ——— +

! H i H

+ +— + e —~———

q

S S + 1

H BCH HE T 2R T

e — + |

+ +
i SI0 !
| Utility ¢
Frm——————— +
Where: ———- chows a control path. #3##% shows the data structure

required for a path.

Mote the following:

o
)
Q

Figure

The Keyboard/Display/Screen Editor Handlers don’t use SIO.

The Diskette handler cannot be called directly from CIO.

The DCB is shown twice in the diagram.

5-1

I/0 Subsystem Structure Flow Diagram

OPERATING SYSTEM CO16555 —- Section 5

a5

CENTRAL. I/0 UTILITY

The Centvral I/0 Utility provides you with a single interface in which
to access all of the system peripheral devices in a device—independent
manner. The minimum unit of data transfer is the data byte. The CIO
also supports multiple byte transfers, All I/0 operations are
performed on a "return—-to-user—when—complete" basis; there is no way
to initiate concurrent “overlapped"” I/0 processes.

1/0 is organized by "files, " where a file is a sequential
collection of data bytes. A £ile can or may not contain textual
data and it can or may not be organized by "records, " where a
record is a contiguous group of bytes terminated by an EDL (End of
Line) character. Some files are synonymous with a device (as with
the printer and the Screen Editor), while ofther devices can contain
multiple files, each with a unique name {(as with the disk drive).

CID allows you to access up to eight independent device/files
at one time, because there are eight I/0 Control Blocks (IOCB’s) in
the system. Each of the IOCB‘s can be assigned to conirol any
device/file because there are no preferred assignments, except that

IOCE #0 is assigned to the Screen Editor a¢ power—up and
system reset.

To access a peripheral, you first set wp an IDCB for the OPEN
command, that supplies the system name for the device to bhe
accessed (e.g. K:, for the keyboard, P:, for the printer, D:ETARS
fur a diskette file named ‘STARS’. etc). You then call the CIl0,
telling it €0 examine the IOCB to find the OPEN information. CIO
attempts to find the specified device/file and returns a status
byte indicating the success of the search. If the specified
device/file can be #found by CIO, then CIOD stores control

information in the IOCB. The IOCB is now used for as long as that
file is apen.

Once a #ile is open, it can then be accessed using data-read or
data-write types of commands; in general, reading can proceed until
there is no more data to read (End aof File) and writing can proceed
yntil there is no more medium to staore data on (End of Medium},
although neither reading noyr writing need proceed ¢to that point.
The reading and writing of data generally occurs into and aut of
user—supplied data buffers (although a special case allowing single
byte transfers wsing the 4502 A register is provided}.

When there ara no more accesses to be performed on an open
device/file, you perform the close operation. This
accomplishes two functions:

o It terminates and makes permanent an output file (essential
for diskette and cassatte).

o It releases that I0CB to be used for another I/0 operation.

OPERATING SYSTEM C0O165553 -~— Section S
36

Cl0 Design Philosaphy

The CI0 utility was designed specifically to meet the following
design criteria.

o The transfer of data is device independent.

o Byte—-at-a-time, multiple byte and record-aligned accesses are
supported.

0 Multiple device/files can be accessed concurrently.
o Ervor handling is largely device independent.

o] New device handlers can be added without altering the system
ROM,

Device Independence

CIQ provides device independence by having a single entry point for

all devices (and for all operations) and by having a
devicg-independent calling sequence. fince a device/file is opened,
data trvansfers occur with no regard to the actual device involved.

Uniform rules for handling byte— and record-oriented data transfers

allow the actual device storage block sizes to be transparent ¢o you.

Data Access Methods

The CIOD supports two file access methods: byte-aligned and
Tecord—aligned.

Byte—-aligned accesses allow you to treat &he device/file as a
sequential byte stream: any number of bytes can be read or written
and the following operation will continue where the prior one left
aff. Records are of no consequence in this mode, and reads or
writes can encompass multiple records if desired.

Record-aligned accesses allow you to deal with the data stream

at a higher level, that of the data record or “line of text. ® Each
and every write operation creates a single recoerd (by definition).
Each read operation assures that the following read operation

will start at the begimnning of a reconrd. Record-aligned accesses
cannot deal with portions of more than one record at a time,
Record—aligned accesses are useful only with text data or with
binary data guaranteed not to contain the EOL character ($9B} as
data.

Note that any file can be accessed uysing the byte-aligned access
method. regardless of how the file was created. But not all files
tan be svccessfully read using record—-aligned accesses; the file

OPERATING SYSTEM CO1A455% —— Section 5

37

must contain EQOL characters at the end of each record and at no
other place.

Multiple Device/File Concurrency

Up to eight device/files can be accessed concurrently wsing CIQ,
each operating independently of the others.

Unified Error Handling

All error detection and recovery oaccurs within the CID subsystem.
The status information that reaches you is in the form of a
status byte for each device/file. Error codes are device
independent as much as possible (see Appendix B).

Device Expansion

Devices are known by single character names such as K or P, and a
number of device handlers are part of the resident system ROM.
However, additional device handlers can be added %o the system
using the RAM-resident device table; this is normally done at

power—up time as wifth the diskette boot process, but can be done at
any point in time.

CI0 Calling Mechanism

The input/output control bloeck (IOCB) is the primary parameter
passing structure between you and CIO. There are eight IOCB‘s
in the system, arranged linearly in RAM as shown below:

T + low address {C3401

o v e e + high address

Figure 5-2 CI0O Calling Mechanism

OPERATING SYSTEM CO146555 —— Section 5
38

One I0CB is required for each open device/file. Any IOCB can be used
to control any device/file, although IOCB ¢ is normally assigned to
the Screen Edifor (E:). You perform a typical 1/0 operation by:

o Inserfing appropriate parameters into an IOCEB of ygour choosing
o Putting the IOCB number %times 1é into the &502 X register
o Performing a JGR fo the CID entry point CIOV [E45&].

CIO returns fo you when the operation is complate or if an
errar was encountersd. The aperation status is in the IUOCB used. as
well as in the &502 Y register. The 46502 condition codes will also
reflect the value in the Y register. In some cases a data byte will
be in the 4502 A register. The X register will remain unchanged for
all operations and conditions. An example is shown below:

IOCBZX = %20 i INDEX FOR IOCB #2,
£EDX #IOCB2X
JER ciov
CPY #0O i {aptional)
BMI ERROR

This sector describes each IOCE byte, with its file name and
address. Each IDCB is 16 bytes long. Some bytes can be altered by

you and some are reserved for use by CIO and/or the device
handiers.

Handler ID —— ICHID {03403

The handler ID is an index into the system device table (see
Section ?) and is not user~alterable. This byte is set by CIOD as
the result of an OPEN command and is left unchanged until the
devica/file is closed, at that time CID will set the byte to $FF.

Device Number —— ICDNDO [03411]

The device number is provided by CIO as the result of an OPEN
command and is not user—alterable. This byte is used ¢o

distinguish between multiple devices of the same type: such as
Di: and D3:.

OPERATING SYSTEM CD146555 -~ Section 5
39

Command Byte —— ICCMD {03421

You set the command byte. It specifies the command to be
performed by the CID. This byte is not altered by CIO

Status —~— ICS5TA [03431

The CIO conveys operation status to you with the command

status byte as a result of each and every CIO call. Each and
every CID ¢all updates the command status byte. The most
significant (sign) bit is a one for ervor conditions and zero for
nan—-error conditions, and the remaining bits represent an error
number. Sea Appendix B for a list of status codes.

Buffer Address ~— ICBAL E£03441 and ICBAH [0345]

You set this 2-byte pointer; it is not altered by CIO. The

pointer contains the address of the beginning (low address) of a
buffer that:

o Containg data for read and write operations

o Contains the device/filename specification for the OPEN
command,

You can al§er the pointer at any time.

PUT Address —- ICPTL [0346]1 and ICPTH [03471

The CIO sets this 2-byte pointer at OPEN time o the handler’s
PUT CHARACTER entry point (- 1), The poinfter was provided to
accommodate the people writing the ATARI BASIC cartridge. and has
no legitimate use in the gsystem. This variable is set te point to

CIO’s "JOCB not OPEN" routine on CLOSE, Power—up and
[SYSTEM. RESET 1.

Buffer Length/Byte Count —- ICBLL [03483 and ICBLH [034%1]

Yeu set this 2-byte count €o indicate the size of the data

buffer pointed to by ICBAL and ICBAH for read and write
operations. I§ is not required for OPEN. After each read or write
operation, CIO will set this parameter to the number of bytes
actually transferred into or ou§ of the data buffer. For
record-aligned access, the record length can well be less than
the buffer length. Also an end of file condition or an error can
cayse the byte count to be less than the buffer length.

Auxiliary Information —- ICAX1 [034A] and ICAX2 [034B1l

OPERATING SYSTEM €016535 —— Section 5
40

You set these 2~bytes. They contain information that is
vsed by the OPEN command process and/or is device-dependent.

For OPEN, two bits of ICAX1 are always used to specify the OPEN
direction as shown below, where R is set £o 1 far input (read)
enable and W is set ¢to 1 for output (write) enable.

e e e e e e s s e et e e

ICAX1 is not altered by CID. You should not alter ICAXI
once the device/file is open.

The remaining bits of ICAX1 and all of ICAX2 contain only
device~dependent data and are eiplained later in this section,

Remaining Bytes (ICAX3-ICAX&)

The handler reserves the four vemeining bytes for processing the
I/0 command feor CID. There is no fixed use for these bytes. They
are not user—alterable except as specified by the particular
device descriptions. These bytes will be referred to as JCAX3,
ICAX4:, ICAXS and ICAX&, although there are no sguates for those
names in the 0S5 esquate file.

CI0D Functions

The CIO supports records and blocks and the handlers support
single bytes. All of the system handlers support one or more
of the eight basic functions sub ject to restrictions based
vpon the direction of data transfer {(e.g. one cannot read data
fraom the printer). The basic functions are; DPEN. CLOSE, GET
CHARACTERS., PUT CHARACTERS: GET RECORD., PUT RECORD. GET STATUS,
and SPECIAL.

OPEN —— Assign Device/Filename to IOCB and Ready for Access

A devicesfile must be opened before it can be acecessed. This
process links a specific JOCB to the appropriate device
handler, initislizes the device/file, initializes all CID
control wvariables, and passes device—specific ceptions to the
device handler.

OPERATING SYSTEM CO1&555 —— Bection 5
41

You set up the following IOCB parameters prior to calling CIO for an
OPEN operation:

COMMAND BYTE = %03

BUFFER ADDRESS = pointer to a device/Filename specification.
AUX1 = OPEN direction bits, plus device—dependent information.
AUX2 = device—dependent information.

After an OPEN operation, CIO will have altered the following I10CB
parameters:

HANDLER ID = index to the system device table; this is
used only by CIC and must not be altered.

DEVICE NUMBER = device number takenm #rom the device/filename
specification and must not be altered.

STATUS = result of OPEN operation; see Appendix B for a list
of the possible status codes. In general, a negative status
will indicate a failure to open properly.

PUT ADDRESS = poinfter to the PUT CHARACTERS routine for the
device handler just opened.

It is recommended that this pointer not be used.

CLOSE ~~ Terminate Access to Device/File and Release IOCB.

You lissue a CLOSE command after you are through accessing a
given device/file. The CLOSE process completes any pending data
writes, goes to the device handler for any device—specific
actions, and then releases the IOCB.

You set the following IOCB parameter prior to calling
CIO:

COMMAND BYTE = %0C

The CIO alters the following IOCB parameters as a result of the
CLOSE aperation:

HANDLER ID = $FF
STATUS = Result of CLOSE gperation.

PUT ADDRESS = pointer to “IOCB not OPEN" routine.

OPERATING SYSTEM C016555 —- Section 5
42

GET CHARACTERS -— Read n Characters (Byte—-Aligned Access)

The specified number of characters are read from the device/file
to the user—supplied buffer. EOL characters have no termination
features when using this function; there can be no EOQOL, or many
EOL’s, in the buffer affer operation completion. There is a
special casa provided that passes a single byte of data in the
6302 A register when the buffer length is set to zero.

You set the following IOCE parameters prior to calling CID:
COMMAND BYTE = $07
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero,
the data will be returned in the 6302 A register only.

The CIO alters the following IOCE parameters as a result of the
CET CHARACTERS aperation:

ETATUS = raesult of GET CHARACTERS operation.

BYTE COUNT/BUFFER LENGTH = number of bytes read to the
buffer. The BYTE COUNT will always equal the BUFFER LENGTH
except when an error or an end-of~file condition occurs.

PUT CHARACTERS —~— Write n Characters (Byte—-Aligned Access)

The specified number of characters are written from the user—-suypplied
buffer to the davices/file. EOL characters have no buffer

terminating properties, although they have their standard meaning

to the devicae/file receiving them; no EDL‘s are generated by CIO.
There is a special case that allows a single character to be

passed to CIO in the 4502 A register if the buffer length is
zern.

You set the following IOCB parameters prieor to initiating the PUT
CHARACTERS operation:

COMMAND BYTE = 3$0B
BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = number of bytes of data in buffer.

The CIQ alters the following IOCB parameter as a result of the
PUT CHARACTERS operation:

STATUS = result of PUT CHARACTERS operation.

OPERATING SYSTEM C016555 ——~ Section 5
43

GET RECORD —~- Read Up To n Characters (Record-Aligned Access)

Characters are read from the device/file to the user—supplied
buffer until either the buffer is full or an EOL character is
read and put into the buffer. IFf the buffer fills before an EOL
is read, then the CIO continues reading characters from the
device/file until an EOL is read,, and sets the status to

indicate that a truncated record was read. Mo EDL will be put at
the end of the buffer.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = %05
BUFFER ADDRESS = pointer toc data buffer.

BUFFER {ENGTH = maximum number of bytes to read (including
the EOL. character).

The CI0 alters the following IOCB parameters as a result of the
GET RECORD scperation:

8TATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes resad to data
buffer; fthis can be less than the maximum buffer length.

PUT RECORD ~~ Write Up To n Characters (Recaord-Aligned Access}

Characters are written from the user—-supplied buffer to the
davice/fila until either the buffer is empty or an EOL character
is written., I+ the buffer is emptied without writing an EOL

character to the device/file, then CIO will send an EUL after £he
last user—supplied character.

You set the fellowing IOCB parameters prior te calling CIO:
COMMAND BYTE = %09

BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = maximum number of bytes in buffer.

The CIO alters the following IDCB parameter as a result of the
PUT RECORD operation:

STATUS = result of PUT RECORD operation.

OPERATING SYS8TEM C016355 ~- Section O
44

GET STATUS -~ Return Device-Dependent Status Bytes

The device controller is sent a STATUS command, and the

controller returns four bytes of status information that are
stored in DVSTAT [OZ2EAJ.

You set the following IOCEB parameters priar to calling CIO:
COMMAND BYTE = 40D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already OPEN; see the discussion of the
implied OPEN opétion below.

After a GET STATUS operation. CIO will have alterad the foliowing
parameters:

STATUS = result of GET STATUS operation; see Appendix B for
a list of the possible status codes.

BVSTAT = the four-byte response from the device controller.

SPECIAL ~— Special Function

Any command byte value greater than $0D is treated by CID as a
special case. Since CIO does not know what the function is. CIO

transfers control to the device handler for complate processing
of the operation.

The user sets the following IOCB parameters priov to
calling CID:

COMMAND BYTE > %0D
BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already openi see the discussion of the

implied OPEN option below.

Dther IDCB bytes can be set up, depending upon the specific
SPECIAL command being performed. ;

After a SPECIAL operation, CID will have altered the following
paramefers:

STATUS = result of SPECIAL aperation: see Appendix B for a
list of the possible status codes.

Other bytes can be alftered, depending upon the specific
SPECIAL. command,

OPERATING SYSTEM CO146555 —— Section 5
45

Implied OPEN Option

The GET STATUS and SPECIAL commands are treated specially by CIO;
they can use an already open IOCE %o initiate the process or they
can use an unopened IDCB. If the I0CB is unopened, then the
buffer address must contain a pointer to a device/filename
specification, just as for the OPEN command; CIO will then open

that IOCB, perform the specified command and then close the IOCHB
again.

Device/Filename Specification

As part of the OPEN command, the JOCB buffer address parameter
points to a device/filename specification, that is a string of
ATASCII characters in the following format:

“specification> .= {deviceXi<number>l: [{filenamel1<enll>
Ldevice> ::= CIDIEIKIPIRIS

<number> ::= 1121314!51461718

<filename> has device~dependent characteristics.

<eoll ;:= %913

The following devices are supported at this writing:

L

C Cassette drive

Di through DB = Floppy diskette drives #
E = Screen Editor

K = Keyboard

P = 40-cclumn printer

P2 = 80-column printer *

R1 through R4 = RE5-232-C interfaces *

S = Screen display

Devices flagged by asterisks (#} are supported by nonresident
handlers.

If <number> is not specified, it is assumed to be 1.

The following examples show valid device/filename specifications:

C: Cassetfe
B2: BBATY File "BDAT" on disk drive #2
D: HOL.D File "HOLD®" on disk drive #1
K: Keyboard

OPERATING SYSTEM CO146555 —— Section S
46

1/0 Example

The example provided in this section illustrates a simple example of

an I/0 operation using the CIO routine.

drive

hey ma e W

This code segment illustrates the simple example of reading
text lines (records}) from a diskette file named TESTER on disk

#1. All symbols used are equated within the program

although many of the symbols are in the 08 eguate file.

i The program performs the following steps:

1.

Opens the +file

‘D1. TESTER’ wsing IDCB #3.

i 2. Reads records until an epror or EOF is reached.

i 3. Closes the file.

i I/0 EGQUATES

EOL= 9B i END OF LINE CHARACTER.
I0CB3= 330 i I0CB #3 OFFSET (FROM IOCBE #0).
ICHID= #0340 i (HANDLER ID -- SET BY CIO}.
ICDND= ICHID+1 i (DEVICE # —-- SET BY CIf).
ICCOM= ICDNO+1 i COMMAND BYTE.

ICSTA= ICCOM+i i BTATUE BYTE -- SET BY CIO.
ICBAL= ICSTA+1 i BUFFER ADDRESS (LOW).
ICBAH= ICBAL+1 i BUFFER ADDRESS (HIGH).
ICPTL= ICBAH+1

ICPTH= JCPTL+1

ICBLL= ICPTH+1 i BUFFER LENGTH (LOW).
ICBLH= ICBLL+1 i BUFFER LENGTH (HIGH).
ICAX1= ICBLH+1 i AUX 1.

ICAX2= [ICAX1+1 i AUX 2.

OPEN= $03 i OPEN COMMAND.

GETREC= %05 i GET RECORD COMMAND.

CLOSE= 40C i CLOSE COMMAND.

OREAD= %04 i OPEN DIRECTION = READ.
DWRIT= %08 i DPEN DIRECTION = WRITE.
EQF= $88 i END OF FILE STATUS VALUE.
CIav= $E454 i CIO ENTRY VECTOR ADDRESS.

i FIRET INITIALIZE THE IOCB FOR FILE "OPEN".

LDX #I0CB3 i SETUP TO ACCESS IOCB #3.

OPERATING SYSTEM CO0146535 —- Section S

a7

LA #OPEN i SETUP OPEN COMMAND.

STA ICCOM, X

LDaA #NAME i SETUP BUFFER POINTER TO . ..
E5TA ICBAL.: X i ... POINTY T8 FILENAME.

LDA #NAME /256

ETA ICBAH, X

LDA #OREAD i SETUP FOR OPEN READ.

ETA ICAX1, X

1.DA #0 i CLEAR AUX 2.

STA icaxa: X

“OPEN" THE FILE.

JSR cioy i PERFORM “OPEN" OPERATION.
BPL TP1G i BTATUS WAS POSITIVE —— OK.
JMP ERROR i NO —— "OPEN" PROBLEM.

i SETUP TO READ A RECUORD.

TRIO L.DA #GETREC i SETUP "GET RECORDY COMMAND.
STA ICCOM, X
LDaA #BUFF i SETUP DATA BUFFER POINTER.
8TA ICBAL., X
LDA #BUFF /256
&8TaA ICBAH, X

i READ RECARDS.

i

Looe L.DA #BUFESZ i BETUP MAX RECORD SIZE ...
STA ICBLL, X i ... PRIOR TO EVERY READ.
LDA #¥BUFFSL/256
STA ICBLH, X
JER cIov i READ A RECORD.
BMI TP20 i MAY BE END OF FILE.

i A RECORD IS NOW IN THE DATA BUFFER "BUFF". IT IS TERMINATED BY

OPERATING SYSTEM CO16555 —— Section 3
48

i AN EOL CHARACTER. AND THE RECORD LENGTH IS IN “ICBLL" and "ICBLH".
i THIS EXAMPLE WILL DD NOTHING WITH THE RECORD JUST READ.

JMP

L.AoP i READ NEXT RECORD.

i NEGATIVE STATUS ON READ —- CHECK FOR END OF FILE.

TP20

i

CPY
BNE

LDA
874

JER

JMP

#EOF i END OF FILE STATUS?
ERROR i NO -— ERROR.

#CLOSE i YES -- CLOSE FILE.
1CCOM, X |

CIOV i CLOSE THE FILE.

* i ##% END OF PROGRAM 3%

i DATA REGION OF EXAMPLE PROGRAM

i

NAME . BYTE
BUFFSZI= 8O
BUFF= 4
LT

. END

#+BUFFSZ

"DI: TESTER", £0L

i 80 CHARACTER RECORD MAX
(INCLUDES EOL).

i READ BUFFER.

Figure 5-3 An I/D Exadpia

DPERATING SYSTEM C016555 ~—- Section 5

42

Device-Specific Information

This section provides device—specific information regarding the
device handlers that interface to CIO.

Heyboard Handler (K:)}

The keyboard device is a read only device with a handlar that
supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

GET STATUS (null funcEion)

The Keyboard Handler can produce the following error statuses:

$80 -~ [BREAKI key abort.
%88 -- end-of—-file (produced by pressing LCTRLI 3).

The Keyboard Handler is one of the resident handlers. It has a
set of device vectors starting at location E420.

The keyboard can produce any of the 256 codes in the ATASCII
tharacter set (see Appendix F). Note that a few of the keybopard

keys do not generate data at the Keyboard Handler level. These
keys are described helow:

€/iN3 — The ATARI key toggles a flag that enables/disables the
inversion of bit 7 of each data character vread. The
Screen Editor editing keys are exempted from such
inversion, howevear,

CAPE — The [CAPS/LOWR] key provides three functions:
{SHIFTILCAPS/LOWR] —— Alpha caps lock,.

ECNTRLIL{CAPS/LDWRI —— Alpha LCTRL] lock.
ECAPS/LOWR 3 - Alpha wnlack.

OPERATING SYSTEM C0O16555 ~— Section 5
50

The system powers up and will system reset to the alpha
caps lock opfion.

Seme key combinations are ignored by the handler. such as

CCTRLI 4 through £CTRLI 9. [CTRL] O, [CTRLI i, [CTRLY /, and

all kxey combinations in that the [SHIFT] and [CTRLY keys are
depressed simultaneously.

The ECTRLY 3 key generates an EODL character and returns EOF status.

The EBREAK} key generates an EOL character and returns BREAK status.

CIO Function Descriptions

The device-specific characteristics of the standard CID functions
{described earlier in this section) are detailed below:

OPEN

The device name is K, and the handler ignores any device number
and filename specification, if included.

There are no device-dependent option bifs in AUX1 or AUXZ.

CLOosE

No special handler actions.

GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CIO as they are
entered. with no facility for editing.

GET STATUS

The handler does nothing but set the status to %01.

Theory of Operation

Pressing a keyboard key generates an IRQ interrupt and vertors to
the Keyboard Handler ‘s interrupt service routine (see Section &),
The key code for the key pressed is then read and stored in data
base variable CH [O2FC]. This occurs whether or not there is an
active read request to the Keyboard Handler, and effects a ane-byte

FIFG for keyboard entry. See Appendix L (EB) for a discussion of
the auto repeat feature. 1

DPERATING SYSTEM CO14555 —— Section 5
31

The Keyboard Handler monitors the CH variable for not containing
the value %FF (empty state} whenever there is an active read
request for the handler. When CH shows nonempty, the handler
takes the key code from CH and sets CH to $FF again. The key code
byte obtained from CH is not an ATASC]I]I code and hag the
following form:

7 0
Lt LT e R A e
ICIST key code |
Lt B Rt e e Bt

Wherse: C
g

1 if the L[CTRL] %ey is pressed.
1 if the ESHIFT] key is pressed.

The remaining six bits are the hardware key code.

The key cods obtained is then converted ¢to ATASCII using the
first of the following rules that applies:

Ignare the code if the C and 5§ bits are both set.

I+ the C bit is set, process the key as a [CTRL] code.

If the S bit is set, process the key as a [BHIFT1 code.

I£ LCTRL] lock is in effect, process alpha characters as CTRL
codes, all others as lowsrcase.

IF LSHIFT3 lock is in effect, process alpha characters as SHIFT
codes, all others as lowercase.

4. Else, process as lowercase character.

nalt Gl

g

Then: If the resultant code is not a Screen Editor.cantrol caode,
and if the video inverss flag is set, then set bit 7 of the
ATASCII code (will cause inverse video when displayed).

OPERATING SYSTEM CO16555 -- Section 5
22

Key
Code

00
g1
o2
03
04
05
0é
07
o8
o9
0A
0B
0¢
oD
QE
OF
10
i1
iz
13
14
15
14
i7
18
i9
14
iB
1iC
in
1E
iF

£CTRL] 3 returns EOF status.

KEY CODE TD ATASCII CONVERSION TABLE

Key
Cap

L
J

<CH |l BT
m
-;1

Lwr.
Case

&c
bA
38

&8
28
24
&F

76
79
B
&%
2D
3D
74

63

&2
78
7h
34

33
36
iB8
35
32
3t

LBMIFT]

4C
4A
3A
4B
5C
SE
4F
50
55
9B
49
S5F
7C
56
43

iy

42
=8
oA
24

23
24
iB
29
22
21

LCTRL]

GC
0A
7B

OB
1E

iF
OF

10
15
B
09
1€
in
16

03

Key
Code

20
21
22
23
24
25
24
27
28
29
24
=8
2C
2D
2E
2F
30
31
32
33
34
35
34
37
38
32
3A
38
ac
3D
3E
3F

Key
Cap

1

SPACE
N

b s B Ny 4
-~

ﬂ@z—i;{m
7]

ACKS

BT ANL O

oo
>
|
n

Lwr.
Case

2C
20
2ZE
&E
&b
2F

72
&s
79
7F
74
77
71
39
30
37
7E
38
clo
3E
6b
&8
&4

———

&7
73
61

A complement of this table (ATASCII to keystroke)
appendix F.

Figure 5-4

Keycode to ATASCII Conversion Table

SHIFT

58
20
5D
4E
ap
3F
52
45
59
IF
54
57
51
28
29
27
9C
40
7D
ID
46
48
a4

a7
53
41

OPERATIMG SYSTEM CO14555 —— Section 5

CTRL

is given in

53

Display Handler (S:)

The display device is a read/write device with a handler
that supports the following CIO functions:

OPEN

CLOSE)

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECDORD

GET STATUS (null +function}
DRAW

FI{L

The Display Handler can produce the following error statuses:

%84 —— Invalid special command.

$8D —- Cursor gut—of-range.

%91 ~- Screen mode » 11.

$93 ~~ Not enough memory for screen mode selected.

The Display Handler is one of the resident handlers, and
therefore has a set of devite vectors starting at location E410.

Screen Modes

You can aperate the display screen in any of 20

configurations {(modes 1 through 8, with or without split
screen; plus mode O, and modes % through 11 without split
screen}., Mode O is the text displaying mode. Modes 1 through
i1 are all graphics modes {although modes 2 and 3 do display a
subset of the ATASCII character set). Modes 9 through it
Tequire a GTIA chip to be installed in place of the standard
CTIA chip.

TEXT MGDE O

In text mode & the screen is comprised of 24 lines of 40
tharacters per line. Program alterabhle left and right margins

limit the display area. They default fto 2 and 39 {(of a possible O

ang 39).

OPERATING SYSTEM CO16555 —— Section 5
54

A program-controllable cursor shows the destination of the next
character to be output onto the screen. The cursor is visible as
the invevrse video representation of the current character at the
destination position.

The text screen data is internally organized as variable length
logical lines. The internal representation is 24 lines when the
screen is cleared. Fach EQL marks the end of a legical line as
text is sent to the screen. If moare than 3 physical lines of text
are sent, a Jlogical line will be fermed every 3 physical lines.
The number of physical lines used to comprise a logical line (1
to 3) is always the minimum required to hold the data for that
logical line,

The text screen "scrolls" upward whenever a text line at the
bottom row of the screen extends past the right margin: or a text
iine at the bottom vow is terminated by an EOL. Scrolling removes
the entire logical line that starts at the top of the screen, and
then moves all subsequent lines upward to fill in the void. The

cursor also moves vpward, if the logical line deleted exceeds one
physical line.

All data going to or coming from the text screen is represented
in 8-bit ATASCII code as shown in Appendix E,

TEXT MODES 1 AND 2

In text modes i1 and 2 the screen comprises either 24 lines of 20
characters (mode 1}, or 12 lines of 20 characters (mode 2). The
left and right margins are of no consequence in these medes and
there is no visible cursor. There are no lagical lines associated
with the data and in all regards these modes are treated as
graphics modes by the handlar.

Data going to or coming from the screen is in the form shown
below:

7 0

+=F ot —g e}
i C i D :
e R L L Nt e

Where:C is the color/character—sat select field

OPERATING SYSTEM C01655% ~- Section 5
83

C Color Colar Character Charactey

Value (default! Register Set Sat

{see CHBAS=%EQ CHBAS=%E2

Appendix

H)

0 green {PF1) Pl =i fHEART] {ARRDOWI]
1 gold {PFG} = fHEART] £ARROW]
2 gold {PF0) & = [DIAMONDIETRIANGLE]
3 green {PF1) GlE=agh | fDIAMONDIETRIANGLE]
4 read {(PF3} D= T THEART] fARROW1
9 blue (PF2) d —E {HEART] fARROW I
& blue (PF2} @ - EDTAMONDIETRIANGLE]
7 read {PF3) e - ERIAMONDICTRIANGLE]

D is a 5-bit truncated ATASCII code that selects the specific
tharacter within the set selected by the C field. See Appendix E
for the graphics representations of the characters.

Data base variable CHBAS [02F4] allows for the selection of
either of fwo data sets. The default value of $EC provides the
capital letters, numbers and punctuation characters: the

alternate value of $E2 provides lowercase letters and the special
character graphics set.

Figure 5-5 Text Modes 1 and 2 Data Form

GRAPHICS MODES (Modes 3 Through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H Depending upon the mode, =
1 to 16 color selection is available for sach pixel and the

screen size varies from 20 by 12 (lowest resolution} to 320 by
192 (highest resolution) pixels.

There is no visible cursor for the graphics mode output.

Data going to or coming from the graphics screen is represented

as 1 to B-bit codes as shown in Appendix H and in the GET/PUT
diagrams following.

SPLIT-SCREEN CONFIGCURATIONS

in split—screen configurations, the bottom of the screen is
raserved for four lines of mode O text. The text vegion is
controlled by the Screen Editor, and the graphics region is
controlled by the Display handler. Two cursors are maintained in

this configuration so that the screen segments can be managed
independently,

OPERATING SYSTEM C016555 —- Section 5
24

To operafe in split-screen mode, the Screen Editor must first be
opened and then the Display Handler must be opened using a
separate [OCD (with the split—screen option bit set in AUX1),

CID Function Descriptions

The device-specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is S, and the handler ignores any device number am
filename specification, if included.

The handler supports the following aptions:

Where: € = i indicates to inhibi{ screen clear an OPEN.
= 1 indicates to set up a split—screen configuration (for
modes 1 through 8 only)l.
R and W are the direction bits {(read and writs},

7 G
B O R L et Lo Tt
AUX2 i i mode
bbb p e —

Where: mode is the screen mode (0 through 11},

NMofe: If the screen mode selected is O, then the AUXI C and
8 pptions are assumsd to be 0.

You share memory utilization with the Display Handler
information. Sharing is necessary because the Display Handler
dynamically allocates high address memary for use in generating
the screen display, and because different amounts of memory are
nesded for the different screen modes. Prior to initiating an
OPEN command the variable APPMHI [OOOE] should contain the
highest address of RAM you need. The Screen handler

will open the screen only if no RAM is needed at or below that
address,.

Upoan return freom a scerean OPEN, the variable MEMTOP [OZ2ES] will
contain the address of the last free byte at the end of RAM
memory priar te the screen—-required memory.

OPERATING SYSTEM CO14550 —— Section D
=

As a resulf of every OPEN command. the following screen variables
are altered:

The text cursor is enabled (CRSINH = 0). The tabs are set to
the defauvlt settings (2 and 39). The color registers are setf
to the default values (shown in Appendix H}.
Tabs are set at positions 7,15.23, 31,39,
47, 55,63, 71,79, 87,95, 103, 111, 119.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where
each byte contains the data for one cursor position {pixel); there
is no facility for having the handler return packed graphics data.

7 0O
B RS T S T R Sy
H ATASCTI ! Mode O
e e e i it e e
s s ST TP MY S SR ST
i C i b H Modes 1,2 -~ C = colar/data
T s ot o VY G ST set.

B = truncated ATASCII.

+ +
i Iero i1 D¢ Modes 3,3, 7 —— D color,
+ +

tolor.

B
H IETO P Modes 4, 4,8 —— D
e

-+

D : Modes 9,10,11 -~ D = data.
-+

Figure 35-& Graphics Mode 3~11 GET Data Form

The cursor moves to the next position as each data byte is
returned. For mode O, the cursor will stay within the specified
margins; for all other modes. the cursor ignores the margins.

OPERATING SYSTEM CO14555 —- Section B
o8

PUT CHARACTERS and PUT RECORD

The handler accepts display data in the Follomihg screen mode
dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 0O
B s St YT SRS S

{ ATABCII : Mode O
o e e e e e e e e
B ot S ST L GRS RS

i Cc D ' Modas 1,2 —— C = color/data
F—Fd—tdmh e =t set,

B = truncated ATASBCII.

e oo s e s e s s e

H 7 I & I Modes 3,5, 7 -- I} = color.
F—F—F e —
= e e e i e e e e

! ? D Modes 4, 64,8 —— D = color.
B sl T S ST U ST l
R S o R B e

H iy : D H Mades 9, 10,11 — D = data.
D s ot SN S ST R W

Figure 5-7 Graphics Mode 3~11 PUT Data Faorm

NOTE: For all modes: if the output data byte equals %98 (EOL}, that
byte will be treated as an EOL character; and if the output

data byte equals $7D (CLEAR) that byte will be treated as a
screen—clear charvactey,

The cursor moves to the next cursor position as each data byte is
written. For mode O/ the cursor will stay within the specified
margins; for all other modes, fthe cursor ignores the margins.

While ocutputting, the Display Handler monitors the keyboard %o
detect the pressing of the [CTRL] 1 key combination. When this
eccurs, the handler loops internally until that key combination
is pressed again: This effects a stop/start function that
freezes the screen didplay. Note that there is no ATASCII cade
associated with either the [CTRL] 1 key combination or the
start/stop function. The stop/start function can be contreolled
only from the keyboard (or by altering database variable CH as
discussed in Appendix L, E4).

OPERATING SYSTEM C014559 —— Section 9

GET STATUS

Mo handler acftion except to set the status to 201.

DRAW

This specrial command draws a simulated "straight" line fram the
cturrent cursor position to the location specified in ROWCRS
£00541 and COLCRS [0O055%]. The color of the line is taken from the
last tharacter processed by the Display Handler or Screen Editor.
To force the color, store the desired value in ATACHR [Q2FBl1. At
the completion of the command, €the cursor will be at the location
specified by ROWCRS and COLCRS.

The wvalue for the command hyte for DRAW is #1ii.

FILL

This special command #ills an area of the screen defined by two
lines with a specified color. The command is set wp the same as
in DRAW, but as sach poinft of the line is drawn, the routine

scans to the right performing the procedure shown below {(in
PASCAL notation):

WHILE PIXEL FROW,COL] = O DO
BEGIN
PIXEL CROW,COLT := FILDAT;
COL := COL + 1,

IF COL > Screen right edge THEN COL := O
END;
An example of a FILL operation is shown belouw:
+ 1
“+
i e e e +
+ - — -+
4 + —ee — +
+
+ 2

Where: ‘—’' represents the £ill operation,
‘+7 are the line points, with ‘47 #or the endpoints.

—= seat cursor and pleot point,
-- set cursor and DRAW line.
set cursor and plot peint
~— gat £ill data valve, set cursor, and FILL.

£ L3 BRI =
|
i

OPERATING SYSTEM CO1&555 —- Section 5
&0

FILDAT £02FD] contains the fill data. and ROWCRS and COLCRS
contain the cursor coordinates of the line endpoint. The value
in ATACHR [O2FB] will be used to draw the line; ATACHR always
contains the last data read or written, so if the steps above
are followed exactly, ATACHR will not have to be modified.

The value for the command byte for FILL is $i2.

User—Alterable Data Base Variables

Certain functions of the Display Handler require you to

examine and/or alter variables in the OS5 database. The following
describes some of the more commonly used handler variables. (see
Appendix L, Bi-55, for additional descriptions).

Cursor Position

Two variables maintain the cursor position for the graphics
screen or mode O fext screen. ROWCRS [00541 maintains the display
row number; and COLCRE [00535) maintains the display column
number. Both numbers range from © to the maximum number of
rows/coalumns, - 1. The cursor can be set outside of the defined
text margins with no ill effect. You can read and write this
Tegion. The home posiftion (0.0) for both text and graphics is the
upper laft corner of the screen.

ROWCRS is & single byte. COLCRS is maintained at 2-bytes, with
the least significant byte being at the lower address.

When you alter these variables: the screen representation
of the cursor will not move until the next I1/0 operation
involving the display is perfarmed.

Inhibit/Enable Visible Cursor Display

You can inhibit¢ the display of the text cursor on the screen
by setting the variable CRSINH [(02FC] to any nonzero wvalue.
Subsequent I/0 will not generate a visible cursor.

You can enable the display of the text cursor by setting
CRSINH to zero. Subsequent I/0 will then generate a visible
cursar.

Text Margins
The text screen has user-alterable left and right margins. The 08
sets these margins to 2 and 39 The wvariable LMARGN [00521
defines the left margin, and the wvariable RMARGM [00531 defines

the right margin. The leftmost margin wvalue is O and the

OPERATING SYBTEM C014585 —— Section S

a1

rightmost margin value is 39,

The margin values inclusively define the useabls portion of the
screen for all gperations in that you do not explicitly

alter the cursoy location variables as described prior to this
paragraph.

Conlor Control

The 0S5 updates hardware tolor registers using data from the 0S5
data base as part of normal Stage 2 VBLANK processing {(see Ssction
&). Shown below are the data base variable names:, the hardware
register names:. and the function of each register. See Appendix H
for the mode dependent uses for the registers.

Data Base Hardware Function

COLORQ COLPFO PFO — Playfield O

COLORI1 COLPF1 PF1 — Playfield 1.

COLOR2 COLPF2 PF2 — Playfield 2.

COLOR3 COLPF3 PF3 —— Playfield 3.

COLOR4 COLBK BAK —— Playfield background.
PCOLRO COLPMO PMO -— Player/miszsile O.
PCOLR1 COLPMI PMI —-— Player/missile 1.
PCOLRZ2 COLPM2 PM2 — Player/missile 2.
PCOLR3 COLPM3 PM3 —— Player/missile 3

Theory of Dperation

The Display Handler automatically sets up all memory resources
required to create and maintain the screen display at OPEN time
The screen generation hardware requires that two distinct data
areas exist for graphics modes: 1} a display list and 2) a
screen data region. A third data area must exist for text modes.
This date area defines the screen representation for each of the
text characters. Consult the ATARI Home Computer

Hardware Manuval for a complete understanding of the material that
is to follow,

OPERATING SYSTEM COD16555 — Section 3
&

e The simplified block diagram below shows the relationships
between the memory and hardware registers used to set up a screen
display (without player/missile graphics) by the 0S5 Note that
the hardware registers allow for many other possibilities.

DATA BASE HARDWARE
VARIABLE REGISTER
(tipdated every
VBLANK)
i MEMTOP i
+ L
i |
Fa— o —
I S— o e o i i i e e e +
g }
+ =t + - + e + |
t Display | { &SDLBTL | i DLISTL | ¢
! List P+ e >+ =k
= = ! SDSTH | i BLISTH ¢
H (- { H !
e i e e e + e e i i i +
| i
I i o ——— e +
i Screen Data {<-- SAVMSC i
=t F--} s -+
i Graphics S |
I and/or } 4 +
| Text |
End of RAM memory
I B + m———————— + 1
- ! CHBAS=EQ {——=2i CHBASE +————=— +
I + + BTy +
o O P ——— +
t Specials and! EQOO
{ Numbers !
+ +
i Capital i EI10D
! Letters H
{ Special i E200
{ Graphics H
i Lowercase i E3CC
i Lettersy H

OPERATING SYSTEM CO16555 —— Section S
&3

—— e e e + et e e +
i COLDR O { COLPFO |
= =——21 COLPF1 H
i COLOR 1 | i COLPF2 |
i COLOR 2 i i COLPF3 |
i COLOR 3 i COL.BK !
i COLOR 4 | + — }
e e +

Figure 5-8 Screen Display Block Diagram

The following relationships are present in the preceding diagram:

i.

