Htari Logo Programming Examples

1) INTRODUCTION
2) VIDEQ TURTLE ‘
3) SETREAD and SETWRITE
4) LIST PROCESSING
a) FRENCH QUIZ
b) TAFPETIME
c) FLASHCARDS (with global variables)
d) FLASHCARDS (with local variables)
5) ATARI LOGO RESOURCE GUIDE

ATARI INC,
CONSUMER PRODUCT SERVICE
; PRODUCT SUFPORT GROUP
1312 Crossman Ave,
Sunnyvale, CA 94033

800-4672-1404 inside CA Yo
200-528-2543 outside CA

With many thanks to Brian Harvey at Atari Research and Development for his time,
patience and encouragement,

DEMOPAC # 11
REV.1 JG/11/83

O

ATARI LOGO PROGRAMMING EXAMPLES
Introduction
JG/10/83

Programming in Logo is quite different from programming in a line oriented language
like BASIC, Logo is a structured language. Because of this structure, it is easy for a
person working in Logo to break down a problem into smaller problems and write
procedures that solve each step of the smaller problem. The main procedure for a
Logo program that draws a house might look like this!

TO HOUSE
WALLS
DOOR
WINDOW
ROOF
END

Each of the tasks required to solve the problem can be broken down into smaller tasks,
A procedure can then be written and tested independently of the main program. This
modular approach to problem solving is one of the characteristics that make Logo such
an excellent "language for learning."

The key to programming in Logo is understanding Logo grammar, A Logo program can -
be thought of as a sequence of procedures (all Logo primitives are considered to be
built-in procedures). Each procedure takes one or more inputs and produces one output.
The procedure takes the input, processes it according to its definition and produces an
output. This output can then be used as an input to another procedure, (See the Atari
Logo Reference Guide for examples and further dispussions) ‘

Programming in Logo consists of defining new procedures. Each newly defined
procedure is treated by Logo exactly like a built in primitive, The ability to define
new procedures is sometimes called extensibility, This extensibility is responsible
for much of Logo’s power and beauty.

Since there are many books written on Logo turtle graphics (see the Atari Logo
Resource Guide), the enclosed programs demonstrate various aspects of Logo
programming that are difficult to understand, not documented in the Atari Logo
manuals, or are unique to Atari Logo, Most of the programs written for other versions
of Logn will work in Atari Logo with little, if any, modification. Exceptions could
occur with programs using list processing and/or local variables, Atari Logo differs
from other Logos in its use of the LIST operation and in the ways it can handle local
variables, The following discussions on list processing and local variables should
help in converting programs written for other Logos and creating programs in Atari
Loga.

LOCAL AND GLOBAL VARIABLES

One of Logo’s more important features is that it supports local as well as global
variables, Global variables are variables that remain in existence throughout the
execution of a program. All variables in BASIC, for example, are global. Local
variables, however, are lacal to the procedure that calls them, and only exist while the
procedure is running. If we MAKE "NAME JOHN at toplevel, then JOHN will always
be the thing in NAME. MAME is now a global variable, To use NAME as a local
variable, NAME must be used as an input to a procedure as in the following procedure!

TO GREET INAME
PR SE [HI THERE] !NAME
END

GREET will use a local variable NAME which takes on the value of the object that is
input to GREET. Thus, if we type GREET BIGWIG then GREET will output the
sentence "HI THERE BIGWIG". If we then type FR !{NAME, Logo will print "JOHN".
JOHN is still the thing in NAME because NAME was made a global variable with the
above statement MAKE "NAME JOHN,

If NAME is a global variable and JOHN was the thing in NAME, why did GREET output
"HI THERE BIGWIG" instead of "HI THERE JOHN?" The reason is that GREET takes
a variable as an input. Whenever a variable is an input to a procedure, it becomes a
local variable and creates its own private "library". While the procedure GREET is
run, the input to GREET will become the thing in NAME. When the procedure is
completed, NAME regains the status that it had before GREET was executed, In this
case; JOHN again becomes the thing in NAME because that is what it was before
GREET was called,

Local variables are an essential aspect of structured programming and they are
necessary to take full advantage of the modular structure of Logo. In some versions
of Logo, a local variable can be created as an input to a procedure (as in the above
example) or by using the primitive "LOCAL" as follows}

TC GREET

LOCAL "NAME

PR [WHAT IS YOUR NAME?]
MAKE "NAME RL

FR SE [HI THERE] |NAME
END

The advantage of using the "LOCAL" primitive is that the user can use MAXE to
assign values to local variables without requiring the variable to be an input to a
procedure, Because Atari Logo does not contain the "LOCAL" primitive, using local
variables interactively can require more steps as the following example illustrates:

TO GREETING

PR [WHAT IS YOUR NaME?]
FRINTNAME RL

END

TO PRINTNAME INAME
PR SE [HI THERE] {NAME
END

In Atari Logo a local variable must be an input to a procedure, In the example abave,
GREETING reads a list from the keyboard and passes it as an input to the procedure
PRINTNAME. While PRINTNAME is running !NAME has the value of the list entered
from the keyboard, When PRINTMAME is finished it returns to GREETING and !NAME
becomes whatever it was before GREET was executed.

