Reference Maiviial

and Linke

Six Forks Software ¢ 11009 Harness Circle Raleigh, NC 27614

b
———— L = = b o ! ane . { — = = __ = |

©1985

i

e

Table of Contents | ;

A RN

‘napter 1 Introduction 1 ald1l

Getting Started 1
Terminology 1
The Big Picture 1
The Linker 3

Chapter 2 The Distribution Diskette 5
Preparing the Assembler and Linker for Use 5
Chapter 3 Six Forks Assembler Language 6

Comparison with Atari's Assembler/Editor 6
The Source File 7

Statements 7

Numbers 8

Strings 8

Labels 8

VIRTUAL Labels 9

Restrictions on the Use of Virtuals 9
ENTRY labels 9

Reserving Object Program Memory 9

The Location Counter 10

Relocatable Code 10

Setting the Location Counter 10

The Initial Location Counter Value 11
Expressions 11

Attributes 11

The Current Location Counter Value "
Expression Evaluation 12

Signed Versus Unsigned Values 13

Byte Selection on an Expression Result 13
Two-byte Operands 14

One-byte Operands 14

Automatic Selection of Zero-Page Instructions 15
VIRT8 Virtuals 15

The Comment Statement 15

The .BYTE Statement 15

The .CFE Statement 16

The .DBYTE Statement 16

The .ENTRY Statement 17

The .OUTPI Statement 17

The .VIRT8 Statement 17

The "=" Statement 17

The "#*=" Statement 18

Instructions with no Operand Field 18
Relative Branch Instructions 18

JMP and JSR Instructions 19

Table of Contents i

AR R EB RN ERERERRERERESERN

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9
Appendix A

Appendix B

ii

Instructions with Several- Addressing Modes

Using the Assembler

Labelled Packs 21
Assembler Capacity

Pass 1 21
Pass 2A 22
Pass 2B 22

Starting an Assembly
Mid-Assembly Choices
Print Mode 22

View Mode 23

Error Reporting 23
The Assembly Listing

Linker Concepts 26

The Linker Control File .
Example 1: Illustrates all Linker Concepts

21

2
22

23

26

Example 2: Techniques to be Aware of 29

Using the Linker 32

Linker Capacity 32

Instructions and Constants 32

The Internal Workarea
Starting a Build 33

Control File Reading
Error Handling 34
Input File Reading
Output File Building
The Load Map 34

Multi-Group Programs

32
34

34

36

Memory Assignment for each Group 36
The Communication Vector 37

The .EOUT Statement

39

The Transparent Jump Statement 39
Executing a Multi-Group Program 41

The Sample Program

Files on the Distribution Diskette 42
Assembling and Linking the Sample Program
Executing the Sample Program 43

Programming Suggestions

Error Codes 47

Specifications 51

45

Table of Contents

et

42

SRS EERNERRRERDR

-

Chapter 1

Introduction

Getting Started aldoh

w2 supply this manual and a diskette containing the software. You supply the

~nings mentioned in Appendix B. We suggest that you get started by doing the
following:

1. Copy the distribution diskette to a backup. Make boot packs as
explained in chapter 2.

2. Assemble and run the sample program. Chapter 8 tells how to do that.
3. Read over the programming suggestions in chapter 9.

4. As a first programming effort using this package, you might make a
modification to the sample program.

Terminology

A SOURCE FILE is ASSEMBLED to produce a RELOCATABLE FILE. Relocatable files
are combined by the linker to produce an OBJECT FILE. An object file is also
called an EXECUTABLE FILE, an ABSOLUTE FILE, and a BINARY file.

The process of running the linker to create an object file is called a BUILD.
Chapter 7 uses the term "GROUP" to denote an object file that is only part of a
total object program.

A UNIT has two forms: a source file and its corresponding relocatable file.
Thus, the term "UNIT" refers to a logical piece of a program without regard to
its form. An ASSEMBLY is a unit whose source code is assembler language.

A relocatable file can contain both relocatable code and absolute code.

The Big Picture

Our Assembler/Linker package provides a method of software development that
allows a program to grow very large without becoming unmanageable. The method
which is based upon the linker, is the industry standard method for developing
software. Commercially developed programs tend to be large for two reasons:

H

1. Computers, even small ones by today's standards, can contain large
programs.

Chapter 1: Introduction - 1

2. Small programs tend to grow, and for good reason. Building on top of
what's already there is the most productive and profitable of
programming activities.

These reasons are applicable to Atari users, whether programming for enjoyment
or profit. Hardware capacity is ample. For example, the built-in operating
system, which occupies only 8k of memory, is a 130-page assembler language
program. At that rate, a 40k program would have over 600 pages of source code.

Don't think in terms of how large a program you can or want to develop. Just
be aware that the most powerful and exciting programming ideas usually involve
adding to what's already there, and that it is nothing less than a tragedy when
this incremental growth process becomes impossible for reasons that could have
been avoided.

Be aware also that with the proper programming strategy and development tools,
a program can grow almost indefinitely in size without becoming unmanageable.
Here's how it's done:

The program is constructed as a set of subroutines. The programmer is able to
forget how a subroutine works and remember only how to use it. Detail is
contained, and a program can grow without becoming less comprehensible. The
source code is divided into multiple source files, each small enough to be
conveniently edited and reassembled. Each source file contains a logical
"unit" of software, typically a single subroutine or small group of them. An
assembler language source file seldom contains more than 50 instructions.
Complete with commentary, it is seldom longer than 4 or 5 pages.

To assist in debugging, the units often contain internal consistency checks.
Data structures often contain "checkbytes" that can be verified by the units.
With such measures, the object program can become to a great extent its own
debugger.

Now, how can source code that is spread over many source files be converted
into an exe-:table program?

Let us first consider the single-stage process that is exemplified by Atari's
present assembler products. This process translates source code directly to
executable form. To allow for multiple sources, the assemblers typically allow
multiple source files to be "included" in a single assembly. However, even if
the assembler could handle the total amount of source code, the time to
reassemble and the size of the resulting listing make this approach unworkable.

The other possibility with the single-stage process is to have each unit be a
separate assembly, yielding a separate executable file. That eliminates the
problems of a single large source, but it puts two housekeeping chores on the
programmer's shoulders:

1. The object code for each unit must be assigned a place in memory. The
exact place seldom matters as long as the units do not fall on top of
each other.

2 Chapter 1: Introduction

i
W
-
"

ERRERERE]

n

. The units must be linked together. For instance, a subroutine defined
in one unit must be called from another unit.

= §

4 (D

manually, these chores become the most time consuming and discouraging
the programming effort. The memory assignment for each unit must be
i th an "absolute origin" statement in the source file. Thus, to move a
t, it must be edited and reassembled. Linkages between the units require
£ the source files contain absolute addresses of points within other units.

Q)

D e L2
Q)

gone w

e

easy to see that even a minor logic change to a single source file can
to much additional source code modification that is unrelated to the logic
e. To postpone these labors, error prone shortcuts such as machine

The software industry came to grips with these problems in the early 1960's.
Thzt was when the linker was developed.

The Linker

Llthough unfamiliar to many home computer programmers, all major computer
systems, including the mainframes, the IBM PC, Apple's Macintosh, UNIX-based,
and CPM-based systems, have linker-based development packages.

The linker combines software units called "relocatable files" into an
executable object program. A relocatable file, which is the result of
assembling a source file, can be thought of as the source file's equivalent,
but compacted. . Commentary is removed. Instructions and data are represented
in machine language form but not yet in executable form because relocation and
handling of external labels have yet to be done by the linker.

RELOCATION

A unit can be programmed without indicating where its object code is to go in
memory. The linker assigns memory to these units so that they lie one after
another with no wasted space in between. This process is called "relocation".

EXTERNAL LABELS

They are the means for linking units together. Labels are defined in the
source code in the normal manner. A label that is to be visible to other units
is declared to be an ENTRY. When another unit references an ENTRY label, the
linker places the proper absolute value into the reference.

For example, to define a subroutine in one unit and call it from another, the
following is done in the source code:

1. The subroutine is programmed in the normal manner with a label
designating its name (its entry point).

2. In the subroutine's source file, that label is declared to be an ENTRY.

Chapter 1: Introduction - 3

3. Calling the subroutine from the other unit is done as though the
subroutine were defined locally. In assembler language, the call

consists of a JSR instruction with the subroutine's name in the operand
field.

The linker processes our example as follows (assuming both units are made
relocatable, which is normally the case):

1. It relocates the unit containing the subroutine. Thus, the absolute

address of the subroutine's entry point is not known until the linker
is run.

V]

. It relocates the unit containing the subroutine call.

3. It puts the absolute address of the subroutine into the operand field
of the subroutine call.

In addition to creating the object file, the linker prints a "load map" showing
each ENTRY label and its associated value. The load map is essential for
debugging.

Although our assembler is currently the only language processor that feeds into
the linker, the linker itself is language independent. A relocatable file
could, for example, come from a Basic compiler. For those wishing to develop
their own language processors, documentation of our relocatable file format
Wwill soon be available.

- Chapter 1: Introduction

ESAEREREREEREEEEEEEREEREER

Chapter 2
The Distribution Diskette

It is an 810-compatible diskette that is not bootable because it does not
contain DOS or DUP. It contains the following files:

ald2s
SFASM The assembler, a load-and-run file.

SFLINK The linker, a load-and-run file.

PACKID The pack label file. Pack labels are explained in chapter 4. The
distribution diskette's pack ID is ALPAK1. It is needed to
assemble and link the sample program.

SSOUA-Q These 17 files are the sources for the sample program. See
chapter 8.

LNKSP1 Control file for linking the sample program.

Preparing the Assembler and Linker for Use

They can be executed directly from the distribution diskette using the "L"
command, but that is a clumsy process since the distribution diskette is not
bootable.

