P: R: CONNECTION

The Printer and

I
Iy

MODEM Interface for
Atari Computers

i

OWNER’S MANUAL

P:R: Connection

The Printer and
MODEM Interface
for Atari Computers

by ICD

Note—throughout this manual:

SpartaDOS, SpartaDOS Construction Set. UltraSpeed, US Doubler, R-Time 8,
RAMBO XL, and P:R: Connection, are trademarks of ICD, Inc.

Atari 850, 130XE, 800XL, and 1200XL, are trademarks of Atari Corp.

Published by ICD, Inc.
1220 Rock Street
Rockford, IL 61101-1437
U.S.A.

Z: 1986 ICD, Inc. All rights reserved. Printed in the United States of America. Reproduction
ar translation of any part of this work (beyond that permitted by sections 107 and 108 of the
United States Copyright Act) without the permission of the copyright owner is unlawful.

PREFACE

You have just purchased the P:R: Connection, another high quality
product from ICD. The P:R: Connection has been designed to add
tasting value to your 8-bit Atari Computer by allowing you the choice
of hundreds of printers (P: devices) and MODEMSs (R: devices).
Thousands of dollars and many man hours have been used to
develop the most economical and flexible high quality interface for
your needs. There is no such thing as 100% compatibility (as we tried
with the 850) but we have come very close. it is impossible to match
code byte for byte without using exactly the same hardware (a feat
which was not economically feasible). Instead, we created something
much better than the 850 for a lower price {much like Atari did when
they created the B00XL to replace the old 800 computen). Virtually all
printer software (designed for the 850) will work with the P:R;
Connecticn, and most MODEM software will work without any
modification. We have included a translator type file (PRC.SYS) which
should work with the few MODEM programs which otherwise will not
run. (See Appendix F.} For the latest information on P:R: Connection
compatibility call the ICD BBS. It's on-line 24 hours a day at
815/968-2229 running 300/1200/2400 baud.

TABLE OF CONTENTS

1—INTRODUCTION TO THE P:R: CONNECTION............. 1
Why aninterface? 1
PrandR:Devices i 1
Howdoesitwork? 1
Compatibility 2
Installationand Use, 3
Using the P:R: Connection witha MODEM 4
Terminal Programs e . 4
AMODEM7 . 4
B850 EXPRESS 4
RSCOPE 5
PRC.SYS 5
ICDBBS(815)9682229 i 5
Using the P:R: Connection with a Printer 5
Oplions 6

2—THE PARALLEL AND SERIAL INTERFACES 7
The Parallel Interface 7
The Serial Interface 7
RS-232 Defined 8

3—-CONCURRENT /O VS. BLOCK MODE (RS-232) 9
BlockMode.. . Whatisit? 9
ConcurrentMode WO, 9

4—RS-232 HANDLER FUNCTIONS AND TABLES 11
Openingan RS-232Port v . 11
Closingan RS-232Port.o, 12
Input Character or Line From RS-232Port 13
Output Character or Line ToRS-232 Port 14
Readingthe Port Status 14
Forcing Early Transmission of Qutput Blocks 16
Controlling Qutgoing Lines DTR, RTS, and XMT 16
Setting Baud Rate, Stop Bits, and Ready Checking......., 17
Setting Translation Modes and Parity 18

Setting ConcurrentMode 19

APPENDICES

A—Other ICD Product Offerings 21
B-—P:R: Connection SIO Commands 27
C—R:HandlerSourceCode 29
D-—Standard Printer 8 MODEM Cables 45
E—1200XL Medifications 47
F—Compatibility. 49
WARRANTY

Possible Errors Using The P:R: Connection

Chapter 1—Introduction to the P:R: Connection

CHAPTER 1—INTRODUCTION TO THE P-R: CONNECTION

Why an interface?

The P:R: Connection is an interface between your 8bit Atari computer
and other RS-232 or ‘centronics’ parallel devices. These devices may
include MODEMSs, printers, other computers, or anything which uses
either of these two types of ports. There are dedicated MODEMSs and
printers available just for the Atari which require no interface. These
dedicated devices are fine as long as you are satisfied with their
operation and never plan con buying another computer. On the other
hand, standard serial and parallel devices will work with most other
computers including the new Atari ST and the IBM PC.

P: and R: Devices

There have been thousands of programs written for the 8-bit Atari
computers many of which use a printer or MODEM (‘P or ‘R’ device).
Although some aiso support other standards, these programs almost
always support the Atari 850 interface standard. Before the P:R:
Connection, there was no way to accomplish this device standard
other than by using an Atari 850. Most of these programs require a
‘P2’ device for the printer and an ‘R’ device for the MODEM. If you do
plan on using a serial printer with your Atari, make sure the programs
you use will support an ‘R’ device for a printer. NOTE: ICD has
written a DOS command (SPRINT) which will divert the output and
make the ‘R’ device look like the ‘P device to the system. This
allows the use of a serial printer (with software requiring a ‘P:’ device)
with any program running under SpantaDOS.

How does it work?

Inside the P:R: Connection is our custom computer chip (PRC3985-6)
which contains ROM, RAM, a CPU, and a PIA. This is effectively an
entire computer on a single chip. The ROM portion contains the
software to make the printer port work like a ‘centronics’ standard
port or ‘P:’ device. The ‘P device is virtually identical to the Atari 850
‘P’ device.

Chapter 1—Introduction to the P:R: Connection

This ROM also contains the software handler which loads into the
Atari computer {when called} and sets up the two serial ports as ‘R’
devices (‘R1:" and ‘B2.). This ‘R:’ handler is loaded either with the
AUTORUN.SYS (RS232.5YS) which comes with Atari DOS
{RS232.COM with SpartaDOS}) or else whenever the computer is
powered up with the P:R: Connection attached and no disk drives
respond. The ‘R:' handler is relocatable which means that it loads into
the computer at the lowest possible memory location and then
protects itself by moving MEMLO up. The P:R: Connection's ‘R:’
handler is very similar to the Atari 850 ‘R:" handler at the CIO level.
(This means that it uses the same XIO commands as the Atari 850
interface device.) At the SIO level there are several calls different from
the 850 which may make a few programs designed for the 850 not
function properly. To remedy this, we have included an SIO emutation
handler called PRC.3YS. More information on compatibility and the
SIO differences can be found in appendices B, C, and F.

Compatibility

The P:R: Connection has been designed as a cost effective
replacement for the now obsolete Atari 850 interface. Qur hardware
design requirements were to make a unit small and compact with
clean ergonomic design. This required a molded case with cords only
to be attached on two sides. The bulky external power supply also
had to be eliminated. All of this was made possible due to the recent
development of low power single chip microcomputers. Unfortunately,
the 1200XL requires an internal modification to work with the P:R;
Connection or any other device which uses the computer for its
power. (See appendix E for details.)

Chapter 1—Introduction to the P:R: Connection

The P:R: Connection software design requirements were full
compatibility with the 850 protocol. Like the problem Atari had when
they designed the B0OXL, we found programs written for the 850
which used illegal calls outside the CIO architecture. To provide a link
between these programs and the P:R: Connection, we have included a
binary file called PRC.SYS which works like a transiator. PRC.SYS is
fully relocatable and works with any DOS. This should provide full
compatibility with programs designed for the 850 which use an ‘RBIN’
type handler and normally don't load the 850 handler (like Hometerm),
If programs are found which don’t work properly with the P:R:
Connection, we will make every attempt to provide a patch or solution
for proper operation. (See appendix F for more information on
compatibility.}

Installation and Use

Since the P:R: Connection is powered by the host computer, it should
be plugged directly into the 13 pin male socket where the disk drive
normally goes. Then plug the next device into the 13 pin socket on
the P:R: Connection, the next device into that, and so on. (1t will
probably work from any of the 13 pin connectors in the daisy chain
but since there is a voltage drop in each of these connectors, it is
best to plug it ditectly into the computer.) You wiil then need a cable
to connect between the P:R: Connection ports and the peripheral
which you intend to use. These cables may be purchased direct from
ICD, from your dealer, or made from the specifications in tabie 1-1 or
1-2, appendix D, and your peripheral manual. (Cables designed for the
Atari 850 will work.) The P:R: Connection ports and their locations are:

R1. This is the 9 pin connector towards the outside. Use this
connector as your main RS232 serial port since it supports
full handshaking.

R2: This is the nine pin connector in the center. Use this only
when you need an extra RS232 port and with softward which
supports an ‘R2:’ device.

P1: ‘P17 is the paralle! printer port which is the 15 pin connector
located next to ‘R2:.

Chapter 1—Introduction to the P:R: Connection

Using the P:R: Connection with a MODEM

Connect your MODEM cable between serial port 1 (the 9 pin socket
on the outside) of the P:R: Connection and your MODEM. For correct
operation with a particular program, see your terminal program for
details on use with the 850 interface.

TERMINAL PROGRAMS

AMODEM7

Through a special arrangement with Trent Dudley, author of
AMODEM?7, we have included a full version of his latest terminal
program. We feel this is one of the best terminal programs around for
Atari computers. AMODEM?Y is a BASIC program with machine code
speed. t works at 300, 1200, 2400 baud and supports macros for
sending pre-typed strings.

850 EXPRESS

Keith Ledbetter, author of 1030 EXPRESS and now 850 EXPRESS has
allowed ICD to distribute his latest terminal program with our P:R:
Connection and R-Time 8. This is a fantastic terminal program written
in ACTION! from OSS. 850 EXPRESS is worth more than most
terminal programs you would pay $30 or more for in a store!

