SOME SPECIAL FEATURES

Examples and discussions of special graphic features

using BASIC with machine language routines

1) Redefining Characters
2) Vertical Smooth Scrolling
3) Horizontal Smooth Scrolling

ATAR], INC.
CONSUMER PRODUCT SERYVICE
PRODUCT SUPPORT GROUP
1312 Crossman Ave.
Sunnyvale, CA 94036

(800) 672-1404 inside CA
(800) 538-8543 outside CA

DEMOPAC #7
Rev.2 9-82/31B

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari, Inc. ("Atari")
without warranty of any kind. Any statements concerning the capabilities or utility of the
computer programs are not to be construed as express or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or entity with
respect to any claim, loss, liability, or damage caused or alleged. to be caused directly or
indirectly by the computer programs contained herein. The entire risk as to the quality and
performance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However, because of
ongoing improvements and updating of our computer software and hardware, Atari cannot
guarantee the accuracy of printed material after the date of publication and disclaims any
liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical Support,
Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue, Sunnyvale, CA 94086.

REDEFINING CHARACTERS
iB 8/82

The Operating System maintains a pointer to the ROM character set, which can be changed to
point to your own character set in RAM. You are free to define an entire set at a RAM location
of your choosing, or you may call the ROM set down into RAM and redefine only a few of the
characters. The redefined characters appear on the screen in any text mode when the
corresponding internal character code is placed in screen RAM, either by the display handler or
by your program.

The program on the following page illustrates some techniques for redefining characters. The
example uses an arbitrary RAM location (page 12 of memory) for the redefined set. Since it uses
regular characters as well as redefined ones, the program calls the existing set from ROM into
RAM, and redefines characters 1-7. The character numbers are the internal codes, and reflect
the order of the ROM set. A chart of internal codes can be found on page 55 of the BASIC
Reference Manual.

Characters 1-7 are chosen because they are special (non-letter) characters and are not used
elsewhere in the program. Character number 0 is the space, so it cannot be redefined without
filling the screen with the new character.

PEEKing each ROM location and POKEing into RAM takes a long time, so the actual transfer of
data is accomplished with a simple USR call. The example uses upper case only, so the first half,
or upper case set is called down. Each character requires 8 bytes of data, so the first half, 64
characters, takes 512 bytes. In the machine language routine, two loops of 256 bytes are used to
accomplish the transfer.

Once the set is in RAM, new data is POKEd into the locations of characters 1-7. Again, 8 bytes
of data are required for each character definition.

In order to access the new character set, location 756 (CHARBASE) is pointed to the chosen
RAM location. In the example, the redefined characters are POKEd directly into screen RAM,
and the original characters are PRINTed. This is for convenience; the redefined characters may
be PRINTed, but you would have to refer back to the original character. For example, to get
character number 1, you could use the statement:

POKE <creen location> ,1 or
POSITION <GScreen locatio> :PRINT#6;"!"

The exclamation point is the original character number 1. If you use POKE, you do not have to
keep track of the correspondence between original and redefined characters.

A simple animation effect is achieved by POKEing each redefined character into the same
location, in series. Changing the length of the delay loop changes the speed of the animation.

1 REM REDEFINE CHARACTERS

2 REM JB B/02

3 REM call character set from ROM into RAM with a USR function (listing

4 REM follows), redefire 7 characters (¥#1-7 of interral set)

S5 REM then display characters in series for snimation effect.

6 REM XOKCKKKK KKK KK KKK KK KK KKK KKK 0K 3 33 2 2 3 3000 2 3 00 0 K 0 3 0 3K 3 XX X
10 GRAFHICS 2'REM . set up mode 2 screen

20 CHEAS=12!:REM . new char set starts on paqge 12

30 REM . (arbitrary location away from screen)
40 REM XK K K IOK KKK 0K K K 0K K 0K KKK K KK 0K KK KKK 3K KK 3K KKK 50K K 30K KK KK K 0K 3K 3K XX 0K X
390 DATA 104,169,0,133,204,133,206,1469,224,133,205,104,104,133,207,162,2,140
55 DATA 0,177,204,145,206,136,208,249,230,205,230,207,202,208,240,96

