SOFTWARE AND HARDWARE TIMERS

Examples and discussions of using Software and Hardware

Timers using BASIC with machine language routines.

1) Software duration timers
2) Software background timer
3) Hardware timers

ATARI INC.
CONSUMER PRODUCT SERVICE
PRODUCT SUPPORT GROUP

1312 Crossman Avenue
Sunnyvale, CA 94086

(800) 672-1404 inside CA
(800) 538-8543 outside CA

DEMOPAC 38
Rev. 1 5-83/3C

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari, Inc.
("Atari") without warranty of any kind. Any statements concerning the capabilities or utility of
the computer programs are not to be construed as express or implied warranties. The entire risk
as to the quality and performance of such programs is with the user. Should a program fail to
fulfill the individual requirements of the user, or prove defective, the user (and not Atari),
assumes the entire cost of all servicing, damages or liabilities which may result from the use of
any such computer program.

Atari shall have no liability or responsibility to the user or any other person or entity with
respect to any claim, loss, liability, or damage caused or alleged to be caused directly or
indirectly by computer programs distributed by Atari. This disclaimer includes, but is not
limited to, any interruption of services, loss of business, data or anticipatory profits, and/or
incidental or consequential damages resulting from the purchase, use or operation of computer
programs made available by Atari.

Some states do not allow the limitation or exclusion of implied warranties or of incidental or
consequential damages, so the above limitations or exclusions may not apply to you.

Every effort has been made to ensure the accuracy of this document. However, because of
ongoing improvements and updating of our computer software and hardware, Atari cannot
guarantee the accuracy of printed material after the date of publication and disclaims any
liability for changes, errors, or omissions.

Correspondence regarding this document should be forwarded to Manager of Technical Support,
Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue, Sunnyvale, CA 94086.

SOFTWARE TIMERS
JC 5/10/83

The ATARI operating system maintains five software timers. These timers are actually
memory locations which are updated (decremented) during the VBLANK interrupt
process.

'VBLANK' refers to the interrupt which occurs each 1/60th second at the end of a
complete video scan, while the video beam is shut off and returning to the upper left
corner of the screen. During this period the operating system performs various system
functions in two stages. Stage one VBLANK processes are always performed every
VBLANK or 1/60th second. Stage two VBLANK functions may be skipped if time
critical operations must be performed, as indicated by a non zero value in the 'CRITIC'
flag at decimal location 66.

Timer number one is used by the operating system to time I/O operations and is updated
during each stage one VBLANK. Timer number one should not be used by an
applications program unless serial 1/O is suspended during the period it is in use.

Timers two through five are not used by the operating system and are updated every
stage two VBLANK. Since stage two VBLANK is skipped duringtime critical 1/O
operations, timers two through five may not always be updated every 1/60th second.
This can be seen by running the background timer demonstration program and then
performing an I/O operation such as accessing the disk to read or write a file. If it is
essential not to miss a count while using a timer during critical 1/O operations, the
system clock which is updated during stage one VBLANK may be used.

There are two methods used by the timers to indicate that the countdown has been
completed. Timers one and two call a subroutine. An applications program may place
the address of a user subroutine into special memory locations reserved for this
purpose. When timer one or two times out (decrements to zero), a 'JSR' to the user
subroutine takes place. The user subroutine should end with an RTS (return) instruction.
Timers two through five use special locations in memory as 'flags'. It is necessary to
set the 'flag' to a non-zero value before starting the timer and then check the 'flag'
location for a zero value, which indicates that time out has occured.

Since the timers are incremented in 1/60th second intervals, the minimum time value
that can be set is 1/60 second (when a value of | is used), and the maximum time value
is 18.20 minutes (when a value of 65,535 or hex SFFFF, is used).

TO SET AND START THE TIMERS USE THE FOLLOWING PROCEDURE:

l. For timer | or 2, store the address of the routine to be executed when time out
occurs, in the vector locations specified in the Software Timer Address Table.
Store the Least Significant Byte (LSB) followed by Most Significant Byte (MSB).
Make sure the code to be executed at this address has been loaded into memory.
For timers 3,4, or 5 set the flag location specified in the table, to the value 'SFF'
(this location becomes '0' when time out occurs).

2.

5.

Load the accumulator with the number (1-5), of the Software Timer.

Set the timer duration by loading the 'Y' register with the LSB, and the 'X' register
with the MSB of the number of 1/60th second intervals to count. A value of '0' in
the 'X' register and '60' in the 'Y' register would indicate a | second interval.

To begin timer execution do a JSR (Jump Subroutine) to the 'SETVBV' routine at
hex location $E45C.

