ADVANCED GRAPHICS

Examples and discussions of Player-Missile Graphics

and features of Graphics Mode 8

1) Moving a Player

2) Setting Priority

3) Collision Detection
4) Using Missiles

5) String-Player

6) Color Artifacts

7) Text in Mode 8

8) VBLANK Player Move

ATARI INC.
CINSUMER PRODUCT SERVICE
PRODUCT SUPPORT GROUP
1312 Crossman Ave.
Sunnyvale CA 94086

(800) 672-1404 inside CA
(800) 538-8543 outside CA

DEMOPAC #5
Rev. 1 6-82/31B

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari,
Inc. ("Atari") without warranty of any kind. Any statements concerning the

capabilities or utility of the computer programs are not to be construed as express
or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or
entity with respect to any claim, loss, liability, or damage caused or alleged to be
caused directly or indirectly by the computer programs, contained herein. The
entire risk as to the quality and performance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However,
because of ongoing improvements and updating of our computer software and
hardware, Atari cannot guarantee the accuracy of printed material after the date
of publication and disclaims any liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical
Support, Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue,
Sunnyvale, CA 94086.

PLAYER-MISSILE GRAPHICS
Moving a Player
JB 8/82

The programs on the following pages, Moving a Player, versions 1 and 2, illustrate the use of the
joystick in moving a player around the screen. Both programs are entirely in BASIC.

In these, and in all of the following P/M Graphics programs, a subroutine is used to initialize the
player. The subroutine performs the major housekeeping tasks for setting up a player:

1) P/M Graphics is enabled at DMACTL and GRACTL, selecting single-line
resolution;

2) An area of free RAM is allocated for player data by setting PMBASE;
3) The starting location of the player is computed from PMBASE;
4) The color and horizontal position are initialized;

5) The player data area is cleared.

In these programs, the RAM area selected for the players is computed from RAMTOP, the top of
memory pointer. Since RAMTOP is also used in setting up the display list and screen data area,
the program steps back a number of pages from RAMTOP in order to place the player data area
directly below the screen data area. This is not the only way to do it; you can simply select an
area of free RAM. For example, to start the player data area at page 14 of memory (51400, or
decimal 5120), simply POKE PMBASE,14*1024/256.

The body of the program reads the joystick and moves the player image. The image is not drawn
on the screen except as part of the vertical movement routine, so it does not appear until the
stick indicates a move down. An ON...GOSUB statement is used to read the stick, eliminating
the need for time-consuming IF statements.

In version 1 of the program, a single byte of data (231) is used for all 8 lines of the player. This
simplifies the vertical movement, and speeds it up considerably. Bacause all 8 lines have the
same bit pattern, it is only necessary to erase the top line and draw the bottom line to move
down, or vice-versa to move up. Version 2 illustrates the more realistic situation, in which
different lines have different bit patterns, creating an interesting shape. The data for the player
shape is contained in line 120. It takes noticably longer to redraw the entire player for each
vertical movement.

Using BASIC to move players vertically is quite slow. If more than one player is used, movement
is even slower. Horizontal movements is much faster, since it is a simple matter of poking a
register. If fast vertical movement is required, it is best to use a machine-language subroutine.
An example of a VBLANK routine to read the joystick and move a player is provided on a later

page.

1 REM MOVING A FLAYER

2 REM JEB 5/82

3 REM -- select one of the four players and move it around the screen
4 REM using the Jjoystick.

6 RE

M 33K 00K K0 K3 K K333 3K 3K 300K 35353 K 00 300 3K 3K 30 3K 3030 3K 3K 3 3 3K 30 0 00 K 20 30 K 3K K K K 3K 3K 3K K K 3 3K 3K 3 K

10 GOSUE 1000:REM irmitialize plaver
20 UP=100:DOWN=200:EAST=300+WEST=400

30 S
40 Z
S50 R
995 R

60 O

E=S00INE=SS50:SWH=600NW=650REM Mmotion routine locations

=90:!REM no motion, return only

EM the following statement checks the joystick, and send control
EM to the appropriate subroutire.

N STICK(0) Gosue 2,Z2,Z,Z,SE,NE,EAST,Z,SH,NW,WEST,Z,D0WN,UP,Z

70 IF STRIG(0)=0 THEN GOSUEB B800!:REM on triqqger, change the player color
80 GOTO L0:REM keep checkirng stick

90 R
95 R
99 R

ETURN !REM rmo motion, keep checking stick

EM 0K KKK K KK KK KK KK KK K KK KK K KKK KK KK KKK KKK K 2K KKK 3K KK K K KK K K K K K XK K K K K X

EM ~- motion routines --

X=X-1:IF X<0 THEN X=0:REM xxx move up

FOKE PSTART+X,231:!FOKE FSTART+X+8,0:RETURN

REM draw top lire, erase bottom line

X=X+11IF X>250 THEN X=250!REM XXX move down

FOKE FSTART+X,231:!FOKE FSTART+X-8,0:tRETURN

REM draw bottom line, erase top lirne

H=H+1:!IF H>200 THEN H=200!REM XXX move east

POKE HFOS,H:RETURN

H=H-1:!IF H<S50 THEN H=350:!REM xxX move west

POKE HFOS,H:!RETURN

GOSUE DOWNIGOSUE EASTI!RETURN (REM xxx move southeast
GOSUE UFP:!GOSUE EASTI!RETURN (REM xxXx move northeast
GOSUE DOWNIGOSUE WESTI!RETURN (REM xxx move southwest
GOSUE UF:GOSUE WEST!RETURN (REM xxx move northwest

REM XXX X 5K XK K XK XK K K KK XK XK KK K K K K K KK KK KK K KK KK KK K K K K KK KK KK KK K K K KK K KK KK XK K K K X K X