To use 'MAKE’ with local variables we could do the following!

TO GREETING

PR [WHAT IS YOUR NAME?]
PRINTNAME RL

END

TO PRINTNAME iINAME

MAKE "NAME SE INAME "COMPUTERS
PR SE [(HI THERE] INAME

END

If we type ATARI in response to the prompt WHAT IS YOUR NAME? the above
procedure PRINTNAME outputs the sentence "HI THERE ATARI COMPUTERS",
Without the LOCAL primitive, all local variables must be passed as inputs toa
procedure. When MAKE is used with a variable that is an input to a procedure as in
the above example, the variable remains local. If MAKE is used at toplevel or with a
variable that is not an input to a procedurs, then a global variabie is created. A major
advantage of using local variables in procedure definations is that a Logo library ar
tool kit may be created. Since each variable is local to the procedure that uses it,
there is no problem with conflicting variable names. Thus once a procedure is defined
with local variables, it can become part of the programmers library and used in other
programs when the need arises. For a more detailed study of the uses of local and
global variables, refer to the FLASHCARDS examples in the list processing section of
this document. For an in-depth study of logo grammar refer to Harold Ableson’s book
Apple Loga. Details of it and other useful resources are listed in the inclosed Atari
Logo Resource Guide.

NOTE TO ADVANCED PROGRAMMERS

The manner in which Atari Logo interfaces with the Operating System is very different
from BASIC or PILOT, BASIC, and to a lesser extent PILOT, allow a high degree of
access to the Operating System (OS). Atari Logo overides many of the OS capabilties
and renders them inaccessible to the user. Alternate text and graphics mades,

—

changing screen margins, etc. are some of the OS5 options that are not available to
simple .DEPOSITS (POKES), Logo does support an assembly language .CALL command
which may make it possible to overide some of the defaults of the OS.

VIDEQ TURTLE
The Joystick and the Turtle
JG/9/33

VIDEO TURTLE is a program that teaches the turtle to "listen" to the joysticks The
turtle will respond to the commands from the joystick to set its heading to any
increment of 43 degrees and then take five steps forward. Pressing the joystick
trigger will change the turtle and pen to the next of three preset colors and all
following commands will then be carried out in the current turtle and pen color until
the trigger is pressed again, (The preset pen and turtle colors in this version are red,
yellow and blue,)

The pen and turtle colors are changed by using a WHEN demon in the SETUP procedure.
The WHEN demon enables the Atari Logo collision detection and sets up a demon to
constantly check for a collision or event, In this case the event is the pressing of the
joystick trigger, one of the 20 types of collisions or events that WHEN demons can
detect.

To make this program usable to younger turtle fans and to give more variety to the
turtle’s activities, a HELP menu is included when the program is started. The HELP
menu can be removed any time a full screen graphics display is desired. While the
basic draw and turn commands are given with the joystick, the HELP menu suggests
other commands that may be given through keyboard entry, The DRAW procedure
contains the KEYP predicate that checks for a keypress and executes the desired
instruction via the PEN,UP,DOWN procedure, : ‘

®

O

VIDEO TURTLE
JG/9/33

TO START
INSTRUCTIONS
SETUF

HELP

DRAW S

END

TO INSTRUCTIONS

SETBG 1

TS CT SETCURSOR [10 21

FR [_VIDEO TURTLE 3

FRIIPRIL]

FR [FLUG IN A JOYSTICK IN PORT #11

PR [1] i

PR [TO CHANGE THE TURTLE'S PENCOLOR FRESS THE JOYSTICK BUTTONI
FR [1 :

PR [THE TURTLE STARTS WITH THE YELLOW PEN DOWN]
FRI[IPRI]

FR [TO RECALL COMMANDS PRESS H FOR HELF]
SETCURSOR [4 203

FR [# PRESS ANY KEY TO BEGIN #]

KEYPRESS RC :

END

TO KEYFRESS (ANYKEY
END

TO SETUP

CT CS FS ST TELL 0

SETPN 0

SETPC 175

SETPC 2 35

SETBG 1

SETC 15

WHEN 3 [CHANGEPN CHANGETURT.CLR]
END

TO HELP

CT S8

FR [_U_PICKS UP THE FENJ

FR [D PUTS DOWN THE PENJ

FR [X PUTS REVERSING FEN DOWN]
FR [C CLEARS SCREEN]

FR [E ERASE HELPF]

END

TO DRAW ISTEP

IF KEYP [(PEN,UP,DOWN RC1
CHECKJOY JOY 0

DRAW ISTEP

END

VIDEO TURTLE
2

TO CHECKJOY {FOS
IF {POS < 0 [ETOF]
SETH 45 # IPOS

FD ISTEP

END

TO CHANGEPN

IF PN = 2 [SETFN 0 STOP1]
SETPN (PN + 1)