We recommend that a "boot pack" be created for each of the programs. Two
diskettes are needed, or you can use the two sides of a single diskette. To
make the assembler boot pack, do the following:

1. Format a pack and put DOS and DUP onto it.

2. Copy SFASM from the distribution diskette onto the boot pack.

3. On the boot pack, change the name of SFASM to AUTORUN.SYS.
Using SFLINK on the distribution diskette, make the linker boot pack. To start
either program, simply boot the computer from the boot pack. Make sure no

cartridge is inserted, and on the XL and XE models, hold down the Option key
when booting. : ‘

Chapter 2: The Distribution Diskette 5

Chapter3
Six Forks Assembler Language

Comparison with Atari’s Assembler/Editor ald3

Our source language is modeled after that of Atari's Assembler/Editor. To
assist those already familiar with Atari's language, here are the differences:

1. Our statements do not have line numbers.

2. We support ENTRYs and virtuals. ENTRY labels must be explicitly
declared with the .ENTRY statement. Expressions containing virtuals
have restrictions on their form.

3. We do not support - the TITLE, PAGE, TAB, and IF statements. They are for
making a large file more managable. When a linker is available, source
files can be kept small. We also do not support the END statement.

4. We have an direct means of selecting the low or high byte of an
expression result. For example, the statement "I DA #.LO.TABADR" does
the same thing as "LDA TABADR-TABADR/256%256" . Byte selection can be
done on a virtual.

5. Using our .CFE declaration, a self-describing character constant can be
defined.

6. We allow an immediate instruction operand to be stated as a one-byte
string.

7. Statements that we support compare with Atari's as follows:

STATEMENT COMPARISON WITH ATARI

instructions jidentical

comment identical

.BYTE identical

.CFE not in Atari |
.DBYTE identical

.ENTRY not in Atari

.EOUT not in Atari. Explained in chapter 7.]
.OUTPL not in Atari

.VIRTS8 not in Atari

.WORD identical

¥= identical 1
= jidentical

6 Chapter 3: Six Forks Assembler Language

The Source File

-Z must be on a labelled pack. Pack labelling is explained in chapter 4.

~e file name can be up to 8 bytes long. The first byte must be a letter.
famzining bytes can be letters or digits. An extension (an ".xxx") is not
permitted.

“ne relocatable file created by the assembler is giiyen the name of the source
T.le2 with an extension of ".R". For example, if source file "SFILA" is
zszembled, the relocatable file is named "SFILA.R".

Trne source file is in the conventional DOS form. Each record ends with an

=.L. Each record contains one source statement.

ords can be up to 130 bytes long, but they are normally kept short enough to
contained in one line of the assembly listing.

=

There is no special "last" statement such as an END statement. The END
statement is not supported.

ollowing is a sample source file, shown as it is likely to be entered:
; THIS IS OUR- SAMPLE PROGRAM
;.OUTPI RELOC1
;.ENTRY ABC

ABC LDA #2 ENTRY POINT.
STA XYZ+1 “

'RTS RETURN TO CALLER.

The remainder of this chapter is in two parts. First, the elements of the
language are described. Then, each statement is described individually.

Statements

If a statement begins with a semicolon, it is a comment. Otherwise, the
Statement is organized into four fields: label, operation, operand and comment.

The fields are separated by one or more blanks. To signify a label field,
start it in the first record byte. If the first byte is blank, that means
there is no label field, and the first nonblank byte is the start of the
operation field.

Most statements have an operand field. Following it is the comment field,

which is always optional. In the statements that have no operand field (e.g.
TXA), any material following the operation field is treated as commentary.

Chapter 3: Six Forks Assembler Language 7

Here is the assembly listing that would be produced by the above example:

; THIS IS OUR SAMPLE PROGRAM

’

.OUTPI RELOC1

.ENTRY ABC
0000R A902 ABC LDA # ENTRY POINT.
0002R 8DVVVV STA XYZ+1
0005R 60 ’ RTS RETURN TO CALLER.

The fields are tabbed to fixed columns to improve readability. The only
statement that must always be present is the .OUTPI statement. It tells the
assembler where to write the relocatable file. The assembly listing is fully
described in chapter 4. '

Numbers

A number can be given in decimal or hex form. Hex is indicated by beginning
the number with "$". In addition to the decimal digits, hex numbers can
contain the letters "A" through "F".

The value of a number can range from 0 through 65535 in decimal, or O through
$FFFF in hex.

Strings

A string is a sequence of characters enclosed in quotes. The sequence cannot
contain the quote character used to enclose the string. Both the single and
double quote can be used to enclose a string. The maximum string length is 100
bytes. Following are examples:

"THIS IS A STRING"

'"THIS IS ALSO A STRING'

"DON'T TYPE TOO FAST"

L (empty string, usable in .CFE statement)

Labels

A label is up to 6 bytes long. It begins with a letter. Remaining bytes, if
any, are letters or digits. A label cannot be "A" because that notation is
used in the shift and rotate instructions to denote the A-register.

A label denotes a 16-bit value. A label is defined (assigned a value) when it
appears in the label field of a statement.

8 Chapter 3: Six Forks Assembler Language

. . /l .

FEEEEEESNENENE,

VIRTUAL Labels

Wren 2 label is used in a given source file but not defined in that source

£, 1T 1s said to be a "virtual" in that source file. In the above example,
is a virtual.

= |

Wil il

4%}

statement contains a virtual, the assembler cannot translate it
womzletely to machine language because it does not know the value of the
_rzuzl. These virtual references are encoded into the relocatable file and
are "resolved" (converted to machine language) by the linker.

Restrictions on the Use of Virtuals

* lzbel, whether it is locally defined or a virtual, is used in the operand

“l2ld, where it is part of an expression (described later). Compared with
-oczlly defined labels, virtuals have the following restrictions on their use:

. The expression containing a virtual must reduce at assembly time to
"virtual plus or minus a constant". The constant value can be any 16-
bit value.

2. A virtual cannot be used in the operand field of the "#*=" statement. In
other words, the location counter cannot be set to an expression
containing a virtual.

3. A virtual cannot be used in the operand field of the "=" statement. 1In
other words, a local label cannot be "equated" to a virtual.

ENTRY Labels

Any label that is defined in a given source can be declared to be an ENTRY in
that source. That makes the label and its associated value visible to the
linker and capable of resolving virtuals in other assemblies.

Declaring a label to be an ENTRY in a given source has no effect on its use
within that source.

Reserving Object Program Memory alds
Most statements reserve object program memory. For instance,
LDA 2

generates a 2-byte instruction. Two bytes of memory are reserved, and the
machine language form of the instruction is placed in them. The statement

*= %20

reserves 20 bytes of memory, but does not place data into the bytes. Memory
reservations always occur at the "next available byte".

Chapter 3: Six Forks Assembler Language 9

The Location Counter

The assembler keeps track of the "next available byte" with its location
counter. A block of "x" bytes of memory is reserved as follows:

a. The current location counter value is the address of the first byte of
the reserved block.

b. The location counter is incremented by "x".

In the assembly listing, the address field printed at the left of each memory-
reserving statement is the location counter value in effect when that statement
was encountered.

Relocatable Code

The location counter can be absolute or relocatable. When an absolute location
counter is in effect, memory is reserved at the indicated absolute memory
locations.

When a relocatable location counter is in effect, memory is reserved at
locations relative to the "load point" of the assembly, which is not known
until the linker relocates it.

Setting the Location Counter

The programmer sets it, and thereby controls where memory is reserved. It is
set with the "¥=" statement. Following are examples:

*= $4000 The location counter is set to an absolute
address. Subsequent memory-reserving
statements (until another "#¥=" is encountered)
reserve memory in consecutive, ascending bytes
beginning at location $4000.

XX %o ABSADR Assuming ABSADR denotes an absolute address,
the location counter is set to that address.
The definition of ABSADR must precede the "#="
statement in the source file. The XX label is
defined to denote the location counter value
just before it is set to the new value.

k- RELADR Assuming RELADR denotes a relocatable address,
the location counter is set to that address.
The RELADR definition must precede this
statement.

ARRAY *= *4+20 The location counter is set to its former value
plus 20. The effect of such incrementing of

10 Chapter 3: Six Forks Assembler Language

B E BB EBPEEBEBBEBEEBEEBEBEREEEREERSE

REERRERNRRERRRRRERERERRRR

the location counter is to reserve memory
without initializing it. The ARRAY label is
defined just as was XX earlier. Thus, we see
that ARRAY denotes the address of the first
byte of the 20-byte area.

The Initial Location Counter Value

assembler initializes it to "0, relocatable". With that initial value, the
-inxer relocates memory-reserving statements so that they fall immediately
zfter the previous assembly.

«when possible, an assembly should contain no location counter settings except
Tor the "*=%4x" variety that reserves a block of memory. Such assemblies are
ne simplest to incorporate into programs because they are fully relocatable

nd occupy only one contiguous chunk of memory.

Expressions aldl

An expression 1s used whenever a numeric value is called for in an operand
field. The expression 1s made up of one or more "terms". A term is a label, a

number, a 1-byte string, or the current location counter value (indicated by
"*H).

Terms can be combined by addition, subtraction, multiplication or division.
Either the low or high byte of the result can be selected.

An expression value is a two-byte (16-bit) quantity. When a one-byte value is
called for, as in the immediate operand of an instruction, the high order byte
of the expression result must be zero, which is to say that the value of the
expression must be between 0 and 255.

Attributes

Within the assembler, a term or expression result has one of three attributes:

Absolute The absolute value (a number between 0 and $FFFF) is known
at assembly time.

Relocatable The value known to the assembler (also between 0 and $FFFF)
is relative to the "load address" of the assembly.

Virtual Since a virtual label is present, the value cannot be
computed by the assembler. The linker computes the final

value. Expressions containing a virtual are also known as
"virtual references". ’

The Current Location Counter Value

Chapter 3: Six Forks Assembler Language 11

The symbol "*' denotes the location counter value that is in effect when the
assembler starts processing a statement containing an "¥', That value can be
absolute or relocatable.

Expression Evaluation

Expression evaluation is carried out in a simple left-to-right manner. To some
users this might seem peculiar, as it differs from the standard practice of
doing multiplications and divisions before additions and subtractions, but it
is commonly used in assemblers including those from Atari.

When terms other than absolute ones are combined, there are restrictions on the
arithmetic operations that are permitted. To explain the restrictions, we
first look at how expressions are evaluated by the assembler.

Expression evaluation is centered around an "accumulator". As the expression
is evaluated from left to right, each term is combined into the accumulator
according to the operator that precedes it. For example, the expression

LABA*2+LABR

where

LABA
LABR

$24, absolute
$11, relocatable

is evaluated in the following steps:
1. The accumulator is initialized to "O, absolute".
2. LABA is added into it. The accumulator becomes "$24, absolute".

