DATA FILE PROCESSING

Storing data on the ATARI 410'™ Program Recorder

and the ATARI 810'™ Djsk Drive

1) Storing Data on Cassette

2) A Simple Data File on Cassette

3) An Example of Cassette I/O: Cassette Mailing List
4) Storing Data on Disk

5) Example of Disk 1/O: Disk Mailing List

6) Random Access

ATARI INC.
CONSUMER PRODUCT SERVICE
Product Support Group
1312 Crossman Avenue
Sunnyvale, CA 94036

(800) 672-1404 inside CA
(800) 538-8543 outside CA

' DEMOPAC #2
Rev. 2 10-82/31B

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari, Inc.
("Atari") without warranty of any kind. Any statements concerning the capabilities or utility
of the computer programs are not to be construed as express or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or entity with
respect to any claim, loss, liability, or damage caused or alleged to be caused directly or
indirectly by the computer programs, contained herein. The entire risk as to the quality and
per formance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However, because of
ongoing improvements and updating of our computer software and hardware, Atari cannot
guarantee the accuracy of printed material after the date of publication and disclaims any
liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical Support,
Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue, Sunnyvale, CA 94086.

DATA FILE PROCESSING
Storing Data on Cassette
wBB 1/82

A data file is a string of bytes stored on magnetic media independent of any program.

The ATARI 410 Program Recorder stores data on standard audio cassette tapes. The 410
Recorder is called a sequential device because files are distinguished only by their physical
location on the tape. Proper positioning of the tape is crucial to insure dependable operation.
For this reason, the recommended procedure is to store only one file on each side of a tape.
Record the file immediatelv after the tape leader. The data is transferred over the serial bus
to the 410 Recorder at the rate of 600 bits/second or 60 characters/second. The storage
capacity of a tape is roughly 1000 characters/minute. Therefore a 60 minute tape would allow
storage of about 30,000 bytes on each side.

All data files on tape consist of three sections. There is a 20 second leader of mark tone,
followed by any number of data blocks consisting of a pre-record write tone (PRWT), 4 control
bytes, 128 data bytes, and a post-record gap (PRG). Finally, there is an end-of-file mark.
Each"of these sections is audible through the TV speaker during data transmission. The
procedure for creating a data file on the 410 Recorder from BASIC is to do an OPEN, a series
of outputs (PRINT #N: or PUT #N), and a CLOSE.

The OPEN command establishes a channel from the token file in RAM to the 410 Recorder.
There are eight channels in the system numbered 0-7. The OS uses 0,6,7 at various times so
you should use 1-5. The correct syntax for the write mode is: OPEN #1,8,0 "C:". When this
command is executed, the keyboard buzzes twice to remind you to position the tape and
engage 2 keys (PLAY and RECORD) on the 410 Recorder. You need to acknowledge this
action by pressing any key on the keyboard (RETURN). The OS then writes 20 seconds of mark
tone. It does not automatically shut off the cassette motor. The motor is shut off only after a
data block is written on the tape. This is not a problem if all of the data is written out
immediately after the file is opened.

The output commands, PRINT #N and PUT #N, transfer data from the token file to the buffer
for the tape. When the buffer fills up with 128 bytes, the OS writes a data block to the tape,
turns off the motor, and clears the buffer. Two types of 1/O can be used to write data to a
file, character I/O or record I/O.

Character 1/O means that you write data one byte at a time with none of the values
interpreted as control characters. The statement PUT #N,X transfers one ASCII byte to the
data file.

Record I/O means that you write data one field at a time with the End of Line (EOL) character
(ASCII 155) used to delimit the end of each field. The EOL character is automatically
generated by the PRINT #N statement. If one field is transferred with each PRINT #N;
statement, all fields will be properly separated. The syntax of the PRINT statement should
include a semicolon and not a comma. A comma is interpreted as a tab, so 10 blank spaces
would be inserted in front of your data. The following statements transfer 10 fields to a data
file.

DIM NAMES(16)

OPEN #1,3,0,"C:"

FOR I=1 TO 5

PRINT "NAME..."; :INPUT NAMES
PRINT "AGE..."; :INPUT AGE
‘PRINT #1;NAMES

PRINT #1;AGE

NEXT I

CLOSE #1

The CLOSE command writes the current buffer as the last data block and then writes the end
of file mark to the tape.

The procedure for reading the data from a tape data file from BASIC is do an OPEN, a series
of inputs (INPUT /N or GET #N), and a CLOSEL.

The OPEN command establishes a channel to the 410 Recorder. The correct syntax for the
read mode is: OPEN #1,4,0,"C:". When this command is executed, the keyboard buzzes once to
remind you to position the tape and engage one key (PLAY) on the 410 Recorder.
Acknowledge this action by pressing any key on the keyboard (RETURN). The OS turns on the
cassette motor and reads past the mark tone. It does not shut off the tape motor. The motor
is shut off only after a data block has been read from the tape. This should never be a problem
if you open the tape file only when you are ready to read the data from it.

The data should be read from the file in the same fashion that it was written to the file,
record or character 1/O. Character 1/O reads one byte at a time with none of the values being

interpreted as control codes. The GET #1,X transfers one ASCII byte from the data file to the
variable X. .

Record I/O reads one field at a time with EOL (ASCII 155) used to delimit the end of each
field.” Many fields can be transferred with each INPUT #N statement. The following
statements transfer 10 fields from the data file.

DIM NAMES(16)

OPEN #1,4,0,"C:"

FOR I=]l TO 5

INPUT #1,NAMES,AGE
PRINT NAMES,AGE
NEXT I

CLOSE #1

There are three ways to read all the data from the file and exit without an error. If you know
how many fields were written, you can simply read the same number of fields, as is the
example above. If the number of fields changes, you can write a field with a special value at
the end of the file and check for this value after each input. If you don't know what's in the
file, you can use the TRAP command. When the end-of-file error 136 occurs, the TRAP
command will send you to your error routine. The routine should check that location 195
(error status) does contain 136, and then CLOSE the file.

Note 1:
If the PRINT or PUT commands do not immediately follow the OPEN command, the motor
stays on and garbage may be written onto the tape, making it unreadable. A solution to this

problem is to write a dummy record of 128 blanks immediately after opening the file. The
following statements accomplish this.

FOR I=1 TO 127 :PUT#1,32:NEXT I :PRINT #1

When you then OPEN the file to read it, you must immediately read past this dummy record.
An input of any string variable accomplished this.

DIM AS(1) :INPUT #1,A$

Note 2:

It is possible to transfer more than one field with each PRINT statement. However, you must
write the EOL character after each field.

