LY

ADVANCED SYSTEM FEATURES

Examples and discussions of system features

for beginning machine-language programmers

1) Switching Screens

2) RAM Shadows

3) Display List Interrupts

4) Vertical Blank Interrupts

5) Display List Modification
~ 6) Mixed Mode Screen

7) Using Central 1/O

8) Direct Screen Write

ATARI, INC.
CONSUMER PRODUCT SERVICE
PRODUCT SUPPORT GROUP
1312 Crossman Ave.
Sunnyvale CA 94086

(800) 672-1404 inside CA o
(800) 538-8543 outside CA R

ev.2 6-82/JB

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari, Inc.

("Atari") without warranty of any kind. Any statements concerning the capabilities or utility
of the computer programs are not to be construed as express or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or entity with
respect to any claim, loss, liability, or damage caused or alleged to be caused directly or

indirectly by the computer programs, contained herein. The entire risk as to the quality and
per formance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However, because of
ongoing improvements and updating of our computer software and hardware, Atari cannot

guarantee the accuracy of printed material after the date of publication and disclaims any
liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical Support,
Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue, Sunnyvale, CA 94086.

~

SWITCHING SCREENS
Display List Alternation
JB 2/82

It is often necessary or desirable to keep two separate screens of data in memory, and switch
back and forth between them. You may wish, for example, to display one screen while updating
the other, or you may simply wish to use the switching for an animation effect. The technique is
sometimes called page-flipping or paging.

In order to switch screens on the Atari, you must create two separate display lists, each with its
own data area. The switch is accomplished by simply changing the pointer to the display list.
This two-byte pointer is located at decimal 560 and 561.

BASIC sets up a display list, complete with data area, every time you enter a new graphics mode.
The location is based on the top of memory pointer, RAMTOP, located at decimal 106. In the
example on the following page, an alternate display list is created by moving RAMTOP down 32
pages in memory, and then calling a new graphics mode. Since RAMTOP is a high-byte pointer
(that is, it is always on a page boundary), the low byte of the new display list remains the same,
while the high byte moves down 32 pages. In order to switch between the two, it is only
necessary to change the high byte, at location 561.

If you wish to update one screen while displaying the other, you must keep track of the location
of the screen data areas. The display list has its own pointer, called the LMS address, which is
kept at the 5th and 6th bytes. (If the starting address of the display list,
DL=PEEK(560)+PEEK(561)*256, then the LMS address is at DL+4 and DL+5.) “BASIC, however,
uses another pointer, called SAVMSC, located at decimal 88 and 89. When you enter a graphics
mode and a new display list is set up, SAVMSC is updated from the LMS address. BASIC PLOT
and DRAWTO statements use SAVMSC to find an address at which to store data.

In order to use BASIC to write data to one screen while displaying the other, you must change
the high byte of SAVMSC (decimal 89) back to its alternate value. Your PLOT data then goes to
the alternate screen, while the display list still uses the LMS address to get its data for the
screen image. Remember that SAVMSC is only updated when you enter a graphics mode and set
up a display list. When you switch between display lists, SAVMSC does not change.

When you are updating your alternate screen, you may get out-of-bounds errors if your two
screens have different x/y limits. BASIC uses location 87 decimal to determine the mode for
boundary checking. When you change SAVMSC to your alternate screen, you should also put the
alternate screen mode number at 87. For example, if you are showing a mode 3 screen and
updating a mode 7 screen, POKE 87,7 when you wish to write to the mode 7 screen.