&4

Data base variables SDLSTL/SDLSTH contain the address of
the current display list. This address is stored in the

hardware display list address registers DLISTL and DLISTH
as part of the VBLANK process.

The display list itself defines the characteristics of the
screen to be displayed and points €o the memory containing
the data to be displayed.

Data base wvariable CHBAS contains the MSE of the base address

of the character representations for the character data (text
modes onlyl.

The defavult value for this variable is $EQ. This variable
declares that the character representations start at mesmory
address EQOQ (the character set provided by the 05 in ROM).
Each character is defined as an B8XB bit matrix, requiring o
bytes per character. 1024 bytes are required to define the
largest set, since a tharacter ctode contains up to 7
significant bits (set of 128 characters). The 05 ROM contains
the default set in the region from EQOO to EIFF.

All character codes are converted by the handier from ATASCII
to an internal code {(and vice versa), as shown helow:

ATASCII INTERNAL
CODE CODE
00-1F 40~SF
20-3F 00-1F
40-5F 20-3F
&0-7F &0-7F
80~-9F CO-DF
AC~BF 80-9F
CO-DF AC-BF
EO-FF EO-FF

OPERATING SYSTEM CD14555 —— Bection &

The character set in ROM is ordered by internal code order. Three
considerations differentiate the internal code from the external
{ATASCII} code:

ATASCEII codes for all but the special graphics characters were to
be similar to ASCII. The alphabetic, numeric. and punctuation
ctharacter codes are identical to ASCII.

In text modes I and 2 it was desired that one character subset
include capital letters. numbers, and punctuation and the ather
character subse$ include lowercase letters and special graphics
characters.

The codes for the capital and lowercase letters weve to be
identical in text modes 1 and &

Database variables COLORO through COLOR4 contain the current
color register assignments. Hardware color registers receive
these values as part of the stage 1 VBLANK precess., thus
providing synchronized color changes (see Appendix H).

Database variable SAVMSC points to the lowest memovry address of
the screen data region. It corresponds to the data displayed at
the upper left corner of the display.

When the Display Handler receives an open command, it #first
determines the screen mode from the OPEN IOCB. Then it allocates
memory from the end of RAM downward (as specified by data base
variable RAMTOP}, +first for the screen data and then for the
display list. The screen data vregion is cleared and the display
list is created if sufficient memory is available. Tha display
list address is stored to the database.

OPERATING SYSTEM (014555 —— Section 3

&%

Screen Editor (E:)

The Screen Editor is a read/write handler that uses the Keyboard
Handler and %the Display HMandlier to provide "line-at—a-time" input
with interactive editing functions, as well as formatted ocutput.

The Screen Editor supports the following CID functions

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null funcgion?

See Keyboard Handler and Display Handler Sections for a
discussion of Screen Editor error statuses.

The Screen Editor is one of the resident handlers, and

therefore has a set of device vectors starting at location
E40Q.

The Screen Editor is a program that reads key data from the
Keyboard Handler and sends each character to the Display Handler
for immediate display. The Screen Editor also accepts data from
you to send to the Display Handler: and reads data from the
Display Handler (no€¢ the Keyboard Handler) for you. In fact.

the Keyboard Handler., Display Handler, and the Screen Editor are
all contained in one monolithic hunk of code.

Most of the behaviors already defined for the Keyboard Handler
and the Display Handler apply as well to the Screen Editor: The
discussions in this Section will be limited to deviations from
those behaviors, or to additional features that are part of the
Screen Editor only. The Screen Editor deals only with text data
(screen mode O). This Section also explains the splif—-screen
configuration feature.

The Screen Editor uses the Display Handler fo vead data from
graphics and text screens on demand. You use the Screen i
Editor to determine when the program will read Screen data, and
where upon the screen the data will be read from. Yau

first locates the cursor on the screen to determine the screen
area to be read; you then press the [RETURNI key fto determine
when the program will begin to read the data indicated.

OPERATING SYSTEM CDis655% — Section 3
&6

When the [RETURN] key is pressed, the entire logical line within
that the cursor resides is then made available f{o the calling
program: Trailing blanks in 8 logical line are never returned as
data, however. After aill of the data in the line has been sent to
the caller (this can entail multiple READ CHARACTERS functions if
desired}, an EOL character is returned and the cursor is
positioned to the beginning of the logical line following the one
Just read.

CI0 Function Descriptions

The device-specific characteristics of the standard CID
functions are detailed below:

OPEN

The device name is E, and the Screen Editaor ignores any
device number and filename specification, if included.

The Screen Editar supports the following aption:

—

= +
AUX1 i iWIRD F
-t +

Where: R and W are the direction bits (read and write).
F = 1 indicates that a "forced read® is desired (see GET
CHARACTER and CET RECORD for morse information}.

CLOSE

No special handler actions,

GET CHARACTER and GET RECORD

Normally the Screen Editor will return data only when you prass the
ERETURNI key at the keyboard. However. the “forced read" OPEN option
allows you to read text data without intervention. When you command a
READ operation: the Screen Editor will return data from the start of
the logical line in which the text cursor is located, and then

meve the cursor £o the beginning of the following logical line. A

read of the last logical line on the serveen will cause the screen
data fo scroll.

A special case occurs when characters are output without a
terminating EOL, and then additional characters are appended to

OPERATING SYSTEM C016555 —— Section 5
&7

that logical line from the keyboard. When the [RETURNI key is
pressed, only the keyboard entered characters are sent to the
caller, unless the cursor has been moved out of and then back

into the logical line: in that case all of the logical line will
be sent.

PUT CHARACTER and PUT RECORD

The Handler accepts ATASCII characters as one chavracter per byfte.
Sixteen of the 25& ATASCII characters are control codes; the EOL
rode has universal meaning:. but most of the other contrel codes
have special meaning only to a display or print device. The
Screen Editor processing of the ATASCII control codes is
explained below:

CLEAR (4%7D) —-— The Screen Editor clears the current display of
all data and ¢he curgor ig placed at the home position {(upper
left corner of the screen!).

CURSOR UP ($iC) -— The cursor moves up by one physical line. The

cursor will wrap from the top line of the display to the bottom
line.

CURSOR DOWN {$#1D} —— The cursor moves down by one physical line.

The cursor will wrap from the bottom line of the display to the
taep line.

CURSDOR LEFT ($1E} —— The cursor moves left by one column. The
cursor will wrap from the left margin of a line to the right
margin of the same line.

CURSOR RIGHT ($1iF) ~— The cursor moves right by one column. The
cursor will wrap from the right margin of a line to the left
margin of t(he same line.

BACKSPACE ($7E} —— The cursor moves left by one cﬁlumn {but never
past the beginning of a logical line), and the character at that
new positipn is changed to a blank ($20).

OPERATING SYSTEM C0O16555 —— Section 5
&8

SET TAB ($9F) ~— The Screen Editor establishes a tab point at the
logical line poasition at that the cursor is residing. The logical
line tab poesition is not synonymous with the physical line column
posiftion since the logical line can be up to 3 physical lines in
length. For example, tabs can be set at the iSth. 30th, 45th,

6H0th and 75th character positions of a logical line as shouwn
below: '

0 2 g i 29 3% Screen ctolumn #.
——f —————— O + + R L/R = margins.

7 [e e e T e e e T A logical line.

%2 T T— ——— e e T- x = inaccesible
X¥ : S R columns.

Note the effect of the left margin in defining the limits of the
lsgical line. :

The Handler default tab settings are shown below:

0 2 @ 1% 29 3% Screen column #.
=m{l, + A= -+ ~—-—R /R = margins.
XxT~ T T———wmm Tre———m | Rttty T A lagical line.
Xx T T O N E 1 patato- 10 T % = inaccesible
e T T T- T mmmm e T columns.
CLEAR TAB ($9E) —~ The Screen Editor clears the current cursor

position within the logical line from being a tab point. There is
no "eclear all fab points™ facility provided bq‘the_Handler.

TAB ($7F} —— The cuvsor moves to the next tab point in the
current logical line, or to the beginning of the next line if no
tab point is found. This function will noft increase the logical
line length to accommodate a tab point outside the current length

{e.g. the logical line length is 38 characters and there is a tab
point at position 50} .

INSERT LINE ($9D) —— All physical lines at and helow the physical
line in that the cursor resides, are moved down by one physical
line. The last logital lime on the display can be truncated as a
result. The blank physical line at the insert point becomes the
heginning of a new logical line. A logical line can be split into
two logical lines by this process, the last half of the original
logical line being concatenated with the blank physical line
formed at the insert point.

OPERATING SYSTEM CO16585 ~- Section 5

(34

DELETE LINE ($9C} ——- The logical line in that the cursor resides
iz deleted and all data below that line is moved upward to fill

the void. Empty logical lines are created at the bottom of the
display.

INGERT CHARACTER (%FF) —- All physical characters at and behind
the cursor position on a logical line are moved one position to
the right. The character at €the cursor position is st to blank.
The last character of the logical line will be lost when the

logical line is #ull and a character is inserted. The number of

physical lines comprising a logical line can inerease as 3 result
of this function.

DELETE CHARACTER ($FE} —- The character on which the cursor
resides is removed, and the remainder of the logical line to the
right of the deleted character is moved to the left by one
pesition. The number of physical lines composing a logical line
can detrease as a rasult of this function.

ESCAPE ($1B}) —— The next non-EOL character following this code is
displayed as data, even if it would normally be treated as a
control code. The sequence L[ESCITESCI will cayse the second LESCI
character to be displayed.

BELL ($FD) -- An audible tone is generated: the display is not
modified.
END OF LINE ($%B) ~— In addition to its record termination

function, the EOL causes the cursor te advance to the beginning
of the next logical line. When the cursor reaches the bottom line
of the screen. the receipt of an EOL will cause the screen data
to scroll vpward by ane logical line.

GET STATUS

The Handler takes no action other €han to set the status to $01.

User—Alterable Data Base Variables

Also see the Display Handler data base vaviable discussion.

OPERATING SYSBTEM CO146555 —— Section 5
70

Cursor Position

When in a split—-screen configuration, ROWCRE and COLCRS are associated
with the graphics portion of the display and two other variables,
TXTROW £02%01 and TXTCOL [02%1i]: are associated with the text window.
TXTROW is & single byte, and TXTCOL is 2-bytes with the least
significant byte being at the lower address. Note that the most
significant byte of TXTCDL should always be zero.

The haome position (0,0) for the text window is the upper left corner
of the window.

Enable/inhibit of Coantrol Codes in Text

Mormally all text mode control codes are operated upon as received,
but sometimes it is desirable to have the control codes displagyed as
if they were data characters. This is done by setting the variable
DSPFLG EO2FE] €0 any noniero value before outputting the data
containing control codes. Setting DSPFLE to zero resfores normal
processing of fext caonfrol codes.

OPERATING SYSTEM CD1s6550 ~- Gection S

71

Cassette Handlar (C:}

The Cassettes device is a read or write device with a Handler
that supports the following CIO functions:

DPEN
CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null funcéion)

The Cassette Handler can produce the Foiloming error statuses:

$80 —-
$84 —-
$88 —
$8A-90

EBREAK] key abort.

Invalid AUX1 byte on OPEN.
end—of-+file.

—= BI0 error sst (see Appendix C}.

The Cassette Handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E440.

CI0 Function Descriptions

The device—

specific characteristics of the standard CID functions are

detailed balouw:

OPEN

The device

name is €, and the Handler ignores any device number and

filename specification, if included.

The Handler supports the following option:

72

OPERATING SYSTEM CO16555 —- Section 5

7 o

e e e e o i o e e —
AUX2 iIc! H
T S B e e

Where: C = 1 indicates that the cassette is fto be read/written without

stop/start between records {(continuous mode).

flpening the cassette for input genevates a single audible tone, as a
prompt for you %o verify that the cassette player is set up

for reading (power on; Serial Bus cable connected; tape cved to start
of file; and PLAY button depressed}. When the cassette is ready,

you can press any keyboard key (except [BREAKI) to initiate tape
reading.

Opening the cassette for output generates two closely spaced audible
tones, as a prompt for you te verify that the cassette player

is set up for writing (as above: plus RECORD button depressed}. When
the cassette is veady, you can press any keyboard key (except

[BREAKI) to begin tape writing. There is no way for the computer to
verify that the RECORD or PLAY button is depressed. It is possible for
the file not to be written. with no immediate indication of this fact.

There is a potential problem with the cassette in that when the
cassette is openad for writing, the motor keeps running until the
first record (128 data bytes) is written. If 128 data bytes are
written or the cassette is closed within about 30 seconds of the OPEN,
and no other serial bus I/0 is performed, then there is no problem.
However, if those conditions are not met, some noise will be written
to the tape prior to the first record and an error will occur when
that tape file is read later. If lengthy delays are anticipated
befween the time the cassette file is npened and the time that the
first cassette record (128 data bytes) is written, then a dummy record
should be written as part of the file; typically 128 bytes of some
infnocuous data would be writtem, such as all zevos: all %FFs, or all
blanks (%20).

The system sometimes emits whistling noises after cassette I/0 has
otcurred. The sound can be eliminated by storing $03 to SKCTL LD20F1,
thus bring POKEY out of the two—tone (FSK) mode.
CLOSE
The CLOSE of a tape read stops the cassette motor.
The CLOSE of a tape write does the following:
Writes any remaining user data in the buffer to tape.

Writes an end-of-file record.
Stops the cassette motor.

OPERATING SYSTEM CO016555 —— Section O
73

GET CHARACTERS and GET RECORD
The Handler returns data in the following format:
7 0
Rt e e e S
{ data byte H
B e e e S
PUT CHARACTERS and PUT RECORD

The Handler accepts data in the following format:

7 0
e e e N ot
H data byte {
b — e —

The Handler attaches no significance to the data bytes
writfen, a value of $9B (EOL) causes no special action.

GET STATUS

The Handler does no more than set the status ton 306i.

Theary of Opevation

The Cassette Handler writes and reads all data in fixed-length records
of the format shown below:

e o e b —
i01 10Ot 0 11 Speed measuvement bytes.
e e e aat
101 031 01 014

St S L L o o e

i control byte |

i e ek Tt T T e

H 128 i

= data =

H bytes H

e R T e e TC Tt

H checksum H (Managed by 510, not the
F—F—F =t Handler.)

Figure 5-9 Cassette Handler Record Format

OPERATING SYSTEM CO16555 —- Section 5
74

The control byte contains one of three valuss:
0 $FC indicates the record is a full data recard (128 bytes).

o %FA indicates the record is a partially full data record; you
supplied fewer than 128 bytes to the record. This case can
occur only in the record prior to the end-of-file. The number
of vser-supplied data bytes in the record is contained in the
byte prior to the checksum.

o S$FE indicates the vrecord is an End—of file record; the data
portion is all zeroes feor an end—of—+file record.

The SI0 routine generates and checks the checksum. It is part of the

tepe record, but it is not contained in the Handler ‘s record buffer
CASBUF L[O3FD1. : -

The processing of the speed-measurement bytes during cassette reading
is discussed in Appendix L, DB1-D7.

File Structure

The Cassette Handler writes a file to the cassatte device with a file
structure that is totally imposed by the Handler (soft format) A file
consists of the following three elements:

0 A 20-sscond leader o0f mark tone.
0 Ang number of data—-record frames.

0 An end-of-file frame.

The casseftte~data record frames are formatted as shown bslow:

frame = pre-vecord write tone (PRWT},
+ data reacord,
+ post record gap (PRG}

The nondata portions of a frame have characteristics that are
dependent upon the write OPEN mode, i.e. continuous or
start/stop.

Stop/start PRWT = 3 seconds of mark tone.
Continvous PRWT = .25 secend of mark tone.

Stop/start PRG = yp to 1 second of unknown tones.
Continuwous PRE = from O to n seconds of gnknown tones, whers
n is dependent upon your program timing.

The intér—record gap (IRG) betmeen.ang twe records consists of

the PRG of the first record followed by the PRWT of the second
Tecord. i .

OPERATING SYSTEM CO146555 —— Section 5
79

Printer Handler (P:}

The Printer device is a write—only device with a Handler that
supports the following CID functions:

OPEN
CLOSE
PUT CHARACTERS
PUT RECORE
GET STATUS
The Printer Handler can produce the following errer statuses:

$8A-F0 —~— SI10 error set (see Appendix C).

The Printer Handler is one of the resident handlers. and
therefore has a set of device vectors starting at location E430.

CID Function Pescriptions

The device-specific characteristics of the standard CIO functions
are detailed below:

OPEN

The device name is P. The Handler ignares any device number and
filename specification, if included.

CLOGE

The Handler writes any data remaining in its buffer to the
printer device, with trailing blanks to £ill out the line.

PUT CHARACTERS and PUT RECORD

The Handler accepts print data in the following format:

7 Q
B L ot ot T S e S
H ATASCII i
B et T A s

The only ATABCII control code of any significance to the Handler
is the EOL character. The printer device ignores bi€t 7 of every
data byte and prints a sub set of the remaining 128 codes. (see
Appendix G for the printer character set),

The Handler supports the following print option:

OPERATING SYSTEM C014555 —— Section $
75

7 G

LDl Dol s e e e L

AUX2 i print mode H
Lt e O Ol e e L

Where: $4E (N) selects normal printing (40 characters per line).
$33 (8) selects sideways printing (29 characters per line).
$37 (W) selects wide printing {(not supparted by printer

device}.

Any other value (including G0} is treated as a normal (N)
print select, without producing an error status.

GET STATUS

The Handler obtains a 4-byte status from the printer
controller and puts it in system location DVSTAT [OZEAJ. The
format of the status bytes is shown below:

B ot St 1t Mo

i command stat. | DVETAT + ©
N R e T R e 8

I AUX2 of prev. | + 1
L U SRR W S G ey

i timeaout i + 2
S T TR SR SRR A S

H (unusead!} ; < E)
e e s e e e e e o

The command status contains the following status bits and
conditian indications:

bit O: an invalid command frame was received.
bit 1: an invalid data frame was received.
bit 7: an intelligent controller (normally = 0).

The next byte contains the AUX2 value #rom the previous operation.

The timeout byte contains a controller provided maximum timeout
value {(in seconds}.

Theory of Operatian

The ATARI B20LTM] 40-Column Printer is & line-at-a—time printer rather
than a character—at—a-time printer, so your data must be buffered by
the Handler and sent to the device in records corresponding to one
print line (40 characters for normal, 29 characters for sideways).

OPERATING GYSETEM CO145%% ~— Section S
77

The printer device does nat attach any significance to the EOL
character, so the Handler does the appropriate blamk fill
whenever it sees an EOL.

Disk File Manager (D:)

The OS supports four unigque File Management Subsystems at the
time of this writing. VYersion IA is the original version.

Version IB is a slightly modified version of IA and ig the one
described in this document. Most of this discussion applies as
well to Version II, that handles a double—-densify diskette (720
25&6-byte sectors) in addition to the single—densify diskette (720
128-byte sectors). Version III has all new file/directory/map
structures and can possibly contain changes to your interface

as well.

The File Management Subsystem includes a disk—bootable
(RAM-resident? Disk File Manager (DFM) that maintains a
collaction of named files on diskettes. Up to 4 disk drives

(D1: through B4:.} cam be accessed, and up te &4 files per
diskette can be acrcessed. The system diskettes supplied by ATARI
allow a single disk drive (D1) and up to 3 OPEN files. but

you can altar these numbers as descrihed lafer in

this sectian.

The Disk File Manager supports the following CIO functions:

OPEN FILE

OPEN DIRECTORY
CLOSE

GET CHARACTERS
GET RECORD

PUT CHARACTERS
PUT RECORD

GET STATUS

NOTE
POINT
LOCK
UNLGCHK
DELETE
RENAME
FORMAT

OPERATING SYSTEM CO16555 ~- Section D
78

The Disk File Manager can produce the fellowing error statuses:

$03 ~— Last data from file (EDF on next read).
$82 —— end—of-+file.

$84-20 —— SJI0 error set (see Appendix C}.

$AC — Drive number specification error.

$AL —— No sector buffer available (too many open files).
$A2 — Digk full,

$A3 —~ Fatal 1/4 errvor in directory or bitmap.
$A%2 —— Internal file # mismatch {(structural problem}.

$A5 ~— File name specification error.
$446 —— Point information in error.
$A7 —— File locked to this cperation.
$A8 —— Special command invalid.

$A%7 —— Directory full (&4 files).

$4A —— File not found.
$AB ~- Point invalid (file not OPENed for update).

CI0 Function Descriptiens

The device-specific characteristics of the standard CID functions
are detailed below:

OPEN FILE

The device name is D. Up te four disk drives can be accessed (DI
through D4}, The disk filename can be from 1 to 8 characters in
length with an optional 1- to 3-character extension.

The OPEN FILE command supports the following options:

7 0

B T L T 3

AUX1 i iWiR! 1Al
s et

Where: W and R are the direction bits.
WR = 00 is invalid
01 indicates OPEN for read only,
10 indicatss OPEN for write only.
i1 indicates OPEN for read/write (update).

A = 1 indicates appended output when W = 1.

You may use these following valid AUX!I optians:

OPERATING SYSTEM CD16555 —— Section 5

OPEN Input (AUXI = $04)
The indicated File
are used to search
an error status is

is opened for
for the first
returned: and

OPEN Output (AUX1 = $08)

The indicated file is opened for
byte of the file, if the file is

characters are wsed to search for the first match,

already exists,
the named file as a new file,
it will be created.

It

input. Any wild-card characters
match. If the file is not found.
no file will be opened.

output starting with the first
not locked. Any wiid-card
I# the file

the existing file will be deletad bafore opening

the file does not already exist,

A file opened for output will not appear in the directory until

it has been closed. If an output

file is not properly closed,

some or all of the sectors that were acquired for it can be lost

uyntil the disk is reformatted.

A file that is opened for oufput
for any other access,

DPEN Append (AUX1 = %09}

The indicated file is opened for

can not be opened concurrently

output starting with the byte

after the last byte of the existing file (that must already

exist),

if the file is not locksad.

adny wild—-card characters are

used to search for the #irst match.

I#+ a file apened for append is not properly closed.

data will be lost.

the appended

The existing file will remain unmodified and

some or all of the sectors that were acquired for the appended
portion can be lost until the diskette is reformatted.

OPEN Update (AUX1 = %0}
The indicated ¥file
update provided it
used to search for

intermixed as desired.

I+ a file opened for update is not properly closed.

worth of information can be lost
update can not be extended.

and POINY operations are all valid.

{that must already exist} will be opened for
is not locked.
the first match.

Any wild-card characters are
and can be

4 sector’s
to the #ile. A file opened for

OPERATING SYSTEM CO146555 — Section I

80

Device/Filename Specitication

The Handler expects to find a device/filgname specification of
the following form:

BE<number>]: <filename><EQL>

where:
‘numberl 1= 1121314
<filename’ = E<primary>Il. f{extension>IJ<terminator>

<primary> .= an uppercase alpha character followed by O to 7
alphanumeric characters. I$¢ the primary name is
less than 8 characters, it will be padded with

blanks:i if it is greater than 8 characters, the
extra characters will be ignored.

<extension> = Zero to 3 alphanumeric chavacters. If the
e¢xtension name is missing or less than 3
characters, it will be padded with blanks; if
it is greater than 3 characters:, the extra
characters will be ignored.

<terminatar> ::= <EOL>!<blank>

Figure 5-10 Davice/Filename Syntax

The following are all valid device/filenames for the diskette:

Di: GAME. ERC

D: MaNUALSL
D:. WHY
D3: FILE.

D4: BRIDBGE. 002

Filename Wildcarding

The filename specification can be further generalized to include.
the use af the “wild-card"” characters # and 7* These wildcard
characters allow portions of the primary and/or exftension to be
abbreviated as follows:

The 7 eharacter in the specification allows any f£ilename
character at that position to produce a “"match. * For example, WH?

will match files named WHO., WHY. WH4, etc.. bBut not a file named
WHAT,

OPERATING SYBTEM CD16553 ~- Section 5

81

The * characfer causes the remainder of the primary or extension
field in that it is used to be effectively padded with 7
characters. For gxample, WH# will match WHO, WHEN, WHATEVER, etc.

Some valid uses of wild-card specifications are shown below:

#, SRC Files having an extension a# SRC.

BASIC. # Files named BASIC with any sxtansion.

#, # All files.

Mt P Files beginning with H and having a O or 1

character extension.

If wildcarding is used with an DPEN FILE command. the first file
found (if any} that meets the specification will be the one {(and
only one) cocpened.

OPEN DIRECTORY

The OPEN DIRECTORY command allows you read directory

information for the selected filename(s}:, using normal GET
CHARACTERS or GET RECORD commands. The information read will be
formatted as ATASCII records:, suitable for printing, as shoun
below. Wildcarding can be used to obtain information for multiple
files or the entire diskette.

The OPEN DIRECTORY command uses the same CID parameters as a standard
OPEN FILE command:

COMMAND BYTE = $03
BUFFER ADDRESS = pointer to devicae/filename specification.
AUX1 = 04

After the directory is opened:, a record will be returned to the
taller for each ¥file that matches the OPEN specification. The
racord, that contains only ATASCII characters, is formatted as
shown below:

i
1 23454667B201 23483678
e v e e o e o s i e e e o e
vimary name | ext ibicountief
o o o e rm i o i i e e o e erm e o e

+ T+

OPERATING SYSTEM C0O14555 —-— Bection o
82

Where: s = # or ¢ /, with # indicating file locked.
b = blank.
primary name = left—justitied name with blank £ill.
ext = left~justified extension with blank #ill.
b = blank.

count = number of sectors comprising the file.
e = EOL (9B},

After the last filename match record is returned:, an additional
record is returnad. This record indicates the number of unused

sectors available on the diskette. The farmat far this record is shown
below:

i
123458345789 0C1i234%5 6 7
o T T P St St T SPUSE S T S -t
icount! F R E E SECTOR S|9c
B ol s Lot T ST ISR G ST Sr RT W T ST e 4

Where: caunt = the number of unused sectors on the diskette.
e = EOL (398},

The EOF statuses (%303 and $88) are returnsd as in a normal data
file when the last directory record is read.

The opening of another diskette file while the divectory read is

open will cause subsequent directory reads to malfunction, so
care must be taken to avoid this situation.

CLOSE

Upon closing a file read, the Handler releases all internal
resources being used to support that file,

Upon closing a file write, the Handler:

0 wrifes any residual data from its file buffer for that file
to the diskette.

¢ updates the'directarg and allocation map for the associated
diskette.

0 releases all internal resources being utilized to support
that file

GET CHARACTERS and GET RECORD

Characters are read from the diskette and passed to CIO as a raw
data stream. Mone of the ATASCII control characters have any

special significance. A status of $88 is returned if an attempt
is made to read past the last byte of a filse.

OPERATING SYSTEM CDi6555 ~— Section S
83

PUT CHARACTERS and PUT RECORD

Characters are ocbtained from CID and written to the diskette as a raw

data stream. None of the ATASCII control characters have any special
significance.

GET STATUS

The indicated file is checked and one of the following status
byte values is returned in ICSTA and register VY:

$01 —— File found and unlocked.
$A7 ~— Filg locked.
$AA —~ File not found.

Special CIO Functions

The DFM supports a number of SPECIAL commands, that are device
specific. These are explained in the paragraphs that follow:

NOTE (COMMAND BYTE = 325)

This command returns to the caller the exact diskette location of

the next byte to be read or written, in the variables shown
balaow:

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXDS =

relative sector displacement o byte (0-124).

POINT (COMMAND BYTE = $24)

This command allows you to specify the exact diskette location of
the next byte to be read or written. In order to use this commmand,
the file must have been opened with the "update" cption.

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXS =

relative sector displacement to byte (0-124}).

OPERATING SYSTEM C016555 ~~ Section 5
84

LOCHK

This command alleocws you to prevent write access to any

number of named files. lLocked files can nat be deletad, renamed,
nor opened for ocutput unless they are first wnlocked., Locking a
file that is already locked is a valid operation. The Handler
expacts a device/filename specification: then all occurrences of
the filename specified will be locked, using the wild-card rules.

You set up these following TOCB parameters prior to
talling CIO:

COMMAND BYTE = %23
BUFFER ADDRESS = pgointer to device/filename specification.

After a LOCK operation, the following IOCE parameter will have
been altered:

STATUS = resuylt of LLOCK operation; see Appendix B for a lis¢
of possible status codes.

UNLOCHK

This command allows you to remove the lock status af any

number of named files. Unlecking a file that is not locked is a
valid operation. The Handler expects a devices+ilename
specification; then all occurrences of the filename specified
will be unlocked, using the wild-card rules.

You set up these following IOCE parameters prior to
calling CIO:

COMMAND BYTE = 324
BUFFER ADDRESS = pointer to device/filename specification.

After an UNLOCK operation, the following IOCE parameter will have been
altered:

STATUS = rasult of UNLOCK eoperation: see Appendix B for a
list of possible status codes.

DELETE

This command allows you to delete any number of unlocked

named files from the directory of the selected diskeftte and to
deallorate the diskette space used by the files involved. The
Handler expects a device/filename specification; then all
occurences of the filename specified will be deleted, using the
wild-card rules. '

OPERATING SYSTEM C0O16555 —— Section & ;
8

You set up these following IOCB parameters prior fo
calling CIG:

COMMAND BYTE = $21
BUFFER ADDRESS = pointer to device/filename specification.

After a DELETE operation, the following I1OCB parameter will have
been altered:

STATUS = vesult of DELETE operation: see Appendix B for a list of
possible status codes,

RENAME

This command allows you to change the filenames of any
number of unlocked files on a single diskette. The Handler
expects to find a device/filename specification that follows:

“<device spec>:<filename spec> <{Ffilename specrLEDOL>

All coccurrences of the first filename will be replaced with the
second filename: using the wild-card rules. No protection is
provided against forming duplicate names. Once formed, duplicate
names cannot be separately renamed ar deleted: however, an OPEN
FILE command will always select the first file found that matches
the filename specification, sp that file will always be
accessible. The RENAME command does not alter the content of the
files involved, merely the name in the directory.

Examples of some valid RENAME name specifications are shown
belaw:

D1:#. 8SRC, #. TXT
D: TEMP, FDATA
D2: F#, F+. OLD

You set up these following IOCB paramsters prier to
calling CID:

COMMAND BYTE = %20
BUFFER ADDRESS = pointer to devices/filename specification.

After a RENAME operation. the following IOCE parametesr will have
heen alterad:

STATUS = result of RENAME operation; ses Appendix B for a
list of possible status codes.

OPERATING SYSTEM CO16555 —— Gection 5
84

FORMAT

Soft-sector diskettes must be formatted before they can store
data. The FORMAT command allews gou to physically format a
diskette. The physical formatting process writes a new copy of
every sector on the gsoft-sectored diskette, with the data portion
of each sector containing all zeros. The FORMAT process creates
an "empty" non system diskette. UWhen the formatfing process is
complete, the FMS creates an initial Volume Table of Contents
(VTOC? and an initial File Directory. The boot sector (#1i}) is
permangntly redserved as part of ¢this process.

You set up these following IOCB parameters prior to
calling CI0:

COMMAND BYTE = $FE
BUFFER ADDRESS = pointer to device specification.

After a FORMAT operation, ¢the fellowing IOCE parameter will have
been altered:

STATUS = result of FORMAT operationi see Appendix B far a
list of possible status codes.

To create a system diskette, a copy of the boot file must then be
written fto sectors #Z-n. This is accomplished by writing the file
named DOS. 8YS. This is a name that is recognized bq the FME sven
though it is not in the directory initially.

Theory of fperation

The resident OS5 initiates the disk-boot process (see Section 10).
The 0S reads diskette sector #1 to memory and then transfers
control to the "boot continuation address® {(boot address + &).
The boot-continuation program contained in sector #1 then
continuves to laad fhe remainder of the File Management Subsystem
to memory using additional information contained in sector #i.
The File Management Subsystem loaded, will contain a Disk File
Manager .and opftionally, a Disk Utilities (DOS) package.

When the boot process is complete, the Disk File Manager will
allocate additional RAM for the creation of sector buffers.

Sector buffers are allocated based upon information in the boot
record as shown below:

Byte 9 = maximum number of open files; one buffer per (the
maximum value is 8).

Byte 10 = drive select bits: one buffer per (1-4 only).

OPERATING SYSTEM C0146555 —— Section 5

a7

The Disk File Manager will then insert the name D and the Handler
vector table address in the device table.

NOTE: There is a discrepancy between the Disk File Manager’s
numbering of diskette sectors (0-719) and the disk controller‘s
numbering of disketfe sectors (1-720)}; as a result, only sectors
i- 717 are used by the Disk File Manager.

The Disk File Manager uaés the Disk Handler to perform-all
diskette reads and writes; the DFM’'s function is to support and

maintain the directory/files/bitmap structures as described in the
following pages:

5 OPERATING SYSTEM C016555 —— Section 5
8

FMS Diskette Utilization

The map below shows the diskette sector vtilization for a

standard 720 sector diskette.

BOOT recerd

FMS BOOT
file
DOs. SYS

miae

User
File
Area

VTOC{nota 2)

File
Directory

User
File
ATea

N B A R e Tl Tk daik IR S

ynused

+
|
i
1

§ co foon ffomdonm | ve oo oam [oom g oma || a= o b

Sector
Sector
Sectar
Sectar
Sector
Bector
Sector

Sector

Sector

Sector

n+i

359

3460

341

368

719

720

Figure 5-11 File Management BSubsystem Diskette

Map

—

+- Note 1

==F

{$1567)
{($1468)
($16F)

($170)

{$2CF)

($2D0}

Sector Utilization

NOTE 1 — I+ the diskette is not a system diskette, then your

File Area starts at sector 2 and no space is reserved for the FMS
BOOT £ile. However, "DOS* (DOS. 8YS and DUP.SYS) may still be
written to a diskette that has already used sectors "2-N. "

NOTE 2 —— VTOC stands for VYolume Table of Contents.

DPERATING SYSTEM CO16555 —-— Bection 5

89

FME Boot Record Format

The FMS BOOT record (sector #1) is a special case of diskette—booted

software (gsee Section 10). The format for the FMS BOOT record is

shown below:

——+
boot flag = O |

TRECTR SR P

————

#*

sggtars = 1 !

-+
boat address H
»

JMP = $4B

boot Tead
continuvation
addross

max files = 3

drive bits = 1

alioc divc = 0O

boot image end

address + 1

boaot flag <> O

1

sector count

DOS. 8YS
starting
secftor number

A e —

e

Ih o e oo o em em em b b om oo o oy ey or e

code for sscond

-+
i
1

-+
i
[4
3
[
1
+
[
T

+
i

LS
]
L

+
[}
1

- -
]
1

-+
i
L]

+
]
3

+
]
]

+
]
]

+
]
i

-+
]
1

-+
1
)

phase of boot |

Figure 5—12 File Management Subsystem

0

Byte O

1

2

4

&

9 HNote
1¢ Note
i1 Nate
iI4 Note
1% Note

FMS
configuration
data

Boot Record Format

OPERATING SYSTEM CO16535 ~— Section 5

P

NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTE S

Byfte 7 specifies the maximum number of concurrently open
files to be supported. This value can range from I to 8.

Byte 10 specifies the specific disk drive numbers to be
supported using a bit encoding scheme as shown below;

76543210
R e e o

.*.
i 141312111 where a 1 indicates a selected drive.
F = o e e

Byte 11 specifies the buffer allocation dirvection, this
byte should squal O.

Byte 14 must be nonzero for the second phase of the boot
process to initiate. This €lag indicates that the file
DOS. SYS has been written to the diskette.

This byte is assigned as being the sector count for the
DOS. 8Y8 file. It is actually an wnused byte.

OPERATING SYSTEM C016553 ~— Section 5

1

Bocot Process Memory Map

The diagram below shows how the ‘boot sector (part of file
DOS. 8YS} and following sectors are loaded 4o memory as part of
the hoot pracess.

+ - + Memory address Q700
i data #rom boot ! H

= sector read by = i

i resident 0OS i 077C
+ — +

| data from rest | Q77D
i of DOS. 8YS | i

| read by the | |

= pragram in the = '

! boot sector. ! '

L5 1 i

+ = e e end of boot

Figure 5-13 File Management Subsystem Boot Process Memory Map

OPERATING SYSTEM CO14555 ~— Section 5
92

Volume Table of Contents

The format for the FMS volume table of contents (VTOC, sector
360} is shown in the diagram below:

i directory type | Byte O Note i
e +

! maximum {lo) ! i Nofte 2
+ sector # +

i = Q2C5 (hi) |

o em +

{ number of (lo) ! 3 Note 3
+ gsactars +

{ available (hi) !

e s +

Fom—— +

i : i0

= voluyme bit map =

1 1

+ —_— +

L H

F— +

Figure 5-14 File Management Subsystem Volume Table of Contents

The valume bit map organization location follows:

7 0

B s s S st ot S

i 112345 &6 71 Byte 10 of VTOC
e S e sl

g8 9 | i ii

? ? 99

B e

Figure 5-13 File Management Subsystem Volume Bit Map

At each map hit position, a
is in vse and a 1 indicates

NOTE i1 - The dirvectory type
NOTE 2 - The maximum sector

incorrectly sat to
number is actuslly

QG indicates the corresponding sector
that the sector is available.

byte must equal O
numbar is not used hecause it is

709 decimal. The true maximum sector
719 for the DFM.

OPERATING SYSTEM CO14535 —— Section O

3

NOTE 3 — The number of sectors available is initially set to 709
after a diskette is freshly formatted; this number is
ad justed as files are created and deleted to show the
number of sectors available. The sectors that are
initially reserved are 1 and 3&0-368.

File PDirectory Format

The FMS reserves eight sectors (341-3468) for a file directory.
Each sector containing directory informaftion for up to eight
files, thus providing for a maximum of &4 files for any volume.
The format of a single 16—-byte file entry is shown below:

+ - +

H flag byte H Byte O
o - +*

! sector {la} | i
+ count +

H {hi)

e +

! starting (lo} | 3
+ sector +

f number thi) |
e +*

H (1) ¢ 5
+ +

H 2y |

+ +

H {3 1

+ +

H file {4) i

+ +

H name (S5 |

+ +

H primary (&) |

+ +

H (7 |

+ +

i (8) |
e +

H file (1) | i3
+ +

H name (2) |

+ +

H extension (3) |

> - e

Figure 5—1& File Directory Format

Where the flag byte has the following bits .assigned:

OPERATING SYSTEM CD16555 —— Section 5
94

bit 7 = 1 if the file has been deleted.
bit & = 1 if the file is in use.

hit 5 = 1 if the file is locked.

bit 0 = 1 i# OPEN output.

The flag byte can take on the following values:

$00 = entry not yet used (no file).

$40 = entry in vuse (normal CLOSEd file).
$41 = entry in vuse (OPEN output file).

$60 = entry in use {locked file:.

$8C = entry available (prior file deleted).

Bector count is the number of sectors comprising the file.

FMS File Sector Format

The format of a sector in your data file is shown below:

7 o

F—F b —+

! data S

H H

I e e S e e s

t file & thi | +1295
F—b bbb — +
iforward pointer! +126
e e e g

ISt byte count | +1i27
R e

Figure 5-17 File Management Subsystem File Secter Format

The FMS uses the file # to verify #file integrity. The +ile #

is & redundant piece of information. The file number field
contains the value of the directory position of that file. If a
mismatch occurs between the file‘s directory position, and the
file number as contained in each sector. then the DFM will
generate the error %$A4.

The forward pointer field contains the 10-bit wvalue for the
diskette sector number of the next zector of the file. The
pointer equals zero for the last sector of a file.

The § bit indicates whether or not the sector is a "short sector"
(a sector containing fewer than 125 data bytes). 8 is equal to
1 when the sectoer is shart.

OPERATING SYSTEM CO1653%5 —— Section 9
23

The byte—count field contains the number of data bytes in the
sector,

Non-CIO0 1/0

Some portions of the I/0 subsystem are accessed independently of

the Central I/0 Utility (CI0); ¢this section discusses those
areas.

Resident Device Handler Vectars

All of the OS ROM rvasident device handlers can be accessed via
sets of vectors that are part of the 0S ROM. These vectors
increase the speed of I1/0 operations that wtilize fized device
assignments, such as outpuft to the Display Handler. For each

reésident Handler there is a set of vectors ardered as shown
below:

+ o

+- OPEN -+ +0
e +

+- CLOSE = +2
e e e e e e e e +

+- GET BYTE -+ +4
o -+

+- PUT BYTE -+ +4
+ +

+~ GET BTATUS -+ +8
+ s)

+- BPECIAL -+ +10
e o e e e i e +

e JMP = +12
+- INIT -t

+ et

+— SPARE ~h

+- BYTE rh

+ —— — +

Figure 5-18 Resident Device Handler Vectors

See Section 9 for a detailed description of the data interface
for each of these Handler entry points.