PRINT #1:NAMES$;CHRS(155);AGE
or

DIM CRS$(1) :CRS=CHRS(155)

PRINT #1;NAMES;CRS$;AGE

NOU DWW~

REM A SIMFLE DATA FILE ON CASSETTE

REM PY/JER 2/82

REM XK K K XK XK K XK K KK K XK K K K K XK K XK K KX

REM create a simple file of riames on a tape

REM read them back and print them
REM on the screen, or on a3 printer

REM X XX K X K K XK X XK K XK K XK K XK K K K K KK KK XK K KK XK KKK KK KK K K

DIM BLANK$(128),NAME$(20),ANSS$(3)

OFEN #1,8,0,"C!"!REM open a file for output on the cassette
FOR I=0 TO 128!REM create dummy record

FUT #1,32!REM of 128 spaces

NEXT I{REM to stop motor

FRINT #1:!REM ernd dummy record with a carriage return

FRINT "NAME"; !INFUT NAME$!REM user types in data

FRINT #1;NAME$!REM print the data irto the cassette file
FRINT "MORE DATA (Y/N)'"3:INPUT ANS%

IF ANS$(1,1)="Y" THEN GOTO 40

IF ANS$(1,1)="N" THEN GOTO 100

GOTO &0

0 CLOSE #1:!REM if there is rno more data, close the file

0 STOP

0 REM 3OK3X0XK0K XK K K XK XK KKK K K K K KK KK K KK KK KK KKK XK K K K K K K K K K K K XK K

0 REM the tape row contains a list of names.

1 REM to read the names back, rewind the tape,

2 REM and type CONT to continue.

3 REM XXX XK XK XK K XK K XK K XK K K K K XK K K K KK K KK XK KK KK KK K KKK K K KK KK XK

0 OFEN #1,4,0,"C!"{REM open an input file on the cassette

0 TRAF 300:REM in case of error, qo close the file

0 INFUT #1,ELANK$IREM qet the dummy record and throw it 3way
0 INFUT #1,NAME$I!REM read a name from the tape

0 FRINT NAME$!REM print it on the screen

0 LFRINT NAME$!REM print it on the printer

1 REM .(delete line 250 if you don’‘t have a printer)

0 GOTO 230:!REM et further rnames from file

1 REM if there are rno more names, an end-of-file error occurs
2 REM and the error-trap goes and closes the file
0 CLOSE #1

DATA FILE PROCESSING
AN EXAMPLE OF CASSETTE 1/0
WBB/JB 3/82

The following set of programs sets up and maintains a simple mailing list using the 410
Program Recorder. The programs show a method of storing data in data files on the tape. The
first program initializes the file by reserving space for each entry. The second updates the
information in the file. The third prints out the contents of the file.

The key concepts illustrated are opening a data file with the OPEN statement, and writing to
that file using the PRINT #1; statement. In this simple example, only one variable is written
at a time, so no extra data separators are necessary.

In order to update a cassette file, the complete file is read into memory, and stored in a long
array-string. This process provides a good example of string manipulation, and the long-string
method of keeping string-arrays. When the update is complete, the file is written back out to
tape.

1R
2R
3R
4 R
10
20

25

26

30

40

50

60

70

80

20

100
110
120
130
140
150
160
165
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

EM CASSETTE INIT

EM WBB/JB 3/82

EM run this program first to reserve file space on the tape
M KKK KK X KK KK KK K K 3K K 3K K KKK K K KK K K K K 3K K KK 3K 3K KK K KK K K K K K X K K KK K K K X
CTM NAME$(100%x24),ADDR$(100%24) ,CITY$(100%16),STATE$(100%2),ZIP$(100%5)
DIM FHONE$(100x8),ELANK$(24)
REM each field is stored in 2 long-string variable--
REM there is space for 100 records.
ELANK$=" "I{REM a3 string of 24 spaces
FOR I=1 TO 100
FRINT "INITIALIZING SFACE FOR+++"}
NAME$ (Ix24-23,Ix24)=BLANKS$
ADDR$ (Ix24-23,Ix24)=BELANKS$
CITY$(IX16-15,Ix16)=ELANKS$
STATE$(Ix2-1,Ix2)=BLANK$

ZIF$(IXS5-4,Ix5)=RLANKS$

FHONE$ (Ix8-7,Ix8)=BLANKS

NEXT I

REM all of the records now contain the correct number of blanks —--
REM the blank records riow get saved to tape

PRINT (PRINT "FPREFARE TAFE FOR WRITING,"

FRINT "FRESS ‘START’ TO CONTINUE..."

IF PEEK(S3279)<>6 THEN 165:REM wait for start key

OFEN #1,8,0,"C!"!REM press play and record on cassette unit
FOR I=1 TO 100

FRINT "WRITING FILE SFPACE FOR...";I

FRINT #1;NAME$(Ix24-23,Ix24)

FRINT #1;ADDR$(IXx24-23,Ix%x24)

FRINT #13CITYS(IX16-15,Ix16)

FRINT #1;STATE$(Ix2-1,Ix2)

FRINT #1;ZIF$(Ix5~-4,1Ix5)

FRINT #1;FHONE$(IX8-7,Ix8)

NEXT I

CLOSE #1

REM the file space is riow reserved on the tape

FRINT (FRINT "REWIND THE TAFE"

FRINT "xx END OF INITIALIZATION xx"

END

1R
2 R
3R
4 R

EM CASSETTE UFDATE

EM WEBRB/JB 3/82

EM use this program to enter or chanqge information in the file.

M K KKK KKK K K KK KK K KK K KK KKK KK KK KKK 3K K 3K 3K KK K 3K 3K 3K K 33K K 3K 3K 3K 3K 3K K 3K KK KX XK
FRINT CHR$(129)!REM clear screen

FRINT "ENTER OR REFLACE RECORDS"

REM set uwp lorna-string variables

DIM NAME$(100%x24),ADDR(100%24),CITY$(100%x16),STATE$(100%x2),ZIF$(100X5)
DIM FHONE$(100x8),ELANK$(24),X$(24)
ELANK$=" "IREM strirg of 24 spaces

REM KKK KK KK K KK KK KK K K K K KK K KK KK KK KK K KKK K K K K K KK K KK K K KK K KK K K KK KK K K KK K K K XK K
REM read irn existing file from the tape

FRINT "FREFARE TAPE FOR READING,"

FRINT "FPRESS ‘START’ TO CONTINUE..."

IF FEEK(53279)<>6 THEN 100!REM wait for start key

OFEN #1,4,0,"C!{"!{REM press play on cassette unit

FOR I=1 TO 100

FRINT "READING DATA FOR..."}I

INFUT #1,X$INAMES$(IXx24-23,I%x24)=X$

INFUT #1,X$!ADDR$(IX24-23,Ix24)=X%

INFUT #1,X$I1CITYS(IX16~-15,Ix146)=X$

INFUT #1,X$!STATES(IX2-1,Ix2)=X%

INPUT #1,X$1ZIF$(IXS-4,Ix5)=X$

INPUT #1,X$:FHONE$4(IX8~7,Ix8)=X%

NEXT I

CLOSE #1:!REM the strirng-arrays riow hold the data from the saved file
REM 30K0K KK XK K XK K K K K K K K K K KK K KK KK K K K K KK K KK K K K K K K K XK K K 3K K KK 3K K K KK K K K K K XK K K K K XK X
REM -- update the file --

REM ask user which record to look at,

REM then ca1ll subroutine which displays that record

REM and replaces it with new data as entered by user.

FRINT (TRAF 240!REM in case of input error, keep trying

FRINT "ITEM (1-100)¢(0 TO END)+++"}$INPUT I

TRAF 40000:REM turn off error trap

IF I=0 THEN 300:REM if rio more records, Qo write them out

IF <1 OR I>100 THEN 230:!REM bad rumber, try aqgain

GOSUE 1000:REM call subroutine which displays and updates data

GOTO 230:REM qet rnext record rnumber

REM K03 K KK K K XK K K KKK K XK K KK K KK KK K KK K KKK K K KK KK K KK XK KK K KK K KK K K KK KK K K K K K K K K X X
REM -- write the updated file back owt to the tape --

FRINT FRINT "FREFARE TAFE FOR WRITING,"!REM rewind or turn over tape
FRINT "FRESS ‘START’ TO CONTINUE..."