END

TO CHANGETURT.CLR
IF PN = 0 [SETC 151
IF PN =1 [BETC 751 -
IF PN = 2 [SETC 331
END

TO FEN.UF.DOWN {UFDOWN
IF {UPDOWN = "E [CT FS1
IF 'UFDOWN = "H [HELF]
IF {UPDOWN = "X [PX]

IF {UFPDOWN = "C [SETUF]
IF {UFDOWN = "U [PU]

IF {UPDOWMN = "D [PD]
END

a—

il

B

USING SETREAD AND SETWRITE
Maore Than Just Dribbling
JG/46/83

The Atari Logo Reference Manual states that SETREAD and SETWRITE may be used to
create a "dribble" file by recording the screen output to either a printer, disk or
cassette, There is another use for SETWRITE that is not mentioned in the Atari
manual, SETREAD and SETWRITE function like the "OFEN" command in ATARI BASIC,
They open an Input Qutput Control Block (IOCB) for reading or writing to a device
(casette, disk or printer),

The Atari Logo Reference Manual describes the SAVE command for saving the contents
of the workspace to a specified device. The drawback to using this method when
saving the workspace is that the procedures are saved in the order that they were
written in, not in the logical order in which they are used. This can make for hard to
read programs. The following program uses the procedure PRINTER to print readable
listings to the printeri

TO PRINTER

SETWRITE "Fi

PRITITLE]

FRI1]

FRINAME AND DATE]
PRI1]

PO [PROCEDURE NAMES]
SETWRITE (1

END

PRINTER opens a channel to the printer with the SETWRITE "P! command., The next
line prints any title for the heading of the listing, PR [] prints a blank line for
formatting purposes. Then the name and date are printed. Another blank line and then
the command PO [PROCEDURE MAMES] prints out the procedures names in the order
listed inside the brackets, This allows control over the sequence of the procedures in
the printout. If three procedures "ONE, TWO, and THREE" were created in the order
THREE, TWO and ONE and they were printed to the printer using the SAVE "P! they
wauld be printed in the sequence THREE TWO ONE. But if they were printed using the
FRINTER procedure, PO [ONE TWO THREE], they would be listed in the sequence ONE
TWO THREE. The SETWRITE [1 command is used to close the file and return output
back to the screen. It is important to use the SETWRITE and SETREAD commands
within a procedure to avoid the "dribble" effect mentioned above,

SETWRITE can also be used when saving procedures to disk, If you have ten
procedures in your workspace and you want to save three of them to a disk file
SETWRITE can be quite useful. Instead of erasing all the procedures you don‘t want
and then using the SAVE command to save the three you want the following procedure
can be used:

SETREAD and SETWRITE
o

TO SAVE.DISK
SETWRITE "DIDEMO
PO [ONE TWO THREE]
SETWRITE []

END

The file DEMO now contains the desired three procedures. Files created with the
above procedure can be LOADed just like a file saved using the SAVE command. It is
not necessary to use SETREAD to read files saved in the above manner.

Vo)

®

)1

LIST PROCESSING
Life Beyond Turtle Graphics
JG/10/22

The programs that follow will help you understand and use some of the beauty and
power of the less known aspects of Atari Logo. There are a great number of books and
articles on turtle graphics, (see the Atari Logo Resource Guide) but very few if any on
Logo’s non-graphics capabilities, It is the intention of this document to help fill that
gap. Flease experiment with changing the programs to learn how they work. After all,
experimentation and discovery are what Logo is all about,

FRENCH QUIZ

FRENCH QUIZ is an example of using Logo’s list processing to make a simple quiz. In
BASIC this could be done with READ DATA loop. (See inclosed example.) The
procedure QUIZ puts the data to be used in the quiz into a list. QUIZ then calls the
procedure QUES and passes the list to QUES, The data list is stored in the local
variable WORDLIST in QUES,

The line "IF EMPTYP !WORDLIST..." tests to see if the list WORD is empty. If
‘WORDLIST is not empty, the program continues. The next line "PR [WHAT IS
FRENCH FOR1,.." tells Logo to find the first item of the first list in {WORDLIST and
print it as part of the sentence [WHAT IS FRENCH FORl... The first item in
{WORDLIST is [BOX BOITE] and the first of the first item is BOX, Logo now prints
the sentence WHAT IS FRENCH FOR BOX?., The next line IF EQUALP (FIRST
RL)...checks to see if the answer typed in (FIRST RL) is the same as the (LAST FIRST
{WORDLIST),

The first time through the program the answer typed in would be compared to BOITE,
which is the last of the first item in {WORDLIST, If the word typed in is not BOITE
then EQUALP evaluates as "false". The program then goes to the next line and prints
"TRY AGAIN", The recursive call QUES {WORDLIST sends WORDLIST back to the top
of the procedure QUES where the process is repeated until BOITE is typed in.