Each of the vectors contains the address (lo,hi) of the Handler
entry point minus 1. A technique similar to the one shown below
is required to access the desired vroutines:

ODPERATING SYSTEM (016555 —-- Section S5
L7

VTBASE=%E4DC i BASE OF VECTOR TABLE.

LDX #xx i OFFSET TO DESIRED ROUTINE.
LbDaA data
JER GOVEC i SEND PATA TGO ROUTINE.
LDX #yy i OFFSET TO DIFFERENT ROUTINE.
JER GOVEC i GET DAYA FROM ROUTINE.
STA data
GOVEC TAY i SAVE REGISTER A.
LA VTBASE+1, X i ADDRESS MEB TO STACK.
PHA
LDA VTIBASE, X i ADDRESS L5B TO STACK.
PHA
TYA i RESTORE REGISTER A.
RTS i JUMP TO ROUTINE.

The JMP INIT slet in each set of vectors jumps to the Handler
initialization entry (not minus 1},

The base address of fthe vector set for each of the resident
handlers is shown below:

Screen Editor (E;:) E400,
Display Handler (S:) E410.
Keybaoard Handler {(K:? E420.
Printer Handler (P:} £430.
Cassette Handler ({:3 E440.

The resident diskette Handler is not CIO-compatible, so its
interface does naot use a vectar set.

Resident Diskette Handler

The resident Diskette Handler (not to be ronfused with the Disk
File Manager) is responsible for all physical accesses to the
disketfte. The unit of data transfer for this Handler is a single
diskette sector containing 128 data bytes.

Communication between you and the Diskette Handler is

effected using the system’s Device Control Block (DCB), ¢that is
also used for Handler/SIO communication (see Section 9?). The DCB
is 12 bytes long. Some bytes are user-alterable and some are for
use by the Diskeftte Handler and/or the Serial I/0 Utility (S10).
You supply the required DCB parameters and then do 3 JER

DSKINYV [E4531].

OPERATING SYSTEM 016555 ~- Section 5
97

Each of the DCB bytes will now be described, and the
system—equate file name for each will be given.
SERIAL. BUS ID -- DDEVIC {03001

The Diskette Handler sets up this byte to contain the Serial Bus ID
for the drive to be accessed. It is not user-—-alterable.

DEVICE NUMBER —— DUNIT [03013]

You set up this byte to tontain the disk drive number to be
accessed (1 - 43,

COMMAND BYTE —— DCOMND [0302]

You set up this byte to contain the disk device command to

be performed.

STATUS BYTE —- DSTATS [03031

This byte conftains the status of the command upon return to the
caller. See Appendix C for a list of the possible status codes.
BUFFER ADDRESS —— DBUFLDO (03041 and DBUFHI [0303]

This 2-byte pointer contains the address of the source or
destination of the diskette sector data. You need not supply

an address for the disk status command. The Disk Handler will
abtain the status and insert the address of the sftatus buffer
inte this field.

DISK TIMEOUT VALUE -- DTIMLO L[C3041

The Handler supplies this timeocwt value (in whole seconds) for
vse by SIO.

BYTE COUNT —— DBYTLO [03081 and DBYTHI [030%1

This 2-byte counter indicates the number of bytes transferred to
or f#rom the disk as a result of the most recent command, and 1is
set up by the Handler.

SECTOR NUMBER —-— DAUX1 LQ30A]1 and DAUXZ2 L[03CB1]

This 2-byte number specifies the diskette sector number (1 ~ 720)
to read or write. DAUX1 contains the least significant byte., and

OPERATING SYSTEM CO14555 —— Bection 5
78

DAUX2 contains the most significant byte.

Diskette Handler Commands
Thers are five commands supported by the Diskette Handler:
GET SECTOR (PUT SECTOR ——### not supported by current handler ##3)
PUT SECTOR WITH VERIFY

STATUS REQUEST
FORMAT DISBK

GET SECTOR (Command byte = %52}

The Handler reads the specified sector to your buffer and returns the
operation status. You set the following DCB parameters prior to
calling the Diskette Handler:

COMMAND BYTE = #352.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to your 128-byte buffer.

SECTOR NUMBER = gector number to read.

Upon return from the sector, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only
parameter of interest to you, however.

PUT SECTOR {(Command byte = $50)

##% Not supported by curvent Handler %
(But can be accessed through SI0 directly. }

The Handler writes the specified sector from your buffer and returns
the operation status. You set the following DCB parameters prior to
talling the Diskette Handler:

COMMAND BYTE = %50.

DEVICE NUMBER = disk drive number (i-4}.

BUFFER ADDRESS = pointer to your 128 byte bhuffer.

SECTOR NUMBER = sector number to write.

Upon veturn from the operation: several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only one of
interest you. however.

OPERATING SYSTEM CD14555 —— Section 5
99

PUT SECTOR WITH VERIFY (Command Byte = $57)

The Handler writes ¢the specified sector from your buffer

and returns the operation status. This command differs from PUT
SECTOR in that the diskette conéroller reads the sector data after
writing to verify the write operation. Aside from the COMMAND
BYTE value. the calling sequence is identical to PUT SECTOR.

STATUS REQUEST (Command byte = $353)

The Handler obtains a 4-byte status from the diskette controller and
puts it in system location DVSTAT [O2EA]. The operation status
format is shown below:

7 0O
LS T S ot T e Tt
i command stat. ! DVSTAT + ¢
F—F—F = =
! hardware stat. § + 1
B o S QA B &

H timeout H + 2
B e A e 4
H {unused) H + 3
=t =t ==

Figure 5-1%9. DVSTAT 40-Byte Operation Status Format

The command status contains the following status bits:

Bit O = 1 indicates an invalid command frame was received.
Bit 1 =1 indicates an invalid data frame was received.
Bit 2 = 1 indicates that a PUT operation was unsuccessful.
Bit 3 = i indicates that the diskette is write protacted.
Bit 4 = 1 indicates active/standby.

The hardware status byte contains the status register of the
INS1771-1 Floppy Diskette Contreller chip used in the diskette
controller. See the documentation for that chip te obtain
information relating to the meaning of each bit in the byte.

The timeout byte containg a controller—provided maximum timeout
value (in seconds) to be used by the Handler.

You set the following DCB parameters prior to calling
the Diskette Handler:

COMMAND BEYTE = $53.
DEVICE MUMBER = disk drive number (1-4).

Upon return from the operation, saveral of the other DCB parameters
will have heen altered. The STATUS BYTE will be the only one of

OPERATING SYSTEM CO148555 —— Section 3
100

interest to you, however,

FORMAT DISK (Command Byte = $21)

The Handler commands the diskette controller to format the entire
diskette and then to verify it. All bad sector numbers {(up to a
maximum of 63! are returned and put in the supplied buffer,
followed by two bytes of all 1‘s ($FFFF). You set up the
following DCB parameters prior to calling the Diskette Handler:

COMMAND BYTE = #$21.
DEVICE MNUMBER = disk drive number (1-4}.
BUFFER ADDRESS = pointer to your 12B-byte buffer.
Upon return, you might be interested in the following DCB parameters:

STATUS BYTE = status of eoperation.

BYTE COUNT = number of bytes of bad sector infarmation in
your buffer, not including the SFFFF terminator. If there
are¢ no bad sectors, the count will equal zero.

Serial Bus I/0

Input/Qutput to devices other than the keybpard, the screen, and
the ATARI Computer controller port devicaes, must utilize the
Berial I/0 bus. This bus contains data: tontrol, and clock lines
to be used to allow the computer to communicate with external
devices on this “"daisychained" bus. Every device on the bus has
a8 unique identifier and will respond only when directly
addressed.

The resident system provides a Serial I/0 Utility (810), that
provides a standardized high—level program interface to the bus.
EI0 is utilized by the resident Diskette, Printer, and Cassette
handlers, and is intended fto be used by nanresident handlers {(see
Section 9}, or by applications, as well. For a detailed
description of the program/SI0 interface and for a detailed bus
specification refer to Section 9.

OPERATING SYSTEM CO14555 -- Section 5
101

& INTERRUPT PROCESSING

Section & describes system actions for the various interrupt
cavsing events, defines the many RAM vectors and provides
recommended procedures for dealing with intervupts.

The 6502 microcomputer processes three general interrupt types:
chip~reset, nonmaskable interrupts (NMI) and maskable interrupts
(IRG}). The IRG interrupt type can be enabled and disabled using
tha 6502 CL.I and SEI instructions. The NMI type cannot be
disabled at the processor level; but the NMI interrupts other
than L[SYSTEM. RESET] key tan be disabled at the ANTIC chip.

The system events that can cause interrupts are listed below:
chip~reset — power-up

NMI ~ Display list interrupt (unused by 0OS)
vertical-blank (S0/6C H2z)
ESYSTEM. RESET] key

IRG — Serial bus output ready
Serial bus ovtput complete
Serial bus input ready
Serial bus proceed line (unused by system?
SBarial bus interrupt line (unused by system)
POKEY timers 1. 2 and 4
Keyboard key
[LBREAK] key
&£502 BRK instruction {(unused by 0S)

Figure b6—-1 List of System—Interrupt Events

OPERATING SYSTEM CO1&6555 —— Section &
102

The chip~reset interrupt is vectored via location FFFC to E477,
where a JMP vectar to the power—up routine is located. All NMI
interrupts are vectored via location FFFA to the NMI interrupt
service routine at E7B4, and all IRG interrupts are vectored
via location FFFE to the IRG interrupt service routine at E&F3;
at that point the cause of the inferrupt must be determined by
a series of tests. For some of the events there are built in
monitor actions and for cther events the correspoending
interrupts are disabled or ignored. The system provides RAM
vectors so that¢ you can infercept interrupts when

necessary.

CHIP-RESET

The OS5 generates chip-resef in responses to a power—up condition.
The system is completely initialized (see Section 7).

NONMASKABLE INTERRUPTS

When an NMI interrupt occurs, control is fransferred through

the ROM vector divectly to the system NMI inferrupt service
routine, A cavse far the interrupt is determined by s2xamining
hardware register NMIST [R40OF]. The MMI makes a jump %through the
glaobal RAM vector VDSLST [0200] if a display list interrupt is
pending. The 08 does not use display list interrupts, so VDRSLST
is initialized to point to an RT] instruction. and you must not
thange i{ before VDS ST generates a display interrupt.

If the interrupt is not a display—list interrupt, then a test is
made to see if it is a {SYSTEM RESET] key interrupft. If so, then a
Jump is made to the system reset initialization routine (see Section
7 for details of system reset initialization},

I# the interrupt is neither a display list¢ interrupt nar a
LSYSTEM. RESET] key interrupt; then it is assumed to be a

veartical-blank (VBLANK) infterrupt, and the fallowing actions
OECUT:

Registers A.X and Y are pushed to the stack.
The interrupt request is cleared (NMIRES L[D40F1).

A jump is made through the "immediate® vertical-blank global
RAM vector WVWBLKI (02221 that normally points to the Stage i
VBLANK processor,

The following actions occur assuming that you have not changed VVBLKI.

OPERATING SYSTEM CO16555% —— Section &
103

The stage ! VBLANK processor is executed.

The OS5 tests to see if a critical code section has been
intervupted., If ¢o; then all registers are restored, angd an
RTI ingtruction returns from the interrupt to the gritical
section. A critical section is determined by examining %$he
CRITIC flag [0Q42]1, and the processor I bit. If either are
set, €then the interrupted section is assumed to be critical.

I+ the interrupt was not from a critical ssction, then the
stage 2 VBLANK processor is executed.

The 0OS then Jumps through the "deferred" vertical-blank
global RAM vaector VYBLKD £02241. that normally points to the
VBLANK exit rovtine.

The following actions occur assuming that you have not changed VYVBLKD,

o The 565502 A/ X and Y registers are rvestored.

o An RTI instruction is_executed.

NOTE: You can alter the deferred and immediate

VBLANK RAM vectors, buf still enable normal system pracesses; orT
restore original vecters without having te save them. The
instruction at E45F is a JMP to the stage 1 VBLANK processor; the
address at [E440,2]1 is the value normally found in WWBLKI. The
instruction at E462 is a JMP to the VBLANK exit routine; the
address at [E463.21 is the value normally found in VBLKD. These
ROM wvectors to stage 1 VBLANK protessor and to the VBLANK exit
routine will accomplish your goal.

NOTE: Every VBLANK interrupt jumps through vector VVBLKI. Only

VBLANK interrupts from noncritical code sections jump through
vector VVBLKD.

Stage 1 VBLANK Process

The following stage I VBLANK processing is performed at every
VBLANK interrupt:

The stage 1 VBLANK process increments the 3-byte frame
counter RTCLOK E£0012-0Ci4]; RTCLOK+0O is the MSB and RTCLOK+2
is the LSB. This counter wraps to zero when it overflows
(every 77 hours or so), and continues counting.

The Afttract mode variables are processed (sees Appendix L.
B10-12}, '

The stage I VBLANK process decrements the System Timey 1
CDTMVL [0218,21 if it is nonzero;, if the timer goes from

OPERATING SYSTEM C016555 —— Section &
104

nonzeros to zere then an indirect JER is performed via CDTMAL
£02245, 21.

Stage 2 VBLANK Process

The stage 2 VBLANK processing performs the following for those
VBLANK interrupts that do not interrupt critical sections:

The stage 2 VBLAMK preocess clears the &502 precessor I bit.
This enables the IRG interrupts.

The stage 2 YBLANK process updates various hardware
registers with data from the OS data base. as shown below:

Bata Base Hardware Reason for Update
Item Register

SDLETH f02311 DLISTH C[D4G31 Display list start
SDLSTL £02307 DLISTL (R402]

SDMCTL [022F1 DMACTL C[D40C1]

CHRAS L02F41 CHBASE [D40%)]

CHACT L[02F31 CHACTL. £D4011]

GPRIOR L026F] PRIOR ([DOiB1]

COLORO L[02C41] COLPFO {DO1&] Attract mode.
COLORT [O2C5] COLPF1 [DQ171]

COLOR2 EO2C61] COLPF2 L[DC1B]

COLERE LG2C71 COLPF3 LDOi9]

COLOR4 L[02C81] COLBK [DGCiAIl

PCOLRO L02C01 COLPMO LDCiZ21

PCOLRI fG2C11 coLPMl (RO131

PCOLRZ £02C21 COLPMZ2 LDCi4]

PCOLR3 f02C33 COLPM3 [DC161

Canstant = 8 CONSOL LDOIF] Console speaker aoféf.

The stage 2 VBLANK process decrements the System Timer 2
CDTMV2 LO2iA,2] if it is nonzevo; if the timer goes from
nonzero te zero, then an indirect JSR is performed
through CDTMAZ (0228, 21.

The stage 2 VBLAMK process decrements System Timers 3, 4 and
S i$# they are nonzeroc: the corresponding flags are set to
zers for each timer that changes from nonzera to zero.

UPERATING SYSTEM CO16555 ~— Section &

105

104

Timer Timer Value Timer Flag

3 CDTMVE L[021C¢. 21 CDTMF3 f022A,11
4 ChTMVE L[O21E, 21 CDTMF4 £022C, 11
= CDTMVS L0220, 21 CDTMFS (022E.12

A character is read from the POKEY keyboard register and
stored in CH [02FC], if auto rTepeat is active.

The stage 2 VBLANK process decrements the keyboard debounce
counter if it is not equal to zero, and if no key is
pressed.

Thae stage 2 VYBLANK process precesses the keyboard auto
repeat (see Appendix L, EB).

The stage 2 VBLANK process reads game controller data from
the hardware to the RAM data base, as shown below:

Hardware Data Base Function
Register Item
PORTA L£D30031 STICKO [0278] Joysticks and

STICKL [027%9]
PTRIGO [027C3 Paddle Controllers
PTRIGI [627D1
PTRIG2 LG27E]
PTRIG3 [G27F3
PORTE ED3011] STICK2 LG27A3
STICK3 LO27B3
PTRIGA L[02803]
PTRIGS L0Q281]
PTRIGSE [£0282)]
PTRIG7 [02831

POT ¢ L[D2001 PADDLO [0270] Paddle Controllers
POT 1 E£D201] PADDL.Y [O2713
POT 2 (D202] PADDL2 (0272}
POT 3 L[B2031 PARDL3 (02731
POT 4 [D2041 PADRLA {02743
POT S ED2051 PADDLS [0275]
POT & L[D20613 PADDLE 02761
POT 7 {D2071 PADDL7 E£02771
TRIGO [DOOL] STRIGO [O=284] Joystick triggers.
TRIGT [DOO2] STRIG1 [0=2851
TRIGZ (DOG3] STRIGZ L[02841
TRIG3 ([DGC4] STRIG3 £02871

OPERATING SYSTEM CD1&60355 —— Section &

MASKABLE INTERRUPTS

An IRG interrupt causes control to be transferred through the
immediate IRG global RAM vector VIMIRG [02i61. Ordinarily this

vector points to the system IRG Handler. The Handler performs
these following actions:

The IRG Handler determines a ctause for the interrupt by

examining the IRQST £D20EY regisfter and the PJA sfatus

regisfters PACTL [D3023 and PBCTL L[D303]. The interrupt status bit
is cleared when it is found. One inferrupt event is cleared and
processed for each interrupt—-service entry. If multiple IRGs are
pending, then a separate interrupt will be generated for each
pending IRG, until all are serviced.

The system IRG interrupt service routine deals with each of the
possible IRG cauvsing events, in the following ways:

a The &502 A register is pushed te the stack.

0 If the interrupt is due to serial I/0 bus output ready.
then clear the interrupt and jump through global RAM
vector VSEROR L[020C1.

o If the interrupt is due fto gerial 1/0 bus input ready.
then clear the infterrupt and jump through global RAM
vector VBERIN C[O20A].

o If the interrupt is due te serial I/0 bus output
complete, then clear the interrupt and jump through
global RAM vector VSEROC L[O20E].

o If the interrupt is due to POKEY timer #1. then clear the
interrupt and jump through global RAM vector VTIMR! [0210].

o If the inferrupt is due toc POKEY timer #2, then clear the
interrupt and jump through global RAM vector VTIMR2 L[0212].

o I# the intarrupt is due to POKEY fimer #4, then clear the
interrupt. The service routineg contains a bug, and falls
into the faollowing test.

o If pressing a keyboard key caused the interrupt (other
than [BREAK], [STARTJI, C[OPTION], or L{SELECTI}; then clear the
interrupt and jump through global RAM vector VKEYHBD £02081].

s} If pressing the [BREAKI key caused the interrupt; then
clear the interrupt. Set the BREAK flag BRKKEY [00111 to
zero, proceed to clear the following:

Start/stop flag SSFLAG L[Q2FF]

Cursor inhibit flag CRSINH [0O2FO01]
Attract mode #lag ATRACT [004D1

OPERATING SYSTEM C0146555 —- Secticn &

107

Return from the interrupt after restoring the 6502 A
register from the stack.

o If the interrupt is due to the serial I/0 bus proceed line;

then clear the intervupt, and Jump through global RAM vector
VPRCED [020213.

v} If the interrupt is due to the serial I/0 bus intervupt
line, then clear the intervrupt and jump through global RAM
vector VINTER [0204],

o If the interrupt is due ¢o a &502 BRK instruction, then jump
through gleobal RAM vector VBREAK L[02061].

0 If none of the above, restore the &502 A register and refurn
from the interrupt (RTI}.

INTERRUPT INITIALIZATION

The interrupt subsystem completely reinitializes itself whenever
the system is powered up or the [SYSTEM RESETI key is pressed.
The 05 clears the hardware registers, and sets the interrupt
global RAM wvectors to the following configurations:

Vector Type Function
VDSLST £0200] NMI RTI —-- ignore interrupt.
WWBLKI L[02221] " System stage 1 VBLANK,
CDTHMAL L[0226] " 510 timesut timevr.
CbTMAZ2 (02281 M No system function.
VVBLKD L0224] « System return from interrupt.
VIMIRG L[O216] IRG System IRQ processor.
VSERDR [020C13 it SI0.
VBERIN [0Q20A1 = SI0.
VSERDC [C20E1 4 510.
VTYIMRI £02101] “ PLA, RTI —— ignore interrupt.
VTIMRZ £0212] i PLA, RTI —- ignore interrupt
VTIMR4 £02141 # ##¥# doesn’t matter #3iu
VKEYBE £0208] r System keyboard

inferrupt handler.
VPRCED £02021] o PLA'RTI —— ignore interrupt.
VINTER £02041 - PLA, RTI -~ ignere interrupt.
VBREAK L[02061] BRK PLA, RTI —— ignore interrupt,

Figure &-2 Interrupt RAM Vector Initialization

OPERATING SYSTEM CD14555 -- Saction &
108

System initialization sets the interrupt enable status
as follows:

NMI VBLANK enabled, display list disabled.

IRG CBREAK] key and data key interrupts enabled, all others
disabled.

SYSTEM TIMERS

The 0S5 contains five general purpose software timers, plus an
O0S—supported frame counter. The timers are 2 bytes in length
{le.hi) and the frame counter RTCLOK L0012 is three bytes in
length (hi.mid,10). The timers count downward from any
nonzero value to zero. Upon reaching zera, they either clear
an associated flag:, or JSR through a RAM wvector., The frame
counter counts upward, wrapping to zero when it overflows.

The following table shows the timers and the frame counter
tharacteristics:

Timer MName Flag/Vector Usa

CDTMVL £02183 CDTMAL [022&61 2-byte vector —-— SI0 timeout.
CDTMVZ [021A] CDTMAZ L[O02283 2-byte vector
CDTMV3 [021C] CDTMF3 [022A]1 1-byte flag
CDTMV4 [O21E] CDTMF4 [022C1 1-byte flag
CDTMVS (02201 CDTMFS [O22E31 1-byte flag
& RTCLOK L[O012] 3—-byte frame counter.

* These two timers are maintained as part of every VBLANK
interrupt (stage 1 process). The other timers are sub ject to
the critical section test (stage-2 process), that can defer
their updating to a later VBLANK interrupt

USAGE NOTES

This subsection describes the techniques you need to know in

order to utilize interrupts in conjunction with the operating
system,

DPERATING SYSTEM CD1455% —— Section &
109

POKEY Interrupt Mask

ANTIC (display—list and vertical—blank} and PlA {(intevrrupt and
proceed lines) interrupts can be masked directly (see the
Hardware Manual}. However:. eight bifts of a single byte IRGEN
£D20E] mask the POKEY interrupts (LBREAK] key, data key.

serial input ready, serial output ready, serial output done
and timers 1,2 and 4).

IRGEN is a write—only register. Thus: we must maintain a
current value of that register in RAM in order ¢o update
individual mask bits selectively, while not changing other bits.
The name of fthe variable used is POMMSK {00103, and it is used
as shown in the examples below:

i EXAMPLE OF INTERRUPT ENAEBLE

SEIT i TO AVOID CONFLICT WITH IRG ...
i.DA POKMSK ; ... PROCESSOR WHICH ALTERS VAR.
ORA #$xx i ENABLE BIT(S).

STA POKMSHK

8TA IRGEN i TD HARDWARE REG T0O.

CLI

i EXAMPLE OF INTERRUPT DISABLE

SEI i TO aVOID CONFLICT WITH IRG ...
LA POMMSK ; ... PROCESSOR WHICH ALTERS VAR,
AND #EFF-xx ; DISBABLE BIT(S).

STA POKMSK

STA IRGEN i TO HARDWARE REGISTER TOO.

CLI

Figure &6—3 POKEY Infterrupt Mask Example

Note that the 05 IRG service routine uses and alters POKUMEK, so
alterations to the wariable must be done with interrupts
inhibited. I1f done at the inferrupt level there is no prcblem, as
the I bit is already set; if done at a background level then the
SEI and CLI instructions showld be used as shown in the examples.

Setting Intervupt and Timer Vactors

Because vertical-blank interrupts are generally kept enabled so that
the frame counter RTCLOK is maintained accurately, there is a
problem with setting the VBLANK vectors (VWBLKI and VVBLKD} ar

the timer wvalues (CDTMV1 through CDTMVE} directiy. A VBLANK
interrupt could occur when only one byte of the two—-byte value had
been updated, leading to undesired consequences. For this reason,

OPERATING SYSTEM CD1&45535% —— Section &
110

the SETVBV

LE43F] routine is provided to perform the desired

updats in safe manner. The ctalling sequence is shown below:

>
it

X
Y

nu

JER

The
The

update item indicator

1 - 5 for fimers 1 -~ 5,

& for immediate VBLANK vector YWBLKI.
7 for deferred VBLANK vector WWBLKD.
MSE of value to store,

LSB of value to store.

SETVBY

A X and Y registers can be altered.
display list interrupt will always be disabled on

return, even if enabled upon entry.

it is possible to fully process a vertical-blank interrupt
during a call to this routine.

When working with the System Timers.

2 and the flags for ¢timers 3.4 and 5 should be set while the

associated

timer is equal to zero, then the timer should be set

to its (nonzero) valuye.

Stack Content at Interrupt Vector Points

The following table shows the stack content at every one of the

RAM interrupt vector points:

DPERATING SYSTEM CO16555 -- Section &

the wvectors fovr timers 1 and

111

RAM STACK CONTENT

INTERRUPT VECTOR DESCRIPTION 08 RETURN CONTROL

VDELST £02001 Display list return, P

VVBLKI EG2221 # VBLANK immediate return, P, & X, Y

CDTMAT LCO2241 System Timer 1 return, P, A, X. Y, rveturn
CDTMAZ [G22813 System Timer 2 return, P, A, X. Y. rveturn
VVBLKD {02243 » VBLANK defer. return, P, A X. Y

VIMIRG £02146]1 =+ IRG immediate return, P, A

VSEROR [020C]1 = Serial ocut Teady return, P, A

VBERIN [O20A3 « Serial in ready return, P, A

VSEROC [QO20E] = Serial nuf tompare return, P, A

VTIMRL [Q21iG1 POKEY timer 1 return: P, A

VTIMR2 CL0O2121] POKEY timer 2 return, P, A

VTIMR4 [02141] POKEY timer 4 return, P:. A

VKEYBD L[0O20B81 # Kegbpard data return, P, A

YPRSED L2021 Serijial procesd return, P, A

VINTER L[020473 Serial interrupt return, P, A

VBREAK {02061 BRK instruction return. P, A

Figure 6-4 Interrupt and Timer Vector RAM Stack Content Table

¥ The 058 initializes thease entries at power—up. Improperly
changing these vectors will alter system performance.

Miscellaneosus Considerations

The following paragraphs list a set of miscellaneous
considerations for the writer of an interrupt service routine.

Restrictions on Clearing of "I Bit

Display list:. immediate vertical-blank and Sysfem Timer #1
routines showld not clear the 46502 I bit. If the NMI leading fto
one of these routines occturred while an IRQ was being processed.
then clearing the I bit will cause the IRG to re-interrupt with
an snknown result,

The 05 VBLANK processor carefully checks this condiftion after the
stage 1 process and before the stage 2 process.

Interrupt Process Time Restrictions

You should not write an interrupt routine that exceeds 400 msec.
when added to the stage i VBLANK, if the serial I/0 is being
uvsed. The SID sets the CRITIC flag while serial buws I/0 is in
PTrOgTess.

OPERATING SYSTEM C016553 —— Section &
112

Interrupt Delay Due to "WAIT FOR SYNC*"

Whenever a key is rvead from the keyboard, the Keybocard Handlenr
sets WSYNC [D4CA] repeatedly while generating the audible click
on the console speaker. A problem occurs when interrupts are
generated during the wait—for-sync period: the processing of such
interrupts will be delayed by one horizontal scan line. This
condition cannot be prevented. You can work around the condition
by examining the line count VCOUNT {D40OB]1 and delaying interrupt
processing by one line when no WEYNC delay has occurred.

FLOWCHARTS

The #ollowing pages contain process flowcharts showing the main
events that occur inm the NMI and IRG interrupt processes.

|Fia INTERRUPT PROCESS

B
‘ VMG ——T
——f |
el gt}
[PUSH REG A
TO STACK

—

‘\/;m.-.:_ S
£l s
iy =

__--
BERIAL
'-':-:.-:_I.h.r r..'V""
o .
e —

R] - — - __.-" "xl
‘__.--""- POREY. e ¥ CLEAR - T bt ' EEN I|
e TIMEnE __.-} "; ErATH ' 4 I. .
i = ! = F ., __.-'"'

= g =

____.--.-::“':-\.-.__ﬁ . o | . % ll--__. \\ll

3 : ™ | —adl

{"'\-\._ TiREN 34 __:-::"" ETATUS L Y HE # ""|I e /J
'\'-_.\.-. --__- L————— iy I ..II'-. \LH.. N

o ———

.--"'-'---'.'-::r.r:ﬁ e | ALEAE | 2 I-'""- '\
e TiMEM ey A i | VTR b (001 1L
e . -". ‘h
e [_,:'". i __ul"l
~#-— — &

'£h g N l-l,--'-'__-\.
-"---:-:'\n'lll.'ln‘-;}-ﬂ"'\-\."' | CLEAR | e \"'_ { kR 1-|
B e T [l MRERED J_,.-"i"'. HAMDLER |

B == LR e

Y — ==

-'--_ = N
f |
[
R

OPERATING SYSTEM C016555 ~- Section &6

113

it4

T CLEAR STATUS,

- | r"lf
S iy SET BREAK FLG || wiil i um
\\\\E“"— CLEAR SIS '-.\\

Y CLEAR '/r
epants” e T T TR TERCE
WGEEF

— [N
CLERH
ETATHS bt

(D)
WAREAR HI_ EEIT

PULL REG A
FROM STACK

o

OPERATING SYSTEM CO1465%5 —~— Section &

NMI INTERRUPT PROCESS

VERTILAL
BLANE

aaah le wmm el e

OPERATING SYSTEM C014555 -~ Secfion &

115

7 SYSTEM INITIALIZATION

Section 7 discusses the details of the power—up and
system reset processes. The power—up process will be gxplained
first, and then the system reset process will be explained in
terms of its differences from the poWer—uyp pracess.

Both power-up (also called coldstart} ang pressing [S8YSTEM. RESET]
(warmstart! will cause system initialization: In addition, thera
are vectors for these processes at E474 (system reset) and E477
(power—up} so that they can be user—initiated.

The power-up initialization process is a superset of the

system reset initialization process. Power—-up inifializes both
the OS5 and user RAM regions, whereas system reset initializes
only the 0OS RAM region. In both cases, the OS calls the outer
level software initialization entry points allow the application
to initialize its own variables.

Pressing the [SYSTEM RESET] key produces an NMI interrupt. It
does not perform a 6502 chip-vreset. If the processor is locked

up, the [SYSTEM. RESET1 key cannot be sufficient to unlock it: and the
system must have power cycled %o clear the problem.

POWER-UP INITIALIZATION (COLDSTART) PROCEDURE

The OS5 performs the following functions in the aorder shown, as
part of the power-up initialization process:

1. The following &502 processor states are set:

a IRQ interrupts are disabled using the SEI instruction.
o The decimal flag is cleared using the CLD instruction.
2 The stack pointer is set to $FF.

2. The 0S8 sets the warmstart flag WARMST L[0008B1 to O (false)

OPERATING SYSTEM C014555 —— Section 7
i1s

10,

i1,

The OS fests to see if 8 diagnostic cartridge is in the A slot:
Cartridge address BFFC = Q07
The memory at BFFC is not RAM?

Bit 7 of the byte at BFFD = 17

If all of the above tests are true, then control is passed to

the diagnostic cartridge via the vector at BFFE. No return is
expected.

The 08 deftermines the lowest memory address containing
non—-RAM, by testing the first byte of every 4K “block” to see
if the content can be complemented. If it can he complemented,
then the original value is restored and testing continues. I#
it can‘t be complemented; then the content is assumed to be
the first non—RAM address in the system. The MSB of the
address is stored temporarily in TRAMSZ [000A].

Zero is stored to all of the hardware register addresses shown
below (most of that aren‘t decoded by the hardware):

DOOG through DOFF
D206 through DIFF
D300 through D3FF
DA0C €hrough DAFF

The 05 clears RAM from location 0008, to the address
determined in step 4, above.

The default value for the "noncartridge” control vector
DOSVEC L[OOQA] is set to point to the blackboard routine. At
the end of initialization, control is passed through this
vector if a cartridge does not take control.

The coldstart flag COLDST [O244) is set to —i (local use).

The screen margins are set: left margin = 2, right margin =
39, for a 38 character physical line. The maximum line size of
40 characters can be obtained by setting the margins to O and
39. The 05 insets the left margin because the tuo leftmost
columns of the video picture on many television sets are not
entirely visible on the screen.

The interrupt RAM vectors VDSLST L[O200] through VVBLKD (02241
are initialized. See Section & for the initialization valuves.

Portions of the 0S5 RAM are set to their required nonzero values

as shown beldow:

OPERATING SYSTEM C01&655% ~- Section 7
117

12.

13.

igq.

15,

14.

17.

iig

The [BREAKI key flag BRKKEY (00111 = =1 (false).

The top of memory pointer MEMTOP [Q2ES5] = the lowest
non—RAM address (from step 4); MEMTOP will be altered
later when the Screen Editor is opened in step 15.

The bottom of memory pointer MEMLO [Q2E7]1 = 0700; MEMLO
can be changed later if there is either a diskette— or
cassette—boot operation.

The following resident routines are called for initialization:

Sersen Editor

Display Handler

Keyboard Handler

Printer Handler

Cassette Handler

Central I/0 Manitor (CID}
SBarial I/0 Monitor (8IO)
Interrupt processor

The [START} key is checked, and if pressed, the cassette—boot
request flag CKEY {004A] is set.

65302 IRG interrupts are enabled using the CLI instruction.

The device table HATABS [031AJ is initialized to point to the

resident handlers. See Section 9 for information relating to
the Device Handler table. S’

The cartridge slot addresses for cartridges B and A are
examined to determine if cartridges are inserted, if RAM does
not extend into the cartridge address space.

If the content of location 9FFC is zaro, then a JSR is
executed through the wvector at FFFE., thus initializing
cartridge “B". The cartridge is expected to return.

If the content of location BFFC is zero. then a JSR is
executed through fthe vector at BFFE, thus initializing
cartridge "A". The cartridge is expected to return.

I0OCH #0 is set vp for an OPEN of the Screen Editor (E) and

the DPEN is performed. The Screen Editor will use the highest
portion of RAM for the screen and will adjust MEMTOP
accordingly. If this operation should fail: the entire
inifialization process is repeated.

A delay is effected to assure that a VBLANK interrupt has

occurred. This is done so that the screen will be sstablished
before continuing.

If the cassette-boot request flag is set (see step 11 above),
then & cassette-boot operation is attempted. See Section 10 -

OPERATING SYSTEM C014555 —-- Section 7

18.

19.

20.

for details of the cassette-boot cperation.

If any of the thres conditions stated below exists, an
attempt is made to boot from the disk.

There are no cartridges in the siofs.
Cartridge B is inserted and bit O of 9FFD is 1.
Cartridge A is inserted and bit O of BFFD is 1.

See Section 10 for details of the diskette-boot operation.

The coldstart flag COLDSYT is reset to indicate that the
ctoldstart process went to completion.

The initialization process is now complete, and the

controlling application is now determined via the remaining
steps.

If there is an A cartridge inserted and bit-2 of BFFD is 1,
then a JMP is executed through the vector at BFFA.

Or, if there is @ B cartridge inserted and bit-2 of 9FFD is
1, then a JMP is executed through the vector at 9FFA.

Or. a jump is executed through the vector DOSVEC that can
point to the blackboard routine (default case): cassette

booted software or diskette booted software. DOSVEC can be
altered by the booted soffware as explained in Section 10,

SYSTEM RESET INITIALIZATION (WARMSTART) FROCEDURE

The functions listed below are performed, in the order shown, as

part of the system reset initializafion process:

A.

B
¢
D.
E
F

Same as powsr—up step 1.

The warmstart flag WARMST [00081 is set to -1 (frue).
Same as power-up steps 3 through O

0S RAM is zeroed from locations O200-03FF and 0010-007F.

Same as power—up steps ? through 16.

If a cassette-boot was successfully completed during the
power—uyp initialization, then a JSR is executed through the

vertor CASINI [00021. See Section 10 for details of the

cassette-boot process,

OPERATING SYSTEM C014355 —— Saction 7

119

G. Bame as power-up step 18, except instead of booting the
diskette software, a JSR is executed thraough the vector DOSINI
[GOOCT if the diskette-boot was successfully completed during the

Power—uyp initialization. See Bection 10 for details of the
diskette—baot process.

H. Same as power-up steps 19 and 20.

Note that the initialization procedures and main entries for all
software entifies are executed at every system reset as well as
at power up (see steps 14, 17, 18, 20, £ and G). If the
user—supplied initialization/startup code must behave differently
in response ¢o0 system reset than it does to power—up., then the
warmstart flag WARMST [000B1 should be interrogated; WARMST = O
means power—up entry: else system reset entry.

DOPERATING SYSTEM C014555 —— Section 7
120

8 FLOATING POINT ARITHMETIC PACKAGE

This section describes the BCD floating point (FP) package that
is resident in €the OS5 ROM in both the models 400 and B800.

The flpating peoint package maintains numbers internally as &6-byte
guantities: a S-—byte (10 BCD digit) mantissa with a i—byte
exponent. BCD internal representation was chosen so that decimal
division would not lead to the rounding errors typically found in
binary representation implementations.

The package provides the following operations:

ABCII to FP conversion.

FP to ASCII conversion.

Integer to FP conversion,

FP to integer conversion.

FP add, subtract:, multiply,and divide.

FP logavithm, exponentiation, and poelynomial evaluation,
FP zero. load, store, and move.

A floating point operation is performed by calling one of the
provided routines (pach at a fixed address in ROM) after having
set one or more floating pouint pseudo registers in RAM. The
result of the desired gperation will also involve flecating poing
pseudp registers. The primary pseudo registsrs are described
below and their addresses given within the square brackets:

OPERATING SYSTEM C01455% ——~ Bection B
121

FRG C0O0D43 &=byte internal form of FP number.

4

FR1 LO0CEOQ] &-byte internal form of FP number.
FLPTR [OOFC] = 2Z-byte pointer (le,hi} to a FP.
number.
INBUFF [OOF31 = 2~byte pointer (lo,hi) to an ASCII text
buffer.
CIX [O0OF21 = l-byte index, wused as offset to buffer

pointed to by INBUFF.
LBUFF £OS80]1 = result buffer far the FASC routine.

FUNCTIONS/CALL ING SEGUENCES
Descriptions of these floating point routines assume that
a pseudo Tegister is noft altered by a given routine., The

numbers in square brackets Cxxxx] are the ROM addrasses of the
rovtines.

ASCII to Floating Peint Conversion (AFP}

Function: This routine takes an ASCII string as input and
produces a floating point number in internal form,

Calling segquence:
INBUFF = pointer to buffer containing the ASCII

representation of the number.
CIX = the buffer offset to the first byte of the ASCII

number.
JER AFP £D8003
BCS first byte of ASCII number is invalid
FRO floating point number.

CIX the buffer offset to the first byte after the ASCII

number.

Algorithm: The routine takes bytes from the buffer until it
encounters a byte that cannct be part aof the number. The bhytes
scanned to that point are then converted to a floating point
number. If the first byte encountered is invalid, the carry bit
is set as g flag.

Floating Point te ASCII Conversion (FASC)

Function: This routine converts a floating point number from
internal form to its ASCII representation.

OPERATING SYSTEM CO1lse558 —-- Section B
122

Calling sequence:
FRG = flogating point number.
JSR FASC [DBEA]
INBUFF = pointer to the first byte of the ASCII number.
The last byte of the ASCII representation has the most
significant bit (gsign bit) set; no EOL follows.
Adlgarithm: The routine converts the number from its internal

floating point representation to a printable form (ATASCII). The

pointer INBUFF will point to part of LBUFF, where the result is
stored.

Integer to Floating Point Conversion (IFP}

Funetion: This routine converts a Z2-byte unsigned integer (O to
65535 to flpating point internal representation.

Calling sequence:
FRC = integer (FRO+0 = LSB:, FRO+1 = MSB}.

JER IFP LD?4AA]

FRO floating point representation of intager.

Floating Point to Integer Conversion (FPI}

Function: This routine converts a pesitive floating point number
from its internal representation to the nearest 2-hyte integer.

Calling sequence:
FRO = floating peoint number.

SR FPI [DYDR2]
BCS FP number is negative ar >= 65535. 5

FRO = 2-byte integer (FRO+0 = LSB, FRO+1 = MESB).

Algorithm: The routine performs true rounding. net truncation.
during the conversion process.

OPERATING SYSTEM CQ14355 —- Section 8
123

Floating Point Addition (FADD)

Function: This routine adds two floating point numbers and checks
the result for out—aof-range.

Calling sequence:

FRO = floating poaint number.
FR1 = flivating point number.
JER FADD EDAAA]

BCS cut-of-range rasuvit.

FRO = result of FRO + FRI,
FR1 is altered.
Floating Point Subtraction (FBUB)

Function: This voutine subtracts two floating point numbers and
cthecks the reswulf for out—-of-range.

Calling seguance:

FRO = flgating point minuend.
FR1 = floating point subtrahend.
SR FSUEB L[DaA&O]

BCS out—of—-range vesult.

FRO = result af FRO — FR1.
FR1 is altered.