IF FEEK(S3279)<*6 THEN 320!REM wait for start key

OFEN #1,8,0,"C!"!{REM press play and record on cassette unit

FOR I=1 TO 100

FRINT "WRITING DATA FOR++"}

FRINT #1}NAME$(Ix24-23,Ix24)

FRINT #1}ADDR$(IX24-23,Ix24)

FRINT #13CITYS(IX16-15,Ix16)

FRINT #1;STATE$(Ix2-1,Ix%x2)

FRINT #1;ZIF$(IX5-4,Ix5)

FRINT #1;FHONE$(Ix8-7,Ix8)

NEXT I

CLOSE #1:!REM the updated file is row saved on the tape

FRINT (FRINT "REWIND THE TAFE"

FRINT " xx END OF FROGRAM xx"

END

REM KX KK KX XK K KK K KK KK KK K XK KK KK KKK K KK KKK K K KK K KK KK K K 3K KK 3K 3K 3K K 3K K K K K 3K 3K K K K X K K X
REM the following subroutirne displays the desired record,

991 REM asks the user whether it should be chanaged,
992 REM and performs the change if requested,

FRINT !FRINT "RECORD NUMBER., "}

FRINT “NAME" ,NAME$(Ix24-23,Ix%x24)

FRINT "ADDRESS",ADDR$(Ix24-23,I%24)

FRINT "“"CITY",CITY$(IX16-15,Ix1648)

FRINT "STATE",STATE$(Ix2-1,Ix2)

FRINT "ZIF",ZIF$(Ix5-4,Ix5)

FRINT "PHONE",FHONE$(Ix8-7,Ix8)

PRINT (FRINT "DO YOU WISH TO REFLACE (Y/N)..."}3INPUT X$
IF X$<>"Y" THEN RETURN

1000
1010
1020
1030
1040
1050
1060
1070
1080
1085
1090
1091
1092
1093
1094
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2070
2080
2090
3000
3010
3020

REM
REM
REM
REM
REM
REM

KK KKK KKK KKK KKK KKK KKK KK KK KK K K KK K KK KK 3K 3K K K K KK KK K 3K K K K 3K K XK K K K K K K 3K K K K X
the followirng section calls a subroutirne which

qets the new data, and blank-fills if necessary,

so that 311 fields are the proper lenqgth.

the input field, with the blarnk-fill, is then

put imto the strimg-array in the correct place.

FRINT "NAME",

GOSUE 3000 :NAME$(IX24-23,Ix24)=X$
FRINT "ADDRESS",

GOSUE 3000:ADDR$(Ix24-23,Ix24)=X$
FRINT "“CITY",

GOSUE 3000:CITY$(IX16-15,Ix16)=X$
FRINT "STATE",

GOSUE 3000:STATE$(Ix2-1,Ix2)=X$
FRINT "ZIP",

GOSUB 3000:ZIF$(IXS5—-4,Ix5)=X$
FRINT "FHONE",

GOSUE 3000:FHONE$(IX8-7,Ix8)=X$
RETURN

REM
REM
REM

2K K XK K K K XK K K K 3K KKK K KK K K KKK K K K K K K XK 3K 3K KK K 3K K KK K K K 3K K K KK K K 3K K 3K K XK K K K K K XK XK K K X X
here is the subroutirne that qets the rew data
and blank-fills if necessary

INFUT X$
IF "LEN(X$)<24 THEN X$(LEN(X$)+1)=ELANK$!:REM concatenate spaces
RETURN

MdWrR -

REM CASSETTE FRINT

REM WBB/JR 3/82

REM this proaram gets the dats file from the tape
REM amd prints it out om 8 printer

REM 20K X 3K K 3K XK KKK K K KKK K KK KK KK XK KK K K K K K KK K K K 3K K K 3K K 3K K 3K K 3K K K K 3K K K K K K K KK 3K K K KX K X K X
FRINT CHR$(125){REM clear screen

FRINT "MAKE SURE YOUR FRINTER IS TURNED ON,"
FRINT '" AND FREFARE THE TAFE FOR READING..."
FRINT "FRESS ‘START’ TO CONTINUE..."

IF FEEK(S53279)<>é THEN SO0!REM wait for start key
FOKE 201,2!:REM set comma print zone a3t 2 spaces
DIM X$(24)!REM only one variable is used

OFEN #1,4,0,"C!"!REM press play on cassette unit
OFEN #2,8,0,"F!"IREM open printer for output

REM the followirng section gets each field from the tape file
REM and prints it to the printer file

0 FOR I=1 TO 100:!:REM read and print 100 records

0 FRINT "READING DATA FOR+...";I

0 FRINT #2;"READING...";I

0 INFUT #1,X$!FRINT #2:X$

0 INFPUT #1,X$!FRINT #2:X$

0 INFUT #1,X$IFRINT #2:;X$,

0 INFUT #1,X$!FRINT #2:X$%,

0 INFUT #1,X$:FRINT #2:X$,

0 INFUT #1,X$!FRINT #2;X$

0 NEXT I

0 FRINT "REWIND THE TAFE" .

0 FRINT " -- END OF FPROGRAM --"
0 CLOSE #1

0 CLOSE #2

0 END

DATA FILE PROCESSING
Storing Data on Disk
WBB 4/82

The ATARI 810 Disk Drive stores data on 5-1/4" floppy diskettes. A diskette is formatted into
40 concentric tracks, each with 18 sectors giving a total of 720 sectors. Each sector is 128
bytes long (single density). Therefore, the total storage capacity on each diskette is 92,160
bytes.

The 810 Disk Drive uses a boot file to control the power-up initialization procedure. This
usually means that the Disk Operating System File Management System (DOS FMS) is loaded
into RAM. The DOS FMS is responsibile for allocating the available sectors on a disk as
needed for file storage. The boot file uses 3 of the 720 sectors.

DOS maintains a directory of the files that have been created on the disk up to the maximum
of 64 files. The files are located in the directory by having a unique name and they are
identified by their sequential position in the directory numbered from 0-63. The directory
takes up 8 of the 720 sectors.

DOS maintains a bit map of the sectors that have been allocated for file storage. When DOS
needs to allocate a sector to a file, it uses the lowest numbered free sector as indicated in the
bit map. This is commonly referred to as random access. The bit map takes | of the 720
sectors.

DOS uses 3 of the 128 bytes in each sector to identify the file it belongs to and the next
sequential sector in the file. Therefore, the file storage space available to the user with DOS
2.0S is 707 sectors x 125 bytes = 88,375 bytes.

OPEN

DOS maintains a pointer for each file opened. The pointer is the location in the file the next
I/O command will access. The OPEN command establishes a channel from the token file in
RAM to the 810 Disk Drive. There are eight channels in the system numbered 0-7. The OS
uses 0,6,7 at various times so you should use 1-5. There are four modes for the OPEN
command.

OPEN #1,4,0,"D:FILENAME" opens a file in READ mode. DOS locates FILENAME in the
directory and positions the pointer at the first byte of the file. INPUT#1 or GET #1 are the
only legal commands.

OPEN #1,8,0,"D:FILENAME" always opens a new file in WRITE mode. DOS first searches the
directory for FILENAME and, if it exists, deletes it. DOS then creates FILENAME in the
directory, allocates a free sector as the first sector of the file and position the pointer at the
first byte of that sector. PRINT#1 or PUT#1 are the only legal commands.