When the word typed in is BOITE then EQUALP evaluates as "true" and executes the
instructionlist [FR [YOQU GOT IT!1 QUES BF {WORDLISTI: First "YOU GOT IT!" is
printed on the screen. Next the first item in WORDLIST [BOX BOITE] is removed as
WORDLIST becomes BF WORDLIST, WORDLIST now contains the list [[PEN PLUME]
[WINDOW] [FEMETRE1l. Finally the new WORDLIST is sent back to the top of the
procedure with the recursive call QUES BF {WORDLIST., This process is repeated until
‘WORDLIST is empty. When EMPTYP !WORDLIST evalutes to "true” (empty) then "END
OF QUIIZ" is printed to the screen and the procedure QUES stops. The program now
returns to the calling procedure QUIZ and executes the next line END which ends the
programs, :

The basic routine of creating a list, looping through the list, displaying selected items
in the list, and testing the list for a match or an empty list, can be used in a wide

List Procssing
-‘2_.

variety of Logo list processing applications.
TAPETIME

TAPETIME allows the user to enter in the names and times of songs on a record album.
The program then prints a list of all the songs and their times along with a list of the
total time of the album. TAPETIME follows the general pattern of FRENCH QUIZ but
is a little more intricate in that the lists are created by receiving input from the
keyboard, In FRENCH QUIZ the list was created by the programmer in the QUIZ
procedure,

The procedure START is the main procedure for TAPETIME. The rest of the
procedures, INSTRUCTIONS, SETUF, etc., are the subprocedures that are called by
START. After each subprocedure is called and executed, the program returns to the
main procedure (START) and then calls and executes the next subprocedure, Some Logo
programmers prefer to name the main procedure something functional like START or
BEGIN while others like to title the main procedure the same name as the program (in
this case TAPETIME) In this example, I have chosen START to designate the main
procedure. :

The first subprocedure INSTRUCTIONS clears the screen and prints the instructions
for using the program. The procedure SETUP initializes variables SONGLIST,
TOTMINUTES and TOTSECONDS. SOMNGLIST is given the value of an empty list ‘[1’
while TOTOMIMUTES and TOTSECOMNDS are given the value 0. In ENTERSONG, if we
attempt to MAKE "SONGLIST LPUT !SONG :SOMGLIST we will get an error telling us
that {SONGLIST has has no value, By giving the value of an empty list to "SONGLIST
the error is avoided. Whenever a list is used it must have a value. If it has not
received one earlier in the program, it must be assigned as an empty list before it can
be used. Although they are not lists, the same basic rule applies for TOTMINUTES
and TOTSECONDS.: They must have a value in order to be used in a program.

ENTERSONG is the subprocedure that creates the user-generated list. After the song
title, minutes and seconds are entered into their respective variabls by the user, the
program puts them into a sentence and the sentence into a variable called SONG with
the program line MAKE "SONG (SE SONG IMINUTES [i1 !SECOMDS), Then The next
statement MAKE "SONGLIST LPUT ISONG !SONGLIST, makes the song and time in
SOMG the last item in the list SONGLIST. The minutes are added to the total minutes
and the seconds are added to the total seconds.: The process repeats until RETURN is
pressed signaling the end of the song entries,

PTEST then asks if the total list should be sent to the screen or the printer and
stores the device name (P or S) in the variable DEVICE, PTEST then passes the device
selection to ENDRECORDS, ENDRECORDS then prints the album title to the selected
device (screen or printer) and then calls PRINTLIST and passes the list SONGLIST to
PRINTLIST. PRINTLIST tests to see if LIST is empty. It then prints the first item,
makes the list all but the first item, and then repeats the process until LIST is emtpy.
The program then returns to ENDRECORDS where the next procedure COMPUTE.TIME
is called.

o

455

List Procssing
_3..

COMPUTE.TIME receives as its input a value for the total seconds of all the songs
(TSECS) and then displays the total time in minutes and seconds.

FLASHCARDS

FLASHCARDS is a program that functions as electronic flashcards. The program is
presented twice} once with local and once with global variables. Both versions of
FLASHCARDS are similar to TAPETIME in their general structure with the addition
that FLASHCARDS also makes use of the material discussed in SETREAD and
SETWRITE to create data files.

To create the data for FLASHCARDS the main procedure MAKE.QUIZ is used, The data
is entered in ENTER.NAMES follows the general format discussed in TAPETIME.
SAVE.QUIILIST creates the data file. First the screen is cleared and the cursor is set
to the middle of the screen. The message "SAVING TO DISK" is then printed to the
screen. After a pause of one second (WAIT &0) the screen display is turned off with a
DEPOSIT 5592 0. The screen display is turned off to prevent the data in QUIZLIST
from being displayed on the screen while the file is being saved to the disk. (When
using SETWRITE the data saved is normally displayed on the screens) SETWRITE
"DIQUIILIST creates a file on the disk called QUIZLIST. The nextline, PR !{QUIZLIST
stores the list QUIZLIST on the diksette, SETWRITE [closes the file. The cursor is
then positioned in the center of the screen, the screen display is turned on, and the
message "SAVE COMPLETED" is displayed.