LOREM o xxx DISFLAY LIST ALTERNATION XXX

TOREM XXk CC/JE 2782 XKEXKKXKKKK

TOREM OKOK KKK K KK XK K K KK KK KK K KK X X XK KK K

1] GRAFHICS 7iREM set wup first display list

20 DLILO=FPEEH(S80) IDLIHMI=FEEK(SS1)Y IREM keep address of first
30 COLOR 1:FOR X=130 TO 10 STEF -10

31 PLOT X,79:DRAWTO 1359,0

32 NEXT XIREM draw something on screen 1

TS5 REM KKK KK KKK KK K K XK KK K K KK 3K K K K K KKK KK K K 3K K KKK KK XK K KK K KK XK

40 FOKE 106,FEEK(106)-32!{REM move RAMTOF down 32 pages

S50 GRAFHICS 7:REM set up second display list

60 DLZ2LO=PEEK(S60) IDLZHI=FEEK(S5461)IREM keep address of second
70 COLOR 2:FOR X=10 TO 150 STEF 10

71 PLOT X,0:DRAWTO 159,79

72 NEXT X!{REM draw something on screen 2

75 REM KKK KKK K KKK K KK K K K K K KK K K K K 3K K KKK K KK K KK KK KKK K KK K XK K

80 REM mnow chanqge the high byte pointer to the display list
81 REM with a delay, 50 each screen can be seen.

20 POKE S61,DL1HY

25 FOR WAIT=1 TO Z200:INEXT WAIT

100 FOKE S61,DLZHI

105 FOR WAIT=1 TO Z200:INEXT WAIT

1i0 GOTO 90

display list

display list

RAM Shadows of Hardware Registers
JB 6/82

A number of hardware registers are associated with RAM locations, known as shadows. Shzdow
registers are used to update the actual hardware registers during the vertical blank routine. Zzch
sixtieth of a second, after the screen is updated, the OS VBLANK routine reads the value irom
each shadow register in RAM and writes the value into the corresponding hardware register.

The shadow registers can be used along with display list interrupts to produce different effects.
The color registers, for example, are all shadowed, so a display list interrupt that changes a color
can update either the hardware register or its shadow. When the hardware register is changed
directly, the new color appears on the screen immediately, wherever the interrupt occurs. After
the screen is drawn, the VBLANK routine reads the original value from the shadow register, and

restores it to the hardware register. The original color then appears at the top of the screen, and
remains there until it encounters the interrupt again.

If you wish to make a permanent change, which affects the entire screen, you would change the
shadow register. The change is not apparent until the following VBLANK. No change occurs at the
line of the interrupt , but as soon as a new screen is drawn, the shadow value goes into the

hardware register, and the new color appears. This change affects the whole screen, and lasts
beyond the frame in which the interrupt occurred.

The register and its RAM shadow can also be used together. On the following page is an example
of a display list interrupt routine. The BASIC program POKEs in the values of the object code
from the machine language service routine listed below it. In the routine, the hardware register is
changed to produce an immediate color change on the screen. The original value is still in the

shadow, so the routine reads the shadow to restore the original color. The rest of the screen then
contains the original color.

Some of the familiar locations such as CH (last key pressed, 764), CHBASE (character set pointer,
756) and even the display list pointer (560,561) are actually the RAM shadows of the hardware
registers. The controller locations (paddle and joystick) are also shadowed.

1 REM DISFLAY LIST INTERRUFT

2 REM JE 6/82

3 REM use a3 display list interrupt to change the color of the first lirne
4 REM of a qQraphics mode 2 screen.

S OREM KKK KK KKK KKK KKK K KK KK XK K K K KK K KK KK 3K KK SKOK KK K K KKK KKK KKK NOK K K KK KKK KKK
10 GRAFHICS 2

20 FOR ADDRESS=1536 TO 1536+28:REM set up service rowutime on page &

30 READ EBYTEIFOKE ADDRESS,EYTEI!REM get opcode value, put in address

40 NEXT ADDRESS '

48 REM these data statements contain the opcode values of the machine

49 REM lanquaqQe service routine.

S0 DATA 72,138,72,141,10,212,1469

91 DATA 194

%2 REM 194 is the color, inm this case gqreen.