3. The accumulator is multiplied by "2, absolute". It becomes "$4U8,
absolute".

4. LABR is added into the accumulator. This is a valid operation because
a relocatable value can be added to an absolute one. The accumulator
becomes " $59, relocatable".
The rules governing expression evaluation are:

1. The accumulator is initialized to "0, absolute".

2. An expression can begin with a minus sign. An absolute term must
follow the minus sign. It is subtracted from the initial accumulator.

3. If the accumulator is absolute, the next operator and term can have the
following forms:

a. If the next term is absolute, then any of the four arithmetic
operations are permitted. The accumulator remains absolute.

12 Chapter 3: Six Forks Assembler Language

'\

-

2. If the next term is relocatable, the operator must be "+". The
accumulator becomes relocatable.

(@]

. If the next term is virtual, the operator must be "+". The
accumulator becomes virtual.

~. If the accumulator is relocatable, two forms of the next operator and

term are permitted:

a. The next operator is "+" or "-" and the next term is absolute. The

accumulator remains relocatable.

b. The next operator is "-" and the next term is relocatable. Here we

are taking the difference between two relocatable values. The
accumulator becomes absolute.

the next term must be absolute. The accumulator remains virtual.

6. Division by zero results in an error message. Overflows from other
operations are ignored.

Signed Versus Unsigned Values

Terms and expression results are 16-bit v:lues. Whether a given value is a
signed or unsigned quantity is largely a matter of user interpretation. For
example, $FFFF can also be thought of as -1 or as 65535, or as any other
pattern of bits.

Addition, subtraction and multiplication operations yield "correct" results
regardless of the interpretation, although you must be aware of overflows.
There are two operations where a single result cannot satisfy both
interpretations. In these operations, the assembler supports the unsigned
interpretation. The operations are:

1. Division. Fortunately, division is infrequently used in assembler
statements. In any event, division consists of a simple, integer,
unsigned, 16-bit divide. We do exactly what Atari does.

5. If the accumulator is virtual, the next operator must be "+" or "-" and

2. Overflow check on expression results that must fit into one byte. The
assembler and linker require that the high order bvte of the expression

result be zero. This interpretation prohibits negative values that can
be correctly represented in one byte. For instance, the statement "ABC
.BYTE -1" is unacceptable. As you will see, though, the statement "ABC
BYTE .LO.-1" is acceptable.

Byte Selection on an Expression Result

An expression can begin with a "byte selection" prefix. Examples are:

.LO.LABA+2

Chapter 3: Six Forks Assembler Language 13

HI.LABV

This prefix is syntactically part of the expression. To aid in explaining its
effect, we call the portion of the expression following the prefix the "inner
expression".

There are no restrictions on use of the prefix. The inner expression can be
absolute, relocatable, or virtual. When relocatable or virtual, the final
result is determined by the linkage editor.

The attribute of an expression is not changed by adding the prefix. Byte
selection is applied to the result of the inner expression in the following way:

.LO. The high order byte of the result is zeroed.

.HI. The value in the high order byte is moved to the low order byte and
then the high order byte zeroed.

Byte selection is useful in setting up addresses at execution time. For
example, to put the address "LAB1+1" into the A and Y registers, the following
can be used:

LOW ORDER BYTE.
HIGH ORDER BYTE.

LDA #.LO.LAB1+1 A
LDY #.HI.LAB1+1 Y

Two-byte Operands aldé

An instruction that contains an absolute memory address has a two-byte
operand. Also, a statement that defines a two-byte numeric constant has a two-
byte operand. Here are examples:

JMP LOOP

LSR ACCUM+2

BIT FLAG

LDY ELEMENT,X

JWORD XYZ+1 (LO,HI) ORDER.
JDBYTE XY¥Z-22 (HI,LO) ORDER.

One-byte Operands
An immediate instruction has a one-byte operand. The zero-page form of an
instruction has a one-byte operand. The statement that defines a one-byte
numeric constant has a one-byte operand. Following are examples:

LDA #47 IMMEDIATE INSTRUCTION.

LDA $17 ZERO-PAGE FORM OF INSTRUCTION

.BYTE PAGSIZ-4 ONE-BYTE NUMERIC CONSTANT.

Note: the BYTE statement is also used to define character constants.

The value of an expression used in a one-byte operand must lie between O and

14 Chapter 3: Six Forks Assembler Language

=

- wE WE W WIS

FEREREFRRERN

=xplained earlier. Violations of this rule are reported as soon as the

vE. wzlue of the expression is known.

Automatic Selection of Zero-Page Instructions

@~ tz1n instructions have both an absolute-address form and a zero-page form.
.1 tmat case, the assembler automatically chooses the zero-page form if the
#izrezssion in the operand field has any of the following properties:

. It yields an absolute value during pass 1 of the assembly process, and
that value is between 0 and 255. Chapter 4 explains "pass 1".

(RS}

. It has a byte selection prefix (.LO. or .HI.).

)

. It contains a VIRT8 virtual.

VIRT8 Virtuals

L VIRT8 virtual is a virtual whose name has been used in a .VIRT8 declaration
statement. The assembler makes the following assumption about VIRT8 virtuals:

any expression containing a VIRT8 virtual will have a
result that is between 0 and 255.

The only effect of a VIRT8 virtual is to cause the zero-page form of an
instruction to be generated when that form exists.

It is your responsibility to see that an expression containing a VIRT8 virtual
yields a result between 0 and 255. If an out-of-range result occurs, the
linker will report the error.

The usefulness of the VIRT8 feature is that it allows zero-page locations to be
referenced symbolically using virtual labels. Otherwise, each source file

referencing a zero-page location would have to contain the absolute address of
that location.

The Comment Statement ald7

If the first character in a statement is a semicolon then it is a comment. A
blank line is also treated as a comment. It appears as a blank line in the
assembly listing.

The .BYTE Statement

Following are examples showing all forms:
TEN BYTE 10

27| 1 BRTE. 16,20 830 JBT A2
HEAD ~ .BYTE "THIS IS A HEADING"

Chapter 3: Six Forks Assembler Language 15

MES1 .BYTE 'THE MAN SAID "I AM HERE"!
MES2 .BYTE "DON'T SHARPEN THE PENCIL"
STUFF .BYTE 2,"ABCD",3,"EFGH"

One or more subfields are given with a comma (but no blanks) between each.

FEach subfield is either an expression or a character string. Expression values
must lie between 0 and 255, If the expression contains a virtual, the final
value is computed and checked by the linker.

The .CFE Statement

It creates a self-describing character constant. The operand field consists of
a single character string. Following are examples:

TITLE JCFE "LAST VALUE PRINTED"
EMPCFE .CFE " (empty string)

The format of the assembled bytes are:

1st byte number of data bytes plus 1. The data bytes are those
between the quotes.

next bytes the data bytes.
last byte always $9B. This is a checkbyte.
The examples above are equivalent to:

TITLE .BYTE 19,"LAST VALUE PRINTED",$9B
EMPCFE .BYTE 1,$9B

The CFE is useful for defining a character field that is to be processed by
subroutines. Given the address of the CFE, a subroutine can:

1. Check that the address points to the CFE rather than garbage. The
checkbyte is used here.

5. Find the number of data bytes.

3. Find the data bytes themselves.

The .DBYTE Statement

Following are examples showing all forms:

ABC .DBYTE X
DEF .DBYTE X,Y+1

This statement defines a two-byte constant in which the high order byte is

placed first in the machine language translation. Such constants are not often
used, as the 6502 processor requires that 2-byte addresses have their low order

16 Chapter 3: Six Forks Assembler -Language

st. The .WORD statement produces constants of that form.

The .ENTRY Statement

‘i..Twing are examples showing all forms:

.ENTRY SORTIP
.ENTRY AL1,AL2
.ENTRY "ALL"

#zn listed label is made an ENTRY, meaning that it is capable of resolving

‘.rtuzls in other assemblies. Each label that is made an ENTRY must also be
z#7ined within the source where it is so declared.

" the operand field consists of "ALL" (quotes included) then all labels
2zfined in the source file are made ENTRYs.

“n .ENTRY statement can appear anywhere in the source file, but it is normally
c_zced near the top.

The .OUTPI Statement

_t has only one form:

.OUTPI packid
«nere "packid" is a 6-byte pack ID that indicates the pack (diskette) on which
the assembler is to write the relocatable file. A pack ID is identical in
syntax to a label, but there is no interaction between the two.

This is the only statement that is mandatory in all source files. It can be
placed anywhere but is normally put near the top.

The VIRT8 Statement

Examples showing all forms:

.VIRT8 WALL
.VIRT8 ABC,LINK,VERS

The VIRT8 virtual was explained earlier in this chapter.

The ““ ="’ Statement

This statement is sometimes called the "equate" statement. Following are
examples:

$9B
LFEED+1

LEEED
LFDP1

Chapter 3: Six Forks Assembler Language 17

LOgP . = *

The label is defined to be the value of the expression in the operand field. A
label in the label field is not mandatory, but without a label the statement is
useless.

The expression must yield an absolute or relocatable value during pass 1 of the

assembly process. Thus, a label used in the operand field cannot be a virtual
and it must have been defined before the "=" statement is encountered.

The “* =’ Statement

Following are examples:

%= gu62C
BINVAL *= *42
OLDORG ¥= ABC

%= OLDORG

The location counter is set to the value of the expression in the operand
field, which must yield an absolute or relocatable value during pass 1 of the
assembly process.

If a label is used in the label field, it is defined to be the location counter
value in effect when the assembler began processing the "¥=" statement.

The "*=" must appear in the operation field with no blanks separating the "*"
from the "=". In an exception to the general rule for separating fields,
blanks need not separate the "*¥=" from the operand or label field. These
exceptions apply to the "=" statement as well.

The setting of the location counter is sometimes called "setting an origin".
More information on the "#*=" statement was given earlier in this chapter.

Instructions with no Operand Field ald17

When an instruction has no operand field, any source material following the
operation field is considered to be the comment field. Following are examples:

OO09R A8 LAB1 TAY
0010R 60 RTS RETURN FROM READCS.