TAKE.QUIZ is used to retrieve the data from the disk and to present it on the screen
in.a flashcard format. READ.QUIZLIST uses SETWRITE "DIQUIZLIST to open the data
filefile QUIZLIST that was created with the SAVE.QUIZLIST procedure. The list
QUIZLIST is then put into the variable QUIZLIST with the line MAKE "QUIZLIST RL.
SETREAD [] closes the file, INIT puts the first item from QUIZ.LIST into a variable
DISPLAY.LIST. The first item of QUIZLIST contains the data for the first round of
the quiz (i.es, a president’s name, homestate and what the president is famous for).
DISPLAY.LIST then displays the data in the flashcard format. NEXTLIST prints the
first item of the list and then performs the now familar process of removing the first
item of the list and and storing the rest of the list back into the variable (in this case
DISPLAY.LIST), After cycling through all the data for one round of the quiz,
MOVELIST then drops the first item of QUIZLIST and stores the rest of the data back
into DISFLAY.LIST, Then the next round of data is cycled through the DISPLAY.LIST
procedure, When EMPTYP evaluates to "true" in MEXTLIST and MOVELIST, they
return to DISFLAY.LIST which returns control to TAKE.QUIZ, TAKE.QUIZ then calls
the last procedure END.OF.QUIZ which ends the program.

FLASHCARDS (with local variables) performs the same results as FLASHCARDS (with
global variables): The difference is that instead of being stored into global variables
with the MAKE command, the data becomes the input to a subprocedure, The
subprocedure then performs the required operation and then returns to the calling
procedure. Sometimes the extra complexity needed to use local variables in a program
may not be warth the gain. The general rule is to use local variables when ever
possible. Although FLASHCARDS (Local) may appear to be more difficult to write, the
advantage is that with a little mogification it could be uses as a general quiz program

List Procssing
..4_.

whereas FLASHCARDS (Global) can only be used for one specific quiz (in this case a
quiz on Presidents.) The local version is also more elegant and takes better
advantage Logo’s procedural structure. For those familar with programming in BASIC,
the global version may be easier to follow, but it is hoped that the local version will
serve as an example of how to make the most of programming in Atari Logo,

o

O

Ny

FRENCH QUIZ
JG/3/383
TO QUIZ
CT
QUES [[BOX BOITE] [FPEN FLUME] [WINDOW FENETRE1]
END

TO QUES !WORDLIST

FR[]

IF EMPTYP !WORDLIST [FR [EMD OF QUIZ] STOP]

FR (SE [WHAT IS FRENCH FOR1] FIRST FIRST {WORDLIST [?1)

IF EQUALF (FIRST RL) (LAST FIRST {WORDLIST) [FR [YOU GOT IT!1QUES BF {WORDLIST2]
[FR [TRY AGAIN] QUES {WORDLIST]

END

Ve

o
FRENCH QUIZ (BASIC)
JG/3/283

10 REM ## ATARI BASIC FRENCH QUIZ #*

20 REM #x INCLUDED IN THE ATARI LOGO PROGRAMMING EXAMPLES DEMOPAC ##
100 DIM ENGLISH#(30),FRENCH$(30),ENG%$(20)

110 PRINT ""

120 READ EMGLISH$,FRENCHS$

120 DATA BOX,BOITE,FPEN,PLUME,WINDOW,FENETRE

140 PRINT "WHAT IS FRENCH FOR "JEMGLISH%"?"

150 INPUT ENG$

140 TRAP 190

170 IF ENG$=FRENCH¢$ THEN FRINT "YOU GOT IT!"{FRINT :GOTO 120
180 IF ENG4$<{>FRENCH$ THEN FRINT "TRY AGAIN"™!PRINT !GOTO 140
190 PRINT FRINT "END OF QUIZ"

Al

TAFETIME
JG/3/33

TO START
INSTRUCTIONS

SETUP

ENTERSONG

PTEST

ENDRECORDS :DEVICE
END

TO INSTRUCTIONS

CT FR [TYPE IN THE SONG TITLES AND TIMES AS]

PR [INDICATED.]

PR [TO END THE PFROGRAM, PRESS RETURN WHENASKED FOR THE SONG TITLE.]
FRIIFRI]

END

TO SETUP

MAKE "SONGLIST [1]

MAKE "TOTMINUTES 0

MAKE "TOTSECONDS 0

FR [TYFE IN THE TITLE OF THE ALBUM]
FRI[]

MAKE "TITLE RL

FPRIIPRI]

END

TO ENTERSONG .

PR [TYPE IN SONG TITLE] ;
MAKE "SONG RL

IF EMPTYP (50NG [STOP]

FRIL1

PR [TYPE IN MINUTES]

MAKE "MINUTES FIRST RL .

IF NOT NUMBERF IMINUTES [FR [MEED A NUMBER, RE - ENTER PLEASE] FR [1
ENTERSONG STOP]

PRI1]

PR [TYFE IN SECONDS]

MAKE "SECONDS FIRST RL

IF NOT NUMBERP !SECONDS [FR [NEED A NUMBER, RE - ENTER PLEASE] PR []
ENTERSONG STOF]

PR L]

MAKE "SONG (SE !SONG :MIMUTES [!] {SECONDS)

MAKE "SONGLIST LPUT {SONG iSONGLIST

PR 1SONG

FRL]

MAKE "TOTMINUTES ITOTMINUTES + {MINUTES

MAKE "TOTSECONDS iITOTSECONDS + {SECONDS

FR []1 ENTERSONG

END

TAPETIME
...2_

TO PTEST
PR [TO SCREEN OR PRINTER? TYPE P OR S1
MAKE "DEVICE RC

END

TO ENDRECORDS {DEVICE

IF IDEVICE = "P [SETWRITE "Pi1

CTPR(SE ["] {TITLE ["1)

PR [CONTAINS THE FOLLOWING SELECTIONS!]

