PROGRAMMING EXAMPLES

Some miscellaneous examples and discussions

of programming on the ATARI 400/800'™ Home Computer System

1) Formatting Dollar Amounts

2) Bubble-Sort

3) Rocksort

4) Real-time Clock

5) Getting Data From the Keyboard

ATARI INC.
CONSUMER PRODUCT SERVICE
PRODUCT SUPPORT GROUP
1312 Crossman Ave.
Sunnyvale CA 94086

(800) 672-1404 inside CA
(800) 538-8543 outside CA

DEMOPAC {3
Rev.2 5-82/1B

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari,
Inc. ("Atari") without warranty of any kind. Any statements concerning the
capabilities or utility of the computer programs are not to be construed as express
or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or
entity with respect to any claim, loss, liability, or damage caused or alleged to be
caused directly or indirectly by the computer programs, contained herein. The
entire risk as to the quality and performance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However,
because of ongoing improvements and updating of our computer software and
hardware, Atari cannot guarantee the accuracy of printed material after the date
of publication and disclaims any liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical
Support, Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue,
Sunnyvale, CA 94086.

FORMATTING DOLLAR AMOUNTS
DED 5/82

The following program illustrates a method of formatting dollar amounts, on the screen or on a
printer. This example accepts input of number amounts between 0 and 9999.99.

The program checks each input number and rounds it off to two decimal places, adding trailing
zeroes if necessary. The number is turned into a string, and concatenated onto a dollar sign.
There is some error-checking, for non-numeric or out-of-range input. Output is then
formatted into evenly spaced columns.

There are two versions of the program. The first version stores the input data in a long-string
array in memory, and prints the output on a printer. The second version creates a data file to
store the data on cassette or diskette. It then prints the output on the screen.

REM MORMATTING DOLILAR AMOUNTS

REM VERSION 1

REM DER /02

REM this version stores data in a3 long-string array

REM and printea output om a printer.,

FUE M OKKK KK K KK KK KK KKK XK 3K 3K KK KK KKK K K K K K K 3K K 3K K K KK K K K K 3K 3K K 3K K K KK KK K K 3K K KK 3K K K K K 3K K K
10 REM initialization

20 DIM AMOUNT$(20),DOLLAR$(25),YNS$(3),ARRAY$(1000),SFACE$(12)

30 SFACE$=" "IREM format output for evernly spaced columns

40 COUNT=1!REM set counter for riumber of irputs

50 TRAF SO0IFRINT “"VALUE.,.."; ¢INFUT AMOUNTSTRAF 40000

59 REM XXXXXXXKKXKXKK FfOrmat ©3Ch 3mMourt XX XXX X KKK XK XK XXX

60 SIGN=SGN(AMOUNT) !AMOUNT=AES (AMOUNT) !REM keep track of sian

70 AMOUNT=INT((AMOUNT+S5,0E-03)%x100)/100¢REM round for dollar amount

B0 AMOUNT=AMOUNTXSIGN:REM restore sian

20 AMOUNT$=STR$ (AMOUNT) !REM turm number into string

100 DOLLARLEN=LEN(STR$ (INT(AMOUNT)))!REM separate dollar from cents

110 CENTSLEN=LEN(AMOUNT$)~-DOLLARLEN

120 IF CENTSLEN=0 THEN AMOUNT$(LENCAMOUNT$)+1)=",00"!REM check for trailinag zer
130 IF CENTSLEN=2 THEN AMOUNT$(LENC(AMOUNTS$)+1)="0Q"

140 DOLLAR$="% "IREM string contaiming dollar sian and 4 spaces

150 TRAF S0:DOLLAR$=DOLLAR$(1,5-DOLLARLEN)!REM 3llow only 4 digit number
160 DOLLAR$(LEN(DOLLAR$)+1)=AMOUNT$:REM corncatenate to dollar siqn