53 DATA 141,246,208,162,15,141,10,212,202,208,250,173,200

54 DATA 2,141,26,208,104,170,104,44

S5 OREM XXX KK K K KKK KK KX K K KKK K KKK XK XK 3K 3K K K 3K KK 3K K K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 5K K 5K 3K K 33K 3K K KK KK X
60 POKE S12,0:F0OKE 513,46 1REM point DLYI vector to page 6, where code is.
70 DL=FEEK(S60)+FEEK(S61)IX236IREM start address of display list

80 FOKE DL+2,112+128iREM set interrupt flag before first mode line

20 FOKE 34286,192:!REM ernable display list interrupts

100 FRINT %63 THIS IS COLOR 194"

10 3 DISFLAY LIST INTERRUFT SERVICE ROUTINE
20 3 This rowtinme saves the registers, waits for syrnchromization
30 { with the screen, and charnges the backgrournd color.
40 3 It waits for 16 scan lires (one mode line), then chanqges
S50 3 the color back, and restores the reqgisters
&0 3

D40A 70 WSYNC = $D40A

DO1A 80 COLEBAK = $D01A

02C8 90 SHADOW = $2C8

goC2 0100 COLOR = 194
6110 ;

0000 0120 X= $4600

0600 48 0130 FHA

0601 8A 0140 TXA

0602 48 0150 FHA

0603 8D0AD4 0140 STA WSYNC

0606 A9C2 0170 LDA #COLOR

0608 8D1AD0C 0180 STA COLEAK

040E AZ0F 0120 LDX #$F

060D 8D0AD4 0200 LOOP STA - HSYNC

0610 CA 0210 DEX

0611 DOFA 0220 ENE LOCF

0613 ADC80Z 0230 LDA SHADOW

0616 8D1ADO 0240 STA COLEAK

0619 68 0250 FLA

061A AA 0260 TAX

061E 68 0270 FLA

061C 40 0280 RTI

Using the Vertical Blank
JB 1/82

Machine language code which alters the screen display should be synchronized with the screen in
order to avoid unsightly glitches. If a change is made while the screen is being drawn, it occurs in
plain sight and in unpredictable places. In order to make sure that your changes occur between
screens, the code should be placed in the vertical blank, which occurs every sixtieth of a second.
On the following page is an example of a simple Vertical Blank Interrupt (VBI) or VBLANK routine.

There are two places to put a vector to your own code, one at the beginning and one at the end of
the OS VBLANK routines. If you put your code before the OS routines, it is in the "immediate
mode". If you put it after, it is "deferred mode". An immediate VBLANK routine has 840 machine
cycles available, and a deferred routine has 1470 cycles available. The last part of a deferred
routine might be visible on the screen, so display changes should be made in immediate mode, or at
the beginning of deferred mode. The example uses deferred mode.

There is a built-in routine for setting the vector to the VBLANK code, called SETVBV. The address
is passed with the low byte in the Y register and high byte in the X register. The accumulator
should contain a 7 to select deferred mode, as shown in the example, or a 6 to select immediate
mode. After calling SETVBV, continue with the main-line program. Since there is no mainline

program in the example, the machine simply hangs in an infinite loop. Exit the program with
SYSTEM RESET.

The example routine itself is located at an arbitrary location on page six. It checks the trigger of
joystick 0 by masking out all but the least significant bit, and checking for the 0 which indicates
that the trigger has been pressed. If it hasn't, we exit to the main-line program, and wait for
VBLANK to come around again. If it has, we get the background color for mode 0 from the shadow
register, add one to the number, and put it back. We then exit normally. To exit from a deferred
VBLANK routine, use the vector given (3E462). To exit back to the OS VBLANK routines from
immediate mode, jump to location SE45F (SYSVBV). -

There is an excellent discussion of VBLANK processing in De Re ATARI, chapter 8. This manual is
available from the ATARI Program Exchange (APX), and can be ordered by calling the toli-free
line, (800) 538-1862 (outside CA) or (800) 672-1850 (inside CA).