REM this subroutime changes the player color
C=FEEK(COL) :C=C+2

IF C»235 THEN C=4:!REM skip blachk

FOKE COL,C

RETURN

REM 206X K XK KK XK K 3K K XK K K K K XK K K KK K K KK K K K K K XK K K K KK KKK K K KK K K K K K KK K K K K K XK K K K K K KK K XK X

REM this subroutirme initializes the player

GRAFHICS SiFRINT "PLAYER 1,2,3,4.+..+."!INFUT FNUMIREM select a3 player
REM assign start address, color reqgister, horizontal position req

IF FNUM=1 THEN OFFSET=1024:C0L=704:!HF0S5=53248

IF FNUM=2 THEN OFFSET=1280:C0L=705tHF0S=5324%

IF FNUM=3 THEN OFFSET=1536:C0OL=706tHF0S5=53250

IF FNUM=4 THEN OFFSET=1792:C0L=707 tHFP0S=532351

FOKE 5359,462!F0KE S$3277,3!REM enable players w/single-line resolution
FMEASE=FEEK(106)-24:FOKE S$4279,FMEASEIREM step back 24 pages from
REM ramtop to assiqn plavyer ram ares

FSTART=FMEASEX256+0FFSETI!REM starting address of player

FOKE COL,88:!H=50!FOKE HFOS,H:REM assigqn color, horizontal position
FOR I=0 TO 253:!FOKE FSTART+I,0:NEXT I:REM clear player

FRINT "MOVE STICK DOWN TO MAKE FLAYER AFFEAR"

RETURN

REM MOVING A FLAYER! VERSION 2
REM JE 5/82

REM ~- select a player and move it uith Joystick! in this version the

REM each time instead of 1 lire.

1
2
3
4 REM player is assymetric, so the movement is slower. 7 lines are drawn
S
é

REM 202K XK XK KK KKK KKK KKK KKK KKK KKK KK KKK K KK K KK K K KKK K 3K KK 3K 3K K XK K K XK K 3K KK X X XK

GOSUB 1000:REM initialize player

UF=100:DOWN=200:EAST=300tWEST=400

SE=3500!NE=550:SH=400!NN=4650¢REM motion routine locations

Z=90:REM rno motion, return only

REM the followirng statement checks the joystick, and send control

REM to the appropriate subroutire.

ON STICK(O0) GOSue Z2,Z2,Z,Z,SE,NE,EAST,Z,SW,NW,WEST,Z,DOWN,UP,Z

IF STRIG(0)=0 THEN GOSUB B800:REM on trigger, change the player color
GOTO 640!REM keep checkirng stick
RETURN !REM rio motion, keep checkirg stick
REM 20X 30 K XX K X KKK K 0K K KKK KK KKK KKK KK KKK KK 3K KKK K 3K K KK 3K K KK KK KK 3K 3K 3K 3K 3 3K 0 3K K 3K K 3K K 3K K
REM -- motion routines --

X=X=-13IF X<0 THEN X=0!REM XXX move up

FOR I=0 TO 46:READ B!FOKE PSTART+X+I,E!NEXT I -

FOKE FPSTART+X+7,0+:RESTORE 120:RETURN

DATA 126,231,195,219,195,231,126

X=X+131IF X>250 THEN X=250!{REM xxX move down

FOR I=0 TO &6:READ EB!FOKE FSTART+X+I,B!NEXT I

FOKE FSTART+X-1,0!RESTORE 120:RETURN

H=H+1:IF H>200 THEN H=200!REM XXX move east

FOKE HFOS,H:RETURN

H=H-1:IF H<50 THEN H=S0!REM XXX move west

FPOKE HFOS,H:RETURN

GOSUE DOWN:GOSUE EASTIRETURN (REM xxx move southeast

GOSUE UF:GOSUB EAST!RETURN !REM xxx move riortheast

GOSUE DOWN::GOSUE WEST!RETURN !REM xxx move southwest

GOSUE UF:!GOSUE WEST!RETURN !REM xxx move northwest

REM 330K 0K KX KK KK KK KKK K KK KK KK KK KKK KKK K KKK KK K 3K KK K 3K KK 3K K K K 3K K KK 3K KK K 3K K XK K K K K X X
REM this subrowtine charnges the player color

C=FPEEK(COL) :C=C+2

IF C>255 THEN C=4!REM skip black

POKE COL,C

RETURN

REM XK 30K XK XK KKK K K K KK KK K KK KK K KK KK K K K KK KK KKK K K K 3K K 3K K K K K K K KK K 3K 3K K K K 3K K K KK XK K X
REM this subroutimne imitializes the player

0 GRAFHICS S:FRINT "PLAYER 1,2,3,4..."}INFUT FNUM!REM select a player
S REM assian start address, color reqgister, horizontal position req

0 IF FNUM=1 THEN OFFSET=1024:C0OL=704!HF05=53248

0 IF FPNUM=2 THEN OFFSET=1280:C0OL=705:HF05=53249

1030 IF PNUM=3 THEN OFFSET=1536:!COL=706¢:HFP0S=53250

0 IF FNUM=4 THEN OFFSET=1792:C0L=707 {HF0S=53251

0 POKE 3959,62!FOKE $3277,3!REM enable players w/sirqle-line resolution
0 FMBASE=FEEK(106)-24iFOKE 54279 ,FMEASE!REM step back 24 paqges from

1 REM ramtop to assiqn player ram area

0 FSTART=PMEASEX256+0FFSET!REM starting address of plader

0 FOKE COL,88:H=50:FOKE HFOS,H!REM assiqn color, horizontal positiorn

0 FOR I=0 TO 2S5S:FOKE FSTART+I,0:!NEXT I!{REM clear player

S5 FRINT "MOVE STICK DOWN TO MAKE FLAYER APFEAR"

0 RETURN

PLAYER/MISSILE GRAPHICS
Using the Priority Register
JB 4/82

The priority of players and playfield objects can be controlled by setting bits in the priority
register, PRIOR, location $D0lB. PRIOR has a RAM shadow, GPRIOR, at $26F, or decimal 623.
By poking different bits on at this location, you can control whether the player passes in front of or
behind a playfield object of a particular color.