Floating Point Multiplication (FMUL)

Funection: This routine multiplies two floating point numbers and
checks the resuvlt for out—of-range.

Calling sequence:

FRG = floating point multiplier.
FR1 = floating point multiplicand.
JER FMUL LDADBI

BCS aut-of-range resuylt.

FRO = result of FRO 2 FRI1.
FR1 is altered,

OPERATING SYSTEM COLI&555 —— Section 8
124

Floating Peoint Division (FDIWV)

Function: This routine divides two floating point numbers and
checks for division by zero and for result out-of-range.

Calling sequence:

FRG = floating point dividend.

FR1 = floating point divisor.

JER FDIV LDE2B1

BLS gut-of-range result ar divisor is zervro,.

FRC = result of FRQ / FR1.
FR1 is altered.

Floating Point Logarithms (LDG and LOGLO)

Function: These routines take the natural or base 10 logarithms
of a floating point number.

Calling segquencs:

FRC = floafting point number.

JSR LOG £DECD] for natural logarithm
or

JER LOGIO LDEDI] for base 10 logarithm

BCS negative number or pverflow,

FRO = floating point logarithm.
FR1 is altared,

Algorithm: Both logarithms are first computed as base 10
logarithms wsing a 10 term polynomial approximation; ¢the natural
logarithm is computed by dividing the base 10 result by the
constant LOGI0{(e).

The logarithm of a number 2 is computed as follows:

F # (10 ## Y) = Z where 1 <= F € 10 {(normalization).
L = LOGLO(F) by 10 term polynomial approximation.
LOGIOC(Z) = Y + L. LOG(ZY = LOGIO(Z) / LOGiO(a}.

NOTE: This voutine does not return an error if the number input
is zero; the LOGIO result in this case is approximately -129. 5,
which is not useful.

OPERATING SYSTEM C014655%5 ~—- Section B
125

Floating Point Exponentiation (EXP and EXP10)
Function: This routine exponentiates.

Calling sequence:

FRO = floating point exponent (Z).

JEBR EXP [DDBCO] for e ## [

ar
JSR EXF10 EDDRCCI for 10 ## 7
BCS aoverflow.

FRO = flgating point result.
FR1 is alterad.

Algorithm: Both exponentials are computed internally as base 10,
with the base 2 exponential using the identity:
e #¥% X = 10 #% (X ¥ LOGIO(e)).

The base 10 exponential is evaluated in two parts using the identity:

10 ## X = 10 #% (I + F} = (10 #% I) # (10 #% F} —-— where I is the
integer portion of X and ¥ is the fraction.

The term 10 #% F is evaluated using a polynomial approximation,

and 10 ## I is a straightforward modification tc the floating
point exponent.

Floating Point Polynomial Evaluation (PLYEVL)

Function: This routine performs an n degree polynomial
evaluation,

Calling segquence:

X, ¥ = pointer (X = LSB) to list of FP coefficients (A(i))
ordered from high order to low order (six bytes per
cagefficient).

A = numbeyr of coefficients in list.
FRO = floating point independent wvariable (Z3}.

JSR PLYEVL L[DDAG]

BCS overflow or other ervor.

FRO = result of Afni#Zu##n + A{n—1)sZs#n~1 ... + A(l)#Z +
ACOS.

FR1 is altered.

Algorithm: The polynomial P(Z) = SUM(i=0 to n} (A(i}#ZIx#i) is
computed using the standard method shown below:

P(Z) = (... (A(n)#Z + Aln~-1)}%Z + ... + A(1)3}%Z + A(O)

OPERATING SYSTEM CO16555 —-— Section 8
124

Clear FRO (ZIFRO)

Function: This routine sets the contents aof pseudo register FRO
to all zeros.

Calling seguence:
JSR IZFRO £DA441

FRO = zero.

Clear Page Zero Floating Point Number (ZIF1)

Function: This routine sets the contents of a zero—page floating
point number fto all zeroes.

Calling sequence:
X = Zearo—-page address of FP number to clear.
JSR IF1 [DA4&]

lere—page FP number(X} = zero.

l.oad Floating Point Number to FRO (FLDOR and FLDOP)

Funttion: These routines load pseudo register FRO with tie
floating point number specified by the calling sequence.

Calling sequences:
.Y = pointer (X = LSB) fo FF number.

JER FLDOR [BDB%]

FLPTR = pointer to FP numbery,

+JSR FLDOP EDDBD]

FRO = floating point number (in either case)
FLPTR = gointer to FP number (in either case}.

OPERATING SYSTEM C0146555 -~ Section 8
127

Loagd Fleoating Point Number to FRI (FLDIR and FLDIP}

Function: These routines load pseudo register FR1I with the
floating point number specified by the calling segquence.

Calling sequences:

As in prior description, except the result goes to FRI
instead of FRO. FLDIR CDD%81 and FLD1P [DDRCI.

Stare Floating Point Number From FRO {(FSTOR and FSTOP)

Function: Thasse roytines store the contents of pseudos register
FRO fto the address specified by the calling seguence:

Calling sequence:

As in prior descriptions, except the floating point noumber
is stored from FRO rather than loaded to FRCO. FSTOR EDDA7VI]
and FSTOP L[DDARBI].

Move Floating Point Number From FRO to FR1 (FMOVE}

Function: This routine moves the floating peoint number in FRO to
pseudo register FR1.

Calling segquence:
JER FMOVE LDDB61

FRI = FRO (FRO remains unchanged).

RESOURCE UTILIZATIODN

The floating point package uses the following RAM locations in
the course of performing the functions described in this section:

0004 through QOGFF
OS7E thraugh OSFF

All of these locations are available for program coding
i# your program does not call the floating point package.

OPERATING SYSTEM CO146555 —— Section 8
i28

IMPLEMENTATION DETAILS

Floating point numbers are maintained internally as &-byte
quantities, with 5 bytes (10 BCD digits) of mantissa and 1 byte
of exponent. The mantissa is always normalized such that the
most significant byte is nonzero (note "byte® and not "BCD
digi€t").

The most significant bit of the expanent byte provides the sign
for the mantissa; O for positive and 1 for negative. The
remaining 7 bits of the exponent byte provide the exponent in
excess &4 notation. The resulting number represents powers of 100
decimal {not powars of 10). This storage format allows the
mantissa €o hold 10 BCD digits when the value of the exponent is
a4n even power of 10, and 9 BCD digits when the wvalue of the
exponent is an odd power of 10.

The implied decimal point is always to the immediate vight of the
first byte. An exponent less than &4 indicates & number less than
i. An exponent equal ¢o or greater than &4 represents a number
equal to or greater than 1.

Zero is represented by a zero mantissa and a zero exponent. To
test for a result from any of the standard routines; test either
the exponent or the first mantissa byte for zervro.

The absolute value of floating point numbers must be greater than
10%%-98, and less than 10#%+98, or be equal to zero. There is
perfect symmetry between positive and negative numbers with the
exception that negative zero is never generated.

The precision of all computations is maintained at 9 or 10
decimal digits, but accuracy is somewhat less for those functions
invalving polynemial approximations ({logarithm and
exponentiation). Also, the problems inherent in aill fleating
point systems are present here; #for example: subtracting two very
nearly equal numbers, adding numbers of disparate magnitude:, or
successions of any operation, will all resylt in a loss of
significant digits. An analysis of the data Tange and the order
of evaluation of expressions may be required for some types of
applications.

The examples helow compare floating poinft numbers with their
internal representations, as an aid to understanding storage
format. All numbers prior to this point have been expressed in
decimal notation, but these sxamples will use hexadecimal
notation. Note that &4 decimal (the excess number of the
exponent) is 40 when expressed in hexadecimal:

Number: +0.02 = 2 % 10#%-2 = 2 #% 100##—1
Btored: 3F 02 0C 00 00 OC (FP expongnt = 40 - 1)

Number: -0.02 = -2 % 10%#%-2 = -2 % 100%#—1
Stored: BF 02 0OQC 00 00 00 (FP exponent = BO + 40 - 1)

OFERATING SYSTEM C014555 -~ Section 8
129

Number: +37.0 = 3.7 = 10%s#1 = 37 % 100%#%0
Stored: 40 37 00 Q0 00 Q0 (FP exponent = 40 + 0}

Number: -4, &0312486 # 10#%ii = ~46.03... % 100#%5
Stored: €5 44 03 01 24 86 (FP exponent = 80 + 40 + 5}

NMumber: Q.0
Stored: OO 0O 0D QO 00 OO (special case)

OPERATING SYBTEM C01655% —— Section B
130

2 ADDING NEW DEVICE HANDLERS/PERIPHERALS

This section describes the interface requirements for a
nonresident Device Handler that is to be accessed via the Central
I/0 utility (CIO). The Serial bus I/0 utility (SIO) interface is
defined for those handlers fthat utilize the Serial I/0 bus.

The I/0 subsystem is organized with three levels of software
between you and your hardware: The CIO. the individual device
handlers, and the SIO.

The CIO performs the following functions:

Legical device name to Device Handler mapping {(on OPEN}.
I/0 Control Block (INCB) maintenance.

Logical record handling.

User buffer handling.

The device handlers are below CI0. They perform the
following functions:

Device initialization on power-up and system reset.
Device—dependent support of OPEN and CLOSE commands.
Byte—-at—-a—-time data input and output.
Device-dependent special oaperations.
Device—-dependent command support.

Device data buffer management.

The SI0 is at the bottom level (for Serial I/0 bus peripheral
handlers}). It performs the following functions:

Caoantrol of all Serial bus I/0, conforming to the bus
protocol.

Bus operaftion retries on errvors.
Return of unified error statuses on evrror conditions.

OPERATING SYSTEM C01655% -- Section 9
131

A separate control structure is used for communication at each
interface, as follows:

tUser/CI0 i1/8 Control Block (IOCB)
CIO/Handley Zero—-page IOCB (ZIOCB}
Handler /510 Device Contral Block (DCB?

OPERATING SYSTEM CO1&4355 ~- Bection %
132

B +
! user H
¢ program {———=—— +
o et i e e +
+ + H
i IOCE s asasaesday!
o e + H ¢
e + '
i CIO i e e + H
i utility | H BCE § 333098 §
e —————— + s e et e e e + ¥ i
: #
; *# 4
e + o —— e + e e e + i
i Z1gCB i i Device | iDisk File! # :
Frm e + i Table | +meww] Manager {-———- +
3* Fm i + H tEES eSS + | 3
| i | i
e } Ep. e e —_——— ;
H i i i t
+—— + + —— o I e + + }
i Printer | | Cassette! - i | Keyboard! | Disk :
! Handler | i Handler | t Handler | i Handler | i Handler |
s e e + Fremm—— + e + Am——— + o+ —+
i : : H
e e +om o e — - +
|
T i — + |
H DCB {sratst s |
e + {
e e e e +
{ SI0 {
¢ UBility !
Where: —~—— shows a control path,

shows the data structure regquired for a path.

Note the following:

1. The Keyboard/Display/Screen Editor handlers don‘t use
cIo.

2. The Diskette Handler cannot be called directly from CIO.
3. The DCB is shown twice in the diagram.

Figure 9-1 1/0 Subsystem Flow Diagram

CPERATING SYSTEM CO16555 —— Section 9
133

DEVICE TABLE

The device table is a RAM-resident table that confains the
single~character device name {e.g. K, D, C, estc). and the

handler address for egach of the handlers known te CIO. The

table is initialized to ctontain entries for the following

resident handlers: Kegboard (K). Display (5}, Becreen Editor

(£), Cassette (C}, and Printer (P} at power—-up and system reset. To
install a new handler, some procedure must insert a device table entry
atter the table is initialized.

The table +ormat is shown below:

B L L

HATARS L[O3ial

4+~ one entry

—+

I e -

$ oo -+

Figure 9-2 Device Table Format

This 3B—byte table will hold a maximum of 12 entries, with the
last 2 bytes being zero. CI0 scans the table from the end fo
the beginning {(high to low address); so the entry nearest the
end of the table will take precedence in case of mulfiple
cecurrences of a device name. .

The davice name for each entry is a single ATASCII character, and
the handler address points to the handler‘s vector table, that
will be described in the following section.

CIO/HANDLER INTERFACE

This section describes the interface between the Central I/0
utility and the individual device handlers that are represented
in the Device Table (as described in the preceding section).

OPERATING SYSTEM CO1469555 —— Section ¥
134

Calling Mechanism

Each handler has a vertor tahle as shown below:

S +
+ OPEN vector + {low address}

+ +

+ CLOSE wecftor +

e - +

+ GETBYTE wvecftor +

o e i i i e e +

+ PUTBYTE vector +

e e e e e i e e +

+ GETSTAT vector +

e e e e +

+ SPECIAL vector +

e +

+ JMP init code +

+ + (high address}
o - +

Figure 9-3 Handler Vector Table

The device table entry for the handler points to the first
byte of the vector tabla.

The first six entries in the table are vectors (lo.hi) that
confain the address ~ 1 of the handler voutine that handles
the indicated function. The seventh entry is a &502 JMP
instruction to the handler initialization routine. CIO uses
only the addresses contained in this table for handler entry.
Each user/CI0O command translates to one or more calls to one
of the handler antries defined in the vector table,.

The vector table provides the handlier addresses for certain
fixed functions to be performed to CIO. In addition, operation
parameters also must be passed for most functions. Parameter
passing is accomplished using the 63502 A, X, and Y registers
and an IOCB in page O named ZIOCB [Q0203. In geneval, register
A is used to pass data. register X contains the index to the
originating IOCB, and register Y is used to pass status
information to CIO. The zero—page IOCE, is a copy of the
originating I0OCE; but in the course of processing some
ctommands, CI0O can alter the buffer address and buffer langth
parameters in ZIOCB. but not in the originating IOCB (see
Section 5 for information relating to the originating IOCH).

Gee Appendix B for the standard status byte values to be
returned to CID in register Y.

OPERATING SYSTEM CD14533 —— GBection 9
135

The following sections describe the CID/handler interface for
each of the vectors in the handler vector table.

Handler Iniftialization

NOTE: This entry doesn‘t appear to have any function for
nonresident handlers due to a bug in the current OS5 -~ the
device table is cleared in response to system reset as
well as power-up. This prevents this entry point from ever
being called. The rest of this section discusses the
intended use of this entry point. Conformation would be in
order to allow compatibility with possible corrected
versions of the 08 in the fufure,

The entry was to have been called on all occurrences of
power—up and system reset; the handler is to perform
initialization of ifs hardware and RAM data using a routine
that assures proper processing of all CIO commands that follow.

functions Supported

This section describes the functions associated with the first
six vectors from the handler vector tahle. This section also
presents a brief, device-independent description of the

CI0/handler interface and recommended actions for each function
vector.

OPEN

This entry is called in response to an OPEN command to CIO. The
handler is expected to validate the OPEN parameters and perform
any required device initialiZation associated with a device OPENM.

At handler entry, the following paramsters can be of interest:

X

index to originating IDCB.
Y

%92 (status = function not implemented by handler).

4

ICDNDZ {00211 = device number (1-4, for multiple device
handlers). :
ICBALZ/ICBAHZ [0024/0025]

address af devicesfilename
specification,

ICAX1Z/1CAX2Z [O0O2A/002R1] device—specific information.

It

£

The handler attempts to perform the indicated DPEN and
indicates the status of the operation by the value of the Y
register. The responsibility for checking for multiple OPENs to

OPERATING SYSTEM C0O1455% —— Secfion 9
1346

the same device or file. where it is illegal: lies with the
handlar.

CLOSE

This wvector table entry is called in response to a CLOSE command
to CID. The handler is expected to release any held resources
that relate specifically to that devices/filename, and for output
files £o:

i1} send any data remaining in handler buffers to the device,
2} mark the end of file

3) update any associated directories, allocation maps, etc.

At handler entry. the following parameters can be of interest:

X
Y

index €0 ovriginmating IOCB.
$72 (status = function not implemented by handler).

ICDNDZ 00213 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z {002A/002B] = device-spacific information.

The handler attempts te perform the indicated CLOSE and

indicates the status of the operation by the value of the ¥
register.

CIO releases the assoriated IOCB after the handler reaturns,
regardless of the operation status wvalue.

GETBYTE

This vectar table entry is called in response to a GET
CHARACTERS or GET RECORD command to CIO. The handler is

expected to return a single byte in the A ragister, or refurn an
arror status in the Y register.

At handler entry, the following parameters can be of interest:

X = index to originating IOCE.
Y = 492 (status = function not implemented by handler).

ICDNOZ (00211 = deviece number (i-4, for multiple device handlers),
ICAXIZ/71ICAX2Z LO02A/002B] = device—specific information.

The handler will obtain a data byte dirvectly from the device or from a
handler-maintained buffer and return tao CID with the byte in the
A register and the operation status in the Y register.

OPERATING SYBTEM CO14555 —— Section 9
137

Handlers that do not have short timeouts associated with the
reading of data {(such as the Keyboard and Cassette Handlers},
must monitor the [BREAK] key flag BRKKEY {00111 and return with a
status of %80 when a [BREAK] condition occurs. See Appendix L.

£S; and Section 12 for a discussion of .LBREAKI key meonitoring.

CIO checks for reads from device/files that have not been apened

or have been opened for output only: the handler will not be called in
those cases,

PUTBYTE

This entry is called in response to a PUT CHARACTERS or PUT
RECORD command to CID. The handler is expected to accept a single

byte in the A register or return an error status in the Y
register.

At handler entry., the following parameters can be of interest:

X = index €0 originating I0CB.
Y = $92 (status = function not implemented by handler).
A = data bytse.

ICDNOZ Q0211 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z [CO2A/002B] = device—specific information.

The handler sends the data byte directly to the device, or to a
handler—maintained buffer, and returns to CID with the aeperation
status in fthe Y register. If a handler-maintained buyffer fills,

the handler will send the buffered data to the device before
returning to CIC.

CIO checks for WRITEs to devices/files that have not been opened.

oT have been opened for input only. The handler will not be called in
those cases.

Mow that the normal operation of PUTBYTE has been defined, a
special case must be added. Any handler that will operate within
the environment of the ATARI 8K BASIC languvage interpreter has a
different set of rules. Because BASIC can call the handler
PUTBYTE entry divrectly. without going through CIf. the ZeTo—page
I0CE (ZIDCB! can or may nof have a relation to the PUTBYTE call.
Therefore, the handler must use the outer level IOCB to obtain
any information that would normally be obtained from ZIODCB. Note
also that the OPEN protection normally provided by CIO is

bypassed (i.e. PUTBYTE to a non-OPEN device/file and PUTBYTE to a
read—-only OPEN}.

OPERATING SYSTEM CO146555 —~~ Section 9
138

GETSTAT

This entry is called in respanse to a GET STATUS command teo CIO.
The handlar is expected to return four buytes of status to memory
or return an error status in the Y register.

At handler entry. the following parameters can be of interest:

X = index to originating IOCB. Y = $92 (status = function not
implemented by handler).

ICDNDZ [00213 = device number (1-4, for multiple device handlers},

ICBALZ/ICBAHZ L[Q024/0025]) = address of
device/filename specification.

ICAX1Z/ICAX2Z

[(oo2a/0028]1 = device-spacific information.

The handler gets device status information from the device
contraller and puts the status bytes in DVSTAT L£OZEA] through
DVSTAT+3, and finally returns to CI0 with the operation status
in register Y.

The I0CB nesd not be opened nor closed in order for you

to request CID ¢o perform a GET STATUS operationi the handler
must check where there are restrictions. See Section 5 for a
discussion of the CID actions involved with a GET STATUS
cperation using both open and closed IOCB‘s: and note the impact
of this operation on the use of the buffer address parameter.

SPECIAL

This handler entry is wsed to support all functions not handled
by the other entry points, such as diskette file RENAME, display
DRAW, etc. Specifically, if the IOCB command byte value is
greater than $0D:. then CIO will use the SPECIAL entry peint. The
handler must interrogate the command byte to determine if the
requested operation is supported.

At handler entry. the following parameters can be of interest:

X = index to originating IOCH.

Y = 92 (status = function not implemented by handler}.
ICDNDZ {Q02P11 = device number (1-4, for mulfiple device

handlers).

ICCOMZ £0022]1 = command bute,

ICBALZ/ICBALH [0024/00251 buffer address.
ICBLLZ/ICBLHZ L[O028/002%1 buffer length.

ICAX1IZ/ICAX2Z L002A/0C02B1 device—-specific information.

OPERATING SYSTEM CD146555 —— Section 9

139

The handler will perform the indicated operation., if possible,
and return to CIO with the operation status in regisfer Y.

The I0CB need not be opened nor closed in order for you

to request CID to perform a SPECIAL operation; the handler
must check where there are restrictions. GSee Bection S5 for a
discussion of the CID actions invalved with a SPECTAL
operation using baoth open and closed INCB‘s, and note the
impact of this on the use of the buffer address parameter.

Error Handling

Error handling has been simplified somewhat by having CIOD handle
ocuter level ervors and having SIO handle Serial bus eTrors,

leaving the handler to process the remaining errors, These
errors include:

out-of~range parameters.
LBREAK] key abort.
Invalid command.

Read after end of file.

The current handlers respond to errors using the following
guidelines:

They keep the recovery simple (and therefgre predictable and
regeatable).

They Do not interact dirvectly with you for recovery
instructions.

They lose as little data as possible.

They make all attempts to maintain the integrity of file
oriented device storage —— this involves ths initial design
of the structural elements as well as error racavery
techniques.

Resource Allacation

Nonresident handlers needing code and/or data space in RAM should
use the techniques listed below, %to assure nonconflict with other
parts of the 08, including other nonresident handlers.

OPERATING SYSTEM C0146555 —— Section 9
140

Zero—Page RAM

Zero—page RAM has no spare bytes, and aven if there were, there
is no allocation scheme to support multiple program assignment of
the spares. Therefore, the nonresident handler must save and
restore the bytes of zero-page RAM it is going $o use. The bytes

to use must be chosen carefully, according to the following
criteria;

The bytes cannot be accessed by an interrupt routine.
The bytas cannot be accessed by any noninterrupt code
between the time the handler modifies the bytes and then

restores the original values,

A simple save/restore technique would utilize the stack in a
manner similar to that shown below:

LDA COLCRS i (for axample)

PHA i SAVE ON STACK.
LPA COLCRS+1

PHA

LDaA HPOINT i HANDLER'S POINTER.

STA COLCRS
LDA HPOINT+1
STA COLCRS+1

XXX (COLCRS), Y i DL} YOUR POINTER THING.
Pt A i RESTORE OLD DATA.

85TA COLCRS+1

PLA

STA COLCRS

Note that the Display Handlar or Screen Editor should no¢ be
called before restoring the original value of COLCRS, becausse
COLCRS is a variable used by those routines.

Nonzero—-Page RAM

There is no allocation scheme to support the assignment ot
fixed regions of nonzevo—-page RAM to any specific process, so the
handler has three choices:

1. Make a dynamic allocation at initialization time by
altering MEMLO [ORE7I.

2. Inciude the variables with the handler for RAM-resident
handlers. This still invoives altering MEMLO at the fime
the handler is hooted.

3. If the handley replaces one of the resident handlers (by
removing the resident handler’s entry in fhe device
table), then the new handler can use any RAM that the

CPERATING SYSTEM CD14555 —— Section 9

141

formerly resident handler would have used.

Etack Space

in most cases, there are no restrictions on the use of the stack
by @ handler. However, if the handler plans to push more than a
touple dozen bytes to the stacki then it should do a stack

everflow test¢, and always leave stack space for intervupt
processing.

HANDLER/SID INTERFACE

This section describes the interface between serial bus device
handlers and the serial bus I/0 wtility (SID}. SIO complately
handles all bus transactions following the device—independent bus
profocol. SID is responsible for the following functions:

Bus data format and timing from computer end.
Error detection, retries and statusss.

Bus timeout.

Transfer of data between the bus and the caller’s buftfer.

Calling Mechanism

SI0 has 4 single entry point SIOV [E4591 for all operations. The
device control block (DCB} [O300] contains all pavameters passed
to SI0. The DCB contains the following bytes:

DEVICE BUS ID —- DDEVIC [03001

The bus ID of the device is set by the handler prior to calling
810 (see Appendix IJ.

DEVICE UNIT # ~-— DUMIT [03011

This byte indicates that of n units of a given device type to
access; and is set by the handler prior to calling SIO. This
value usvually comes from ICDNOZ. SID accesses the bus device
whose address is equal to the value of DDEVIC plus DUNIT minus 1
(the lowest unit number is normally egqual to 1},

DEVICE COMMAND —- DCOMND {03021

The handler sets this byte prior %o talling SI0. ¢ will be sent
to the bus device as part of the command frame. Ses dppendix 1
for device command byte values.

OPERATING SYBTEM CO14555 —— Section @
142

DEVICE STATUS —— DSTATS [03031

This hyte is hidirvrecftional. The handler will use DSETATE to
indicate to SI10 what to do affer the command frame is sent and
acknowledged. SI0 will use it to indicate to the handler the
status of the requested operation.

Prior to an SI0 call:

7 O
B o oo
iWiR! unused i
B s, e wm ST e

Where: W.:R = Q.0 indicates no data transfer is associated with €he
cperation.

is invalid.

After an SI0 eall:

7 0
e O e s s T2 3

i status code i

B s St ot T 3
See Appendix C for the possible SIO operation status codes.
HANDLER BUFFER ADDRESS ~— DBUFLO/DBUFHI [0304/03051

The handler sets this 2-byte pointer. It indicates the source
or destination buffer for device data or status information.

DEVICE TIMEQUT —— DTIMLO [0304]

The handlar sets this byte. It specifies the device timeout ftime
in units of 44/60 of a second. For sxample:. a count of &
specities a timeout of 4.4 seconds.

BUFFER LENGTH/BYTE COUNT —— DBYTLD/DBYTHI {0308/030%1

The handler sets this 2-byte count for the current

operation: and indicates the number of data bytes to be
transferred into or out of the buffer, This parameter is not
required it the STATUS bByte W and R hits are bofh zero. These
values indicate that no data transfer is to take place.

WARNING: There is a bug in SI0 that causes incorrect

actions when the last byte of a buffer is in a memory
address ending in $FF, such as 13FF, 42FF, etc.

OPERATING SYSTEM C016555 —— Section 9

1 indicates a data frame is expected from the device.
O indicates a data frame is o be sent to the device.
i

143

AUXILIARY INFORMATION —- DAUX1/DAUX2 L[O30A/030B}

The handler sets these Z-bytes. The SI0 includes them in the bus
command frame; they have device—specific meanings.

Functions Supported

SI0 does not examine the COMMAND byte it sends to the device,
because all bus transactions are expected to conform to a
vniversal protocol. The protocol includes three forms., stated
below (as zeen from the computer):

Send command frame.
Send command frame and send data frame.
Send command frame and receive d3ta frame.

The values of the W and R bits in the status byte select the
command form. '

Error Handling

518 handles most of the serial bus errors for the handlay,
as indicated below:

Bus timeout —— SIO provides a uniform command frame and data
frame ACK byte timeout of 1/40 of a second — O / + 1/40.

The handler specifies the maximum COMPLETE byte timeout
value in DBTIMLO.

Bus errors —-— SI0 detects and raeports UART overrun and
framing ervors. The sensing of these errors in any received

byte will cause the entire associated frame to be considered
bad.

Data frame checksum ervor —— SI0 validates the checksum on
all received data frames and generates a checksum for all
transmitted frames.

Invalid response #rom device —— In addition to the error
tonditions stated above., SI0 chacks that the ACK and
COMPLETE responses are proper (ACK = $41 and COMPLETE =
$43). ACK stands for acknowledge.

Bus operation retries —— SI0 will attempt one complete tommand
retry if the first attempt is not error f£ree, where a complete
command try consists of up to 14 attempts to send (and

acknowledge) a command frame, followed by a single attempt to

OPERATING SYSTEM CO16555 —— Section 9
144

receive the COMPLETE code and possibly a data frame.
NDTE: There is a bug in the retry logic for data writes,
such that if the command frvame is acknowledged by the
controller, but the data frame is not scknowledged. then SIO
will retry indefinitely.

Unified error status codes —— 8I0 provides device-independent error
codes (see Appendix C}.

SERIAL I/0 BUS CHARACTERISTICS AND PROTOCOL

This section describes;

90 The electrical characteristics of the ATARI 4GG
and ATARI 800 Home Computers serial bus
o The use of the bus te send bytes of data,
0 The organization of the bytes as “frames" (recordsi,
o The overall command sequences that vtilize frames

and response bytes to provide computer/peripheral communication.

Hardware/Electrical Characteristics

The ATARI 400 and the ATARI 800 Home Computers

communicate with peripheral devices over a 19,200 baud
asynchronous sevial port. The serial port consists of a serial
DATA OUT (transmission) line, a serial DATA IN (receiver} line
and other miscellanegus contrel lines.

Data is ¢transmitted and received as B bits of serial data (L.SB
sant first) precsded by 2 logic zero start bit and succeeded
by a logic one stop bhit. The serial DATA DUT is transmitted as
positive logic (+4v = one/true/high, Ov = zero/false/low’. The
serial DATA DUT line always assumes its new state when the
sarial CLOCK OUT line goes high; CLOCK OUT then goes low in
the center of the BATA GUT bit time.

An end view of the Serial bhus connector af the computer or
peripheral is shown below (the cable connectors would of
courszs be a mirror image}:

OPERATING SYSTEM CO14355 ~— Bection 9
145

where: compufter CLOCK IN.
computer CLOCK DUT.
computer DATA IN.
GND.

computer DATA OUT.
GND.

COMMAND-.

MOTOR CONTROL.
PROCEED-.
+3v/READY.
computer AUDIO IN.
+12v.

INTERRUPT-,

Lo~ E PR~

BHwH®hnns a0 b A

Figure 9-4 Serial Bus Connector Pin Descriptions
CLOCK IN is not used by the present 0S and peripherals. This
line can be used in future synchronous communhications schemes.

CLOCK OUT is the serial bus clock. CLOCK OUT goes high at the

start of each DATA OUT bit and Teturnz to low in the middle of
each bit.

DATA IN is the serial bus data line to the computer.
Pin 4 GND is the signal/shield ground line.

DATA OUT is the serial bus data line #from the computar,
Pin & GND is the signal/shield ground line.

COMMAND~ is normally high and goes low when a command frame is
being sent #from the computer.

MOTOR CONTROL is the cassette motor control line (high=on,
low= of€).

PROCEED—~ is not used by the present 0S and peripherals; this line
is pulled high.

+3v/READY indicates that the computer is turned on and vready. This
line tan also be used as a +5 volt supply of SO0ma current rating
for ATARI peripherals only.

AUDIO IN accepts an audio signal from the cassette.

OPERATING SYSTEM CO1465%5 ~— Section 9
144

+12V is a +12 veolt supply of unknown current rating for ATARI
peripherals only.

INTERRUPT— is not used by the present OS and peripherals; this
line is pulled high.

There ar2 no pin reassignments made in the Serial bus cable,

50 pin 3, the computer ‘s DATA IN line, is the peripheral’s
data gutput line:; and similarly for pin 5.

Serial Port FElectrical Specifications

Peripheral input:

ViH = 2. Ov min.

Vil = 0. 4y max.

I1H = 20ua. max. 8 ViIH = 2. 0Ov
Tii. = Swa. max. @ VIL = . 4v

Peripheral output (open collector bipolars;

VOL = Q. 4v max. @ 1.6 ma.
VOH = 4 35v min. with external i0OKohm pull-up,

Vcec /READY input:
ViH 2.0v min. @ I1H = 1ma. max.

ViL 0. 4v max.
Input goes to logic zero when open.

Bus Commands

The bus protocol specifies that all commands must originate from the
computer. and that periphervals will present data on the bus only when
commanded to. Every bus operation will go fo completion before
another bus operation is initiated (no overlap). An error detected at
any point in the command sequence will abort the entire sequence.
A bus operation consists of the following elements:

Command frame from the computer.

Acknowledgement (ACK) from the peripheral.

Optional data frame to or from the computer.

Operation complete (COMPLETE) from the peripheral.

OPERATING SYSTEM CO16555 ~~ Section %
147

Command Frame

The serial bus protocol provides for three types of commands: 1} data
send, 2) data receive and 3) immediate (no data —— command onlyjl.
There is & common element in all three types, a command frame
consisting of five bytes of information sent from the computer

while the COMMAND- line is held low. The format of the command
frame is

shown belaw:

e e e +
i device ID :
Fom e R +
i command H
o —_ —+
i auxiliary #1 :
b e e o b e i e e e e +
i auxiliary #2 {
e e e +
H checksum H
+ A e e e +

Figure 9-5 Serial Bus Command Frame Format

The device ID specifies that of the serial bus devices is being
addressed (see Appendix I for a list of device IDs).

The command byte contains a device-dependent command (see
Appendix I for a list of device commands}.

The auxiliary bytes contain more device-dependent infarmation.

The checksum byte contains the arithmetic sum of the first four
bytes (with the carry added back after every addition}.

Command Frame Acknowledge

The peripheral being addressed would ﬁovmallg respond to a
command. frame by sending an ACK byte ($41) to the computer;: if

there is a problem with the command frame, the peripheral should
not respond. : i

Data Frame

OPERATING SYSTEM (016555 —- Seaction 9
148

Following f£he command frames (and ACK} can be an opftional data
frame that is formatted as shown below:

o it i e et e e +
1 i
L] !
) |
1 ¥
H data |
{ bytes H
1 i
1 L1
B +
: checksum :
$ +

This data frame can eriginate at the camputer or at the device
controcller, depending upon the command. Current device
controllars expect fixed—-length data framey as does the computer,
where the data frame length is a fixed function of the device
type and command.

The checksum value in the data frame is the arithmetic sum of all
of the frame data preceding the checksum, with the carry from
each addition being added back (the same as for the command
frame;.

In the case of the computer sending a data frame to a peripheral,
the peripheral is expected to send an ACK if the data frame is
acceptabla, and send a NAK ($4E), or do nothing if the data frame
is unacceptable. See the first flowchart in Section 2.

Operation Complete

& peripheral is also sxpected to send an speration—COMPLETE byte
($43) at the time the commanded cperation is complete. The
location of this byte in the command sequence for each command
type iz shown in the ¢timing diagrams in Section . IFf %the
ocperation cannot go €o normal: error—Ffree completion, the
peripheral should respond with an ERROR byte (#$43) instead of
COMPLETE.

OPERATING SYSTEM C016555 -~ Section %
149

Bus Timing

This section provides timing diagrams for the three types of

command sequences: data

DATA SEND sequence:

send, data receive, and immediate.

—_— +
COMMAND- ! H
F——— +
s -+ Fmmm f f—
DATA OUT i emnd | i data !
————+frame +—————- //——+ frame H—————————m—m—
+—+ +— +
DATA IN Vo HE o
+ +—= —+ F——f = =
ACHK ACK CMPL
i oIS ! Ll B :
t0 t1 t2 £3 ta £5
DATA RECEIVE sequence:
s s o e e v o i iy e i e e ——— P
COMMAND~ H }
o ————— *
i s e +
DATA OUT t cond |
T NS R T e
P s i S R
DATA IN o R data H
-+ Fw—=//=—+ +—+ frame o
ACK CMPL
H HE B !
t0 t1 &2 £3