10 3VERTICAL ELANK ROUTIME

20 ;3 change color of screen on —_
30 ;3 Joustick trigger JB 1/82
Q03 KKK K KK K K K K K K KK 3K KK KK K KK K KK K K KKK XK
6000 30 Xi= $600
35 sset up vector to VELANK routine
0400 A0SO 60 LDY #4590 yaddress of routime, 1lo
0602 AZ206 70 LDX ¥%06 ta3ddress, hi byte
0604 A907 80 LDA #4007 tspecify deferred mode
0606 205CE4 90 JSR $E435C 1call SETVEV
0609 4C09046 0100 LOOF JMF LOOF jcontirwe with main-line program
0110 3
060C 0120 X= $4650
0125 jVELANK routine
0650 ADB402 0130 LDA 40284 tcheck triqger 0
0653 2901 0140 AND #%01 tleast significamt bit
0655 C900 0150 CHMF #%90 jis 1t pressed?
0657 DOO7 01460 ENE EXIT sno, forget it
06592 AEC&02 0170 LDX $2Cé i1ves, qet color 2 from shadow register
0465C ES8 0180 INX jchange the color
065D BEC602 0190 STX $2C6 sput it back :
0660 4CH2E4 0200 EXIT JMF $E462 tJump to XITVEV

DISPLAY LIST MCDIFICATION
JB &/32

The GRAPHICS command in BASIC sets up a default display list, with three blank-8-line
instructions, an LMS (Load Memory Scan) address, and an appropriate number of ANTIC mode lines.
All BASIC modes have a text window, 4 lines of mode 0 (ANTIC mode 2) at the bottom. The text
window can be suppressed by calling <node numbe> +16. The GRAPHICS command opens the S:
device, which clears out the data area, erasing the screen image. Erasure can be suppressed by

calling <fnode number> +32, although the data left over from another mode will appear
differently in the new mode.

When BASIC opens the screen in a mode, the default display list is located under RAMTOP, the top
of memory pointer. If the value of RAMTOP is changed before the GRAPHICS call, the new
display list location is based on the new value. The pointer to the display list is in two hardware
registers, called DLISTL/DLISTH, at 54274/54275. These are shadowed in RAM, at locations
560/561. The shadow pointers are used to change or find the location of the display list.

The easiest way to set up your own mixed-mode screen, using BASIC, is to start with a default
display list set up by the GRAPHICS call. To modify, find the location with the pointers:

DL=PEEK(560)+PEEK(561)*256

The lines which you wish to modify will be found at an offset from the starting location. The first
mode line on the screen starts at DL+3, and has the READ LMS bit set. This is followed by the
LMS address, which points to the data area. The second mode line is at DL+6. To change a mode
line, POKE in the new ANTIC mode number at the desired offset.

BASIC mode numbers are not the same as ANTIC mode numbers. A chart of /-\NTIC modes, and all
other display list instructions, may be found in Chapter Il of the Hardware Manual (TECH USER
NOTES, Part no. C016555), and on the programming card in DE RE ATARI (available from APX).

Different modes take up different numbers of bytes per line, and different numbers of horizontal
scan lines. When mixing modes, you must take care that the number of bytes per line comes out
even, so that data will not be offset. For example, if a mode 2 (ANTIC mode 7) line, taking 20
bytes of memory, is poked into a mode 0 (ANTIC mode 2) display list, with 40-byte lines, the
remaining data will be half a line (20 bytes) off. To get the start of each line back to the left side
of the screen, you must use two mode 2 lines, for a total of 40 bytes.

You must also take care that the total number of scan lines does not exceed 192. If more scan

lines are used, the bottom of the image will be off the screen. If more than about 200 lines are
used, the image will roll.

REM DISFLAY LIST MODIFICATION

REM JE 6/82

REM Amn example of 3 modified display list, combimning text armd map modes.
REM 3K XK KK K KKK K XK KK KK KK KK K K 3K 3K K 3K KK 3K K KKK KKK KK KK K KKK KK 3K K KK KKK SR R OKKOKOEKK
10 GRAFHICS 0:REM set up default mode 0 display list

20 DL=FEEK(S5460)+FEEK(361)X2546IREM starting location of display list

30 FOKE DL+7,6:!FOKE DL+8,46!REM 2 lirmes of mode 1
40 FOKE DL+9,73FOKE DL+10,73REM 2 lines of mode 2 ‘

S0 FOR I=11 TO 14:FOKE DL+IX,8!NEXT I:REM 4 lines of mode 3 -

S0 REM XXX KK XK XK X K 3K 3K K 3K XK K K 3K K 3K K KK 3K 3K K K KK K K KK 3K K K K KKK 3K KK KKK K K 3K 33K K K 3K 0K 3K K K 3K 3K 3K K K K K K
70 REM The screen now contains modes 0,1,2,and 3.