AMODEM?Y and 850 EXPRESS are distributed on a “freeware” basis
which means: Try the program out, if you like it and use it as your
main terminal software, send the author payment of whatever you feel
it is worth. (Send $5, $10, $20, etc.) You are free to distribute this
freeware to your friends as long as you pass on this message and do
not remove or modify the author's name, address, copyright notice,
etc. from the program.

Chapter 1—introduction to the P:R: Connection

RSCOPE

Joe Miller originally wrote TSCOPE as a terminal program to work
with the Atari 850 and COMPUSERVE'’s unique file transfer protocol.
TSCOPE quickly became the standard terminal program for Atari
COMPUSERVE users. Recently COMPUSERVE has added XMODEM
protocol which has allowed users a greater choice of software.
RSCOPE is a new ‘R:” handler version of TSCOPE madified by Joe
Miller to work with standard 'R:" handler devices and not just the Atari
850. We would like to thank Joe for his continuing support of the
Atari 8-bit community.

PRC.8YS

Some programs (such as the current version of HOMETERM) may
require our SIO emulation program called PRC.SYS. If using Atari
DOS 2 or 2.5, copy PRC.SYS to a blank disk, rename it to
AUTORUN.SYS and APPEND the AUTORUN.SYS from your terminal
program to it (see your DOS manual). If using SpartaDOS, just put
PRC.SYS in a batch file and run it first, before your terminal program.

ICD BBS (815) 968-2229

This is a good place to test out your new interface or MODEM. We
support 300, 1200, 2400 baud cornmunications and are in operatjon 24
hours a day, 7 days a week. No password is required for UPLOAD,
DOWNLOAD or full message base access and there are no charges
{other than long distance) to use this board. We do request that you
use your real name and locaticn when signing on,

Using the P:R: Connection with a Printer
If using a paralel printer, piug your printer cable from the parallel port
(15 pin} of the P:R: Connection into your printer,

If using a serial printer, plug your printer cable from serial port 10r2
(9 pin) of the P:R: Connection into your printer. Since the Atari
operating system defaults to a paralle! printer, you must use a DOS
{such as SpartaDOS$ from ICD) with the capabilities to divert all print
output to the serial port or you must use programs which support
serial printers.

Chapter 1—Introduction to the P:R: Connection

Options

There are two user selectable hardware options inside the P:R:
Connection. These are selected by opening the case and moving the
jumper plugs at SW1 and SW2. If you already have a printer which
supports the Atari without an interface (usually a direct connect Atari
brand printer} you may want to use the P:R: Connection as a serial
interface only. SW1 selects printer ON or printer OFF. Leave SW1 at
the default of “P-ON" unless your direct connect printer does not
function properly with the P:R: Connection installed.

If you test your printer out and it prints one line on top of another
without feeding any paper, it needs a line feed for every carriage
return. You can fix this by moving SW2 to “LF/CR”. The defauit for
SW2 is “CR only” which matches the Atari 850.

Chapter 2—The Parallel and Serial interfaces

CHAPTER 2—THE PARALLEL AND SERIAL INTERFACES

The Parallel Interface

The parallel interface contains all the lines necessary to control
standard parallel printers. Most parallel printers will use a 36 pin
centronics connector. The signals listed in table 2-1 are supported by
the P:R: Connection.

TABLE 211 Standard Parallel Printer Signals

Direction Function Pin
from P:R:C Data Strobe 1
to P:R:.C Busy 13
to P:R:C Fault 12

(none) Data Pull up 9

{none) Ground 11
from P:R.C Data Bit 0 2
from P:R:C Data Bt 1 3
from P:R:C Data BIt 2 4
from P:R:C Data Bit 3 5
from P:R:C Data Bit 4 6
from P:R:C Data Bit 5 7
from P:R:C Data Bit 6 8
from P:R:C Data Bit 7 15

The Serial Interface

The serial interface is RS-232-C compatible which means that you
may connect any RS-232-C device to the P;R; Connection and
communicate with it. There are actually two serial ports on the P:R:
Connection. Port 1 (‘R1:"} is a full port which contains all necessary
handshaking lines that some MODEMs and other devices require, and
port 2 ('R2Y) is a stripped port containing only the recelve and
transmit lines (the DTR and RTS lines are held in the “ready” state If
needed). The P:R: Connection does not inciude a current loop port like
port 4 of the old Atari 850. We felt that would add unnecessary
expense since current loop interfaces are rarely used.

Chapter 2—The Paralle! and Serial interfaces

RS-232 Defined

The RS-232-C standard defines about 20 lines, of which, only about 8
are commonly used. Even though a device does not support all
signals, it is stil considered “RS-232 compatible”. The P:R:
Connection serial port 1 supports the signals listed in table 2-2. This
port 1 matches port 1 on the Atari 850.

The P:R: Connection is considered a data terminal (also DTE or Data
Terminal Equipment) whereas a MODEM is a data set (also DCE or
Data Computer Equipment). There is no problem in connecting “data
terminals” to “data sets”, however, when connecting two “data sets”
(or “data terminals'), you must take care since the signals are
directional (i.e. you must cross XMT to RCV, DTR to CTS, etc.).

TABLE 2-2 The Most Common RS-232 Signals

Direction Description Abbreviation Pin
from P:R:C Transmitted data XMT 3
to P.R:.C Received data RCV 4
from P:R:C Data terminal ready DTR 1
to P:.R:C Signal (carrier) detect CRX 2
to P:R:.C Data set ready DSR 6
from P:R:C Request to send RTS 7
to P:R:C Clear to send CTS 8
{none) Signal ground GND 5

Chapter 3—Concurrent /O vs. Block Mode (RS-232)

CHAPTER 3—CONCURRENT I/O VS. BLOCK MODE (RS-232)

Throughout this manual, numerous references are made to
“concurrent I/0” and “block mode”. These are simply two different
methods of implementing the Atari serial bus for the transmission of
serial data. If you are to write programs supporting the P:R:
Connection ‘R:' Handler, you MUST understand the ditference and
what limRations each method presents.

Block Mode. . . What is it?

Block mode is very much like reading or writing disk sectors. The
data is saved in a buffer until either 1) the buffer is full, 2) an end-of-
line character is placed in the buffer, or 3) the channel is closed.
When one of these conditions is met, the entire buffer is transmitted
from the computer to the P:R: Connection. This leaves the serial bus
free for the computer to communicate to other devices.

There are two very serious limitations of block mode operation. The
first being that input from the ports is not possible, thus block mode
is output-only. Any input to the RS-232 port is simply ignored since
the P:R: Connection does not store any data at its ports.

The second limitation is that data arriving at the RS-232 outputs is
not “real-time”. When simply sending data to another computer, a
printer, or some other non-interactive peripheral, this mode of
operation is sufficient. Data at the output will normally appear cne
line at a time.

Concurrent Mode 1/0

While in concurrent mode 113, the P:R: Connection simply acts as a
bit carrier. In essence, it throws a switch connecting a por to the
serial bus of the computer. Thus the serial device (POKEY) of the
computer acts as a UART (universal asynchronous receiver
transmitter),

Chapter 3—Concurrent /O vs. Block Mode (RS-232)

In this mode, communication is full dupiex (bi-directional} and occurs
in “real-time”. Thus, when in a terminal program, data you type
appears at the output as you type it {unless you type faster than the
current baud rate, in which case the data you type is buffered). A
terminal program simply acts as a switch carrying data you type to
the RS-232 handler output and the RS-232 handler input to the screen
output handler.

Since the serial port is strictly used to carry port data, the serial bus
may not be used for anything else while in concurrent mode. This
means that neither printers nor disk drives may be active during
concurrent mode. Instead, you must first close the RS-232 port and
then perform the necessary disk /O (or printing). The major drawback
is that when the port is closed, any data arriving at the port will be
lost—this is a problem with all serial RS-232 and MODEM interfaces
for the Atari (this would not be a problem with a properly designed
interface connected through the parallel expansion bus using a
UART). Note that all Atari terminal programs do use concurrent mode
/O—they could not receive data If they didn't.

10

Chapter 4—RS-232 Handler Functions and Tables

CHAPTER 4—RS-232 HANDLER FUNCTIONS AND TABLES

The following is a list of all input/output and XIO calls to the RS-232
ports of the P:R: Connection. Note that IOCB is an inputioutput
channel number that indicates what OPEN device shall receive or
provide data. For most XIO calls, you may use any legal IOCB number
as long as it is NOT open to any other device. From Atari BASIC, you
may use IOCB numbers 1 through 7 (0 is reserved for editor ‘E-' O).

Note that |OCB #7 is used for the BASIC LPRINT statement and IQOCB
#6 is used for graphics modes functions from BASIC. Also if using
SpartaDOS, {OCB #4 and I0CB #5 are used while doing output and
input redirection respectively {via the DOS PRINT command and
batch files).

‘Rn:’ is the serial interface port number being opened or used. For the
P-R: Connection, ‘n’ can be sither 1 or 2. The first is the full port (with

all the handshake lines) of the P:R: Connection. Note that if you use 3
or 4 for ‘n', ports 1 or 2 will be accessed rather than receiving an error.

All the function formats are given in their Atari BASIC form. If using
assembly language of some other high level language, refer to the
language manual for its equivalent form.