170 ARRAY$(LEN(ARRAY$)+1)=DOLLAR${REM add element to array

180 FRINT "ANY MORE"; ¢ INFUT YNS$

190 IF YNS$(1,1)<x"Y" THEN IF YNS$(1,1)<>"N" THEN GOTO 180

200 IF YNS$(1,1)="N" THEN GOTO 240

210 IF COUNT=40 THEN ? "ARRAY FULL":GOTO 240

220 COUNT=COUNT+1:GOTO S0!REM get amother number

230 REM XXX KX K KK K XK K K KK K KK K XK K KK K A K XK K K XK K KK K K K KK K K 3K K K 3K 3K K KK K KK XK K K XK K K XK K K K K K K
235 REM prinmtout routine

240 OFEN ¥2,8,0,"F:!"IREM open printer file

250 FIELD=1:!REM determines locatiorn of elemernt in strirmg array

260 COUNT=0:REM check for end of lire

270 TRAOF 310:FRINT #2;ARRAY$(FIELD,FIELD+7);SFACE%$;

280 FIELD=FIELD+8:!COUNT=COUNT+1

290 IF COUNT=4 THEN FRINT #2!GOT0O 260:REM execute carriaqe return at end of lir
300 GOTO 270

310 FRINT #2:!CLOSE #2!REM close files when data is finished

320 END

Mo N—~

1 REM FORMATTING DOLLAR AMOUNTS
2 REM VERSION 2

3 REM DEE S5/82

4 REM this version stores data in a data file on cassette or disk

S5 REM and prints the formatted output om the screen

S REM XK K K KK K K KKK KKK K K KK K K KK K K KKK K KKK K K KK K K K KKK KK KK KK K KK K K K K K 3K K KK K K K
10 REM initialization

20 DIM AMOUNTS$(20),DOLLAR$(25),YNS$(3)

30 REM OFEN #1,8,0,"C!"IREM for cassette use

40 OFEN #1,8,0,"DIFRINT.FMT"!REM for diskette use

50 TRAF S0:FRINT "VALUE..."; tINFUT AMOUNTSTRAFP 40000

55 REM OXXOXKOKKKKKXKKXKKKXKKX FOrmat each 3Moumt KKK KK KK K XK K X K K XK K XK X XK X

60 SIGN=SGN(AMOUNT) tAMOUNT=AES (AMOUNT) tREM keep track of siagn

70 AMOUNT=INT((AMOUNT+S.,0E-03)%x100)/100!REM round for dollar amount

80 AMOUNT=AMOUNTXSIGN!REM restore sian

90 AMOUNT$=STR$ (AMOUNT) !REM turm number into strirng

100 DOLLARLEN=LEN(STR$(INT(AMOUNT))) ‘REM separate dollars from cents

110 CENTSLEN=LEN(AMOUNT$)-DOLLARLEN

120 IF CENTSLEN=0 THEN AMOUNT$(LENC(AMOUNT$)+1)=",00":REM check for trailing zer
130 IF CENTSLEN=2 THEN AMOUNT$(LEN(AMOUNT#)+1)="0" .

140 FRINT

150 DOLLARS$="% "IREM strimg containing dollar siqmn and 4 spaces

160 TRAF SO0:DOLLAR$=DOLLAR$(1,5-DOLLARLEN)!REM a3llow only 4 digit number
170 DOLLAR$(LENC(DOLLAR$)+1)=AMOUNT$!REM concatenate to dollar siqn

180 FRINT #1;DOLLAR$IREM print formatted string to data file

1920 FRINT "ANY MORE";!TRAF S0:INFUT YNS$

200 IF YNS$(1,1)="N" THEN GOTO 230

210 IF YNS$(1,1)<x="Y" THEN IF YNS$(1,1)<x"N" THEN GOTO 190

220 GOTO So

230 CLOSE #1

235 REM X0 KKK KK K K K KK KK K XK K KA KKK KKK KK K KK K K K K K K K KK 3K K 3K KK K 3K K K K K K K K K K K KK KK K XK
240 REM qet data from data file and print in columns on screen