OPEN #1,9,0,"D:FILENAME" opens a file in APPEND mode. DOS first locates FILENAME in
the directory. It then allocates a free sector appended to the end of the file and positions the
pointer at the first byte of that sector. Mode 9 is write only, so PRINT#1 or PUT#! are the
only legal commands.

OPEN #1,12,0,"D:FILENAME" opens a file in READ/WRITE mode. DOS locates FILENAME in
the directory and positions the pointer at the first byte of the file. PRINT#l, PUT#!,
INPUT#1, and GET#1 are all legal commands in this mode. However, the output commands
write over the values that are currently in the file so the user should be careful to replace the
exact number of bytes when updating an existing field. It is not possible to append new data to
a file in this mode. Mode 12 can also be thought of as RANDOM ACCESS mode because it is
the only mode that supports the commands NOTE#1 and POINT#1.

CLOSE

The CLOSE command frees the channel from the program to the device. It is always a good
idea in the interest of good programming technique to CLOSE every file that is opened In a
program. However, it is imperative that a file opened in update modes 8 or 9 be closed. If
not, it is probable that the bit map or forward pointers will not be updated correctly. The
results is an error 164, requiring the disk to be reformatted.

PRINT/PUT

The output commands, PRINT#n and PUTi#n, transfer data from the token file to the buffer
for the disk file. When the buffer fills up with 125 bytes, DOS writes the buffer to the file,
allocates another free sector and clears the buffer. Two types of 1/O can be used to write
data to a file; character 1/O or record 1/O.

Character 1/O means that you write data one byte at a time with none of the values

interpreted as control characters. The statement PUT #n,X transfers one ATASCII byte to the
disk file.

Record I/O means that you write data one field at a time with the End of Line (EOL) character
(ATASCII 155) used to delimit the end of the fields. The EOL character is automatically
generated by the PRINT statement. Therefore, to avoid having to put in your own delimiters,
simply transfer each field on a separate PRINT statement. The PRINT statement should
include a semicolon and not a comma (PRINT #1;AS). A comma is interpreted as a tab, causing
10 blank spaces to be inserted in front of your data. The size of the field should be limited to
less than 119 bytes to avoid using reserved memory space on page 6 of RAM.

INPUT/GET -

The input commands, INPUT #1 and GET #1, transfer data from the disk file to the token file.

The data should be read from the file in the same fashion that it was written, character or
record I/0.

Character I/O reads one byte at a time with none of the values being interpreted as control

codes. The statement GET#1,X transfers one ATASCII byte from the disk file to the variable
X.

Record I/O reads one field at a time with EOL (ATASCII 155) used to delimit the end of each
field (INPUT #1,AS). Many fields can be transferred with each INPUT statement (INPUT
#1,AS$,BS,C).

There are three ways to read all the data from the file and exit without an error. If you know
how many fields were written, you can simply read that number of fields. If the number of
fields varies, you can write a special value at the end of the file and check for this value after
each input. If you don't know what's in the file, you should use the TRAP command. When the
end-of-file error 136 occurs, the TRAP will send you to an error routine. The routine should
check that location 195 (error status) does contain a 136, and then CLOSE the file.

NOTE/POINT

NOTE#1,S,B stores the current sector and byte location of the pointer in the variables S and B.
Conversely, POINT#1,S,B moves the pointer directly to the sector and byte specified in the
variables. These commands are used together in mode 12 to provide the user with random
access to the disk file. In general the procedure is NOTE#!,INPUT#1,POINT#1, and PRINT#1.
This should only be done with fixed length records. If you update a 4-byte field with a 3-byte
field, an extra EOL is added to the file and the number of fields is incorrectly incremented by
l. If you update a 4-byte field with a 5-byte field, the next sequential field in the file is
overwritten. Care should be taken to replace the exact number of bytes when updating an
existing field.

DATA FILE PROCESSING
An Example of DISK I/O
WBB/JIB 3/82

The following set of programs sets up and maintains a simple mailing list using the 810 Disk
Drive. The programs provide an example of one method of storing data in data files. The first
program sets up the file by adding records. The second updates the information in the file.
The third prints out the contents of the file.

The key concepts illustrated are opening a data file with the OPEN statement, and writing to
that file using the PRINT#1; statement. In this simple example, only one variable is written at
a time, so no extra data separators are necessary,

A temporary file is used to keep the updated information. When the update is complete, the
temporary file is renamed, and the old file becomes the temporary file. Some error trapping is
provided.

NOADWN-

REM DISKADD
REM WEER/JB 4/82

REM --use this program to create a3 file, or to add new records--

REM the program creates a temporary file, adds records to it,

REM then deletes the permanent file and renames the temporary file

REM so that it becomes the permanent file.

REM KKK 35K X KKK K KK KK 0K KK K K K K 3K KK K K KK KK K K K K 3K KK K 3K 3K K 3K K K K K K 3K K K 3K K 3K 3K K K K K K 3K K 3K K X
FRINT CHR$(125):!REM clear screen

FRINT "THIS FROGRAM ADDS RECORDS"

FRINT "FOR NEW CUSTOMERS."!{FRINT

FRINT "INSERT THE FROFER DISKETTE,"

FRINT "FRESS ‘START’ TO CONTINUE..."

IF FEEK(S3279)<>6 THEN 40!REM wait for start key

REM --set wp variables and filenames--

DIM ID$(9),NAME$(24),ADDR$(24),CITY$(16),STATE$(2),ZIP$(5),PHONE$(12)
DIM FILE1$(146),FILE2%(16)
FILE1$="D!CUSTOMER.DAT"!FILEZ2%$="D!{CUSTOMER.TMP"

REM --open the files--

0 CLOSE #1:!CLOSE #2!REM close any currently open files

0 TRAF 200:0FEN #1,4,0,FILE1$!TRAF 40000:REM check for ‘rio file found’ error
0 OFEN #2,8,0,FILE24!REM if ro error, open write file

0 GOTO 300:REM skip over error routire

0 REM 5K K KKK KK K XK K KK K K K K K K KA K K K K K K K K K K K K K XK K K MK K KK XK K K KK XK K K KK KK KK K KK K X KX K
0 REM --error routire--

3 REM if the file is mot on this disk thern create orne, or replace disk

0 FRINT CHR$(253);"CUSTOMER FILE NOT ON THIS DISK,":!FRINT !REM sound buzzer
0 FRINT "FRESS ‘START’ TO TRY ANOTHER DISK-

20 FRINT "FRESS ‘SELECT’ TO CREATE ON THIS DISK-

0 IF FEEK(S3279)=6 THEN 100:REM if start is pressed, try aqain

0 IF FEEK(53279)<>5 THEN 230!REM check for select

0 CLOSE #1:0FEN #1,8,0,FILE1$!REM if creatirq, open write file

0 FRINT #1:"ENDOFFILE"!REM write file with no records

0 CLOSE #1:GOTO 100:REM rmow that there is a file, Qo try aqain

0 REM XXX KX K KK K KK K K K KK KK K XA K K K XK K K XK K K KKK K KK K KK K K K KK K KK K K K KK XK K KK K KK XK KK XK K K K
0 REM —-transfer existing records to new file--