Opening an RS-232 Port

Syntax
OPEN #I0OCB,Aux1,0,“Rn:"

Remarks

This function opens a channel to an RS-232 port in non-concurrent
mode. This means that you may only input data after performing a
start concurrent mode function (XIO 40). Note that Aux1 contains the
IO direction bits—4 for input only, 8 for cutput only, and 12 for both
input and output (which is equivalent to 13 of the 850 interface). Many
XIO calts do not require that you open an RS-232 channel first,
however, it is good practice to open the channel first.

1

Chapter 4—RS-232 Handler Functions and Tables

When a channel is opened, the buffer pointers are cleared for only the
direction(s) in which the port is being opened. For example, if you are
in concurrent mode 1O on port 1 using IOCB #2 and an open for
output is performed on port 1 using IOCB #3, the data waiting in the
input queue of port 1 is not lost. Multiple OPENSs to the RS-232 ports
have no effect on concurrent /0. Thus, in this case, the system
remains in concurrent l/O to port 1. In fact, if the second OPEN was
for input {or both input and output), this channel would inherit the
concurrent /O characteristic of the first channel.

it is very important to understand the difference between concurrent
and block mode for efficient and problem-free programming. Many
Xi0 functions may only be performed during block mode (non-
concurrent), however, input may only be performed during concurrent
mode IfO. This is due to limitations of the Atari serial port.

Closing an RS-232 Port

Syntax
CLOSE #IOCB

Remarks

This statement will close the IOCB connected to the port in which a
prior OPEN statement initiated. If another IOCB is connected to the
same port, that connection will remain intact (data input buffers will
not be lost). A CLOSE always flushes the data awaiting transmission
(in the buffer) to the port indicated by the paired OPEN statement
{OPEN prior to the CLOSE on the same 10CB).

12

Chapter 4—RS-232 Handler Functions and Tables

Note that the CLOSE will shut down any concurrent /O even if
another IOCB is open to a port. This is usually relevant only when two
IOCPB’s are open to the “Rn:” device. For example, suppose IOCB #1
is open for input on port 1 {in concurrent mode), and [OCB #2 is open
for output on port 2. A CLOSE on port 2 will disable the concurrent
mode of port 1 thus requiring another X0 40 to re-enable concurrent
I/0. This operation also causes an error since port 2 did not have
control over the serial bus, If the CLOSE were performed on port 1, no
error would occur, but concurrent mode is still disabled. Thus, the
only way to terminate concurrent /O properly is to CLOSE an IQCB
opened to the port currently in concurrent mode. (It is possible to
have two IOCB’s opened to the same port—concurrent 1O is a
property of the connection to the port rather than of the IOCB. An
IOCB number simpiy establishes a reference number (IOCB # to a
port.)

Input Character or Line From RS-232 Port

Syntax
GET #10CB,varb
INPUT #IOCB,varb$

Remarks

These functions input data from the RS-232 port specified by a
preceding open statement. The GET statement inputs the numeric
value of one character into a numeric variable. The INPUT statement
inputs a string of characters into a string variable. If the input is a
numericat ASCII string, you may input into a numeric variabie. Input
strings are terminated by an end-of-line {EOL) character.

Note that the IOCB must be opened for read or read/write and you
must be connected to the port {as indicated by open) in concurrent
mode. If you are not in concurrent mode to the correct port, an input
attempt will shut down the other port’s concurrent IO. Refer to your
BASIC reference manual for more information.

13

Chapter 4—RS-232 Handler Functions and Tables

Output Character or Line To RS-232 Port

Syntax
PUT #I0CB,exp
PRINT #OCB;exp$

Remarks

These functions output data to the RS-232 port specified by a
preceding open statement. The PUT statement outputs the numeric
value of one character to the port, and the PRINT staternent outputs a
string of characters to the port. The syntax of the PRINT statement is
the same as a normal PRINT staterment except that the "#IQCB;”
precedes the expression.

Note that the IOCB must be opened for write or readwrite but you do
not have to be connected to the port (as indicated by open) in
concurrent mode. Refer to your BASIC reference manual for more
information,

Reading the Port Status

Syntax

STATUS #10CB,DUMMY

FLAGS = PEEK(746) : REM Error bits relating to status history
LINESTAT = PEEK(747) : REM Status of handshaks lines

or

STATUS #10CB,DUMMY

FLAGS = PEEK(746) : REM Etror bits relating to status history
INCHARS = PEEK(747) : REM Number of chars in input buffer
OUTCHARS = PEEK(749) : REM Number of chars in output buffer

14

Chapter 4—RS-232 Handler Functions and Tables

Remarks

These statement sequences are useful for determining many facts
about the state of the RS-232 ports. The first syntax is used when in
block mode I/0, whereas the second is used in concurrent mode /0.
Notice that the variable DUMMY is simply a CIO status of the

success of the STATUS command. If there were an error (DUMMY < >1),

then BASIC would hait and give an error message {unless a TRAP
was performed prior to the STATUS).

The block mode STATUS (first syntax) returns a status history of the
port (in FLAGS) and the state of the control lines {in LINESTAT). The
meaning of each bit is given in tables 4-1 and 4-2.

The concurrent mode STATUS (second syntax) returns a status history
of the port (in FLAGS) and the number of characters in the input
buffer (in INCHARS}) and in the output buffer (in OUTCHARS). The
meaning of each bit of FLAGS is given in table 4-1.

TABLE 41 Meaning of Error Bits From Location 746

Bit Number Decimal Equiv. Eror Meaning

7 128 Received a data framing error

6 64 Received a data byte overrun eror

5 32 Recieved a data parity error

4 16 Received a buifer overflow emror { > 255 chars)

TABLE 42 Meaning of Status Bits From Location 747

Bit Number* Decimal Equiv. Meaning When BHt is Set (1)

7 128 DSR is true (ready)
5 32 CTS is true (ready)
3 8 CRX is true (ready)
0 1 RCV is at MARK (high state)

"Bits 6, 4, and 2 are simply copies of the next highest bit. In the 850
Interface, these bits would indicate a history (i.e. not atways ready
since last STATUS).

15

Chapter 4—RS-232 Handler Functions and Tables

Forcing Early Transmission of Output Blocks

Syntax
XIO 32,4{0CB,0,0,“Rn:"

Remarks

This function causes all the buffered data in the computer to be
outputted to the RS-232 port. This works for either block or concurrent
mode. Note that if in concurrent mode, bytes are put in a buffer, not
to the port directly. The data is then taken out of the buffer and sent
to the port when the last byte sent is finished. Thus, you can send
data to the CIO (by PRINT, or PUTs) faster than it is transmitted out
of the computer.

When an RS-232 port is closed {see CLOSE statement), the data in the
buffer is not lost; transmission of the remaining data is forced.

Controlling Outgoing Lines DTR, RTS, and XMT

Syntax
X0 34,#10CB,Aux1,0,"Rn:"

Remarks

This function allows you to set the state of the output handshaking
lines. This function may not be used while in concurrent mode (see
“Setting Concurrent Mode™). Aux1 is coded as indicated by table 4-3.
TABLE 4-3 Control Values Added to Aux1 (XIO 34)

Function Bit Decimal Equiv. Meaning When Bit is SET

DTR 7 128 Set state of DTR (from bit 6)

6 64 Set DTR Ready (Not ready if bit is CLEAR)
RTS 5 32 Set state of RTS (from bit 4)

4 16 Set RTS Ready (Not ready if bit is CLEAR)
XMT 1 2 Set state of XMT (from bit 0)

0 1 Set XMT to MARK (SPACE if bit is CLEAR)

16

Chapter 4—RS-232 Handler Functions and Tables

Setting Baud Rate, Stop Bits, and Ready Checking

Syntax
XI0 36,#I0CB,Aux1,Aux2,“Rn:"

Remarks

This function configures the RS-232 port for desired speed and stop
bits. It also tells the port which handshake lines to monitor. This
function should be used before entering concurrent mode (XIO 40),
since it may not be used while in concurrent mode (see “Setting
Concurrent Mode").

Aux1 is the sum of two codes; baud rate and the number of stop bits.
The coding is given by Table 44. You must add the value representing
the desired baud rate to the code (O or 128) for the desired number of

stop bits per word. Note that the word size is always 8 bits plus 1 or 2
stop bits; the P:R: Connection does not support smaller word sizes as
did the Atari 850 interface.

Aux2 is coded to be the sum of 3 values (as given by table 4-5). Each
value represents a control line to monitor. If the value is 0, then that
control line is not monitored. The handshake lines are only checked
when you enter into concurrent /O mode.

TABLE 44 Codes to Add to Aux{ X0 36)"

Add Baud Rate Add Baud Rate
0 300 8 300
1 455 g 600
2 50 10 1200
3 56.875 1 1800
4 75 12 2400
5 110 13 4800
6 134.5 14 9600
7 150 15 19200

"Default is 1 stop bit. Add 128 for 2 stop bits.

17

Chapter 4—RS-232 Handler Functions and Tables

TABLE 45 DSR CTS CRX Checking Codes for Aux2 (X10 36)"

Bit Add To Check This Line (Before Sending/Receiving Data)
0 1 CRX

1 2 CTS

2 4 DSR

*Default is 0 which indicates no checking of handshake lines.

Setting Translation Modes and Parity

Syntax
XIO 38,#10CB,Aux1,Aux2,“Rn;"

Remarks

This function configures the input and output parity and the level of
ASCIVATASCII translation. Aux1 is coded to specify all these
parameters while Aux2 is the "won't translate” character. This
character is only used in the “heavy ATASCIVASCII translation” mode
and is returned {during a GET or INPUT) when the incoming character
is not an ASCIi character with a value of 32 to 127 ($20 to $7F in HEX).
The value of Aux1 is derived from table 4-6.