80 REM The data is interpreted differently in each mode.

85 FOKE 82,0:REM move left marginm out to columm O

90 FRINT (FRINT "THIS IS IN MODE 0O

100 FRINT "THIS IS IN MODE 1"

110 FRINT “"THIS IS IN MODE 2"

120 FRINT "THIS IS IN MODE 3"

130 FRINT " MODE 3 INTERFRETS DATA AS COLORS,"

140 FRINT RATHER THAN CHARACTERS."

NNV o

e .
(P

R
R

R

9 R

80

100
110
120
130
140
200
?98
999
100
110
120
YiX
199
199
200
201
202
‘GO
203
204
205
206
00

207
208
210

EM MIXED MODE SCREEN
EM LW/JE 4/82

EM arnd half mode 7 1/2 (ANTIC mode E)
EM 00K K 00K KK KKK KK K KK K K K 3K 5K K 3K 3K 5K 3K K 5K K 0K 3K 0K K K 3K K33 S 3K S K 5K K K 3K 3K KK 3K 3K K KK K KK K
GRAFHICS B8:REM set up original mode 8 display list
FOKE 708,8B6:F0OKE 702,122:F0KE 710,0:!FOKE 711,0:F0OKE 712,4!REM set colors
FOKE 87,7 tREM make BASIC thinmk screen is mode 7
OUT=0:REM initizlize out—-of-bounds flaqg
DL=FEEK(SA0)+FEEK(S61) X256 ¢REM start address of display list
FOKE DL+3,78:!REM first mode E lirme with LMS bit set
FOR I=0 TO 92:FOKE DL+6+I1,14INEXT IIREM snother 93 mode E lines
REM KKK KK K KK KK KK KK K KK K KKK K K K 4K 3K 3K K KK 3K 3K K 3K 3K K K K K K 3K 3K K 3K K 3K 3K K K 3K 3K 3K 3K 0K 3K 3K 3K 3K 3K K K K 3K K
FOR Z=1 TO 3:COLOR Z:REM 3 curves in 3 colors
OF=0:¢X=0:GOSUE 1000:GOSUE 2000
OF=1:!FOR X=1 TO 159
GOSUE 1000:GOSUE 2000
NEXT XiU=U+2INEXT Z
END .
REM XK KKK XK KK KX KK KK KK KK KK KK 3K 3K K 3K 3K K K K 3K 3K 3K 3K 3K 3K 3K 3K K KK 3K 0K 5K 3K 5K 33K K 3K 3K K 3K 3K 3K 5K 3K 3K K K 3K K K K
REM -— routirmes called from plotter --
0 Y=60xXSIN(0.04xZxX)Xx(0.3+U/10)+85IRETURN (REM calculate point
0 FOKE 89,FEEK(89)+12XTIFOKE B88,FEEK(88)+128XTIRETURN (REM adjust SAVUMSC

1

2

3 REM Draws curves o a3 screern which is half mode 8,
4

=

0 YLON=AES(YNEW-YOLD) {YSHO=AEBS(YNEWN-792) ¢ XLON=XN-X0OLD :XA=INT(XN-YSHO/YLONXxXLO}

D=SGN(INT (XN-XOLD)) :RETURN

8 REM XXX KKK KK K K K K XK K K K K K K K K K K K K K XK K 3K K K K KK K KK K 3K K K XK K K K K KK K K 3K K 3K K K XK KK K XK K K X K X
? REM -- subrouwtine to plot curves --