If timer 3,4, or 5 is used it is necessary to check its flag location for a zero value,
to determine if time out has occured. Since timers | and 2 are vectored to the
address set in step |, when time out occurs, execution will automatically begin at
the specified location. This makes it possible to create a program which re-
initializes and re-starts the timers just before returning, giving a background
effect. This is the method employed by the 'Background Software Timer'
demonstration program which plays a song in the background while other activities
may continue in the foreground.

The following chart lists the locations of the five software timers and their respective
flags and jump vectors. All addresses are in hexadecimal.

SOFTWARE TIMER ADDRESS TABLE

Timer Timer Hex Flag/ Hex

Number Name Addr. Vector Addr. Use
[CDTMV! - 50218 CDTMAI - $0226 2-byte vector
2 CDTMV2 - $021A CDTMAZ2 - $0228 2-byte vector
3- CDTMV3 - $021C CDTMF3 - $022A l-byte flag
4 CDTMV4 - $021E CDTMF4 - $022C 1-byte flag
5 CDTMV5 - $0220 CDTMF5 - $022E l-byte flag

SOFTWARE TIMER DEMO PROGRAM

'SOFTIME.BAS' is a program which demonstrates the use of the software timers (2-5),
which set a flag to indicate that the timer has completed its countdown to zero. When
the timer has completed its assigned timing task, a location in memory (see timer
address table), is set to zero.

The following BASIC program uses an assembly language routine, 'SOFTIME.ASM', to
set and start software "timer number four. The assembly language routine then
continuously checks the associated timer flag until it becomes zero, at which time a
return instruction is executed, and program control returns to the BASIC program.

Using the software timers in this way is an extremely simple process. The assembly
language portion of this routine uses only ten instructions and takes up a compact
sixteen bytes. In spite of its small size, because the time duration is passed from
BASIC, it is possible to use this routine for a variety of purposes in a BASIC program.

This routine can replace many 'FOR/NEXT' loops used for timing durations, when more
accurate timing is important.

In the 'SOFTIME.BAS' example, the timer routine is used three times with varying
values to time different functions. In line '350' the user is prompted to enter the timer
duration in Jiffies (1/60th second), which is stored as the numeric variable 'D'. This
value is then used in line '480' to time the delay between printing characters on the
screen. The value of 'D' can vary between | (1/60th second) and 65535 (18.20 minutes).
Before the character is printed, the timer is used to time a sound of 1/60th second
duration in line '450'. After the screen border has been filled with characters, the timer
is used for a third function in line '500' where a two second delay is timed prior to
clearing the screen and repeating the entire process.

100 REM 0K KK KKK 0K KK AKX K KK K XK K KK XX

110 REM x SOFTIME.EAS x
120 REM x x
130 REM x John Clark x
140 REM x 04/21/83 x
150 REM x ca3ll assembly lanquaqge x
160 REM X routine to use software x
170 REM x timer #4 to time BASIC x
180 REM x routines x
190 REM XXX KKK XK XK K XK KK 5K XK X X X XK XK X XK
200 REM

210 REM XK 5 KKK XK K KK 0K K K XXM OK KX XX K

220 REM SET UP ARRAY FOR SCREEN POSTIONING

230 DIM X(33),Y(S3)

240 FOR I=0 TO S5

250 IF I<20 THEN X(I)=I!Y(I)=0

260 IF I>19 AND I<29 THEN X(I)=19:Y(I)=I-19

270 IF I»28 AND I<48 THEN X(I)==1x(I-29)+18:Y(I)=9

280 IF I>47 THEN X(I)=0:Y(I)=-1x(I-48)+8

290 NEXT I

300 REM XXX K K XK K K XK XK KK X X XK XX XXX X

310 GOSUB 610:REM POKE ASSEMBLY LANGUAGE ROUTINE INTO MEMORY
320 REM

330 REM XXX X KX XK K XK XK XK KK X KK XK K XK XK XK

340 REM CALL GRAPHICS 2 AND SET COLORS

350 GRAPHICS 2

360 FOKE 712,190:REM BACKGROUND COLOR -

370 FOKE 710,246!REM LETTER COLOR

380 FOSITION Z,S:FRINT #46:"software timers"

390 PRINT "INPUT TIMER DURATION (JIFFIES)";

400 INFUT O

410 REM XXX KX XXX XK XK XK K XK XK XK XK XK XX

420 REM LOQOP TO PRINT TIMED DISPLAY

430 FOR I=0 TO S5

440 SQUND 0,230,10,8

S0 A=USR(1336,1)!REM TIME SOUND DURATION 1/60th SECOND
440 SQUND 0,0,0,0

470 POSITION X(I),Y(I)!PRINT #6;CHR$(176)!REM PRINT BLUE ZERO CHARACTER
480 A=USR(1536,D)!REM TIME DURATION OF EACH SCREEN CHARACTER DISPLAYED
490 NEXT I