There are four types of priority, each of which is selected with one of the four least-significant
bits of PRIOR. Bit DO selects a mode in which all players pass in front of all playfield objects. Bit
DI selects a mode in which players 0 and 1 go in front, and players 2 and 3 go behind the playfield
objects. When bit D2 is set, all playfield objects have priority over players, and when bit D3 is set,
playfield objects 0 and | have priority over all players, which have priority over objects 2 and 3. In
all cases, all players and all other playfield types have priority over the background and anything
drawn in the background color. There is a chart of these priorities, along with some details on
conflicting priorities, in Tech User Notes, C016555, on page II1.8 of the Hardware Manual.

The following program shows priorities in action. A playfield is drawn, using all three colors, each
color being a playfield object type. You select which player you want to use, 1-4. The program
then asks you to select a priority. The choices, 1,2,4 or 8, are the numbers that can be poked into
GPRIOR to turn on the appropriate bit. Once you have selected the priority, move the player
across the different playfield objects, using the joystick. Move the joystick down to make the
player appear the first time. When you press the trigger, you can select a new priority. To select
a different player, press RESET and RUN the program again.

R

U D Wr -

REM PRIORITY
'REM JBR 4/82

EM -- observe different priorities of playgyers and playfield objects.

REM you select a player 1-4 and one of the four . priority options,
REM then move the player over the different colors and see what happens.
REM 30K 30X 35 0K X X XK X 3K 3K K K X K K K K K K K XK KK K KK 33K K 3K K K 3K 0K 3K K K 3K 3K 3 2K 3K K3 2020 3K 3K K K XK 3K 3K K K K K XK K K K X

GOSUB 1000:REM initialize player
GOSUB 2000:REM draw playfield
UF=100:DOWN=200:EAST=300:WEST=400
SE=500:NE=550:SH=600:NW=65S0REM motion routine locations
Z=90:REM no motion, return only
FRINT "PRIORITY 1,2,4,8.++"3!INFPUT P!FOKE 623,P:REM select priority bit
ON STICK(0) GOSUE Z2,Z,Z,Z,SE,NE,EAST,Z,SH,NH,WEST,Z,DOWN,UP,Z
IF STRIG(0)=0 THEN GOTO SO0!REM on trigger, select new priority
GOTO 40:REM keep checking stichk
RETURN !REM no motion, keep checkirg stick
REM 55050 50X 30K X XK K KKK KK KA K KK KKK KKK KKK KK KKK KKK KK K KK KKK KKK KK K K K K K K K K K XK K XK X
REM -- motion routines --
X=X-11IF X<0 THEN X=0!REM xxX move up
FOKE PSTART+X,231:!FOKE FPSTART+X+8,0!RETURN
REM draw top line, erase bottom lire
X=X+11IF X>250 THEN X=2S0!REM xXX move down
FOKE PSTART+X,231:!FOKE FSTART+X-8,0 :RETURN
REM draw bottom lirme, erase top lire
H=H+1:!IF H>200 THEN H=200:!REM xxx move east
POKE HFOS,H:RETURN
H=H-1:!IF H<50 THEN H=S0:!REM xxx move west
FOKE HFOS,H:RETURN
GOSUE DOWN:!GOSUB EAST!RETURN (REM xxx move southeast
GOSUEB UP:GOSUEB EASTIRETURN !(REM xxx move northeast
GOSUE DOWN:GOSUEB WESTI!RETURN (REM xxx move southwest
GOSUE UF:I:GOSUE WESTI!RETURN !(REM xxx move northwest
REM K0 0K XK K XK K XK K XK K K KK K K KK KK KKK K KK KK KKK K KK K KKK K K K K K KK K KK K K K K K K KK K K K X K
REM this swubroutirme initializes the playger
0 GRAFHICS S:!FPRINT "FLAYER 1,2,3,4..."3¢INPUT PNUM!REM select a3 player
S REM assian start address, color register, horizontal position regq
0 IF PNUM=1 THEN OFFSET=1024:C0L=704:!HP0S=53248
0 IF FNUM=2 THEN OFFSET=1280:C0L=705{HF0S5=53249
0 IF PNUM=3 THEN OFFSET=1536:C0OL=706!HFP0S=53250
0 IF FNUM=4 THEN OFFSET=1792:C0L=707{HP0S=53251
0 POKE 5959,62!FOKE 53277,3!REM enable players w/single-line resolution
0 FMEASE=FEEK(106)-24!FOKE 54279,FMBASE!REM step back 24 pages from
1 REM ramtop to assiqn player ram ares
0 FPSTART=PMBASEX256+0FFSET!REM starting address of player
0 FOKE COL,88!H=S50!:FOKE HFOS,H!REM assiqn color, horizontal position
0 FOR I=0 TO 2SS!FOKE FPSTART+I,0:NEXT I!REM clear player
0 RETURN
0 REM KKK KKK KKK KKK KK K KKK KK K KK KKK KKK KKK KK K KK K 3K K K KK K KK K KK 3K KK KK 3K KK K KK K XK K
? REM this subroutine draws the playfield—-- orne bar of each color
0 COLOR 1
0 FOR X=10 TO 20:FOR Y=0 TO 39
0 FLOT X,Y
0 NEXT YINEXT X
0 COLOR 2 .
0 FOR X=30 TO 40:FOR Y=0 TO 39
0 FLOT X,Y
0 NEXT YINEXT X
0 COLOR 3
0 FOR X=50 TO 60:FOR Y=0 TO 39
0 FLOT X,Y :
0 NEXT YINEXT X
0 RETURN

PLAYER/MISSLE GRAPHICS
Collislon Detectlon
JB 5/82

When you are using Player/Missile Graphics, it is possible to detect collisions between players and
missiles, players and other players, or between the playfield and either players or missiles. In order
to do this, you must check the values at the special collision registers. The numbers reflect the bit
patterns which tell you exactly which player, missile or playfield object has been hit.