18

Chapter 4—RS-232 Handler Functions and Tables

TABLE 46 Control Values Added to Aux1 (XI1O 38)

Function Add Resulting Functlon Performed

OUTPUT 0 Do not change parity bit {default)
PARITY 1 Set output parity to odd parity
2 Set output parity to even parity
3 Set parity bit to 1
INPUT 0 Ignore and do not change parity bit {default)
PARITY 4 Check for odd parity, clear parity bit
8 Check for even parity, clear parity bit
12 Do not check patity, clear parity bit
TRANS- 0 Light ATASCII/ASCII transiation (default)
LATION 18 Heavy ATASCII/ASCII translation
32 No transiation
LINE 0 Do not append LF after CR (default)
FEEDS 64 Append LF after CR ({translated from EOL)

Setting Concurrent Mode

Syntax
XIO 40,#10CB,0,0,“Rn:"

Remarks

This function starts concurrent mode IO with RS-232 port ‘'n’. A
successful OPEN statement must be performed before entering
concurrent {/0. Note that you should also perform all other XIO (34,
36, and 38) statements before this statement. You must set
concurrent IO before any attempts to input data through the RS-232
port.

For more information on concurrent mode I1Q, refer to Chapter 3
“Concurrent /O vs. Block Mode",

19

Chapter 4—RS-232 Handler Functions and Tables

Appendix A — ICD Product Offerings

APPENDIX A — ICD PRODUCT OFFERINGS

P:R:Connection — Now you're no longer limited to ‘Atari Only’ printers
and MODEMS . . . the P:R:Connection is a flexible alternative to the
Atari 850 interface. Suddenly hundreds of printers and MODEMS
become compatible with your Atari, you can even share the same
printer and MODEM with your ST or IBM PC.

The P:R:Connection plugs directly into the serial {disk drive) port of
any 8 bit Atari and provides the user with a standard ‘centronics’

printer port and two RS-232 type serial ports. It also draws its energy
from your computer which means one less cord fighting for an outlet
while its compact size leaves your work space virtually clutter-free.

The P:R:Connection's serial ports resemble those of the 850 interface,
possessing the same signals and functions and using a fully compat-
ible built in R: handler. Why not make your connection the right connec-
tion . .. with our Connection! $89.95 6 f. Standard MODEM Cables
$14.95 6 ft. Standard Printer Cables $14.95

Printer Connection — It may look just like an ordinary cable . . . but
don't let its simplistic styling fool you! This little dynamo’s electronics
are built right into the cable end and it possesses the power of compati-
bility . . . printer compatibility, (Compatible with all ‘centronics’ parallel
printers.) With the Printer Connection, you're no longer limited to ‘Atari
Only’ printers.

So, for you “adventurous” Atari owners who dare to explore the world
of printers . . . this one's for you! $59.95

Multi IYO — Five functions in one box give your 130XE or 800XL the
leading edge in performance and execution.

1) RAMDISK: Choose from two versions; 256K or tMeg. Buiit in
software allows the RAM to be partitioned into muitiple disks as
desired. The Multi IO has its own AC power supply which allows the
RAM to retain its memory when the computer is off,

2) PARALLEL PRINTER INTERFACE: A ‘centronics’ type parallel

interface which uses a standard 850 cable. Accessed as P1: or P2:
with or without LF,

21

Appendix A — ICD Product Offerings

3) SERIAL PRINTER/MODEM INTERFACE: This port accepts e_ilher
a serial printer or RS232 type MODEM. The 850 handler is built in;
always there when needed, which means an extra 1800 bytes of free
memory! Built in software also allows a serial printer to appear as a
parallel printer and provides it with XON/XOFF software handshaking.

4) SPOOLER: Use any amount of RAM as a print spooler. Works with
either of the specified printer ports. Builtin software features: Pause,
Resume, Repeat Copies, Clear and Size.

5) HARD DISK INTERFACE: Supports up to eight SASI and SCSI
controllers at the same tinme to use industry standard 5-1/4" and/or
3-1/2" hard drives. 256K $199.95 1 Meg $349.95 130XE Adapter (adds
two cartridge slots) $19.95

FLASHBACK! A hard disk and Multi 170 backup program designed to
take the ‘manual’ out of copying and saving files, $29.95

US Doubler — Expanding the 1050's strength is what ICD's US Doubler
is all about . . . a true performer in the niche of hardware moedifications.
With the simple addition of this chip set, your Atari is transformed into
a powerhouse, radiating with innovative qualities never before pos-
sessed in a 1050; like true double density for greater storage and an
accelerated I/0 rate designed to triple your speed when combined

with SpartaDOS.

Furthermore, the US Doubler is fully compatible with existing Atari
software and not only Supports true double density but, single density
and the 130KB ‘Dual Density’ (1050 Mode) as well. ICD's US Doubler
Package comes complete with two plug-in chips and SpartaDOS
Construction Set (including two manuals and two program diskettes).
$69.95 US Doubler 1-4 without SpartaDOS Construction Set $39.95

SpartaDOS Construction Set — Perfection . . . that's how we descri be
our DOS and we're sure you'll agree when you put the SpartaDOS
Construction Set to work. It Supports everything from the 810 disk
drive to hard disk drives, RAMDISKS with the RAMBO XL modified
8OOXL or 1200XL, the 130XE, the modified 320K XE plus the AXLON
128 board for the 800! And there's mare . _,

22

Appendix A — ICD Product Offerings

A special menu file allows rapid transfer, erasure and lock or unlock of
tagged files, using only the Space Bar, Option, Start, and Select keys.
The utility package also features a 32 character keyboard buffer,
intelligent switching between disk densities, a binary file game menu,
subdirectories, time/date file stamping, and a 175 page manual con-
taining everything you ever wanted to know about SpartaDOS and the
US Doubler. $39.95

SpartaDOS Yool Kit — This is an incredible collection of new,
unreleased utilities written for all SpartaDOS versions. These tools
were written by the professional programmers at ICD, unlike some of
the ‘buggy’ public domain utilities available. {A few utilities may not be
applicable to the older SpartaD0OS versions.} SpartaDOS Tool Kitis a
must for any serious SpartaDOS user. Some included tools are:
RENDIR.COM - rename subdirectories

VDELETE.COM - verify delste {prompts you to delete a file or not}
WHEREIS.COM - find a file name (full or partial) anywhere on the disk
MIOCFG.COM — save and reload MIO configurations on floppies
SORTDIR.COM - sorts directories many ways . . . fast and safe to use
DISKRX.COM — the SpartaDOS disk editor . . . edit sectors, trace files
Or sector maps in any density, rebuild directories, etc.
DOSMENU.COM - a SpartaDOS menu for Atari DOS 2 lovers
SpartaDOS Tool Kit requires SpartaDOS and will help you get the
most power out of this top performing DOS! $29.95

SpartaDOS X - Just what your B bit has been waiting for . . . a car-
tridge based DOS which adds increased power to your computer and
includes a surplus of features such as 80 column support, Ultra Speed
operation with the US Doubler and the new Atari XF551 drives plus
high speed support for standard Indus GT drives. And for you program-
mers, now the time consuming process of searching and indexing is
streamlined due to the built in data base’s incredible speed. $79.95

23

Appendix A — ICD Product Offerings

R-Time 8 — We've got the time if you've got the Atari. In fact, the
R-Time 8 will even provide you with continuous and automatic date
information as welll its unique piggyback cartridge sports a clock
board and a three to five year battery back up. A top extension port
welcomes the use of additional cartridges since this handy device of
Ours requires no cartridge area memory of its own. What's more, the
R-Time 8 works with all DOS types and plugs into any siot on your
Atari computer.

Put our SpartaDOS to work with the R-Time 8 and just like magic . . .
each file you create or rewrite is now instantly tagged with time and
date information. We're sure that the R-Time 8 will add a new and

exciting dimension to your Atari, one that you'll rely on time after time!
$69.95

RAMBO XL - You'll be saying “thanks for the memory!” after the
RAMBO XL transforms your 800XL or 1200XL into a mighty 256K
computer and makes it memory compatibie with the 130XE. Now your
XL can support BASIC XE extended mode or the standard 64K
RAMDISK supplied with Atari DOS 2.5. The new RD.COM handler
supplied with SpartaDOS Construction Set gives a 192K RAMDISK

- - - that's enough memory to duplicate a full double density disk in one
pass! Our RAMBO XL package includes a plug-in decoding board ang
complete installation instructions.