S00 A=USR(1536,120):REM TWO SECOND DELAY AND THEN REPEAT PROMPT
3510 GOTO 330

20 REM

S30 REM

FS40 REM XXX KKK KKK XK KK XK KK XXX KKK KX

S50 REM FOKE ASSEMELY LANGUAGE

360 REM TIMER PROGRAM

570 REM INTO MEMORY

280 REM BEGINNING AT LOCATION 1536

SP0 REM %X XK KK K XK KK KK KK K XX KX X

4600 REM

610 FOR I=0 TO 20

620 READ J!POKE 1S36+I,J

630 NEXT I

640 RETURN

650 DATA 104,104,170,104,148,169,255,141,44,2

660 DATA 169,4,32,92,228,173,44,2,208,251,96

022

E45SC
0000

0600 648
0601 68
0602 AA
0603 68
0604 A8
0605 A9FF
0607 8D2C02
060A A904
060C 20SCEA4
060F ADZCOZ2
0612 DOFB
0614 40

0 ERRORS

05
10
15
20
25
30
33
40
45
S0
35S
60
65
70
75
80
83
90

?5

§ KK 0NN K K XK KK K K XK KK K XK KK XK KK X

}x SOFTWARE DURATION TIMERS

$ X
13
1
' x
¢
X
' x

X

' X
' X
$ X
’ X

John

time basic operations
with assembly lanquage

routin

Clark 5/10/83

es.,

Called from BASIC with
’A=USR(1536,0uration)’
where duration is rnumber
of 1/60 second units

I I X X K M X HK M M XK X

§ AKX A KK XK K XK K KKK KK KK KK KKK KX

.
4

'
CD
SE

0100
0105
0110
0115
0120

012

S

0130
0135
0140
014S
0130

0135

J

0156
0158
01460

THF 4
TUBY

.
?

.
4

LOoQP

PLA
PLA
TAX
FLA
TAY
LDA
STA
LDA
JSR
LDA
ENE
RTS

$022C
$E4SC

- $4600

$¥$FF
CDTMF 4
4
SETVEV
CDTMF4
LOOP

rcountdown timer #4 flaq
rset timer routine

ythrow 3away number of arquments
sMSB of timer duration

;3tore in X reqister

rqet LSE of timer duration
ystore in Y reqgister

svalue to initialize timer #4 flagq
sstore in timer #4 flaq
sindicate timer #4 will be used
yset timer 3and start timing
scheck timer ¥4 flaq

yif not ‘0’ then check again
sreturn to BASIC

BACKGROUND SOFTWARE TIMER DEMO PROGRAM

The Background Timer demonstration program uses software timer #2 to play a
background tune, while other activity, such as running or editing a BASIC program, can
take place in the foreground.

The BASIC portion of this program simply pokes the assembly language routine into
memory and calls it with a '"USR' statement. Once the program is initiated, it will
continue running until system reset is pressed.

This program takes advantage of the fact that when software timer number two has
finished its countdown, a jump subroutine takes place to a designated user routine. The
address of this routine is placed in the timer number two vector location at hex $0228
and $0229 (LSB,MSB). The 'background' effect is achieved by having the user routine
re-initialize and start timer number two after playing a note from a note table stored in
memory. Each time the timer counts down to zero, a jump subroutine occurs to the
user defined interrupt service routine, which plays a note and starts the timer again.
An offset to determine which note will be played from the note table is stored in
location $0676. This offset is increased to point to successive notes each time the
routine is called, and is reset to zero, to begin again, after all thirty two notes have
been played. Software timer number three is used to time a 1/30th second duration for
each note.

Since timer number two is updated during each stage two 'VBLANK!', any I/O activity
will interfere with the 'background operation' (stage two 'VBLANK' operations are
skipped when critical 1/O is taking place). Initiate the program and then do a disk file
access. The background song will stop and then resume when [/O has been completed.
If it is important to keep timing while I/O is taking place, the system clock may be
used.