There are 16 collision registers, and a special register called HITCLR, which clears all of the other
registers. HITCLR is write-only, which means you can only POKE it. If you check the PEEK, it
does not match what you put there. POKEing anything other than a 0 into HITCLR (decimal
location 53278) has the effect of clearing all collision registers.

The collision registers themselves are read-only. You cannot POKE into them. They are cleared
by writing to HITCLR; this is the only way to change them. The contents of these registers reflect
the state of the screen display. When any object occupies the same coordinates as any other
object, the appropriate bit is turned on.

The 16 collision registers are located as follows:

53248 Missile 0 to Playfield
53249 Missile | to Playfield
53250 Missile 2 to Playfield
53251 Missile 3 to Playfield

53252 Player 0 to Playfield
53253 Player | to Playfield
53254 Player 2 to Playfield
53255 Player 3 to Playfield

53256 Missile 0 to Player
53257 Missile 1 to Player
53258 Missile 2 to Player
) 53259 Missile 3 to Player

53260 Player 0 to Player
53261 Player | to Player
53262 Player 2 to Player
53263 Player 3 to Player

The lease significant nybble of each register is used to show collisions. The least significant bit,
bit DO, is set (contains a 1) when there is a collision with Player or Playfield type 0. The next bit is
set on a collision with Player or Playfield type 1, and so on. For example, when Missile | collides
with Player 3, location 53257 contains the binary number 0000 1000. The decimal equivalent is 8,
so PEEK(53257)=8.

If several collisions happen before the registers are cleared, all of the affected bits stay on. The
bit for a Player's collision with itself is always 0.

Playfield objects are objects drawn on the screen with regular Display List Graphics, as opposed to
Player-Missile Graphics. Anything drawn with PLOT or DRAWTO is a Playfield object.

The type of a Playfield object is determined by which color register it is drawn with. Objects
drawn with register 0 are type 0, and collisions show up in bit D0. SETCOLOR numbers are the
same as color register numbers.

In modes 2-7, color register 4 contains the background color. In modes 0 and 8 however, register 2
is the background. In these modes, a collision is always indicated between Playfield object 2 and
all Players and Missiles that are on the screen.

R

EM COLLISTONS

REM JB 5/82

REM when a8 collision occurs, the playfield object changes color.
FRETM 00000 00K 00K 30K 00K 3K KK 3K 00K 0 00K 3K 0 3K 3 203K 0K 3K 30 3500 30 2 30 0 330 320 330 3K 02K 3K 3 2K 30 30 3 30 3K 30 3 30K 0K XK

1
2
3 REM -- detect collisions between @ plavyer and various playfield objects!
4
3

GOSUB 1000:REM initialize player

GOSUB 2000:!REM draw playfield

FOFF=33252!HITCLR=53278:REM location of collision & hitclear register
UF=100:DOWN=200¢:EAST=300:WEST=400

SE=U500:NE=550:SH=600NWN=650REM motion routine locations

Z=90:REM no motion, return only

GOSUB 3000:REM call collision checking routine

ON STICK(0) GOSue Z,Z,Z,Z,SE,NE,EAST,Z,SW,NW,WEST,Z,DOWN,UF,Z

GOTO S0!REM keep checkirng

RETURN (REM no motion, keep checking stick

REM 5000052050300 0K 30000 KKK KK K00 K 3K K0 3K 0 3K 0 3 K 320 3 0 3 0 30 3K 3 K 3 3 3 20 3K 3 3 K K 3 3K 3K
REM -- motion routines --

X=X-1:IF X<0 THEN X=0!REM XXX move up

FOKE PSTART+X,231!FPOKE FPSTART+X+8, 0 !RETURN

REM draw top line, erase bottom line

X=X+11IF X>250 THEN X=2S50:REM xxXx move down

FOKE PSTART+X,231!FOKE FSTART+X-8,0:RETURN

REM draw bottom lire, erase top line

H=H+1:!IF H>200 THEN H=200:REM xxx move east

FOKE HFOS,H:!RETURN

H=H-1!IF H<S50 THEN H=S0!REM XXX move west

FOKE HFOS,H!RETURN

GOSUE DOWN:GOSUE EAST!RETURN !REM xxx move southeast

GOSUB UP:!GOSUEB EASTI!RETURN !REM xxx move northeast

GOSUE DOWN:GOSUE WEST!RETURN (REM xxx move southwest

GOSUE UP:GOSUE WEST!RETURN !REM xxx move northwest

REM %X XX X XK X XK XK KKK KK KK KK K KKK K KKK K KKK KKK KK KKK K 3K K KK 3K 3K K K K K 3K K KK K K 3K 3K K K K K K K X
REM this swubroutire initializes the player

0 GRAPHICS S+16:!REM no text window
S REM assiqn start address, color register, horizontal ‘position register
0 OFFSET=1024:C0OL=704:HP0S=53248!REM for player 0

0 FOKE S59,62!FOKE 53277,3!REM enable players w/sirnqle-line resolution
0 FMEASE=FEEK(106)-24!FOKE S4279,FMEASE!REM step back 24 pages from

1 REM ramtop to assiqn player ram ares

0 FSTART=FMEASEX256+0FFSET!REM starting address of player

0 FOKE COL,88:!H=S50:POKE HFOS,H!REM assign color, horizontal position

0 FOR I=0 TO 25S5:FOKE PSTART+I,0:NEXT I!REM clear player

0 RETURN
B8 REM XXX K X XK K XK K K KK KK K KK K XK KKK KK K K K K K KK KKK KK K KKK KK KK K KK K KK K K K KK XK K K KK K K K
? REM this subroutine draws the playfield-- orne bar of each color

