STRINGS AND FORMATTING

Some information on and examples of string handling and formatting

options for the ATARI QOO/SOOTM Home Computer System.

1) String Handling

2) String Array Emulation

3) Double-subscript String Arrays
4) Inverting Characters

5) Formatting Options

ATARI INC.
CONSUMER PRODUCT SERVICE
PRODUCT SUPPORT GROUP
1312 Crossman Avenue
Sunnyvale, CA 94086

(800) 672-1404 inside CA
(800) 538-8543 outside CA

DEMOPAC #1
Rev.2 9-82 JB

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari, Inc.
("Atari") without warranty of any kind. Any statements concerning the capabilities or utility
of the computer programs are not to be construed as express or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or entity with
respect to any claim, loss, liability, or damage caused or alleged to be caused directly or
indirectly by the computer programs, contained herein. The entire risk as to the quality and
per formance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However, because of
ongoing improvements and updating of our computer software and hardware, Atari cannot
guarantee the accuracy of printed material after the date of publication and disclaims any
liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical Support,
Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue, Sunnyvale, CA 94086.

STRING HANDLING
ATARI 8K BASIC vs. ATARI Microsoft BASIC
JB 3/82

The major difference between ATARI Microsoft and ATARI 8K BASIC is in the handling of string
variables. Here is an overview of the ATARI 8K approach to strings, and a comparison with the
ATARI Microsoft method.

It is often necessary to split strings into pieces called substrings. In ATARI Microsoft BASIC,
this is.accomplished with special functions, MID$,RIGHT$ and LEFTS. In ATARI 8K BASIC,
strings are split easily by using a subscript on the string variable. For example, A$(5,10) results
in a substring which starts at the fifth character of AS$ and ends at the tenth character. If only
one number is given in the subscript, the substring will start with that character and end with the
last character of the string.

Here is a table of the ATARI 8K equivalents of ATARI Microsoft string functions:

ATARI Microsoft: ATARI 8K:
MIDS(AS,X,Y) AS(X,Y)
LEFTS(AS,X) AS(1,X)

RIGHTS$(AS,X)

AS(LEN(AS)-X+1)

The function LEN(AS) is the same in both types of BASIC, and returns the length, or number of
characters (including blanks) of the string AS. This function is also used in concatenation of
strings, that is, putting two strings together into one string. In ATARI Microsoft, concatenation
is accomplished with a plus sign. In ATARI 8K, the second string is concatenated to the first by

making it a substring which starts just after the last character. Here is an example of two types
of concatenation in both BASICs:

. ATARI Microsoft: ATARI 8K:
AS=AS$+BS AS(LEN(AS)+1)=BS$
C$=A$+B$ C$=A$

CS(LEN(CS)+1)=BS

In ATARI Microsoft, the subscript on the string indicates a string array, which is handled just
like a numeric array. In ATARI 8K BASIC, however, a string array is kept in a very long string,
which is put together using concatenation, and taken apart with string splitting, as shown above.
Here is an example of a simple string array in both types of BASIC:

ATARI Microsoft:

AS(1)="AAA"
AS(2)="BBB"
AS(3)="Cccc"

ATARI 8K:

ARRAYS$="AAABBBCCC"
ARRAYS(1,3)="AAA"
ARRAYS(4,6)="BBB"
ARRAYS(7,9)="CCC"

When usin% the long-string method, it is often helpful to make all of the substrings in the array
e

the same

ngth, so that it is easy to calculate the position in the array. This can be done by

padding the smaller substrings with blanks. Remember, blank spaces count in the length of the

string.

R
K
R
R
N
N
N

NOCADWN -

EM STRINGARRAY

EM WBE/JR 3/082

EM A demonstration of the wse of 8 long-string variable

EM to emulate a string array,

EM This example keeps a3 list of customer names.

EM It will handle up to 100 rames, each up to 30 characters long.