0 INFUT #1,ID$%$!REM get record rnumber

S5 IF ID$="ENDOFFILE" THEN 400!REM last record, Qo to add-record routine

0 PRINT #23ID$!REM tramsfer number to new file

20 FRINT "TRANSFERRING TO TEMF FILE...";ID$

0 INFUT #1,NAME$IFRINT #2;NAMES$
0 INFUT #1,ADDR$:FRINT #2;ADDRS$

S0 INFUT #1,CITY$IFRINT #2;CITY$

0 INFUT #1,STATE$!FRINT #2;STATE$
0 INFUT #1,ZIF$:FRINT #2;ZIF$

0 INFUT #1,FHONE$:FRINT #2;FHONES$
0 GOTO 300!REM qget rext record

T OREM XK KK XK K K K KKK XK K KK KK K KK XK KK K K KK KK XK K K KK 3K K KKK K K KK 3K KK K K K K 3K K K K 3K K XK K K K XK X

6 REM --3dd mew records to file--
0 FRINT CHR${125)"SPECIFY RECORD TO ADD";CHR$(29)!REM (mMove cursor down)

10 FRINT "ID NUMEER OR ‘END’.+.."$!INFUT ID$:!IF ID$="END" THEN 600
20 FRINT "NAME..."}!INFUT NAMES$

3 FRINT "ADDRESS...";!INFUT ADDR$

0 FRINT "CITY..."} 3 INFUT CITYS$

S FRINT "STATE...";!INFUT STATES$

0 PRINT "ZIF+.s"3tINFUT ZIFS$

S FRINT "FHONE...";{INFUT FHONES$

0 FRINT (FRINT "FRESS ‘SELECT’ TO ADD RECORD4+.."

0 FRINT "FRESS ‘OFTION’ TO RE-ENTER..."

0 IF FEEK(33279)=3 THEN 400:!REM option is pressed, re-enter record

0 IF FEEK(33279)<:x3 THEN 470:!REM check for select hey

T OREM XXX KKK KK KKK K K XK K K KK K K XK KK K K K K K K K XK K XK KK K XK K KK 3K 3K K 3K K K KK K K K KK KK K XK K K X K K K X

490 REM)K)KXX)K)K)K)K)KXXXX)KXX)K)K)K)K)K)K)KX)K)K)K)K)K)KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
495 REM ~--write new record to temporary file--

S00 FRINT #23ID%

510 FRINT #2;NAMES$

520 FRINT #2;ADDR$

530 FRINT #23CITY$

540 FRINT #2;STATES$

550 FRINT +#23ZIF$

560 FRINT #2;FHONES$

570 GOTO 400:REM Qo qet more new records

580 REM XX)K)K)KX)KXX)K)KX)‘(X)KXXX)(XX
590 REM --closing routine--

600 FRINT #2;"ENDOFFILE"!REM write end—-of-file marker

610 CLOSE #1:!CLOSE #2

620 FRINT CHR$(125);"DELETING OLD FILE..."

630 XIO 33,#%1,0,0,FILE1$:REM delete old file

640 FRINT FRINT "RENAMING NEW FILE..."

650 XIO 32,#%1,0,0,"D!CUSTOMER. TMF,CUSTOMER.DAT"

660 FRINT (FRINT "--END OF FROGRAM~--"

670 END

ot SWK -

REM DISK UFDATIE

REM WBB/JE 3/02 \
REM --use this program to change or delete existing records in the file—-
REM read records from permanent file, updote temporary file,

REM then delete old file and rename new orne to be rew permanent file.
FEEEME 0K KKK KK KK KKK KK 3K K 3K K K KK 3K KK K K K K 3K K 3K KK 3K 33K K KK 3K 3K KKK 03K 5 0K K 0K MW 0 w0 o o s e
FRINT CHR$(125){REM clear screer

FRINT "THIS FROGRAM CHANGES OR DELETES"

FRINT “EXISTING RECORDS IN THE DATA FILE.":!FRINT

FRINT "FRESS ’‘START’ TO CONTINUE..."!FRINT

IF FEEK(S53279)<x6 THEN S0!REM wait for start key

REM set up variasbles and file names

DIM ID$(?),NAME$(24),ADDR$(24),CITY$(16),STATE$(2),ZIF$(5),FHONES$(12)
DIM FILE1$(16),FILEZ2%(16)

FILE1$="D!CUSTOMER.DAT" {FILE2%="D!CUSTOMER.TMF"

REM -- opern the files --

0 CLOSE #1:!CLOSE #2:!REM close any files which are open

0 TRAF 200:0FEN #1,4,0,FILE1$!TRAF 40000:REM trap file-riot-found error

0 OFEN #2,8,0,FILE2%!REM if ro error, open write file

0 GOTO 300:REM skip error routire

0 REM KKK KKK KK K K KKK KK K K K K KK KK K K K K K K K K K K K KK K K KK K K KK KKK K K K K K K K K K K K K K 3K K K K
0 REM -- error routine --

0 REM if file is rmot on this diskette, try arother one

0 FRINT CHR$(2353);"CUSTOMER FILE NOT ON THIS DISK,":FRINT !REM sound buzzer

0 FRINT "FRESS ‘START’ TO TRY ANOTHER DISHK..."

0 IF FEEK(S3279)<*6 THEN 2Z20!REM wait for start key

0 GOTO 100:REM try z3qa3in

0 REM XK K0 K KK KKK K K K KK K KK K KK 3K K KK KKK K K K KK KK K KK K KK KK KKK KK K KK KK KK K K K K K 3K K K X
0 REM -- read 3 record from the old file --

0 INFUT #1,ID$:REM qQet record number

S IF ID$="ENDOFFILE" THEN 400:!:REM last record, Qo to closirq routirne

0 INFUT #1,NAME$,ADDR$,CITY%,STATE$,ZIF$,FHONE$!REM read rest of record
5 REM -- display the record --

0 FRINT CHR$(125)3"DATA IN OLD FILE";CHR$(29)!REM (move cursor down)

0 FPRINT “ID",ID%$

S FRINT "NAME",NAME$

0 FRINT "ADDRESS",ADDR$

S FRINT "CITY",CITY%

0 FRINT "STATE",S5TATES$

S FRINT "ZIP",ZIF$

0 FRINT "FHONE",FHONES$

0 FRINT (FRINT "FRESS ‘OFTION’ TO MODIFY RECORD-"

S FPRINT "FRESS ‘SELECT’ TO KEEF RECORD AS IS-"

0 FRINT "FRESS ‘START’ TO DELETE RECORD-"

0 IF FEEK(53279)=6 THEN 300!REM qget another record, dor’t save this orne
1 IF FEEK(5327%9)=5 THEN S003REM a3dd this record to the rew file

2 IF FEEK(53279)<>3 THEN 390:!REM check for option key

S OREM KK KKK K KK K K K K K KK KK KK KK KK K XK K XK K KK KK K KK K 3K KK KK K KK KK K K K 3K KK 3K K 3K 3K 3K 3K K 3K 3K 3K X K K
7 REM ~- modify data in record --

0 FRINT (FRINT "ENTER NEW DATA FOR RECORD":!FRINT

0 FRINT "ID NUMEER..."$SINFUT ID$

0 FRINT "NAME...";{INFUT NAMES$

0 FRINT "ADDRESS...";!INFUT ADDR$

0 FRINT "CITY..."3INFUT CITYS$

0 FRINT "STATE..."; !INFUT STATES$

0 FRINT "ZIF..."3 INFUT ZIF$

0 FRINT "FHONE..."} ! INFUT FHONES$

0 FRINT (FRINT "FRESS ‘SELECT’ TO ADD RECORD..."

S5 FRINT "PRESS ‘OFTION’ TO RE-ENTER..."