You must supply the eight 256K DRAMS (available from ICD for
$32.00) and the DOS of your choice. The RAMBO XL provides a low
cost answer to high performance memory enhancement. $39.95

ACTION! — A programming language so fast and exciting we had to
call it ACTION! When you want to write something with a short develop-
ment time but with the execution speed of machine language, turn to
ACTION! Blending the elements of PASCAL and C, ACTION! is easier
to work with on 8-Bit Atari computers. See for yourself why ACTION! is
the most popular alternative to BASIC in the B-bit Atari world! $79.95

ACTION! Tool Kit — A collection of useful routines to make ACTION!
work for you immediately. $29.95

24

Appendix A — ICD Product Offerings

MAC/65 — This is the macro assembler and editor for programmmers
who are serious about assembly language. If you are going to spend
time with low level code, why not use the best? MAC/65's speed and
power runs circles around the competition. Includes the powerful DDT
- - - @ screen-oriented debugging program. MAC/65 and DDT are
without equal on any 8-bit computer system! $79.95

MAC/65 Tool Kit - This tool kit will show you the way to use MAC/65
quickly and effectively from the start! $29.95

BASIC XL — BASIC XL is a must for anyone with the desire to use or
learning Atari BASIC. The superb manual includes an indepth tutorial
on using BASIC XL with your Atari 8-bit computer. BASIC XL is fully
compatible with Atari BASIC and adds over 45 new commands.
BASIC XL supports all 8-bit Atari computers. $59.95

BASIC XL Tool Kit — This tool kit gives you more of a good thing with
many examples and usable subroutines. $29.95

BASIC XE - A programming language designed especially for the
130XE with all the commands and fuil compatibility with standard Atari
BASIC. BASIC XE allows much faster program execution with new
floating point routines and the FAST command. Atari BASIC programs
will now run 2 to 6 times faster! Larger BASIC programs are now
possible with quick access to the extra 64K in a 130XE or 800XL/
1200XL modified with RAMBO XL. BASIC XE gives you over 60,000
more bytes for your programs . . . use all the memory you paid for,

Our greatly improved editor allows upper or lower case letters,
prompted line numbering, and renumbering upon request. Other
features include: Advanced string handling, Built-in Player Missile
Graphics . . . nine new P/M commands make them easy to control
and manageable, Easier Joystick and Paddle Control, Verbal Error
Messages instead of just numbers, New staternents like PROCEDU RE,
IF. .. ELSE, and WHILE . . . ENDWHILE. BASIC XE gives you over
50 extra commands at no additional charge! An XL/XE computer is
required to use BASIC XE. $79.95

25

Appendix A — ICD Product Offerings

The Writer’s Tool — The most ‘natural’ and complete word processor
available for Atari 8-bit computers. You'll be amazed at how easyitis
to use The Writer's Tool, to produce professional-looking documents
with very little effort. The Writer's Tool comes complete with an inte-
grated spelling checker, step-by-step tutorial, printer drivers for most
popular printers, and a custom driver for those not-so-common
printers. $69.95

Personal PASCAL version 2 for the Atari ST — Personal PASCAL is
a structured, compiled tanguage. Conforms to the ISO standards with
many added features. Personal PASCAL includes: a powerful editor,
compiler, linker and extensive, and well documented libraries. Easy
access to most GEM functions. Save, compile, and link with the press
of one key! Personal PASCAL is the single most popular language
program for the Atari ST. $99.95

BBS Express! ST - The advanced host communication system that

lets your ST do all the takking. Imagine a bulletin board system

equipped with features like fuli descriptions on download and upload
files, 32 'IMS’ trackabile surveys, remote order entry, online sysop
maintenance, 40/80 column support, color/monochrome operation

and much, much more. Take that leading edge in online performance
with our BBS Express! ST . . . the only board worth talking about. $79.95

ST Host Adapter — Say goodbye to pre-packaged hard drive systems,
the ST Host Adapter is here! It's the only essential element you need
to build an ST hard drive system using your choice of standard compo-
nents. Just connect an SCSI controller to industry standard drives or
connect SCSI imbedded drives directly to the ST Host Adapter. It's that
easy! And, a battery backed-up time/date clock is built right in for
up-to-the-minute information with every file. $135.95

Calf or write for more information on our ICD Hard Drive Kits. We can
supply any or all of the pieces to build your own custom hard drive
setup.

FAST Hard Drive System — f memory is what you want, memory is
just what you'll get with every FAST Hard Drive System. With storage
capacities ranging from 20 megabytes up to 224 megabytes and dual
drive systems as well. Get all the memory you need with the only

ST hard drive that fits perfectly under your monitor, Each system
welcomes up to six SCSI devices and daisy-chaining from Atari's
DMA port. Comes with an internal clock and built-in quiet fan, For
further information and pricing, please call or write ICD.

26

Appendix B—P:R: Connection SI0 Commands

APPENDIX B—P:R: CONNECTION SO COMMANDS

For the sake of compatibility and interests of all who use the P:R:
Connection, as much technical information is included in this manual
as possible. In this appendix, all 810 commands available to the P:R:
Connection are given. We encourage you to use this information to
make the P:R: Connection a mainstay in the Atari market.

SIO Commands for the Serial Interface {for R: Handlers)
On all SIO commands, the RS-232 port number is encoded into the
device ID; a $50 port is 1, and $51 is port 2 (this is calculated by SIO
as DEVIC + DUNIT-1). The device commands (DCOMND) are listed
below followed by their function. Note that AUX1 and AUX2 are
copies of memory locations $30A and $30B respectively (normally the
sector number). The data direction is determined by DSTAT (location
$303) where $80 indicates output (from computer) and $40 indicates
input (to computer).

A($41) = Set state of DTR/RTS/XMT lines

No data frame

AUX1 = Coded data as follows
Bit[0] : New state of XMT (0 = SPACE)
Bit[1] : 1 if to set new state of XMT, 0 if no change
Bit(4] : New state of RTS {0 = OFF)
Bit[5] : 1 if to set new state of RTS, 0 if no change
Bit[6} : New state of DTR (0 =0FF)
Bit[7] : 1 if to set new state of DTR, 0 if no change

S($53) =Get state of CTS/ICRX/DSR lines
Data frame returned (4 bytes):

+1 = Returned status coded as follows:
Bit[0] : Current state of RCV, 1 = MARK, 0 = SPACE
Bit[1] : (same as BO)
Bit[2] : (same as B3}—no history given
Bit[3] : Current state of CRX, 1 = ready (on line)
Bit{4] : (same as B5}—no history given
Bit[5] : Current state of CTS, 1 = ready
Bit[6] : (same as B7)-—no history given
Bit[7] : Current state of DSR, 1 = ready

27

Appendix B—P:R: Connection SIO Commands

X{$58) = Enter concurrent mode
No data frame
AUX 2 = Index of lines to monitor coded as follows:
Bit[0] : 1 = Check CRX line ready—NAK returned if not ready
Bit[1] : T = Check CTS line ready—NAK returned if not ready
Bit[2] : 1 = Check DSR line ready—NAK returned if not ready
To exit concurrent mode, pulse COMMAND low for at least 100uS.
The P:R: Connection is fast enough to react to the command {if any)
that caused the COMMAND to be pulsed, however, the standard
P:R: Connection handler simply pulses COMMAND low with no
command frame being sent.

? (83F) = Get parameters of boot segment
Data frame returned (12 bytes)
+0 = 12 bytes of data to put in DCB for next SIO call

! ($21) = Get boot code segment from P:R: Connection
Data frame returned (#bytes determined by *?’ command)
+6 = Run address to finish RS-232 handler load process

% ($25) = Main handler transmission command
Data frame returned (#bytes as used in boot code)
+0 = start of RS-232 handler code

Note that there is no write command. To output data in block mode
you must first enter concurrent IO and then send the data as per
concurrent mode. When transmission is finished (last character
emptied from buffer), you should wait a few jiffies and then shut
down concurrent IO,

28

Appendix C—R: Handler Source Code

APPENDIX C—R: HANDLER SOURCE CODE

This appendix contains the source code of the ‘R:" handler of the P:R:
Connection. Lately, it has become a trend to include a ‘R’ handler
that supporis several devices (e.g. an R8IN handler has been around
for some time that supports the 850 interface, 1030 MODEM, 830
MODEM, and the XM301 MODEM). The P:R: Connection is sirmilar to
the 850 interface on the SIO level, however, a few key SIO calls are
lacking; they are ‘B’, for set baud rate, and ‘W', for write block. These
are not needed by the P:R: Connection since it emulates block mode
by 1) entering concurrent mode, 2) sending the data, and 3) exiting
concurrent mode. But, as a resuit of the missing SIO commands, the
RBIN handler is not compatible with the P:R: Connection.

Generally, the authors of terminal programs and BBS's {(bulletin board
systems) allow an ‘R’ handler to be loaded before the program loads.
Thus, most of these programs will work with the P:R: Connection. The
one most notable exception is HOMEPACK (version 1). This program
has special XIO calls which emulate the suspend and resume
functions of the Atari MODEMs {which use a T handler). Therefore, a
special 'R’ handler called PRC.SYS is supplied on our distribution
diskette.

We are making every effort to insure that the P:R: Connection will
remain compatible with all communications software. If you should
find problerms and/or incompatibilities with the P:R: Connection,
please don't hesitate to call the ICD BBS and leave your comments or
questions. Thanks to everyone for making our product a success.

29

ddevic
dunit
dcomnd
dstat
dbuflo
dbuthi
dtimo
dbytlo
dbythi
dauxl
daux2
sio

intvec
tmirgy

1
tcdnoz
iccomz
fcaxlz
icax?z
hatab

tchar
poren
iock

H
H
ileom
noper
enack

porop
incong

pokmsi
1rgen
irgst
brkflg
sketl
audctl
skstat
skres
serinr
seroutr
pbctl
audfl
audcl
audf?
audc?