0 COLOR 1

0 FOR X=10 TO 20:FOR Y=0 TO 19

0 FLOT X,Y

0 NEXT YINEXT X

0 COLOR 2

0 FOR X=30 TO 40:FOR Y=20 TO 39

0 FLOT X,Y

0 NEXT YINEXT X

0 COLOR 3

0 FOR X=50 TO 40:FOR Y=10 TO 29

0 FLOT X,Y

0 NEXT YINEXT X

0 RETURN
8 REM KK KKK KKK KK KK KK K KKK KK K KKK K K KK KK KK KK KK K KK XK XK XK K KK K KK K K K KKK KK KK K X K X

9 REM check for collisions! if there is one, that object charqes color

2998 REM K00 MK MK KKK I N0 KK K00 000 K000 0280 330 0 00 300 3K 200 0 3K 300 3 30200 3200 300 3 30 3 2 300 3K 3 3 3 0 3K
2999 REM check for collisions! if there is one, that object chanqges color
3000 CO=PEEK(708)IC1=FEEK(709):!{C2=FEEK(710)!REM get colors from reqgisters
3010 IF FEEK(FOFF)=1 THEN CO=CO0+1!IF CO0>255 THEN CO=14!REM check object 0
3020 POKE 708,CO0!:REM put in new color (or same color if rno collision)
3030 IF FEEK(FOFF)=2 THEN C1=C1+1:!IF C1>255 THEN C1=16!REM check object 1
3040 FOKE 709,C1:REM new color if collision

3050 IF FEEK(FOFF)=4 THEN C2=C2+1:!IF C2>255 THEN C2=14!REM check object 2
30460 FPOKE 710,C2!REM new color if collision

3070 FOKE HITCLR,1:!REM clear collision reqister

3080 RETURN

PLAYER-MISSILE GRAPHICS
Using Missiles
JB 5/82

All of the missiles start at the same offset from PMBASE. The offset is +768 for single-line, and
+384 for double-line resolution. The missile area extends to the start of player 0, at +1024 or +512.
It is the same length as a player area, 255 bytes in single-line resolution, 127 bytes in double-line
resolution.

The missiles are very much like a fifth player. The difference is that the missile area is
controllable two bits at a time. The horizontal position register for missile 0 controls the
horizontal position of the lowest two bits of the missile area. Missile 0 gets its color from player
0.

To turn on a missile, you must enable Player-Missile Graphics and define the start of the missile
area at the correct offset from PMBASE. Select a location on the screen by adjusting the offset
from the missile starting address. Once you have figured out this location, turn on the missile by
poking in data. The data you put there controls which missile is turned on.

The data for a missile is the number which turns on the associated bits. For example, the lower
two bits are missile 0. To turn on missile 0, you need the binary number 0000 001ll. This is a
decimal 3. If you POKE MISSILESTART+OFFSET,3 missile 0 appears on the screen. If you want
both missile 0 and missile 3, you need the binary number 1100 0011. This is decimal 195 (3+192).
To turn on both of these missiles in the same vertical position, POKE MISSILESTART+OFFSET,195.

The bits are associated with the missiles as follows:

0000 0000: all missiles off (0)
0000 0011: missile 0 on (3)
0000 1100: missile | on (12)
0011 0000: missile 2 on (48)
1100 0000: missile 3 on (192)
1111 11112 all missiles on (255)

Like players, the vertical position of a missile is changed by changing the offset from the starting
address. Zero the missile bits at the old offset, to erase the previous image, and poke the data at
the new offset. Remember to erase only the missile that moves. You cannot just POKE in a zero,
you must zero the bits that belong to that missile.

The size of a missile can be set in the size register, 53260. Missiles, like players, can be single,
double or quadruple width. For double size, turn on the lower, or right-hand bit of the appropriate
missile. For quadruple size, turn on both bits.

The following program turns on three missiles. All three are different colors. Two of them move
vertically up the screen, at different horizontal positions. The third is quadruple size, and moves
horizontally across the screen.

To get a feeling for missiles, you can try putting in the fourth missile, or changing the various
parameters in this simple program, such as size, horizontal position, color, or direction of
movement.

RE
RE
RE

DWRN-

M MISSILES
M JB 5/82

M demonstrate the use of missiles in player-missile graphics

REM K030 K KK K KKK 30 K KK K 0 K K 20 0 3K KK K K K K K X K K X X

10 MO=3iM1=12!M2=48!REM data for each missile

20 G
30 P
40 H
S50 F
60 F
70 F
80 F
90 P
100

110

120

130

140

150

999

1000
1005
1010
1020
1030
1040
1050
1060
1070

OSUB 1000:REM set up p/m aQraphics
OKE SIZEM,M2!REM missile 2 is quadruple size
=50 :POKE HPOSM2,H!REM horizontal position of missile 2
OKE MSTART+S50,M2!FOKE 706,883REM color and initial position, m2
OKE HFOSM0,100:FOKE 704,82!REM color and horizontal position, m0
OKE HFOSM1,120:FOKE 705,191¢REM color and horizontal position, mi1
OR I=127 TO 1 STEP -1!REM move up from bottom of screen
OKE MSTART+I,M0+M1!{FPOKE MSTART+I+1,0!REM poke in new imaqe, erase old
IF I=50 THEN FOKE MSTART+I,M0+M1+M2!:REM when the paths cross
IF I<S50 THEN FOKE MSTART+S0,M2:!REM keep m3 turned on
H=H+1:!FOKE HPOSMZ2,H!REM move m3 horizontally
NEXT I!REM until m0 and M1 qo off the screen
H=H+11IF H<250 THEN POKE HFOSM2,H!GOTO 140:REM move M3 rest of way
FRINT "THERE THEY WENT..."{END
REM XK X KX K XK KK K KK KK KK KK K K K KKK KK K K KKK KK K 3K K 3K KK K K K K KK KK 2K K KK KK K K 3K KK K K 3K KK K K K
GRAFHICS 3!SETCOLOR 2,0,0
FRINT "HERE THEY COME..."
FOKE 5S59,46!FOKE 53277 ,3!REM enable p/m graphics, double-line resolution
I=FEEK(106)-16!FOKE S54279,I!REM set up pmbase
MSTART=IX256+384!REM start of missile data ares
SIZEM=532460:REM size reqister for missiles
HFOSM0=53252 tHPOSM1=53253!HFPOSM2=53254¢REM horizontal positions
FOR I=0 TO 127 :FOKE MSTART+I,0:!NEXT I!REM clear missiles
RETURN

REM § STRING-PLAYER

REM ¢ EZ/JB 11/81

REM ¢ make BASIC think the player/missile area is a strirqg!