0 XN=X:YNEW=Y!IF OUT=1 THEN Y=Y-80:GOTOD 2040

0 IF Y=80 THEN GOTO 2070

0 IF INT(Y)>79 THEN OUT=1:!T=1:!GOSUE 1200:!IF OF=0 THEN GOSUE 1100:FLOT XN,Y-8I

TO 2100

0 DRAWTO XA,79:GOSUE 1100:FLOT XA+XD,0$DRAWTO XN,Y-80:GOTO 2100

0 IF Y>0 THEN GOTO 2070

0 OQUT=0:T=-1:GOSUE 1200:!IF OF=0 THEN GOSUE 1100:FLOT XN,Y+80:GOTD 2100
0 IF OF=1 THEN DRAWTO XA+XD,0:GOSUE 1100:FLOT XA+XD,7?:DRAWTO XN,Y+80:G0TO

0 IF OF=0 THEN FLOT XN,Y:!GOTO 2100
0 DRAWTO XN,Y
0 XOLD=XN:YOLD=YNEWIRETURN

USING CENTRAL I/O
OS Routines for Input/Output
B 6/32 -

The Operating System has built-in routines for talking to any device. This centralized input/output
procedure is used to put and get data to and from the printers, tape drive, disk drive, screen and
keyboard. The procedure for using this set of routines (known as CIO) is the same, regardless of
which particular device you are addressing. Two example programs are given on the following
pages, showing how to use CIO to write on the screen.

To use CIO, you must set up an [/O Control Block (IOCB) with a command, and the appropriate
parameters. Some commands which can be sent through the IOCB are the same for all devices:
OPEN,CLOSE,GET, and PUT, for example. Some are device-specific, such as DRAWLINE for the
screen, or POINT for the disk drive. The details of which commands are - available, and which
parameters go with which commands, are given in the OS Manual (TECH USER NOTES,C016555)
under the heading "Device Specific Information".

There are eight IOCBs, 0-7. Each one is 16 bytes long, so each begins at an offset of $10 from the
previous one. IOCB#0 begins at $340, IOCB#! begins at $350, #2 at $360, and so on. #0 is used by
the OS for screen editing, #6 and #7 are used by the OS at times, so we generally use #1-5.

Each of the 16 bytes in the IOCB has a spec1a1 meaning. Some are set up by the system, and some
by the user. The bytes we are interested in here are:

el

mnemonic location contains
ICCOM IOCB+2 command
ICBAL IOCB+4 buffer address, lo-byte
ICBAH [IOCB+5 buffer address, hi-byte
ICBLL IOCB+8 buffer length, lo-byte
ICBLH IOCB+9 buffer length, hi-byte
ICAXl] IOCB+A aux |l byte (read/write info)
ICAX2 1OCB+B aux 2 byte (graphics mode)

When all of the parameters are set in the IOCB, the command is executed. To execute a command,
put the offset to the IOCB you are using into the X register, the jump through the Central I/O
Vector (CIOV) at $E456. If you are using IOCBJ##3, for example, store $30 in X, then JSR CIOV

Two examples programs are given. The first, MEMOPAD, opens two devices, the screen and the
keyboard. Characters are input from the keyboard, then output to the screen, as in the default
mode of the OS, with no cartridge present.. The second program, DRAWLINE, opens the screen in
graphics mode 7, then plots a point and draws a line on the screen. A display list can be set up
automatically, as in BASIC by specifying the graphics mode in the AUX 2 byte.

For all the codes, locations, and device-specific details, refer to Tech User Notes, C016555
Locations are also listed in the OS Source Listing, C017893, and in De Re ATARI. Tech User Notes.
and the OS Listing can be ordered through retailers. De Re ATARI is available from the ATARI

Program Exchange (APX), and can be ordered by calling 800 538-1862 (outside CA)or 800 672-1850
(inside CA).