FRL]

PRINTLIST SONGLIST

COMPUTE,TIME ({TOTMINUTES # 40) + :TOTSECONDS
SETWRITE [1]

END

TO PRINTLIST ILIST

IF EMPTYP (LIST [STOP]
FPRINT FIRST !LIST
PRINTLIST BF ILIST
END

TO COMPUTE,TIME ITSECS

FRI]

FR (SE [TOTAL TIME IS] INT ({TSECS / &40) [1]1 REMAINDER iTSECS 40
END

SR .

o

FLASHCARDS (With Global Variables)
TG/10/53

TO MAKE.QUIZ
MAKE "QUIILIST []
ENTER.MAMES
SAVE.QUIILIST
END

TO ENTER.NAMES

CT

PR [PRESIDENT'S MAME?]

MAKE "PRESNAME RL

PR[]

IF EMPTYF {FRESNAME [STOP]

PR [HOME STATE?]

MAKE "HOMESTATE RL

FR[]

FR [KNOWN FOR?]

MAKE "KNOWNFOR RL

MAKE "NAMELIST LPUT !KNOWNFOR LIST {PRESNAME {HOMESTATE
MAKE "QUIZLIST LPUT INAMELIST {QUIZLIST
ENTER\.NAMES

END

TO SAVE.QUIILIST

CT SETCURSOR [10 101
FR [SAVING TO DISK]
WAIT &0

WDEPOSIT 552 0
SETWRITE "DIQUIZILIST
PR !QUIILIST
SETWRITE []
SETCURSOR [10 101
+DEPOSIT 359 58

FR [SAVE COMPLETED]
END

TO TAKE.QUIZ
READ.QUIILIST
INIT
DISPLAY.LIST
END,OF.QUIZ
END

TO READ.QUIZILIST
SETREAD "D!QUIILIST
MAXE "QUIZLIST RL
SETREAD []

END

- FLASHCARDS (Global)
oo

TO INIT
MAXE "DISPLAY.LIST FIRST !QUIZLIST
END

TO DISPLAY.LIST

IF EMPTYP {DISPLAY,LIST [STOF]
CT

TYFE [PRESIDENT'S NAME >]
NEXTLIST PR [1
FRI[]

FRE]
PR [HOME S5TATE?]
FRIL]
PRI[]

CONTINUE

NEXTLIST PR L1
FRI1]

CONTINUE

PRI]

FR [KNOWN FOR?1
PRI]

PR [] CONTINUE
NEXTLIST

CONTINUE
MOVELIST
DISPLAY.LIST

END

TO NEXTLIST

IF EMPTYP IDISFLAY.LIST [STOF]

PR FIRST !DISFLAY.LIST

MAKE "DISPLAY.LIST BF {DISFLAY.LIST
END

TO CONTINUE
MAKE "ANYKEY RC
END

TO MOVELIST

MAKE "QUIILIST BF !QUIZLIST

IF EMFTYP !QUIILIST [STOF]

MAKE "DISPLAY.LIST FIRST (QUIZLIST
END

TO END.QF.QUIZ

CT

SETCURSOR [3 101

PR [# # # END OF QUIZ % # %]
END

2

FLASHCARDS (Local)

=0

TO DISPLAY,LIST :QUIZLIST
IF EMFPTYP IQUIZLIST [STOF]
QUESTIONS FIRST (QUIZLIST
DISPLAY.LIST BF !QUIZILIST
END

TO QUESTIONS (FACTS

CT

TYPE [PRESIDENT >]

PR FIRST {FACTS

ASKONE FIRST BF {FACTS [HOME STATE?]
ASKONE LAST !{FACTS [KNOWNFOR?]

END

TO ASKONE {ANS IQUES
FRI1]

FRIL]

FR IQUES

FRIL 1
PFRI1I

CONTINUE

FR (ANS

CONTINUE

END

TO CONTINUE
KEYPRESS RC
END

TO KEYFRESS !ANYKEY
END

TO END.OF.QUIZ

CT

SETCURSOR [8 101

PR [# * END OF QUIZ # # %]
END.

FLASHCARDS (With Local Variables)

JG/10/33

TO MAXE.QUIZ
MAKE "QUIILIST [1]
ENTER.NAMES
SAVE.QUIILIST
END

TO ENTER.NAMES

CT

MAKE "MAMELIST []

READJITEM [PRESIDENT'S NAME?]1

IF EMPTYP FIRST {NAMELIST [STOF]
READITEM [HOMETOWN?]