EL M 20000 0000000 K KK K KK K K KKK K K KKK K KKK K K K 3K 3K KKK K 3K K K K 3K 3K 3K 3K K 3K 5K K 3K 3K K 3K K 2K 3K 3K K K 3K 3K 3K K 3K K K K
DIM ARRAY$(100x30) ,NAME$(30) ,ELANK$(30),YN$(1)

REM array$ holds 100 names

REM name$ is uwsed to accept irmput rame

REM blank$ is used to blank-fill, so that lerngths are even

REM yn$ accepts 4es/rio answers

BELANK$=" "!{REM initiaslize 30-space string
FOR I=1 TO 100!REM initialize lona-string to reserve memory space
ARRAYS$ (Ix30-29,I%x30)=EBELANKS
NEXT I!REM fill w/spaces—-length of arrays is row 3000

REEEM KKK KK KK KKK KKK K K K K KK 3K 3K KK K KK 3K 3K 3K 3K K 3K K 3K 3K K K 3K 3K K 3K 3K K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K 3K K 3K 3K K XK
REM -qet customer rumber and verify that it doesn’t already exist

FRINT (PRINT "CUSTOMER NUMEER (1-100)(0=END)"}

INFUT I

IF I=0 THEN SO00!REM if it‘s the end, go prinmnt the list

IF ARRAY$(IX30-29,I%30)=ELANK$ THEN 400:REM if new rumber, Qo get name
FRINT "CUSTOMER NUMEER "3I;" IS ASSIGNED TO:"

FRINT ARRAY$(Ix30-29,Ix30)

FRINT (REM if rwumber is already in use, print out rnumber and rame
FRINT "DO YOU WISH TO REPLACE WITH NEW NAME (Y/N)'}

INFUT YN%

IF YN$="N" THEN 100

IF YN${="Y"™ THEN 170

REM if you want to replace it or it’s a new rnumber, go ahead

REM 550K 5K K XK KK 3K 3K KK 3K K K K K KK K KKK K K K K K KK 3K K K KK K K 3K 3K 3K 3K KK 3K K K KKK 3K 3K 3K 3K K 3K 3K 3K K 3K K 3K 3K K
FRINT "CUSTOMER NAME "}

INFUT NAME$!REM et riew rniame

REM fill up rname with blanks, in case it is less than 30 characters
NAMES$ (LEN(NAME$)+1)=ELANKS$

REM concatenate new name into array

ARRAY$ (IX30-29,I%x30)=NAME$

GOTO 100:REM Qo qget the rext one

FEEM 20K KK K KKK K 3K KK K K KKK 3K K K 3K KK K K K 3K K K 3K 3K 3K K 3K 3K 3K K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K K 3K 3K 3K 3K XK K
REM print out the customer list

FRINT "DO YOU WANT TO FRINT THE CUSTOMER"

FRINT " LIST ON THE SCREEN (Y/N) "

INFUT YN$

IF YN$="N" THEN 600

IF YN$<:>"Y" THEN S00

REM if the answer is 4yes, qo shead and print on screen

FRINT "NUMEER","CUSTOMER NAME" {PRINT

FOR I=1 TO 100

IF ARRAY$(IX30-29,I%30)<>BLANK$ THEN FRINT I,ARRAY$(IX30-29,Ix30)
NEXT I

FRINT (FRINT "xx END OF LIST xXxX":FRINT

REM 30000 KKK K KK KKK K KK KKK K KK K K KK K 3K KK 3K K KKK K KK K K KK 3K KK 3K 3K 5K K K 3K 3K 3K 3K K K 3K 3K 3K K K 3K K K K
FRINT "DO YOU WANT TO FRINT THE CUSTOMER"

FRINT "LIST ON THE FRINTER (Y/N)"?

INFUT YN$

IF YN$="N" THEN END

IF YN$<="Y" THEN 600

REM if the answer is 4yes, Qo shead and prirmt om printer

LFRINT "NUMEER","CUSTOMER NAME":LFRINT

FOR I=1 TO 100

IF ARRAY$(Ix30-29,I%30)<>BELANK$ THEN LFRINT I,ARRAY$(IX30-29,I%x30)
NEXT I

LFRINT (LFRINT "xx END OF LIST xxX"!LFRINT

END

DOUBLE-SUBSCRIPTS
Emulating Two-Dimensional String Arrays
With ATARI 8K BASIC
PY/3B 3/82

1 2 3 4

X X X X X X X X X X X X
1 1 2 3 by 5 6 7 8 9 10 11 12
ROW
X X X X X X X X X X X X
2| 13 w1 16 17 18 19 20 21 22 23 2
3 X X X X X X X X X X X X
25 26 27 28 29 30 31 32 33 335 36