250 REM OFEN #1,4,0,"C:"!REM use for cassette; position tape first

260 OFEN #1,4,0,"DIFPRINT.FMT"¢!REM use for diskette

270 FOKE 82,0:!REM move margin out for even columns

280 OFEN #2,8,0,"S:"

290 ? 7?7 IFRINT #2;" FORMATTED DOLLAR AMOUNTS";¢? 7

300 TRAFP 330:INFUT #1;DOLLAR$!REM brimg in record

310 FRINT #2}DOLLAR%$, :REM comma inserts spaces for columns

320 GOTO 300

330 CLOSE #1:CLOSE #2!REM close files when data is finished

340 END

1 R
2R
3R
4 R
5 R

6 R

EM BUBELE-SORT

FM FPY/ZJUR 4/82

EM the followirng program illustrates a simple sort process

EM (the wser inputs numbers, which are kept in a8 numeric array.
EM tthe array is then sorted and printed out in order.

ELM KK KK K K K KKK K K K K K KK 3K K K KK K 3K K K K 3K K K K K K 3K 3K K 3K KK 3K K K K K K K K K K K K K 3K 3K KK K XK K XK K XK X K K XK K
DIM AC100)IREM this array holds the dasta to be sorted
FRINT "HOW MANY ITEMS TO SORT";!INFUT TOTAL

FOR I=1 TO TOTAL
FRINT "ENTER A NUMEER..."; i INFUT NUMBER
AC(ID)=NUMBER{REM assiqn data element to array
NEXT I
REM print out unsorted list for comparison
FOR I=1 TO TOTAL
FRINT AC(I)
NEXT I

REM K K K 5K 3K K X K K 3K K K K K K KK K K KK K KKK K K K KK K KK K 3K KK K K K KK K 3K KK K K K K K 3K KK K K K K K K XK K K X
REM sort the array

FASS=0!REM keep track of how many times through the list

FLAG=0!REM flag=1 indicates that more sorting is necessary

FOR I=1 TO TOTAL-1

IF A(I+1):>=A(I) THEN 180:REM if this item is less tham the next,

REM they are in the right order, <0 skip to the next item

TEMF=A(I)!REM if they’re in the wrong order, store the item temporarily
A(T)=A(I+1)IREM in order to

A(I+1)=TEMFIREM switch the order

FLAG=1!REM set the flaq to show that a3 change was made

NEXT I!REM check the next item

IF FLAG=1 THEN FASS=FASS+1IFRINT "FASS=";FASS:GOTO 110

REM after each pass, check the flag

REM to see if any charnqQes were made! if so, try aqQain.

REM % K 3K K K K K KK K K K KK K K K K XK K KK KK KK K K K K K K KK K K KK K K 3K K K KK K K K 3K K K 3K 3K K K K 3K K K K K XK K X K XK
REM print ouwt the sorted list

FRINT "“"SORTED LIST..."

FOR I=1 TO TOTAL

FRINT A(ID)

NEXT I

FRINT "--END OF FROGRAM--"

END

R
R
K
N
R
R

NG RN NN ESE S

10
20
30
31
40
41
42
45
S50
55
60
70
80
20
99
100
101
110
120
130
140
150
155
160
SOR
165
170
180
190
200
205
206
210
220
230
240
250
260
265
998
299
100
101
102
103
104
105

EM ROCKSORT

EM WE/JE 4/82

EM sort a string of up to 80 characters

EM by making the biggest ormes ‘fall throuwah’ to the bottom.