REM ¢ playger movement is then accomplished by strirg-assianment

REM 50K 08000 K KKK KK KK K K 0K K XK KKK KKK KK K KK K K 3K K K3 K 3K K K XK K 3K K K K K K K K

100 DIM FP$(1),D$(22)

108 REM player/string of control characters

109 REM contains spaces on ends to erase previous image

110 D3$="QUCLL$PCCYQ"

111 REM to defime Your own control string, use lirme 110 GOSUB 1000 instead.
119 REM assign location of variable value table, and string-array area
120 VTAB=FEEK(134)+2546xFEEK(135)

130 ATAEB=FEEK(140)+2546xFEEK(141)

200 GRAPHICS 8 :

210 FOKE S59,62:REM set resolution

230 FOKE 704,88!REM set color

240 FMEASE=FEEK(106)-8!REM step back from RAMTOP

250 FOKE 54279,FPMEASE!REM to set FMBASE

260 FOKE 53277,3'REM enable players

270 FOKE 53256,3!REM 3t quadruple size

340 X=110:FOKE 53248,X!REM set horizontal position

500 OFFSET=256xFMBASE+1024-ATAEBIREM fiqure offset to plager 0

510 V3=INT(OFFSET/256)!REM hi-byte

520 V2=0FFSET-2S56xVU3!REM lo-byte

230 POKE VTAB+2,V2!REM displacement of player (strirnq) from STARP

540 FOKE VTAB+3,VU3!REM hi-byte

550 FOKE VTAE+4,20!REM strimg length (266 bytes)

560 FOKE VTAE+S,1!REM hi-byte

570 FOKE VTAE+6,20:REM dimension lenqth (246 bytes)

580 FOKE VTAB+7,1!REM hi-byte

S90 Y=110:F$(Y,Y+21)=D$!REM initialize string-player in middle of screen
600 FOR EVER=0 TO 0 STEP 0:!REM check stick

610 IF STRIG(0)>=0 THEN B00!REM use trigger to exit

620 SVAL=STICK(0)?!IF SVAL=1S5 THEN 690

641 IF "SVAL>4 AND SVAL<8 THEN X=X+1

642 IF SVAL»8 AND SVAL<12 THEN X=X-1

644 IF SVAL=5 OR SVAL=9 OR SVAL=13 THEN Y=Y+2

647 IF SVAL=6 OR SVAL=10 OR SVAL=14 THEN Y=Y-2

670 POKE 53248,X:F$(Y,Y+21)=D$!REM set horizonmtal and vertical position
6920 NEXT EVER

800 FOKE 53248,1!REM horizontal position off screen for exit

810 FOKE 53277,0!REM disable Flayer/Missile DMA

B899 REM XXX XX XK 3K X XK XK X XX K K XK K K K K XK K XK K KKK N K K K KK KKK KK K KK KK K KKK KK KK K K K K XK K K X
9200 REM the following subroutine can be used to defire

210 REM the string of control characters which contains the player shape.
1000 Ds="v¥"

1005 ? "300 TO STOP"

1010 ? "BIT FATTERN #";${INFPUT N

1020 IF N=300 THEN 1050

1030 DS(LEN(D$)+1)=CHR$(N)

1040 GOTO 1010

1050 D$(LEN(D$)+1)="gQ"

1060 RETURN

oM BdN-

COLOR ARTIFACTS
Extra Colors in Mode 8
JB 2/82

Mode 8 is the highest resolution graphics mode available. The individual pixels are very small, half
a color clock wide. Only one color register is available, although any of the 16 hues can be put into

that register. The foreground is a bright luminance of that hue, and the background uses a low
luminance.

A color clock is the smallest unit of horizontal measurement in which all of the colors can be
displayed. Since each mode 8 pixel is only half a color clock wide, you cannot get every color in
every pixel. If you hit one side of the color clock, you get one color, and if you hit the other side,
you get the other color. The foreground color which shows up is a combination of the two
artifacts, which actually appear in individual pixels.

Artifacts can sometimes work for you. If you wish to separate the colors, simply turn on only even
or odd pixels. Since the resolution is so fine, the resulting color areas still appear solid. In this way
you can get 4 colors at a time in a 2-color mode, without resorting to machine language

subroutines. The 4 colors are the two artifacts, the foreground (a combination of the artifacts),
and the background.

The following program demonstrates artifact colors by drawing a bar of even-numbered pixels, a
bar of odd-numbered pixels, and a solid bar, with both even and odd pixels. The program then cycles
through the 16 colors, with the highest luminance in the foreground register and the lowest
luminance in the background. You will notice that the artifact colors are not the same as the usual

16 colors. With the GTIA chip, both the usual colors and the artifact colors are slightly different
than with CTIA.