60 FOR I=1536 TO 15469

70 READ XI!POKE I,X:REM . poke in codes for usr function

80 NEXT I

83 REM * XK NOKK KKK KA K KKK KKK KK KK KK KA KKK KK A KK KK KK KK K KK KKK KKK K KK KKK KK KK K KK X
90 X=USR(1536,CHEAS) {REM . pa3ss address of rnew char set

P35 REM XXX KKK KKK K KK K KK KKK KKK KKK K K KK K KKK KK K K KKK KKK KKK 303K K KK K 3K KKK KK X K K XK XK
100 FOR CHAR=1 TO 7:!REM . redefine characters 1-7

110 POS=(CHEASxXx236)+(CHARX8) {REM . a8ddress of character in new set
111 DATA 2535,129,189,165,165,189,129,255 .

112 DATA 0,126,66,90,90,66,126,0

113 DATA 0,0,60,36,36,60,0,0

114 DATA 0,0,0,24,24,0,0,0

115 DATA 0,0,36,24,24,36,0,0

116 DATA 0,102,102,24,24,102,102,0

117 DATA 231,231,231,24,24,231,231,231

119 REM XXX KKK XK K K KKK K KK K K K KKK K K KK KKK KKK K KK KK KKK K KKK KKK K KK KKK KK XK K KX XK K
120 FOR X=0 TO 7i{REM . poke in bit pattern for character
130 READ AIFOKE (POS+X),A

140 NEXT XIREM . each character is 8 bytes long
150 NEXT CHAR

155 REM XK KKK K K K KKK KKK KK K KK KK K KK K K KK KK K K K K K KK K 3K 3K K K K K 3K KK KK KK KK K KK XK K KK K K
160 FOKE 756,CHEASIREM . point to new character set

170 SCR=FEEK(88)+2S4XFEEK(8?)IREM , starting location of screern RAM
180 FPRINT #6;"REDEFINED CHARACTERS"

120 FOR I=1 TO 7:!POKE SCR+46+I,I:NEXT I'REM look 3t individual characters
200 FOSITION 0,4:FRINT #463" ANIMATION EFFECT:"

210 REM XXKKK KKK KKK KK KK KK KKK KK KKK KKK XK KKK KK K KK KK KKK K K KK KK 3K KK K K KK KK KK XX XX KX
220 FOR I=1 TO 7:REM . display characters in series

230 FOKE SCR+130,I

240 FOR DELAY=1 TO 29:NEXT DELAY

250 NEXT I

260 FOR I=6 TO 2 STEP -1:REM . run series bachkwards

270 FOKE SCR+130,I

280 FOR DELAY=1 TO 2SiNEXT DELAY

290 NEXT I

300 GOTO 22

10 }MOVE CHARACTER SET
USR ROUTINE

[
30 ; JE 8/82
40
S0 3 DEFINITIONS
60 3
go0CC 70 CHARSET = $CC tfree bytes on zero paqge
00CE 80 NEWSET = $CE ttwo more free bytes on zero paqe
. ?0 3
0000 0100 x= $600
0600 68 0110 FLA stake # of parameters from stack
0601 A900 0120 LDA #0
0603 85CC 0130 STA CHARSET
0605 8SCE 0140 STA NEWSET tlo bytes are both 0
0607 A9ED 0150 LDA #4$E0
0609 8SCD 0160 STA CHARSET+1 jhi-byte of ROM character set
0460E 68 0170 FLA
060C 68 0180 FLA shi-byte of rnew location passed on stackhk
060D 85SCF 0190 STA NEWSET+1
060F AZ202 0200 LDX #2 soutside loop (2 loops of 256)

0611 A000 0210 LOOF1 LDY #3%00
0613 EBI1CC 0220 LOOFP2Z LDA (CHARSET),Y jqget value from ROM location

0615 91CE 0230 STA (NEWSET),Y ;move to RAM location
0617 88 0240 DEY

0618 DOF?9 0250 BENE LOOF2 sydo 256 bytes

061A E&CD 0251 INC CHARSET+1

061C E&CF 0252 INC NEWSET+1 jbump hi-bytes

061E CA 0260 "DEX soutside loop

061F DOFO 0270 ENE LOOP1 snext 256 bytes

0621 690 0280 RTS sreturn from usr routine

SCROLLING
Vertical Fine and Coarse Scrolling
B 9/82

A smooth scrolling effect is achieved by combining fine and coarse scrolls. Fine scrolling is used
to scroll a character across a pixel, and coarse scrolling moves the character to the next pixel.
Fine scrolling uses special registers, HSCROL and VSCROL, together with the scrolling-enable
bits in the display list mode lines. Coarse scrolling is most easily done by manipulating the Load
Memory Scan (LMS) address in the display list.