AS= "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
1,2,3... ...35,36

To find the starting location of a particular substring in the array AS, use the following formula:

((COL-1)*CHAR)+((ROW-1)*CHAR*NUMCOL)+1

ROW = row number

COL = column number

CHAR = number of characters per element of array
NUMCOL = total number of columns

In the example given, CHAR = 3, and NUMCOL = 4. In order to find the starting location of
AS(ROW,COL), where ROW=2 and COL=4, perform the following calculation:

((4-1)*3)+((2-1)*3*4)+1 = ((3)*3)+((1)*3*4)+1 = (9)+(12)+] = 22

Thus, the starting character of substring AS$(2,4) is character number 22. This substring is
addressed as A$(22,24).

REM INVERT A STRING

REM PY/JB 3/82

REM turnm 3 string imto inverse video

REM X XXX XK XK KK K XK K XK K XK K XK K K XK K K XK K XK K K KKK XK K K KK K K K K XK K X K K

DIM NAME$(50)!REM dimension a string to a8 lernath of 50 characters
FRINT "TYFE IN A NAME"

INFUT NAMES$.

FOR I=1 TO LEN(NAME$)!REM Qo through characters one at a time
NAME$(I,I)=CHR$ (ASC(NAMES$(I,I))+128)

REM add 128 to each character number to make it inverse video
NEXT I v

FRINT NAME$!REM display inverse name

GOTO Z0:REM try anrnother one

PFORMATTING with ATARI 8K BASIC
DEB 3/82

Every computer has some way of placing text where you want it, in order to create exactly the
effect you need. Most computers have special formatting commands. With ATARI 8K BASIC,
there are several methods to choose from, depending on your needs. Using the TAB key allows
quick movement across the screen to a designated column. Using a comma in the PRINT statement
will automatically allow a number of spaces between fields. The POSITION statement can be used
to put the cursor in any specified row or column, in any mode. In addition to these basic methods,
there are special procedures for formatting printed output, and for such functions as right
alignment. Here is a brief description of various formatting options with examples.

FORMATTING WITH THE TAB KEY

In order to produce the control characters for TABbing, the following key sequences are used.
These characters will appear on your screen but not in a program listing.

TAB: ® Press the ESC key, then the TAB key
Clear TAB: (=] Press the ESC key, then the CTRL and TAB key simultaneously
Set TAB: [3] Press the ESC key, then the SHIFT and TAB key simultaneously

On powerup, the TAB key advances the cursor to 5 default settings on one physical line. These are
column positions 7,15,23,31, and 39. To clear the default TAB setting, type:

PRINT" » [o=] » []» [=] » [=] » [=]"

After the ready prompt appears, press the TAB key. The cursor will remain in the first column. To
set new tabs type:

PRINT "(insert 10 spaces)[=|(insert 10 spaces)=l(insert 10 spaces)="
If the TAB key is now pressed, the cursor stops in columns 2,12,22,32.

**Remember to add one space in formatting to get desired column widths. **
To set formatted columns from within a program requires planning on the part of the programmer.
The following program illustrates 8 columns with 5 spaces between each. These will then be
cleared out to set up 3 columns with 16 spaces between each. Press RESET and type:

NEW
10 PRINT "» [=]o-[<]»-[{<J-[=] &[] ":REM clear out default tabs
20 PRINT "(insert 6 spaces) Binsert 6 spaces) =]
(insert 6 spaces)=(insert 6 spaces) =l(insert 6 spaces)=l
(insert 6 spaces)=I":REM set columns
30 PRINT"A®»B» C*»DPE®»F»GPHP»[»IJ>» K> L>M» N ":REM use
TAB to separate fields -
40 PRINT " >>Er&EPEp€EI»E ":REM clear columns
50 PRINT "(insert 17 spaces) (ZI(insert 17 spaces) 3
(insert 17 spaces) 1 ":REM set new columns
60 PRINT"A »B» C» D» E» F"

TABbing brings columns to the next print zone as long as the length of the string is smaller than
the print zone.