1 REM EZ ARTIFACTS

2 REM EZ/JE 2/82

3 REM XXX MK 3K K K XK KK 3K K KKK K K K K KK K K XK K K XK K K K K K 3K K KK K K K K XK K K K K K K K K K KK K X K K KK K K)
10 GRAFHICS 8:!FOKE 752,1!REM disable cursor

20 SETCOLOR 1,0,14:REM brightest lumirnarnce for foreqround

30 SETCOLOR 2,0,0!REM lowest luminance for background

40 COLOR 1:REM select foreqround register

50 REM xxx draw horizomtal bar, using only odd-rumbered pixels XxX

55 FOR I=1 TO 319 STEF 2!FLOT I,0:DRAWTO I,40:NEXT I

60 REM xxx draw horizormtal bar, using only even—-rnumbered pixels Xxx

63 FOR I=0 7O 318 STEPFP 2:!FLOT I,41:!DRAWTO I,80:NEXT I

70 REM xxx draw horizomtal bar, using all pixels Xxx

75 FOR I=0 7O 319:!FLOT I,81:!DRAWTO I,120:NEXT I

B0 REM 30K KK KX K K K K K XK K KK K KK A K KK KK K XK K KKK K KK KK KKK K K K K K K KK K KK K XK K KK XK KK XK K K XK K>
90 REM xxx cycle through colors to observe 3l1 artifact combinations xxx
100 FOR C=0 TO 15

110 SETCOLOR 1,C,14:SETCOLOR 2,C,0

120 FRINT "C="3C

130 FOR WAIT=0 TO 400 :NEXT WAIT

140 NEXT C

150 GOTO 100

R
R
R
R
R
R
R
N
N

VBN DWR -

EM CHARACTER IN MODE 8
EM ME/JB 4/82
EM put mode 0 characters on 3 mode 8 hi-res graphic screen
EM -- the program converts each ATASCII character to internal code,
EM finds that character in the ROM character set, and pokes the data
EM for that character directly into the screen data area ir RAM.
EM -- note that this is only possible with mode 0 characters arnd mode 8
EM aqraphics, becawse the pixel size happens to be the same,
B 2000300000003 KKK KKK 030 KK 53820 353 3 36 33 2 3K 2K 3 305K 3 3K 3K K 30 K 30 3K 3K 33 0 3K K 2 3K 0 3K 0K 2K 0 2K XK 2K XK 3 K K
DIM STRINGS$(S5),Xs(1)
STRING$="ATARI"
X=15:Y=80!REM some test coordirnates (alters placement on screen)
GRAPHICS 8 '
SCREEN=PEEK (88)+2546xPEEK(B89)!REM starting address of screern RAM
LOC=6CREEN+YXx40+X!REM location on screen (offset from starting adr)
FOR CHAR=1 TO LEN(STRING$):!REM for each character in strirng
X$=STRING$(CHAR,CHAR) tREM individual character
X=ASC(X%)!REM qget ATACII code
IF X>127 THEN X=X-128!REM turn off inverse video
IF X>31 AND X<96 THEN X=X-32
IF X<32 THEN X=X+64:!REM turn ATASCII into intermnal display code
CHARLOC=57344+Xx8!REM location of character in ROM character set
FOR BYTE=0 TO 7:!REM character data is 8 bytes long
FOKE LOC+EYTEx40,FEEK(CHARLOC+BYTE) {REM qet from ROM, put on screen
NEXT BYTE!REM next byte of character
REM riote that each byte is below the previous orme (1 line-length apart)
LOC=LOC+1:!REM next character is orme space to the right
NEXT CHAR!REM qget the next character in the string
REM 300K 0K 3K KKK XK KKK KK K K K KK KKK KK KKK XK KK K 3K 3K K 3K 3K K 3K K KK 3K K K 3K K 3K 3K K 3K K K K K K K X K K XX
REM xx the followirng routime draws an ATARI logo with mode 8 graphics
N=0:COLOR 1:!FOR X=100 TO 150
IF X<132 THEN PLOT 120,X:DRAWTO 130,X
IF X>=132 THEN N=N+1:!FLOT 120-N,X!DRAWTO 130-N,X
FLOT 13S,X!DRAWTO 145,X
IF X132 THEN PLOT 150,X:DRAWTO 140,X
IF X&x=132 THEN PLOT 150+N,X!DRAWTO 1460+N,X
NEXT X

1 K
2R
3 R
4 R

EM VBLANK FLAYER MQOVE

EM LW/JE 8/82

EM a machirme lanquaqge routine to move a8 player during vertical blank

EM 0K 50K KX KK KK K X KK KK KK KK KK KK KK KKK KK KK KK KK K K K K KK K K KK K KKK KK K XK 3K K K K K K K K K X K XK
REM 0K KX K K K K KKK KKK KK K K K K KKK KK 3K KK KK 30K K K KKK KK KKK KK 3K KK K K K K 3K K K K X K
REM xxxxxxxX set up vblank routine on page 6 (listing follows) XOKXXXXXXX
REM 300K X XXX XK K XK KK XK KKK K KK XK KK XK K K K KKK XK KK K KK XK K K K K K KK KK K KK K K K K 3K 3K K K K K K 3K K K K K X X
FOR I=1536 TO 1656

READ XIFOKE I,XINEXT I

REM The followirmng riumbers are the decimal equivalents of the hex object
REM code in the machirne larngquage program on the next page.

DATA 173,120,2,41,1,208,3,32,43,6,173,120,2,41,2,208,3,32,467,6,173,120
DATA 2,41,4,208,3,32,91,6,173,120,2,41,8,208,3,32,106,6,76,98,228,160
DATA 8,174,240,6,202,224,33,144,13,142,240,6,189,0,60,157,255,5%,232,136
DATA 16,246,96,160,8,174,240,6,232,224,218,176,245,142,240,6,18%,5,60
DATA 157,6,60,202,136,16,246,96,174,241,6,202,224,48,144,223,142,241,6
DATA 142,0,208,96,174,241,6,232,224,201,176,208,142,241,6,142,0,208,%6
REM KK KK X KK K K KK XK K XK K K KK K KK 3K KKK 3K KK K K KK KK K K K KKK KK K KK K KK K K K 3K XK KK K XK K K XK 3K XK XK
REM XXXX XX XXX name locations KKK K K K KK K
FREM 0K XK XK KK XK K K KKK XK K KK KK KK KK K KK K KK KK K KK XK KKK K 3K K KK 3K KK K KK 3K K K K KK KK K K XK K K K K XK XK
SDMCTL=599!FMEASE=54272 {GRACTL=S3277 {NMIEN=54286 {VVELKD=548
COLLF0=704!HFOSF0=53248)