All display list instructions use the lower nybble. The top nybble is reserved for the four special
display list functions:

D4: Enable Horizontal Fine Scrolling
D5: Enable Vertical Fine Scrolling
D6: Load Memory Scan Register

D7: Display List Interrupt

When bit D5 is set on a display list instruction, vertical fine scrolling is enabled on that line.
Using decimal numbers, add 32 to each mode line to enable fine scrolling on the whole screen.

Once fine scrolling is enabled, set the VSCROL register (54277, or $D405). The number at
VSCROL is the number of horizontal scan lines to scroll. Each pixel takes up 1 to 16 scan lines,
depending on the mode. In BASIC mode 2, for example, each pixel is 16 scan lines high. To
scroll a character halfway up the pixel, the value in VSCROL would be 8.

To fine scroll from one end of the pixel to the other, VSCROL must be incremented from 0 to 16,
or decremented from 16 to 0. The character moves across the pixel until it reaches the last line.
At this point, switch to the coarse scroll, to move it to the next pixel. VSCROL is set back to
the other end, so that the image shows up on the correct side of the new pixel.

To accomplish a coarse scroll, change the LMS address by one line length. The LMS address is
the starting location of screen memory. If screen memory starts one line length later, the whole
screen image moves up one line. Remember that different modes take different numbers of
bytes per line. BASIC mode 2 takes 20 bytes per line, so to scroll the screen up one pixel, add 20
to the LMS address. In a default display list, the first mode line (the fourth byte in the list) has
the LMS bit set. The following two bytes (the fifth and sixth bytes in the display list) contain the
LMS address.

The example on the following page sets up a display list for BASIC mode 2, which is ANTIC mode
7. Each mode line has the vertical scroll bit set, resulting in the instruction 39 (7+32). The first
mode line also has the LMS bit set (7+32+64=103) and is followed by the LMS address. The
original address is 0. The screen display moves through memory from the beginning. If you look
carefully you can see the Real Time Clock at locations 18,19 and 20.

The machine language routine, which is executed during the vertical blank, increments the
VSCROL register from 0 to 16. When it reaches 16 it is set back to 0, and the LMS address is
incremented by a line length of 20. [f the low byte exceeds 255, the high byte is incremented.

In the example the screen is scrolled smoothly through memory. In your own program, of course,
scroll from the start of your own screen data to the end of your extended data area. For any
scrolling screen, you must set up the data yourself, so that the LMS points to an area with valid
data in it.

1 REM SCROLL

2 REM WE/JE 8/82

3 REM Vertical fine scrolling! a vblank routine scrolls throuah memory

4 REM using mode 2

S REM 20K KKK KKK KKK KK KKK KKK KKK K K K K K K K00 KK K K K K KK 00K K K KKK 00K XK KK K K XK XK XK X X XK X
10 GRAFHICS 2

20 REM xxxxx data for vblank code!(listing follows) XXxXxx

30 DATA 206,80,6,208,18,169,2,141,80,6,238,81,6,173,81,6,201,146,240,6

31 DATA 141,5,212,76,98,228,169,0,141,81,6,141,5,212,173,3,156,24,216,105
32 DATA 20,141,3,156,173,4,156,105,0,141,4,156,76,23,6

39 REM xxxxX data for display list XXXxx

40 DATA 112,112,103,0,0,39,39,39,39,39,39,39,39,39,39,39,39,7,45,0,156
45 REM xx

S0 FOR I=1536 TO 1590¢REM . poke in vblarnk code on page 6
355 READ X:FOKE I,X

60 NEXT I

70 FOR I=39936 TO 39956:REM . poke in modified display list
75 READ X:IiPOKE I,X

80 NEXT I

85 FPOKE S60,0:FOKE S61,156¢REM . location of new display list
P0 REM XXXXKXCKXKKK KKK KK KKK KK KK KK K K KKK KK K KKK KKK KKK KK KKK K KK KK K KK KK KK KK KKK KX K KX
100 POKE 54286,0tREM . disable nmi