OPERATING SYSTEM CO146555% —— Section 9

150

IMMEDIATE sequence:
s . P > s e e s e e e e e e s e s e
COMMAND - i i
e +
e s ot e +
DATA BUT i cand |
et frame + = e
e +—+
DATA IN HE P
~~~~~~~~~~~~ + o+ // S
ACK CHMPL
HH R A |
to t1 €2 t5
Figure 9-46 Serial Bys Timing Diagram

The tomputer generates a delay (t0) betwesn the lowering of COMMAND-

and the transmission of

computer t0 (min) =
computer t0O (max) =
peripheral t0 (min)
peripheral t0 (max3

the first byte of the command Fframe.

750 microsec.
1400 microsec.

27
?7?

-
]

The computer generates a delay (t1) between the transmission of
the last bit of the command frame and the raising of the COMMAND-

line.

computer £t1 (min) =
computer £1 (max) =
peripheval €1 (min}
pevripheral t1 (max}

&50 microsec.
250 microsec.

2?7
>7

-—

The peripheral generates a delay (t2) between the raising of
COMMAND- and the transmission of the ACK byte by the peripheral.

computer €2 (min) =
computer t2 (max) =
peripheral t2 (min}
peripheral t2 (max}

OPERATING

O microsac.
16 msec.

>?
27

SYSTEM C{1i4£555 —— Section 9
151



The computer generates a delay (£3) between the receipt of the
last bit of the ACK byte and the transmission af the first bit of
the data frame by the computer.

1000 microsec.
1800 microsec,

computer £3 (min)
computer t3 (mau}

H

7
7

peripheral £3 (min}
peripheral €3 (max}

[}

The peripheral generates a delay (t4) between the transmission of
the last bit of the data frame and the receipt of the first bit
of the ACK byte by the computer.

computer t4 (min) = BS0 microsec,
computer t4 (max} = 16 msec.

peripheral £4 {(min) = 2?7
peripheral €4 {(max) = 2?7

The Peripheral generates a delay (t5) between £the the receipt of
the last bit of the ACK byte and the first bit of the COMPLETE
byte by the computer.

290 microsec.
255 sec. (handler—dependent}

computer €5 (min)
compubter £S5 (max}

i

peripheral t3 (min} 7
peripheral £5 (max) N/A

HANDLER ENVIRONMENT

Nenresident handlers can be installed in at least three different
Manners:

i. As booted software from diskette or cassette.

2. Resident in a cartridge (A or Bl

3. Downloaded from a serial bus device.
This section will discuss the basitc mechanisms for handler
installation for these environments. In ardar to fully utilize the

information in this section, you must have read and understood the
+ollowing sections:

Program environments . . . . . . . . . . Bection 3
RAM region . . . . . . . . . . . . . . . Section 4
Memory dynamics. . Saection 4
System initialization. Section 7
Adding new device handlers/peripherals . Saction 9
Program enviranment and initialization . Section 10

DPERATING SYSTEM CD14555 —— Section 9
152



Bootable Handler

The diskette— or cassette—~booted software will insert the
handlar’s vector table pointer and name to the device table
whenever the booted soffware s initialization entry point is
entered (on power—up and system reset). Remember that both

power—~up and system reset clear the device table of all but the
resident handler entries.

Cartridge Resident Handler

The cartridge software will insert the handler ‘s vector table
pointer and name to the device table whenaver the cartridge’s
initialization entry point is entered {(on power—up and

system reset}. Remembear that both power—yp and system reset
cloar the device table of all but the resident handler entries;
therefore the device table must be reestablished by the
handler—initialization procedure upon every entry.

FLOWCHARTS

The following pages contain process Flowéharts showing the SJIO
and peripheral actions for the Serial bus command forms.

DPERATING SYSTEM CDi4355 -- Section 9

153



PERIPHERAL’S COMMAND FRAME PROCESSING

i o)

SWAIT PO
FHGEH 0 L

THARETION
OO LR T

¥

BET NEET 4 TRECHIT
Y TES QN
THE NUE

i

WAIT FOR
COMMAND-
70 GO HIGH

WAL

T ki TEMD. AR —
YALD

AUE OATE

BEMD A AITHE

OPERATING SYSTEM CO16555 —— Section 9
154



DATA FRAME TO PERIPHERAL

QLT M TS TIREDHIT
IR B

- ]
W LES L e L

a St | K
T

] YES

HEKL: MK

ETTTANFT 1O
PEF Ofs

e A TED
=R ATiim

e

,{: I:H'FM':ID’H

HWENED ERR —
=

OPERATING SYSTEM C016555 —— Section 9
155



DATA FRAME TO COMPUTER

C)
ATTEMPT 10 ‘
PERFCGREE

IRIEIR TN
OFERATION

: EFERATIN "“H..__I__ Kl L,
::_:_ HES e SEHDERR
\ﬁ?ﬁ/

LT 4 1]

COMPLTTE

'

REKT- DT
FARE

IMMEDIATE

SEMD ERR

GEWD
EORPLETE

OPERATING SYSTEM CO16555 —= Section 9
156



10 PROGRAM ENVIRONMENT AND INITIALIZATION

This section discusses possible alternative software environments
using 0S5 Configurations. Environments other than those discussed
here are also possible. A thorough understanding of the power-up
and system resef processes (see Section 7} will be necessary to
evaluate all alternative environments.

CARTRIDGE

Most games (and some language processors}? are supported via the
cartridge environment. The cartridge resident software is in
control of the system, sometimes using the DS and sometimes not.
A cartridge can specify whether the diskette is to be hooted at
power—up %time, whether the cartridge is to provide the
controlling soffware, or whether the cartridge is a special
diagnostic cartridge. These options are specified by bits in the
cartridge header, as shown below:

e e i e +
H cartridge i BFFA (PFFA for cartridge B)
+- —+
! start address |
e e e it i e +
H oG i
e e e e e e +
{ option byte H
e e e - +
; cartridgse H
e N
{ init address | BFFF (9FFF for cartridge B)
o — +

Figure 10-—1 Cartridge Header Format

The byte of "0O0" is used to allow the 0S5 to determine when a
cartridge is insevrted; locations BFFC and ?FFC will not read zero
when there is neither RAM at those locations nor a cartridge
inserted. RAM is differentiated from a cartridge by its ability
to be altered.

OPERATING SYSTEM C014655% —— Section 10
157



The option byte has the following option bifs:

bit 0 = O, then do nat boot the diskette.
1. then boot the diskette.

Bit 2

|3}

0, then init but do not starft the cartridge,
i, then init and start the cartridge.

bit 7 = 0, then cartridge is not a diagnostic cartridge.
1, then cartridge is a diagnostic cartridge and control
will be given to the cavrtridge before any of the OS
is initialized (JMP (BFFE}}.

The cartridge init address speacifies the location to which the 08 will
JSR during all powevr—up and system reset operations. As a minimum,
this vector should point €o an RTS instruction.

The cartridge start address specifies the location fo which the 0OS
will JMP duyring all power—yp and system reset operations., if

bit 1 of the option byte is = 1. The application should examine
the variable WARMST £0008} if system reset action is to be

different than power-up (WARMST will be zers on power—up and
nonzeroc thareafter?.

Cartridge Without Booted Support Package

A cartridge that does not specify the diskette—-boot option and does
not support the cassette-boot possibility can use lower memory

(from 0480 to the address in MEMTOP L[0O2E5]) in any way it sees
£it.

Cartridge With Booted Support Package

A cartridge fthat does specify the diskette-boot option or does
support the cassette-boot possibility must use some care in its
use of lower memory. The following regions are defined:

04B0-06FF is always available to the cartridge.
MEMiL.O/MEMTOP region is always available te the cartridge.

DISKETTE-BOOTED SOFTWARE

Software can be booted from the disk drive at power—-up time in
response to one of the following conditions:

OPERATING SYSTEM CU16535 —— Bection 10
158



Meither Cartridge A nor B is inserted.

Cartridge A is inserted and has bit O of its option byte
EBFFD] = 1, '

Cartridge B is inserted and has bi€t O of its option byte
ERFFD] = {.

If any of these conditions are met, the 05 will attempt to read

the boot record from sector #1 of disk drive I and then transfer
contrel to the software that was read in. The esxact sequence of

operations will be explained later in this section.

Diskette—-Boot File Format

The key tegion of a diskette—boot file is the first six bytes, which
are formatted as shown belouw:

flags first byte

# of sectors

memary address

to start load

———

init

address sixth byte

boot
continuvation
‘gode

A T TE I P P N SRR &

e o wm p aw f omm o omm e n o oae fome

Figure 10-2 Diskette—-Boaet File Format

The first byte is stored in DFLAGS [G240C], but is otherwise
vnused. 1% should #gqual zero.

The second byte contains the number of 12B-byte diskette sectors
to be read as part of the boot process (including the record
containing this information). This number can range from 1 to
258, with C meaning 256,

OPERATING SYSTEM C014355 —— Section 10

159



The third and fourth bytes contain the address (lo.hi) at which to
start loading the first byte of the file.

The fifth and sixth bytes contain the address (lo.hi} to which the
booter will transfer control after the boot process is complete
and whenever the [SYSTEM. RESET] key is pressed.

The Diskette File Management System (FMS) has extra bytes assigned to
its boot record, but this is a special case of the generalized
diskette-boot and is discussed in Section 5.

Diskette~Booft Pracess

If no cartridge is installed, then the diskette will follow these
steps to boot wup:

i. Read the first diskette record to the cassette buffer [C4001.
2. Extract information from the first six bytes:

Save the flags byte to DFLAGS (0240,11 Save the # of sectors
to boot to DBSECT [0241,1]. SBave the load address to BOOTAD
£0242,21. Save the initialization address in DOSINI L[000C, 21.

3. Move the record just read to the load address specified.
4. Read the remaining records directly to the load area.

3. JSR to the load address+6 where a multistage boot process can
continue, The carry bit indicates the success of this
operation {carry set = error, carry reset = success).

NOTE: During step 5 after the initial boot process is
complete, the booter will ftransfer control to the seventh byte
of the first record. The software should continue the boot
process at this point, if it is a multistage boot. The value
of MEMLO LQ2E7] should point to the first free RAM location
beyond the software just booted. It should be established by
the booted software as shown bhelow:

LDA #END+ 1 i SET UP LB8B.
STA MEMLO

BETA APPMHIE

LDA #END+1 /204 i SET UP MSB.
B8TA MEMLO+1

STA APPMHI+1

If the baoted software is fto take control of the
system at the end of the boot operation, the
vector DOSVEC [000A] must be set up by the
application at this time; DUSVEC points to the

OPERATING SYSTEM CO160H55 -- Section 10
160



restart entry for the boonted application. If the
booted software is not to take contral, then
DOSVEC should remain unchanged.

LDA H#RESTRY ; RESTART LSB.
5TA DOSVEC

L.DA #RESTRT /256

STA DOSVEC+H]

&, JSR indirectly through DOSINI for initialization of the
application; the application will initialize and veturn.

NOTE: The DS enters the initialization point on every
system reset and power-up. Internal initialization can take
place during system reset and power—up as well. Initialization

can also be deferred until Step 7 for controlling
applications.

7. JMP indirvectly through DOSVEC 4o transfer control to the
application.

NOTE: Pressing the LSYSTEM. RESET1 key after the application
is fully booted will cause steps & and 7 to be repeated.

Sample Diskette-Bootable Program Listing

This skeletal program can be booted from the diskette. It retains
control when it is entered.

i THIS IS THE START OF THE PROGRAM FILE.

PST= 0700 ; {(OR SOME OTHER LOCATION).
= PET i {. ORG).

i THIS IS THE diskette-boot CONTROL INFORMATION.

.BYTE O i

.BYTE PND-PET+127/128 i NUMBER OF RECQORDS.

. WORD PST i MEMORY ADDRESS T START LOAD.
. WORD PINIT i PROGRAM INIT.

OPERATING SYSTEM C014555% -~ Section 10
1461



i THIS IS THE START OF THE BOOT CONTINUATION.

LDA #PND i ESTABLISH LOW MEMORY LIMITS.
5TA MEMLO :

8TA APPMHI

LDA #PND /254

8TA MEMLO+1

STA APPMHI+1

LDA HRESTRY i ESTABLISH RESTART VECTOR.
sSTA DUSVEC

LDA #RESTRT /254

STA DOSVEC+1

CLC i SET FLAG FOR SUCCESSFUL BOOT.
RTS

F APPLIC&TIBN.INITIALIZATIDN ENTRY PODINT.

PINIT RTS i NUTHING TO DD HERE FOR ...
i ... CONTROLLING APPLICATION.

i THE MAIN BODY OF THE PROGRAM FOLLOWS.

RESTRT=%#
i THE MAIN BODY OF THE PROGRAM ENDS HERE.

PND== * i ’'PND’ = NEXT FREE LOCATION.
. END

Figure 10-3 Diskette-Bootable Program Listing Example

Program to Cresate Diskettes—Beot Files

This section provides a program that can be used to make bootable
files on diskettes. The program given is not the only one possible.
and no claims are made as to its elegance. '

OPERATING SYSTEM 016555 —— Section 10
162



Shown below is a listing of the program to creats diskette-boot files.

THIS PROGRAM WRITES A SINGLE "FILE® TOD THE DISKETTE AND IS
USED IN CONJUNCTION WITH A PROCEDURE TO MAKE DISKETTE-
BOOTABLE FILES. THE FOLLOWING TWD SYMBOLS MUST BE EQUATED

i USING THE MEMORY LIMITS OF THE PROGRAM TD BE CDPIED:

‘PST* = PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).
‘PND* = PROGRAM END ADDRESS (SEE SAMPLE PROGRAM).
SECS517=128 i DISKETYE SECTOR SIZE.
PET= $0700
FPND= $1324
FLEN= PND-PST+SECSIZ~1/8SECSIZ ; # OFf SECTORS IN FILE.
#= $B000 i THIS PROGRAM'S ORIGIN,
BOOTB BRK i ##% LOAD APPLICATICN 3t
i BET UP DEVICE CONTROL BLOCK FOR DISKETTE HANDLER CALL

L.DA #FLEN i % OF SECTORS TO WRITE,
&TA COUNT

LDA #1 i DISK DRIVE #i.
87TA DUNIT

L.DA #'W i SET UP FOR WRITE WITH CHECK,
STA DCOMND

LDaA #PST i POINT TD} START DF APPLIC. PROG.
5TA DBUFLD

LDA #PE5T/256
STA DBUFHI

DA #01 i SET UP STARTING SECTOR # = 0001,

8TA DAUX1
LDA #00
BTA DauUX2

OPERATING SYSTEM CDi1655% —— Section 10

163



i NOW WRITE THE FILE ONE SECTOR AT A TIME.

BOTOIC JSR DSKINY i WRITE ONE SECTOR.
BMI DERR i ERROR.
LDaA DBUFLO i INCREMENTY MEMORY ADDRESS.
CLC
ADC #SECSIZ
STA DBUFLD
LDA DBUFMI
ADC #0

STA DBUFHI

INC DAUX1 i INCREMENY SECTOR #.
BNE BOTO2C
INC DAUX2

BOTOZ20 DEC COUNT i MORE SECTORS TO WRITE?
BNE BOTOQ1I0 i YES.
HBRK i STOP WHEN DONE.

DERR BRK i STOP ON ERROR.

COUNT #=%+} i SECTOR COUNT.

i THIS IS THE CARTRIDGE HEADER

#= $BFFQ i "A" CARTRIDGE.
INIT RTS

. WORD BOOTB

.BYTE 0. 4

. WORDE  INIT

. END

CASSETTE-BOOTED SOFTWARE

You can bhoat software from the cassette as well as from the

diskette, at power—-up. The following regquirements must be met in order
to boot from the cassette;

o You must be pressing the [STARTI key as power is
applisd to the system.

o A cassette tape with a proper boot format Ffile must be
installed in the cassette drive, and the PLAY button must be
pressed.

OPERATING SYSTEM CI4555 —— Section 10
164



v} When you are given the avdio prompt by the cassette
handlier you must press the [RETURNI key.

I+ all of these condifions are met, the 05 will read the boot file
from the cassette and then transfer control to thas software that
was read in. The exact sequence of operations will be explained
later in this section.

Cassette—-Bont File Format

The key region of a cassette—-boct file is the first six bytes: that
are formatted as shown below:

[

i
R I 2 JEE AR AP S

Memory Address

——— s

+
+
i To Start t.oad
i
+
{
S

Init

v e e e ey WA M L s e . o ey ikl S

The first byte is net used by the cassette-boot pracess.

The second byte contains the number of 12B-byte cassette records to
be read as part of the boot process (incluwding the record
containing this information). This number can range from i %o 255,
with ¢ meaning 256

The third and fourth bytes contain the address (lo.hi) to which the
booter will ¢transfer control after the boot process is complete and
whenever the [SYSTEM RESETI key is pressed.

Cassette-Boot Process

The cassette—hnot process is described step-by-step for a
configuration in that no rartridge is insftalled and no diskettes are
attached. For f£he general case see Section 7.

i. Read the first cassatte record tc the rassette buffer.

2. Extract information from the Ffivst six bytes:

OPERATING SYSTEM C016555 —— Section 10
165



Bave the # of records to boot. Save the lpad address. Save
the initialization address in CASINI {00021

3. Move the record just read to the load address specified.
4. Read the remaining records directly te the load area.

5. JBR ¢to the load address+é where a multistage boot process
can continue; the carry bit will indicate the success of
this operation (carry set=errvor, carry resat~success).

6. JSR indirectly through CASINI for initialization of the
application; the application will initialize and return.

7. JMP indirectly through DOSVEC to transfer control to the
application.

Pressing the [SYSTEM. RESET] key after the application is fully booted
will cause steps & and 7 to be repeated.

NOTE: After the initial boot process is complete, the booter will
transfer control to the seventh byte of the first record; at this
point the software should continue the boot process (if it is a

multistage boot) and then stop the cassette drive, which due to a

system bug will still be running, using the following instruction
sequence:

LDA #$3C
S5TA PACTL E£D3021
The application should then set a value in MEMLO [02371 that

points to the first free RAM location beyond the software just
baoted, as shown below:

L.DA H#HEND+1

S5TA MEMLO

STA APPMHI

I.DA #END+1 /256
5TA MEMLO+1
STA APPMHI+1

If the booted software is to take control of the system at the end
of the boot operation: the vector DOSVEC [O00A]l must be set up by
the application at this time; DOSVEC points to the restart entry
for the booted application. If the booted software is not to take
control, then DOSVEC should remain unchanged.

LDA #RESTRT i RESTART LSB
STA DOSVEC

LDa& #RESTRT/254

STA DOSVEC+1

NOTE: The initialization point is entered on every system reset
and power—up; internal initialization can take place here.

OPERATING SYSTEM CO14585 —— Section 10
1464



For controlling applications initialization can also be deferred

until step 7.

Sample Cassette-Bootable Program Listing

Bhown below is a skeletal program that can be baoted from the
cassette and that retains control when it is entered.

i THIS IS8 THE START OF THE PROGRAM FILE.

PET= 0760

= PST

i (0OR SOME DTHER LOCATIONMN).
i (. ORG).

i THIS I8 THE cassette-boot CONTROL INFORMATION,.

. BYTE
. BYTE
. WORD
. WORE

i THIS IS THE

LbA
85TA

LbA
B5TA
STA
LDA
ETA
57A

LDA
STA
LDA
STA

CLC
RTS

&

i {DOESN'T MATTER).

PND-PST+127/128 ; NUMBER OF RECORDS.

PST
PINIT

i MEMORY ADDRESE TO START LOAD.
: PROGRaM INIT.

START OF THE BOOT CONTINUATIONM.

#$30
PACTL.

#PND
MEML.O
APPMHI
#PND/256
MEML.O+1
APPMHI+1

#RESTRT
bBOsSYEC
#RESTRT /296
DOSVEC+1

i STOP THE CASSETTE.

i ESTABLISH LOW MEMORY LIMITS.

i ESTABLISH RESTART VECTOR.

i SET FLAG FOR SUCCESSFUL BOOT.

i APPLICATION INITIALIZATION ENTRY POINT.

PINIT RTS

i NOTHING TO DO HERE FOR . ..
i ... CONTROLLING APPLICATION.

i THE MAIN BODY OF THE PROGRAM FOLLOWS.

RESTRT=4

i THE MAIN BODY OF THE PROGRAM ENDS HERE.

OPERATING SYSTEM C0146555 —— Section 10

1467



PND= # i 'PND’ = NEXT FREE {OCATIDN.
. END :

Figure 10—-4 Sample Cassette—RBootable Program

Program to Create Cassette-Boot Files

This section provides a program listing that can be used to make
bootable files on cassette tapes. The program given is not the only
one possible, and no claims are made as to its elegance.

Shown below is a listing of the program to create a cassette—boot
file:

THIS PROGRAM WRITES A SINGLE FILE TO THE CASSETTE AND IS
USED IN CONJUNCTION WITH A PROCEDURE TD MAKE CASSETTE-
BOOTABLE FILES. THE FOLLOWING TWD SYMBOLS MUST BE EQGUATEDR
USING THE MEMORY LIMITS OF THE PROGRAM TO BE COPIED:

. e e e

; *PST ¢
; *PND ¢

PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).
FROGRAM END ADDREESS (SEE SAMPLE PROGRAM).

[

PST= $0700
PND= $1324

FLEN= PND-PST+127/128%128 i ROUND UP TO MULTIPLE OF 128
#= $8000 i THIS PROGRAM'S ORIGIN.
BOOTB LDX #$10 i USE I0CH #1.

i FIRST OPEN THE CASSETTE FILE FOR WRITING.

LDA #OPEN i SET UP FOR DEVICE “OPEN.“

ETA ICCOM. X

LDA #OPNOT i DIRECTION IS “OUTPUT. "

8TA ICAXI, X

LDA #%£80 i SELECT SHORT IRG.

STA ICAX2: X

LDA #CFILE i SET UP POINTER TO DPEVICE NAME.
STA ICBAL., X

LDA #CFILE/236
STA ICBAH, X

JER CIov i ATTEMPT TO OPEN FILE.
BMI CERR i ERROR.

i NOW WRITE THE ENTIRE FILE AS ONE OPERATION.

OPERATING SYSTEM C016555 ~- Section 10
1468



L.DA
STA

DA
85TA
L4
STA

LDA
STA
t.DA
STA

JBR
BMI

#PUTCHR
ICCOM. X

#PST
ICBAL, X
#PET /256
ICBAH, X

#FLEN
TICBLL., X
#FLEN/256
ICBLH. X

cCipv
CERR

i

SET UP FOR "PUT CHARACTERS. *

POINT TO START OF APPLIC. PRGG.

SET UP # OF BYTES TO WRITE,

WRITE ENTIRE FILE.
ERROR.

i NOW CLOSE THE FILE AFTER SUCCESSFUL WRITE.

CERR
CFILE

i THIS

INIT

i.DA
STA

JSR
BMI

BRK
BRI
. BYTE
IS THE
$BFF%
RTS
. WOREB
. BYTE

. WORD
. END

#CLOBE
ICCOM, X

cIov
CERR

“C: " CR

CARTRIDGE HEADER

BOOTE
C. 4

INIT

i

SET UP FOR “CLOSE.

CLOSE THE FILE.
ERROR.

STOP WHEN DONE.

STOP ON ERROR.

FILE NAME,

llAll

CARTRIDGE.

OPERATING BYSTEM CO1&65505 —— Gection 10

169



11  ADVANCED TECHNIQUES AND APPLICATION NOTES

This section presents information to use the capabilities of the 0S5
and some of the hardware capabilites fthat aren‘¢ directly available

through the 0S .and in fact, can be in direct conflict with parts of
the (5.

SOUND GENERATION

The 0S5 uses the POKEY sound generation capabilities only in the I/0
subsystem, +For cassette FSK tone generation., and for the "noisy
bus” option in SIO.

Capabilities

The hardware provides four independently programmable audio
channels that are mixed and sent to the television set as part of
the composite video signal, The POKEY registers shown below are all

concerned with sound control (as described in the ATARI Home
Computer Hardware Manual).

AUDCTL £D2CR1 Audio control.

AUDC1 £D201] and AUDF1 [D2001] Channel i control.
AUDRC2 £D203]1 and AUDF2 [D202] Channel 2 control.
AUDC3 (D205] and AUDF3 [D204) Channel 3 control.
AURC4 (D2071 and AUDF4 [DH20&] Channel 4 control.

Contlicts With 0S5

There are two potential conflicts with the OS invelving sound
generation:

a The OS can generate its own sounds and then turn off all sounds

as part of I/0 operations to the cassette and the serial bus
peripherals.

=] The 0S does not turn off sounds when you press LSYSTEM RESETI or
EBREAK]. If the sounds are to be turned off under those
conditions: the controlling program must provide that capability.

OPERATING SYSTEM C0146555 -~ Section 11
170



SCREEN GRAPHICS

Hardware Capabilities

The hardware capabilities for screen presentations are quite
versatile; the (S uses a very small amount of the capability
pravided. The means of extension, however, ave non-trivial; and
making changes te a screen format while still utilizing the
resident Display Handler will be difficult. See the ATARI Home

Computer Hardware Manual for information regarding screen
presentations,

08 Capabilities

The resident Display Handler arbitrarily supports 8 of the 1i
possible full screen modes (11 of 14 modes if the GTIA chip is used
in place of the CTIA). The resident Display Handler allows for an
cptional "split-screen® text window of fixed size. The hardware
allows for many more options than the Display Handler supports, as

will be seen by reading the ATARI Home Computer Mardware
Manual.

Cursoar Contrel

You ctan control the Display Handler text and graphics cursors
divrectly (see Section 5 and Appendix L., Bi-4},

Colar Control

You tan alter the color register assignments that the Display
Handler makes upon all OPEN commands (see Appendix L B7-8 and
elsewhere}. Nofte that every system reset or Display Handler OPEN
will reset the values back to the system default.

OPERATING SYSTEM CO146555 ——~ Section 11
171



Alternate Character Sets

Two character sets are available in screen text maodes 1 and 2. The
value stored in the data base variable CHBAS LO2F4] selects the
character set of interest to you. The default value of £EQ
provides capital (uppercase) letters., numbers and the punctuation
characters corresponding {o display codes %20 through %5F in
Appendix E)}. The alternate value of $E2 provides lowercase letters
and the special character graphics set (corresponding to display
codes %60 through %$7F and 300 through #%1F in Appendix E}.

User—defined character sets can alsc be obtained for text modes O,
i, and 2 by providing the character matrix definitions in RAM and
setting CHBAS to point to those definitions. CHBAS alwaygs contains

the most significant bits of the memory address of the start of the
character definitions, as shown below:

CHBAS | MSB tx x! Text mode O

i MSB ixt Text modes 1 and 2

Figure 1i-1 User-Defined Character Set Bit Memory Addresses

(X indicates an ignored address bit
assumed to be O. }

OPERATING SYSTEM CD16555 ~— Bection 11
172



Each characfer is defined by an B x B bit matrix; fthe
tharacter ‘@ is defined as shown below:

7

Byta +—F—4—4—F—F—tutey
ICICICIOIOIOINIO! O
F—d == ===k
ioloi1i1itiligiot 1
g Al T R T T LS et
1011311011 :110101 4
Bt L e e o e e
01 111011111010H 3
o s e e s e
(0ii11Gi1iLI0ICH 4
A o i e e s e o e e
IGiITI1I0IQI0I0I0!H 5
LT TR S L e s S T
i0I0IL111111110101 [
LSt et R St At e e T
ICGICIGIGIGIOI0I0! 7
== o e e e e e

Figure 11-2 User Defined 8 ¢« B8 Character Matrix Bit Table

The storage for the character set involves eight consecutive
butes for sach character with characters ordered consecutively by
their internal code value (see the discussion in Appendix L

relating to B5S5).

Character base

+.....-..—

! Character for

i code %00

Character for
cade %01

o mm oAm dp owm ==

e e M s — e, B i) —

Character {for
code %7E

Character far
code $7F

R ok e RS P

.}- e wim e == omn af owe

Figure 11-3 Character Base Diagram

PLAYER/MISSILE GRAPHICS

8 bytes

increasing addresses

The 05 makes no use of the player/missile generation capability
of the hardware. It can be used independently of the 05 with no

conflict.

OPERATING SYSTEM CO165535 —~~— Section 1i

173



Hardware Capabilities

The herdware allows a number of independently moveable screen
objects of limited width to be positioned and moved about the
screen without affecting the "playfield" (bit-mapped graphics or
character) data. Priority control allows the various objects to
have a display precedence in case of conflict (overlap).

Conflicts With 0OS

You must assure that the player/missile data is
address—-aligned as vequired by PMBASE ID407]. You also must

find a suitable free area that the U5 guarantees to be free under
all environments,

READING GAME CONTROLLERS

The OS5 reads the game controllers (shown below) as part of the
stage 2 VBLANK process (see Appendix L J1-9}:

Joysticks/triggers 1-4.

Paddle controllers/triggers 1-8.
Driving controllers/triggers 1-4,
lLight pen/trigger '

In addition to these controllers, other information can be sensed
or sent using the PIA chip to that the conscole connectors are
interfaced.

Keyboard Controller Sensing

Data can be read from an ATARI keyboard controller connected to the
first port. This program alters registers on a chip called a PIA,

To set these back to the default values to do further 1/0, hit
[SYSTEM. RESET] or POKE PACTL.&40. If this program is to be loaded from
diskette, use LOAD, not RUN and wait for the busy light on the disk
drive to go out. Do not execute the program before this light goes
sut:, otherwise the diskette continues to spin,

1 GRAPHICS ©

5 PRINT :PRINT * KEYBOARD CONTROLLER DEMO"

10 BIM ROW(3}, IS{13), BUTTONS (1)

30 GUSUB &C00

40 FOR CNT=1 TO 4

60 POSITION 2, CNT#2+5: PRINT “"CONTROLLER # ":CNT; ":";

OPERATING SYSTEM CD146555 —— Section 1t
174



70 NEXT CONT

80 FOR CNT=1 TO 4:G0SUB 7000: POSITION 19, CNT+CNT+5: PRINT BUTTONS;
NEXT ONT

120 60TO BO

&000
&010
&020
4025
&030
&£040
&050
7000

7001
7002

7003
70GS
7008
7010
7020
7030
7050
7060
7070
7080
7070
7095

REM #3# SET UP FOR CONTROLLERS #s

PORTA=54016: PORTE=54017: PACTL=54018: PBCTL=54019

POKE PACTL, 48: POKE PORTA, 255: POKE PACTL, S52: POKE PORTA. 221
POKE PBCTL. 48: POKEPORTE, 255: POKE PBCTL, 52: POKE PORTE. 221
ROW(Q)=238: ROW(1)=221: ROW(2)=187: ROW(3}=119

Ig=" 12345678F%0#"

RETURN

REM #% RETURN BUTTON$ WITH CHARACTER FOR BUTTON WHICH HAS
BEEN PRESSED ON CONTROLLER CNT (1-4). #

REM ## NOTE: A 1 WILL BE RETURNED IF NO CONTROLLER IS
CONNECTED. #3#

REM ## A SPACE WILL BE RETURNED IF THE CONTROLLER IS
CONNECTED BUT NO KEY HAS BEEN PRESSED. #x

PORT=PORTA: IF CNT>2 THEN PORT=PORTBE

P=1

PAO=CNT+CNT~2

FOR J=0 TO 3

POKE PORT, ROW(.J)

FOR I=1 T4 10:NEXT I

I PADDLE(PAO+1)>10 THEN P=J+J+J+2: GOTD 7090
IF PADDLE(PAQ)>10 THEN P=J+J)+J+3: GOTO 7090
IF STRIG(CNT-1)=0 THEN P=J+J+J+4:G0OTO 7090
NEXT J

BUTTONS=I$(P, P}

RETURN

Figure 11-4 Reading Data From an ATARI Keybeard Controller

OPERATING SYSTEM C016555 —— Section 11

175



The table below shows the variable/register values used for reading a
keyboard controller from each of the four controller ports.

Port 1 Port 2 Port 3 Peort 4
B e il s s s L A e (ot S R 5
| PORT A& | i I H i
idirection!l OF i FO ' = H = '
Ibits i H | : H
G o e et ot e e e e e e e s e e e e e e e e e e e
{ PORT B | i H |
idirection! - 1 - i OF I FO }
ibits | | | X }
R S T Y T T S S T W A A s o Lt T T
! Port & | FE.FD, | EF,DF | | |
! row sel | FB.F7 | BF.7F | = ] - |
i ect [ | | | |
R T T T R e T T e e e et
i Port B | | FE.FD,'| EF.DF, |
i row se—- | - - i FB.F7 | BF:7F |
{ lect H i | i
B S A e s ks T ot HEE LTS s e et et S
| Column 1!PADDLI [PADRDL3 (PADDLS {PADDL7T |
! Sense H H H { H
S S S L S B S s el ot R s A
! Column 2!{PADDLC (PADDLZ PADDLA (PADDLA |
{ Sense i H i H H
O e T T B e e I e s sk ¥
I Column 3ISTRIGC ISTRIGL ISTRIGZ ISTRIGSE |
i Sense H H H : i
I N s ot o L S B S e Tt s S

Figure 11-5 ATARI Keyboard Controller Variable/Register Value
Table

Front Panel Comnectors as I1/0 Parts

The three pages that follow show how some of the ping in the front
panel (game controller) comnectors can be used as general I/0 pins.

Hardware Information

PIA (6320 / 6B20}
Dut: TTL levels:, 1 load
In : TTL levels, | load For more infarmation refer
to 4520 chip manual.

OPERATING SYSTEM CO146555 —— Bection 11
176



Port A Circuit (typical}:

220
Wy

4320
port

gOO i

X
L '_“Jatk

i =

i/

Male connector: FRONT view

& 8 &
e @
&

L]
=3

= T = Pin B8 = Ground
BFin 7 = Voo B8+5yv #)

Port B Circuit (zgpxcal): Note: S0mA maximum

(B) 4. 7K total external drain
e . [Jari on power supply allowed

Port QQQ-Q;Gﬂi

"Trigger" Port Circuit (typical}:

- 220
CTIA Trig ﬂWﬂJA Jack

R

g;tﬂﬂi

Software Information

6520 PlA: (This also pertains
Port A control (address D302)

7 & 5 4 3 2 1 0

o B ) s R T I S T 0« s Bl

to all of the following: H##}

Write this into this register

t————-Pnrt A DatasData direction addres

ing
O =
i =
Port A data direction {address
e ) e R ()
bl e ol e (] [ x|
[

bttt

A
|

control
Data Direction is at D300
data is at D300

D300}

Write this into this Tegister.

Data directiaon control
for Port A

1 Out

O In

OPERATING BYSTEM COi&5%55 — Section 11

177



Port A data (address D300}
7 & 5 4 3 2 1 0O

i Read or Write this Tegister

Jack 2 Jack 1
Pin Numbers

Port B Control {address D303)
lofof1 [a]1]x]of0]

6520 PlA:

Port B Contrul (address D363}
7 & 9 4 3 2 1 0

olof1]1|1]x[ofo] write this

into this register

t—ua——Port B DatasData direction

addressing control
B30 contains data
direction
i $D301 contains
Port B data dirvection {address D301}

7 & 5 4 3 2 1

I EEICT

0

|

|

X| X write this into this register

-!—Hx

== <

= el

Lx [x
4

~-data direction contrel for Port B
i = Dut

O = In
Port B data (address D301}

Four “Trigger" ports: D010, DO1l, DO12, BOI3
JRERSWISEN 4 SRR N1 O

[o]o]o]o]ofo]o] x| read tnis pors

f———Triggta-l" Yalue

D010 = Port 1 Pin &
BGI3 = Port 4 pin &

178 OPERATING SYSTEM CO16555 ~- Section il



Other Miscellansous Software Information

1%.

2.

Pata Base

STICKO

STICKI
STICKZ
STICK3

STRIGO

STRIG1
STRIG2
STRIG3

PADDL 1

PADDL3
PADDLS
PADDL?
PADDLO
PADRDLZ2
PADDIL.4

PABDL &

Figure

The OS5 sets up all PIA ports as inputs during

initialization.

The 08 usually reads the above once par ftelevision frame

{during

vertical-blank) into RAM as follows:
MName Address Data Pins S
0278 @ E L i (o Jack 1, pins 4,3, 2,
i¥ 10053, 7
ojojojofx|x]|x][x
0729 Jack 2, Pins 4,3,2,1
0274 Jack 3, Pins 4,3,2.1
0278 Jack 4, Pins 4,3, 2,1
284 Jack I, Pin &
7 &6 5 4 3 2 1 ¢
o285 |oJeJofol[o]o] o] Juack 2, Pin &
0286 Jack 3, Pin &
oz87 Jack 4, Pin &
Q27¢ 7 & 3 4 3 2 1 0
[_x__x': X{ x| x| x| x| x Jack 1, Pin 5
oR72 Jack 2, Pin 5
0274 Jack 3. Pin 5
0276 Jack 4, Pin S
0271 Jack 1. Pin 2
0273 Jack 2. Pin 9
0275 Jack 3, Pin 9
o277 Jack 4, Pin 9

i1-6 Using Front Panel Connectars As I/0 Ports: Pin

Funection Tabl

L3

#* Pins 5 and 9 are read through the paddle controllier circuitry
a nominal value of 7 indicates that the pin is high (or floating)
and a nominal value of 228 indicates that the pin is pulled low.

DPERATING SYSTEM C014555 -~ Section 11

172



Appendix A —— CIO COMMAND BYTE VALUES

The following hex values are known to be legitimate CIO commands.

Most handlers:

032
05
07
o9
OB
0c
oD

OPEN .

GET RECORD

GET CHARACTERS
PUT RECORD

PUT CHARACTERS
CLOSE

GET STATUS

Display Handler anly:

11 - FILL
12 ~— DRAW

Diskette File Manager anly:

20
21
22
23
24
29
26

180

RENAME
DELETE
FORMAT
LOCK
UNLOCK .
POINT
NOTE

BPERATING SYSTEM CD16555 —— Appendix A

\\._//



Appendix B —— CID STATUS BYTE VALUES

Shown below are the known CIOD STATUS BYTE values.

01 (01} —~— OPERATION COMPLETE (NO ERRORS)

BO (1i28) —— L{BREAKI KEY ABORT

81 (129) -- I0CB ALREADY IN USE (OPEN)

82 (130) —-- NOM-EXISTENT DEVICE

83 (131) —— 0OPENED FOR WRITE ONLY

84 (132 —~— INVALID COMMAND

85 (133) —— DEVICE 0OR FILE NOT OPEN

B&6 (1343 ~—- INVALID IOCB MUMBER (Y reg only}
87 (135 —— QOPENED FOR READ ONLY

88 (13&£) —— END OF FILE

89 (137} —— TRUNCATED RECORD

8A (138} —— DEVICE TIMEOUT (DOESN'T RESPOND}
BB (139} -- DEVICE NAK

8BC (140 ~— SERIAL BUS INPUT FRAMING ERROR

Bl (141) ~— CURSOR out—of~range

BE (142) -— SERIAL BUS DATA FRAME OVERRUN ERROR
BF (143) —— SERIAL BUS DATA FRAME CHECKSUM ERROR
F0 (144 — DEVICE DONE ERRDR

1 (145 — BAD SCREEN MODE

22 (144) —— FUNCTION NOT SUPPORTED BY HANDLER
?3 (147) — INSUFFICIENT MEMORY FOR SCREEN MODRE
AQ (1460) —— DISK DRIVE # ERROR

Al (1581) —— TOUO MANY DPEN BISK FILES

A2 (162) —— DISK FULL

A3 {(1563) — FATAL DISK I/0 ERROR

Ad (154) — INTERNAL FILE # MISMATCH

ADS (163) —— FILE NAME ERROR

A6 (14656 —— POINT DATA LENGTH ERRDR

A7 (167F —— FILE LOCKED

AB (14683 — COMMAND INVALID FOR DISK

A? (14%} —— DIRECTORY FULL (44 FILES)

AA (1707 —— FILE NOT FOUND
AR (171} —- POINT INVALID

OPERATING SYSTEM CO146553 -~ Appendix B

181



Appendix € —- SI0 STATUS BYTE VALUES

Shown below are the known SI0 STATUS BY'TE hexadec ima.l values.

o1

8A
8B
8c
8E
BF
70

182

(0C1)

(138>
(139}

(140}

(142}
(143)
(144)

DPERATION COMPLETE (ND ERRORS)

DEVICE TIMEDQUYT (DOESN‘T RESPOND)
DEVICE NAK

SERIAL BUS INPUT FRAMING ERROR
SERIAL BUS DATA FRAME OVERRUN ERROR
SERIAL BUS DATA FRAME CHECKSUM ERROR
DEVICE DONE ERROR

OPERATING SYSTEM CO1635% —— Appendix C



Appendix D —— ATASCII CODES

EX

CX

AX

8X

6X

4X

2X

px

BELL
ChER

ENER

Space

|4 N M= W0 - 0]

o [T Il P [NEATN] =Ll fa J1 L 0L o

-1

CEOCo0sno=a ;0000

g9

g1

g2

B3

g4

as

g6

g7

a8

#9

ga

2B

gc

@D

gE
g

¥

17
11

12

13

14
15

lé

17

18
19

1A
iB
1C
1D

1E
1

F

183

OPERATING SYSTEM CD14535 -~ Appendix D



Appendix E —— DISPLAY CODES (ATASCII)
2X 4X 6X

=
P

8X AX CX EX

| s | e 0
k) : A a
@ |- B b
ﬁl # C o
q $ D d
3 - -
I_ & F £
: e J
E] ( H h
B } I i
B * J j
n + K k
" , L 1
!ii - M m
B . N n - |
/ @ ® CODES 8§-FF SHOW AS
THE INVERSE VIDED
0 P OF CODES $g-7F
11 i: 0
12 | a R
13 £y S
14 T
15 B u
16 ]] v
17 ﬂ W
18 = X
19 I 0] Y
1A L z
13 & C
ike: AN
1D i
1R (= A
iF EI -

OPERATING SYSTEM CD16555 ~- Appendix E

184



Appendix F —— KEYBOARD CODES (ATAGCII)

Where: & as a prefix indicates L[SHIFT).
~ as a prefix indicates C[CTRLI.
i\ as a prefix indicates ATARI key inverse active.

DPERATING SYSTEM CD14555 —— Appendix F

CTRL. SHIFT & SHIFT LOWER
L.OWER

00 ' 20 20 <space> 21 40 8 39 &0 ™,
01 . 3F 21 ¢ iF 41 A 3F &1 a
02 B 15 22 " iE 42 B 15 &2 b
03 C i2 23 # 1A 43 € 12 &3 ¢
Q4 D 3A 24 4 i3 44 D 3A a4 d
05 E 2A 25 % ib 45 E 24 &5 e
Oé& F ae 26 % 1B 45 F 386 && £
o7 G 3D 27 7 33 47 G 3D &7 4