~—

0000
0342
0344
0345
0348
0349
0344
E456

0003
goocC
goo7
000E

oooo

0500
0602
0505
0608
060A
060D
060F
0612
05614
0617
05619
061C
061E
0621
0623

0626
0628
062E
062D

0630
0632
0635
0638
063E
063E
0640
0643
0645

0648
0644A
064D
064F
0652

0654

- 0659

0656

0657

A0C3
8C53203
8C6203
ADS4
8C5%403
A00S
8C5503
A0D4
8CSA03
A0SS
8C6403
AD0S
8C6503
A008
8C6A03

AZ10
2056E4
AZZ20
2056E4

AOOO
8C5803
8CS?03
8C6803
8C6903
A0O7
8C5203
AQOE
8C6203

A210
20S6E4
AZ2
20S6E4
DOF4

4B
3A
53
3A

10 ;MEMOFAD

20 3JB 6/82

30 } Use Central Input/Output (CI0) to sccept imput

40 ; from keyboard, and oubtput charscters to screen.
S0 3

60 +OPT NOEJECT

70 ICCOH = $0342 tCommand code

80 ICEAL = $0344 sBuffer address LO

2?0 ICEAH = $0343 yEBuffer address HI

0100 ICELL = $0348 yEuffer length LO

0110 ICELH = $0349 tEBuffer length HI

0120 ICAX1 = $034A sAL 1 byte

0130 CIOQV = $E45S jCentral I/0 Vector

0140 ;

0150 OFEN = 03 sCode for OFEN

01460 CLOSE = $0C t1Code for CLOSE

0170 GETCHR = $07 1Code fTor GET CHARACTER
0130 FUTCHR = $0E yCode for FUT CHARACTER
01370

0200 K= $04600

0210 jirmitialize IOCEs for OFEN

0220 LDY #0FEN jyopen both devices

0230 STY ICCOM+$10

02490 STY ICCOM+%20

0250 LDY EHKCOLONKZIE jlo-byte of device pointer
0260 STY ICEAL+410 3in buffer address bytes
0270 LDY ¥KCOLON/258% thi-byte

02890 STY ICBAH+$10

0220 LDY %%4 1Set READ bit inm aunl

0300 STY ICAX1+%$10

0310 ’ LDY #SCOLON&23T ilo~-byte of device pointer
0320 ' STY ICEAL+$20

0330 LDY #SCOLON/2Z6 jhi-byte

0340 STY ICEAH+$20

0350 L.DY #48 15et WRITE bit in auxil

0360 ° STY ICAX1+%20

0370 jexecute OFEN commands

0380 LDX #$10 sexecute OFEN for IOCE#1
0390 JSR CIOQV

0400 LDX %420 rexecute QFEN for IOCE#2
0410 JSR CIOV

0420 jinmitialize IOCEs for GET/FUT

0430 LDY #0 1set buffer lengths to 0
0440 STY ICELL+%10 j(lenqth of 0 means datsa
0450 STY ICELH+$10 ; is passed im accumulator)
0460 STY ICELL+%$20

0470 STY ICELH+$20

0480 LDY #GETCHR yGET command for kegboard
0490 STY ICCOM+s$10

0500 LDY #FUTCHR sFUT command for screen
0510 STY ICCOM+420 :

0520 ; execute GET from kesboard, FUT to screen

0530 LOOF LDX #%10 -

0540 JSR CIOQV

0530 LDX #$20

0560 JSR CIOQV

0570 ENE LOOF

0580 : . T T
0520 KCOLON JBYTE "K:i“ ’Reserve ASCII h for dev1ce po1nter~n~
0600 SCOLON .BYTE “G:iv ,Reserve ASCII S for devxce po1nter

0000

My
Pl

0354

nass

0328
0359
035A
03SE
E4S6

0003
g00E
0n11

0054
0055
02ZFE

0000

0600
0602
0605
0607
04604
0s60C
060F
0611
0614
06146
04617
061E
061E
0621
0623

06256
0628
062A
062C
062E
0631
0633
0636
0638

0463E
063D
D63F
0641
0643
0645
0648
064A
864D
064F

0652
0653
0654

AP03
803203
AP08
8D3A03
A?07
8DSE03
A9PS2
8D5403
AP06
805503
A?00
805803
8D5903
AZ210
2056E4

AP00
8554

8559

A903
SDFE0Z2
APOE
805203
A210
2056E4

A?49
8554
AFP9

8559

A903
8DFEO02
A911
8DS203
A210
2056E4

S3
?E
4CS406

(SRR

F RO TNE

[RS T BRI o

’::l
v il
!