Relative Branch Instructions

They are BCC, BCS, BEQ, BMI, BNE, BPL, BVC and BVS. In machine language, the
operand is a 1-byte field that gives the "distance" to branch, which can range
from -128 through 127. The distance is measured from the byte immediately
after the branch instruction. For instance, a value of -2 (FE) would cause the
instruction to branch to itself.

18 Chapter 3: Six Forks Assembler. Language

e

ey]

mbler language, the operand field is an expression giving the

ion of the branch. The assembler computes the proper "distance" value
£2 1nto the machine language instruction. The destination must be within

T the branch, and it must be within the same source file. Thus, a
.mzuzl cannot be used in a relative branch instruction (but note that virtuals
© 2= used in the JMP and JSR instructions). Also, the expression result must
@#vz tne same attribute (absolute or relocatable) a the current location

sumter. Here is how the relative branch operand field is processed by the

&

. The operand field, a single expression, is evaluated.

. The result must have the same attribute (absolute or relocatable) as
the location counter.

o

3. The value "location counter + 2" is subtracted from the expression
result. Recall that the location counter points to the start of the
branch instruction.

4, The result of the subtraction must be between -128 and 127.

5. This one-byte result becomes the value of the assembled operand field.
It can be seen in the compiled-code field in the assembler listing.

ollowing are relative branch examples:

0025R A8 BACKW TAY

0026R F002 BEQ FORW A FORWARD BRANCH.
0028R 30FB BMI BACKW A BACKWARD BRANCH.
002AR AA FORW TAX

JMP and JSR Instructions

The machine language form of these instructions has a 2-byte operand field that
is the absolute address of the destination. In assembler language, the operand
field is an expression. In case of the JMP, the expression can be enclosed in
parentheses to indicate an indirect JMP. Following are examples:

OOU4R 20VVVV JSR SORT SORT THE ARRAY.
OO4TR 6CAB20 JMP (ABC) NOT USED OFTEN.

Instructions with Several Addressing Modes

Instructions not already mentioned fall into this group. No single instruction
has all modes. Consult a 6502 hardware manual for the modes allowable for a
particular instruction. Possible modes are:

ADDRESSING SYNTAX OF
MODE OPERAND FIELD EXAMPLE
immediate #exp1m LDA #25
Chapter 3: Six Forks Assembler Language 19

absolute expr - LDA ABC+3

zero-page expla LDA ZPAGV+1

absolute,X expr,X LDA ABC,X

zero-page,X expla,X LDA ZPAGV,X

absolute,Y expr,Y LDA ABC+1,Y

zero-page,Y expla,Y LDA ZPAGV,Y

(ind,X) (expTm,X) . LDA (ZPAGV,X)

findy,X (expim),Y LDA (ZPAGV),Y

A-register A ASL A (only ASL, LSR, ROL, ROR)
where

expr is any valid expression, or, if both absolute and zero page forms of
the instuction exist, then "expr" is an expression that, during pass
1, does not qualify as an "expla".

expla is an.expression that yields a 1-byte result during pass 1.
explm is an expression that must ultimately yield a 1-byte result because
there is no form of the instruction with a 2-byte operand. If the

expression contains a virtual then the value is computed and checked
by the linker.

20 Chapter 3: Six Forks Assembler Language

Chapter 4
Using the Assembler

Labelled Packs | ald8

"= zssembler and linker require labelled packs. Each time a file is read or
sritten, the pack label is first checked. If it is missing or incorrect, you
zve Informed of the problem and given a chance to mount another.

2c« 1s labelled by creating a file on it called PACKID that has one record
=zt contains, beginning in the first byte, the desired pack ID. If shorter
=mzn © bytes, the pack ID can be ended with an EOL or blank padding to 6
tytes. Bytes following the sixth are ignored.

i+ i

" the source file (specifically, the .OUTPI statement) the pack ID has the
=me syntax as that of a label. The first byte is a letter and remaining bytes
from 0 to 5 of them) are letters or digits.

Assembler Capacity

Maximum source file size: 140 sectors (17,500 bytes)

Maximum number of different labels: 200
The limit on source file size is because the source file is read into memory in
1ts entirety. Because source records vary in length, it is not possible to
give a maximum number of records, but 140 sectors is typically more than 12

pages.

Note that the limit of 200 labels is only for a single assembly. The linker
allows up to 512 in a build.

Pass 1

After reading the source file, the assembler makes a total of three passes
through it. During pass 1 it determines which labels are locally defined and
which are virtuals, and it determines the value of the locally defined ones.

Since locally defined variables can be be defined in terms of the current
location counter value, the location counter must remain defined throughout
pass 1. That is why the operand field of the "*=" statement must always yield
a known (absolute or relocatable) value during pass 1.

Since an instruction causes the location counter to be incremented by its

Chapter 4: Using the Assembler 21

length, the length of each instruction must be determined during pass 1. Thus,
automatic selection of zero-page instructions is done during pass 1, and those
selections are remembered so that during subsequent passes, the location
counter is incremented exactly as it was during pass 1.

Pass 2A

It is a "dry run" of pass 2B whose sole purpose is to find out whether the
source file has errors. See "Mid-Assembly Choices" below.

Pass 2B

During this pass, the relocatable file and assembly listing are produced.

Starting an Assembly

Chapter 2 explains how to start the assembler. The first thing it does is to
ask for the source file name. Enter it and press Return. Next, the assembler
asks for the pack ID of the pack containing the source file. Enter that and
press Return.

Note: After an assembly is finished, the assembler prepares to do another.
When the file name and pack ID are again asked for, the previous
values are displayed. They can be partially or wholely retyped or
lef't unchanged.

The assembler then reads the source file and performs passes 1 and 2A.

Mid-Assembly Choices

After passes 1 and 2A are complete, the assembler tells you whether or not
there are errors and asks you what you would like to do with the assembly
listing. You can have it printed or displayed on the screen.

If the source file has errors, the relocatable file is not built. If the
source file is error free, you can suppress building of the relocatable file by
holding the Option key down at the same time you type the letter indicating
your choice for the assembler listing output device.

Print Mode

Only data characters and the EOL are sent to the printer, meaning that Jjust
about any printer should work. Perforations are skipped by printing blank
lines. Pages are assumed to be 66 lines in length. Before printing is begun,
the printer should be set on top-of-form. After each assembly, the printer is

left at top-of-form.

The XL and XE computers have a minor bug in their operating system code that

22 Chapter 4: Using the Assembler

z.ses the printer to occasionally stop for approximately a minute. Do not do
mythin g, as it will restart on its own. Whenever the assembler or linker is
wz.ting on the printer, the bottom screen line has a message saying so.

View Mode

iflw the leftmost 4o bytes of the assembly listing are shown. This partial

n
1
m
<
-
3
0
=
=)
Q.
(]
1]
(]
<
]
-3
<
s
=
[
o
oQ
o
=
+
7]
o
3
0]
- O
—
o+
oy
o
o
:
-
=
s
oY)
3
<
O]
3
Q.
[N
+
[N
]
]
O]
[¢/]
[
(]
-3

1. Errors can be seen and corrected before hardcopy is made. Note that
source changes must be made using your word processor.

2. When a small change is made, the assembly listing need need not be
reprinted in order to confirm the change.

View mode begins by filling the screen with the first 22 lines of the assembly
listing. The screen (and the entire assembly process) is then advanced by
using the keyboard. The bottom screen line summarizes the available functions,
one of which is a "help" display. Each function is invoked by a single,
unshifted letter. The functions are:

L - advance the display by one line.

S - advance the display by one screen (22 lines).

F - finish the assembly.

E - advance the display until an error message appears on the bottom
display line. Error messages begin with 8 asterisks. If there are no
more errors in the assembly, the display continues until the "outcome"
message appears. The initial screen must be manually scanned for
errors.

H - show the "help" display. To return from that display, press Return.

Error Reporting

Following are examples of the two error message formats:
%¥RR¥RX¥ DRROR 14,25
*EXXAREX yyxxxx: ERROR 22

The first form normally applies to the statement preceding it. The second form
applies to the given label. Error codes are tabulated in Appendix A.

The Assembly Listing ald18

Chapter 4: Using the Assembler 23

It shows each source statement along with its machine language translation (to
the extent that is possible). The label, operation, operand, and comment
fields are tabbed to fixed columns to improve readability. Recall that in the
source file, these fields need only be separated by one or more blanks.
Following are a few sample lines:

; COMMENT STATEMENTS ARE PRINTED EXACTLY AS ENTERED
)
4O24R 8D3412 LABEL LDA XYABC COMMENT FIELD.

The leftmost field is the "address" field. Next is the "compiled code" field,
which shows up to the first three bytes of the machine language code (to the
extent possible). Remaining fields are those of the source statement.

The address field is shown when it is relevant. In statements that reserve
memory, it gives the address of the first byte of the reserved memory, which is
also the location counter value in effect at the start of the statement. 1In
the "=" statement, it gives the value of the expression in the operand field.

The following lines illustrate the address field for relocatable and absolute
location counters:

0029R C99B CMP #$98B IMMEDIATE OPERAND.

)
002BR *z $1000 SET AN ABSOLUTE ORIGIN.
1000 A8 i TAY NO-OPERAND INSTRUCTION.

The "R" in the address field indicates that the CMP instruction is at a
relocatable address. The "*z=" statement changes the location counter to
"$1000, absolute". The address field in the "#=n statement shows the location
counter before it is changed. The new value is not seen until the following
statement.

The compiled-code field shows as much as possible. The following lines
illustrate 2-byte operand field values:

0024R 8D3143 STA ABS ABSOLUTE OPERAND FIELD.
0027R 8D2D00 STA RELOC RELOCATABLE OPERAND FIELD.
002AR 20VVVV JSR SUBR VIRTUAL OPERAND FIELD.
002DR 3412 éELOC WORD $1234 A RELOCATABLE LABEL.

4331 ABS = $4331 AN ABSOLUTE LABEL.

The final machine language value is given for absolute operands. Relocatable
operand values are relative to the load point of the assembly. Note that in
the instructions and the .WORD statement, the low order byte appears first.
For virtual operands, "VVVV" is shown. i

The following lines illustrate 1-byte operand values:

.VIRT8 ZPAGA

24 Chapter 4: Using the Assembler

J024R A531
J026R ASRR
J028R ASVV

002AR 00
0031

5

LDA ABS8 ABSOLUTE 1-BYTER.
LDA .LO.RELOC RELOCATABLE 1-BYTER.