READJITEM [KNOWNFOR?1 -

MAKE "QUIZLIST LPUT 'NAMELIST WQUIZLIST
ENTER.NAMES

END

TC READ.ITEM {FROMPT
PR [1]

FR !FROMPT

ADDITEM RL

EXD

TO ADD.ITEM {ITEM
MAKE "MAMELIST LPUT !ITEM INAMELIST
END

. TH savz,cavzzusm' .
- CT SETCURSOR.[10 10] .

PR [SAVING TO DISK]
WAIT &0
DEPQOSIT 559 0

-~ SETWRITE "DIQUIZLIST = . .

PR IQUIIZLIST
SETWRITE L1

. .DEPOSIT 559 58

SETCURSOR [10 101
PR [SAVE COMPLETED]
END

TO TAKE.QUIZ
READ.QUIZLIST

.. DISFLAY,LIST !QUIZLIST

END.OF.QUIZ

. END

TO READ.QUIILIST
SETREAD "DIQUIILIST
MAKE "QUIZLIST RL
SETREAD [1

END

-

Htari L.ogo BResource Guide

Atari Logo was developed by Logo Computer Systems Inc./(LCSI) of Montreal, Canada.
It is a derivative of and highly compatible with an earlier version of Logo developed
for the Apple computer called Apple Logo. The release of Atari Logo is historically
significant because it allows for the first time a "full" implementation of Logo on an
inexpensive home computer.

Atari Logo has been designed to take advantage of much of the hardware capabilities
of the Atari system. This has resulted in some enhancements over previous versions
of Logo, most notably the availability of four programmable "turtles" with collision
detection and a player-missile "shape” editor. Other enhancements include a 128 color
spectrum, easy access to sound and controllers, and the ability to call assembly
language subroutines.

Although widely used in early education, Loge is a powerful and sophisticated
language, It was designed to have "no threshold" and "no ceiling”. It is actually a
subset of LISP, a language known for its use in the area of artifidal intelligence
research. The Atari Logo version is a full featured Logo and includes advanced
computer scence constructs such as list processing, recursion and local variables,

The Logo Resource Sheet has been compiled to provide additional resources for users
of Atari Logo. Most of the sources mentioned refer to versions of Logo that are
similar to Atari Logo and those resources that refer spedfically to Apple Logo will be
the most compatibles The primary difference between Apple and Atari Logo is that
Apple Logo has additional list processing commands while Atari Logo contains an
enhanced set of turtle graphics commands,

Currently, only two books have been announced specifically relating to Atari Logo.
They are Dan Watt’s book Learning With Atari Logo and David Thornburg’s Computer
Art And Animation! A User’s Guide to Atari Logo (both available in early ‘34), Other
Atari Logo books are Forthcommg and they will be included in future updates. of this
resource Guide.

Three books included here deserve special mention! Papert’s Mindstorms, Abelson’s
Turtle Geometry and Abelson’‘s Apple Logo., Mindstorms is the most comprehensive
expression of the Logo philosophy of education and computing while Abelson’s Apple
Logo is the most useful manual to date for the serious student of the Logo language.
(Do not confuse Apple Logo with Abelson’s Logo for the Apple II, Apple Logo is the
version that is most compatible with Atari Logo. Logo for the Apple II is for the MIT
versions of Logo.) Abelson’s Turtle Geometry is a profound excursion into the realms
of turtle graphics and has been used as a college level text, Many of the resources
included here are very useful in preparing a Logo curriculum and for introdudng Logo
to beginning students both in and out of a classroom setting.

BOOKS . i

Abelson, Harold. Apple Logo, New York! BYTE Books/McGraw-Hill, 1982, The best
single reference work to date. Features a complete description of Apple Logo which is
90 % compatible with Atari Logo. The book emphasizes the more advanced features
such as list processing, recursion and local variables,

Abelson; Harold and Andrea diSessa. Turtie Geu-métry, Cambridge,MA. MIT Press,
1981, A serious college level text on turtle graphu:s. Proves that turtle geometry is
not just kid stuff, :

Beardon, Donna. One; Twu, Threet M_y_ Cnmgute M A Logo Funbook Fu_rKids,
Reston, VA! Reston Publishing Cao., 1983, G

~ Beardon, Donna, Kathleen Martin and Jim Muller. The Turtle’s Sourcebaok, Raston,
~ TA! Reston Publishing Co. 1983. Formally distributed by the Young Pesople’s Logo
Association, this book is filled with turtle graphics worksheets and and activities.

Bitter, Gary and Nancy Watsun. ggle ngn aner, Reston VA! Reston Publishing Cos,
1933, - : v

Burnette, J. Dale, Logo! An Introduction, Morristown, NJ: Creative Computing, 1983,

A short collection of turtle geometry explorations.

Ca=

Goldenberg, E. Paul. Special Technology for Spedial Children, Baltimore: University

Park Press, 1979, Describes the use of Logo and computers with spedal-needs

children.

Minnesota Educational Computing Consortium (MECC.) Apple Loago in the Classrocom.

MECC Distribution Centeyr, 2520 Broadway Dr., St. Paul MN 55113, A Logo curriculum
for children in grades S thru 9 - includes teachers manual and worksheets.