110 FOKE 548,0!FOKE S49,6tREM . set up vblank vector

120 POKE S54286,64!REM . reenable nmi

10 ;SCROLL
20 ; WE/JE 8/82

30 3
40 DEFINITIONS
D40S S50 VSCROLL = $D405
9C03 60 LMS = $9C03
0650 70 SFEED = $650
06351 - 80 TSCROLL = $651 stemp shadow for scroll value
E462 20 XITVUEV = $E462
0000 0100 X = $600
0110
0600 CES006 0120 DEC SFEED
0603 D012 0130 ENE END
0605 A902 0140 LDA #2 rdefault speed every other vblank
0607 8DS006 0150 STA SFEED
060A EES106 0160 INC TSCROLL
060D ADS106 0170 LDA TSCROLL
0610 C910 0180 CMF #1646 ytop of pixel?
0612 FOO06 0190 EEQ COARSE 14¥es, coarse scroll
0614 8DO0SD4 0200 STA VSCROLL yno, fime scroll
0617 4CH2E4 0210 END JMF XITVEV
061A AR00 0220 COARSE LDA %0
061C B8DS106 0230 STA TSCROLL sback to bottom of pixel
061F 8D0SD4 0240 STA VSCROLL
0622 ADO39C 0250 LDA LMS
0625 18 0260 CLC
0626 D8 0270 CLD
0627 6914 0280 ADC #20 +13dd 38 line length to 1lms address
0629 8DO039C 0290 STA LMS
062C ADO0O49C 0300 LDA LMS+1
062F 6900 0310 ADC %0
0631 8D049C 0320 STA LMS+1

0634 4C1706 0330 JMF END

SCROLLING
Horizontal Fine and Coarse Scrolling
B 9/82

A smooth scrolling effect is achieved by combining fine scrolling, (moving an image across a
pixel) with coarse scrolling (jumping an image to the next pixel). Fine scrolling requires two
things: 1) a scrolling bit must be set in the display list instruction, and 2) the scrolling register
must keep track of how far the image has gotten across the pixel. When the image is all the way
across, it must be jumped to the next pixel. The coarse scroll is accomplished by changing the
Load Memory Scan (LMS) address in the display list, so that it looks for data lower or higher in
memory.

Horizontal scrolling differs from vertical scrolling in two important ways:

1) For horizontal coarse-scrolling, each horizontal line of data is defined separately. LMS must
be set on every mode line of the display list. Instead of simply adding a line length to the one
starting address of the screen, add (or subtract) one byte from the starting address of each line
of display data.

2) The direction of the fine and coarse scrolls are opposite; when you reach the highest value in
HSCROL, subtract from the LMS addresses. When you reach the lowest value, add to the LMS
addresses. With vertical scrolling, the directions are the same. The values of VSCROL and of
the LMS address both decrease or increase.

The vertical fine scroll value (at VSCROL) is measured in scan lines. The horizontal fine scroll
value (HSCROL) is measured in color clocks. Different modes have different numbers of scan
lines and color clocks per pixel. If the number of color clocks in the mode you are using is less
than 16 (as it is in the example) you may fine-scroll across more than one pixel. The example on
the following page fine-scrolls across 2 pixels, and then jumps each LMS address by 2 bytes.

You must use a customized display list for any kind of scroll. For vertical scrolling, simply set
the Fine-Scroll bits of existing instructions. For horizontal scrolling, set both the Fine-Scroll bit
and the Read-LMS bit on each instruction, and then follow each instruction with the two-byte
address of the data area for that line.

The total data area for a line is determined by how far you want to scroll. For example, if your
mode line is normally 20 bytes long, and you want to scroll across 4 screens of data, each data
line must by 80 bytes long. Each LMS address would be the same as the last, plus 80.

In the example, each line of data is assumed to be 255 bytes long, and to start on a page
boundary in memory. This simplifies the LMS-updating algorithm, as we do not have to worry
about the low byte. In your own application, set up the data the way you want it. Take into
consideration that a line of data may cross a page boundary, and you must update the low byte
when necessary.