LDA ZPAGA+1 ZERO-PAGE INSTR. SELECTED.
éELOC .BYTE O A RELOCATABLE LABEL.
ABS = $31 ABS. LABEL <255.

= "-byte relocatable operand is permitted by the assembler only if the defining
zxpression has a byte selection prefix. For such operands, "RR" is shown
czuse the final value is computed by the linker.

Chapter 4: Using the Assembler 25

Chapter 5

Linker Concepts

The linker combines relocatable files into an object file that can be loaded
and executed by DOS. An execution of the linker is called a "build". A build
proceeds in the following steps, which are further explained in chapter 6:

1. You enter options to control the amount of printout. e
2. You énter the name and pack ID of the control file.

3. The control file is read and "remembered" .

4, Relocatable files are read as directed by the control file.

5. The output file is created from the information in memory.

6. The load map is printed.

The Linker Control File

A build is defined by giv...Z the name and pack ID of each input (relocatable)
file and the name and pack ID of the object file to be created. This
information is not typed directly into the linker. Rather, a "control file" is
created that contains the data. Following is a sample control file:

(* SAMPLE CONTROL FILE ¥)

/BINOUT ON TEST1: COPY.O (* OBJECT FILE ¥)
/INPUTS ON RPAK1: XASA.R (* MAIN PROGRAM ¥)

XASC.R XASD.R (* CHARACTER MANIPULATION ¥*)
/INPUTS ON RPAK2: YASA.R YASB.R (* FILE HANDLERS ¥)

Physically, the control file is composed of records, each ending with an EOL.
A record cannot be longer than 120 bytes. They are normally kept short enough
to fit on one print line.

Logically, the control file is composed of statements that can be arranged in a
"freeform" manner within the records. A statement can occupy multiple records
as long as a single word does not cross over from one record to the next.
Blanks are ignored except that they cannot appear within a word. A sequence
beginning with " (*" and ending with "*)" is a comment. - It can appear anywhere
except in the middle of a word.

26 Chapter 5: Linker Concepts

T BT BT BT BB B ER

|
~3
3

ne INPUTS statement gives a pack ID and then one or more files that are to be
zd from that pack. The file names are separated by blanks. A complete DOS

nzme must be given. Thus, the ".R" must be given for the relocatables.

There is no specific limit to the number of INPUTS statements or the number of
Tile names given in a single INPUTS statement. Files are read in the order
tney are given in the control file.

Tne BINOUT statement is required to give the name and pack ID of the output
file.

Example 1: lllustrates all Linker Concepts ald11

———ee—eemeeeee source file SOUR1 —=eeemcmcaaaao
.OUTPI RPACK1
*= $4000
! .ENTRY S1STAR

4000 A92C é1STAR LDA UL
4002 8D0540 STA XYZ

4005 00 XYz .BYTE 0

.OUTPI RPACK1
.ENTRY S2STAR

0000R AD0600 é2STAR LDA XYZ
0003R BEVVVV STA S1STAR+5

0006R 00 XYZ .BYTE 0

/BINOUT ON OBJPAK: OBJFIL

/INPUTS ON RPACK1: SOUR1.R SOUR2.R

-------------- linker printout —-—--—-c--c-eecc---

400D = FINAL LOCATION COUNTER VALUE

Chapter 5: Linker Concepts 27

S1STAR 4000 S2STAR 4006 R N (load map)

Illustrated Here Are:

1. The linker has a location counter that parallels that of the assembler.
The linker's location counter is always absolute. The first input file
sets the linker's location counter to an absolute value ($4000) and then
advances it in step with the memory-reserving statements in SOUR1.

Such an absolute setting is required before any memory-reserving
Statements are encountered, because the linker's location counter is
"undefined" at the start of a build.

2. The linker's location counter carries over from one input file to the
next. The value after SOUR1.R is finished is $4006. That value remains
in effect when processing of SOUR2.R starts. Thus, SOUR2.R is processed
as though it began with the statement

*= $U4006.

This is relocation. It results from the carryover of the linker's
location counter from one input file to the next. Evidence of the
relocation of SOUR2.R is seen in the load map. The linker assigned a
value of $4006 to the label S2STAR.

3. The label XYZ is a local label in both sources. The linker does not know
about either of these labels.

4. The labels S1STAR and S2STAR are each declared to be an ENTRY. ENTRYs
are seen in the load map.

5. The final location counter value is printed immediately before the load
map. With appropriate ordering of the input files, this value can be
made to show the highest+1 location used by the object program.

6. In the load map, S1STAR does not have "R" beside it because it was not
relocated by the linker. S2STAR, which was relocated, has the "R".

7. In the load map, S2STAR has "N" beside it, meaning that it is not
referenced by another relocatable file. The linker doe-~ not know whether
or not an ENTRY is referenced from within the file defining it.

8. S1STAR is a virtual in SOUR2.R because it is used in that assembly but
not defined in it. The linker "resolves" the virtual reference and
inserts the value $4005 (S1STAR+5) into the "STA" operand.

To see the "$U4005", you could load the object program (OBJFIL) into
memory and look at the two locations beginning at $400A. They will
contain $0540. Recall that in the "absolute address" form of an

instruction, the low order address byte is given first.

28 Chapter 5: Linker Concepts"

BB B BB

.

B E R R R EEEEEETS

]II'F !II' jlll ;IIIi]II' ;III! :Ill

Example 2: Techniques to be Aware of

______________ source file SOUR1

6000
6003
6006
6009
600B
600D

000OR

4000
4000
4003
4006
4009
4o0C

4OOF

20VVVV
ADVVVV
ACVVVWV
20VVVV

20VVVV

O00OR

02E0Q

VVVV

4

INIT
MOVCHR
READRC
A

B

G

source file

’

b
START
)

;

LDA
LDY
JSR

b
JSR

.OUTPI RPACK1

.ENTRY "ALL"

L1 T 1 1 N T I 1 }

.OUTPI RPACK1

*¥=

$6000
$6003
$6006
$6009
$600B
$600D

$4000

.ENTRY START,FLOCS2

JSR

A

A+
MOVCHR

PROCES

FLOCS? =

source file SOUR3

e we wo wo

’

*

INIT

*

PROGRAM START.

DO INITIALIZATION.

CAUSES PRORAM TO BE AUTO-RUN

CAUSES NO NET CHANGE TO LOCATION COUNTER.

.OUTPI RPACK1

- .ENTRY FLOCS3

ORGSAV *=

.WORD START

$2EO

SAVE AND SET LOCCTR.

PLANT START ADDRESS.

Chapter 5: Linker Concepts

ald19

29

02E2 * ORGSAV RESTORE LOCCTR.

)
0000R FLOCS3 = *

source file SOURY ———-—e——————ee-

.OUTPI RPACK1
)

.ENTRY PROCES,FLOCSH

0000R PROCES = * ENTRY POINT.
0000R ADVVVV IDA C

0003R 297F AND #$7F

0005R 20VVVV JSR READRC

0008R FLOCSY = *

-— linker control file ——=====-=--—--

/BINOUT ON OBJPAK: OBJFIL

JINPUTS ON RPACK1: SOUR1.R (¥ EQUATES *)
SOUR2.R (* MAIN PROGRAM ¥)
SOUR3.R (* AUTO-RUN CAUSER *)
SOURY4.R (* PROCES *)

linker printout ——==—-==-=----
4017 = FINAL LOCATION COUNTER VALUE

A 6009 B 600B N C 600D
FLOCS2 U4OOF N FLOCS3 400F RN FLOCSY 4017 RN
INIT 6000 MOVCHR 6003 PROCES 400F R
READRC 6006 START 4000

Note the Following:

1. SOUR1 contains nothing but "equates". It does not use the location
counter at all. Thus, the location counter remains undefined after
processing of SOUR1 is complete.

2. The FLOCS2, FLOCS3 and FLOCSY labels are included to show the location
counter value at the end of each file. Note that SOUR1 cannot have a
"FLOCS1 = ¥' since the location counter is not defined within SOUR1.

3. SOUR3 causes the output file to be "auto-run", meaning that after it is

loaded by DOS, control is automatically transferred to "START". See
SSOUQ in the sample program for more information on this feature of

30 Chapter 5: Linker Concepts

Atari's DOS.

SOUR3 also has statements that save and restore the location counter.
Without those statements, SOUR3 could not be placed before SOURY, as it
would cause SOURY to be loaded beginning at $2E2 rather than following
SOUR2 as was intended.

i, The control file contains informative commentary.

Chapter 5: Linker Concepts 3

Chapter 6
Using the Linker

Linker Capacity ald12

1. Maximum number of different ENTRY and virtual names in a single
assembly is 256.

2. Maximum number of different ENTRY and virtual names in an entire set of
linker inputs is 512.

3. Maximum number of input files is in excess of 100.
4. Maximum object program size is approximately 8,000 bytes of

instructions and constants, as explained next.

Instructions and Constants

Instructions and constants represent memory that is reserved and initialized
when the program is loaded into memory. Statements that do this are the 6502
instructions, .WORD, .BYTE and .CFE.

Memory that is reserved but not initialized does not fall in the category
minstructions and constants". Such reservations are done using the wik=n
statement in the following manner:

ARRAY *= ¥*4100 100-BYTE ARRAY.

Consider the following group of instructions:

ABC LDA DATA

STA ARRAY
DATA .BYTE 22
ARRAY *= *¥+1000

It has 7 bytes of instructions and constants and reserves a total of 1007 bytes
of memory. The 1000-byte reservation does not use up linker capacity.

The Internal Workarea

Most of each relocatable file is held in the linker's "internal workarea". The
workarea size is fixed at approximately 14,000 bytes. For every byte of
instructions and constants, approximately 1.7 bytes of workarea space is
required. The limit given above of 8,000 bytes of instructions and data was

32 Chapter 6: Using the Linker

E l ! :Illb ‘II') 1"’ ‘III‘ llll 1II' f|I| ’III]II' 1"'
JII' PII' f = = i i i N - ! i

ERERN

zomputed by dividing 14,000 by 1.7.
=T the end of each build, the internal workarea's capacity and the number of

-¥tes used by the build are displayed. Thus, you can gauge how close a build
is coming to the linker's capacity.