08 H 39 28 ( 30 48 H 39 &8 h
o9 I oD 29 32 49 I ObD 69 i
Oh o 431 24 = o7 44 J 01 6A
OB " 0S 2B + (878 48 K 05 &B &k
oC i 00 2C 20 4C . ¢©O &C 1
oD M 25 20 - OE 4n M 295 &0 m
0OE N 23 2E . 22 4E N 23 &E n
oF o o8 2F 7/ 26 4F 0 08 &F o
10 P OA 30 0 32 5¢ P OA 70 p
11 G 2F 31 1 iF 81 G 2F 71 1
i2 R 24 32 2 iE 52 R 2B 72 r
13 5 3E 33 3 iA 3 & 3E 73 s
14 T 2D 34 4 ig 54 T 2D 74 ¢
15 i OB 35 S iD 55 U OB 79 u©
i& v 10 36 & 95 58 VO i0 748 v
17 W 2E 37 7 33 57 W 2E 77 w
18 ¥ 14 38 8 35 S8 X 1& 78 «x
19 Y ZB 3% 9 30 572 Y 2B 79 y
14 Z i7 3A o2 7- S S I § 76 z
iB <Lesco 1C 3B Oon 58 £ 20 7B i
1€ ~CupZ GE 3¢ < 36 sC \ 06 7C i
1D “{down> OF 3D = OF s 1 22 7D <Lcleard
iE ~Cleaft> 06 3E&E 37 s ~ 07 7E <hack>
iF ~<Lright>07 aF 7 26 5 _ OE 7F <tab>
80-9A /[iM O0—1A oF  sltabl 2C
98 <return> and 3 0OC, 1A AD-FC /N 20~7C
¢ sidel’ 34 FD 2 iE
2D s<insert>37 FE ~ddells - 34
9E ~Ltab 20 FF ™Cinserto3d7
Leleary := s o
freturny ;.= <returnl or sireturn’> or ~return
<esed> ‘= {escry or s{esc> or “Kesc>
<spacer ::= <space> ar s<{space> or “ispacer

22
3F
i5
12
3A
24
38
3D
39
0D
01
03
00
29
23
o8
0A
2F
28
3E
2D
OB
10
2E
14
28
17
02
aOF
36
34
2c

185



Appendix G —— PRINTER CODES (ATASCII)

Character set for "normal"” mode printing:

20 <space> 40 @ &0 ¢
en b 41 A 41 a
22 42 B &2 b
23 & 43 C 483 «c
24 % 44 D 64 d
28 “ 45 E 65 e
26 % 46 F &6 F
27 47 ¢ &7 ¢
28 ¢ 48 H 68 &
29 49 1 67 i
248 % 448 J LA
2B + 4B K 6B &
2C 4C L 4C 1
2D B= 4D M &0 m
2E . 4E N 6E n
2F / 4F 8 & o
a0 o SO0 P 70 p
31 i 51 @ 71 g
32 2 92 R 72
33 3 53 8§ 73 s
34 4 54 T TARE L
35 5 5% U 75 wu
36 b 56 V 76 v
3z 7 57 W 77 w
g 8 58 X 78 «x
39 9 59 Y 79 oy
3A °a 2 TARE 2
3 SB € 7B £
3¢ < 5C 7CWP!
3 = SD 1 7D 1}
3 > 5 ~ 72~
3F 7 SF 7F <spacel

NMote: The following codes print differently than defined by
the ATASCII definition.

00 thraugh 1F print blank.

&0 prints ' instead of "diamond®.
7B prints € instead of "spade®.

70 prints } instead of "clear™.

7E prints ™ instead of "hackspace".
7F prints blank instead of “tab".

OPERATING SYSTEM CD16555 —- Appendix G
186



Character set for “sideways" mode printing:

30
31
32
aa
34
35
3&
37
as
39
3A
3B
3C
3D
3E
aF

NONO DN = Q

SV IV | e T

Note:
the ATASCII definition.

40
41
42
43
44
45
46
47
18
4%
44
48
4
4D
4E
4F
50
51
s2
53
oS4
59
56
57
58
59
24
oB
SC
oD

et S PAN X ECC-BABVAZICTETLTITODNMOOE DM

&0
&l
&2
&3
&4
&5
&b
&7
&8
&9
LA
&B
6C
&D
&E
&F
70
71
72
73
74
739
76
77
78
79
7h
78
7C
7D

WA PMNA R ECC-MNVEIDOZINFToemTIToTMOOR DA

SE <up> 7E <up>
SF <leftd> 7F <left>

the following codes print differently than defined by

0C through 2F print blank.
SE prints "up arrvow® instead of
5F prints "left arrow" instead of

&0 through 7F repeats 40 through SF instead of proper set,

OPERATING SYSTEM CO16555 -~ Appendix @

187



Appendix H -— SCREENM MODE CHARACTERISTICS

Mode

10

188

Horiz.
Posit.

40

20

20

40

80

80

160

160

320

80

80

Vart,
W0 Sp

24

24

12

24

48

48

76

2?6

192

192

192

Vert,

W Sp

20

10

20

40

30

80

80

160

Colors

L8]

Data
Value

backgd.
00~FF

backgd.
Q0~3F
40~7F
80~BF
CO-FF

backgd.
CO0-3F
40-7F
BO—BF
CO-FF

-0 WA D

(AN ]

-

Color Memory
Reg. Reqgd.
(split) (full)
BAK 992 92
PF 2
PF i

BAK b74 672
PF O
PF 1
PF 2
PF 3

BAK a4 420
PF O
PF 1
PF 2
PF 3

BAK 434 432
PF O
PF 1
PF 2

BaAK &94 £76
PE O

BAK 1174 1174
BF O
PFE 1
PF 2

BAK 2174 2184
PF O

BAK 4190 4200
PF
PF
PF
PF 8112 5138
PE

=P O

8138
PM 8138
PM
PM
PM
PF

SO

OPERATING SYSTEM C016555 —— Appendix H

Ly



L] PF 1
& PF 2
7 PF 3
8 BAK
9 BAK
A BAK
B BAK
C PF O
D PF 1
E PF 2
F PF 3
i1 BO ig2 - 14 Note 3 8138
Notes:
* Uses eolor of PF 2, lum of PF i.
2 Uses color of BAK, lum of data value ($0-F).
3 Uses color of data value (%0-F), lum of BAK.
PF x ::= Playfield color register «x.
PM x ::= Player/Missile Graphics color register x.
BAK ::= Background color register {(also known as PF 4).

The default values for the color registers are shown below:

BAK = %00
PFO = 28
PF1 = $CA
PF2 = %94
PF3 = $46

OPERATING SYSTEM CO16555 —— Appendix H
i8%9



The farm of a color register byte is shown below:

76543210

D s bl LT R TR

i vt v e e s s e i e e .

Where: color (hex values) lum

gray

light orange
orange

red orange
pink

purple
purple~blue
blue

blue

light blue
turquoise
grasn—blue
graan
gyellow-green
arange-~green
light orange

minimum luminance

L3
L}

(increasing
luminance?
H

1
[§

maximum luminance

N aGhRWEN - O
0o KR ENWDN

B BN R ®RNRAHERRLAN

MO OWPAO~NTFARGN-O

OPERATING SYSTEM CO16555 —- Appendix H
120



Appendix I ~- SERIAL BUS ID AND COMMAND SUMMARY

Berial bus device IDs

Floppy diskettes Di-D4 $31-34

Printer
R§-232-C

Pi $40
R1-R& $50-93

Serial bhus conftrol cades

ACK
NaK
COMPLETE
ERR

41 (‘A‘)
$4E [ ‘N‘}
43 (‘C’)
$45 ('E’)

Serial bus commarnd codes

READ - $52 {'R") Disk

WRITE - $57 {(‘W"} Printer/Disk
STATUS ~- $53 ('S} Printer/Disk
PUT{(no check} - %50 (P} Disk

FORMAT - %21 {14y Disk

READ ADDRESS - %54 ('T’}

READ SPIN - %51 (@) Disk

MOTOR ON - %55 (U") Gisk

VERIFY SECTOR - %56 (V) Disk

OPERATING SYSTEM C0165S5% —— Appendix I

191



Appendix J —— ROM VECTORS

The fixed address OS5 ROM JMP vectors are shown below; at each
address is a JMP instruction to the indicated routine,

Name Addr Reference Function

BISKIV E450 # Diskette Handler initialization
DSKINV E453 5.4.2 Diskette Handler entry.

cIipy E454 3.2 CIO utility entry.

S10V E45% 2.3 SI0 vtility entry.

SETVRV E45C & 7.2 S8t System Timers routine.
SYSVBY E4SF & 3 Stage 1 VBLANK entry.

XITVRV E462 &.3 Exit VBLANK entry,

SIOINV E455 # SI0 vtility initialization.
SENDEY E448 #* Send enable routine.

INTINV E44B # Interrupt Handler initialization.
CIOINY E46E * CIO uftility initialization.
BLKBRV £E471 311 Blackboard mode entry.

WARMSY E474 7. Warmstart ([SYSTEM. RESETI) entry.
CRLDSY E4T77 7. Coldstart (power-up)} entry.
RBLOKY E4T7A %* Cassette-read block entry.

csoPliy E47D 3

Cassette-OPEN input entry.

* These vectors are for 0S internal use only.

The fixed address Floating Point Package ROM routine antry point
addresses are shown below; complete descriptions of the
corresponding rovutines are provided in Section 8.

AFP Daco ASCII to FP convert.

FASC DBES4 FP to ASCII converst.

IFP DZAA Integer to FP convert.
FPI DIB2 FF %o integer convert
FADD DASLS FP add.

FEUB DA&O FP subtract.

FMuUL DADB FP multiply

FDIV ppa2g FP divide.

L0G BECD FP base e logarithm.
LOG10 DED1 FP base 310 logarithm.

EXP DBCO FP base e exponentiation.
EXP10 PDRCC FP base 10 exponentiation.
PLYEWVL DD4C FP polynomial evaluation,
ZFRO DA44 Clear FRO.

ZF1 DA4S Clear FP number.

FLDGR pbee Load FP number.

FLDOP BD8D Load FP number.

FLDIR bDLog Load FP numbear.

FLDI1P BE9C t.oad FP number.

FSETOR DDAY Store FP number.

FSTOP DDARB Stare FP number.

FMOVE BDBS Move FP number.

DPERATING SYSTEM CO16555 —~ Appendix J
192



The base addresses of the Handler vectors for the resident
handlers are shown bBelow:

Secreen Editor (E) E400
Display Handler (8) " E41i0
Kegboard Handler (K} E420
Printer Handler (P) EA30
Cassette Handler (L} E440

See Section 5 for the format of the entry for each Handler.

The 4502 Computer interrupt vector values are shown below:

Function Address Value

NMI FrEA E7B4
RESET FFAC E477
iRG FFFE E6FE

OPERATING SYSBTEM C016555 -— Appendix
193



Appendix K —— DEVICE CHARACTERISTICS

This appendix describes the physical characteristics of the
devices that interfaces to the ATARI 400 and ATARI B0OOC Home
Computers, Where applicable, data capacity. data transter
rate; sforage format, SI0 interface, and cabling will be
detailed.

KEYBOARD

The keyboard input rate is limited by the 05 keyboard reading
precedure to be 460 characters per second. The code for each key

is shown in Table 5-4. The keyboard hardware has no buffering and is
rate—limited by the debounce algorithm used.

DISPLAY

The television screen display generator has many capabilities
that are not used by the Display Handler (as deseribed in Section
5 and shown in Appendix H). There are additional display modes,
pbjyect generators, hardwavre display screlling., and many other
features that are described in the ATARI Home Computer

Hardware Manval.

Since all display data is stored in RAM, the display data update
rate is limited primarily by the software routines that generate
and format the data and access the RAM. The generation of the
display from the RAM is accomplished by the ANTIC and CTIA or GTIA
chips wsing Direct Memory Access (DMA) to access the RAM data.

The internal storage formats for display data for the various

modes are detailed in the ATARI Home Computer Hardware
Manual,

ATARI 410 PROGRAM RECORDER
The ATARI 410 Program Recorder has the following characferistics:
DATA CAPACITY:
i00 characters per (-460 tape {(unformatted).
DATA TRANSFER RATES:
# 400 Baud (&0 chavacters per secand}
#Note: The DS has the ability to adyust to different tape speeds

(447 — 895 Baud).

OPERATING SYSTEM CO16555 —— Appendix K
194



STORAGE FORMAT:

Tapes are rvecorded in 1/4 track stereo format at 1 7/8 inches per
second. The tape can be recorded in both directions, where tracks
i and 2 are side A left and right; and tracks 3 and 4 are side B

right and left (industry standard}. On each side, the laft

channel (1 or 4) is used for auvdio and the right channel (2 and
3) is used for digital information.

The audio channel is recorded the normal way. The digital channel
is recorded using the POKEY two-tone mode producing FSK data at
up to 600 baud. The MARK freguency is 3327 Hi and the SPACE
frequency is 3995 Hz. The transmission of data is asynchronous
byte serial as seen from the computer; POKEY reads or writes a
bit serial FBK sequence for each byte, in the following order:

1 start bit (SPACE)
data bit QO -2
data hit 1 i

. +— 0 = SPACE, 1 = MARK,
data bit & |

data bit 7 -+

1 stop bit (MARK}

The only control the computer has over tape motion is motor
start/stop; and this only if the PLAY button is pressed by the
user. In ordevr for recording to take place, the user must press
both the REC and PLAY buttons on the cassette. The computer has

no way to sense the position of these buttons, nor even if an

ATARI 410 Program Recorder is cabled to the computer, 50 the user must
be careful when using this device.

SI0 INTERFACE

The cassette device utilizes portions of the serial bus hardware,
but does not follow any of the protocel as defined in Section 2.

ATARI 820LTM1 A0-COLUMN IMPACT PRINTER

The ATARI 820 Printer has the following characteristics:

DATA CAPACITY:

40 characters per line {(normal printing)
2% characters per line (sideways printing)

DATA TRANSFER RATES:

OPERATING SYSTEM CD16355 —— Appendix K
195



Bus rate: xx characters per sacond.
Print €ime (burst): xx characters per second.
Print time (average): xx characiers per second.

STORAGE FORMAT:

3 7/8 inch wide paper.
9X7 dot matrix, impact printing.

Narmal format —-
40 characters per line.
4 lines per inch {(vertical}.
i2 characters per inch (horizontal).

Sideways +format -~
29 characters per linas,
& lines per inch (vertical).
? characters per inch (horizontal).

£10 INTERFACE
The contvroller serial bus ID is %$40.

The controllsr supports the following SI{0 commands (see Section 5
for more information regarding the Handler and Section 2 for a
general discussion of bus commands}:

GET STATUS

The computer sends a command frame of the format shown below:

Device IDR = $40.

Command bygte = $53.

auxiliary i dossn‘t matter.

avxiliary 2 doesn‘t matter.

Checksum = checksum of bytes above,

The printer controller responds with a data frame of the format

shown earlier in this appendix as part of the GET STATUS
discussion,

PRINT LINE

The computer sends a command frame of the format shown below:

Device ID = %40
Command byte = $57.

OPERATING SYSTEM CO16555 —— Appendix K
196



auxiliary 1 doesn’t matter.
auxiliary 2 $4E for normal print or %53 for sideways.
Checksum = ¢hecksum of bytes above.

The computer sends a data frame of the format shown belou:
Laftmost tharacter of line {(column %}
Next character af line (column 2).
Rightmost character of line {(column 40 ovr 29).
Checksum byte.
Note that the data frame size is variable. either 41 or 30 bgtés

in length, depending upon the print mode specified in the command
frame.

ATARI 810 DISK DRIVE
The ATARI B8iOLTMI Disk Drive has the following characteristics:

DATA CAPACITY:

720 sactors of 128 bytes each (Disk Handler format).
709 sectors of 125 data bytes each (Disk File Manager format),

DATA TRANEBFER RATES:

Bus rate: 1920 characters per second.
Seek time: 5. 25 msec. per track + 10 o 210 msec.
Rotational latency: 104 msec maximum (288 rpm}.

STORAGE FURMAT:

S 1/4 inch diskette, soft sectored by the controller.

40 tracks per diskette.

18 sectors per ftrack.

128 bytes per sector.

Controlled by Natisnal INS177i-1i formatter/controller chip.

Sector sequence per track is: 18, 1, 3 5 7, 2 11, 13, 15,
17, 2, 4, & 8, 10, 12, 14, 14

SI0 INTERFACE
The controller serial bus IDs range from $31 (for ‘D17) to %34
(for 'D4°).

OPERATING SYSTEM 016555 —— Appendix K .
197



The controller supports the following SI0 commands {(see earlier
in this Appendix for information about the Diskette Handler and
Section ? for a general discussion of bus commands):

GET STATUS

The computer sends a command frame of the format shown below:

Device ID = $31-34,

Command byte = #$353.

Auvxiliary 1 = doesn’t matter.

avxiliary 2 = doesn‘t matter.

Checksum = checksum of bytes above.

The diskette controller responds with a data frame of the Fformat
shown earlier in this Appendix as part of the STATUS REQUEST
discussion,

PUT SECTOR (WITH VERIFY}
The computer sends a8 command frame of the format shown belou:

Device ID = $31-34

Command byte = $57.

auxiliary 1 low byte of sector number.
auvxiliary 2 high byte of sector number (I-720}.
Checksum = checksum of bytes above.

The computer sends a data frame of the format shouwn below:

128 data bytes.
Checksum hyte.

The diskette controller writes the frame data to the specified
sector, then reads the sector and compares the content with the
frame data. The COMPLETE byte value indicates the status of the
cperation.

PUT SECTOR (NO VERIFY)
The computer sends a comhand frame of the format shown below:

Device ID = $31-34

Command byte = $50.

auxiliary 1 low byte of sector number.
avxiliary 2 high byte of sector number (1-720}.
Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

OPERATING SYSTEM CO16555 —— Appendix K
198



128 data bytes.
Checksum bhyte.

The diskette controller writes the frame data to the specified

sector. then sends a COMPLETE buyte value that indicates the
status of the operation.

GET SECTOR

The computer sends a command frame of the format shown below:

Device ID = $31-34

Command hyte = $52,

auxiliary 1 = low byte of sector number.
auxiliary 2 = high byte of sector number (1-720).
Checksum = checksym of bytes above.

The diskette controller éends a data framse of the format shown below:

128 data bytes.
Checksum byte.

FORMAT DISKETTE

The computer sends a command frame of the format shown below:

Device ID = $31-34

Command byte = $21.

auxiliary 1 = doesn’'t matter.

avxiliary 2 = doesn’t matter,

Checksum = checksum of bytes abova.

The diskette controller completely formats the diskette (generates 40
tracks of 18 soft sectors per track with the data portion of each
sector squal to all zeros) and then reads each sector to verify

its integrity. A data frame of 128 bytes plus checksum is

returned in that the ssctor numbers of all bad sectors (up to a
maximum of &3 sectors} are contained, followed by two consecutive

bytes of $FF. I+ there are no bad sectors on the diskette the first
2 bytes of the data

OPERATING SYSTEM C016555 —~- Appendix K
199



Appendix L —— 0S DATA BASE VARIABLE FUNCTIONAL DESCRIPTIONS

CENTRAL DATA BASE DESCRIPTION

This appendix provides detailed information for those variables
in the OS5 data base that can be altered by the user. Remaining
variables are provided narrative descriptions. Information on the
variables is presented in a multiple access scheme: Lookup

tables are referenced to a common set of narratives:. that is
itself ordered by function.

Variable descriptions are referenced by a label called a variable
identifier (VID) number. The label comprises a single letter
followed by a number. A different letter is assigned for each
major functional area being described, and the numbers are
assigned sequentially within each functional area. Those
variables that are not considered to be of interest to any user

are flagged with an asterisk (%) after their names. The data base
lookup tabies provided are: '

1. Fynctional grouping -~ index to the function narrative and
descriptions of variables, giving VID and variable name.

2. Alphabetic list of names -— giving VID of description.

3. Address ordered list —-- giving VID of description.

Item 1, the functional grouping index, starts on the next page:
the other two lookup tables are at the end of Appendix L.

OPERATING SYSTEM C0O146555 -—- Appendix K
200



FUNCTIONAL INDEX TO DATA BASE VARIABLE DESCRIPTIONS

A, Memory configuration
Al MEMLD
A2 MEMTOP
A3 APPMHI
A4 RAMTOP
A5 RAMSIZ

B. Text/graphice screen

Cursor cantral
Bl CRSINH

" B2 ROWCRS. COLCRS
B3 OLDROW, OLIDCOL
B4 TXTROW. TXTCOL

Screen margins
BS LMARGN
B& RMARGN

Color control
B7Y PCOLRO — PCOLR3
B2 COLORC —~ CODLORS

N Text scrolling
B9 SCRFLO#*

Attract mode
BiC ATRACT
Bii COLRSHx
BiZ2 DRKMSK#

Tabbing
W B13 TABMAP

lLogical text lines
Bi4 LOGMAP#
BiS LOGCOL=*

Split screen

OPERATING SYSTEM CD16555 —— Appendix L
201



Blé BOTSCR#

FILL/DRAW function
B17 FILDAT
BiB FILFLG#
B19 NEW SROW#*, NEWCOL»#
B20 HOLD4*

B21 ROWINC*, COLING*
B22 DEL.TAR#, DELTACH*
B23 COUNTR#*

B24 ROWACH*., COLACH
B25 ENDPT#

Displaying control characters

Escape (display following control char}
B2& ESCFLGH -

Display control characters mode
B27 DSPFLG

Bit mapped graphics
B28 DMASK*
B29 SHFAMT*

AY

OPERATING SYSTEM CO1655% ~~ Appendix L
202



Internal waerking variables

B30
B31
B3z
B33
B34
B35S
B36
B37
B38
B39
B4C
B41
B42
B4J3
B44
B45
B4&
B47
B48
B49
B50
BS1
Bo&
BS3

HOLDI*

HOLD2%

HOL D34

TMPCHR +

DETAT*

DINDEX

SAVMEC

DLDCHR#
OLDADR#
ADRESS:

MLTTMP /OPNTMP / TOADR #
SAVADR /FRMADR#
BUFCNT*
BUFSTR*
SWPFLGH*
INSDATH
TMPROWH*, TMPCOL *
TMPLBT*
SUBTMP*
TINDEX3*
BITMSK*
LINBUF*

TXTMSC

TXTOLD+

OPERATING SYSTEM CO16555 —— Appendix L

203



Internal character code conversion
BS54 ATACHR
B55 CHAR#

C. Disk Handler
C1l BUFADR=
C2 DSKTiM=

D. Cassette (part ir SI0 part in Handler}

Baud rate determination
D1 CBAUDL %, CBAUDH*
D2 TIMFLGH
D3 TIMER1#®, TIMERS*
D4 ADDCOR%
bS TEMPi#

D& TEMPO3®
D7 SAVIO*

Cassette mode
D8 CASFL G

Cassette buffer
D9 CASBUF+
D10 BLIMx
Pi1 BPTR»

Internal working variables
D12 FEOF=
D13 FTYPE%
D14 WMODE#
Di5 FREQ#

E. Keyboard

Key reading and debouncing
Etf CHix
E2 KREYDEL#
E3 CH

OPERATING SYSTEM CO14555 —— Appendix L
204



!ﬁ-

Special

Start

functiaons

fatop

E4 SS5FLAG

£BREAK]
ES BRKKEY

ESHIFTI/ECONTROL] lock
Eé SHFLOK
E7 HOLDCH#

Autorepeat
ES8 SRTIMR*

Inver
EQ

Console

Printer

se video
INVFLG

switches (LSELECTI, {S8TART1. and L[OPTIONI)

printer~buffer

F1 PRNBUF3
F2 PBUFGZ*
F3 PBPNT*

Interna

1 working variables

F& PTEMP#

Fo PT

Central

User ca

IMOT=

1/80 routine (CID}

1l parameters

61 IQCB

G2
G3
G4
G
Gé&
&7
G8
&7

ICHID
ICDNO
ICCOM
ICSTA
ICBAL, ICBAH
ICPTL, ICPTH
ICBLL. ICBLH
ICAX1, ICAX2

610 ICBPR

Device status

il

DVBTAT

device tatble

Gi2

HATARBS

OPERATING SYSTEM (016555 —— Appendix L

205



ClO0/Handler interface Parameters

G13 ZIOCB (JOCBAS)

G114 ICHIDZ

615 ICDNOZ

Glé&é ICCOMZ

G17 ICSTAZ

G18 ICBALZ, ICBALH

619 ICPTLZ, ICPTHIZ

G20 ICBLLZ, ICBI.HZ

G21 ICAX1Z, ICAXR2Z

622 ICSPRZ (ICIDNO, CIDCHR)

Internal working variables
G623 ICCOMT*
G24 ICIDND*
G235 CIOCHR%

H. Serial I/0 routine (SI

User call parameters

H1 DCB control block

Hz2 DDEVIC

H3 DUNIT

H4 DCOMND

H5 DSTATS

H& DBUFLO, DBUFHI
H? DTIMLO

H8 DBYTLO, DBYTHI
HY DAUX1. DAUX2

Bus sgund controcl .
Hi{ SOUNDR

Serial bus control

Retry logic
Hil CRETRY#
Hi2 DRETRYs

Checksum
H13 CHKSUMs
Hi4 CHKSNT#
H1S5 NOCKSM#

OPERATING SYSTEM C0O1455% —— Appendix L
206



Bata buffering
General buffer control

Hié BUFRLO#, BUFRHI*
H1i7 BFENLO#, BFENHI*

Command #rame output buffer
H1B CDEVICH#
Hi% CCOMND3
H20 CAUX1#, CAUXEs

Receive/¢ransmit data buffering
H21 BUFRFL#
H22 RECVDN=#*
H23 TEMP#
H24 XMTDON®

SI0 timeout
H25 TIMFLGH
H26 CLTMVI#
He27 CDTMAL+H

Internal working variables
H28 STACKP*
H2% TSTAT#
H3C ERRFL G
H31 STATUS:
H32 SSKCTL»

ATARI controllers

Joysticks
J1 STICKO ~ STICKS
J2 BTRIGO — S8TRIGS
Paddles
J3 PABDLO ~ PADDLY
- PTRIGY

J4 PTRIGO

Paddle controllers
JB STICKO ~ STICKI
J? STRIGO — STRIGH

K. Disk file manager
Ki FMSZPG#
K2 ZBUFP=#
K3 ZDRVAx
K4 ZSBA#
K3 ERRNO#

DPERATING SYSTEM CD16555 —— Appendix L.
207



L. Bisk utilities (DOS)
i.1 DSKUTIL%

M. Floating point package
M1 FRO
M2 FRE*
M3 FR1
M4 FR2#
M3 FRX#
M& EEXPs#
M7 NSIGNs*
M8 ESIGN=
M? FCHRFLGs
M10O DIGRT#
Mii CIX
MiZ2 INBUFF
MiI3 ZTEMP1%
Mi4 ZTEMP4x
Mi3 ZTEMP3%
Mi6 FLPTR
M17 FPTR2x%
MiB LBPR1x
Mi9 LBPR2x»
M20 LBUFF
M21 PLYARG:
M22 FPSCR/FSCR»
M3 FPSCR1/FSCR1+
M24 DEGFLG/RADFLGH

N. Power—Up and System Reset
RAM sizing
M1 RAMLO#, TRAMSZ*
N2 TSTDAT+

Diskette/cassette—hoot

N3 DOSINI

N4 CHEY=*»

NS CASSBT#

N& CASINI

N7 BOOT?#

NB8 DFLAGSH

N? DBSECT:*

N1Q BOOTAD%

Environmental cnntrol
Nil COLDST
NiZ DOSVEC

OPERATING SYSTEM CO14555 —- Appendix L
208



[8 RESET]
Ni3 WARMST

Interrupts
P1 CRITIC
F2 POKMSK

System Timervrs

Real-time clock
P3 RTCLOK

System Timer 1
P4 CDTMVE
PS CDTMAL

System Timer 2
P& CDTMV2
P7 CDTMAZ2

System Yimers 3-5
PB CDTMV3: CDTMV4, CDTMVS
P? CDTMF3. CDTMF4, CDTMFS

RaM-interrupt vectors

NMI-interrupt vectors
P10 VDSIL.ST
Pli VVBLKI
Pi2 UVBLAUD

IR@-interrupt vectors
P13 VIMIRG
Pi4 VPRCED
P13 VINTER
P16 VBREAK
P17 VKEYBD
P18 VBERIN
P19 VSEROR
P20 VBEROC
P21 VTIMRI, VTIMR2, VTIMR4

Hardware register updates
P22 SDMCTL
P23 SDLSTL, SDLSTH
P24 GPRIOR
P25 CHACT
P2& CHBAS
P27 PLOLRx, COLORX

OPERATING SYSTEM CO16555 —— Appendix i
209



internal working variable
P28 INTEMP#*

R. User arsas
R1 {(unliabeled)
R2 USAREA

This appendix contains descriptions of many of the data base
variables; descriptions are included for all of the user-
accessible variables and for some of the "internal" variables as
well. Those variables that are not considered to be normally of
interest to any user are flagged with an asterisk (#) after their
names; the other variables can be of interest to one or more of
the following classes of users:

End yser.

Game developer.

Applications programmer.
System utility writer.
Language processor developer.
Device Handler Writer.

(o I = T = = Y

Each variable is specified by its system egquate file name
followed by its address (in hex) and the number of bytes reserved
in the data base (in decimal}, in the following form:

<name> f[<address>, {size>]
For example:

MEMLO [C2E7, 2]

Note that most¢ word (2 byte) variables are ordered with the least
significant byte at the lower address.

OPERATING SYSTEM CO146555 —— Appendix L
210



A. MEMORY CONFIGURATION

See Saction 4 for a general discussion of memory dynamics and
section 7 for details of system initialization.

Al MEMLO [O2E7,2]1 ~- User-free memory low address

MEMLO contains the address of the first location in the free
memory region. The value is established by the 0S8 during power-up

and system reset initialization and is never altered by the 0OS
thereafter.

AZ  MEMTOP [G2ES, 21 —- User~free memory high address

MEMTOP contains the address of the first non-useable memoary
location above the free memory region. The value is sstablished
by the 08 during power-up and system reset initialization:; and
then is re-established whenever the display is opened, based upon
the requirements of the selected graphics mode.

A3 APPMHI [OOOE,2] —- Uger-free memory screen lower limit

APPMHI is a user-controlled variable that contains the address
within the free memory region below which the Display Handler cannot
g0 in setting up @ display screen. This variable is

initialized to zeroc by the DS at power—up.

A4  RAMTOP* (Q06A, 11 — Display Handler top of RAM address (MSB)
RAMTOP permanently retains the RAM top address that was ceontained

in TRAMSZ (as described in MNi! for the Display Handler’s use. The
value is set up as part of Handler initialization.

A3 RAMEIZ [02E4,13 —~ Top of RAM address (MSB only}

RAMSIZ permanently retains the RAM top address that was contained
in TRAMSZ (as described in NI).

DPERATING SYSTEM C0Oi6555 — Appendix L
211



B. TEXT/GRAPHICS GCREEN

See Section 5 for a distussion of the text and graphics screens
and their Handlers.

Cursor Control

Far the text screen and split—screen text window there is a

visible cursor on ¢the screen which shows the position of the nexs
input or output operation. The cursor is represented by inversing
the video of the character upon which it resides; but the cursor

can be made invisible, at the user‘s option. The graphics scregn
always has an invisible cuyrsor.

The cursor position is sensed by examining data base variables
and can be moved by altering those same variables; in addition,
when using the Screen Editor, there are cursar movement control
codes that can be sent as data (as explained in Section 5.

BI CRSINH [02FQ,1] — Cursor display inhibit flag

When CRSINH is zero, all outputs to the text screen will be
followed by a visible cursor (inversed character}; and when
CRSINH is nonzero: no visible cursor will ba generated.

CRSINH is set to zero by power-up, the [SYSTEM RESETI or [BREAK] keys
or an OPEN command to the Display Handler or Screen Editor.

Note that altering CRSINH does not cause the visible cursor to
change states until the next output to the screeni if an
immediate change to the cursor state is desired:, without altering
the screen data, follow the CRSINH change with the output of
CURSOR UP., CURSOR DOWN, or some other innocuous sequence.

B2 ROWCRS L0054,11 and COLCRS [0055, 23 —— Current cursor
pasition

ROWCRS and COLCRS define the cursor location (row and column,
respectively) for the next data element to be read #rom or
written to the main sereen segment. When in split—-screen mode.
the variables TXTROW and TXTCOL define the cursor for the text
window at the bottom of the screen as explained in B4 below.

The row and column numbering start with the value zero., and
increase in increments of one to the number of vrows or columns minus
1; with the upper left corner of the screen being the origin (0, 0).

ROWCRS is a single-byte variable with a maximum allowable value
of 191 (screen modes 8-11); COLCRS is a 2-byte variable with a
maximum allowable value of 319 (screen mode B}.

OPERATING SYSTEM CO1&4S55 —— Appendix L
212



B3 OLDROW [00SA:11 and GLDCOL L0058, 21 —— Prior cursor position

DLDROW and OLDCOL are updated #rom RDWCRS and COLCRS before every
operation. The variables are used only for the DRAW and FILL
operations.

B4 TXTROW [0290.11 and TXTCOL [0291.,21 ~— Split-screemn text cuvrsor
position

TXTROW and TXTCOL define the cursor location (row and column,
respectively) for the next data element to be read from or
written to the split-gcreen text window.

The row and ceolumn numbering start with the wvalue zero. and
increase in increments of one to 3 and 39, respectively; with the

vupper laft corner of the split—-screen text window being the origin
(G, 0).

Screen Margins

The text screen and split—screen text window have user—alterable
left and right margins that define the normal domain of the text
CUTSODT.

BS LMARGN [CO052,13 ~~ Text column left margin

LMARGN contains the column number (0-39) of the text screen lefs
margin; the text cursor will remain on or to the right of the
left margin as a reswlt of all operations, unless the cursor
column variable is directly updated by the uvser (see B2 and B4
above}, The default value for LMARGN is 2 and is sstablished upon
power—up or system reset.

B& RMARGN [0053,13 —— Text ceoelumn right margin

RMARGN contains the column number (0~-3%) o# the text screen right
margin; tha text cursor will remain on or $o the left of the
right margin as a result of all operations, unless the cursor
tolumn variable is directly updated by the user (see B2 and R4
above). The default value for RMARGN is 3% and is established
upon power—up or system reset.

OPERATING SYSTEM CD14555 -— Appendix L
213



Color Contrel

As part of the stage 2 VBLANK process (see Section &), the values of
nine data base variables are stored in corresponding hardware

color control registers. The color registers are divided into two
groups: the player/missile colors and the playfield colors. The
playfield color registers are vtilized by the different screan modes
as shown in Appendix H. The player/missile color registers are not
vsed by the standard OS.

B7 PCOLRG - PCOLR3 £02C0, 41 —- Player/missile graphics colors

Each color variable is stored in the corresponding hardware
register as shown below:

PCOLRO [02C01 COLPMO EDO12]
PCOLR1 £C2Ct1] COLPMLI [DO131
PCOLRZ [02C21 COLPM2 CDO14]
PCOLR3 [02C31 COLPM3 C[DO1S12

Each color variable has the format shown below:

IR&RS 1493824 100

-y e e e s s st s e i e i iy e s

s e e s iy il e s . e s e s

See Appendix H for information regarding the color and luminance
field values.

B8 COLORO - COLOR4 £02CS5,51 —— Playfield colors

Each color variable is stored in the corraesponding hardware
register as shown below:

COLORO £o2C41 COLPFO [DO1461
COLOR1 LOR2C51 COLPFL L[D0O17]
COLDR2 [02C61] COLPF2 £DO1BI]
COLOR3 L[02C7] COLPF3 CDO1IR1]
COLOR4 [02C8) COLBK [DO1A1]

Each color wvariable has the format shown below:

76543210

i bevie i i s e s i s e ol e s

v il e i i vl e e e s i st e e

See Appendix H for information regarding the coleor and luminance
field valves,

OPERATING SYSTEM CO0146555 —— Appendix L
214



Text Scrolling

The text screen or split—screen text window “"scrolls® vpward
whenever one of the two conditions shown below occurs:

o A text line at the bottom row o# the screen extsnds past the
right margin.

o A ftext line at the bottom Tow of the screen is terminated by
an EOQOL..

Scrolling has the sffect of removing the entire logical line that
starts at the top of the screen and then moving all subsequent
lines upward to fill in the void. The curser will alsp move
vpward if the logical line deleted exceeds one physical line.

B? BCRFLG* [02BB,13 -- Scroll flag

SCRFLEG is a working variable that counts the number of physical
lines minus 1 that were deleted £rom the top of the screen;

since a logical line ranges in size from 1 to 3, SCRFLG Tanges
from O to 2,

Attract Mode

Attract mode is a mechanism that protects the television screen
from having patterns "burned into" the phosphers due to a fixed
display being left on the screen for extended periods of time.
When the computer is left unattended for more than 9 minutes, the
color intensities are limited to 50 percent of maximum and the
hves are continually varied every 8.3 seconds. Pressing any

keyboard data key will be sufficient to remove the attract mode
for ? more minutes.

As part of the stage 2 VBLANK pracess, the color registers from
the data base are sent to the corresponding hardware color

registers; before they are sent, they undergo the following
transformation:

hardware register = database variable XOR COLRSH AND DRKMSK

Normally COLRSH = $00 and DRKMSK = $FE, thus making the above
calculation a null operation; however. once attract mode becomes
active, COLRSH = the content of RTCLOK+1 and DRKMSK = $F&, that
has the effect of modifying all of the colors and keeping their
luminance always below the 50 percent level.

Since RTCLOK+1 is incremented every 2%4/40 of a second and
since the least significant bit of COLRSH is of no consequence, a

OPERATING SYSTEM C014555 —— Appendix L
215



color/lum change will be effected every B.3 seconds (512/60)

B10 ATRACT [004D,11 ~~ Attract mode timer and flag

ATRACT is the timer (and flag) that controls the initiation and
termination of attract mode. Whenever a keyboard key is pressed.
the keyboard IRQ service routine sets ATRACT to zero: thus
terminating attract mode; the [BREAK] key logic beahaves
accordingly. As part of the stage 1 VBLANK process, ATRACT is
incremented every 4 seconds; if the value exceeds 127 (aftar 9
minutes without keyboard activity): the value of ATRACT will

be set to $FE and will retain that value until atétract mode is
terminated.

Since the attract mode is prevented and terminated by the OS
based only upon keyboard activity. some users can want to reset
ATRACT based upon Atari-controller event detection,

user—controlled Serial I/0 bus activity or any other signs of
life,

Bil COLRSH#* [004F, 11 —— Color shift mask

COLRSH has the value $00 when attract mode is inactive. thus
effecting no change to the screen colors; when attract mode is
active, COLRSH contains the current value of the timer variable
middle digit (RTCLOK+1:},

Bi2 DRKMEK# {004E, 1) —- Dark (luminance) mask

DRKMSK has the value $FE when attract mode is inactive, which does not
alter the luminance: and has the value $F46 when attract mode .

is active, which forces the most significant bit of the luminance
field to zero, thus guaranteeing that the luminance will never

exceed 50 percent. |

Tabbing

See Section 5 for a discussion of the use of tabs in conjyunction
with the Screen Editor.

B13 TABMAP {02A3,151 -- Tab stop setting map

The tab seftings are retained in a 15-byte (120 bit} map. where a
bit value of 1 indicates a tab setting; the diagram below shows
the mapping of the individual bits %o tab positions. ”

OPERATING SYSTEM CO16555 -~ Appendix L
216



7 & & 4 3 2 i o}

* + + + + e e s &

f 01 121314151 &1 71 TABMAPHO
8 92 1 10t 111 127 137 14t 151 +1
F—————— + + + + 4 +

' !

f '

i o e i e e e e e
11121113111411151116111711181119¢ +14

L - T T L L L -

Whenever the Display Handler or Screen Editor is opened:. this map
is initialized to confain the value cof %01 in avery byte. thus
providing fthe default tab stops at 7. 15, 23, etc.

LLogical Text Lines

The text screen is invisibly divided into logical lines of taxt,
each comprising from one to three physical lines of text. The
screen is initialized to 24 logical lines of one physical line
each; but data entry and/or data insertion can increase the size
of a logical line to two or three physical lines.

Bi4 LOGMAP* [02B2,43 —— Logical line starting row map

The beginning physical line number for each lugical line on fthe
scveen is retained in a four byte (32 bit) map, where a bit value
of one indicates the start of a logical line; the diagram below
shows the mapping of the individual bits to physical line (row)
numbers.

7 & 1804 3 W20F1 W0

L T e O et et

PO 1 28 31 41 B & T LOGMAP 20O
o v e e o o e s e e — e

i B Q1i0i11112:131141151 +1
s s o S e et
11461171181191201211221231 +2

T S s et e s St
T A +3

B L e s T Lt et

The map bits are all set to 1 whenever the text screen is
opened or cleared. From that point, the map is updated as
logical lines are entered, sdited and deleted from the screen.

OPERATING SYSTEM C016555 —— Appendix L
217



B15 LOGCDL* £00463:13 — Cursor/logical line column number

tOGCOL contains the logical-line column number for the current
cursorT position; note that a logical line can comprise up to
three physical lines. This variable is for the internal use of
the Display Handler.

Eplit Screen

The Display Handler and Screen Editor together support the

operation of a split—-screen mode (see Section S5) in which the main
portion of the screen is in one of the graphics modes and is
controlled by the Display Handler, and there ave 4 physical lines in

the text window at the bottom of the screen which is controlled by the
Screen Editor,

Bi&é DBOTSCR# [O2BF, 11 —— Text screen lines count

BOTSCR contains the number of lines of text for the current
screen: 24 for mode O or 4 for a split—-screen mode. The Handler
also uses this variable as an indication of the splif—-screen
status; tests are made for the specific values 4 and 24.

DRAW/FILL Function

The DRAW function line drawing algorithm is shown below