1R
2R
3

1 RE

4 R
S K
6 R

EM HORIZONTAL SCROLL

EM WEE/JE 9/82

EM set up custom display list, use VELANK routine to smooth-scroll

EM horizontally- each line is 255 bytes long,(one paqe of memory)

EM of which 20 bytes are displayed at one time.

EM 0 X0K0K0K KX IKOK KK KK KKK KK KKK KK KKK 0K KKK KKK KK KK 3 KK K K KK K 3K K K 3K 3 K K 3K K 3K K K X K X XX X K X
GRAFHICS 0:FRINT "SETTING UF CUSTOM DISFLAY LIST..."

RESTORE 1000:REM . aet data for custom display list

DL=16336!REM . display list will start at top of 16K
READ INSTRUCTION

IF INSTRUCTION=-~1 THEN GOTO 100

POKE DL,INSTRUCTION!REM . poke in display list instructions
DL=DL+1:GOTO 40

REM 500X KKK KK K XK K K 3K KK KK KK KK K KK KK KKK 3K K 3K K KKK 3K 3 K 3K K 3K 2K 30 30 3 3K K 3K 3K K 3K 2K 3K 3K 3K 3K K 3K K 3K K XK
FRINT "SETTING UPFP VELANK ROUTINE..."

RESTORE 2000:REM . data for vblank code--listirigq follows
ADDRESS=15364

READ EYTE!IF EYTE=-1 THEN 200

FOKE ADDRESS,EYTE(REM . poke in object code for scroll routine
ADDRESS=ADDRESS+1:GOTDO 130

REM 00K KKK KKK KKK K KKK KK KK KKK KK KK KK KKK KKK KKK KK KK 3K KKK K KKK KK K KKK K K XK X
FOKE 560,208:FOKE S561,63!REM . point to new display list
NMIEN=54286 {VVBLKD=548IREM . set up vertical blank vector

FOKE NMIEN,O

FOKE VVELKD, 0:!FPOKE VVELKD+1,6

FOKE NMIEN, 64

END (REM . VELANK routine is in place...

REM . use joystick 0 to scroll screen
REM %X X XK XK XK KK KKK K K XK KK K KK K K K K K KKK K NI K K KKK KKK KKK K KK K 3K KKK K KKK KK K XK K K K K K X

0 DATA 112,112,119,0,1,119,0,2,119,0,3,119,0,4,119,0,5,119,0,64
0 DATA 119,0,7,119,0,8,119,0,9,119,0,10,119,0,11,119,0,12

LO DATQ 8790913’6J9L08 63,_1

Q REM XXX KKK KKK KKK KK XK K K KKK KKK K KK KK KK KKK KK K K XK K K K KK K KK K K XK XK XK K XK KK XK K K K K K K XK K
0 DATA 173,48,2,133,203,173,49,2,133,204,173,120,2,41,4,208,3,32,82,6

1 DATA 173,120,2,41,8,208,3,32,33,64,76,98,228,173,254,6,201,15,240,10

2 DATA 24,105,1,141,254,6,141,4,212,96,160,3,177,203,201,0,208,1,96,169
3 DATA 0,141,4,212,141,254,6,177,203,56,233,2,145,203,200,200,200,192,

4 DATA 208,242,96,173,254,6,201,0,240,10,56,233,1,141,254,6,141,4,212,96
S5 DATA 160,3,177,203,201,234, 208,1,96,169 14,141 4,21 +141,254,6,177,203
6 DATA 24,105,2,145,203,200,200,200,19 42,208, }96,224’L,LLJ,L)0 0,-1