Appendix C—R: Handler Source Code

title 'R: Handler for P:
‘81985 1D, Inc,'

Atari SI0 interface

equ $300 :
Bqu $301 ;
equ $302 H
equ $303 :
equ 3304 H
equ $305 f
equ $306 H
agqu $308 :
equ 3309 R
equ - $30A H
equ $30B i
equ $E459 H
equ $20A ;
aqu $216 H

Atari CI0 intarface

equ 321 H
equ §22 H
equ $2A :
equ 328 H
equ $31A H
equ 343 H
equ $44

equ $45

Cl0 errors for R: handler

R: Connection -- Appearence after Installing’

device ID

device untt number
SIO command

510 status

data buffer low

data buffer high
device timeout value
number of bytes low
number of bytes high
auxilary 1

auxilary 2

510

SIO interrupt vectors (3)
Immediate IRQ vector

v Zp device number

+ 2p command

: Zp auxl (direction/XI0 info)
i zp aux2 {XI10 info)

: handler table

these locations also used by DOS

equ $84 v 111egal command
equ 385 : nat open

equ 388 ; NACK

Bqu £96 i Port gpen

equ $99 3 in concurrent mode

Atari system hardware regi

equ $D20F H
BqQu 30208 H
equ $11 H
equ $D20F :
equ $0208 H
egu $020F H
equ $D20A H
equ 30200 H
equ 020D 3
equ $0303 :
equ $0200 ;
equ $0201

equ $0202

£qu $0203

sters

: IRG enatle shadow

3 IRQ enabie register

+ IRQ status

; break flag

i Pakey I/0 control

i Audio channel pairing register
i Pokey 1/0 status

; Pokey reset

; serial input

; serial output

i Pert B control (command 1ine)

audio freq l-4/control 1-4

audf3
audc3
audfé
audcd
dosvec
inivec
itffy
memto
stloc
bptr
ssflag

initz

xinit

cha

gotnp

docls

equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
aqu

sbrtl
page

Appendix C—R: Handler Source Code

$0204
$0205
$0206
$D207

$0A
$0¢C
$14
$2€7
$2EA
$43
$2FF

‘Initialization

Initialize after reset

bit
bm1i
jsr

Tdy
sty
1da
sta
1da
sta

1da
beg
cmp
bgq
iny
iny
iny
bne

1da
sta
1da
sta
1da
sta

1da

xwarm
resi
S$EFFF

#

Kwarm

flow cend
meml o
#high cend
meml o+1

hatab,y
gotnp
‘lRI
docls

cha

#'R'
hatab,y
#low rhand
hatab+l,y
#high rhand
hatab+2,y

#1580

v jiffy LOW counter
3 Low memory ptr

and 510 routines'

i 1 warm, then initz rest

do not perform DOS INI on first initz
of R$-232 handler,., this 15 because if
this is AUTORUN.SYS, it ts Toaded by DOS INI
code... can't go recurse
KOTE: The $FFFF is replace by the contents of
DOSINI by some initz code... DOSINI then pts
to INITZ... ex:
1da dosini
sta xinit+]
ide dosini+l
sta xinit+2
Tda #iow initz
sta daosini
1da #high initz
5ta desini+l
jmp (dosini}

LT L O R T

; from now on, always initz DOS
; 52t memlo to END of handler

3 Jump if entry is free

3 jump if already present

; chack next entry.. assume that
; there is a free entry
; create new 'R’ entry in table

31

wx?

htad

set.con

rhand

Tvecs

in;:

out;

getum

retri

Tdy

sta
dey
bne
iny

rts

db
db

Appendix C—R: Handler Source Code

#10
conflg-1.y

wx?

{obuf)/256
{obuf+256}/256

’
+

clear CONFLG,INP, INEND
OUP , UEND , NOCHAR S

i set Y to 1,

i table of high addresses of OBUF

Set concurrent mode for interface

sta
1dy
sty
iny
iny
sty
imp

sbtt}
page

decomnd
#
dstat

dtimo
sip

‘Handler vectors and command entry potnts'

R5232 device handler

dw
dw
dw
dw
dw
dw

dw
dw
dw

ropen=1
relose-1
rget-1
rput-1
ratatus-1
rSpec-1

sirdy
sordy
sacmp

wdmr ur W we

save unit number in table

-

txa
Tsr
1sr
Isr
Tsr
tax
1da

bee

txa
Isr

OPEN
CLOSE
GET BYTE
PUT BYTE
STATUS
o

Serial input ready interrupt
Serial output ready interrupt
Serial output complete

= joch number (300, $10,...}
= focb jndex (D,1,...)

unit X
setun

a

port number (D or 1)

Entry for getting unit number
with use for put and get
get unit number

92t unit number
; 9o put in correct places {jump always)

7 get ioch index

32

Appendix C—R: Handler Source Code

1sr a
1sr a
lsr a
tax
Tdy tcdnoz 3 get unit number from ioch
dey
tya
and 11
setun stx jochk
sta dunit ; set unit number for SIO
sta unit,x ; save Tn unit table
sta portn ; set port number
tay
Tda 551
sta ddevic
rts
i Command entry points
H OPEN COMMAND
ropen jsr retri ; $ave unit in 10CB table
Tda icaxlz ; save direction bits
sta jodir,x
Tdx #0
stx errfig ; clear error flag
; reset input/output ptrs
1sr a 3 depending if read/write
Isr a
Isr a
bce cwrt
sty inp
sty inend
oirt isr 2
bee oprt
i 1dy portn ; note that initz values of ptr doesn't matter
H 1da # ; Y is partn from retri.,.

sta oup,y
sta ouend,y
oprt 1dy #l

retx rts v return good status
H CLOSE COMMAND
rclose jsr getun ; et unit number etc,

Flush output buffer {al{as RCLOSE}

notes:
If in concurrent mode (on ICDNOZ) then just wait 111 all 1s
transmitted. If not tn concurrent, start concurrent and flush
buffer, If in concurrent on the ather channel, then abort with
an error (and take it out of concurrent),

WM e u ua mr oaa

flush jsr modck splace in concurrent wode
bmi retx i extt if error (simple rts}
Jsr anaci ;enable output TRQ

33

Appendix C—R: Handler Source Code

flus2 1da brkflg

beq rstp
1dy pertn v get port number to flush...
Tda nochars,y
beqg flus?
1da jiffy
adc #20

wtjif emp Jiffy 3 wait 20 jiffies (this shpuld probably be
bne wtjif : less,.. should be 1730 sec+)
Tdy fl y successful operation
db $2¢

rstp Tay #3580 3 break error,

H Jmp restor ; fall through to restor

Restore after concurrent mode

; notes:

Fl
+
*
.

This must not affect the ¥ register,

restar bit conflg 3 only restore if not
bmi xrest ; already in concurrent mode
sei
tda #1434 ; set command line Jow..
sta pbctl
1da pokmsk
and #5C7 i disable input and output interrupts...
sta pokmsi 3 Prev. only disabled input -- #ay have
sta irgen ; been cause for ¢rashes when break pressed...
1dx #6-1 v restore Pokey IR vectars
rsipl lda tpok,x
sta intvec,x
dex
bpl rsipl
Tdx #6-1
1da #
Tpla sta audfl,x ; turn all soung off
dex
bpl 1pla
1da #3580
sta conflg ; not in concurrent mode
Tda #$3C
sta pbectl ; COMMAND 1ine HIGH
CL1
xrest rts
: Enable output IRQ
notes:
H It is ok to do this if mo chars in buffer, The 'interrugt will
3 simply detect an empty buffer and disable the output IRQ.
enaoi 1da [2] ; set 2 or 1 stop bits

34

Appendix C—R: Handler Source Code

bit baudr
bmi sesh
1da #18
sesb ora pokmsk
sta pokmsk
sta irgen
rts
H Status command
rstatus jsr retri + get unit number etc.

bit conflg
bp1 incomo

in block mode.. get ctr lines
Jump if Jn concurrent mode

Tdy #2-1 ; set up DCB
1p3 lda sttab,y ; setup DCB for status comnd
sta dcomnd,y
dey
bpl 1p3
jsr sin ; do serial I/0
bpl seer ; finish setting up error flags
bmi retlb ; {same as return) return if error
incomo sec
1da inend
she inp
sta stloc+l
sec
i Tdy portn i ¥ is portn from retri
1da ouend,y
sbe oup,¥
sta stlpc+d
seer 1da errflg ; get error flags
sta stloc
Tdy #0

sty stloc+Z

sty errflg reset error flags

baq great ; return gopd status
; Special XI0 command
rspec jsr retri 3 @t unit from joch
Tda iccomz ; 9t command
cmp M0 i check if to set concurrent mods
bne compa

Set concurrent 170

notes:
iIf alreay in concurrent mode, an error will oecur and concurrent
mode will be dfsabled.

tda conflg ; make sure not alreay in
73] inemod ; teke it out of conc mode if arror
jsr modck ; make sure in concurrent

retlb clc

Appendix C—R: Handler Source Code

bec return ; exit with given status...
compa ¢mp Fiz) i force write of shart block
bne compb

Force write of short block

notes;
This simply does a2 flush on the channel provided, The same
errocrs that occur on flush can occur here. If in concurrent mode ,
an error should occur,