Starting a Build ‘ ald10

-napter 2 explains how to start execution of the linker. The linker begins
w1th the following display:

LINKER
(C) Copyright 1985 by

Six Forks Software
All Rights Reserved

DON'T USE PRINTER. USE SCREEN.

DON'T SHOW ALL OF CONTROL FILE.

DON'T SHOW NUMERICALLY SORTED LOAD MAP.
DON'T SHOW UNREFERENCED NAMES.

c=20a<
[}

PRESS 'OPTION' TO SUPPRESS OUTPUT FILE
TYPE 1 OR MORE (OR NONE)
(cursor appears on this line)

Type the desired letters and press Return. If the OPTION key is held down when
Return is pressed, the output file is not written. That is a convenience if,
for instance, the build is being re-run to get more of the printout. If the
output file is suppressed, a line saying so is printed following the load

maps.

When finished with a build, the linker prepares to do another. As with the
assembler, previously typed input is displayed and can be changed or left
unchanged as desired. Output file suppression does not carry over from one
build to the next.

Here is what the option letters mean:

V - if present, output is directed to the screen in exactly the same
manner as in the assembler. Refer to the "Print Mode" and "View Mode"
sections in chapter 4.

C - If present, only the first 5 lines of the control file are printed,
followed by a message saying "REMAININDER OF CONTROL FILE NOT
PRINTED". This option and other printout reduction options are useful
because as a program is being developed, the same (or almost the same)
build is re-run many times.

N - if present, the numerically sorted load map is NOT printed. The

Chapter 6: Using the Linker 33

alphabetically sorted one is always printed unless errors are detected.

U - if present, unreferenced ENTRYS are omitted from the load map.

Control File Reading
The control file is completely read, checked, and remembered before relocatable

file reading begins. If errors are found then the build is terminated after
control file reading is done.

Error Handling

Errors are checked for during all phases. If an error is detected before
output file building begins, the output file is not built. Also, if any errors
are detected, the load map is not printed since it would not be of assistence
in correcting the errors. .

Error codes are tabulated in Appendix A. When an error pertains to a

particular relocatable file, the file name is included in the message. When an
error pertains to a particular label, the label is included in the message.

Input File Reading

Input files are read in the order they are given in the control file. You are
prompted to mount the necessary nacks as they are needed.

Output File Building

A1l external labels must be defined when input file reading is complete. If
not, undefined ones are listed and processing terminated.

One-byte field overflow errors are detected during this phase. They are errors

in which the result of an expression containing a virtual is greater than 255,
and the result is being used in a one-byte field.

The Load Map

It is a 1list of all external labels and the information associate with each.
The following information is shown for each label:

a. The 6-byte name.

b. The 16-bit absolute value it denotes, shown in hex.

c. If the value was relocated by the linker, "R" is printed.

d. If the value was not referenced by a relocatable file other than the

one in which it was defined then "N" is printed.

34 Chapter 6: Using the Linker

NOTE: unreferenced labels occur for various reasons, especially in
multi-group programs. They are normally not errors and should
not be eliminated just because they are unreferenced.

“he load map is required for debugging, as it shows where the linker placed the
relocatable code in memory. Actually, the load map shows this clearly only if
the beginning of each assembly has an ENTRY label on it, but that is normally
the case because a memory-reserving assembly is likely to be either:

a. A subroutine (or several subroutines). The entry point of the first
subroutine is normally at the start of the assembly.

b. Global data. All of these data items are likely to be ENTRYs.

The load map is printed twice: alphabetically sorted and, unless suppressed
with the "N" option, numerically sorted. The numerically sorted map is useful
because it gives a quick means of determining the ENTRY labels that a given
absolute address is near. That is sometimes useful during debugging.

Chapter 6: Using the Linker 35

Chapter 7

Multi-Group Programs

It is sometimes useful or necessary to divide a program into multiple builds.
In such a program, each build is referred to as a GROUP. The complete program
consists of all of the groups loaded into memory at once. Note that to DOS and
the linker, a group is not different than any other object file.

' ald13
Division of a program into multiple groups is necessary if its si'e (the amount
of instructions and constants, as explained in Chapter 6) exceeds the linker's
capacity. Whether or not necessary, it is often beneficial for the following
reasons:

1. When a change is made, only the affected groups need be rebuilt. As a
program grows, a growing number of assemblies become fully debugged and
stable. Those can be collected into separate groups and thus not have
to be run through the linker time and time again.

2. A group can be used in more than one program. You are likely to create
a group that contains routines useful to practically every program you
develop. Such a group could be thought of as a "foundation".

Functionally speaking, Atari's operating system in ROM and the DOS
routines in low memory are foundation groups.

When developing a multi-group program, you have the following responsibilities:
1. Memory assignment for each group.
2. Communication between the groups.

3. Loading each group into memory prior to execution of the program.

Memory Assignment for each Group

As with any object file, the memory usage of a group is controlled by the
source code. To simplify your responsibilities, a group should have the
following structure when possible:

1. The first assembly in the linker control file begins with an absolute
n#¥-1 statement. That statement defines the starting address of the
group.

2. Remaining assemblies in the group contain only relocatable code. Thus,

the linker places them in ascending memory locations following the
first assembly.

36 Chapter T7:.Multi-Group Programs

l‘
-!

R}
—

It is useful to define an ENTRY label at the end of the last assembly
in the group. In the load map, that label shows the highest location
(actually the "highest+1" location) used by the group. Some

might prefer to put this label definition in an assembly by itself.

It might also be noted that, with appropriate ordering of the linker
input files, the final location counter value printed by the linker can
be made to show the "highest+1" address.

You must manually arrange the groups in memory so that they do not fall on top
of each other, but in practice that is not difficult, especially if the
suggestions in this chapter are followed. Here are some reasons that it is not
difficult:

1. There are seldom more than 3 or 4 groups, and some of them will seldom
require modification.

2. Because of the small number of groups, it is not difficult to manually
insure that the groups don't overlap. It is not unreasonable to leave
several hundred bytes between each group to allow for future
expansion. Given that amount of space following a "stable" group,
minor changes should seldom require groups to be moved.

3. Moving a group is easy. All that is necessary is to change the initial
"¥=" statement, reassemble that source, and rebuild the group. Also,
other groups referencing that group must be rebuilt.

4, Here is an easy way to initially arrange groups in memory:

a. Initially place each group so it begins at location 0. Build the
groups like this. The assemblies and builds can be done using view
mode, thus avoiding hardcopy.

b. The length of each group is simply its "highest+1" address.

c. Based on the lengths and desired separations, decide where each
group should start. Set the "*=" statements, reassemble those

sources, and rebuild each group.

5. To establish communication between the groups, use the techniques
described in the remainder of this chapter.

The Communication Vector

A group typically contains certain subroutines and data areas that must be
acccessed by other groups. Collect those entry points and data areas into the
first assembly in the group, just after the "¥*=" statement defining the group's
origin. Make that assembly contain nothing but these items. This assembly is
called the "communication vector".

Other groups reference those entry points and data areas by simply using their

Chapter 7: Multi-Group Programs 37

ey ey = SR T3 L RIS - o lecd B —~ 7 - 3.3 o3 PR 2
names as virtouals. Ine virtuals are resolved Dy a relocatable file called an

"entry definitions file" that contains nothing but "=" statements defining the
names. The use of a "communication vector" and an "entry definitions file" has
the following benefits:

1. Changes can be made to the non-first assemblies in the group without
altering the addresses of the externally-referenced entry points and
data areas. Thus, bugs can be fixed or changes made to the "body" of
the group with requiring other groups to be rebuilt.

2. The entry definitions file can be automatically produced when the
communications vector is assembled. That is done using the .EOUT
statement, explained below.

3. The "transparent jump" feature in the assembler prevents a problem that
would otherwise accompany the placement of subroutine entry points in
the communication vector. This feature is also explained below.

Here is an example of a communication vector that does not use the .EOUT or
transparent jump features:

.OUTPI RPACK1

.ENTRY "ALL"
0000R ' *= $4430
4430 UCVVVV ENGET JMP FNG FNGET ENTRY POINT.
4433 LCVVVV DOPAS1 JMP DOP1 DOPAS1 ENTRY POINT.
4436 00 NBYTES .BYTE 00 GLOBAL DATA AREA.
4437 0000 ENDADR .WORD 00 GLOBAL DATA AREA.

This group has two subroutines and two data areas that are to be visible to
other groups. In the linker control file that builds the group, the
communication vector is given first. Remaining assemblies contain the body of
the group. They define the labels FNG and DOP1.

Note that FNGET, DOPAS1, NBYTES and ENDADR are visible to other assemblies
within the group because they are ENTRYs in the ".R" file. To make these
labels visible to other groups, an entry definitions file such as the following
is created:

.OUTPI RPACK1

.
2]

.ENTRY "ALL"
4430 FNGET = $4130
4433 DOPAST = 4433
4436 NBYTES = $4L36
4437 ENDADR = $4L37

This assembly is used in the builds of the other groups.

38 Chapter 7: Multi-Group Programs

|
\L
i

-

The .EOUT Statement

This statement causes the entry definitions file (relocatable version only) to
be created automatically when the communications vector source is assembled.
Thus, when the .EOUT statement is present, two relocatable files are produced.
Here are characteristics of the .EOUT statement:

1. It can appear anywhere in the source file, but is normally placed near
the top.

2. It does not affect the contents of the " .R" file.

3. The entry definitions file is created on the same pack as the " .R"
file. The name of the entry definitions file is formed by adding " .E"

to the source file name.

4. The entry definitions file is a relocatable file. No corresponding
source file is created.

5. The entry definitions file has the following contents (equivalent
source code shown):

.OUTPI rpack same pack ID as ".R" file.
! LENTRY "ALL"
iabe11 = $vali
label2 = $val2
iabeln = $valn
For each ENTRY label, the equivalent of a "=" statement is generated

that defines the label so that it denotes the same value as in the ".R"
file. Note that the ".E" file contains only ENTRY definitions. It
reserves no memory and does not use the location counter.