100 REM XK KKK XK IO XK X XK X KK X XK
110 REM xxx BACKGROUND TIMER xxx

120 REM xxx John Clark XXX
130 REM xxx 04/18/83 XXX
140 REM %KMK K K KK XK MK K XK X XK K XK X X KX
150 REM

160 REM XRIOKKXKK KK KKK K MK XK KKK KK K KKK KKK KK KK KKK
170 REM xxPOKE MACHINE LANGUAGE TIMER ROUTINE xx

180 REM xxINTO PAGE SIX MEMORY xX
190 REM xxAND CALL WITH USR FUNCTION xX
200 REM XXX KX K K K XK KKK KKK A K K K KK K K KK K K XK XK K K K K K0 XK XK X
210 REM
220 REM

230 FOR I=0 TO 118

240 READ J!POKE 13536+I,J

250 NEXT I

260 A=USR(1536)

270 END ’

280 REM

290 REM

300 DATA 104,32,66,6,162,0,142,118,6,96,169,0,141,8,210,169,3,141,15,210,174,118
y6,189,86,6,141,0,210,232 '
310 DATA 224,32,208,2,162,0,142,118,6,169,175,141,1,210,1460,2,162,0,169,255,141,
42,2,169,3,32,92,228,173,42

320 DATA 2,208,251,141,1,210,169,10,141,40,2,169,6,141,41.2,169,2,160,20,1462,0,3
2,92,228,96,96,108,121,108

330 DATA 96,96,96,0,108,10¢8,108,0,946,81,81,0,96,108,121,108,96,96,96,0,108,108,9
0,108y121¢070'0y0

022

E4SC
D208
D20F
D200
D201

022

0000

06080
0603
060S
0608

0609
0608
040E
0610
0613
0616
0619
061C
061D
061F
0621
0623
0626
0628
062E
062D
062F
0631
0634
0636

0639
043C
063E

204106
A200
8E7306
60

A900
8p008Dbh2
A903
8DOFD2
AE7S06
BEDSS06
800002
E8
E020
Doo2
A200
BE7S506
APAF
8D001D2
A0O2
A200
APFF
8D02A02
A?03
20SCE4

AD2A02
DOFB
8D001D2

10§ MO KKK K KK KK KKK K XK KK XK KKK
20 }EACKGROUND SOFTWARE TIMER
IS 3323333333303 23333323333% 3¢

40

S0 j;John Clark 04/18/83

460 juse software timer $¥2 interrupt

70 jto play background tune

80 juse software timer #3 to count duration of note
82 jcalled from BASIC with

83 3’

?0 3
91 3
?2 3
0100
0110
0120
0130
0140
0150
0170
0180
0190
0200
0210
022
0230
0240
0250
02460
02790
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0490
0520
0540
0S50
05351
0560
0S70
05890
0S?0
0600
0610
0620

A=USR(13536)

K 20020 2K 3K K 28K 2K 202K KK XK XK K00 20C 00 0 XK XX X XK XK XK

CDTMAZ = $228 svector for timer interrupt
SETVEV = $E45SC jset timer routine
AUDCTL = $0208 taudio control
SKCTL = $D20F sserial port control
AUDF1 = $0200 s+3udio freq 1
AUDCL = $D201 taudio channel 1 control
CDTMF3 = $22A stimer 3 flaq
14
x= $600

yINITIALIZE TIMER #2 AND RETURN
'
1a3add PLA here if calling from BASIC

’

JSR INIT sinitialize timer #2

LDX #0 yinitial offset value for note table
STX POINT ssave offset to note table in memory
RTS sreturn from initializing timer #2

$ 20000 0K KKK KK XK XK XK XXX KKK KKK X
* TIMER INTERRUPT SERVICE ROUTINE

13
TIME LDA #0 sinitialize sudio control

STA AUDCTL

LDA #3 rinitialize POKEY to wse audio reqisters

STA SKCTL

LDX PFOINT sqet offset to riote table from memory

LDA NOTES,X 1qet 3 note from note table

STA AUDF1 sPlace note in audio freq reqister

INX spoint to next nmnote in table

CPX #32 1is it last note in table?

ENE STORE sno, store note in memory location POINT

LDX #0 yif done point to first note of song
STORE STX POINT sstore mext offset in memory

LDA #3AF suse pure note full volume

STA AUDC1 splace in audio control register

LDY #2 +1/30 second duration
COUNT LDX #0 yMSEB of riote duration

LDA #$FF yinit timer 3 flaq

STA CDTMF3 syto 3 nmon zero value

LDA #3 sindicate set timer #3

JSR SETVBV yset and start timer #3

$ 0K K KK KKK K KK K KK KK K KX XX
tloop to time duration
$ 3000 350350350 0K K 3K K KKK KKK KKK KKK K K X X
LOOF LDA CDTMF3 scheck timer flaq
ENE LOOP y check until 0
STA AUDC1L sfound 0 inm A reqister, turmn off sound