W owr wa e wa owe

Tda conflg i check if in concurrent
bp1 incmod ; Jump if already in concurrent mode.
jsr flush i do flush without setup
db $2C y skip the good status return
great lay L] 3 return with good status
return Tdx joch ; 98t device ID
Tda fodir,x ; restore 10 direction
sta icaxlz
rts
incmod jsr restor ; take out of conc mode
1dy #inconc ; t1legal op while in conc mode
tne return ; return with error
compb emp 434 i check if to set control lines
bne COMpC
; Set control lines (XIO 34}
bit conflyg 3 jump if in block mode
bmi inblk
1da icaxlz » get mode
and #3 + XMT setting
1sr a ; BIT[O]=0 1f no change
beq great i exit with good status if no change
Tda #3$73 ; get break/no break
bes sath
ora #$80
setb sta skctl + 58t break/no break
grtjz ¢lc
bce great
inblk 1da icaxlz
sta dauxl voset aux I byte
Tda "a
jsr set.con ; 9o set state of ports
cle
bec return ; return with status from SIO
compc cmp #16 . check if to set baud rete...
bng compd

36

Appendix C—R: Handler Source Code

Set baud rate (X10 36)

notes:
This operation is always legal. It can change baud rate right
in the middle of comcurrent 1/0 if it wants,

e s wE e

Tda fcaxlz 3 get baud rate/word size/stop bits
sta baudr ¥
1da icaxz ; get LTS flag
and #7
setct sta ctsflg,y
cle
bee grtjz 3 return with good status
compd cmp #38 3 check if to set translation mode
bne undef

Set translation {XID 38)

notes:
This operation is alsc always legal. Translation mode may be changed
right in the middle of concurrent mode if desired.

rtrans lda icaxlz » et transiation mode
sta tramod,y
1da jcaxZz : get won't translate charac
sta trachr,y
cle
bece grtj?
undef ldy #ilcom ; i1legal command error
rts

Place handler into concurrent mode if not already

notes:
This routine first checks to see if it 1s in concurrent mode,
if so, them it makes sure the right part is opened. If not, it
will place itself into concurrent mode, Errors are a 510 type
error if P;R: is not on, or a already concurrent type of error,

e owr we e we W wd

modck 1da conflg ; check if concurrent mode
bmi ttok 3 90 make sure its the same
omp partn ; make sure same as device 1D
bne incmod
Tdy #l : return with good status...

reterl rts

Set concurrent mode {unconditionally)

ctok 1dy portn
Tda ctsflg,y
sta daux2 ; controls must be ready for X command
1da xR
ctok? jsr set.con
bmi reterl i jump 1f an error cccurs...

37

Appendix C—R: Handler Source Code

1dy portn
sty conflg
tda baudr,y

get port number (0 or 1)
now in concurrent mode
get baud rate

[P —

and #OF strip other bits,.
tay

1da bauth,y ; get bauvd rate HIGH
sta audf2

s5ta audfé

1da baut1,y i 92t baud rate LOW
sta audf}

sta audf3

1da #3A0 ; set ne sound,,

sta audcl

sta audc?

sta audc3

sta audcd

SEI ; disable IRQ while setting up
1da #3573 v set SKCTL..

sta sketl

1da 1578

sta audetl set channel pairing

Tdy #6-1 v et new IRQ wvectors..
seir? lda intvec,y i save old vectors
sta tpok,y

Tda FYaCs,y
sta intvec,y

dey
bpl selr2
1da #3520 ; enable input interrupt...
ura pokmsk i set pokey mask bits
sta pokmsk
sta irqen
CLT ; enable interrupts..
dy 4l
rts
H Put byte
rput sta techar i save character
Jsr getun » 9t unit number from table
1da tramod,y 7 Bet translation mode
and #5330
tay
comp #4520 i Jump 1f no translation
bes cpari
Tda tchar i check if EDI.
anp #1598
bne ckpar
1da H3i i #f EOL send CR/LF
isr sench 7 send char to buffer
tya
bmt expy

Appendix C—R: Handler Source Code

Jdx porth
1da tramod,x 3 check 1f to append LF
asl a
bq'l expug ; exit with good status
da M0 ; sead LF
bne sench
ckpar and #HIr ; thack if valid character
dey
bmt sencl
amp # ! : heavy translation
bee axpuy
anp #3790

bcc sench
axpug Tdy #1

Jump 1f valid character

expu rts
sench sta tchar ; Save character
cpari 1dx portn
cpar 1da tramod,x i do parity build
and [X]
heq sencm
asl tchar
cmp [X]
beq setpl ; set high parity
Isr a
1da tchar
pupa bce shipp
eor #3802 ; [odd parity)
shipp as) a
bne pupd
setpl ror tchar ; set parity bit
senam ;ldx portn ;get device number,.. (aYready loaded)
Tda hiad,x ; set address of buffer
sta wxd9+2 1 stuff t...
1dy ouend, x ; get ptr to end of output
iny
tya
wpu jsr brkck 3 (exits concurrent if brk}
7 3] exbrk ; exit if break...
cmp P, X
beq wpu ; wait for room {only happens 1f CONC mode)
tay
1da tehar
pha
wxd9 sta obuf,y ; put character in buffer
tya
sta ouend, % 3 save end ptr
1da #0
?ta nochars,x ; signal some chars in buffer
pla

bit conflg if not in conc mode

bp1 isin : then check if to flush buffer,.,.
omp A3 : #f CR then flush it...

beq fluit

iny . now check +f buffer 1s full

fluit

jsin
rets
exbrk

rget

chbk

ckpl

noe

clpar

ctra

nocr

tya

cmp

bne
Jmp

isr
Tdy
rts

Appendix C—R: Handler Source Code

OUp, X
rets
flush

enaof
#

Get character

cpx
beg

Tda
inx
stx
sta

Tda
and
beg
<mp
beg
and
egr
bee
epr
asl
bne
bee

Tda
ora
sta

as]
1sr

ida
and
tax
lda
cpx
bes
and
np
bne
1da
dex
bmi

getun
config
retd

brkcik
ret
inp
inend
cbk

ibuf, x

inp
tchar

tramod,y
#50C
ctra
A30C
clpar

#4

tchar
noe

F380

a

ckpl
clpar

#520
errflg
errflg

tchar
tchar

tramod,y
#3530

tchar
#3520
not.r
#F
#13
nacr
#$98

notr

Fi

PP

e e

we

e .- -r wa

-

theck if this filled it
not full, so return with good status
flush buffer..,

enable output irq if chars
and return with good status

et unit number from table
make sure in concurrent mode
Jump if error...

check if break

Jump if break error

check if character in buffer

Jjump if none

get char and bump ptr
save character

check parity
Jump if no parity check..
clear parity

force into even/0DD parity

set parity error

clear parity

get translation mode

jump if no translation
CR

exit if not heavy

heavy translation

40

gdef
notr

retB

brikck

s0rdy
socmp

Seou

wal9

wt od

bee
omp
bce
1da
1dy
rts

Jmp

shttl
page

Appendix C—R: Handler Source Code

gde f
#3570
notr
trachr,y
#H

restor

*

transiation character

take it out of concurrent

‘Interrupt handlers’

Check treak flag,. if break then abort

bit
timi
jsr
Tdy
sty
rts
bit
rts

brkflg
rena
restor
#3580
brkflg

restor

check break flag

restore from concurrent
reset hreak flag...

S=1 if error (Y=error msg)

force 5 flag to O

sarial output ready/complete IRQ

CLD
tya
pha
txa
pha

Tdy
Tda
sta
Tda
cmp
bne

1da
and
sta
sta
1da
sta
bre

tax
inx
1da
sta
txa
sta

1d:
and
heq

conflg
hiad,y
WA79+2
oup,y
ouend ,y
seou

pokmsk
#3E7
pokmsk
jrgen

#-1
nochars,y
noinr

phuf, x
seroutr

up.y
#3408

jrgst
wt od

-

make sure decimal flag 1s cleared

save Y register {but not A}

get correct buffer...

get high address of buffer
save it in routine...

see if s a character to send
jump if so.. send charactar

clear interrupt flag

no characters in buffer
jump {always)

get character,,

; make sure an Output Done interrupt

will not occur, (apparently 0D can
happen even after SEROUT is loaded)

41

Appendix C—R: Handler Source Code

noinr pla
tax
reti pta 3 return from interrupt
tay
pla
rti
H Serial input ready IRQ
sirdy CLD i make sure not in deciaml mode
tya
pha
Tda serinp i 9et character
Idy inend i get input buffer ptr
sta fbuf,y
lda skstat i 2t status
sta skres 3 s.Meset status
ear #-1
and 2300 ; get overrun/frame error bits
ora errflg ; save flags
iny
cpy inp 3 check if hit end..
sty inend
pne exin + Jump if no averrunm..
iny ; bump current position
sty inp
ora #3510 ; set overrup flag
axin sta errflg
cle
bee reti 3 return from tnterrupt

sbttl 'Tables and system varjsbles’

page
H Table for DCE on status command
sttab db ‘S*, %40

dw stloc,4,4
; Baud rate tables
bautl db $A0,%C0, $E3,$6F 395 $C0,$F6, $47

db $40,$CC, $E3, $EA, $6E, 883, $56 . §28
bauth db $08,%4C, $45, 93D, $2E,$1F, $19,$17

db 308,305, %02, $01, %01, $00, $0G, $00
xwarm dh -1 i first time through, no dosint is dome
tramod db $00, %00 translation mode:

B6 - 1 1f append LF after CR {out)
B5 - 1 if no translation

[P

42

baudr

ctsflg

trachr

ecoda

conflg
inp
inend
aup
ouend
nochars

iodir
unit
tpok
errflg

obuf

ibuf
cend

db

db

ds
ds
ds
ds
ds
ds

ds
ds
ds
ds
ds

ds

end

Appendix C—R: Handler Source Code

H]
$00, $00 :
$00, $00 ;
$00, 300 :

; THE FOLL

s {and aft
1 H
1 :
1 :
2 H
2 :
2 :
8 :
8 :
6 H
1 3
256 :
256 :
256 :

B4~ 1 if heavy, 0 if tight
B[3,2] - 00 ignore parity (input)
01 check odd/ ¢lear
10 check even/ clear
11 no check/ ¢lear
B[1,0] - 00 no change {output)
01 set odd parity
13 set even parity
11 set parity bit to 1
Baud rate:
B[3-0] - baud rate (index fnto table}
Bf5-4] - 00 = & bits
Q1 = 7 bits
10 = & bits
11 = & bits
B[7] - 1 if 2 stop bits {eise 1 stop)

3 indicates which must be true for conc mode

B[0O] - 1 1f CRX monitor
B[1] -~ 1 if LTS monitor
B[2] = 1 3f DSR monitor
Translation character:; char to return
if in heavy translation..
address of snd of handler code

OWING MUST STAY IN ORDER...

er TRACHR)!t)

Concurrent mode flag.. {<0 1f not in conc)
jnput ptr

jnput end ptr

output ptr

output end ptr

ne chars in out buffer flag

icaxlz bytes (saved from open}

jcdnoz bytes (saved from openfxig/status)
holds serial 1/0 1rq vectors

error flag

3 output buffer..