" "MIT Logo Group. Bibliography of Logy Memgs.Mit Artificial Intelligence Laboratory,

545 Technology Squarey Cambridge, -MA 02137, Capsule descriptions of over &0
pubhcatmns descn.hmg more than tan years of Lngn research at MIT, :
Papert, Seymnur. Mmdsi'ﬂrms. Chlldrenz Cumguters and Powerful Ideas; New York!
Basic Books, 1980. The philosophy of Logo by its chief p proponent. A rnust for anyone
who ‘wants to‘understand the ‘Logo educational philosophy..

. Ross, Peter. Introducing Logo! For the Apple II, TI 79/4, and the Tanciy Color

““Computer, Reading, MA! Addison-Wesley; 1933, -Cavers list processing and structured
programming as well as turtle graphics, Includes several chapters of projects and
; actwrtes tu enha.nce prublem snlvmg capab:.hhes.

Thurnburg, Davzd. Dlscmvenng EEIE Lo g » Readmg, MA! Addison-Wesley, 19383: The
. study of how Logo can relate to art and patterns in nature. Covers such topics as

' fractals and the golden mean . .

‘m._-;/

Computing Teacher, The; "The Logo Center" by Kathleen Martin and Tim Riordin.

Softalk "Loga, the Voice of the Turtle" by Jim Muller.

MEWSLETTERS

Folik, Friends of LISP/Logo & Kids, a non-profit arganization formed by a group at
San Francisco State University., 434 Arballo Dry, San Frandsco CA 24132

Logophile, published by the College of Education, MacArthur Hall, Queen’s University,
Kingston, Ontaric K71 3Né

Mationai Logo Exchangs, published by Posy Publications, P.0.Box 5341,
Charlottesville, VA 22705

Polyspiral, published by the Baston Camputer Sodety, Three Center Plaza, Boston MA
0z108

The Logo and Educational Cﬁmputinq Journal, published by Interactive Educational
Foundation, 1320 Stony Brook Road, Stony Brook, NY 117390

Turtle News, published by the Young People’s Logo Association, 1209 Hillsdale Drive,
Richardson, TX 75801,

ParrERS

The MIT Logo Group has published a series of memos and reparts. They can be
obtained by contacting the MIT Logo Group, 545 Technology Square; Cambridge MA
0213?, Some of the titles are as follows!

Abelson and diSessa, “Student Science Training Program in Mathematics, Physics, and
Computer Science." Logo Memo #2729, MIT 1974,

Feurzig, Papert, Bloom, Grant, and Solamon, "Programming Languages as a Conceptual
Framewark for Teaching Mathematics." Report #1357, Bolt, Beranek and Newman;

Cambridge, MA 1947,

Papert, "Teaching Children to be Mathematicans vs. Teaching About Mathematics,”
Logo Memo #4, MIT 1371,

Papert, "Uses of Technology to Enhance Education,” Logo Memo #8, MIT 1973.

Papert, Abelson, diSessa, Watt, "Assessment and Documentation of a Children‘s
Computer Laboratory." Logc Memo #43, MIT, 1977, ; :

Papert, diSessa, Watt, Weir, "Final Report far the Brookline Logo Project, Parts I, II,
and IIT," Logo Memos #53 and #5354, MIT 1279,

Papert and Sclomon, "Twenty Things to do with a Computer.” Logo Memo #3, MIT 1978,
Papert and Weir, "Information Prosthetics for the Handicapped." Logo Memo #51.
Weir, "The Uses of Logo for the Diagnosis of Children’s Abilities in Areas for Spatial
Reasoning, and the use of Logo for Remediation." Internal working paper, MIT Logo
Graup, 1979,

Weir, "Evaluation of Cultivation of Spatial and Linguistic Abilities in Individuals with
Cerebral Palsey." Logo Memo #51, MIT, March 1980,

Weir, and Emmanuel, "Using Logo to Catalyse Communication in an Autistic Child."
Department of Artifidal Intelligence Memo #15, University of Edinburgh, Scotland,
1776,

;
F;

N

DATA STRUCTURES AND DATA FILES

Logo is very good at manipulating words, lists and numbers. It contains a variety
of "list processing" commands for this purpose. List processing has been used
extensively in artificial intelligence research and originated in the language called
LISF of which Logo is a subset. Logo‘s list processing functions are similar to arrays
in other languages. PILOT has no built in commands to manipulate data. It canbe
done, but nat by beginners.,

Neither Logo nor PILOT have random access capability and are therefore not
suitable for many applications using data files.

SUMMARY

We have seen that the applications in which PILOT and Logo excel are a direct
result of their design and purpose. Both can be used with excellent results in
teaching computer literacy to beginning students. If interactive dialogues and
computer aided instructional programs are desired along with ease of manipulating
textual data, than Atari PILOT is ideal. If one chooses to work extensively with
turtle graphics and develop a strong foundation for structured programming and the
study of more advanced computer science concepts, then Logo is language to use, OFf
the two languages, PILOT is easier to learn and Logo is more powerful and
sophisticated. Both, however, are excellent when used for the tasks for which they
were designed.

‘28