0 IF FEEK(53279)=3 THEN 400:REM re-enter the data

1 IF FEEK(53279)<>5 THEN 490:!REM check for select key

SOREM 00K KK KKK K KKK K KK K XK K K K KK K K K K KK KK KKK KK 3K K KK 3K KK 3K K 3K 3K K K 3K K 3K KK K 3K 3K 3K K 3K 3K K XK

AP REM X000 KKK KK KK KK KK KK KKK KK KK K K K K 3K K 3K K K KK 3K 3K 5K 35K 3K K 3K 3K 3 5K 3K 3K K 33K 3K 3K 3K K 3K 3K K K 3K K oK K oK K
496 REM -- add the rew record to the temporary file —--

S00 FRINT #2;ID$

510 FRINT #2;NAMES$

920 FRINT #2;ADDRS$

530 FRINT #23CITYS$

540 FRINT #2;STATE$

550 FRINT #23ZIF$

560 FRINT #2;FHONES$

570 GOTO 300:REM Qo read another record from old file

SEO REM 050K KK KK K MK K K K KKK K K K KK XK KK K K KK KKK K 3K 3K 3K KK K 3K 3K K K K K 3K 3K 3K 3K 3K 5K 3K 3K 3K 3K 3K K K K
590 REM -- closing routine --

595 REM write end-of-file marker, close files,

996 REM delete o0ld file and rename new one to permanent file.
600 FRINT #2;"ENDOFFILE"

610 CLOSE #1:CLOSE #2

620 FRINT CHR$(125) ;"DELETING OLD FILE..."

630 XIO 33,%1,0,0,FILE1$:REM delete old file

640 FRINT "RENAMING TEMF TO FERMANENT FILE..."

650 XI0 32,%1,0,0,"D:CUSTOMER. TMF,CUSTOMER .DAT"

660 FRINT (FRINT "-- END OF PROGRAM --"

670 END

1

2R
3R
6 R

REM DISK FRINT

EM WEEB/JEB 3/82

EM ~——use this proaram to print out the customer liast from the file--

EEM S K 3K KK KK 3K KK KK 3K K K KK 3K KKK K K KK K 3K K K K K K 3K K K 3K K 3K K 3K 3K 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K K K 3K K K 3K 3K K KK K
FRINT CHR$(125){REM clear screen

FRINT "THIS FROGRAM PRINTS ALL RECORDS"

FRINT "FROM THE DATA FILE ON A FRINTER."!FRINT

FRINT "FRESS ‘START’ TO CONTINUE..."!FRINT /

IF FEEK(S327?2)<>6 THEN S0!:REM wait for start hkey

REM set up variables and file names

DIM ID$(?),NAME$(24),ADDR$(24),CITY$(16),STATE$(2),ZIF$(5),FHONE$(12)
DIM FILE1$(16),FILEZ2$(1646)

FILE1$="DICUSTOMER .DAT"{FILEZ2%=""F3$"

REM -- open the fileg --

CLOSE #1:!CLOSE #2!REM close any files which are open

TRAF 200:0FEN #1,4,0,FILE14:TRAF 40000:!REM trap file-riot-found error
TRAF 250:0FEN #2,8,0,FILE2$!TRAF 40000:REM trap prirter-riot-ready error
GOTO 300:REM skip error routine

REM 30K 30K K K K K K K XK K KK K K K K K K XK KKK KK K KK KK K K K KK K KK 3K 3K 3K K 3K K KK 3K 3K K K K K KK K K XK K XK K K K XK
REM -- error rouwtine, file rot found --

FRINT CHR$(253);"CUSTOMER FILE NOT ON THIS DISK,"!FRINT (REM sound buzzer

FRINT "PRESS ‘START’ TO TRY ANOTHER DISK..."

IF FPEEK(S3279)< 6 THEN 220!{REM wait for start key

GOTO 100:REM try a3qgain

REM X 5K 3K K K K K KK XK K XK K K KKK K K KKK K KK KK K K KK K XK KK K K XK KKK KK K K K KK K K K KK K K K K K K K K K K
REM --error routirne, printer rnot ready--

FRINT CHR$(253);"FRINTER NOT READY,":!REM sound buzzer

FRINT "PRESS ’‘START’ TO TRY AGAIN..."{FRINT

IF FEEK(33279)<x6 THEN 270!REM wait for start key

GOTO 100:REM try aqain

REM 305 K K KK K 3K K XK K K K KK K K XK K K K KK K K K K KK K K K KK K K KK K K KKK K KK K K K KK K K 3K K K 3K K KK K K K X K X
REM -- read 3 record from the disk file --

INFUT #1,ID$!REM get record number

IF ID$="ENDOFFILE" THEN S00:REM last record, Qo to closing rowutine
INFUT #1,NAME$,ADDR$,CITY$,STATES$,ZIF$%,FHONE$!REM read rest of record
REM -- display the record --

FRINT CHR$(125);"DATA IN FILE";CHR%$(29)!REM (move cursor down)

FRINT "ID",ID$

FRINT "NAME",NAMES$

FRINT "ADDRESS" ,ADDR%

FRINT "CITY",CITY%

FRINT "STATE",STATES$

FRINT "ZIF",ZIF%

FRINT "FHONE",FHONES$

FRINT "FRESS ‘SELECT’ TO FRINT RECORD..."

FRINT "FRESS 'START’ TO READ NEXT RECORD..."

IF FEEK(33279)=46 THEN 300:REM get arother record

IF FPEEK(S53279)<>5 THEN 3%90:!REM check for select ley

FEM 350K 3K XK K 5K K K KK KK K KK XK KKK KK K KK K K K KK KKK KK KK K K K KK K KK K K 3K K K 3K K K K K XK K XK K K XK K K X K
REM -- print out record on printer --

FRINT #2;ID¢%

FRINT #2;NAMES$

FRINT #2;ADDR$

FRINT #23;CITY$

FRINT #2;STATE%

FRINT #2:ZIF%

FRINT #2;FHONES$

GOTO 390:REM Qo wait for ok to read mew record

REM K 3K X XK K X XK K K XK KK K K K K K K K K K K K K K K XK K K K K KK K XK K K K XK KK K K K KK K 3K K K K KK K XK KK K K K X K K X
REM -- closing routine --

CLOSE #1:CLOSE #2

FRINT CHR$(125) tREM clear screen

FRINT "-- END OF FROGRAM --"

END

RANDOM ACCESS with DOS 2.0S
wB 10/82

A. CONCEPT

There are two methods of accessing a data file stored on the 810 Disk Drive. Sequential
access is characterized by DIRECT access to the data file, and is accomplished by searching
through a data file from beginning to end, looking for a desired record. Random access is
characterized by INDIRECT access to the data file by way of an index file, looking for a key
which points to the desired record's location in the data file. Simply put, random access is the
ability to read a particular record in a file without having to first read every previous record
in the file.

B. ADVANTAGES

1. Speed: Because an index file is much smaller than the data file, and usually resides in RAM,
rather than on the storage device, the time to locate a record using random access is a mere
fraction of sequential access time.

C. DISADVANTAGES

l. Programming techniques are more difficult.