FORMATTING WITH THE COMMA

The comma in a PRINT statement sets up 10 spaces between each field with the default line length

of 38 characters. This results in diagonal lines rather than columns. For an example of this, press
RESET and type:

PRINT 1,2,3,4,5,6,7,8

The left margin is controlled by location 82. For a full 40 column line, change the left margin to
column 0 with POKE 82,0. Since 10 goes into 40, you will get regular columns. Press RESET and
type:

POKE 82,0:PRINT 1,2,3,4,5,6,7,8

You may also regulate the print zone for the comma with location 201. This example gives 7
spaces between fields, then resets the width to 19. Press RESET and type:

NEW

10 POKE 82,0:REM allow 40 characters

20 POKE 201,8:REM set comma spacing to 7

30 PRINT 1,2,3,4,5,6,7,8,9,0,1,2,3:REM print to screen
40 POKE 201,20:REM reset comma spacing to 19

50 PRINT 1,2,3,4,5,6,7,8,9,0,1,2,3:REM print to screen

Remember to add one space in formatting to get desired column widths.

You may also shorten the right margin by using POKE 83. The default is 39. This example sets a
30 column screen. Press RESET and type:

NEW

10 POKE 82,1:REM start left margin in position 1

20 PRINT "This line has old margins of 2 and 39":REM the next line has
the new margins

30 POKE 83,30:REM stop right margin in position 30

40 PRINT "12345678901234567890123456789012345678901"

FORMATTING WITH THE POSITION STATEMENT

Words as well as numbers can be put on the screen through the use of the POSITION statement. In
the following example, the word "ATARI" is positioned on the screen three times by designating the
X and Y coordinates in three POSITION statements. Press RESET and type:

NEW

10 POSITION 8,2:PRINT "ATARI":REM go to position 8,2 and print word

20 POSITION 18,12:PRINT "ATARI":REM go to position 18,12 and print word
30 POSITION 28,22:PRINT "ATARI"™:REM go to position 28,22 and print word
40 GOTO 40:REM keep it on the screen

POSITIONING IN GRAPHICS WINDOW

The POSITION statement can also be used to write information in the graphics window of text
modes | and 2. Press RESET and type:

NEW

10 GRAPHICS 2

20 POSITION 5,5:REM position cursor in row 5, column 5
30 PRINT #6;"ATARI"

40 GOTO 40:REM keep it on the screen

POSITIONING IN TEXT WINDOW

The POSITION statement moves the cursor in the graphics window. If you wish to position the
cursor in the text window, you must POKE directly into the text window cursor locations, 656 and
657 (decimal). Press RESET and type:

NEW
10 GRAPHICS 2
20 POKE 656,0:REM move cursor to row 0
30 POKE 657,2:REM move cursor to column 2
40 PRINT"LINE 0":REM type "LINE 0" in this position
50 POKE 656,1:REM move cursor to row |,
60 POKE 657,12:REM move cursor to column 12
70 PRINT"LINE 1"™:REM type "LINE 1" in this position
80 POKE 656,2:REM move cursor to row 2
* 90 POKE 657,22:REM move cursor to column 22
100 PRINT"LINE 2":REM type "LINE 2" in this position
110 POKE 656,3:REM move cursor to row 3
120 POKE 657,32:REM move cursor to column 32
130 PRINT"LINE 3";:REM type "LINE 3" in this position
140 GOTO 140:REM keep it on the screen

RIGHT ALIGNMENT

If your strings are not the same length, pad the shorter one with spaces. The following example
illustrates a string being concatenated to a string of spaces to allow for a three character number.
Press RESET and type:

NEW
10 DIM AS(2), BS(3):REM dimension strings
20 PRINT "Type in a one or two digit number ...";:INPUT A$
30 ALEN=LEN(AS)
. 40 BS="(insert 2 spaces)": REM a string of spaces
50 B$=BS(1,3-ALEN):REM allow a three digit number
60 BS(LEN(BS)+1)=A%:REM concatenate the strings
70 PRINT LEN (BS)
80 PRINT B$:REM note indent from left side of screen

PRINTER FORMATTING

Tabs on the printer can be set with a string of spaces, as in the following example. Press RESET
and type:

NEW

10 DIM TABS(80),AS$(35):REM dimension strings

20 X=25

30 TABS="(insert 80 spaces)":REM set up a string of spaces

40 AS="This line is indented by 25 spaces":REM message to be printed
50 OPEN #1,8,0,"P:":REM open printer for output

60 PRINT #1;TABS(1,X);A$:REM output to the printer

70 CLOSE #1