translated to the PASCAL language from assembly languwage.

NEWROW : = ROWCRS; NEWCOL := COLCRS;

DELTAR ;= ABS (NEWROW-OLDROWS;

ROWINC := SIGN (NEWROW-QLDROW): € +1 ar -1 %
DELTAC := ABS (NEWCOL-OLDCOL):

COLING = SIGN (NEWCOL-OLDCOL): € +1 ar ~1 }

ROWAC := O; COLAC := O
ROWCRS := OLDROW: COLCRS := QLDCOL;

COUNTR := MAX (DELTAC, DELTAR):
ENDPT := COUNTR;
IF COUNTR = DELTAC
THEN ROWAC ENDPT BRIV 2
ELSE COLAC ENDPT DIV 2;

i n

WHILE COUNTR 2> O DO
BEGIN

OFERATING SYSTEM C0146535 -~ Appendix L
218



ROWAC : = ROWAC + DELTAR;
IF ROWAC 2= ENDPT '

THEN
BEGIN
ROWAC : = ROWAC ~ ENDPT:
ROWCRS : = ROWCRS + ROWINC
END;

COLAC = COLAC + DELTAC:
IF COLAC >= ENDPT

THEN
BEGIN
COLAC := CDLAC ~ ENDPT:
COLCRS := COLCRS + COLINC
END;

PLOT_POINT; { point defined by ROWCRS and GCDOLCRS }
IF FILFLG <> O THEN FILL_LINE;:
COUNTR := COUNTR - 1

END;

The FILL function algorithm (FILL_JL.INE above}! is described briefly in
Section 5.

B17 FILDAT [02FD.,1} —-- Fill data

FILEDAT contains the £ill region data value as part of the calling
sequence for a FIlL command as dascribed in Section 5.

B18 FILFLG* L[02B7.13} —- Fill flag

FILFLG indicates fo the shared code within the Display Handler

whether the current operation is FILL (FILFLG <> O} or DRAW
(FILFLG = 0},

B19 NEWROW®* [00&D, 1] and NEWCDL# £0061.21 —— Destination point
NEWROW and NEWCOL are initialized to the values in ROWCRS and
COLCRS, which represent the destination endpoint of the DRAW/FILL

command. This is done so that ROWCRE and COLCRE can be altered
during the performance of the command.

B20 HOLD4# [O2HC, 13 —— Temporary storage

OPERATING SYSTEM CD146950 —~ Appendix L
219



HOLD4 is used to save and restore the value in ATACHR during the
FILL process: ATACHR is temporarily set to the wvalue in FILDAT to
accomplish the f#illing portion of the command.

B21 ROWINC# [0079,1} and COLINC* [007A,13 —- Row/column
increment/decrement

ROWINC and COLINC are the row and column increment values; they
are each set to +1 or ~1 to control the basic direction of line
drawing. ROWINC and COLINC vepresent the signs of NEWRDOW -
ROWCRS and NEWCOL - COLCRS, respectively.

B22 DELTAR#* [007&, 13} and DELTACH* [0077.21 — Delta row and delta
column

DELTAR and DELTAC contain the absolute values of NEWRDW — ROWCRS
and NEWCOL - COLCRS, vrespectively; together with ROWINC and
COLINC, they define the slope of the line to be drawn.

B23 COUNTR# [O07E,2] —— Draw iteration count

COUNTR iniftially contains the larger of DELTAR and DELTAC, that
is the number of iterations required to generate the desired
line. COUNTR is then decremented after every point on the line is
piotted, until it reaches a value of zero.

B24 ROWAC# E£O07C. 2] and COLAC® L0072, 2] —-- Accumulators

ROWAC and COLAC are working accumulators that control the row-and
column-point plotfting and increment (or decremsnt) function.

B25 ENDPT# [0074.2]1 —= Line length

ENDPT contains the larger of DELTAR and DELTAC. and is used in
conjunction with ROWAC/COLAC and DELTAR/DEL.TAC to control the
plotting of line points.

Displaying Control Characters

Often it is useful to have ATASCII control codes (such as CLEAR,
CURGOR UP, etc). displayed in their graphic forms instead of
having them perform their control function. This display
capability is provided in two forms when outputting to the Screen
Editor: 1) a data content form in which a special character (ESC)

precedes each control character to be displayed and 2} a mode
control form. :

OPERATING SYSTEM CO146555 —— Appendix L
220



Escape (Display Follewing Control Character!}

Whenever an ESC character is detected by the Screen Editor, the
next character following this code is displayed as data, evan if
it would normally be treated as a control code; the EOL code is
the sole exception., It is always treated as a control code. The
sequence ESC ESC will cavse the second ESC character to be
displayed.

Bié& EBCFLG» [02A2,1) —— Escape flag

ESCFLG is used by the Screen Editor to contre)l the sscape
sequence function; the flag is set (to %80} by the detection of
an ESC character ($1B) in the data stream and is reset (&n O)
following the output of the next character.

Display Control Characters Mode

When it is desired to display ATASCII control codes other than
ECOL in their graphics form:; but not have an ESC character
associated with sach control code, a display mode can be
established by setting a flag in the data base. This capability
is ussd by language processors when displaying high~level
language statements, that can contain contrel codes as data
elements. ' :

B27 DSPFLG [Q2FE, 11 -— Display control characters +lag

When DSPFL.G is nonzero, ATASCII controel codes other than EOL are
treated as data and displayed on the screen when output to the
Screen Editor. When DSPFLG is 2ero. ATASCII cantrael codes are
processed normally.

DSPFLE is set fo zero by Power—up and [SYSTEM RESET].

Bit—-Mapped Graphics

A number of temporary variables are used by the Display Handler
when handling data elements (pixesls) going to or from the screen:
of interest here are those variables that are used to contrel fhe
packing and unpacking of graphics data, where a memory byte
typically contains more than ong data element (for example.
screen mode 8 contains 8 pixels per memory byte).

B28 DMASK# [02a0,1] -- Pixel location mask

OPERATING SYSTEM CO16555 -~ Appendix L
221



DMASK is a mask that contains zeros for all bits that do not
correspond to the specific pixel to be operated upon. and
1’s for all bits that do correspond. DMASK can contain
the values shown below in binary notation:

11111111 -- screen modes 1 and 2; one pixel per byte.

11110000 —- screen modes 9~11; two pixels par byte.
00001111

11000000 ~- scveen modes 3, 5 and 7; four pixels per Byte.
00110000
00001100
00000011

10000000 —-— screen modes 4, & and 8; eight pixels per byte.
01000050

00000010

00000001
B29 SHFAMT# [0Q0&F. 1] —~— Pixel justification
SHFAMY indicates the amount to shift the right—justified pixel
data on oufput, or the amount to shift the input data to right

Justify it on input. The value is always the same as for DMASK
prior to the justification process.

Internal Working Variables

B30 HOLDIx £0051,1]1 —~ Temporary storage

B31 HOLD2# £029F,1]1 -- Temparary storage

B32 HOLD3* (£029D,11 -~ Temporary storage

B33 TMPCHR#* L0050, 13 -- Temporary storage

B34 DSTAT# C004C, 13 -- Display status

B35 DINDEX E0057,13 -~ Display mode

DINDEX centains the current screen mode obtained from the low
order four bifs of the most recent DPEN AUXI byte.

B36 SAVMSC E0058,21 -- Screen Memory Address

SAVMSC contains the lowest address of the screen data regioni ¢€he
data at that address is displayed at the upper lef& corner of the

screen.

OPERATING SYSTEM CO146555 —— Appendix L
222



B37 OLDCHR* [005D,11 ~— Cursor character save/restors

OLDCHR votains the value of the character under the visible text

cursori this variable is used to restore the original character
value when the cursor is moved.

B38 OLDADR®* [0QQ5E,23 —- Cursor memory address

OLDADR retains the memory address of the current visible text
cursor location; this variable is used in conjunction with DLDCHR

(B37) to restore the original character value when the cursor is
moved,

B39 ADRESS* [0064,21 —— Temporary storage

B40 MLTTMP/OPNTMP/TDADR® L[0Q0Q&6,21 —— Temporary storage

B41 GSAVADR/FRMADR* [006B,2) ~~ Temporary storage

B42 BUFCNT# [00&B.11 ~~ Screen Editor current logical line size
B43 BUFSTR* [00AC.2] —— Temporary storage

B44 SWPFLEG#* [0O07B,1]1 -~ Split—-screen curser contral

In split-screen mode:, the graphics tursor data and the text
window cursor data are frequently swapped as shown below in order
to get the variables associated with the region being accessed
into the ROWCRS~OLDADR variables.

ROWCRS B2 ————— TXTRUW B4
COLCRS B2 —————— TXTCOL B4
DINDEX B35 —————— TINDEX B4%
SAVMSEC B34 ———- TXTMSC BS52
OLDROW B3 ——————= TXTOLD BS3
oLpcoL B3 ~——————~ " £
OLDCHR B37 ——wwew- " o
OLDADR B38 ~wrwwm— e -

SWPFLG is used to keep track of what data set is currently in the
ROWCRS-OLDADR region; SWPFLG is equal to $FF when split—-screen

text window cursor data is in the main region, otherwise SWPFLG
is equal to O.

B43 INSDAT# [007D, 13 ~— Temporary storage

OPERATING SYSTEM CD146555 —— Appendix L
223



B44

B47

B48

B49

TMPROW® £02B8, 11 and TMPCOL# [O289,2] —— Temporary storage

TMPLBT* [02A1,11 ~— Temporary storage

SUBTMP# {02%E.1] -- Temporary storage

TINDEX# [0293:13 —- Split screen text window screen mode

TINDEX is the split-screen text window aquivalent of DINDEX and is
always equal €o zero when SWPFLG is equal to zero (see B44),

B50C BITMSWK* [O0AE, 13 —~ Temporary storage

BG51

LINBUF% £0247,40]1 -~ Physical line buffer

LINBUF is used to temporarily buffer one physical line of text
when the Screen Editor is moving screen data.

B52 TXTMSC {02%4,2] —- Split screen memory address

TXTMSC is the split-screen text window version of SAVMSC (B36).

See B44 for more information.

B33 TXTOLD# {0296:6]1 —— Split screen cursor data

See B44 for more information.

Internal Character Code Conversion

Two variables are used to retain the curvrent character being
processed (for both reading and writing); ATACHR contains the
value passed €o or from CIf, and CHAR contains the internal code
corresponding to the value in ATACHR. Because the hardware does
not interpret ATASCII characters directly, the transformations
shown below are applied to all text data read and written:

224

ATASCII

CObE

00-1iF
20-3F
40-5F
60~-7F
80-9F

INTERNAL.
CaDE

40--5F
00-1F
20-3F
&0~7F
CO~-DF

DPERATING SYSTEM CDI1&585 —— Appendix L



AC-BF B0-9F
CO-DF AO-BF
EO-FF EO~FF

See P2& for more information.

B54 ATACHR [0Q2FB, 13 ~~ Last ATASCII character or plot point

ATACHR contains the ATABCII value for the most recent character
read or written, or the value of the graphics point. This
variable can also be considered to be a parameter of the
FILL/DRAW commands, as the value in ATACHR will determine the
line color when a DRAW or FILL is performed.

B33 CHAR%® [02FA:11 ~— Internal character code

CHAR contains the internal code value for the most recent
character read or written.

C. DISKETTE HANDLER

See Section 9 for a discussion of the resident Diskette HMandler.

Cl1 BUFADR# [0015.21 -- Data buffer pointer

BUFADR acts as temporary page zero pointer to the current
diskette buffer.

C2 DSKTIM* [0244,11 ~~ Disk format operation timeout time

DSKTIM contains the timeout value for SIO calling sequence

variable DTIMLO (see Section 9). DSKTIM is set to 140 (which
represents a 17i-second timeowt) at initialization time, and is
updated after each diskette status request gperation. It contains the
value refturned in the thivd byte of the status frame (see Section

9). Mote that all diskette operations other than format have a

fixed (7} second timeout, esstablished by the Diskette Handler.

D. CASSETTE

See Section § for a general description of the Cassette Handler. The
cassette uses the Serial I/0 bus hardware, but does not conform with
the Serial I/0 bus protocol as defined in Section 9. Hence, the Serial

OPERATING SYSTEM CO1i&555 ~— Appendix L
2295



I/0 utility (S10) has cassette specific code within it. Saome variables
in this subsection are utilized by SIC and some by the Cassette
Handler.

Baud Rate Determination

The input baud rate is assumed to be a nomimal &00 baud, but will
be adjusted, if necessary, by the SI0 routine to account for
drive—-motor variations, stretched tape. etc. The beginning of
every cassette record tontains a pattern of alternating 1’s and
zeros that is used solely for speed correction:; by measuring the
time to read a fixed number of bits: the $rue-receive baud rate
is determined and the hardware adjusted accordingly. Input baud
rates ranging from 318 to 1407 baud can theoretically be handled
using this technigue.

The input baud rate is adjusted by setting the POKEY counter that
controls the bit sampling period.

DI CBAUDL% [O2EE. 1] and CBAUDH#* [02EF, 13 -- Cassette baud rats

Initialized to OSCC hex, which represents a nominal 600 baud.
After baud rate calculation. these variables will contain POKEY
counter values for the corrected baud rate.

p2 TIMFLG* [0317.11 —— Baud rate determination timeout flag

TIMFLG is used by SID to timeout an unsuccessful baud rate
determination. The flag is initially set to i, and if it attains a
value of z2ero (after 2 seconds) before the first byte of the cassette
record has been read, the operation will be aborted. See also H24.

D3 TIMER1# {030C,21 and TIMER2+# [0310,2) —— Baud rate fimers

These timers contain reference times for the beginning and end of
the fixed bit pattern receive period. The first byte of each
timer contains &the then current vertical line counter value read
from ANTIC., and the second byte of each timer contains the fthen
current value of the least significant byte of the DB real time
clock (RTCLOK+2).

The difference betwsen the timers is converted %to raster pair

counts and is then used to perform a table lookup with
interpolation to determine the new values for CBAUDL and CBAUDH.

D4 ADDCOR# E£O30E, 1] —- Interpolation adjustment wvariable

OPERATING SYSTEM CD16555 —— Appendix L
226



ADDCOR is a temporary variable used for the intevrpolation
calculation of the above computation.

DS TEMPIx L[0312,2] —- Tempararq'storage
D& TEMP3# L0315, 1] -~ Temporary storage

D7 GBAVIO® [031&4:13 —— Serial in data detect
SAVID is used to retain the state of SKSTAT L[D20F1 bit 4 (serial

data in}; it is used to detect (and is vpdated after) every bit
arrival. :

Cagsetfte Mode

D8 CASFLG# [030F, 1] —- Cassette 1/0 flag

CASFLG is used internally by SIO to contral ¢he program flow
through shared code. A value of zero indicates that the current
operation is a standard Serial I/0 bus operation, and a nonzero
value indicates a cassette operation.

Cassetta Buffer

D? CASBUF% [0O3FD, 1313 -~ Cassette record buffer

CASBUF is the buffer used by the Cassette Handler for the packing
and unpacking of cassette-record data, and by the initialization
cassette-boot logic. The format for the standard cassette record
in the buffer is shown below:

76343210

Fom b —p—p— b —p—fod
i1 0101011 CASBUF+0
b  opm o = o

i0106010C10 1! +1
oo o e — S — s o

{ control byte ! +2
et St L s e

i 128 i +3

= data =

{ bytes i +130
F—pomb— b — b —f— b

See Section 5 for an explanation of the standard cassette-record
format,

OPERATING SYSTEM C014555 ~~ Appendix L
227



Di0 BLIM® [028A,13 —— Cassette record data size

BLIM contains the count of the number of data bytes in the
currant cassetfe record being read. BLIM will have a value

ranging from i to 128, depending upon the record control hyte as
explained in Section 5.

D11 BPTR# {f003D.1]1 —— Cassette~record data index

BPTR contains an index into the data portion of the cassette
record being read or written. The value will range from 0 to the
then current value of BLIM. When BPTR equals BLIM then the buffer
(CABBUF ) is full if writing or empty if reading,

Internal Working Variables

D12 FEOF# [OO3F, 1] —-- Cassette end-of-file flag

FEDF is used by the Cassette Handler to flag the detection of an
end of file condition (control byte = $FE). FEQOF aqual to zero
indicates that an EOF has not yet been detected, and a nonzero

value indicates that an EOF has been detected. The flag is reset
at every OPEN.

Di3 FYYPE* [OO3E, 1l -- Interrecord gap type

FTYPE is a copy of ICAX2Z from the OPEN command and indicates the
type of intervecord gap selected; a8 positive value indicates

normal record gaps:. and a negative value indicates continuous
mode gaps.

Di4 WMODE® L0289,1] -~ Cassette read/write mode flag
WMODE is used by the Cassette Handler to indicate whether the

current operation is a read or write operation; a value of zero
indicates read, and a value of $80 indicates write.

D15 FREQ# £0040,13 —— Beep count

FREQ is vused to retain and count the number of beeps requested of

the BEEP routine by the Cassette Handler during the OPEN command
PTOCESS.

OPERATING SYSTEM €D16555 —~ Appendix L
228



E. KEYBOARD

Gee Section S for a general description of the Heyboard Handler.

Key Reading and Debouncing

The console key code register is read in response to an IRG
interrupt that is generated whenever a key stroke is detected by
the hardware. The key code is compared with the prior key code
accepted (CH1i); if the codes ave not identical, then the new code
is accepted and stored in the key code FIFD (CH} and in the prior
key code variable (CH1). If the codes are identical, then the new
code is accepted only if a suitable key debounce delay has
transpired since the prior value was accepted,

If the key code read and accepted is the code for LCTRLY 1, then
the display start/stop flag (SSFLAC) is complemented and the
value is not stored in the key code FIFD (CH},

In addition to the reading of the key data: SRTIMR is set to $30
for all interrupts received (see EH}), and ATRACT is set to O
whenever a new code is accepted (see BIO).

The Keyboard Handler obtains all key data from CH; whenever a
code is extracted from that 1~byte FIFD, the Handler stores a
value of $FF to the FIFD to indicate that the code has been read.
See Section 5 for further discussion of the Keyboard Handler’s
processing ef the key codes.

Ei CHi# [02F2,1] -~ Prior keyboard character code.

CH1 contains the key code value of the key most recently read and
accepted. 1

E2 KEYDEL#* [02Fi,1]1 -~ Dabounce delay timer.

KEYDEL is set to a value of 3 whenever a key code is accepted.
and is decremented every &0th of a2 second by the stage 2 VBLANK
process {until it reaches zeroc).

E3 CH fO02FC, 1] -- Keyboard character code FIFO.

CH is a 1-byte FIFDO that contains either the value of the most
recently read and accepted key code or the value %FF (which
indicates that the FIFD is empty). The FIFD is normally read by
the Keyboard Handler, but can be read by a8 user program.

Key data can alsco be stored into CH by the Autorepeat logic as

explained in the discussion relating to EB.

OPERATING SYSTEM CO146555 —— Appendix L
227



Special Functians

Start/Stop

Display Handler and Screen Editor output to the text or graphics
mode screen can be stopped and started (without losing any of the
output data) through the use of the [CTRLI 1 key combination.
Each key depression toggles a flag that is monitored by the above
mentioned Handlers. When the flag is nonzero, the handlers wait
for it to go to zero before continuing any output.

E4 &5FLAG L02FF, 1] —— Start/stop flag

The flag is normally zero, indicating that screen output is net
to be stopped. The flag is complementad by every occurrence of
the £ECTRL]I I key combination by the keyboard IRQ service routine.

The flag is set to zero upon power—up., [SYSTEM RESET] or [BREAK]
key processing,

LBREAK] Key
ES BRKKEY £0011,13 —— L[BREAK] key flag

BRKKEY is used to indicate that the [BREAK] key has been pressed.
The value is normally nonzera and is set to zero whenever the
{BREAK] key is pressed. The code that detects and processes the
[BREAK] condition (flag = 0O) should set the flag nonzero again.

BRKKEY is monitored by the following DS routines: Keyboard
Handler, Display Handler:, Screen Editor, Cassette Handler, xx?
The detection of a [BREAK] condition during an I/0 cperation
will cause tha operation to be aborted and a status of %80 to be
retuyrned to the usser.

The #lag is set to nonzerg upon Power—up, [(SYSTEM. RESET] or upon
aborting a pending I/0 operation.

ESHIFT1/ECONTROL] Lock

The keybnard control has three different modes for code
generation that appliy to the alphabetic keys A through Z:
i} naormal, 2) caps lock, and 3) control lock.

OPERATING SYSTEM CD146555 —- Appendix L
230



In normal mode., ali unmodified alphabetic character keys generate
the lowercase letter ATASCII cade ($481-7A},

In caps lock mode, a}ll unmodified alphabetic character keys
generate the uvppercase letter ATASCII code (%41-5A).

In contrel lock mode, all vunmodified alphabetic character keys
generats the control Jetter ATASCII code ($0i-1A}.

In ali three modes. any alphabetic charvacter key that is modified
{by baing pressed in conjunction with the LS8HIFTI ovr L[CTRLI key)
will generate the desired modified code.

E6& SHFLOK [02BE, 1] —— Shift/control lock control flag
SHFLOK normally has one of three values:

$00 = normal mode (no locks in effect).
$4C = caps lock.
$80 = control lock.

SHFLDOK is set to %40 upon Power-up and ESYSTEM. RESET] and is
modified thereafter by the 0S5 only when the {CAPS LOWER] key is
pressed {(either by itsels or in conjunction with the [SHIFT1 or
[CTRLI key}.

E7 HOLDCH#* L[O07C, 13 —-— Character holding variable

HOLDCH is used to retain the current character value prior teo the
[SHIFTI/LCONTROL] logic process.

Avtorepeat

The Autorepesat feature responds to the coentinuous depression of a
keyhoard key by replicating the key code 10 times per second,
after an initial 1/2 second delay. The timer variable SRTIMR is
used to control both ¢the initial delay and the repeat rate.

Whenever SRTIMR is equal to zero and a key is being held down,
the value of the key code is stored in the key code FIFD (CH).
Thig lagic is part of the stage 2 VBLANK process.

EB SRTIMR# L[QZ22B, 11 -— Autorepeat timer

SRTIMR is controlled by two independent processes: 1) the
keyhoard IR@ service routine, which establishes the initial delay
value and 2) the stage 2 VBLANK rouftine that establishes the
repeat rate, decrements the timer and implements the auto repeat
logic.

OPERATING SYSTEM CO14555 —— Appendix L
231



Inverse Video Contral

The Keyboard Handler allows the dirvect generation of more than
half of the 23& ATASCII codes; but codes $80-9A and codes $A0- FC
can be generated only with the “inverse video mode" active. The
ATARI key acts as an on/off toggle for this mode, and all
characters (except for screen editing control characters) will be
sub ject to inversion when the made is active,

E? INVFLG [02B6,1] -~ Inverse video flag

INVFLG is normally zevo, indicating that normal video ATASCII

codes (bit 7 = O} are to be generated from keystrokes; whenever INVFLG
is nonzero, inverse video ATASCII codes (bit 7 = 13} will be generated.
The special control codes are exempt from this bit manipulation,
INVFLG is set to zere by power—up and system reset.

The Keyboard Handler inverts bit 7 of INVFLG whenaver the ATARI key

is pressed; the lower order bits are not altered and are assumed to he
raTo.

The Keyboard Handler’'s “exclusive or‘s® (XOR's) the ATASCII key data

with the value in INVFLG at alli times; the normal valuss of %00 and
$280 thus lead to control of the inverse video hit (bit 7).

Console Keys: [SELECT, [STARTI, and [DPTION]

The console keys are sensed directly from the hardware
register CONSOL [DOLIF]; see the ATARI Home Computenr
Hardware Manual for details.

F. PRINTER

See Section 5 for a general description of the Printer Handler.

Printer—-Buffer
Fl PRNBUF# £03C0,401 — Printer—-record buffer

PRNBUF is the buffer vused by the Printer Handler for packing printer
data to be sent to the device controller. The buffer is 40 bytes long

OPERATING SYSTEM C016555 —— Appendix L
232



and contains nothing but printer data.

F2 PBUFSZ# [O01E. 1] —- Printer—record size

PBUFS? cantains the size of the Printer—-record for the current mode

selected; the modes and respective sizes (in decimal bytes) are shown
below:

Normal 40
Dauble width 20 (not currently supported by the device)
Sideways 29 '

Status request 4

F3 PBPNT#* [001D. 1] —— Printer-~buffar index

PBPNT contains the current index to the Printer—-buffer. PBPNT ranges
in value from zern ta the value of PBUFSZ.

Internal Working Variables

F4 PTEMP® [00iF, 13 —— Printer Handler temporary data save

PTEMP is used by the Printer Handler to temporarily save the value of
a character to be outpuyt to the printer.

FS PTIMOT# [00iC,1i] —- Printer timeout value

PTIMOY contains the timeout value for SIO caliing-sequence'variahle
DTIMLO (see Section 9} PTIMOT is set to 30 (which represents a 32
second €imeocut? at intialization time, and is updated after each

printer status request operation to contain the wvalue returned in the
third byte of the status frame (gee Section 5).

G. CENTRAL I/0 ROUTINE (CIO)}

See Section S5 for a descripfion of the Central I1/0 Utility,

tUyser Call Parametfters

OPERATING SYSTEM CO16555 —— Appendix L
233



CI0 call parameters are passed primarily through an I/0 Control
Block (IOCB}Y;, although additional device status information can be
returned in DVSTAT, and Handler information is obtained from the
device table (HATABRS).

I/ Control Block

IOCB is the name applied collectively to the 14 bytes associated
with 2ach of the 8 provided control structures; see Section 5.

G1 IOCB [0340,163 —— I/0 Control Block

The label IOCB is the location of the first byte of the first IDCB in
the data base. For VIDs G2 through G610, the addresges given are for
IOCB #0 only, the addresses for all of the IOCB's ave shown below:

0340-034F I0CB #0
0350-035F IOCE #1
0360-036F IOCE #2
0370-037F IOCE #3
0380-038F INCE #4
0390--039F IOCE #5
03A0-03AF INCB #&
O03BO-03BF i0CB 47

G2 ICHID £0340,11 -~ Handlier ID

See Section 5. Initialized to $FF at power—up and system reset,

63 ICDND £0341,1) ~—- Device number

See Section 5.

G4 ICCOM [0342,11 — Command byte

See Section 5.

G5 ICSTA [0343,11 -- Statys

See Section S5,

Gé& ICBAL., ICBAH [0344,21 ~- Buffer address

See Section 5.

OPERATING SYSTEM CO16555 —— Appendix L
234



G7 ICPTL.,ICPTH £0344,2] ~— PUT BYTE vector
See Section 5. Initialized to point to CID’'s "IOCE not OPEN®

at power—up and system reset.

G8 ICBLL, ICBLH £0348,21 —— Buffer length / byte count

See Saction 5.

% ICAX1, ICAX2 EO034A,2] -~ Auxiliary information

See Sectioen 5.
G100 ICEPR E034C,. 41 —— Spare bytes for Handler use

There is ne fixed assignment of these four bytes; the Handler
Adssociated with an IOCEB can or may not use these bytes.

Device Status

11 DVSTAT EQ2EA., 4] -- Device status

See Section 5 for a discussion of the GET STATUS command.

Bevi¢ce Table

Gl2 HATABS L031A.38] —— Device fable

See Section 9 foar a description of the device table.

CIO/Handler Interface Parameters

Communication between CID and a Handler is accomplished using the
6502 machine registers, and a data structure called the Zero—-page
IOCB (ZIOCB)., The ZIDCH is essentjally a copy of the particular

IGCB being used for the current cperation.

DPERATING SYSTEM C0O1A4555 ~-~ Appendix L.

Toutine

235



Zero~Page I0CH

@13 ZI0CB (IDCBAS) 0020, 143 ~— Zero—page IOCB

The Zero—page IOCB is an exact capy {except as noted in the
discussions that follow) of the IOCE specified by the &502 X
ragister upon entry to CIO; CIO copies the outer level IOCE to

the Zero—page IOCB, performs the indicated function, moves the

(possibly altered) Zero—page IOCB back to the outer level IOCE,
and then returns to the caller.

Although both the outer level IOCB and the Zero-page IOCH are

defined to be 16 bytes in size, only the first¢ 12 bytes are maved
by CID.

614 ICHIDZ [0020,11 -- Handler index number

See Section 5. Set to $FF on CLOSE.

G615 ICDNOZ [002i,11 —~ Device drive number

See Section S.

G146 ICCOMZ C0022,11 -- Command byte

Saee Section 5,

G17 ICSTAZ [0023.,11 -— Status byte

Sea Section S.

Gi8 ICBALZ, ICBALH [0024,2) -— Buffer address
See Section 5. This pointer variable is modified by CIO in the

course of processing some commands: however, the original value
is restored before returning to the caller.

¢1% ICPTLZ, ICPTHZ

See Section 5. Set to point fto CIO‘s "IDNCB not OPENY routine on
CLOSE.
620 ICBLLZ, ICBLMZ {0028,2]1 —-- Buffer length / byte count

See Section 5. This double-byte variable, which starts out
representing the buffer length, is modified by CIO in the course

OPERATING SYSTEM CO1465955 ~— Appendix L
236



of processing some commands; then, before returning to the
caller, the transaction byte count is stored therein.
G21 ICAX1Z, ICAX2Z L[O0024A,2) ~- Auxiliary information

Bee Section 5.

622 ICSPRZ (ICIDND, CIOCHR) L[002C, 4] — CID working variables

ICSPRZ and ICSPRZI+1 are used by CID in obtaining the appropriate
Handler entry point from the handler‘s vector table (see Section 9).

ICOPRZI+2 is alsc labeled ICIDNO and retains the value of the 4502 X

register from CID entry. The X register is loaded from ICIDNO as CIO
returns £o the caller.

ICSPRZ+3 is also labeled CIDCHR and retains the value of the 6502 A
register from CID entry, except for data reading type commands, in

which case the most recent data byte read is stored in CIOCHR. The
6302 A register is lpaded from CIOCHR as CID returns to the caller.

internal Working Variables

623 ICCOMT# f£0017,13} -—~ Command table index

ICCOMY is used as an index to CIO‘s internal command table, which maps
command byte values to Handler entry offsets (see Section ? for moTe

information)., ICCOMT contains the value from ICCOMZ except when ICCOMZ
is greater than $0E. in which case ICCOMT is set to $0E.

624 ICIDNO# [OO2E, 1} —— CIO call X register save/restore

See (22,

625 CIDCHR* [Q02F,13 ~— CI0 call A register save/restore

See G22.

H. SERIAL I/0 RODUTINE (SIO}

See Saction ¢ for discussions relating $o SIO.

OPERATING SYSTEM C0O16555 —- Appendix L
237



User Call Parameters

§10 call parameters are passed primarily through a Device Control
Block; although an additional “noisy bus® option exists that is
selectable through a separate variabie.

Device Control Block

H1 DCB £0300.12) —— Device Control Black

DCB is the name applied collectively to the 12 bytes at locatians
0300~030B. These bytes provide the parameter passing mechanism for SI0
and are degcribed individually below.

H2 DDEVIC {0300.1] - Device bus ID

See Section 7.

H3 DUNIT £0201,11 ~— Device unit number

See Section 2.

H#4 DCOMND £0302,11 —— Device command

See Section 9.

HS DSTATS £0303,1]1 -- Device status

Sea Section 9.

H&é DBUFLD, DBUFHI [0304:2] —- Handler buffer address

See Section 9.

H? DTIMLO £0306,11 —— Device timeout

See Section 9.
H8 DBYTLO, DBYTHI [{0308.21 —— Buffer length / byfte count

See Section 9.

OPERATING SYSTEM CD14555 ~— Appendix L
238



H? DaUX1i, DAUXZ2 £030A, 21 -- Auxiliary information

See Section 9,

Bus Sound Cantrol

H10 SOUNDR £0041,13 —~ Quiet/noisy 1/0 flag

SOUNDR is a flag used to indicate to SIO whether noise is to be
generated on the television audio circuit when Serial I/0 bus
activity is in progress. SOUNDR equal to zero indicates that
sound is to be inhibited, and nonzero indicates that sound is to
be enabled. SID sats SOUNDR to 3 at power—up and system reset.

Serial Bus Control

Retry togic

510 will attempt one complete command retry if the first attempt
is not error free, where a complate command try consists of up to
14 attempts to send {and acknowledge) a command frame. followed

by a single attempt to receive COMPLETE and possibly a data
frame.

Hil CRETRY# [0036,1] —~ Command #rame Tetry counter

CRETRY controls the inner loop of the retry logic, that associated
with sending and receiving an acknowledgement of the command frame.
CRETRY is set to 13 by SIO at the beginning of every command

initiation: thus allowing #for an initial attempt and uvp %to 13
additional refries.

H12 DRETRY# [0037,13 —-- Device retry counter

DRETRY controls the outer loop of the retry logic, that
associated with initiating & command retry after a failure
subsequent to the command frame acknowledgement. DRETRY is set to

1 by SIO at entry, thus allowing for an initial attempt and
1 additional retry.

OPERATING SYSTEM CD16555 -~ Appendix L
239



Checksum

The Serial I/0 bus protocol specifies that all command and data
frames must contain a checksum validation byte; this byte is the

arithmetic sum (with end-around carry) of all of the other bytes
in the frame.

H13 CHKSUM# [0Q031,1] —~ Checksum value

CHKSUM contains the frame checksum as computed by SIO for all frame
transfers.

H14 CHKSNT# [0O03B, 1] -— Checksum sent flag

CHKENT indicates to the serial bus transmit interrupt sevvice
routine whether the frame checksum byte has been sent yet. CHKSNT
equal to zero indicates that the checksum byte has not yet heen
sent; after the checksum is sent, CHKSNT is then set nonzero.

H15 NOCKSM# [003C, 1] ~— No checksum follows data flag

NOCKSEM is a flag used to communicate between the SIO top laevel

code and the Serial bus recsive interrupt service routine that

the next input will not be followed by a checksum byte. A value

of zero specifies that a checksum byte will follow. nonzero specifies
that a checksum byte will not follow '

Data Buffering
General Buffer Contrel

Hi6é BUFRLO#* [0Q032,13 and BUFRHI%* [0033,11 -~ Next byte address

BUFRLO and BUFRHI comprise a pointer to the next buffer location
to be read from or written to. For a data frame transfer. the
peinter is initially set to the value contained in the SIO call
parameters DBUFLO and DBUFHI, and is then incremented by the
interrupt service routines as a part of normal bus data transfer.
For a command frame transfer. the pointer is set ¢o point to the
Si0-maintained command frame output buffer. .

Hi7 BFENLD® [0034, 1] and BFENHI* £0035,1) ~- Buffer end address

BFENLO/BFENHI form a pointer to the byte following the last frame
data byte (not including the checksum) te be sent or received.

OPERATING SYSTEM CO16555 —— Appendix L
240



BFENLO/BFENHI is the arithmetic sum of BUFRLO/BUFRHI plug the
frame size plus ~1.

Command Frame Output Buffer

See Saction ? for the command frame fgormat and description.

Hi8 CDEVIC# [023A, 11 —~~ Command frame device ID

CDEVIC is set to the value obtained by adding SIO call parameter
DREVIC to DUNIT and subtracting 1.

H19 CCOMND® [023B, 1] -—— Command frame command.

CCOMND is set to the value obtained from SID call paramefer
GCOMND,

H20 CAUX1® [023C, 11 and CAUX2%® [023D, 13 —- Auxiliary information

CAUX1 and CAUXZ2 are set to the values obtained from SIO call
parameters DAUX1 and DAUX2: respectively.

Receive/Transmit Data Buffering

H21i BUFRFL3* [0QD38, 11 —— Buffer full flag

BUFRFL is a flag used by the serial bus receive interrupt service
routine t€o indicate when the main portion of a bus frame has been
received —— all but the checksum byte. BUFRFL equal to zero
indicates that the main portion has not been completely received.
a nonzere value indicates that the main partion has been
received.

H22 RECVDN#* [003%,11 —— Receive frame done flag

RECVDN is a flag used by SID to communicate between the Serial
bus receive interrupt service Toutine and the main SIO code. The
flag is initially set to zero by SI0, and later set nonzero by
the interrupt service voutine after the last byte of a hus frame
has been received

H23 TEMP® [023E,1] —— SI0 l-byte I/0 data

OPERATING SYSTEM 014555 —— Appendix L

241



TEMP is used to receive l-byte responses from serial bus
controllers, such as ACK: NAK, COMPLETE or ERROR.

H24 XMTDOMN# [0034, 1] —- Transmit frame done flag

XMTDON is a flag used by SIO to communicate betwesn the Serial
bus transmit interrupt service routine and the main SI0 code. The
filag is initially set to zero by SI10, and later set nonziero by
the interrupt service routine after the last byte of a bus frame
has been tramsmitted.

Sif} Timeout

SI0 uses System Timer 1 to provide fthe timeocut capability for
various operations initiated internally. See Section & for a
discussion of the capabilities of the System Timers. TIMFLG is
the flag used to communicate between SID and the timer initiated
caode pointed to by CDTMAI.

H25 TIMFLEG* [0317,13 —— SI0 operation timeout +#lag

TIMFLG is used to indicate a timeout situwation for a bus
operation . The flag is initially set to 1, and if it attains a
value of zero (after the timeout period} before the current
operation is complete, the operation will be aborted. See also
D2.

H2&6 CDTMVi# [0218,21 —~— System Timer 1 value

This 2-byte count takes on various values depending upon the
aperation being timed Gee also P4.

H27 CDTMAl* [0226,21 — System Timer 1 address