0630
0640 : KKK XK XA KKK K XK KKK XK X X XK XK X XX X
0650 ;TIMER #2 INTERRUPT INITIALIZATION ROUTINE
0641 A909 0660 INIT LDA #TIME&2SS LSB of background routine
0643 8D2802 04670 STA CDTMAZ sset vector for timer#2 interrupt
0646 AR06 0680 LDA #TIME/236 ;MSB of background routine
0648 802902 0690 STA CDTMAZ+1 ;jset vector for timer #¥2 interrupt
0464B A902 0700 LDA #2 tindicate software timer #2 is to be used
0640 A014 0710 LDY %20 1LSB of countdown value for timer %2
064F A200 0720 LDX #0 s MSB of countdown value for timer %2
0651 2035CE4 0730 . JSR SETVBV tinitiate timer #2
0654 40 0740 " RTS
0750
. 0760 j;define notes for background song
0655 60 0770 NOTES BYTE $40,%4C,$79,%6C,%60,%60,%460
0656 6C
0657 79
0658 4C
0659 60
0635A 60
065B 40
065C 00 0780 +BYTE $00,%46C,%6C,%6C,%00,%460,%51,%51,300
06SD 6C
04SE 4C
06SF 6C
06460 00
0661 60
0662 391
0663 S1
0664 00
0665 40 0781 +BYTE $60,%6C,379,%6C,360,%460,3%60
0666 6C
0667 79
0668 6C
0669 o0
066A 60
0668 60
086C 00 0782 ,BYTE $00,%6C,%6C,%60,%6C,%$79,%00,%00,%00
066D 6C
066E 4C
066F 60
0670 4C
0671 79
0672 00
0673 00
0674 00
0675 00 0790 POINT +BYTE 0
0676 0800 x= $02E0
02ED0 0006 0810 +WORD $4600
0 ERRORS

HARDWARE TIMERS
JC 5/10/83

The POKEY chip contains four countdown timers which are commonly used for sound
generation. Three of these hardware timers also have interrupt vectors which can point
to a user defined routine. Because of the high clock speeds used with these hardware
timers, the software timer limitation of 1/60th second can be overcome. It should be
noted that hardware timers number two and three are used during serial I/O, for baud
rate generation and cannot be altered.

The POKEY timers by default operate with a clock rate of 64 Khz (64000 cycles per
second), but it is possible, by setting the correct bits in the AUDCTL register, to
change this rate to 15 Khz (15000 cycles per second) or 1.79 Mhz (1,790,000 cycles per
second). The number of cycles to count before generating an interrupt is stored in the
audio frequency registers, AUDF1, AUDF2, or AUDF4. It is possible to merge two
audio frequency registers by setting a bit in the AUDCTL register and use two bytes to
store the value representing the number of cycles to count. The hardware timer
demonstration program uses this technique. This makes the maximum duration that can
be timed equal to 4.369 seconds and the theoretical minimum duration that can be
timed equal to 1.79 millionths of a second. When using the hardware timers to time
extremely short intervals, it is necessary to turn off 'DMA' and 'Vertical Blank
Interrupts (VBI)' by storing a '0' in 'DMACTL' at location 'SD400', and 'NMIEN' at
location 'SD4OE'. Experiment with your particular application to determine if the
timing rate generated is in conflict with the screen display.

TO SET AND START THE HARDWARE TIMERS USE THE FOLLOWING PROCEDURE:

I. Set the '"AUDCTL' ($D208) register to choose the desired clock speed. The default
clock speed is 64 Khz. To enable the 15 Khz clock for all channels, set bit 0. To
enable the 1.79 Mhz clock for channel number 1, set bit 6, and for channel number
2 set bit 5. 'AUDCTL' can also be used to join channels | and 2, or channels 3 and
4, to allow the timing duration to be defined by sixteen bits. This provides a range
of from | to 65,535 clock cycles.

2. Set the volume level for the channel(s) to be used as timers, to '0', by storing a '0'
in the '"AUDCI' (§D201), 'AUDC2' ($D203), or 'AUDCH4' ($D207) register.

3. Choose the number of clock cycles to count and store this value in the frequency
register for the appropriate channel, 'AUDF!' ($D200), 'AUDF2' ($D202), or
'AUDF4' (5D206). If two channels have been joined to allow a sixteen bit value to
be specified for the number of clock cycles, enter the Least Significant Byte (LSB)
in the lower numbered frequency register of the pair, and enter the Most
Significant Byte (MSB) in the higher numbered frequency register.