EM there is backaround music, and the sort is timed,

ELMEKOKIOKKOKOKOK KKK KK KK 3K K K 3K 3K KKK 3K KK 3K 3K 5K 5K 3K 3K K 3K 3K 3K K 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K 3K 3K 3K 3K 3K 33K 3K 3K K K 3K 3K 3K 3K 3K 3K
DIM SORTH(8B0),BUFS(1), TONE(8B80)IREM set up variables

GRAFHICS 0:!FOKE B82,0!REM clear screen, set left marqin at column 0

FOR I=1 TO 80 STEF 2:READ T!TONEC(I)=T!TONE(I+1)=TI!NEXT I

REM set wp array with torme data for the sound statement

DATA 29,31,33,35,37,40,42,45,47,50,53,57,60,64,68,72,76,81,85,91,96

DATA 102,108,114,121,128,1346,144,153,142,173,182,193

DATA 204,217,217,230,230,243,243

UM KKK KKK K KKK K K KK K 3K K K K KKK 3K 3K K 3K 3K K K 5K 3K 3K 3K K 3K K 3K 3K 3K K 3K 3K 3K K 3K 3K K 3K 3K 3K 3K 3K 3K K 3K 3K 33K 3K 3K 3K 3K 3K 3K 3K 3K 3K oK
FRINT "80 CHARACTER STRING TO EE SORTED..."
INFUT SORT$
LAST=LEN(SORT$) !REM keep track of where to stop sorting
GRAFHICS Z2I!FRINT #63SORT$!REM display string in large letters

FOKE 752,1!REM disable cursor

FOKE 18,0:FOKE 19,0:FOKE 20,0!REM initialize real-time-clock
RO K30KK KKK 3K 3K K K 3K KK 3K 3K K 3K 3K 3K K K 3K KK 3K 3K K K 3K K K K 3K K K 3K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K K 3K 3K 3K 3K 3K 3K 2K 3K 3K 3K 3K 3K 3K 3K 3K XK K
REM the following section contsirms the actual sort,

REM 3long with the backarournd music

FOR I=LAST-1 TO 1 STEF -1:!REM outer loop

SOUND 0,TONE(I),10,10:REM first voice of backaround music

FLAG=0!REM this flaq turns 1 if any charnqes are made during the sort
FOR J=1 TO I!REM irnner loop

SOUND 1,TONE(J),10,8!REM second voice of backaround music

REM --here’s the sort itself--

IF SORT$(J,J)*SORT$(J+1,J+1) THEN BEUF$=50RT$(J,J)!SORT$(J,J)=S0RT$ (J+1,J+1 .

T$(J+1,J+1)=EUF$FLAG=1

REM if top item is larger, excharge places with next item, and set flag
FOSITION 0,0:FRINT #63SORT$!REM display latest version of string

NEXT JIREM irrner loop

IF-FLAG=0 THEN I=1!REM check flag-if ro charqes, skip to last loop

NEXT I!REM outer loop

REEM 30KK KKK KKK KKK K KKK K K KK K 3K KK 3K 3K K 5K 3K 3K K K 3K K 3K 3K 3K 3K 3K 5K K 3K 3K 3K K 3K 3K 3K 5K 3K 3K K 3K 3K 3K 3K 33K 3K 3K 3K K 5K K 3K oK
REM —=fimish wup-—-

FOKE 752,0!REM re-enable cursor

SOUND 1,0,0,0:REM turn off secornd voice

FOR I=29 TO 0 STEF -1:!SOUND 0,I,10,10:NEXT I!REM 1st voice sigrals end
GOSUE 1000:REM call subroutine which fiqures elapsed time

FRINT "ELAFSED TIME "jHH;"$" MM} 3155}

END

FEEEM K00 KKK KKK KK KKK 3K K K K K K 3K K K 3K 3K 3K 3K 3K 3K K3 K 3K 3K KK 3K K 3K KK KK K 3K 3K 3K 3K K 3K 3K 3K 3K 3K 3K 5K 3K 3K 3K 3K 3K 3K
REM the following subroutine retrieves the real-time clock values

REM and turns the results into hours(HH), minutes(MM) and seconds (SS)

0 SS=(FEEK(18)X256X2546+FEEK(19)X256+FEEK(20))/40

0 HH=INT(SS/(40%460))

0 S5S=SS-HHX460%60

0 MM=INT(55/60)

0 SS=INT(SS-MMx&60)

0 RETURN

IR
2 R
J KR
4 R
5 R
6 R

M CLOCK

EM WE/DM/JE 4/802

EM this program seta ond diaploys o resl time clock it large charscters
EM and sounds chimes on the quarter howr, half hour and hour