2nd output buffer
jnput buffer..

; End of handler.. (new memlq)

Appendix C—R: Handler Source Code

Appendix D—Standard Printer & MODEM Cables

APPENDIX D—STANDARD PRINTER & MODEM CABLES

The following is the standard connection specification used by ICD
for our standard printer and MODEM cables. These should work for
the most common printers and MODEMSs or they may need to be
modified according to the special needs of your particular installation.

Printer Cable Connections

36 pin centronics {male) DB15P

- Data Strobe
- DO

- D1
- D2

-D3
- D4
-D5
- D6
16 11 - Gnd
32 12 - Fault

11 13 - Busy
9 15- D7

Frame - to the shield wire I No connection to shield

00~ | |d W (N —
0~ O N | Lo (M =

MODEM Cable Connections

DB25P DBgP

-DTR
- CRX

- XMT
- RCV

5-GND
6 - DSR

7-RTS
8-CTS

Frame - to the shield wire | No connggction to shield

B0 N =

o ([~ [N COB

45

Appendix D—Standard Printer & MODEM Cables

46

Appendix E—1200XL Modifications

APPENDIX E—1200XL MODIFICATIONS

WARNING: The following instructions should help anyone competent
with soldering equipment to modify the 1200XL to work with the P:R:
Connection and cther computer powered peripherals. This
modification is not intended for the complete novice.

Turn your computer on its back. Remove the six phillips head screws
which hold the case together and place them in your parts dish. Turn
the computer right side up and lift the top cover up and towards the
front. Look inside and find the two ribbon cables which connect the
keybeard and console LEDs to the main computer board. Carefully
unplug these cables noting the correct polarity of their connectors.
Remove the keyboard assembly and set it aside for now.

Remove the six phillips head screws holding the computer board in
the bottom case. One of these screws is in the upper left hand corner
near the on/off switch. Another is in the upper right corner and goes
through the heat sink. The remaining four screws are across the front
and about four inches apart. (Three of these also hold down the metal
shield.}

Remove the computer board assembly from the case. Lift the front of
the computer board and the cartridgefjoystick/switch assembly up
and pull the computer board out and towards you until all the rear
connectors are free. Remove this assembly, separate the plastic piece
from the PCB and set it aside.

Remove the metal shields and set them aside. There should be
several “push’ rivets. Remove these then separate and remove the
metal covers. NOTE: Some metal covers may be held together with
bent metal tabs or screws.

47

Appendix E—1200XL Moditications

Replace resistor R63 with a jumper wire. 1200XL is the only 8-bit Atari
computer with a current limit resistor (R63). This prevents 1200XL
owners from using any peripherals (including the XM301 MODEM and
P:R: Connection) which draw power from the computer. R63 is located
at the top of the PCB near the center. It is just to the right of
transistor Q3. Remove this resistor and replace it with a jumper wire,
(Any piece of 24-30 gauge wire will do.)

Reassemble and test.
Now you can use devices which draw power from your 1200XL!

Appendix F — Compatibility

APPENDIX F — COMPATIBILITY

The P:R: Connecticn internal software has been modified to provide
even more compatibility than before! In most cases, no other software
is required. The exceptions to the rule are:

1) The second serial port (R2:) is not supported with the internal
handler. If you plan on using R2:, you will need to load the PRC.5YS
external handler first, before your MODEM program.

2} If your MODEM ‘crashes’ with the P:R: Connection installed (the
MODEM begins to send or receive continuously on its own} try to load
the PRC.REL file first, before your MODEM program, If that does not
solve the problem, reboot and try the PRC.SYS file. (Do not use these
two files together.)

In both cases you may load the PRC.SYS or PRC.REL files in the
following manner. If using SpartaDOS 2.3 or higher, you can include
the file as the first filename in your communications batch file. Be sure
10 include the full name of the file. An aoptional method for SpartaDOS *
or most other DOS’s is to append your MODEM program onto the end
of the PRC.3YS or PRC.REL files.

Every effort has been made to make the P:R: Connection the best
8-bit interface avaitable! If you have any questions or problems, call
our tech support department at 815-968-2228 8 A.M.-5 PM. CST or
use your MODEM and call our 24 hour support BBS at 815-968-2229,

49

IMPORTANT WARRANTY INFORMATION
LIMITED 30 DAY WARRANTY

ICD, INC. warrants to (he original consumer purchaser thal this 1CD, Inc. Personal
Compuier Praduct {not including computer programs) shall be free from any defects in
malerial or workmanship for a penod of 30 days trom the date of purchase. If any such
defect is discovered within the warranly penod, ICD, Inc.’s sole obhgation will be o reparr
or replace, at ils election, the Computer Product free of charge on receipt of the unit
{charges prepaid, ¢ mailed or shipped} with proof of date of purchase satisfactory

to ICD, Inc.

Write 1o: 1ICO, inc.
1220 Rock Streel. Suite 310
Rocuford. IL 64101-1437
Attn. Service Dept

¥YOU MUST RETURN DEFECTIVE COMPUTER PRODUCT FOR IN-WARRANTY REPAIR.

This warranty shall nol apply if the Computer Product: (i} has been misused or shows signs
of excessive wear. (i) has been damaged by improper installation. or (i) has been
damaged by being serviced or moditied.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY
LIMITED TO THIRTY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR
INCIDENTAL DAMAGES RESULTING FROM A BREACH OF ANY APPLICABLE
EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED. Some slates do nol
allow limitations on how long an imphed warranty lasts or do not allow the exciusion or
limitation of incidenlal or consequential damages. 50 the above Imitalions or exclusions
may not apply 10 you.

This warranty gives you specific legal nghts and you may also have other nights which vary
from stale to state.

DISCLAIMER OF WARRANTY ON ICD, INC. COMPUTER PROGRAMS: All ICD, INC.
computer pragrams are distnbuted on an “as1s” basis withoul wareanty of any kind. The
enbire nisk as 1o the quahty and performance of such prograrns s with Ihe purchase Should
the programs prove delective following their purchase, Ihe purchaser and nol Ihe
manutacturer, disinbutor, or retaller assumes the entire cost of all necessary servicing or
repair,

ICD, Inc. shali have no liability or responsibility to a purchaser. customer, or any other
persan or enfity with respect ta any liability. loss, or damage caused directly or indirectly by
computer programs soid by ICD, Inc. This disclaimer includes but 1s not limited to any
inlerruplion ol service, loss of business or anticipatory profits or consequenual damages
resuiting trom the use or operation of such computer programs

REPAIR SERVICE: If your ICD. Inc. Personal Computer Product requires repar other than
under warranty, please write to ICD, Inc., Service Department for repair inlormanon

IMPORTANT: If you ship your ICD, ine¢. Personal Computer Product, package it securely
and ship i, charges prepaid and isured. by parcel post or United Parce! Service.

WARRANTY/UPDATE
REGISTRATION CARD

Please take the time to complete this card and return it
to us to allow us to provide you with more efficient service,
including updates, should your ICD, Inc. product require it.

(Plaase print)

Name

Address

City State

Country ZIP

Phone_{) ltem Purchased
{Area Code)

Date of Purchase_________ Serial Number

Where Purchased

What other products would you like to see us develop?

Does your local Atari dealer carry our product line? [JYes [No

Your Atari dealer’s name, address

ELEL
dAvVLS
IVvd

LEVL-LOL9 SIoul|| 'PiopO0Y
0L€ 8uNg 1981S Yooy 0221
'Ol

Possible Errors Using the P:R: Connection

CODE #

128($80)
129($81)
130($82)
131($83)
132($84)
133($85)
135($87)
138($8A)
139($8B)
153($99)

ERROR CODE MEANING

Break Key Was Pressed

IOCB Already Open

Nonexistent Device

Open for Write Only

Invalid XIO Call Made

I0CB Not Open (from CIO)

Open for Read Only

Device Timeout

NAK - Input Handshake Lines Not Ready
Already in Concurrent Mode

s
i

I

ICD, Inc., 1220 Rock Street, Rockford, IL 61101-1437 815/968-2228 ;
Copyright © 1986 ICD, inc.