2. Disk storage space may be required for the index file.

3. Using the DOS COPY command requires that the index file be rebuilt.

D. METHODS

Random access is achieved by creating an INDEX for a data file. An index entry consists of a
key and pointer for each record in the data file. Entries are kept in ascending order of the
key's ATASCII value. The key is some small part of the whole record such as LAST NAME or
ACCOUNT NUMBER. The pointer is the actual storage location on the disk (sector and byte
number) of the record.

l. Index file created and maintained in the application program:

At the beginning of the program, build the index file by reading each record in the file and
saving the key and pointer in a program variable. The advantage with this method is the
ability to easily define a new key. The disadvantage is the time (up to several minutes)
required to read through the file and create the index.

2. Index file maintained on the disk:

Store the index file as a unique file on the disk which can be read into any program that needs
to randomly access the data file. The advantage is that only an insignificant delay is required
at the beginning of the program to load the index file. The disadvantage is the requirement
for more complicated programming to update the index file whenever the data file is updated.

E. ATARI 8K BASIC

Random access capability is provided in the ATARI 8K BASIC programming language with the
NOTE and POINT commands. The NOTE command identifies the location on the disk (sector
and byte number) where the next 1/O operation will occur. The POINT command is used to

position the pointer to a desired location on the disk where the next I/O operation should
occur.

The following rules should be observed when programming random access applications in
ATARI 8K BASIC. '

1. The data file must be OPEN in mode 12 (OPEN #1,12,0,"D:filename").

2. Additional data cannot be appended to the end of a file opened in mode 12.

3. You can only do random access (POINT) to a sector that is allocated to the file.
F. ATARI MICROSOFT BASIC

Random access capability is provided in the ATARI Microsoft BASIC programming language
with the NOTE and AT commands. The NOTE command in Microsoft is exactly the same as in
8K BASIC. The AT (sector, byte) command can be added to either an INPUT or PRINT
command, to cause the I/O operation to occur at a desired location on the disk.

The following rules should be observed when programming random access applications in
ATARI Microsoft BASIC.

L. The data file must be opened in UPDATE mode (OPEN #1,"D:filename" UPDATE).
2. Additional data cannot be appended to the end of a file opened in UPDATE mode.

3. You can only do random access (AT) to a sector that is allocated to the file.

G. EXAMPLE PROGRAMS

The programs on the following pages provide simple examples of random access to a data file
in either ATARI 8K BASIC or ATARI Microsoft BASIC. The first program is used to create
records in the data file named DI:TESTDATA. Each record consists of first name, last name,
and phone number. The first two bytes of the file are used to store the number of records in
the file in lobyte/hibyte format. The second program provides random access inquiry into the
data file. The program variable used for the index file in INDEXS. The key field is the last
name. The program searches sequentially through the index looking for a match to the desired
last name, and then points to the actual data record.

This is not the ultimate random access method, but it does provide substantial speed
improvements over sequential access directly to the data file. The inquiry program could be
improved by sorting INDEXS and using binary search techniques to locate a desired key.

10

20

)
A,

22

23

100
110
120
130
140
200
210
22

221

222

223
230
231
300
310
320
330
331
340
341
342
350
35

352
353
360
400
410
420
430
431
432
440
450

REM | = U T s T
REM This program adds records to the file D1:{TESTDATA,
REM Each record has the fields FIRST NAME, LAST NAME, FHONE #
REM The first 2 bytes in the file contain the # of records in
REM the file in the format lobyte, hibyte.

REM SETUF

GRAFHICS 0!FOKE 82,0

DIM FILE$(20),FIELD1$(20),FIELD2%¢(30),FIELD3%(12)
FILE$="D1:TESTDATA"

RECS=0

REM OFEN FILLILLE=E

TRAF 230

CLOSE #1:0FEN #1,4,0,FILE$:TRAF 40000

GET #1,LO!GET #1,HIIRECS=LO+HIX256

CLOSE #1:!0FEN #1,9,0,FILE%

GOTO. 300

CLOSE #1:0FEN #1,8,0,FILES$

FUT #1,0:FUT #1,0!REM 0 RECORDS

REM “DD RECORDS

? CHR$(125)"FRESS SELECT TO END THE PROGRAM4+.+"
? "PRESS START TO ADD ANOTHER RECORD..."

IF FEEK(S3279)=5 THEN 400

IF PEEK(S3279)<>6 THEN 330

? CHR$(125) :"FIRST NAME...";{INFUT FIELD1%

" LAST NAME..."} tINFUT FIELDZ%

" FHONE #..."; !INFUT FIELD3%
$¥13FIELDLS

$1FIELDZ¢$
? ¥13FIELD3%

RECS=RECS+1

GOTO 300

REM D

CLOSE #1

HI=INT(RECS/256) {L0=RECS-HIX2564

OFEN #1,12,0,FILES$

FUT #1,L0'FUT #1,HI

CLOSE #1

? CHR$(125);"END OF FROGRAM"
END

JJ Y I d

10 REM S AUR T Rl

20 REM This proqram creates an index file irm RAM (INDEX®)
21 REM and 2llows random sccess to records by last rame.
100 REM SETULUF

110 CRAFHICS 03FOKE 62,0

120 DIM FILE$(20),FIELD1$(20),FIELD2%$(30),FIELD3%$(12)

130 FILE$="D1:TESTDATA"

200 REM OFEN FILLE

220 CLOSE #1:0FEN #1,12,0,FILES$

230 GET #1,LO0!GET #1,HIIRECS=LO+HIX256

240 IF RECS=0 THEN ? "NO RECORDS IN THE FILE'":GOTO 900

250 7 "STANDEY WHILE THE INDEX IS BUILT..."

300 REM LD IENDE X

310 DIM INDEX$(RECSx33):REM 30 FOR LAST NAME + 2 FOR SECTOR + 1 FOR EYTE
311 DIM FAD$(33)IFADS=" YIREM used to blanmk fill
312 DIM DUM$(33)3IREM DUMMY VARIAELE

320 FOR I=1 TO RECS

330 NOTE. #1,SECTOR,EBYTE

331 INFUT #1,FIELD1%$,FIELDZ2%,FIELD3%

332 HI=INT(SECTOR/256){LO=SECTOR-HIX25¢

340 DUM$=FIELDZ$:!DUMSC(LEN(DUMS$)+1)=FAD$

341 DUM$(31)=CHR$(L0O) :DUM$(32)=CHR$ (HI) :DUM$(33)=CHR$ (EYTE)
350 INDEX$(LEN(INDEX$)+1)=DUM%

351 NEXT I

400 REM ILNDEX SEalCH

410 ? CHR$(125)3"ENTER LAST NAME OR ‘END’..."}$INFUT DUM$:IF DUM$="END" THEN 900
411 DUMSC(LEN(DUMS)Y+1)=FAD$IFIELDZ2$=DUM%

420 FOR I=1 TO RECS

421 IF INDEX$(Ix33-32,Ix33-3)=FIELD2% THEN 500

422 NEXT I

430 ? "MATCH NOT FOUND!"!FOR I=1 TO 250:NEXT I:{GOTO 400

S00 REM KaeaNDOHM aCESS TO RECORD
510 FOF

520 LO=ASC(INDEX$(IX33-2)){HI=ASC(INDEX$(IX33-1))IEYTE=ASC(INDEX$(IX33))
921 SECTOR=LO+HIXZ256

530 FOINT #1,SECTOR,EYTE

531 INFUT #1,FIELD1%$,FIELD2%,FIELD3%

932 7? "FIRST NAMESI";FIELD1$

933 7 " LAST NAME:!"3;FIELDZ2%

534 °? " FHONE #:"}FIELD3%$

540 7 7 "FRESS START WHEN DONE..."