EM 000K KKK KK K KKK KK KKK KK K K KKK K KKK K K K K K K K K K K K K KK K 3K KK K K K K K 0 K K K K K K 3K K K K K 3K K K K K
EM synchronize with real-time
GRAFHICS O:FRINT " SET THE REAL~-TIME CLOCK" $FRINT

TRAF 20:FRINT “"HH:"; $INFUT HH

TRAF 30:FRINT "MMI"; PINFUT MM

TRAF 40:FRINT "SS:" 3 ¢ INFUT SS
TRAF 40000:REM turm off error trap
FRINT (FRINT " FLEASE STAND EY.ss"
SECONDS=HHX60X60+MMXS60+SSIREM rmumber of seconds in set-time
T=INT(SECONDSX59,923334) !REM number of clock-ticks, from NTSC clock-rate
MSE=INT(T/(256%256)) tREM most sigqrnificant byte

T=T-MSEX256X256 INSE=INT(T/256) {REM riext-most sigqnificant byte
LSE=T-NSEX2546t1REM least siaqnificant byte

FOKE 18,MSE!FOKE 19,NSE!FOKE 20,LSE!REM set the clock locations
GRAFHICS 2+14!{REM mode 2 with ro text window for time-display

REM 30K KKK K K K K KK K K K K K K K K KK KK K K K K KK KK KK K K K K K K K K XK K 3K 3K K K 3K K K K KK K K K K K K K 3K K K K K
REM --read clock and display time-—-
T=INT((FEEK(18) X256 X256+FEEK (19) X254+FEEK(20))/59.,923334)

REM turn clock-ticks into hours/minutes/seconds

HH=INT(T/(60%x60)){REM hours

T=T-HHX40X60 :MM=INT(T/60) {REM minutes

SS=T-MMX60:REM seconds

IF HH=24 THEN FOKE 18,0:!FOKE 19,0:FOKE 20,0:REM reset to 0 at midnight
FOSITION S,46tFRINT #&63HH}" " sMM" 1" 355, tREM display time

FOKE 77,0:REM disable attract mode

FUE M 30K 3K KK KK K KKK 0K K KKK 3K KKK K KK K K KK K K K K K K K K K 3K 3K K K 3K K 3K 3K K 3K 3K K KK KK K K K K K XK XK K K K K K
REM --chimes—-

REFEAT=0:TONE=121!TIF S50 THEN GOTO 140:!REM sourd chime on 0 seconds
IF MM=0 THEN REFEAT=4:!GOSUE S00:REFEAT=HH!:GOTO 300:REM chimes + hours
IF MM=15 THEN REFEAT=1:GOSUE 500

IF MM=30 THEN REFEAT=2:!GOSUE 500

IF MM=43 THEN REFEAT=3:!GOSUE 500

GOTO 140:REM Qo get new time value

REM 0K K XK K K KK KK KKK K K KK K K KK K KKK K K K K K K KK K K K K K K 3K KK K K KK 3K K KK 3K K K K K K K 3K K K K K K K
REM sound hours

FOR DELAY=1 TO 300:NEXT DELAY

FOR R=1 TO REFEAT!FOR VOLUME=15 TO 0 STEF -1

FOR WAIT=0 TO 40:NEXT WAIT

SOUND 0,243,10,VOLUME$SOUND 1,182,10,V0LUME

NEXT VOLUME:NEXT R

GOTO 140:REM go qget mew time value

REM 50K KX K K K KK 3K K XK K K KK KK KKK K K K K K K XK K K K K K 3K K KK K K K 3K K KK K K KK K K 3K K K K KK K K K K K K 3K XK K
REM the following subroutire sounds the Westminster chimes