REM KX XK XK K K K KK XK K K K K K KKK K KKK K K K XK K K KKK KK K XK K K K K K KKK KK 3K K K K XK KK K XK K K 3K XK K K X K X
REM %X XX X X X X X X set up player KK K K K K K XK XK XK
REM XK XXX K X K K K K K XK K K KK K XK K KKK K XK K K KKK K KK K KK KK K KK 3K KK K KK K KK K KK K K K K 3K K 3K K K XK K KX
FOKE SDMCTL,&62!REM . single-line resolution

FOKE FMEASE,14x1024/296tREM . set up plavyer data on paqe 14 (hi-byte)
FOKE GRACTL,3tREM . enable players

FOKE COLFO0,88:FOKE HFOSF0,100!:REM set color amd initial horizontal pos.
FSTART=15x1024:REM . starting address of playger 0

FOR I=0 TO 7:!REM . create 8-lirne player shape

READ X!FOKE PSTART+100+I,X

NEXT I

DATA 255,126,60,24,24,60,126,255

REM. KKK K XK K K KK K KK K KK K KK K K KKK 3K K K KK KK KK K KKK 3K KK KKK K 3K K K KK 3K K 3K K 5K K 5K K K KK S KK KK X
REM XXXXXXXX set up vertical blanmk vector XKKOK KK XK KK XK OK
FEM 30K KKK KK KKK K KKK KKK 3K KK KKK 3K KK KK K KK KK K KKK K K KK KK 3K 3K KK K 3K K KK K K K 3K XK 3K K K KX
FOKE 1774,101¢FOKE 1777 ,100:REM . init hpos and vpos in VELANK routine
FOKE NMIEN,O0:REM . disable DMA

FOKE VVEILLKD,0:FOKE VVELKD+1,6!REM point vector to page 6 routine

FOKE NMIEN,&64!REM . reernable DMA (F/M, standard playfield)
END ‘REM . VELANK rowtine is inm nmow in place,

REM . arnd functions regardless of EASIC pra.

ATARI Macro Assembler Ver 1.0A Faqge i
D2 {FMOVE .SRC

x FMOVE: A VELANK ROUTINE TO READ JOYSTICKO AND MOVE FLAYE
x

x DEFINITIONS

= 0278 STICKO = 40278
= D000 HFOSFO0 = $D000O
= 3C00 FOSTART = $3C00
= 06F0 VFOS = $6F0
= 06F1 HFOS = $6F1
= E462 XITVBY = $E462
0000 = 0600 ORG $600
X
x READ JOYSTICK
. X
0600 AD7802 LDA STICKO
0603 2901 AND #1 JCHECK FIRST EBIT
0605 D003 A060A ENE S1 JEIT SET MEANS NO
0607 202E06 JSR UF $}IF CLEAR, MOVE UF
060A AD7802 S1 LDA STICKO
060D 2902 AND #2 CHECK NEXT EIT
060F D003 ~0614 ENE 852
0611 204306 JSR DOWN +IF CLEAR, MOVE DOWN
0614 AD7802 Sz LDA STICKO
0617 2904 AND ¥4 (CHECK NEXT EIT
0619 D003 A061E ENE S§3
061E 205E06 JSR LEFT +IF CLEAR, MOVE LEFT
061E AD7802 S3 LDA STICKO
0621 2908 AND #8 CHECK LAST EBIT
0623 D003 ~0628 ENE EXIT
0625 206A06 JSR RIGHT +IF CLEAR, MOVE RIGHT
0628 A4C62EA4 EXIT JMF XITVEV tTHAT’S ALL
X
) x MOVE ROUTINES
x
x MOVE UF
x
062E A008 UF LDY #8 JINIT LINE COUNTER
062D AEF006 LDX VFOS +tGET TEMF VERTICAL FOSITION
0630 CA DEX s MOVE UF ONE
0631 E021 CFX #33 ;T00 HIGH?
0633 900D ~0642 ECC RETURN tYES, FORGET IT
0635 BEF006 STX VFOS
0638 EDOO3C UFLOOF LDA FOSTART,X s MOVE IMAGE UF
063E 9DFF3E STA FOSTART-1,X
063E EB8 INX
063F 88 DEY +DO NINE LINES
0640 10F6 ~0638 EFL UFLOOF
0642 60 RETURN RTS
X
x MOVE DOWN
X
0643 A008 DOWN LDY #8 INIT LINE COUNTER
0645 AEF0064 LDX VFO0OS
0648 EB INX yMOVE DOWN ONE
05649 EODA CFX %218 yTOO0 LOW?
0564 EBEOFS A0642 ECS RETURN }YES, FORGET IT
064D BEF006 STX VFOS

0650 EDOS3C . DNLOOF LDA FOSTART+35,X ;MOVE IMAGE DOWN

ATARI Macro Assembler Ver 1.0A Pagqe 2
D2{FMOVE .SRC

0653 9D063C STA FOSTART+6,X

0656 CA DEX

0657 88 DEY +DO0 NINE LINES
0658 10F6 A0650 EFL DNLOOF

065A 60 RTS

X

x MOVE LEFT
x

065E AEF106 LEFT LDX HFOS +GET TEMF HORIZONTAL PFOSITION
065SE CA DEX

065F EO030 ‘ CFX +48 TOO0 FAR?

0661 9Q0DF ~A0642 ECC RETURN +YES, FORGET IT

0663 .BEF106 STX HFOS

0666 BEOODO STX HFOSFO

0669 60 RTS

X

x MOVE RIGHT
x

0646A AEF106 RIGHT LDX HFOS

066D EB8 INX

066E EOC? CFX #201 +TOO FAR?

0670 EODO ~0642 ECS RETURN +YES, FORGET IT
0672 BEF106 STX HFOS

0675 8EOODO STX HFOSFO

0678 60 RTS

rno ERRORs, 17 Labels, $4A0E free.