ATARI Macro Assembler Ver 1,0A Faqge 1
D1 {HSCROL,SRC

XHORIZONTAL SCROLL
VERTICAL ELANK ROUTINE

X

X read joystick 0 and scroll screen right or left
X WEER/JE 9/82
x
X

definitions

X
= E462 XITVEV = $E462 jexit vector
= D404 HSCROL = $D404 jthoriz scroll reqgister
= 04FE HSHADW = $6FE jkeep own RAM shadow
=. 0278 STICKO = $278 joystick 0 reqister
= 00CE LMS = $CEB jtemp lms adr
= 0230 DL = $230 jdisplay list pointers
x
0000 = 0400 ORG $600
x
0600 AD3002 LDA DL jdisplay list location is starting point
0603 85SCE STA LMS ;from which to find 1lms adr
0605 AD3102 LDA DL+1
0608 83CC STA LMS+1
X
X check joystick for horizontal motion
X
060A AD7802 JOY1 LDA STICKO
060D 2904 AND #4 jcheck bit d3 (0000 0100)
060F D003 ~0614 ENE JOYZ2 $if rnot 0, keep chechking
0611 205206 JSR LEFT ;if 0, Qo move imaqge left
0614 AD7802 JOYZ2 LDA STICKO
0617 2908 AND #¥8 jcheck bit d4 (0000 1000)
0619 D003 A061E ENE END jif rot 0, exit
061E 202106 JSR RIGHT 3if 0, Qo move imaqge right
061E A4C62EA4 END JMF XITVEV jexit rmiormally
X
X right and left scroll routines
X
XXXXXX scroll right XXXXxXxX
X
x fine scroll
x
0621 ADFE0S RIGHT LDA HSHADW jremember last fime-scroll value
0624 C90F CMF #15 31imit of firme scroll? (2 pixels)
0626 FO00A A0632 EEQ R1 j4es, Qo do coarse scroll
0628 18 CLC jotherwise, do fine scroll
0629 6901 ADC #1
0628 GBDFE0S STA HSHADW jkeep riew value
062E 8D04D4 STA HSCROL jupdate reqister
0631 60 RTS
X
XXX coarse scroll xxx
X
0632 A003 R1 LDY #3 jrnew 1lms adr every 3 bytes
0634 EB1CE LDA (LMS),Y jwe’re only looking a3t lo byte
0636 C900 CMF %0 jlimit of lirne size?
0638 D001 A063E ENE R2 $no, do coarse scroll
063A 60 RTS jyes, limit reached, return
X

063E A900 R2 LDA #0 jreset fime-scroll reqgister

ATARI Macro Assembler Ver 1.0A Paqge 2

D1:HSCROL.SRC
063D 8D04D4 STA HSCROL
0640 8DFEO04 STA HSHADMW
x
0643 EI1ICE R3 LDA (LMS),Y j3get each 1lms lo-byte
04645 38 SEC
0646 ES02 . SBEC #$#2 jsubtract 2 to move 2 pixels right
0648 <91CB STA (LMS),Y
064A C8 INY
0464 C8 INY
064C C8 INY jnew 1lms every 3 bytes
064D CO02A CPY #42 ;last ore?
064F DOF2 A0643 ENE R3 $no, keep qoing)
0651 60 RTS j4es, all lines scrolled, return
x
XXXXXX scroll left XXXXXX
x
x fine scroll
x
0652 ADFEO06 LEFT LDA HSHADW jremember last fine scroll value
0655 C900 CMP #0 jend of pixel?
0657 FO00A A0663 BEQ L1 jyes, go do coarse scroll
0659 38 SEC jmo, continue fine scroll
065A E901 SEC #1
063C BDFE06 STA HSHADW jremember new value
065F 8D04D4 STA HSCROL jupdate reqister
0662 60 RTS $fine scroll done, return
X
X coarse scroll
X
0663 A003 L1 LDY #3 ;1lms lo byte every 3 bytes
0665 EI1CE LDA (LMS),Y jcheck current 1ms lo byte
0667 C9EA CMF #2334 ;limit of lirne size?
064692 D001 ~066C ENE L2 jro, continwue
066E 60 RTS $4es, limit reached, return
x
0646C A0F L2 LDA #15 jreset fine scroll reqgister (2 pixels)
066E 8D04D4 STA HSCROL
0671 B8DFE06 STA HSHADW
x
0674 EICE L3 LDA (LMS),Y tqet each 1lms lo-byte
0676 18 CLC
0677 6902 ADC #2 jmove 2 pixels
0679 <91CE STA (LMS),Y
0678 C8 INY -
067C C8 INY
067D C8 INY jnext 1lms, 3 bytes later
067E CO02A CFY #42 jlast one?
0680 DOF2 A0674 ENE L3 jrno, keep Qoing
0682 60 RTS j4es, return

rno ERRORs, 17 Labels, $4A0E free.