RESTORE 600+REFEAT!REM read the proper data line

FOR BELL=1 TO SxREFPEAT!REM S tores in each repetition
READ TONE:!GOSUE S60:REM read and sound each rote

NEXT EBELL

RETURN

REM xx this small subrouwtine sounds each note

FOR VOLUME=19 TO 0 STEF -1

FOR WAIT=1 TO 10INEXT WAIT

SOUND 0,TONE,10,VOLUME

NEXT VOLUME :

RETURN

REM xx here is the data for the tones

DATA 72,81,91,121,0

bDATA 91,72,81,121,0,91,81,72,91,0

DATA 72,91,81,121,0,121,81,72,91,0,72,81,91,121,0
DATA 91,72,81,121,0,91,81,72,91,0,72,91,81,121,0,121,81,72,91,0

GETTING INFORMATION FROM THE KEYROARD
Alternatives to INPUT
an 5/82

There are several reasons why you may need to get keyboard input in your program, and yet not
wish to use the INPUT statement. You may not want to press RETURN after every entry, for
example, or you may not want the input prompt. In any case, here are some alternatives to the
BASIC INPUT statement.

There are three methods for getting input from the keyboard without an ordinary INPUT
statement. You can: (1) look directly at the memory location where the keycode for the last key
pressed is stored; (2) open the keyboard as a device, with the OPEN statement, and GET# from that
file; or (3) INPUT # from the file. Each of these methods has advantages and disadvantages. You
should choose the method or combination of methods that suits your needs.

To get directly from the keyboard buffer, check the value of PEEK(764). This location returns a
keycode, rather than a letter or ATASCII value. The keycode is an arbitrary code which is unique
for each key. It reflects whether SHIFT or CONTROL is pressed, and in some cases whether SHIFT
and CONTROL are both pressed. If you use this method, you must translate the keycode in your
own program. There is a translation table on page 50 of Tech User Notes (CO16555), or you can
just PEEK the location and create your own table. This method is useful if you are simply checking
for a particular key, i.e. PRESS "C" CONTINUE. The program for this would be:

10 PRINT "PRESS C TO CONTINUE"
20 IF PEEK(764)<> 18 THEN GOTO 20
30 ...the rest of your program

Checking CH, the keyboard buffer, bypasses the keyboard handler altogether. A disadvantage is
that you have to interpret the keycode yourself. An advantage is that you don't have to press
RETURN, and in bypassing the handler, you get rid of the keyboard beep. There is no other way of
turning off the beep, short of disconnecting the keyboard speaker.

There are two more types of keyboard input. If you open the keyboard as a file, using the OPEN
statement, you can either GET# or INPUT# from that file. GET# returns an ATASCII code number
for the character, and INPUT# behaves like an ordinary INPUT, except that there is no prompt, and
the characters are not displayed on the screen, but go directly into the INPUT variable. Here are
examples of GET# and INPUT/.

10 OPEN#1,4,0,"K:" : REM this opens the file

20 GET#1,X:REM it waits for you to hit a key

30 CLOSE#1:REM close the file

40 PRINTX,CHRS$(X):REM print code and character

There is no prompt with GET#, and you do not have to press RETURN. You can GET only one
character at a time, and you must remember that a number is returned, the ATASCII value of the
letter.

10 DIM AS$(20):GR.2+16:REM no text window

20 OPEN{#1,4,0,"K:" :REM open file

30 INPUT#1,AS$:REM it waits for RETURN

40 POSITION 5,5:PRINT#6;A$:REM display on screen
>0 GOTO 50 :REM keep image on screen

There is still no prompt, and the characters are not actually printed until you press RETURN.
Regular characters are returned, so you should use a string variable. :

These methods can be combined to suit your needs. You might wish to check CH for a change
before opening a keyboard file, for example. Remember that CH doesn't change back; you might
want to POKE a 255 back into it after you read it. When using a full-screen graphics mode,
avoiding the INPUT statement keeps the screen from returning to Graphics 0 for the input prompt.