541 IF FEEK(S3279)=6 THEN 400

542 GOTO 941

900 REM EiND

210 CLOSE #1

920 ? CHR$(1235);3;"END OF FROGRAM."

?30 END

10
20
”.

22

23

100
110
140
200
210
220
221
222
223
230
231
300
310
320
330
331
340
341
342
350
391
352
333
360
400
410
420
430
431
432
440
450

REM EE el N 0 I O e R O e

REM This proaram adds records to the file D1!TESTDATA.
REM Each record hos the fields FIRST NAME, LAST NAME, HONE »
REM The first 2 bytes in the file contain the rumber of records in
REM the file in the format lobyte/hibyte.

REM SEETT L

GRAFHICS 0:FOKE 82,0

RECS=0

REM MDFEZie F XL

ON ERROR 230 '

CLOSE *#1:0FEN #1,"D!TESTDATA" INFUT:!ON ERROR 0

GET #1,LO!:GET #1,HItRECS=L0O+HIX254

CLOSE #1:!0FEN #1,"DITESTDATA" AFFEND

GOTO 300

CL.LOSE #1!0FEN #1,"DITESTDATA" OUFUT

FUT #1,0FUT #1,0:REM 0 RECORDS

REM Al RIECORDS

FRINT CHR$%(125);"FRESS SELECT TO END THE FROGRAM..."
FRINT "FRESS START TO ADD ANOTHER RECORD .+ ."

IF FEEK(S3279)=5 THEN 400

IF FEEK(S3279)<x6 THEN 330

FRINT CHR$(125); INFUT "FIRST NAME...",FIELD1$

INFUT " LLAST NAME...",FIELDZ2%

INFUT ¢ FHONE ®...",FIELD3%

FRINT #1,FIELD1%

FRINT #1,FIELDZ2$

FRINT #1,FIELD3%

RECS=RECS+1

GOTO 300

REM =i e

CLOSE 41

HI=INT(RECS/256) L0=RECS~HIX256

OFEN #1,"DITESTDATA" UFDATE

FUT #1,L0:FUT #1,HI

CLLOSE #1

FRINT CHR$(125)3"END OF FROGRAM"
END

10 REM (IS SR T o I e G L T g

20 REM This proqgram creates an index file in RAM (INDEX$) and allows
21 REM random access to records by last name.

100 REM T EZ W=

110 GRAFHICS 0:FOKE 82,0

200 REM Y= Foaed OO0 =

220 CLOSE #U0OFEN #1,"DITESTDATA" UFDATE

230 GET #1,L0!GET #1,HIIRECS=LO+HIX254

240 IF RECS=0 THEN FRINT "NO RECORDS IN THE FILE'":COTO 900
250 FRINT “STANDEY WHILE THE INDEX IS EBUILT..."

200 REM == 0 0 T i OV e T

310 OFTION EASE 1! DIM INDEX$(RECS,3)!REM KEY/SECTOR/EYTE
320 FOR I=1 TO RECS '

330 NOTE #1,SECTOR,EYTE

331 INFUT #1,FIELD1%,FIELDZ2%,FIELD3%

340 INDEX%(I,1)=FIELDZ2%

341 INDEX$(I,2)=STR$(SECTOR)

342 INDEX$(I,3)=STR$(EYTE)

350 NEXT I

400 REM TR ED 2 SE O

410 FRINT CHR$(125);

411 INFUT "ENTER LAST NAME OR ‘END’.,.."$FIELD2%$:!IF FIELDZ$="END" THEN 900
420 FOR I=1 TO RECS

421 IF INDEX$(I,1)=FIELD2% THEN 500

422 NEXT I

430 FRINT "MATCH NOT FOUND!"!FRINT!FRINT "FRESS START TO CONTINUE..."
431 WAIT 53279,7,6

432 GOTO 400

500 REM B0 gt il U200 07D it o W e R it S T Fo b L2 e O
910 SECTOR=VAL (INDEX$(IT,2)) tBEYTE=VAL CINDEX$(I,3))

930 INFUT #1,AT(SECTOR,EBYTE) FIELD1%,FIELD2%,FIELD3%

532 FRINT “FIRST NAME!"IFTIELD1%

333 FRINT " LAST NAMEI"FIrI D2%

534 PRINT OV FHONE #:"3FIELD2%

940 FRINT FRINT “"FRESS START WHEN DONE..."

941 WAIT 53279,7,6

542 GOTO 400

00 REM =i

?10 CLOSE #1

P20 FRINT CHR4$(125);"END OF FROGRAM."

230 END

Atari, Inc.
1212 Crossman Avenue
P.O. Box 61657
Sunnyvale, CA Q4028

Dear Atari Customer:

Here 1s a further procedural list for DEMOPAC 2 concerning creating data files on
cassette,

The program called CASSETTE INIT dces only one thing: put blanks on a tape for
100 records. This 1s done because it’s not possible to add to a data file on cass=atte
tzpe, once the file has been finished. This program gets around that by sestting up
blank files, Then, the files can be changed to names, addresses, etc, You will only
rneed to use this program once for every 100 entries you have.

The program called CASSETTE UFDATE is the main program, which adds, changss or
deietes records,

The program called CASSETTE PRINT is only used if you want to print out your
records on a printer,

Iv Type in CASSETTE INIT and CSAVE it on a tape (from now the tape the
programs are saved on will be called the "Program Tape"), Type NEW and then
type CAESETTE UPDATE and CSAVE it on the sams tape, Dedde whathsr you
want CASSETTE FRINT or not. If you do, type NEW and then type this program
in and CSAVE it to the same tape.

Z, CLCAD CASSETTE INIT into your computer.
2y Remove the Program tape and insert a blank, rewound tape (which will be
called the "DCata Tape") into your recorder, (You may use the other side of the

Program Tape, if you wishi)

4, Type RUN and press RETURN (the recorder will beep twice, and then press
RETUEXN again),

Sy CASSETTE INIT will create 100 blank records on the Data Tape.
¢ CLOAD CASSETTE UPDATE into your computer. Type RUN. The program
will say

FEEPARE TAPE FOR READING,

PRESS 'START’' TO CONTINUE...

7. Remove the Program Tape and insert the Data Tape., Rewind it to the
besginnming.

2, Press RETURN after the recorder be=ps twice.

9. The program will then say

READING DATA FORW (@ number)

over and over until 100 records have been read. The computer is loading the
blanks (in the future it will be names, addresses, etc.) from the tape into its
RAM.

10, The program will then say

ITEM (1-100)X0 TO END)...?
meaning that you are to type the number of the first record you want to add, OR
type O if you want to end the program. The first time you do this, you should
type 1, since that’s the first record you want to add.

11, The program will then say
NAME?
and you tyne in the first name you want to record.

From herg on, you simply follow the directions. The next time you want to add
some names, just follow the procedures from item #&. If you want to use CASSETTE
FRINT, simply type it in (or lead it in if you have saved it), load the Data Tape,
rewound, and then RUN the program.

If you have further questions or comments, feel free to write or call our toll-free
2

e
numbear (20MAT72-1404 (inside California), (200)535-5252 (Hawall and Alaska) or
Sincerely,

Jane Q. Sokolow

Product Spe=alist
Customer Esliations