The Transparent Jump Statement

In the above example, the subroutines callable through the communication vector
have two names. To fully comprehend this nuisance, consider the likely history
of subroutine FNGET. It is created without vectored calling in mind. Thus,
the initial version of the source file contains FNGET as an ENTRY. As the
amount of source code grows, it becomes beneficial to put FNGET into a group
and put its entry point into the communications vector.

To do that, the name FNGET must be defined in the communications vector,
meaning that another name (FNG in our example) must be u~ed in the subroutine's
source file. That in turn necessitates changing the FNGET source, which in

Chapter 7: Multi-Group Programs 39

turn means that it will no longer work in earlier builds since it now has the
"wrong" name.

This problem is eliminated with the transparent jump feature. Here is our
communications vector written to use transparent jumping:

.OUTPI RPACK1

.ENTRY "ALL"

’ .EOUT CREATE THE ENT. DEFS. FILE.
0000R = ’ = $4430 STARTING POINT FOR GROUP.

)
4430 H4CVVVV = JMP FNGET A TRANSPARENT JUMP.
4433 Y4CVVVV = JMP DOPAS1 A TRANSPARENT JUMP.

)
4436 00 NBYTES .BYTE 00 GLOBAL DATA AREA.
4437 0000 ENDADR .WORD 00 GLOBAL DATA AREA.

’

An "=" has been added to the label field of the JMP instructions. The .EOUT
has been added.

A transparent jump is indicated by putting "=" into the label of a JMP
instruction. Transparent jumping has the following characteristics:

1. It can be used only in a file containing a .EOUT statement. That is
because its only effect is in the entry definitions file. It has no
effect on the ".R" file.

2. The operand field of a transparent JMP instruction can consist of only
a single label that must be a virtual.

3. the result of the transparent jump 1is:

a. An ENTRY label definition with the following properties is placed in
the W.BY file $

label: label in the operand field
the label denotes: address of the JMP instruction

b. The JMP instruction, ignoring the "=" in the label field, is
assembled in t-e ".R" file in the normal manner.

Here is how transparent jumping affects subroutine FNGET in our example:

1. The source file containing subroutine FNGET can use the name FNGET for
its entry point.

5. The address in the operand field of the "= JMP FNGET" instruction
points to the entry point within the source file containing subroutine

40 Chapter T: Multi-Group Programs

FNGET.

3. In the "R." file produced by the assembly of the communications vector
source, FNGET is a virtual.

4, In the "E." file produced by that assembly, FNGET is an ENTRY that
denotes the "= JMP FNGET" instruction.

5. The net result is that callers to FNGET, both inside and outside of the
group where it is defined, can use the name FNGET. From inside the
group, control is transferred directly to the subroutine. From cutside
the group, control goes through the communications vector. .

Executing a Multi-Group Program

During debugging it is normally easiest to load the groups individually and
then manually branch to the program's starting point.

When development is complete, the program can be packaged into a single object
file by concatenating all of the groups into a single file. Atari discusses
this process under the topics "appending" and "compound files".

Be aware of the flaw in Atari's Assembler/Editor cartridge which causes it to
not accept files concatenated by the "append" option of Copy. However, those
files are accepted by the Load ~ mmand.

The problem is that the cartridge expects "pieces" after the first to not have
the initial pattern of $FF,$FF. The "append" option of the Save command
produces acceptable files. It is easy to write a Basic program to do the
combining. Simply concatenate the files, excluding the first two bytes of
those after the first.

Chapter 7: Multi-Group Programs 41

Chapter 8

The Sample Program
Files on the Distribution Diskette ald16
Only the source files and linker control file are supplied. They are:
LNKSP1 1linker control file to build the object program.
SSOUA Main program
SSOUB SUBTR, COLDIS. Trigger input, set color.
SSOUC SUBFW, SUBBK, BLUDIS. Forward, backward. Set background color.
SSOUD SUBLF, SUBRT, FLUDIS. Left, right. Set foreground color.
SSOUE DISHB. Display byte in hex.
SSOUF CFEFSF. Move CFE to screen.
SSOUG Global areas
SSOUH Page 0 variables, system equates
SSOUI Screen and display list
SS0UJ Defines origin for program.
SSOUK TERROR, RTSJMP. Terminal errors, All RTS.
SSOUL DISCRN. Set up display list and screen.
SSOWM GETAR, AWSGAR. Get subroutine arguments.
SSOUN AWSIS, AWRFS. Save and restore AL, AWD1-4.
SSOUO ATAVID, VIDATA. Convert atascii to/from video.
SSOUP CV1B2H. Convert byte to two atascii hex digits.
SSOUQ Makes program auto-run

Assembling and Linking the Sample Program

It takes approximately 14 minutes to do the assemblies (assuming no hardcopy is
made) and less than a minute to do the build.

42

step 1: Make a scratch pack for receiving the outputs of the assemblies

and build. Format it and put on DOS and DUP. Make it have a
pack ID of SCRAT. That is done by creating a file called
PACKID that has one record whose contents are "SCRAT" (quotes
excluded) followed by an EOL.

step 2: Assemble each of the 17 source files. To assemble SSOUA,

proceed as follows:
a. Start the assembler as explained in Chapter 2.
b. Insert the distribution diskette. Its Pack ID is "ALPAK1".

If you fail to do this now, you will be instructed to do so
when the pack is actually needed.

Chapter 8: The Sample Program

c. Type SSOUA followed by Return.
d. Type ALPAK1 followed by Return.

e. When the next typein is requested, first insert your SCRAT
pack.

f. Type the letter B. This causes the assembly listing to be
displayed on the screen rather than printed. Chapter 4
explains how to print the assembly listings, but be aware
that they occupy approximately 50 pages.

g. Shortly, the bottom screen line will display "TYPE DISPLAY
CONTROL OR H (HELP)". Type F to cause the assembly process
to complete without further pauses for viewing the assembly
listing. ' :

f. This assembly is now done. Press Return as instructed. The
assembler then prepares to do another. Repeat steps b
through this step until you have done all 17 sources. When
the pack ID is asked for, and the value "ALPAK1" is showing,
just press Return to use that value again.

The SCRAT pack now has all 17 relocatables, named SSOUA.R
through SSOUQ.R.

step 3: Use the linker to build the object program. Proceed as follows:
a. Start the linker.
b. Mount the distribution diskette (the ALPAK1 pack).

c. Type V fol.iowed by Return. This causes the printout to be
directed to the screen instead of the printer.

d. Type LNKSP1 followed by Return.
e. Type ALPAK1 followed by Return.

f. Shortly, the bottom screen line will display "TYPE DISPLAY
CONTROL OR H (HELP)" as it did during the assemblies. Type
F to allow the build to complete without further pauses for
viewing.

g. Mount the SCRAT pack as instructed. Choose the "A" option
of the pack mount display.

The object program, called SAMP1.0, is now built on the SCRAT
pack.

Executing the Sample Program

.
L

Chapter 8: The Sample Program 43

Reboot from the SCRAT pack. On XL and XE models, hold down the Option key.
Start the program by typing:

L followed by Return
SAMP1.0 followed by Return

That is, do a normal DOS load. Since the program is auto-run, it starts
automatically.

The program creates a mode O screen display of all 256 character values and
allows you to vary the color and intensities through all possible values. The
varying is done with the joystick as follows:

forward/backward increments/decrements the background intensity. The current
intensity value is shown on the screen.

right/left increments/decrements the character (foreground) intensity.
The current intensity value is shown on the screen.

trigger Circularly advances the color. The numeric color code along
with the color name is shown on the screen.

uy Chapter 8: The Sample Program

i

[RS)

A

(O]

(@)
.

10.

1.

Chapter 9

Programming Suggestions

Structure your program as explained in the "Big Picture" section of chapter
1. Don't hesitate to package a portion of logic into a subroutine even if
it is called onlv once.

ald26
Use commentary as illustrated by the sample program. Use the comment.
statement frequently, and space out the listing with "blank" comments.
Don't try to say everything in the comment field in each statement, as
there's not enough room. :

Write assembler language instructions in small groups that are comparable
to high level language statements. Set these groups off with commentary.

Do not X or Y for long term storage, as they are too often needed for short-
term use. Don't hesitate to store a register in memory and bring it back
when needed. Don't worry about using an extra instruction or two. Except
in loops that are critical to performance, never worry about an instruction
or two.

At the front of each subroutine, describe its calling sequence. Subroutine
entry points should be clearly indicated.

The BIT instruction and the (ind,X) addressing mode are not often useful.

Think about ways of making a program easier to debug and understand. Make
that a design objective.

Don't use assembler language in complex ways unless there's a good reason.
Don't use the stack for much more than JSR/RTS operation and saving X and
Y. A subroutine should save X and Y unless those registers are used to
pass an output value.

Become an expert at compares of one and two-byte numbers.

Put internal checks into the program and have a "terminal error" routine to
call when one fails. That routine should "halt" the program in such a
waythat you can a) tell that it was called, b) tell where it was called
from, and ¢) start up your debugger.

Have all subroutine returns branch to a common label (a virtual) that does
the RTS (as is done in the sample program). That RTS routine becomes a
place that control passes through frequently. It can be a useful place to
put debug code.

Chapter 9: Programming Sugge~tions)

12. Save critical values in local areas if it would assist in debugging.

13. Use no absolute addresses in instruction operands. Define ENTRY labels for
those addresses and put the definitions in separate sources. Don't forget
to use the VIRT8 declaration for zero-page labels.

12. Make most of your assemblies contain nothing but relocatable code. Put
absolute code and hardware-related definitions into separate assemblies.

14, Keep source files on one set of packs and relocatables on another. This
has two benefits:

a. Many relocatables can be put onto a single pack, thus minimizing the
number of pack mounts required when the linker is run.

b. The source packs aren't written on each time an assembly is done.

15. As you accumulate source files, look for opportunities to form groups as
explained in chapter 7.

ue Chapter 9: Programming Suggestions

Appendix A

Error Codes

~his list is for both assembler and linker. Some codes can occur in both.