This vector always points to the JTIMER routine, whose only
function is ¢to set TIMFLG to zevo. This vector is initialized by
SI0 before every use: so that System Timer 1 can be used by any
process that does not use SIO within a timing funcfion. See also
P3.

OPERATING SYSTEM CD16555 —— Appendix L
242



Internal Working Variables

H28 STACKP# [0318,1]1 —— Stack pointer save/restore

STACKP contains the value of the 6502 SP register at entry to

8I0; this is retained to facilitate a direct error exit from an
SIO subroutine,

H2? TSTAT# [0319,13 ~— Temporary status

TSTAT is used to return the operation status from the WAIT

routine and will contain one of the SID status byte valuses as
shown in Appendix B.

H30 ERRFLG* [023F., 13 -— 1/0 error flag

ERRFLG is used for communication between the WAIT routine and the
~outer level SID code. ERRFLG is normally zero, but is set tog $FF
when a device responds with an invalid response byte,

H31 STATUS® [0030,13 — SID operation status

B8YTATUS is a zevo-page variable that is used within SIO %o contain
the operation status that will be stored to the calling sequence
paramefer variable DSTATS when SID returns to the caller.

H32 GSSKCTL* L[0232,11 ~~ SKCTL copy

SSKCTL is utilized by SID to keep track of the content of the
SKCTL £D20F1 register, which is a write-only register.

J. ATARI CONTROLLERS

The ATARI controllers are read as part of the Stage 2 VBLANK

process. The encoded data is partially decoded and processed as
shown in the subsections that follow.

Joysticks

Up to four joystick controlliers can be attached to the computér
console, each with a P-position joystick plus a trigger button.

OPERATING SYSTEM C0O16555 ~~ Appendix L
243



J1  STICKO - STICK3 [0278,41 —- Joystick pesition sense

The 4 joystick position sense variables contain a bit—-encoded
pogition sense as shown below:

7646543210
b e b e e

10 & O DIRILIDIUY

e e e R s o e

where: indicates Joystick RIGHT sensor true.
indicates joystick LEFT sensor true.
indicatas joystick DOWN sensor true.

R
L
D
U indicates joystick UP sensor true.

oo Jow R e ]

Nine unique combinations are possible, indicating the possihble
Joystick positions shown below:

CENTER $OF
uP $OE
UP/RIGHT $06
RIGHT £07
DOWN/RIGHT $05
DOWN $0b
DOWN/LEFT %09
LEFT $0B

UP/LEFT £0A

J2 S8TRIGO ~ STRIG3 {0284,43 —— Joystick trigger sense

The four joystick trigger sense variables each contain a single bit
indicating the position of the joystick trigger as shown below:

74543210
L e e
i0C O OO0 0T
S pat IO R R SR Y

where: T = Q indicates trigger pressed.

Paddles

Up to eight paddlie controllers can be connected to the computer,
each with a potentiometer and a trigger sense.
J3 PADDLO - PADDL7 £0270,8] -~ Paddle position sense

There is a single-byte variable associated with each paddie
position sense; the values range from 228 for #full

OPERATING SYSTEM CO16555 —— Appendix L
244



counterclockwise vrotation to 1 for full clockwise rotation.

The paddle values are often converted by the user, as shown
below, to give a result of O for #£ull counterclockwise rvotation
and 227 for full clockwise rotation:

VALUE = 228 - PADDLX:
J4 PTRIGO — PTRIG7 E027C, 81 ~— Paddle trigger sense

The B-paddle trigger sense variables each tontain a single bit
indicating the position of the paddle trigger as shown below:

76 35 43210
== h = —
i00 0000 OIT
B e h et e T B S

where: T = 0 indicates trigger pressed.

Light Pan

The OS5 reads the position of a single light pen and stores the
horizontal and vertical position codes in tweo variables: these codes
are not the same as the actual screen coordinates. The pen position
codes for different portions of the screen are shown below:

Left edge —— &7.
Codes increase in increments of one to a value of 227, then go ¢to O

and continue tg increase monotonically (one count per color clock).
Right edge —— 7.

Upper adge —— 16,
Cpdes increase in increments oF one {one count per two raster
lines). Lower edge -— 1ii,

The light pen hardware will read and latch the pen pos1tzon &0 times
per second, independent of the pen button position, which is
separately sensad,

In order for the light pen to operate it must be positioned over a
portion of the screen which has sufficient luminance to activate the
photosensor in the pen: a blank (dark) screen will generally not
provide enouwgh luminance to utilize the light pen.

J5 LPENH [0234,11 ~~- Light pen horizontal position code

LPENH contains the horizontal position code for the light pen; fthe
algorithm below (written in Pascal) shows the canversion from.position
code to screen ceoordinate (screen mode 7).

IF LPENH < 33 £ check for rollover point
THEN { adjust values to right of roliover >

OPERATING SYSTEM CD16555 —— Appendix L
245



XPOS = LPENH + 227
ELSE { no adjustment to left of rollover point ¥
XPOS := L PENH;
XPOS := XPOS -~ &7; { adjust for left edge offset )
IF XPGS < O THEN XPOS = O
IF XPGS > 159 THEN XPOS := 159;

Jé LPENV [0235, 13 —— Light pen vertical position code

LPENV contains the vertical position code for the light pen: the
algorithm below (written in Pascal) shows the conversion from position
code to screen coordinate (screen mode 7):

YPOS (= LPENV —- 16; £ adjust for upper edge offset ¥
IF YPOS < O THEN YPOS := O;
IF YPDS » 95 THEN YPOS := 95;

J7 STICKO ~ STICK3 £0278, 43 -~ Light pen button sense
The light pen button sense is encoded in one of STICKO — STICK3

(depending upon the actual controller port used) as shouwn
balow:

where: T = O indicates the light pen hutton is pressed.

Driving Controllers

The driving controller has no position stops and thus allows unlimited
rotation in either direction; the output of the controller is a 2-bit
Gray code which can be used to determine the direction of rotation.
The controller is sensed using the same internal hardware as the
joystick, thus the same data base variables are used for both.

OPERATING SYSTEM CD16555 — Appendix L
246



J8 STICKO - STICK3 [0o278,41 ~- Driving contraller sense

The 4 driving controller sense variables contain an encoded
Totation (position) sense value, as shown below:

7&543210
D e s T e
¢ 0001 tival!
F—F—F b}

where a clockwise rotation of the controller produces the following
continuous sequence of four values {(shown in hexadecimal)}:

OF, OD. OC, OE. OF, OD,

and a counterclockwise rotation of the controller produces the
following continuous sequence of four values:

OF. OE. QC, OD, OF. OE,

.......

J?  STRIGC - STRIG3 [0284,43 —- Driving trigger sense

The four driving trigger sense variables each contain a single bit
indicating the position of the driving trigger as shown below:

74543210
s e o oo e e e i
0 GO0 OO0 O0ITH
o e e e o e e

where: T = ¢ indicates trigger pressed.

K. DISK FILE MANAGER

Bee Section 5 for information relating to the Disk File Manager.

K1 FMSIPG# [0043:7]1 —— FMS reserved space

FMSZPG is the reserved space in the database for the variables shown

below; the names associated with K2 through K5 are not in the system
equate file.

Ke ZBUFP%# L0043,2]1 -- Buffer pointer
K3 ZIDRVA® [0045,2]1 ~- Drive pointer
K4 2SBA®* [0047,2] -- Sector buffer pointar

DPERATING SYSTEM CO16555 —- Appendix L
247



K5 ERRND¥ [0049,1] -- Error number

l.. DISK UTILITY POINTER

Li DSKUTL% [001A, 21 —— Page—zero pointer variable

M. FLOATING POINT PACKAGE

See Section 8 for a description of the Floating Point Package.

M1 FRO [OOD4, &1 — FP register O

M2 FREx L[OODA, &1 —— FP register (internal)

M3 FRI L[OCEQ, 41 —— FP register 1

M4 FR2% [00E6, &1 —— FP register 2 (internal)

M3 FRX% [OOEC, 11 -~ Spare (unused)

M&é6 EEXP¥ [OOED, 13 —- Exponent value (internal)l

M7 NSIGN# [QOEE, 1} —— Sign of mantissa (internal)

M8 EBIGN* [OQEF,1]3 —— Sign of exponent (internal)

M7 FCHRFLG# {OOF0,1]1 -- First character £lag {(internal)
M1O DIGRT# L0QOF1,1]1 —— Digits to right of decimal pnipt
Mii CIX [OOF2,1] —~ Character index

Mi2 INBUFF {QOOF3,2]1 -- Input text buffer poinfer

OPERATING SYSTEM CO146555 —— Appendix L
248



M13 ZTEMP1i* [QOFS, 2] —— Temporary storage

Mi4 ZTEMP4# [QOF7,21 —- Temporary storage

Mi5 ZTEMP3# [OOF9,2]1 -~ Temporary storage

Ml&é FLPTR fOOFC.23 —— Pointer to FP number

M17 FPTR2#% [OOFE. 21

i
;

FP package use

MiB LBPRix [OS57E, 1]

i
i

LBUFF preamble

M1% LBPR2#% [0GS7F, 11 LBUFF preamble

M20 LBUFF L0580, 941

Text bufter

M2 PLYARG* L[OSEOQ, &1 —— FP register (internal)

M22 FPSCR/FSCR* (ODEL, 61 —— FP register (internal)
M23 FPSCRI/SCRi# LOSEC, 61 —— FP regisfer {internal)
M24 DEGFLG/RADFLG L[OOFB, 1] -~ Degrees/radians flag

DEGFLG = 0 indicates radians, & indicates degrees.

N. Power-Up and SYSTEM RESET

See Qection 7 for details of the power~up and system reset
operations.

RAM Sizing

During power—up and system reset the first non—RAM address above 1000
hex is lacated and its addrass retained using a nondestructive

test. The firsé byte of every 4K memory "block" is tested to see if
it is alterable; if so, the original value is restored and the next
block is tested, and if not, that address is considered to be the

end of RAM. -

OPERATING SYSTEM CO146555 -— Appendix L
249



N1 RAMLO%/TRAMSZ* (0004, 3] -— RAM data/test pointer (temporary)

RAMLO+1 contains the L8B of the addregs to be tested (always = 0}
and TRAMSZ (same as RAMLO+2) contains the MSE of the address to be
tested. RAMLO+0 contains the complemented value of the data
originally contained in the memory location being testad.

tater in the initialization process these variables are used for
totally unrelated functions; but first the value in TRAMSZ is moved
to the variables RAMSIZ and MEMTOP+1.

N2 TSTDAT* £0007.13 —- Test data byte save

TSYDAT contains the ovriginal value of the memory location being
tested.

Diskette/Cassette—Boot

As a part of the Power—up sequence, software can be booted from an
attached disk drive or cassette player as explained in Section 10,

N3 DOESINI [O00C,21 —— Diskette~boot initialization vecéor.

DOSINI contains the disk booted szofftware iniftialization address
from the bheginning of the boot file (see Section 10} whenever a
diskette—-boot is successfully completed.

N4 CKEY# {004A, 1] —— Cassette—boot request flag

CKEY is an internal flag used to indicate that the console L[STARTI
key was pressed during Power—up:, thus indicating that¢ a
cassette—-boot is desired. CKEY equals zero when no cassette—boot is
requested, and is nonizero when a cassette-boot is requested, The
flag is cleared to zero after a casseatte-boot.

NS CASSBT# [004B, 1] ~— Cassette—booting flag

CASSBT is used during the cassette-boot process to indicate to

shared code that the cassette is being booted and not the diskette.
CASSBT equal to zero indicates a diskette-boot: and nonzero indicates
a cassette-boot.

N6 CASINI £0002,2] ~- Cassette—-bont initialization wvector

CASINI countains the cassette-hooted software initialization address
from the beginning of the boot file (see Section 10) whenever a

OPERATING SYSTEM CO1655% - Appendix L
250



cassette-boot is successfully campleted.

N7 BOOT?# [0009 1] ~— Successful diskette/cassette-boot flag.

BOOT? indicates to the initialization processor which, if any., of
the hoot operations went to successful completion. The flag values
are set by the 0S and the format for the variable is shown below:

76543210
B T S ot TG Gy
t ICiD!

e i oy y e i 3
L} - T T L =

where: € = 1 indicates that the cassette—boot was completed.

D = 1 indicates that the diskette—-boot was completed.

N8 DFLAGS# [0240,1) —— Diskette flags

DFLAGS contains the value of the first byte of the boot file, after a
diskette—boot. See Section 10.

N? DBSECT# [0241.1] -~ Diskette—-boot sactor count

DBSECT is initially set to the value of the second byte of the boot
file, during a diskette—boot, and is then used %o control the number
of additional diskette sectors vead, if any.

NiQ BODOTAD* [0242,2] —- Diskette-boot memoTy address

BOOTAD is initially set to the value of the third and fourth

bytes of the boot #ile, during & diskette~boot:, and is not
modified thereaféer.

Environment Control

If: af the end of a power-up or system reset, control is not
given o one of the cartridges (as explained in Sections 7 and 10),

then program control passes to the address contained in the data
base variable DOSVEC. ;

N1l COLDST# [0244,13 ~~ Coldstart complete flag
COLDST is used by the initialization routine to detect the case of
a system reset occurring before the complaetion of the power—up

Process. COLDST is set to $FF at the beginning of the power—-up

OPERATING SYSTEM CO146555 -~ Appendix L
251



sequence and is set to O at the completion; if a system reset
ocecurs while the value is nonzero, the power—up sequence will be
reinitiated (rather than initiating a system resef sequence).

Ni2 DODSVEC f[G00A, 21 — Noncartridge control vector

At the beginning of power—up the 0S sets DOSVEC to point to the
"blackboard® routine; DOSVEC can then be altered as a consesquentce
of a diskette-boot or cassette~boot (as explained in Section 10} to
establicsh 3 new control program. Control will be passed through
DOSVEC on all power—up and system reset conditions in which a
cartridge does naot take control first.

System Resetf

NI3 WARMST {0008,11 -- Warmstart flag

WARMST equals $FF during a system reset (warmstart)
initialization and equals O during a power—up initialization
{coldstart).

P. INTERRUPTS

See Section & for a discussion of interrupt processing.

P1 CRITIC £0042,1]1 ~~ Critical code section flag

CRITIC is used to signal to the VBLANK interrupt processor that a
critical code section is executing without IRG interrupts being
inhibited; the VBLANK interrupt processor will stop interrupt
processing after stage 1 and before stage 2, Just as if the &30
processor I bit were get, when CRITIC is set.

CRITIC equal to zers indicates that the currently executing code
section is noncritical, while any nonzero value indicates that the
currently executing code section is critical.

?2 POKMSK £0010:11 —— POKEY interrupt mask

POKMSK is a software maintained interrupt mask that is used in
conjunction with the enabling and disabling of the various PUKEY
interrupts. This mask is required because the POKEY intervupt
enable register IRGEN [D20E] is a write-only register. and at any
point in time the system ran have several users independently
anabling and disabling POKEY interrupts. POKMSK is updated by the

OPERATING SYSTEM CO16555 —— Appendix L
202



users o always contain the current content of IRGEN.

System Timers

The System Timers are discussed in detail in Section 6,

Realtime Clock

The realtime clock (or frame counter, as it is sometimes called)
is incremented as part of the stage 1 VBLANK process as explained
in Section &,

P3 RTCLOK £00i2,31 —- Realtime frame counter

RTCLOK+0 is the most significant byte, RTCLOK+1 the next most

significant byte, and RTCLOK+2 the least significant byte. See the
discussions at D3 and preceding BIiO for 0S5 use of RTCLOK.

System Timer 1

System Timer 1 is maintained as part of the stage 1 VBLANK process,
and thus has the highest priority of any of the user timers.

P4 CDTMVI [0R21i8.2]1 ~- System Timer 1 value

CDTMVE contains zero when the timer is inactive, otherwise it
containg the number of VBLANKs remaining until timeout. Also see
H26.

PS5 CDTMAL £0226.,21 —-- System Timer i jump address

CBTMAL contains the address to which te JSR should the timer
timeouvut. SBee also HS7 and Section 6.

OPERATING SYSTEM CD16555 —— Appendix L
253



System Timer 2
System Timer 2 is maintained as part of the stage 2 VBLANK praocess.

and has the second highest priority of ¢the user timers. The 0OS does
nat have any direct use for System Timer 2.

P& CDTMVZ2 [021A,2]) —- System Timer 2 value

CDTMV2 contains zero when the timer is inactive, otherwise it
contains the number of VBLANKs remaining until timeout.

P7 CDTMAZ [0228,2]1 —— System Timer 2 jump address

CDTMA2 contains the address to which tg JSR should ¢he timer
timeout, See Section 4.

System Timers 3, 4 and 5

System Timere 3, 4 and 5 are maintained as part of the stage 2
VBLANK process, and have the lowest priority of the user timers.
The US does not have any direct use for these timers.

FB CDTMV3 [021C. 2], CDTMV4 [QR21E, 21 and CDTMVS L[0220,21

These variables contain zero when the corresponding timers are

inactive, otherwise they contain the number of VBLANKs remaining
until timeout.

P? CDTMF3 [022A,11, CDTMF4 [022C.11 and CDTMFS [022E, 2]

Each of these I-byte variables will be set to zere should its
corresponding timer timeovt. The OS5 never modifiss these bytes
except to set them to zere upon timeout (and initialization).

RAM Interrupt Vectors

There are RAM vectors for many of the interrupt conditions within
the system. See Section & for a discussion of the placing of values
to these vectors. ;

OPERATING SYSTEM CD16555 —— Appendix L
254



NMI Interrupt Vectors

P10 VDBLST [0200,2] -~ Display-list intervupt vector

This vector is not used by the 0S. See Sectien &.

P11 VVBLKI £0222,2] -~ Immediate VELANK wvactor

This vector is initialized to point to the 0OS stage 1 VBLANK

P12 UVBLKD [0224,2] —- Deferved VBLANK vactar

This vector is initialized to point to the 0S5 VBLANK exit routine.
See Section 6.

IRQ Interrupt Vectors

P13 WVIMIRG £0216,21 —- General IRQG vector

This vector is initialized to point to the 0S5 IRG interruypt
processaor. See Section &.

P14 VPRCED L[0202,21 ~- Serial I/0 bus proceed signal

The serial bus line that produces this interrupt is not used in the
cturrent system. See Section 4. i

P15 VINTER [0204.21 -- Serial I/0 bus interrupt signal

The serial bus line that produces this interrupt is not used in the
current system. See Section 6.

P1&é WVIBREAK] [0204.21 ~— BRK instruction vecter

This vactor is initialized to point to a PLA, RTI sequence as thae
OS proper does not utilize the BRK instruction. See Section &,

P17 VKEYBD {0208,23 -- Kegyhoard interrupt vector

This vector is initialized to point to the Keyboard Handler ‘s

interrupt service routine. See Section & and the discussion
preceding E1.

DPERATING SYSTEM CO14535 —— Appendix L
255



P18 VESERIN L[G20A,21 -- Serial I/0 bus receive data ready

This vector is initialized to point to the SI0 utility‘’s interrupt
service routine, See Section 4. :

P1? VSEROR £020C, 21 ~-- Serial 1/0 bus transmié ready

This vector ig initialized to point to the SIO utility’s interrupt
service rovtine. See Section 4.

P20 VSEROC {020E, 21 -— Sarial I1/0 bus transmit complete

This vector is initialized to'point to the 8I0 utility‘s interrupt

service voutine. Ses Section &.

P21 VTIMR1 [0210,21, VTIMRZ2 [0212,2] and VTIMR4 £0214,21 —— POKEY
timer vectors

The POKEY timer interrupts are not used by the DS See Section &.

Hardware Register Updates

As part of the stage 2 VBLANK process, certain hardware regisfers
are updated from O data base variables as explained in Section 6.

P22 GSDMCTL# [022F, 1] -~ DMA control

SDMCTL is set to a value of $02 at the beginning of a Display
Handler OPEN command, and then later set top a value of %22. The

value of SDMCTL is stored to DMACTL [D400] as part of the stage 2
VELANK process.

P23 SDLSTL#* L[0O230.1]1 and SDLSTH#* [0231,11 ~~ Display list address

The Display Handler formats a new display list with every OPEN
command and puts the display list address in SDLSTL and SDLSTH. The
value of these bytes are stored to DLISTL [D402]1 and DLISTH [D4OGJ
as part of the stage 2 VBLANK process.

03&40-036F I0CE #2
0370-037F IOCB #3
0380-038F I0CB #4
0320-039F I0CE #5
03A0-034aF 10CB #&
03B0O—-03BF I0CB #7

OPERATING SYSTEM CO146555 —~ Appendix L
256



NOTE: There is a potential timing problem associated with the
updating of the hardware registers from the data base variables.
Since the stage 2 VBLANK process is performed with interrupts
enahled, it is possible for an IRG interrupt to occur before ¢he
vpdating of DLISTH and DLISTL. If the processing of that
interrupt (plus other nested interrupts}) exceeds the
vertical-blank delay (1 msec), then the display list pointer
register will not have been updated when display list processing
commences for the new frame:. and a screen glitch will resuvlt.

P24 GPRIOR® [0Q26F.1} —— Priority control

The Display Handler alters bits & and 7 of GPRIUR as part of
establishing the GTIA mode. The valus of GPRIOR is stared to
PRIDR EROIRY as part ot the stage 2 VBLANK process.

P25 CHACT# L[O02F3,1] -~ Character control

The Display Handler sets CHACT to $02 on every OPEN command. The
value of CHACT is stored to CHACTL ED401] as part of the stage 2
VBLANK proteass.

P26 CHBAS [02F4:.11 —— Character address base

The Display Handler sets CHBAS to $EC on every OPEN command. The

value of CHBAS is stored to CHBASE {D40%} as part of the stage 2
VBLANK process. This variable controls the character subset for

screen modes 1 and 2; a value of $EOQ provides the capital letters

and number set wheteas a value of $E2 provides the lowercase
letters and special graphics set. See BS5S for more information.

P27 PCOLRx [02C0. 41 and COLORx [02C4,51 —— Color registers

See B7 and BB.

internal Working Variables

P28 INTEMP®* [022D,1]1 -- Temporary storage

INTEMP is used by the SETVBL (SETVBV} routine.

OPERATING SYSTEM CO145S55 —- Appendix L

257



R. USER AREAS

The areas sﬁown below are.availébla to the:user in a non—nested
environment. Seg Section 4 for further information.

R1 CO080, 1281

R2 (0480, &401

OPERATING SYSTEM CO14555 —— Appendix L
258

-



ALPHABETICAL LIST OF DATA BASE VARIABLES

NAME VID ADDRESS SIZIE
ADDCOR 4 O30E; 1
ADRESS B39 C0&4. 2
APPMHI A3 OQOE, 2
ATACHR BS54 O2FB: 1
ATRACT B1O 004D, 1
BFENHI H17 0035, 1
BFENL.D H17 0034, 1
BITMSK B3SO O06E, 1
BLIM D1o 028a, 1
BOOT? N7 0009, 1
BOOTAD N1O 0242, 2
BOTSCR Blé O2BF, 1
BPTR D11 003D, 1
BERKKEY ES 0011, 1
BUFADR Ct 0015, 2
BUFCNT B42 CO6H, 1
BUFRFL H21 0038, 1
BUFRHI His 0033, 1
BUFRLE Hi& G032, 1
BUFSTR B43 00&C., 2
CASBUF Do O3FD, 131
CASFLG 3125 030F. 1
CASINI Né& 0002, 2
CASSBY NS 0048, 1
CAUX1 H20 023C. 1
CAUX2 H20 023D, 1
CBAUDH D1 O2EF. 1
CBAUDL D1 02EE, 1
CCOMND H19 0238, 1
CDEVIC H18 0234, 1
CDTMAL PS5, H27 0226, 2
CDTMAZ P7 0228, 2
CDTMF3 P 0224, 1
CDTMF 4 Pe 022C, 1
CDTMFS Po 022E. 1
CDTMVi P4, H26 0226, 2
cbTMv2 ol 0214, 2
CoTMV3 PB 021cC. 2

OPERATING SYSTEM CO16555 —— Appendix L
259



CDTMV4 P8 021k, 2

CDTMVS Pa 0220, 2
CH E3 02rC, 1
CHKSNT Hi4 0038, 1
CH1 El Qarz, 1
CHACTY P23 0ara, 1
CHAR BSS o2Fa, 1
CHBAS P25 02F4, 1
CHIKSNT Hig co3n, t
CHKSUM H13 0031 1
CIDCHR G259 QO2F, 1
CIX M11 OOF2, 1
CKEY N4 004A, 1
COL.AC B24 0072, 2
COLCRS B2 0055, 2
COLDST Nii 0244, 1
COLINC B21 0074, 1
COLORO B8, P27 02C4., 1
COLOR1 B8, P27 02C5. 1
COLDRZ2 B8, P27 G2C6, 1
COLOR3 B8, P27 02C7. 1
COLOR4 B8, P27 0z2¢8, 1
COLRSH Bi1i Q04F, 1
COUNTR B23 CO7E. 2
CRETRY Hi1l 0036 1
CRITIC Pl 0042, 1
CRSINH B1 C2F0. 1
CSTAT S2 0288, 1
DAUX1L H? C30A. 1
DAUX2 . H? 0308, 2
DBSECT N? 0241, 1
DBUFHI Hé 0304, 1
DBUFLO Hb6 0305, 1
DEYTHI HEB 0308, 1
DEBYTLO HE 030%. 1
DB H1 0300, 12
DCOMND H4 0302, 1
DDEVIC H2 0200, 1
DEGFLG M24 OOFB. 1
DELTAC Baa 0077, 2
DELTAR B22 0076, i
DFLAGS NG 0240, 1
DIGRT 10 OOFi, 1
DINDEX B35 0057, 1
DMASK B28 0240, 1
DOSINI N3 000C., 2
DaSVEC N12 00C0A, 2
DRETRY H12 0037: 1
DRKMSK B12 004k, t
DSKTIM cz 0246, 1
DSKUTL Lt 00t1A, 2
DSPFL.G B27 02FE, 1
DETAT B34 004cC, 1

OPERATING SYSTEM (016555 —~~ Appendix L
2&0



DSTATS HS 0303. 1

DTIMLO H7 0304, 1
DUNIT H3 0301, 1
DUNUSE 83 0307: 1
DVETATY @il 02EA: 4
EEXP Mé& OOED, 1
ENDPT B25 0074, 2
ERRFL.G H30 023F, 1
(ERRNO KS? €049, 1
ESCFL.G B2& 0242, 1
ESIGN B O0EF. 1
FCHRFL M 00FO0. 1
FEDOF pi2 0Q3F., 1
FILDAT B17 O2FD. 1
FILFLG Bi1g 0287, 1
FLPTR M1s6 OOFC, 2
FMSZIPG K1 0043, 7
FPSCR Ma2z2 O5E6. &
FPSCR1 M23 O5SEC. &6
FPTR2 Mi7 OOFE, 2
FRO Mi GoD4. &
FR1 M3 GOEC. &
FR2 M4 OCE&: &
FRE M2 00DA: &
FREG DiS 0040, 1
FRMADR B41 0068, 2
FRX M3 Q0EC, 1
FECR M22 O5E4L, &
FSCR1 M23 O5EC. &
FYYPE B13 003E, 1
GPRIOR P24 026F, 1
HATABS ci2 031aA, 38
HOLD1 B30 0051, 1
HOLD2 B31 029F., 1
HOL.D3 B3a 0290, 1
HOLD4 B20 02BC, 1
HOLDCH £E7 Q07C. 1
ICAX1L G7 034A. 1
ICaXizZ G2l 0024, 1
ICaxe G? 0348, 1
ICAX2Z G21 002B., 1
ICBAH Gé& 0345, 1
ICBAHZ G18 0025, 1
ICBAL Gb 0344, 1
ICBALZ G18 0024, 1
ICBLH &8 0349, 1
ICBLHZ G20 o247, 1
ICBLL 8 0348, 1
ICBLLZ G20 0028, 1

OPERATING SYSTEM CO16555 -— Appendix L
261



ICCOM G4 0342. 1

1CCOMT c23 0017. 1
ICCOoMzZ Glé 0022, 1
ICDNO G3 C341.1
ICDNOZ G135 0021, 1
ICHID &2 0340, 1
ICHIDZ Gi4 0020, 1
ICIDNGO G24, G2 2002E, 1
ICPTH G7 0347, 1
ICPTHZ Gig 0027, 1
ICPTL G7 0346, 1
ICPTLZ G129 0026, 1
ICSPR G10 034C. 4
ICSPRZ G222 002G, 4
ICSTA GS 03443, 1
ICSTAZ =17 0023, 1
INBUFF Mi2 GOF 3, 2
INSDAT B45 007D, 1
INTEMP P28 022D, 1
INVFLG E? 0286, 1
IOCB Gi 0340, 146
I0CBAS ¢13 0020, 14
KEYDEL. E2 G2F1.1
LBFEND M20 G580, 94
LBPR1 MiB 037E, 1
LBPR2 Mi7 057F, 1
LBUFF M20 0580, 94
LINBUF BS1 0247, 40
LMARGN BS 0052, 1
LOGCOL. B15 0063, 1
LOGMAP Big 02B2, 4
MEMIL O Al Q2E7. 2
MEMTOP A2 Q2ES, 2
MLTTMP B40 0066, 2
NEWCOL Bi19 0041, 2
NEWROW Bi9 0060, 1
NOCKSEM HiS 003C. 1
NEIGN M7 OQEE, 1
OL.DADR B38 0QQ5E, 2
DL.DCHR B37 005D, §
OLDCOL B3 00SH. 2
OLDROW B3 005A, 1
OPNTMP B40 0046, 2
PADDL.O J3 0270, 1
PADDL. 1 J3 0271, 1
PADDL2 J3 0272, 1
PADDL.3 J3 0273, 1
PADDL.4 J3 0274, 1

DPERATING SYSTEM CO14655S5 ~—~ Appendix L
262



PADDL S J3 02751

PADDL. & J3 0276, 1
PADDL.7 J3 0277, 1
PBPNT F3 001D, 1
PBUFSZ Fa 00iE, 1
PCOLRO B7. P27 02C0, 1
PCOLR1 B7. P27 02C1, 1
PCOLR2 B7.P27 02C¢2, 1
PCOLR3 B7.P27 02C3. 1
PLYARG M21 OSEQD, &
POKMSK P2 0010, 1
PRNBUF Fi 03C0, 40
PTEMP F4 001F, 1
PTIMOT FS 00icC, 1
PTRIGO J4 027¢C. 1
PTRIG1 Ja 027D, 1
PTRIG2 J4 027, 1
PTRIG3 J4 027F. 1
PTRIG4 Ja 0280, 1
PTRIGS J4 G281, 1
PTRIGS J4 0282, 1
PTRIG?7 Ja 0283, 1
RADFLG M24 OCFB. 1
RAMLO Ni 0004, 3
RAMSIZ AS 02E4, 1
RAMTOP A4 00&A, 1
RECVDN H22 0039, 1
RMARGN B& 0053, 1
ROWAC B24 0070, 2
ROWCRS B2 0054, 1
ROWING B21 C079, 1
RTCLOK P3 0012, 3
SAVADR B41 0048, 2
SAVIO L7 0314, 1
SAVMSC B3& 0058, 2
SCRFLG B? O2BB. 1
SDLSTH P23 0231, 1
SDLSTL P23 0230, 1
SDMCTL pa2z 022F, 1
SHFAMT B2% 00&F, 1
SHFLOK E& OR2BE. 1
SOUNDR H10 0041, 1
SRTIMR EB o=228., 1
SSFLAG E4 02FF, 1
S8KCTL H32 0232, 1
STACKP H28 03i8. 1
ETATUS H31 0030, 1
STICKO Ji,J7, J8 0278, 1
STICK1 J1: U7, J8 C279, 1
STICK2 Ji,J7. 08 0274, 1
STICK3 J1:.J7. 98 0278, 1
BTRIGO J2, J7. J9 G284,

OPERATING SYSTEM CO014555 ~— Appendix L 2



STRIG1 J2, J7. 09 0285, 1

STRIG2 Ja. J7, J9 0286, 1
STRIG3 S J7. J9 024, 4
SUBTMP B4g O29E, 1
SWPFL.G B44 007B. 1
TABMAP B13 0243, 15
TEMP H23 G23E, 1
TEMP1 DS 0312, 2
TEMP3 D& 0315, 1
TIMER1 b3 Q30C, 2
TIMERZ2 b3 0310, 2
TIMFLG D2, H23 0317.1
TINDEX B49 0293, 1
TMPCHR B33 0050 1
TMPCOL B4s 0289, 2
TMPLBT B47 024At, 1
TMPROW B4& 0288, 1
TOADR B40 0064, 2
TRAMSZ N1 0004, 3
TOTAT H29 0319, 1
TSTDAT N2 0007, 1
TXTCOL B4 02%1. 2
TXTMSC BS2 0294, 2
TXTOLD BS3 0294, &
TXTROW B4 0290, 1
USAREA R1 0080, 128
VBREAK Plé& 0206, 2
VDELGT P10 0200 2
VIMIRG P13 0214, 2
VINTER P15 0204, 2
VKEYBD P17 0208, 2
VPRCED Pi14 0202, 2
VSERIN Pig 0204.: 2
VSEROC P20 020K, 2
VEERDR P19 020C, 2
VTIMR1 P21 0210. 2
VTIMRZ pa21 o212, 2
VTIMRS P21 0214, 2
VVBLKD Piz2 0224, 2
VVBLKI Pit 0222, 2
WARMST N13 0008, 1.
WMODE pisd 0289, 1
XMTDON H24 Q03A. 1
(ZBUFF Ka) 0043, 2
{ ZDRVa K3) 0045, 2
ZI0Ccs &13 0020: 16
(ZSBA Ka) 0047, 2
LTEMP1 M13 QCF S, 2

OPERATING SYSTEM CO16555 —— Appendix L
264



ZTEMPS M15 00F%, 2
LTEMP4 Mi4g COF7, 2

OPERATING SYSTEM CO14555 ~~ Appendix L s



MEMORY ADDRESS ORDERED L.IST OF DATABASE VARIABLES

ADDRESS VIiD NAME
0000--0001 g7 LNZB&
00020003 N& CASINI
0004-0006& N1 RAMLO., TRAMSZ
Q007 N2 TSTDAT

0008 N13 WARMST

0009 N7 BOQOT??
00Q0A—-000B Ni2 Dasvec
000C—-000D N3 DOSINI
O000E—-OCOF A3 APPMHI

0010 P2 POKMSK

0011 ES BRKKEY
0012-0014 P3 RTCLOK
0015-0016& Cil BUFADR

Qo177 G23 ICCOMT
C01A-001B L1 DSKUTL

001cC FS PTIMOT

001D F3 PBPNT

OC1E F2 PRBUFSZ

GOtF Fa PTEMP

0020 13, G614 ICHIDZ

0021 G115 ICDNOZ

0022 Glé ICCOMZ

0023 G17 ICDOBAS
0024-0025 Gig 1CBALZ, ICBAHZ
0026—-0027 G17? ICPTLZ, ICPTHZ
00280029 520 ICBLLZ, ICBLHZ
002A-0028 621 ICAX1Z, ICAX2Z
002C—-002F 622, 624,625 ICSPRZ

G030 H31 STATUS

0031 H13 CHKSUM
0032-0033 Hi& BUFRL.O, BUFFRHI
0034~0035 Hi7 BFENL.O, BFENHI
0036 Hil CRETRY

0037 Hiz DRETRY

¢0a8 H21 BUFRFL

0039 H22 RECVDN

003A H24 XMTDON

003B Hi4 CHKENT

G03C HID NOCKSM

GO3D D11 BPTR

00GE Di3 FTYPE

003F D12 FEQF

0040 D15 FREQ

0041 H1O SOUNDR

0042 Pi CRITIC
0043-004% K1, K2, K3, K4, K5 ZBUFF, ZBUFP, ZDRVA, LE8EB#A
0044 N4 CKEY

004B NS CASEBT

004C B34 DSTAT

OPERATING SYSTEM CO16555 —~ Appendix L
264



004D
004
00aF
0050
0051
G052
G053
00940054
G057
0058—-0059
Q05A~-005C
005D
Q05E-0OSF
006000462
00463
0064~-0065
00464-004&7
0068-0069
006A
00121
00&C—~00&D
O0&E
CO&F
00700073
0074-0075
007&4-0078
Q079-007A
0078
007C
007D
007E-COT7F

0080-00FF
0100-0C1iFF

0200-0201
02020203
0204-0205
0206-0207
02080209
020A—-020B
Q20C-020D
020E-C20F
02100215
0216-0217
0218-021%
C21A-021B
021C-0221
0222-0223
02240225
Q2260227
0228-022%
0224

B1O
B12
Bi1l
B33
B30
BS

Bé

B2

B3S
B3é
B3

B37
B38
B1%
B1S
B39
B4O
B4l
a4

B4z
B43
B3O
B29
B24
B25
B22
B21
B44
E7

B45
B23

SEE FLOATING

6302 STACK

P10
P14
PiS
Plé
P17
PiB
P19
P20
P21
P13
P4, H24&
P&

P8

Pit
P12
P5. H27
P7

P

ATRACT
DRKMSK
COLRSH

TMPCHR
HOLDP1
LLMARGN
RMARGN
ROWCRS, COL.CRS
DINDEX
SAVMSC
OLDROW, OLDCOL
OLDCHR
DLLDADR
NEWROW., NEWCOL
LoccoL
ADRESS
MLTTMP, OPNTME, TOADR
SAVADR/FRMADR
RAMTOP

BUFCNT

BUFSTR
BITMSK
SHFAMT
ROWAC, COLAC
ENDPT

DELTAR: DEL.TAC
ROWINC, COLINC
SWPFL.G
HOLDCH

INSDAT
COUNTR

POINT VARIABLE LIST AT END.

VDSLST
VPRCED
VINTER
VBREAK
VKEYBD
VBERIN
VEERDR
VSEROC
VITMRL, VITMRZ, VITMR4
VIMIRG
CDTMV1
cCDTMv2
CDTMV3, CDTMV4, CDTMVD
VWBLKI
VVBLKD
CDTMAL
CDTMaAZ
CDTMF3

OPERATING SYSTEM CO16555 —— Appendix L

267



022B
022C
022D
Q22E
O22F
02300231
0232
023A
G238
£23C-023D
023k
023F
0240
0241
0242-0243
0244
0246
0247-024E
G26F
C270-0277
0278-0278
027C-0283
0284-0287
0289
C28A
0288-028F
02900292
0293
02940295
0296-0298
029D
029E
O29F
02A0
G2Atl
o242
02A3-0281
02B2-02B5
02B4&
C2B7
02BB-02BA
0288
02BC
02BE
02BF
02C0-02C3
0a2C4-02C8
G2E4
02E5-02E6
O2E7-02EB
O02EA-O2ED
QZEE-C2EF
02F0
02F1

268

E8
P9
P28
Pe
P22
P23
H32
HiB
H19
H20
H23
H30
NE
NG
NLO
NI%
c2
BS1
24
J3
Ji, 7, 48
Ja
J2, J7, J9
D14
D10
810
B4
B47
B52
B53
B2
B4S
B33
B28
B47
B26
B13
B14
£9
Big
Bas

OPERATING SYSTEM CO016555 —— Appendix L

SRTIMR

CDTMF 4

INTEMP
CDTMFS
SDMCTL

SDLETL,

S8KCTL
CDEVIC
CCOMNE

SDLETH

CAUX1, CAUX2

TEMP

ERRFLG -

DFLAGS
DBSECT
BOOTAD
COLDST
DSKTIM

L. INBUF

GPRIOR
PARDL.O

STICKO
PTRIGO
STRIGO
WMODE
BLIM
unused

=~ PADDLY
STICK3
== PTRIGY
STRIG3

TXTROW, TXTCOL

TINDEX
TXTMSC
TXTOLD
HOLD3

SUBTMP
Hal.b2

DMASK

TMPLBT
ESCFLG
TABMAP
LOGMAP
INVFLG
FILFLG

TMPROW, TMPCOL

SCRFLG
HOLD4

SHFLOK
BOTSCR
PCOLRO
PCOLRO
RAMSI Z
MEMTOP
MEML.0

DVSTAT

== PCOLR3
== PCOLR4

CHBAUDL , CHBAUDH

CRSINH

KEYDEL



O02F2
Q2F3
Q2F4
O2F A
02FB
O2FC
02FD
O2FE
O2FF

0300
0301
302
0303
0304063203
0306
0308-030%
0304-030B
030C-030D
C30E
G30F
0310-0311
0312-0313
0315
0316
0317
0318
0319
G31A-033F
0340
0341
0342
0343
0344-0345

0346-0347
03480347
034A-034B
0340 -034F
0350-035F
0360-036F
0370-037¢F
C380-03BF
0390-039F
03A0~-034AF
03B0—03BF
03C0-03E7

03FD-047F

0480-0&FF

Ei
P25
P24
BSS
BS54
E3
B17
827
E4

M1, H2
H3

H4

HS

H&

H7
H8
H?

D3

o4
D8
D3

DS

D&

D7
D2: H23
H28
H29
G122
&1, 62
G3

G4

G5

Gé&

G7

GB

Ge

210
G2-G10
G2-G10
G2-G1i0
G2-G1i0
G2~-G10
G2-G10
G2-610
F1

ne

R2

OPERATING SYSTEM CO16555 —— Appendix L

CH1
CHACT
CHBAS
CHAR
ATACHR
CH
FILDAT
DSPFLG
SSFLAG

DCB/DDEVIC
DUNIT

DCOMND
DSTATS
DBUFL.O. DBUFHI
DT IMLO
DBYTLO, DBYTHI
DAUX1, DAUX2
TIMERL

ADDCOR
CASFLG
TIMER2

TEMP1

TEMP3

SAVIO
TIMFLG
STACKP
TSTAT
HATABS
IOCB, ICHID
ICDND

ICCOM

ICSTA
icBAL, ICBAH

ICPTL, ICPTH
ICBLL. ICBLH
ICAaX1., ICAX2
ICSPR
(I0CE #1i)
(I0CE #2)
(I8CHB #3)
(IOCH #4:
{IDCB #35)
(IOCE #&)
(IOCB #7)
PRNBUF

CALBUF

UJzer Area

249



FLOATING POINT PACKAGE VARIABLES

C0D4-00D9 M1 FRO
O0ODA-OODF M2 FRE
OOEOQO-QOES M3 FR1
OOE4-0OOEB M4 Fr2

00EC MS FRX

O0ED Mé6 EEXP

GOEE M7 NSIGN

OQEF MB ESIGN

QOFO0 M9 FCHRFLG
COF1 M10 DIGRT

O0F2 Mii CIX
QOF3-00F 4 Mi2 INBUFF
OOFS-~00F & M13 ZTEMP1
OOF7-00F8 Mi4 ZTEMP4
O0F9-00FA M135 ZTEMP3
GOFB M24 RADFLG/DEGFLG
O0OFC-OO0FD Mis FLPTR
OOFE-OOFF ML7 FPTR2

05S7E Mig LBPRi

057F M1 LLBPR2
0580-05FF M20 LBFEND, LBUFF
O5E0-05ES M1 PLYARG
05E6—-05EB M22 FPSCR/FSCR
OSEC—-05F1 M23 FPSCR1/SCR1

OPERATING SYSTEM CO146555 —— Appendix L
270



INDEX

The subject index contains three forms of references:

Section number,
Appendix,

such as
such as ‘App B’

Variable ID from Appendix L.,

ATARI standards
ATASCII
attract mode

bit mapped graphics
blackboard mode
BNF

boot

BREAK

cartridge

cassatte baud rate determine
cassette-boot

cassette device

Cassette Handlar (C)

CI0 (Central I/0 Utility)
CI0/user intertace
CI0/Handler interface
CiO08E 1/0 command
coldsfart (see ‘Power-up’)
coler control

cantrol characters
tritical section

cursor

database

DCB (Device Contrel Block)
DELETE I/0 command
development system
device/filename specification
Device Handlier

devica table

disk~-boot

disk device

Disk File Manager (D}

Disk Handlier (resident)
display device (screen)
Display Handlier (8)
display list

DOS (Disk Utilities)

DRAW I/0 command

driving controller

‘3.

’

such as "B7”’.

12
B34~-55,
Bl10-12,

3,
&,

App D-G

B28-B29,
3, N12,
1
3,
ES,

S
7.

App H
i2

4,
&,

NS".O:
12

S, 7, 10

3 4,
D1-D7
3:; N3-10.
D1-p185,
9
€1-25, 5, 9
Gi-11. 5 App A,
912"221 9

5 9

7. 10

7.
3: 95

io

App B

B7-8, 5 &
826“270 5!
PL, A
Bi-4, S

Adpp D

4
H1-9,
S

13

S

2 9
2, 12, 5,
3, N3-10.
5

KRi1-5, 8
CI—QJ 5
B54-553,
31_55: 5
4. P10
L1, 12
B17-23, S
JE-F

o9, 9

7, 2

B 7e 10

Educational System Format Cassettes 5

error handling

€5, HI, Hii~12, 9, App B~C

DPERATING SYSTEM C016535 -— INDEX

271



EOF (end-~qf-£ilse) g

File Management System b

FILL I/0 command B17-25, S

floating point package 2: 4, Mi-24, 8, App J
FORMAT I/0 command S

free memory 4, Al1-3, Ri-2, 4, 7
game controllers 3, J1-9, &, i1

GET CHARACTER I/0 command 5 7

GET RECORD I/0 command 5, 9

GET STATUS I/0 command Git, 5, 9

Handler (see ‘device handler” and individual device handlers)

initialization, cartridge 7
initializa¢ion, Handler 7: 9
initialization: interrupt &
initialization, system 4, 7, 10
internal display code 9, BG4
interrupts 2, Pi-28, &
interrupt mask P2, &
inverse video (display) E? S

I/0 2: 4, S5, 9
IOCB (I/D Control Block) Gi-1C, 3, 9
I/0 retry logic Hii-1i2
Joystick Ji-2
keyboard Autorepeat E8

keyboard device 5

Keyboard Handler (K) Ei1-%. 5, App F
keyboard key debouncing E1-3

light pen 11, App J
LNBUG : 13

LOCK I/0 command S

logical text lines {(screen) B14-15, 5

memaory {(ses ‘RAM‘, ‘ROM’ and ‘free memory ‘3

memerTy dynamics Al-5, Ni-2, 4, 5, 7
MEmMOTY map 49 -

NOTE 1/0 command g

OPEN I/0 command @ 9

paddle J3—-4

page O 4, Mi-17, R1, ®
page 1 4, 9

peripheral devices 3

POINT I1/0 command 9

Power—up 2o BHE=&Eh, L i i
printer device 3. App G

OPERATING SYSTEM C016555 —— INDEX
272



Printer Handler (P)
program development

PUT CHARACTER I/0 command
PUT RECORD I/0) command

RAM

record (I/0}

RENAME I/0 command
RESET

ROM (G5)

RE-232~-C Handler (R}

Screen Ediftor (E)
SCTEeen margins

screen modes

scrolliing (fext)}
serial I/0 hus
ESHIFT1/CONTROL lock
G180 (Serial bus I/0 Utility)
sound contral (SIO}
SPECIAL I/0 commands
split screen

stack

start/stop (display)
stage 1 VBLLANK process
stage 2 VBLANK process

tabs {(Screen Editor)
timeout {(device)
timers (systam?

UNLBCK I/0 command
usar workspacsa

vattors, RAM
vectars, ROM
vertical blank interrupt

warmstart (see ‘RESET‘)
wild—cavrd {(disk filename)

ZI0CB (Zero—-page ICB}

OPERATING SYSTEM C0169555 —-

Fi-5, &
13

gr @

o 9

3 4, 9

@

S

2: NI_ISI 6: 7
1, 4

9. 9

31“551 5
35—6: 5 7

4; 3, App H
BY:, &

3 5 %9 App I
56_71 5
Hi-32, P13-21,
HiO, 11

5, 9

Bis, 95

4

E4, 5, 12
P3-5, &

P&-9, P22~27, &

B13. S
H25-27l 9
P3-9, &

)
4, M18-23: R2

P5, P7: PlO-‘E}. 3

S5, 9, App J
P11-12, &

o

12

5 App C

& 7

913“22: 9: 0020: 16

INDEX

273



	19760430-Atari-800-Operating-System-Manual-part-1-of-4
	19760463-Atari-800-Operating-System-Manual-part-2-of-4
	19760674-Atari-800-Operating-System-Manual-part-3-of-4
	19760757-Atari-800-Operating-System-Manual-part-4-of-4