4. Set up the routine to process the interrupt which will occur when the timer has
completed its count. It is possible to have this routine re-initialize and re-start the
hardware timer, so that the interrupt routine will be performed continuously in the
background (see example program).

Set the timer interrupt vector to point to the routine created in step 4. Place the
address of this routine (LSB,MSB) in the vector register associated with the timer
selected, (VTIMR1-50210, VTIMR2-$0212, VTIMR4-50214). If two timer channels
have been joined, place the address of the interrupt routine (LSB,MSB) in the
vector register for the higher numbered channel, i.e., If channels number one and
two have been joined, place the interrupt routine address in 'VTIMR2'.

To enable the interrupts for the hardware timers, set the appropriate bit in 'IRQEN'
($D20E), and the shadow register 'POKMSK' ($0010). Setting bit 0 enables
interrupts for timer 1, bit | enables interrupts for timer 2, and bit 2 enables
interrupts for timer 4. ‘Use an 'OR' statement to accomplish this so the bits
currently set in this register will not be altered (see example program).

To start the hardware timers, write any value to register 'STIMER' ($D209).

HARDWARE TIMER LOCATIONS AND DEFINITIONS

AUDCTL - $D208(53768 decimal).

Bit Result when set

Switches main clock base from 64 Khz to 15 KHz.
Joins channel 4 to channel 3(16 bit resolution)
Joins channel 2 to channel 1(16 bit resolution)
Clocks channel 3 with 1.79 MHz.
Clocks channel | with 1.79 MHz.

AWnF WO

IRQEN - $D20E(53774 decimal)
POKMSK - $0010(16 decimal) shaddow register for IRQEN.

Bit Result when set

0 The POKEY timer #! interrupt is enabled

1 The POKEY timer #2 interrupt is enabled

2 The POKEY timer #4 interrupt is enabled (OS rev 'B')

AUDIO CONTROL REGISTERS AUDIO FREQ. REGISTERS
Hex Dec Hex Dec
AUDC! $D201 53761 AUDF1 $D200 53760
AUDC2 $D203 53763 AUDF?2 $D202 53762
AUDC3 $D205 53765 AUDF3 $D204 53765
AUDC4 $D207 53767 AUDF4 $D206 53766

HARDWARE TIMER VECTOR LOCATIONS

Timer Timer Hex Dec
Name loc loc
1 VTIMRI $0210,50211 528,529
2 VTIMR2 $0212,50213 530,531
4 VTIMR4 $0214,50215 532,533

STIMER - $D209 (53769) - Start hardware timers.
Store any non zero value in STIMER to start timers.

HARDWARE TIMER DEMONSTRATION PROGRAM
JC-5/10/83

The following demonstration program uses the hardware timer interrupt capability, to
time the duration of each tone in a series of 256 tones. When all 256 tones have been
played, the series is repeated. Timer number three is used to produce the tone, while a
combination of timers one and two are used to generate the interrupt that causes the
next tone in the series to be played, by loading it into the 'AUDF3', audio register.

The use of hardware timers number one and two joined together, provide a
demonstration of a wide range of timing values. The BASIC portion of the program
allows a choise of clock speed, and number of cycles to count (duration). In selecting a
clock speed of 15 Khz (15,000 cycles per second), and choosing the maximum duration
65,535 cycles to count (SFFFF), it is possible to create a delay of 4.369 seconds
between notes. Near the other end of the spectrum a choice of 1.79 Mhz in
combination with a selection of 1791 cycles to count, will cause a delay of .0010
seconds between notes. At this rate, all 256 notes can be played in 0.26 seconds. The
total number of cycles counted during this 0.26 second period is 458,496.

The purpose of this discussion is not to show how to generate sound effects, since this
can be done without using the interrupt capability of the timer, but to point out the
great speed that these timers are capable of and the large number of data 'samples' that
could be captured, perhaps while monitoring an analog to digital converter connected to
a real time control application.