O AU N = O

[AS AN AV
w N O

24

ha

ald14
Identifier (label or pack ID) longer than 6 bytes.
Missing close quote on string.
Excessively long string. Maximum is 100 bytes.
Bad number. No digits after "g".
Hex number has more than 4 digits after the "$".
Decimal number too large. Maximum value is 65535.
Bad label field. It must be a label or "=". Possibly, you have started
the operation field in the first record byte.
Label is longer than 6 bytes.
Label defined more than once.
Value of label is not computable.
n#¥n in operation field must be first byte of "¥*=",
Operand field of "#¥=" statement must be an absolute or relocatable value.
Operand field of "*=" statement cannot have a byte selection prefix.
Operand field of of "*=" statement must be an absolute or relocatable
value during pass 1 of the assembly process.
Syntax error in expression in operand field.
Label too long in an expression.
Mis-formed byte selection prefix. I* can be .LO. or .HI.
Same as {#30.
Non-allowable addition in an expression. See chapter 3.
Non-allowable subtraction in an expression. See chapter 3.
Non-allowable multiplication in an expression. See chapter 3.
Non-allowable division in an expression. See chapter 3.
Attempt to divide by O.
Expression result is uncomputable.
Only an absolute or relocatable value can be assigned to a label.
Ending "." in byte selection prefix is missing.
Unrecognizable operand field
In the instructions of the form "LDA (expr,X)" or "LDA (expr),Y", the
expression is not followed by a comma or close parenthesis respectively.
In the instructions mentioned in #41, only "X" or "Y" can follow the comma.
In instructions of the form "LDA (expr,?), the "?" must be "X".
In instructions of the form "LDA (expr),?", the "?" must be "Y".
This statement has a mandatory one-byte operand field, and the expression
result is an absolute value that is greater than 255. That is, it will
not fit into one byte.
This statement has a mandatory one-byte operand field, and the expression
is relocatable with no byte selection prefix. Relocatable values can be
used in one-byte operand fields only if byte selection is specified.
Operation field is not recognizable.

Appendix A: Error Codes 4

50
51

52

23
55
56
Bl

58

59
60
61

62
63

64
65

66
67
70

71
fe

73

76
i

78

79
80

81
82

83
84

48

Operation field is undefined.

A character constant in an expression can be only one byte long. For
example, "LDA #'A'" is valid.

The form of the instruction you have written is not valid for that
instruction. For example, "DEC ABC,Y" is not permitted because the DEC

* instruction does not allow indexing by Y.

In this indirect form of the JMP instruction, the close parenthesis is
missing.
Problem writing output file. It was successfully opened. The problem
occurred after that. Could be that t' e drive went off-line.
Operand field has unrecognizable material following it. That material is
shown in the comment field in the assembly listing.
Too many different labels in this assembly. Assembler capacity is 200.
The operand field of this branch instruction has an unknown value.
The operand field of a branch instruction cannot contain a virtual.
Operand field cannot be computed because location counter is undefined.
Branch instruction has invalid operand field. Location counter is
relocatable, but the result of the expression is absolute
Branch instruction has invalid operand field. Location counter is
absolute, but the result of the expression is relocatable.
Branch destination is out of range. The value "expr-locctr-2" must be
between -128 and 127.
The given label has a value assigned to it, but the value is unknown.
The given label is declared to be an ENTRY, but it ha~ no value assigned
to it. That is, it has not appeared in a label field.
The given label is declared to be an ENTRY, and it has a value assigned to
it, but the value is unknown.
The given label appears in a VIRT8 statement, but it has a value assigned,
meaning it is no* a virtual.
Error in .OUTPI statement. The operand field must be the output pack ID,
which must be a name that has the same syn*ax as a label.
Error in .OUTPI statement. Pack ID is longer than 6 bytes.
Error in .VIRT8 statement. The operand field must be a list of labels
separated by commas.
Error in .VIRT8 statement. Labels must be no longer than 6 bytes.
Assembly contains more than one '.ENTRY "ALL"' statement.
Syntax error in the '.ENTRY "ALL"' statement.
The '.ENTRY "ALL"' statement cannot appear along with any other .ENTRY
Statements.
Multiply defined transparent jump label. For example, in the sequence

= JMP ABC

= JMP ABC
the 2nd JMP will generate the error because in the ".E" file, ABC would be
multiply defined. See Chapter 7.
The location co'nter is undefined for this transparent jump command.
Invalid operand field in transparent JMP (a JMP that has "=" in the label
field). The operand field must be a single label that is a virtual.
Error in .CFE statement. Its operand field must be a single character
string from zero to 100 bytes in length.
Assembly has more than one .EOUT statement.
Assembly contains too many labels. Maximum nmber is 200.
A transparent jump is not permitted unless an .EOUT statement is present.
A transparent jump is a JMP instruction that has "=" in the label field.

Appendix A: Error Codes

—
===

—R R RN

85
86

100

101
102
103
104
105

106
107

108
109
110
1
112
118
114
115
116
120
121
122

123
124
125

126
125
128

129

131
134
133
134
135
136
57
138

k]

See chapter 7.

A "=" is permitted in the label field of only the JMP instuction.

Operand field of the "=" statement cannot have a byte selection prefix
unless the expression yields an absolute value.

Problem reading control file from disk. It was successfully opened. The
problem occurred in the read itself. ald15
Missing "/" at start of statement.

Statement name does not follow "/".

Undefined statement name after the "/".

Improperly formed file name. It must begin with a name (an identifier).
Improperly formed file name. The first part must not be longer than 8
bytes.

Improperly formed file name. There is a period after the first part, but
no extension following that.

Improperly formed file name. The extension must not be longer than 3
bytes.

Improperly formed file name.

"ON" expected but not found.

A pack ID must follow "ON",

Pack ID is longer than 6 bytes.

Missing ":" after pack ID, or other problem in "ON pack ID" construction.
Bad file name.

More than one BINOUT statement is present.

Bad "ON packid" portion of BINOUT statement.

Bad file name in BINOUT statement.

Control file does not contain a BINOUT statement.

Control file contains no INPUTS statements.

Cannot open relocatable file, probably because it could not be found.
Remember that in the linker control file, the ".R" must be included in
relocatable file names.

Error reading relocatable file. It was opened successfully. The problem
occurred in the read itself.

Attempt to read input file beyond EOF. Likely cause: error within the
relocatable file.

Missing S-0-A command. See note 1. Probably means that the input file is
not a relocatable file.

The given label is multiply defined.

Local ordinal value out of range. See note 1.

Error in one-byte constant (.BYTE) containing a virtual reference. The
final value 1is greater than 255, and thus will not fit into one byte.
Error in instruction with one-byte operand field that contains a virtual
reference. The final value is greater than 255, and thus will not fit
into one byte.

Too many different labels. The linker capacity is 512.

Same as #131.

Same as #131.

Hit EOF at a bad time while processing relocatable file. See note 1.
Could not open output file.

Internal workarea is full. See chapter 6.

Bad ROP. See note 1.

Relocatable location counter setting (the "*¥=" statement) was encountered
before an absolute location counter setting was encountered.

An absolute location counter setting (the "*=" statement) must precede

Appendix A: Error Codes 49

140

141
142
143
144
146
147
148
149
150

memory-reserving statements.

An ENTRY label having a relocatable value occurred before an absolute
location counter setting. Similiar to #139.

Hit EOF in relocatable file at a bad time. See note 1.

Same as #1471,

Bad ROP. See note 1.

Same as #143.

Bad local ordinal value. See note 1.

This label is an undefined virtual.

Local ordinal value is out of range. See note 1.

Same as #141.

One-byte field (either in .BYTE or instruction with one-byte operand
field) is a relocatable value, and the final value is greater than 255.
This error cannot occur with the present assembler because it does not
allow a one-byte field to be relocatable unless it contains a byte
selection prefix.

Note 1: The relocatable file has an error in it, which can be due to:

50

a. The file is not a relocatable file.

b. The file was damaged after it was created by the assembler.

c. The assembler malfunctioned.

d. The relocatable file came from a language processor other than the
assembler, and that malfunctioned.

Appendix A: Error Codes

‘-— s -

Appendix B

Specifications

. Hardware requirements: 48k, disk, printer ald27
. Other requirements:

a. Word processor for creating and editing source files.

b. General knowledge of assembler language programming of the Atari

c. Debugger. We recommend the one in Atari's Assembler/Editor car tridge.

. The delivered product includes: Assembler, Linker, Sample program and
Reference manual. The software is supplied on disk.

Relocatable code and external labels are supported. Expressions containing
a virtual must reduce to "virtual plus or minus a constant" and cannot be
used in the "¥=" or "=" statements.

5. Labeled packs are required, which insures that the correct packs ar mounted
during the assembly and linking processes. A pack is labelled by creating a
file on it called PACKID that contains the desired pack ID.

6. Source statements are modelled after Atari's Assembler/Editor. Statements
do not have line numbers. The maximum source program size is approximately
140 sectors (17,500 bytes). The maximum number of different labels that can

appear in a source file is 200.

7. The assembly listing can be directed to either the printer or the screen.
Before the use makes this choice, the assembler indicates whether or not
there are errors. Thus, source errors can be corrected before hardcopy is

made.

8. Parameters for the linker (file names and pack IDs) are given in a "control
file". When the linker is run, only the control file name and pack ID need

be typed. .

9. The linker can handle over 100 input files, up to 512 external labels, and
up to 8,000 bytes of instructions and constants. Features are provided for
creating larger programs by using multiple executions of the linker.

10. The linker produces an alphabetically sorted load map and, optionally, a
numerically sorted one.

11. Linker printout can also be directed to the screen.

Appendix B: Specifications 51

12,

13.

52

Performance data:

During assembly, source files are read at maximum disk speed. The
remainder of the assembly is unlikely to take more than 15 seconds
Cexcluding time to print hardcopy, which is optional).

Linker performance can be illustrated by citing the sample program that we
supply. It takes the linker 25 seconds to read the control file and 17
relocatable files and write the object file. The sample program contains
approximately 500 instructions, 48 external labels, and 140 references to

those labels. The source files, which contain a large amount of
commentary, require 50 pages to list.

The assembly and linking process is fast enough to eliminate the need for
machine language patch files.

The assembler and linker have been tested on:
a. 800 and 130XE computers.
b. 810 and 1050 disk drives.

c. DOS release 2.0. Only standard entry points are used, so the programs
should run on newer releases as well.

d. Okidata 82A printer. Only data characters and the EOL are sent to the
printer, so no printer dependence should exist.

Appendix B: Specifications