33 3
50
50
70

W Fra e et

ICCOM
TCRAL

30 ICEA

90 ICELL
0100 ICELH
0110 ICAX1
0120 ICAX2
0130 CIOV
0140

0150 OFEN
01460 FUTCHR
0170 DRAW
0180

0190 ROWCRS
0200 COLCRS
0210 ATACHR
0220

0230

0240

0250
02540
0270
0280
0290
0300
0310
0320
0330
0340
0350
0340
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0S5
0560
0570
0580
0590
0600
0610 :
0620 SCOLON

-e

e

05630 LOOF

(L O TR VR O O | B | B

oiou

it

*
il

LDA
STA
LDA
STaA
LDA
STA
LDA
STA
LDA
STaA
LDA
STA
STA
LDX
JOR

LDA
STh
STA
LDA
STh
LDA
STA
LDX
JSR

LDA
STa
LDA
STA
LDA
STA
LDA
STA
LDX
JSR

can Agde Vo osoresn and draw o3 line.

HOEJECT

$352 sCommand byte of IOCEHEL

5354 sEuffer address lo hyte ~
3355 jEuffer address hi

$358 yEuffer length lo byte

$359 tEuffer length hi

$35A s 1 byte

$35E 1ée 2 byte

$E456 tCentral I/0 vector

%3 sCommand codes

HE

11

$54 ;Cursor locastiomn - row

£55 3 — column

$2FE y Color information

54600

FOFEN jopen screen wsing I0CEEL

ICCOM talready defined with offset

4609 tset write bit in AUX1

ICAX1

607 yset mode in AUXZ2

ICAX2

#FSCOLON&Z25S jpoint to screen

ICEAL : —_
F¥SCOLON/256 3hi byte of pointer

ICEAH ¢

40 ybuffer lerngth of 0 causes data to be
ICELL ipassed in the accumulator

ICELH .

#$10 sheep offset to IOCE#1 in the X reqgister
cIov sosll CIO e
40 sstore cursor position

ROWCRS 1ros(0,0)

COLCRS :

43 suse color reqgister 3

ATACHR

#FUTCHR iplot 3 point

ICCOM

410 skeep offset

cIoV scall CIO

649 sset drawto location

ROWCRS :

699

COLCRS

#$63 1still wsing reqister 3

ATACHR

F¥DRANKW sdrawline command

ICCOM -
$$10 tkheep offset fo .
CIOV tall CIO0 - o i o ome e wee

+EYTE "8",49E

JMF

LOOF

s o e etk e e ey v ot
- NN e :

sstore ascii data for handler pointer

jkeep imMage on screen & T s

pooo
goccC

6000
6002
6004
6006
6008
600A
600C
S00E
6010
6011
6013
6015
6016
6018

ASS3
85CC
o859
83CD
AP21
AZ204
A0CO
?1CC
88
DOFE
E4CD
CA
DOF6
4C18610

10

DIRECT SCREEM WRITE

?
20 JB 6732
30 j;this proqram Tills the scresen with 8 character by storing it
40 jdirectly into the screen dsta a3ras
S0 KOKOKCKOK KK KK KK KKK KK 3K KK K K8 5K KK KKK K KKK K K K K K KK K MO KOK SKOK KK
60 XK= $5000
70 SCREEN = $CC istart address of screen
80 ;$CC is one of the free bytes on zero page
?0
0100 LDA #3533 ratarting address of screen from SAVMSEC
0110 ST SCREEN tlo-byte
01290 LDa 3972
0130 STA SCREEM+1 fhi-byte
0140 LDA #621 yimternal code for character
0150 LDX %04 shi-byte of screen length
01460 LDY #00 tlo-byte of screen length
0170 STUFF ST& (SCREEN),Y istore character at screen location
0180 DEY imext location
0190 ENE STUFF 32546 locstions
0200 INC SCREEN+1 jirncrement hi-bygte
0210 DEX yocount down ¥ of pages in screen length
022 ENE STUFF iput wp nmext 256 characters

0230 END JMF END 1loop to keep image on scoreen