To run the BASIC hardware timer demonstration program type in the program and enter
'RUN'. When prompted to enter the timer duration, enter a decimal number from 1 to
65535. You will then be prompted to enter the clock rate to be used. Enter a'l' to use
the 15 Khz rate, a '2' to use the 64 Khz rate or a '3' to use the 1.79 Mhz rate. Try
experimenting with different duration values, and clock speeds. Remember that all 256
notes will be played regardless of the duration or clock speed chosen. To run the
program again with different time and/or clock values, press the 'System Reset' key to
halt program execution, and enter 'RUN'; enter responses to prompts for duration and
clock speed.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
2560
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
300
S10
520

530

REM X50K0K 300K XK XX XK 0K XK X KKK X KKK X

REM x x
REM x HARDTIME .BAS X
REM x JC 5/09/83 x
REM x x
REM x Hardware timer demo x
REM %X pokes machine lanquage x
REM X program into memory x
REM x and calls with x
REM x A=USR(1536) x
REM x x
REM 30X 35 XK X X K XK X K KK 30K K X X XK X XK X K X X
REM

REM

PRINT CHR$(125):!REM CLEAR SCREEN

FOR I=0 TO 84

READ J!POKE 1536+I,J

NEXT I

FOSITION 2,10

REM xx Get timer duration xx

PRINT "INPUT TIMER DURATION(0-6553S)" 3 :INPUT DUR
IF DUR<1 OR DUR>4S5S535 THEN PRINT CHR$(253):GOT0O 2880
REM x Calculate MSE,LSE duration x
HIDUR=INT(DUR/256) :LODUR=DUR-(HIDURX2S6)
POSITION 2,12

PRINT "ENTER CLOCK SFEED"!FRINT

PRINT " 1 = 15 Khz"

FRINT " 2 = 64 Khz"

PRINT 3 = 1.79 Mhz" IPRINT
POSITION 2,20

FRINT "CLOCK SFEED = "} :INPUT CLOCK

IF CLOCK<1 OR CLOCK>3 THEN PRINT CHR$(253):GOTO 390
IF CLOCK=1 THEN CLOCK=17

IF CLOCK=2 THEN CLOCK=164

IF CLOCK=3 THEN CLOCK=80

POKE 54286,0:REM DISAELE VBI‘S

FOKE 54272,0:REM DISAELE DMA

POKE 1590,HIDURI!REM MSE DURATION

FOKE 1585,LODUR:REM LS® DURATION

POKE 1372,CLOCK!REM SET CLOCK SFPEED

A=USR(13536)

REM

REM

DATA 104,169,0,133,205,141,8,210,169,3,141,15,210,32,35,6,96,166,205,232,134

»205,142,4,210,169,175,141,5,210

S40

DATA 32,35,6,104,64,169,17,141,8,210,169,0,141,3,210,141,1,210,169,255,141,0

»210,169,255,141,2,210,169,17

550

DATA 141,18,2,169,6,141,19,2,120,1465,146,9,2,133,16,141,14,210,88,169,255,141

»?+210,96

D208
D20F
D201
D203
D20S
D200
D202
D204
0212
D209
D20E
0010
00CD

gocoo
0600
0601
0603
0605
0608
0604A
060D
0610

0611
0613
0614
0616
0619
061E
061E
0621
0622

68
A900
85CD
8Du38D2
A%?03
8D0FD2
202306
60

A4CD
EB
86CD
8E04D2
APAF
8D0SD2
202306
68

40

10
13
20

23

30
35
40
45
S0
S5

60

B AKX KK NN KK KKK K KKK KKK KK K K KK KX X

:X x
s *HARDWARE TIMER DEMONSTRATION x
y X JC-5/709/83 x
sXuses pokey harduware timer x
1Xto time duration between notesx
sxcalled from BASIC with x
' X A=USR(1536) x
' X

§ 0000 30 20 0 3 3K 380 350 3K 350 20 20 3 00 20 200 2 3K 3 3 30 2K 30 3 3 30 30 200 X XK X

14
65 AUDCTL = $D208 taudio control
70 SKCTL = $D20F sserial port conmtrol
75 AUDC1 = $D201 yaudio chanrnrnel 1 control
80 AUDC2 = $0203 t3udio chanmel 2 control
83 AUDC3 = $0205 t3udio channel 3 control
?0 AUDF1 = $D0200 y3udio frequency #¥1
?35 AUDF2 = $D202 j3udio frequency #2
0100 AUDF3 = $0204 s3udio frequency #3
0103 VTIMRZ = 40212 rPokey timer #2 vector
0110 STIMER = $D209 sstart pokey timers
01135 IRQEN = $D20E tinterrupt request eriable
0120 POKMSK = $010 s IRQEN shadow
0125 NOTE = $CD tstore note value here
0130 .
013S
0140 x= $600 iPlace program on page six
0149 FLA ;¥ arquments from BASIC
0150 LDA %0 tinitialize note to zero
015S STA NOTE 1save note value
0160 STA AUDCTL tinitialize audio control
01635 LDA #43 svalue to initialize POKEY
0170 STA SKCTL sinitialize POKEY
01795 JSR SETUP sinitialize and start timer
0180 RTS sreturn to BASIC
0185
0190
0199 § XXX KK KKK KK KKK K KKK XK XK KX KK XXX KX
0200 ;x x
02035 }xThis rowutine will occur afterx
0210 j3xeach interrupt generated x

0213 }xby the hardware timer,

0220 }xIt will cause the next note
0229 ;xin the series to be plaved
0230 $xand then initialize and
0233 jxstart the timer aqain

0240 ;x

X X M X X

0295 5 MK K XK XK KA K XX A KA K A N K X XK 2K K XK XX
0250

14
0255 TIME LDX NQOTE

sqet riote from memory

0260 INX sincrease to rext note

0263 STX NOTE sstore rew rnote in memory

0270 STX AUDF3 splace rnote in audio freq reqister
0275 LDA #3AF suse pure rnote full volume

0280 STA AUDC3 splace in audio control register
0285 JSR SETUP tinitialize and start timer

0290 FLA

02995 RTI sreturn from interrupt

0300

0305

0310 :XXXXXXXX!XXXXX!XX!XXXXXXXXXXX!X
0315 ix

0320 ;x Routine to set and start
0325 $x pokey hardware timer #2
0330 ;x Clock is reduced to slowest
0335 ;x speed of 15 Khz.

0340 ’x value to time is initializedx

* X x X

0349 }x at highest value SFFFF x

0350 ;x (decimal 6533%) x

0339 ;x x

0360 5 %000 0150 0 31K K B 5K A K 0 K B K I XK 1K 0 0K XK XK X

0365

0370
0623 A911 0379 SETUP LDA #3111 +Join channels two and 1
0625 8D08D2 0380 STA AUDCTL tand switch clock base from 64 to 15 Khz
0628 A900 0383 LDA %0
062A 8D0O3D2 0390 STA AUDC2 1set timer channel
062D 8001D2 0399 STA AUDC1 yaudio volumes to 0
0630 A9FF 0400 LDA #3FF - +LSB of timer duration
0632 8D00D2 0405 STA AUDF1 yaudf1l holds LSB duration
0635 A9FF 0410 LDA #$FF +MSB of timer duration
0637 8D02D2 0415 STA AUDF2 $3udf2 holds MSB of duration
063A A911 0420 LDA $TIME&2YS ;LSB of address for timer interrupt
063C 8D1202 0423 STA VTIMR2 spokey timer #2 vector
063F A906 0430 LDA #TIME/256 ;MSB of address for timer interrupt
0641 8D1302 043S STA VUTIMR2+1 jpokey timer#2 vector
0644 78 0440 SEI ydisable all mashkable interrupts
0645 AS1O0 044S LDA POKMSK tvalue of interrupt enable state
0647 0902 04S0 ORA #$2 sset bit $#2 to enable pokey timer #$2
0649 83510 04SS STA POKMSK sPplace this value in pokey shaddow
0464E 8DOEDZ2 0440 STA IRQEN talso store in pokey hardware reqister
064E S8 04463 CLI senable interrupts
064F A9FF 0470 LDA #$FF suse non zero value to start timers
0651 800902 047S STA STIMER sstart timer
0654 40 0480 RTS sreturn to controlling routine

0 ERRORS

REFERENCES

SOFTWARE TIMERS:

Jim Clark, "Atari Timing Delays," Compute, November 1981, Issue 18, PP 104,106

Mike Dougherty, "Using Atari's Countdown Timers," Micro, February 1982, No. 45,
PP 38-40,82.

De Re ATARI, The Atari Program Exchange, P.O. Box 3705, Santa Clara, CA

95055, 1982, PP 8-40 - 8-41

TECHNICAL REFERENCE NOTES, ATARI, Inc., Sunnyvale, CA, 94086,
"Operating System Users Manual," PP 109-111.

lan Chadwick, Mapping the ATARI, Compute Books, P.O. Box 5406, Greensboro,
NC 27403, 1983.

REAL-TIME CLOCK :

L.

RICHARD BILLS, "Real-Time Clock on the Atari," Compute May 1981, Issue 12, p
88.

Bill Bartlett and Judy Bogart, "Demopac #3, ATARI Product Support, May 1932.

lan Chadwick, Mapping the ATARI, Compute Books, P.O. Box 5406, Greensboro,
NC 27403, 1983.

HARDWARE TIMERS :

2.

De Re ATARI, The Atari Program Exchange, P.O. Box 3705, Santa Clara, CA
95055, 1982, P 8-39

lan Chadwick, Mapping the ATARI, Compute Books, P.O. Box 5406, Greensboro NC
27403, 1983

